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1 Introduction

This work contributes to the series of papers [13, 15], [3, 4], [6], [20] and [19] which are devoted
to the qualitative study of the Newton equations driven by random noise. For related results
see also [5], [23], [26, 27], [1], [22] and the references given there. Newton equations of this type
are interesting in their own right: as models for the dynamics of particles moving in random
media (cf. [25]), in the theory of interacting particles (cf. [28], [29]) or in the theory of random
matrices (cf. [24]), to mention but a few. On the other hand, the study of these equations
fits nicely into the the larger context of (stochastic) partial differential equations, in particular
Hamilton-Jacobi, heat and Schrödinger equations, driven by random noise (see [32, 33] and
[14, 16, 17, 18]).

In most papers on this subject the driving stochastic process is a diffusion process with con-
tinuous sample paths, usually a standard Wiener process. Motivated by the recent growth of
interest in Lévy processes, which can be observed both in mathematics literature and in appli-
cations, the present authors started in [20] and [19] the analysis of Newton systems driven by
jump processes, in particular symmetric stable Lévy processes. In [20] we studied the rate of
escape of a “free” particle driven by a stable Lévy process and its applications to the scattering
theory of a system describing a particle driven by a stable noise and a (deterministic) external
force.

In this paper we study non-explosion and transience of Newton systems of the form





dxt = pt dt

dpt = −
∂V (xt)

∂x
dt−

∂c(xt)

∂x
dξt

, (1)

where ξt = (ξ1t , . . . , ξ
d
t ) is a d-dimensional Lévy process, c ∈ C2(Rd,Rd), V ∈ C2(Rd), V > 0

and
(
∂c(xt)
∂x dξt

)
i
:=
∑d

j=1
∂ci(xt)
∂xj

dξjt is an Itô stochastic differential.

In Section 3 we give conditions under which the solutions do not explode in finite time. For

symmetric α-stable driving processes ξt = ξ
(α)
t we show in Section 4 that the solution process

of the system (1) is always transient in dimensions d > 3. We consider it as an interesting open
problem to find necessary and sufficient conditions for transience and recurrence for the system
(1) in dimensions d < 3. Even in the case of a driving Wiener process (white noise) only some
partial results are available for d = 1, see [4, 3].

2 Lévy Processes

The driving processes for our Newtonian system will be Lévy processes. Recall that a d-
dimensional Lévy process {ξt}t>0 is a stochastic process with state space Rd and independent
and stationary increments; its paths t 7→ ξt are continuous in probability which amounts to
saying that there are almost surely no fixed discontinuities. We can (and will) always choose
a modification with càdlàg (i.e., right-continuous with finite left limits) paths and ξ0 = 0. Un-
less otherwise stated, we will always consider the augmented natural filtration of {ξt}t>0 which
satisfies the “usual conditions”. Because of the independent increment property the Fourier
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transform of the distribution of ξt is of the form

E(eiηξt) = e−tψ(η), t > 0, η ∈ Rd,

with the characteristic exponent ψ : Rd → C which is given by the Lévy-Khinchine formula

ψ(η) = −iβη + ηQη +

∫

Rd\{0}

(
1− eiyη + i yη 1{|y|<1}

)
ν(dy). (2)

Here β ∈ Rd, Q = (qij) ∈ Rd×d is a positive semidefinite matrix and ν is a Lévy measure, i.e., a
Radon measure on Rd \ {0} with

∫
y 6=0 |y|

2 ∧ 1 ν(dy) <∞. The Lévy-triple (β,Q, ν) can also be
used to obtain the Lévy decomposition of ξt,

ξt =WQ
t +

∫∫

[0,t]×{0<|y|<1}

y Ñ(dy, ds) +

∫∫

[0,t]×{|y|>1}

y N(dy, ds) + βt (3)

where ∆ξt := ξt − ξt−, ξ0− := ξ0, N(dy, ds) =
∑
06t6s 1{∆ξt 6=0}δ(∆ξt,t)(dy, ds), is the canon-

ical jump measure, Ñ(dy, ds) = N(dy, ds) − ν(dy) ds is the compensated jump measure,
WQ
t is a Brownian motion with covariance matrix Q and βt is a deterministic drift with

β = E
(
ξ1 −

∑
s61∆ξs1{|∆ξs|>1}

)
. Notice that the first two terms in the above decomposition

(3) are martingales.

Lemma 1. Let {ξt}t>0 be a d-dimensional Lévy process whose jumps are bounded by 2R. Then

E([ξi, ξj ]t) 6 t max
16i,j6d

|qij |+ t

∫

0<|y|<2R

|y|2 ν(dy), t > 0,

where [ξi, ξj ]• denotes the quadratic (co)variation process.

This Lemma is a simple consequence of the well-known formula

E
(
[ξi, ξj ]t

)
= E

(
[W i,W j ]t +

∑

s6t

∆ξis∆ξ
j
s

)
= t

(
qij +

∫

|y|<2R

yiyj ν(dy)

)
.

It is well-known that Lévy processes are Feller processes. The infinitesimal generator (A,D(A))
of the process (more precisely: of the associated Feller semigroup) is a pseudo-differential oper-
ator A

∣∣
C∞c (Rd)

= −ψ(D) with symbol −ψ, i.e.,

−ψ(D)u(x) := −(2π)−d/2
∫

Rd

ψ(η)û(η)eiyη dη, u ∈ C∞
c (Rd), (4)

where û(η) denotes the Fourier transform of u. The test functions C∞
c (Rd) are an operator core.

Later on, we will also use the following simple fact.
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Lemma 2. Let u ∈ C∞
c (Rd) and uR(x) := Ru( xR), R > 1. Then

|ψ(D)uR(x)| 6 Cψ R

∫

Rd

(1 + |η|2) |û(η)| dη = Cψ,uR

uniformly for all x ∈ Rd with an absolute constant Cψ,u.

Proof. Observe that ûR(η) = Rd+1 û(Rη). Therefore,

|ψ(D)uR(x)| = (2π)−d/2

∣∣∣∣∣∣

∫

Rd

eixηψ(η) ûR(η) dη

∣∣∣∣∣∣

6 (2π)−d/2R

∫

Rd

Rd |ψ(η) û(Rη)| dη

= (2π)−d/2R

∫

Rd

∣∣ψ
( η
R

)
û(η)

∣∣ dη

6 (2π)−d/2Cψ R

∫

Rd

(
1 +

∣∣ η
R

∣∣2
)
|û(η)| dη

6 (2π)−d/2Cψ R

∫

Rd

(
1 + |η|2

)
|û(η)| dη,

where we used that |ψ(η)| 6 Cψ(1 + |η|
2) for all η ∈ Rd with some absolute constant Cψ > 0.

Since u ∈ C∞
c (Rd), û is a rapidly decreasing function which means that the integral in the last

line is finite.

Our standard references for the analytic theory of Lévy and Feller processes is the book [10]
by Jacob, see also [11]; for stochastic calculus of semimartingales and stochastic differential
equations we use Protter [30].

3 Non-explosion

Let (Xt, Pt) = (X(t, x0, p0), P (t, x0, p0)) be a solution of the system (1) with initial condition
(x0, p0) ∈ R2d at t = 0, where ξt = (ξ1t , . . . , ξ

d
t ) is a d-dimensional Lévy process, d > 1,

c ∈ C2(Rd,Rd), V ∈ C2(Rd), V > 0 and ∂c/∂x is uniformly bounded. Clearly, these conditions
ensure local (i.e., for small times) existence and uniqueness of the solution, see e.g., [30].

The random times

Tm := inf{s > 0 : |Xs| ∨ |Ps| > m} (5)

are stopping times w.r.t. the (augmented) natural filtration of the Lévy process {ξt}t>0 and so
is the explosion time T∞ := supm Tm of the system (1).

Theorem 3. Under the assumptions stated above, the explosion time T∞ of the system (1) is
almost surely infinite, i.e., P(T∞ =∞) = 1.
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Proof. Step 1. Let τm := inf{s > 0 : |Ps| > m} and τ∞ := supm τm. It is clear that Tm 6 τm
and so T∞ 6 τ∞. Suppose that T∞(ω) < t < τm(ω) 6 τ∞(ω) for some t > 0 and m ∈ N. From
the first equation in (1) we deduce that for every k ∈ N

sup
s∈[0,Tk(ω)]

|Xs(ω)| 6 |x0|+ t sup
s∈[0,t]

|Ps(ω)| 6 |x0|+ tm.

On the other hand, since Tk(ω) < T∞(ω) < t < τ∞(ω), we find that supk∈N sups∈[0,Tk] |Xs(ω)| =
∞. This, however, leads to a contradiction, and so τ∞ = T∞.

Step 2. We will show that P(τ∞ = ∞) = 1. Set H(x, p) := 1
2p
2 + V (x) and Ht = H(Xt, Pt).

Since H(x, p) is twice continuously differentiable, we can use Itô’s formula (for jump processes
and in the slightly unusual form of Protter [30, p. 71, (***)]). For this observe that only the
quadratic variation of the Lévy process [ξ, ξ] := ([ξi, ξj ])ij ∈ Rd×d contributes to the quadratic
variation of {(Xt, Pt)}t>0:

[(X,P ), (X,P )] =

(
0 0

0
[
∂c
∂x ξ,

∂c
∂x ξ

]
)

=

(
0 0

0
(
∂c
∂x

)
[ξ, ξ]

(
∂c
∂x

)T
)
∈ R2d×2d.

Therefore,

dHt = Pt− dPt +
1

2
tr

(
∂c(Xt−)

∂x
d[ξ, ξ]t

(
∂c(Xt−)

∂x

)T )
+
∂V (Xt)

∂x
Pt dt+Σt,

where

Σt =
1

2

∑

06s6t

(
P 2s − P

2
s− − 2Ps−(Ps − Ps−)− (Ps − Ps−)

2
)
= 0.

The first equation in (1), dXt = Pt dt, implies that Xt is a continuous function; the second
equation, dPt = −∂V (Xt)/∂x dt− ∂c(Xt)/∂x dξt, gives

dHt = −Pt−
∂c(Xt)

∂x
dξt +

1

2
tr

(
∂c(Xt)

∂x
d[ξ, ξ]t

(
∂c(Xt)

∂x

)T )
. (6)

Let σR := inf{t > 0 : |ξt| > R} be the first exit time of the process {ξt}t>0 from the ball BR(0).
Then

σ = σ`,m,R := ` ∧ σR ∧ τm, `,m ∈ N,

is again a stopping time and we calculate from (6) that

Hσ− −H0 = −

σ−∫

0

Pt−
∂c(Xt)

∂x
dξt +

1

2

σ−∫

0

tr

(
∂c(Xt)

∂x
d[ξ, ξ]t

(
∂c(Xt)

∂x

)T )
(7)

= I+ II.

Step 3. Recall that −ψ(D) is the generator of the Lévy process ξt. We want to estimate
|E(I)|. For this purpose choose a function φ ∈ C∞

c (Rd,Rd) such that φ(x) = x if |x| 6 1,
suppφ ⊂ {x : |x| 6 2} and define φR(x) = Rφ

(
x
R

)
. Clearly,

φR(ξt) = ξt, t < σR, (8)
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and, since φR ∈ C
∞
c (Rd) ⊂ D(A) is in the domain of the generator of ξt, we find that

MφR
t := φR(ξt) +

t∫

0

ψ(D)φR(ξs)ds (9)

is an L2-martingale (w.r.t. the natural filtration of {ξt}t>0). The stopped process (MφR
t∧τm∧`)t>0

is again an L2-martingale for fixed m, ` ∈ N. We can now use (8) and (9) to get

I = −

σ−∫

0

Pt−
∂c(Xt)

∂x
dMφR

t∧τm∧` +

σ−∫

0

Pt−
∂c(Xt)

∂x
ψ(D)φR(ξt) dt = I′ + I′′.

Clearly,
∫ •
0 Pt−(∂c(Xt)/∂x) dM

φR
t∧τm∧` is a local martingale. Since

[ •∫

0

Ps−
∂c(Xs)

∂x
dMφR

s∧τm∧` ,

•∫

0

Ps−
∂c(Xs)

∂x
dMφR

s∧τm∧`

]

t

=

t∫

0

P 2s−

(
∂c(Xs)

∂x

)2
d[MφR

• ,MφR
• ]s∧τm∧`

=

t∧τm∧`∫

0

P 2s−

(
∂c(Xs)

∂x

)2
d[MφR

• ,MφR
• ]s∧τm∧`

we find for every t > 0

∣∣∣∣E
[ •∫

0

Ps−
∂c(Xs)

∂x
dMφR

s∧τm∧` ,

•∫

0

Ps−
∂c(Xs)

∂x
dMφR

s∧τm∧`

]

t

∣∣∣∣

6 m2
∥∥∥∥
∂c

∂x

∥∥∥∥
2

∞

E [MφR
• ,MφR

• ]t <∞,

where we used that |Ps−| 6 m if s 6 `∧ τm and that MφR
t is an L2-martingale. This shows that∫ •

0 Pt−(∂c(Xt)/∂x) dM
φR
t is a martingale (cf. [30], p.66 Corollary 3) and we may apply optional

stopping to the bounded stopping time σ to get

E(I′) = −E
( σ∫

0

Pt−
∂c(Xt)

∂x
dMφR

t

)
+ E

(
Pσ−

∂c(Xσ)

∂x
∆MφR

σ

)

= E
(
Pσ−

∂c(Xσ)

∂x
∆MφR

σ

)
.

Therefore

∣∣E(I′)
∣∣ 6 md2

∥∥∥∥
∂c

∂x

∥∥∥∥
∞

E
∣∣∣∆MφR

σ

∣∣∣ 6 2mRd2
∥∥∥∥
∂c

∂x

∥∥∥∥
∞

‖φ‖∞, (10)
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where we used ∣∣∣∆MφR
σ

∣∣∣ = |φR(ξσ)− φR(ξσ−)| 6 2R‖φ‖∞

and the notation ∥∥∥∥
∂c

∂x

∥∥∥∥
∞

:= max
i,j=1,... ,d

sup
x∈Rd

∣∣∣∣
∂ci(x)

∂xj

∣∣∣∣ .

Step 4. For the estimate of E(I′′), we use Lemma 2 with u = φ to get ‖ψ(D)φR‖∞ 6 Cψ,φ, and
also σ 6 `, so

∣∣E(I′′)
∣∣ 6 Cψ,φRE

(
sup
t<σ

∣∣∣∣Pt−
∂c(Xt)

∂x

∣∣∣∣
)
` 6 C2

∥∥∥∥
∂c

∂x

∥∥∥∥
∞

Rm`. (11)

Put together, the estimates (10), (11) give

|E(I)| 6 C3Rm`. (12)

Step 5. We proceed with |E(II)|. From

‖AB‖∞ 6 d‖A‖∞‖B‖∞, A,B ∈ Rd×d,

where ‖A‖∞ = maxi,j=1,... ,d |Aij |, we get

t∫

0

tr

[
∂c(Xs)

∂x
d[ξ, ξ]s

(
∂c(Xs)

∂x

)T]
6 d3

∥∥∥∥
∂c

∂x

∥∥∥∥
2

∞

‖[ξ, ξ]t‖∞.

Since we have sups6t |ξs| 6 R for t < σR, the jumps |∆ξs|, s 6 t, cannot exceed 2R. Lemma 1
then shows

E
(
[ξi, ξj ]`∧σR−

)
6 `

∫

0<|y|62R

|y|2 ν(dy) + ` ‖Q‖∞

and so

|E(II)| 6 C4 `

( ∫

0<|y|62R

|y|2 ν(dy) + ‖Q‖∞

)
. (13)

Step 6. Combining (7), (12), (13) we obtain

E (Hσ−) 6 H0 + C3Rm`+ C4 `

( ∫

0<|y|62R

|y|2ν(dy) + ‖Q‖∞

)
. (14)

On the other hand, by Jensen’s inequality,

E (Hσ−) =
1

2
E (P 2σ−) + E(V (Xσ−)) >

1

2
E (P 2σ−)

>
1

2

[
E (|Pσ−|)

]2

>
1

2

[
E
(
|P`∧τm∧σR−|1{τm<`∧σR}

) ]2

=
1

2

[
E
(
|Pτm −∆Pτm |1{τm<`∧σR}

) ]2
.
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Clearly, |Pτm | > m and, since on {s < σR} the driving Lévy process has jumps of size |∆ξs| 6 2R,
we find from (1) that

|∆Pτm |1{τm<`∧σR} 6 2R

∥∥∥∥
∂c

∂x

∥∥∥∥
∞

1{τm<`∧σR}.

Choosing m sufficiently large, say m > 2R‖(∂c/∂x)‖∞, we arrive at

E (Hσ−) >
1

2

[
E (m− |∆Pτm |) 1{τm<`∧σR}

]2

>
1

2

(
m− 2R

∥∥∥∥
∂c

∂x

∥∥∥∥
∞

)2 {
P
(
τm < ` ∧ σR

)}2
. (15)

We can now combine (14) and (15) to find

{
P
(
τm < ` ∧ σR

)}2
6

2(H0 + C3Rm`)

(m− 2R‖(∂c/∂x)‖∞)2

+
2C4`

(m− 2R‖(∂c/∂x)‖∞)2
( ∫

0<|y|62R

|y|2ν(dy) + ‖Q‖∞
)
.

Letting first m → ∞ and then R → ∞ shows P(τ∞ 6 `) = 0 for all ` ∈ N, so P(τ∞ = ∞) = 1,
and the claim follows.

4 Transience

We will now prove that the solution {(Xt, Pt)}t>0 of the Newton system (1) is transient, at

least if the driving noise is a symmetric stable Lévy process ξt = ξ
(α)
t with index α ∈ (0, 2).

Symmetric α-stable Lévy processes have no drift, no Brownian part and their Lévy measures
are ν(dy) = cα |y|

−d−α dy, where

cα =
α 2α−1 Γ

(
α+d
2

)

πα/2Γ
(
1− α

2

) . (16)

We restrict ourselves to presenting this particular case, but it is clear that, with minor alterations,
the proof of Theorem 6 below remains valid for any driving Lévy process with rotationally
symmetric Lévy measure.

Our proof is be based on the following result which extends a well-known transience criterion
for diffusion processes to jump processes, see for instance [8] or [21].

Denote by {Tt}t>0 the operator semigroup associated with a stochastic process and let (A,D(A))
be its generator. The full generator is the set

Â :=

{
(f, g) ∈ Cb × Cb : Ttf − f =

∫ t

0
Tsg ds

}
,

see Ethier, Kurtz [7] p. 24. It is clear that (u,Au) ∈ Â for all u ∈ D(A).
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Lemma 4. Let {ηt}t>0 be an Rn-valued, càdlàg strong Markov process with generator (A,D(A))

and full generator Â. Let D ⊂ Rn be a bounded Borel set and assume that there exists a sequence
{uk}k∈N ⊂ Cb(Rn) and some function u ∈ C(Rn), such that the following conditions are satisfied:

(i) A has an extension Ã such that Ãuk is pointwise defined, (uk, Ãuk) ∈ Â and
limk→∞(uk, Ãuk) = (u, Ãu) exists locally uniformly.

(ii) u > 0 and inf
D
u > a > 0 for some a > 0.

(iii) u(y0) < a for some y0 6∈ D.

(iv) Ãu 6 0 in Dc.

Then {ηt}t>0 is transient.

Proof. Since (uk, Ãuk) ∈ Â, we know that

Mk
t = uk(ηt)−

t∫

0

Ãuk(ηs) ds, k ∈ N,

are martingales, see Ethier, Kurtz [7, p. 162, Prop. 4.1.7]. We set

τD = inf{t > 0 : ηt ∈ D} and σR = inf{t > 0 : |ηt − η0| > R}

and from an optional stopping argument we find for any fixed T > 0

Ey0
(
Mk
τD∧σR∧T

)
= Ey0(Mk

0 ) = Ey0(uk(η0)).

On the other hand,

Ey0
(
Mk
τD∧σR∧T

)
= Ey0


uk(ητD∧σR∧T )−

τD∧σR∧T∫

0

Ãuk(ηs)ds


 ,

and because of assumption (i) we can pass to the limit k →∞ to get

a > u(y0) = lim
k→∞

uk(y0)

= lim
k→∞

Ey0


uk(ητD∧σR∧T )−

τD∧σR∧T∫

0

Ãuk(ηs)ds




= Ey0


u(ητD∧σR∧T )−

τD∧σR∧T∫

0

Ãu(ηs)ds




> Ey0
(
u(ητD∧σR∧T )

)

> Ey0
(
u(ητD∧σR∧T )1{τD<∞}

)
,

where we used in the penultimate step that Ãu
∣∣
Dc

6 0.
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As u ∈ C+(Rn), we may use dominated convergence and let T →∞ and Fatou’s Lemma to let
R→∞. Thus,

a > u(y0) > lim inf
R→∞

Ey0
(
u(ητD∧σR)1{τD<∞}

)
> Ey0

(
u(ητD)1{τD<∞}

)

> (inf
D
u)Py0(τD <∞) > aPy0(τD <∞).

Therefore, Py0(τD <∞) < 1, and, see e.g [2], {ηt}t>0 is transient.

We will now turn to the task to determine the infinitesimal generator of the solution process
{(Xt, Pt)}t>0. The following result is, in various settings, common knowledge. We could not
find a precise reference in our situation, though. Since we need some technical details of the
proof, we include the standard argument.

Lemma 5. Let {ξt}t>0 be a d-dimensional Lévy process with characteristic exponent ψ and
Lévy triple (α,Q, ν). The (pointwise) infinitesimal generator of the process (Xt, Pt) =
(X(t, x0, p0), P (t, x0, p0)) solving (1) is of the form

Au(x, p) =
∂u(x, p)

∂x
p−

∂u(x, p)

∂p

(
∂V (x)

∂x
+
∂c(x)

∂x
β

)

+
1

2
tr

(
∂2u(x, p)

∂p2

(
∂c(x)

∂x

)
Q

(
∂c(x)

∂x

)T)

+

∫

Rd\{0}

(
u(x, p− ∂c(x)

∂x y)− u(x, p) +
∂u(x, p)

∂p

∂c(x)

∂x
y 1{|y|<1}

)
ν(dy).

for all u ∈ C2c (Rd ×Rd) and with β = E0
(
ξ1 −

∑
06s61∆ξτ 1{|∆ξs|>1}

)
. In particular, the pairs

(u,Au), u ∈ C2c (Rd × Rd), are in the full generator Â of the process.

Proof. For u = u(x, p) ∈ C2c (Rd × Rd) we can use Itô’s formula (for jump processes, now in the
usual form [30, p. 70, Theorem II.32]) and get with a similar calculation to the one made in the
proof of Theorem 3

u(Xt,Pt)− u(x0, p0) =

t∫

0

∂u

∂x
Ps ds−

t∫

0

∂u

∂p

∂V

∂x
ds−

t∫

0

∂u

∂p

∂c

∂x
dξs

+
1

2

t∫

0

tr

(
∂2u

∂p2

(
∂c

∂x

)
Q

(
∂c

∂x

)T)
ds

+
∑

06s6t

(
u(Xs, Ps)− u(Xs, Ps−) +

∂u

∂p
(Xs, Ps−)

∂c

∂x
∆ξs

)
.

Here we used the fact that the continuous martingale part of ξt is WQ
t , and so [ξ, ξ]ct =

[WQ,WQ]t = Qt. Note that we suppressed arguments in those places where no ambiguity
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is possible. Since Ps = Ps− +∆Ps = Ps− −
∂c
∂x ∆ξs we find, using the Lévy decomposition (3),

u(Xt, Pt)− u(x0, p0)

=

t∫

0

∂u

∂x
Ps ds−

t∫

0

∂u

∂p

∂V

∂x
ds−

t∫

0

∂u

∂p

∂c

∂x
β ds−

t∫

0

∂u

∂p

∂c

∂x
dWQ

s

−

t∫

0

∂u

∂p

∂c

∂x

∫

0<|y|<1

y Ñ(dy, ds) +
1

2

t∫

0

tr

(
∂2u

∂p2

(
∂c

∂x

)
Q

(
∂c

∂x

)T)
ds

+

∫∫ (
u(Xs, Ps−−

∂c
∂x y)− u(Xs, Ps−) +

∂u(Xs,Ps−)
∂p

∂c
∂x y 1{|y|<1}

)
Ñ(dy, ds)

+

∫∫ (
u(Xs, Ps−−

∂c
∂x y)− u(Xs, Ps−) +

∂u(Xs,Ps−)
∂p

∂c
∂x y 1{|y|<1}

)
ν(dy) ds

with the double integrals ranging over [0, t] × Rd \ {0}. The function u has compact support,
and we may take expectations on both sides of the above relation and differentiate in t. Since
the terms driven by Ñ(dy, ds) or dWQ

s are martingales, we find

d

dt
E (u(Xt, Pt))

∣∣∣∣
t=0

=
∂u(x0, p0)

∂x
p0 −

∂u(x0, p0)

∂p

∂V (x0)

∂x
−
∂u(x0, p0)

∂p

∂c(x0)

∂x
β

+
1

2
tr

(
∂2u(x0, p0)

∂p2

(
∂c(x0)

∂x

)
Q

(
∂c(x0)

∂x

)T)

+

∫

Rd\{0}

(
u(x0, p0 −

∂c(x0)
∂x y)− u(x0, p0) +

∂u(x0,p0)
∂p

∂c(x0)
∂x y 1{|y|<1}

)
ν(dy),

which is what we claimed. Notice, that the convergence is pointwise, so that it is not clear
that C2c (Rd × Rd) is in the domain of the generator. However, our calculation shows that
Au ∈ Cb(Rd × Rd) and

Eu(Xt, Pt)− u(x0, p0) =

∫ t

0
E (Au)(Xs, Ps) ds

which means that (u,Au) is in the full generator Â.

If the driving Lévy process has no drift, no Brownian part and a rotationally symmetric Lévy
measure, the form of the infinitesimal generator becomes much simpler. In this case we have for
all u ∈ C2c (Rd × Rd)

Au(x, p) =
∂u(x, p)

∂x
p−

∂u(x, p)

∂p

∂V (x)

∂x
(17)

+ v.p.

∫

Rd

(
u(x, p− ∂c(x)

∂x y)− u(x, p)
)
ν(dy),

11



where v.p.
∫

Rd f(y) ν(dy) := limε→0

∫
|y|>ε f(y) ν(dy) stands for the principal value integral. It is

not hard to see that

v.p.

∫

Rd

(
u(x, p− ∂c(x)

∂x y)− u(x, p)
)
ν(dy)

=

∫

Rd\{0}

(
u(x, p− ∂c(x)

∂x y)− u(x, p) + ∂u(x,y)
∂x

∂c(x)
∂x y 1{|y|<1}

)
ν(dy)

or also

=
1

2

∫

Rd\{0}

(
u(x, p− ∂c(x)

∂x y) + u(x, p+ ∂c(x)
∂x y)− 2u(x, p)

)
ν(dy)

holds. The latter two representations do exist in the sense of ordinary integrals (just use a
simple Taylor expansion for u up to order two) and are frequently used in the literature. For
our purposes, formula (17) is better suited. Notice that all three representations extend A onto
C2.

Theorem 6. Let d > 3, V ∈ C2(Rd), c ∈ C2(Rd,Rd) and {ξt}t>0 be a symmetric α-stable Lévy
process, 0 < α < 2. Then the process {(Xt, Pt)}t>0 solving (1) is transient.

Proof. We want to apply Lemma 4. Take the function

uγ(x, p) = (H(x, p)− V0)
−γ =

(
1
2p
2 + V (x)− V0

)−γ

with V0 = inf V − 1 and with a parameter γ > 0 which we will choose later. It is not hard to
see that for this u = uγ(x, p) and

D :=
{
(x, p) ∈ R2d : |x|+ |p| 6 1

}
, a := 1

2 min
(x,p)∈D

uγ(x, p)

conditions (ii), (iii) of Lemma 4 are satisfied.

Moreover, we have
∂uγ
∂x

p−
∂uγ
∂p

∂V

∂x
= 0.

Since {ξt}t>0 is a symmetric α-stable process, its Lévy measure is of the form ν(dy) =
cα |y|

−d−α dy with cα given by (16), and (17) shows that

Ãuγ(x, p) = cα v.p.

∫

Rd

(
uγ
(
x, p+ ∂c

∂x y
)
− uγ(x, p)

) dy

|y|d+α
.

We will see in Corollary 9 below (with B = ∂c/∂x and b = 2(V (x) − V0)) that we can choose
γ > 0 in such a way that Ãuγ(x, p) 6 0. This, however, means that also condition (iv) of Lemma
4 is met.

Let χk ∈ C∞
c (Rd) be a cut-off function with 1Bk(0) 6 χk 6 1B2k(0) and set uk(x, p) :=

uγ(x, p)χk(x)χk(p). Clearly, uk ∈ C2c (Rd × Rd) and we know from Lemma 5 that the pair

12



(uk, Auk) is in the full generator Â. The following considerations are close to those in [31]. Write
‖g‖A = ‖g1A‖∞. Using a Taylor expansion we find for some 0 < θ < 1 and all f ∈ C2(Rd×Rd)

f
(
x, p+ ∂c

∂xy
)
− f(x, p)

=
∂f(x, p)

∂p

∂c(x)

∂x
y +

1

2

d∑

i,j=1

∂2f(x, p+ θ ∂c∂x y)

∂pi∂pj

(
∂c

∂x
y

)

i

(
∂c

∂x
y

)

j

and, therefore, for all compact sets K ⊂ Rd and (x, p) ∈ K ×K,

∣∣∣∣v.p.
∫

Rd

(
f
(
x, p+ ∂c

∂xy
)
− f(x, p)

)
ν(dy)

∣∣∣∣

6

∣∣∣∣v.p.
∫

|y|<1

(
f
(
x, p+ ∂c

∂xy
)
− f(x, p)

)
ν(dy)

∣∣∣∣+ 2

∫

|y|>1

ν(dy) ‖f‖K×Rd

6
d4

2

∥∥∥∥
∂c

∂x

∥∥∥∥
2

K

∫

0<|y|<1

|y|2 ν(dy)

∥∥∥∥
∂2f

∂p2

∥∥∥∥
K×K̃

+ 2

∫

|y|>1

ν(dy) ‖f‖K×Rd ,

where K̃ = K + {p ∈ Rd : |p| 6 ‖∂c/∂x‖K}. Since the estimate of the local part in (17) is
obvious, we find

‖Ãf‖K×K 6 C

(
‖f‖K×Rd +

∥∥∥∥
∂f

∂x

∥∥∥∥
K×K

+

∥∥∥∥
∂f

∂p

∥∥∥∥
K×K

+

∥∥∥∥
∂2f

∂p2

∥∥∥∥
K×K̃

)
,

for any f ∈ C2(Rd × Rd) with ‖f‖K×Rd < ∞ and with an absolute constant C = C(K, c, V )
depending only on K, ‖∂c/∂x‖K and ‖∂V/∂x‖K . Since p 7→ uγ(x, p) vanishes at infinity,
condition (i) of Lemma 4 is satisfied for the sequence (uk, Auk)→ (uγ , Ãuγ).

The theorem follows now directly from Lemma 4.

Appendix

We will now give the somewhat technical proof that for some γ > 0 the function uγ(x, p) =(
1
2p
2 + V (x)− V0

)−γ
which we used in the proof of Theorem 6 satisfies condition (iv) of Lemma

4. We begin with a few elementary lemmas.

Recall that Euler’s Beta function B(x, y) is given by

B(x, y) =

1∫

0

tx−1(1− t)y−1 dt, x, y > 0, (18)

and satisfies the relations

B(x, y) = B(y, x) and B(x, y) =
x+ y

y
B(x, y + 1), (19)
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cf. Gradshteyn and Ryzhik [9, §8.38]. A change of variable in (18) according to t = s2 yields

B(x, y) =

1∫

−1

(s2)x−
1
2 (1− s2)y−1 ds, x, y > 0.

Lemma 7. For any v ∈ R \ {0}, a > 1, d > 3 we have

J(v) =

1∫

−1

(1− s2)
d−3
2 ln(v2 + 2vs+ a) ds > ln(a) I d−3

2
. (20)

Proof. We observe that J(v) = J(−v) and

ln(v2 + 2vs+ a)− ln(a) = ln

(
v2

a
+ 2

v

a
s+ 1

)
> ln

(
v2

a2
+ 2

v

a
s+ 1

)
.

Therefore, we may assume that a = 1 and v > 0. Since J(0) = ln(a) = 0, it is enough to show
that J(v) is increasing. This is clear for v > 1 since v 7→ v2+2vs+1 increases for all parameter
values |s| 6 1. For 0 < v < 1 we calculate the derivative

J ′(v) = 2

1∫

−1

v + s

v2 + 2vs+ 1
(1− s2)

d−3
2 ds.

In the case d = 3 a few lines of simple calculations give

J ′(v) =

(
1−

1

v2

)
ln

(
1 + v

1− v

)
+

2

v

which is clearly positive. If d > 3, we use the symmetry of the measure (1− s2)
d−3
2 ds and find

J ′(v) =

1∫

−1

(
v + s

v2 + 2vs+ 1
+

v − s

v2 − 2vs+ 1

)
(1− s2)

d−3
2 ds

= 2v

1∫

−1

v2 + 1− 2s2

(v2 + 1)2 − 4v2s2
(1− s2)

d−3
2 ds

=
2v

(v2 + 1)2

1∫

−1

(v2 + 1− 2s2)

∞∑

j=0

(
2v

v2 + 1

)2j
s2j (1− s2)

d−3
2 ds,

since 2v(v2 + 1)−1 6 1. The integrand can be written as

(v2 + 1− 2s2)

∞∑

j=0

(
2v

v2 + 1

)2j
s2j

= (v2 + 1)

∞∑

j=0

(
2v

v2 + 1

)2j
s2j − 2

∞∑

j=0

(
2v

v2 + 1

)2j
s2j+2
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= (v2 + 1) +
∞∑

j=1

{
(v2 + 1)

(
2v

v2 + 1

)2j
− 2

(
2v

v2 + 1

)2j−2}
s2j

= (v2 + 1) +
2(v2 − 1)

v2 + 1

∞∑

j=1

(
2v

v2 + 1

)2j−2
s2j

> (v2 + 1) +
2(v2 − 1)

v2 + 1
s2 +

2(v2 − 1)

v2 + 1

(
2v

v2 + 1

)2 s4

1− s2

since v2 − 1 6 0. This gives

J ′(v) >
2v

v2 + 1




1∫

−1

(1− s2)
d−3
2 ds+

2(v2 − 1)

(v2 + 1)2

1∫

−1

s2(1− s2)
d−3
2 ds

+
2(v2 − 1)

(v2 + 1)2

(
2v

v2 + 1

)2 1∫

−1

s4(1− s2)
d−5
2 ds




=
2v

v2 + 1

(
B(12 ,

d−1
2 ) +

2(v2 − 1)

(v2 + 1)2
B(32 ,

d−1
2 ) +

v2 − 1

v2 + 1

8v2

(v2 + 1)3
B(52 ,

d−3
2 )

)
.

Using (19) we find for all dimensions d > 4

B(12 ,
d−1
2 ) = dB(32 ,

d−1
2 ) and B(52 ,

d−3
2 ) =

3

d− 3
B(32 ,

d−1
2 ),

and so

J ′(v) >
2v

v2 + 1
B(32 ,

d−1
2 )

(
d+

2(v2 − 1)

(v2 + 1)2
+

3

d− 3

8v2(v2 − 1)

(v2 + 1)4

)

>
2v

v2 + 1
B(32 ,

d−1
2 )

(
4 +

2(v2 − 1)

(v2 + 1)2
+

24v2(v2 − 1)

(v2 + 1)4

)
.

It is now straightforward to check that

4 +
2(v2 − 1)

(v2 + 1)2
+

24v2(v2 − 1)

(v2 + 1)4
> 0

for all v ∈ R.

Lemma 8. Let d > 3, 0 < α < 2. There exists some γ = γ(α, d) > 0 such that

v.p.

∫

Rd

(
1

(|p+ λy|2 + 1)γ
−

1

(|p|2 + 1)γ

)
dy

|y|d+α
< 0 (21)

holds for all p ∈ Rd, λ ∈ R.
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Proof. With the reasoning following Lemma 5 it is clear that the integral (21) exists. Without
loss of generality we may assume that λ = 1. Denote the left-hand side of (21) by I(γ). Changing
to polar coordinates we get

I(γ) =

∫∫

Sd−2×(0+,∞)

Z(r) r−1−α drdθ = |Sd−2|

∞∫

0+

Z(r) r−1−α dr,

(in the sense of an improper integral at the lower limit 0+) where

Z(r) =

1∫

−1

(
1

(r2 + |p|2 + 2r|p|s+ 1)γ
−

1

(|p|2 + 1)γ

)
(1− s2)

d−3
2 ds.

Write Z(r) = |p|−2γZ̃(r) and observe that with v = r/|p|

Z̃(r) =

1∫

−1

(
1

(v2 + 1 + 2vs+ |p|−2)γ
−

1

(1 + |p|−2)γ

)
(1− s2)

d−3
2 ds.

An application of Lemma 7 with a = 1 + |p|−2 implies

∂Z̃(r)

∂γ

∣∣∣∣∣
γ=0

= −

1∫

−1

(
ln(v2 + 2vs+ a)− ln(a)

)
(1− s2)

d−3
2 ds

= −
(
J(v)− ln(a) I d−3

2

)
< 0,

and therefore

I ′(0) = −|p|−α−2γ
∞∫

0+

(
J(v)− ln(a)I d−3

2

)
v−1−α dv < 0.

Since I(0) = 0, the claim follows.

Assertion (iv) of Lemma 4 follows finally from

Corollary 9. Let d > 3 and 0 < α < 2. Then there exists some γ = γ(α, d) > 0 such that for
all B ∈ Rd×d, b > 0, p ∈ Rd

v.p.

∫

Rd

(
1

(|p+By|2 + b)γ
−

1

(|p|2 + b)γ

)
dy

|y|d+α
6 0. (22)

Proof. An argument similar to the one used in the proof of Lemma 8 shows that the integral
(22) is well-defined for every γ > 0. Since

v.p.

∫

Rd

(
1

(|p+By|2 + b)γ
−

1

(|p|2 + b)γ

)
dy

|y|d+α

=
1

bγ
v.p.

∫

Rd

(
1

(|b−1/2p+ b−1/2By|2 + 1)γ
−

1

(|b−1/2p|2 + 1)γ

)
dy

|y|d+α
,
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we may assume that b = 1. Depending on the rank of the matrix B we distinguish between
three cases.

Case 1: rankB = 0. Nothing is to prove in this case.

Case 2: rankB = d. We have

J (λ) = v.p.

∫

Rd

(
1

(|p+By|2 + 1)γ
−

1

(|p+ λy|2 + 1)γ

)
dy

|y|d+α

= λα v.p.

∫

Rd

(
1

(|p+ λ−1By|2 + 1)γ
−

1

(|p+ y|2 + 1)γ

)
dy

|y|d+α

and, therefore,

lim
λ→0

λ−αJ (λ) < 0 and, by Lemma 8, lim
λ→∞

λ−αJ (λ) > 0.

Since J (λ) is a continuous function, there exists some λ∗ = λ∗(p,B) such that J (λ∗) = 0. Thus,

v.p.

∫

Rd

(
1

(|p+By|2 + 1)γ
−

1

(|p+ λy|2 + 1)γ

)
dy

|y|d+α

= J (λ∗) + v.p.

∫

Rd

(
1

(|p+ λ∗y|2 + 1)γ
−

1

(|p|2 + 1)γ

)
dy

|y|d+α
6 0,

where we used Lemma 8 again.

Case 3: rankB = k, 1 < k < d. In this case we can find an orthogonal matrix S ∈ Rd×d such
that

B = S

(
B′ 0
0 0

)
ST

where B̃ ∈ Rk×k has full rank. Since the measure |y|−d−α dy is invariant under orthogonal

transformations we can assume that B is already of the form

(
B′ 0
0 0

)
; otherwise we would

make a change of variables in (22) with p′ = Sp in place of p. Write y = (y1, y2) ∈ Rk × Rd−k,
p = (p1, p2) ∈ Rk × Rd−k and set b = 1 + |p2|

2. Then

v.p.

∫

Rd

(
1

(|p+By|2 + 1)γ
−

1

(|p+ λy|2 + 1)γ

)
dy

|y|d+α

= v.p.

∫∫

Rd

(
1

(|p1 +B′y1|2 + b)γ
−

1

(|p1|2 + b)γ

)
dy1 dy2

(|y1|2 + |y2|2)
d+α

2

= v.p.

∫

Rk

(
1

(|p1 +B′y1|2 + b)γ
−

1

(|p1|2 + b)γ

) ∫

Rd−k

dy2

(|y1|2 + |y2|2)
d+α

2

dy1

=

∫

Rd−k

dη2

(1 + |η2|2)
d+α

2

v.p.

∫

Rk

(
1

(|p1 +B′y1|2 + b)γ
−

1

(|p1|2 + b)γ

)
dy1

|y1|k+α
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where we used the change of variables |y1|η2 = y2 in the last step. Since B′ has full rank, the
claim follows from case 2.
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