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BOUNDARY-VALUE PROBLEMS FOR HAMILTONIAN
SYSTEMS AND ABSOLUTE MINIMIZERS
IN CALCULUS OF VARIATIONS

VASSILI N. KOLOKOL’TSOV, ALEXEY E. TYUKOV

ABSTRACT. We apply the method of Hamilton shooting to obtain the well-
posedness of boundary value problems for certain Hamiltonian systems and
some estimates for their solutions. The examples of Hamiltonian functions
covered by the method include elliptic polynomials and exponentially growing
functions. As a consequence we prove global existence, smoothness and almost
everywhere uniqueness of absolute minimizers in the corresponding problem
of calculus of variations and hence construct the global field of extremals.

1. INTRODUCTION

The classical problem of calculus of variations consists in finding a curve y(7)
connecting zy and x in time ¢ such that

I(t,x,x0) = min L,(t,x, x), 1.1

7D 70) = ) iy (8 70) (1)

where
I, (.2, 70) = / L(y(r),i(r)) dr. (1.2)

Here the function L : R2¢ — R is called the Lagrangian of problem (1.1). The value
of minimum (1.1) is called the two-point function corresponding to the Lagrangian
L and will be denoted S(¢,xz,zg). It is usually assumed to be convex with respect
to the second variable. The function

H(x,p) = sup (pv — L(x,v)) (1.3)

vER

is called the Hamiltonian of problem (1.1). The celebrated Tonelli theorem is known
to give the existence of y(7) under mild assumptions on L. The proof is based on
the use of the so called direct methods of calculus of variations. However the min-
imizer y(7) given by Tonelli’s theorem may be singular (see [2] for an example and
discussion). The aim of our paper is to single out some general enough class of La-
grangians (or Hamiltonians) having always non-singular minimizers and moreover,
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to prove the existence of the global field of smooth extremals for these classes. For
a review on existence of non-singular minimizers see e.g. [3], [8].

In this paper we apply the method of Hamilton shooting to obtain existence,
uniqueness of smooth solutions of the boundary value problems for systems

&= Hy(z,p)

p = —H,(z,p) 4

with a rather general class of Hamiltonians. This class of Hamiltonians includes
the elliptic polynomials and functions of uniform exponential growth. In turn the
well-posedness of boundary value problems and uniform estimates for the domain
of uniqueness for boundary value problems imply the global existence, uniqueness
and smoothness of absolute minimizers for problem (1.1) and hence the existence of
a global field of extremals. It is proved that the smooth solutions always exist and
are unique almost everywhere i.e. for any 2o € R, ¢ > 0 the set of those z € R?
for which a trajectory delivering the absolute minimum to functional (1.2) is not
unique is a closed set of Lebesgue measure zero. Our method also yields estimates
for the “two-point function” S(t,x,xg).

As an important application of our results, let us mention the construction of
local and global fields of extremals. It is well-known that the construction of global
field of extremals corresponding to a Hamiltonian H is the crucial step in the
construction of WKB-type asymptotic for solutions of pseudo-differential equations
T — :H(x,i(,%)u and @ :H(x,—%)u
(see e.g. [4], [7]).

The method of Hamiltonian shooting can be applied also to some degenerate
(non strictly convex) Hamiltonians. For example in [4] a rather general class of
degenerate quadratic in momentum Hamiltonians was introduced (called regular
in [4]) for which one can prove not only local uniqueness and global existence
of solutions but also one can obtain exact asymptotic expansions of the two-point
function that are quite similar to the case of nondegenerate quadratic Hamiltonians.
It is worth mentioning that while developing the theory of stochastic Hamilton-
Jacobi equations we used the method of Hamiltonian shooting to construct solutions
for stochastic Hamiltonian systems driven by semimartingale noise (see [4, 5, 6]).

2. MAIN RESULTS

We denote by F the set of functions h : R — R represented by a series h(z) =
oo panz™ with the radius of convergence equal to infinity such that for some
constant M = M(h) >0 and all z > M

W™ ()™ ()| < RV ()R (2)] Y >m > 0. (2.1)

Here h(™)(z) is the n-the derivative of h(z). In particular, class F contains functions
hi(z) = exp{z} and ha(z) = 2*, k € N.

Notation. We write (X (t), P(t)) = (X (¢, zo,p0), P(t, 2o, po)) for the solution of
the system (1.4) with initial conditions (zg,po) at ¢ = 0 and call the x-projection
X (t) of a solution (X (t), P(t)) characteristic of the system (1.4). Denote by

(1) = Z(1; 8,2, 20) (2.2)
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a characteristic of (1.4) with boundary conditions Z(0) = xg, Z(t) = . We will use
these notations throughout the paper.

Theorem 2.1. Let H € C*(R%*%), d > 1. We assume that for some h € F and
€ > 0 the following conditions hold:
(i) Hpp(z,p) > e(1+|r"(|p|)|) Eq for allz,p € R, where Eq € R™% is identity
matriz;
(i)
Z 3\II+\J\H(x7p)

ot 2| < AWl () + <71 = xelr)

[1]<3,]7|=k

for all ,p € R? such that |p| > =1, where

xelp) = {1 if lp| > et 7

0 otherwise
I'={(i1,...,i1), J = (J1,...,4,7) are multi-indeves, k =0,1,2,3.

Then there exist v > 0 and T > 0 such that for any xo € RY, x € B,(x) = {y :
ly — 20| <7} and t € (0,T) there exists py = po(t, =, x0) € R such that

X(t,ﬂ?o,po(t,x,l‘o)) =T. (23)
Moreover, po(t,x, xg) is continuously differentiable with respect to all variables.

In other words the theorem claims that the boundary value problem for the
system (1.4) is well-posed in a neighborhood of any xo € R%, i.e. for small |z — x|
and small ¢ there exists the unique solution of the system (1.4) such that z(0) = =,
x(t) = z.

The lengthy assumptions of Theorem 2.1 are designed to include the main ex-
amples of Hamiltonian functions H(x,p), which are used in geometry and mathe-
matical physics, more precisely they include:

(1) Convex elliptic polynomials (which for instance represent the symbols of elliptic
differential operators widely studied both in R? and on Riemannian manifolds);
the most well-studied particular case is surely given by quadratic polynomials, the
corresponding Hamiltonians describing the energy of classical mechanical systems
in R? or on Riemannian manifolds.

(2) Hamiltonians provided by the Lévy-Khinchine formula, namely

He.p) = 5 G@pp) — A+ [ (09 -1+ L5 ange),
R4\ {0} +¢

where all elements of G(z) € R¥*? A(z) € R? and their derivatives up to order
three are bounded, u1Ey < G(z) < peEq for some py, us > 0 and v, is a Lévy
measure on R?\ {0} with bounded support and some mild regularity assumptions;
these Hamiltonians represent the symbols of pseudo-differential operators, which
describe generators of most general Feller processes; the solutions of boundary
value problem for these Hamiltonians describe the quasi-classical (or small diffusion)
asymptotics of trajectories of this processes.

It is well known (see [3], vol. 1, Proposition 2, p.330) that extremal z(-) connect-
ing x¢ and x is a strong minimizer, if it can be embedded into Meyer field covering
domain T' ¢ R4 and

En(z,P(1,2),q) > 0 (2.4)
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for (¢t,z) € T and ¢ # P(t, z), where

Er(z,p,q) == L(z,q) — L(z,p) — (¢ — p) - Lp(x,p)

is the Weierstrass excess function of the Lagrangian L(x, p) and P(¢,x) is the slope
function of Meyer field.

Theorem 2.1 implies the existence of the Meyer field in I'(xg) = (0,7T) x B, ()
for any zo € R? with slope function P(t,z) = P(t,xq,po(t, 20, r)). Moreover,
condition (i) Theorem 2.1 infer that H,,(x,p) > €E,4, which in turn yields (2.4).
Hence

S(t,x,wg) == min I, (t, x,0) = Iz (t, 7, 20), (2.5)

where minimum is taken over all y lying completely in B,.(x¢) with the boundary
conditions y(0) = xo and y(t) = =.

Lemma 2.2. Under the conditions of Theorem 2.1 there exist ry € (0,r], T1 €
(0,T] (r,T as in Theorem 2.1) such that

max S(t,x,p) < min min S(r,z,x0) (2.6)
z,20€ERL: |z —20|<T1 0<7<t z,xoER: |z —20|=T

for all 0 <t <Ty. Moreover

t1—1>%1+ ;c,a:UERg:llgl—a;d:r S(t7 “ $0) = oo (27)

The proofs of Theorem 2.1 and Lemma 2.2 will be given in Sections 4 and 5
respectively.

Observe that (i) Theorem 2.1 implies that H(x,p) is bounded from below and
so is L(x,v). Note that functionals (1.2) with Lagrangians L(z,v) and L(z,v) + ¢
with ¢ € R being some constant have the same minimizing functions. Therefore
without loss of generality we assume that L(z,v) > 0 and then

I,(t,z,29) > 0
for all piecewise smooth y(7).

Corollary 2.3. Let 0 < t < Ty, m,29 € R, |2 — x| < vy (T1, r1 as in Lemma
2.2). Then under the conditions of Lemma 2.2 the characteristic Z(T) given by
(2.2) provides the unique absolute minimum for the functional I,(t,x, o).

Proof. As we have seen above Z(7) provides a minimum for I,(¢,z,z() among
all curves lying completely in B,.(z). Let us suppose that y(7) also provides a
minimum, and |y(s’) — xo| = r for some s’ < t, ' <r. By (2.5), (2.6) we see

Ig(t, @, @0) > Iy(s", y(s"), w0) = S(s', y(s"), 20) > S(t, @, w0) = Iz(t, 2, 20) -
(]

Theorem 2.4 (Tonelli’s theorem). Under the conditions of Theorem 2.1 for any
t > 0 and x,z9 € RY there exists a characteristic Z(t) with boundary conditions
Z(0) = mo, (t) = x that provides an absolute minimum (probably not unique) for
I,(t,x,x0) over all piecewise smooth curves y(T) connecting xo and x in time t.

Our proof of the implication Lemma 2.2 = Theorem 2.4 (and also the deduction
of Theorem 2.6 given below) is similar to the one given in [4, pp. 56-57]. We give
it here for reader’s convenience.
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Proof of Theorem 2.4. Let y,, = y,(7) will be a minimizing sequence for I, (¢, z, zo),
- I, (t,x,x0) — 12f I,(t,z, zo) (2.8)
and y,(0) = o, yn(t) = z. Let k € N be the integer part of |z — z¢|/r1, namely
kri <z —xo| < (k+1)m (2.9)
and suppose first (in Steps 1 and 2) that
te(0,1y) (2.10)
(Ty, r, r1 as in Lemma 2.2).
Step 1. We show that for all 7 € (0,¢) and n € N
yn(1) € K for some compact K c R?. (2.11)
We define 7; = 7;(n) 4 € Ny by the recurrent formula
T0=0; 7 =inf{r € (1i_1,t]: |yn(T) — Yn(mi-1)| =1}
(inf @ := 400) and put m = m(n) = max{i : 7, < co}. Since y(0) = y(1) = o

1—1
yn(7) = 2] <) |yn(75) = yn(T5-1)| + |yn (7) = yu(Tiz1)| < ir <mr
Jj=1

for 7 € (1;-1,7;) and
yn () = 2ol < |yn(T) = yn(Tm)| + |yn(Tm) — 20| < (m+1)r

for 7 € (7, t). Thus

yn(T) S B(m_;,_l)r(l‘o) . (212)
We show that

m(n) <k+1 (2.13)

for all but finite number of n. Then combining (2.12) and (2.13) proves (2.11) with
K = Bk+2)r(2o0).

To prove (2.13) we assume by contradiction that m > k+2. Let g, (7) be solution
of (1.4) on each interval [r;,_1,7] ¢ = 1,...,k (k as in (2.9)) and on the interval
[Tk, t] and

i
kE+1
Yn(t) = z. Since |Yn (1) — Yn(ri—1)| < r1 and |y, (7)) — yn(7i—1)| = 7, an application
of (2.6) gives

S(Ti = Tic1, Yn(73), Yn(Ti=1)) > S(Ti — Tie1, Un(73), Yn(Ti=1))
=1, (Ti — Ti—1, ﬂn(T@‘)’ﬂn(TFl))-

Summing (2.14) over i =1,..., k and using S(Tkt1 — T, Yn (Tht1), Yn (7)) = S( —
Ty T, Yn (7)) We obtain

Un(Ti) = w0 + (x—mo) i=1,...,k,

(2.14)

k+1
Ly, (Tit1, Yn(Tht1), wo) = ZIyn(Ti = Tim1,Yn (), Yn(Ti-1))
i=1

k+1

> Z S(7i = Tie1, Yn(76), Yn(Ti-1))
i=1

> Iy, (t,x,20) ,
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and so
inf Iy, (Tet1, Yn(Tht1), 20) = nf Iy, (L, 2, o) -
On the other hand, by (2.7) we have
inf Iy, (T2 = Tt 1, Yn (Tht2), Yn(Tht1)) > 0.
Thus
inf I, (t,x,z0) > inf Iy, (t,x,z0),
n n

which contradicts (2.8). This contradiction proves (2.13). Without loss of generality
we may assume that (2.13) holds for all n.

Step 2. Since the sequence (7;,yn (7)) lies in the compact [0,¢] x K for any i =
1,...,m, then without loss of generality we assume that

Ti(n)ﬁsia yn(n)%bi as mn — o0

i=1,...,m for some s; € (0,t), b; € R%. Let 3,(7) be solution of (1.4) on each
interval [1;_1,7;] ¢=1,...,m and on the interval [7,,,t] and

Yn(mi) =yn(ri) i=1,....k,
Un(t) = x. Clearly

I, (t,z,x0) > I, (t, 2, 20) . (2.15)

Let y(7) be solution of (1.4) on each interval [s;_1,s;] ¢ = 1,...,m and on the
interval [s,,,t] and y(s;) =b;, t =1,...,m, y(t) = . Theorem 2.1 implies

nli_)H;O||y_gn‘lc1({si_l+5wsi7§]) =0 (216)

for any 60 < (s;j—1 —s;)/2, 4 =1,...,m. Note that for all but finite number i we
have [s;_1 + 0, 8; — 0] C [ry_1, 7i]. Therefore,

lim Iy, (t,x,20) = I,(t,x, x0) - (2.17)

n—oo
Combining (2.15) and (2.17) we get

lim I, (t,z,20) > I,(t, x,x0) .

n—oo
It suffices to show smoothness of y(7) at 7 =s; i =1,...,n. Foreachi=1,...,m
we take s; < s; < s such that |y(7) — y(s;)| < 1 for all 7 € [s}, s7]. Since y(7)
provides the unique minimum among all curves lying completely in B, (y(s;)) it
should coincide with the solution of (1.4) which passes through points y(s}), y(s)
in times s; and s} respectively. In particular this means that y is continuously
differentiable, i.e. is a solution of (1.4).
Step 3. Previously we have imposed restriction (2.10). Now let

for some ¢ € N and let y,, = y,,(7) be a minimizing sequence. We take ¥,, = 7 (7)
connecting zp and z such that y, is characteristic of the system (1.4) on each
interval (kT1/2, (k+ 1)T1/2) and g, (kT1/2) = yn(kT1/2) for k= 1,... 4.

By above proof we have that I, (t,x,z0) > Iy, (t,z,20). As in Step 1 we show
that graphs of all 7, lie in a compact. Hence we may assume that there exist limits
b :=lim, 00 Un(kT1/2), k =1,...,¢. We take y = y(7) connecting z¢ and x such
that y is characteristic of the system (1.4) on each interval (kTy/2, (k+1)Ty/2) and
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y(kT1/2) = bk, k=1,...,0. Asin Step 2 we show that y(7) is a minimizer and it
is smooth at 7 = kT /2, k=1,..., L. O

To any solution (X, P) of (1.4) there corresponds the equation in variations

0 = Hap(X(7), P(T))v + Hpp(X(7), P(7))w

. 2.18
W= —Hy(X (1), P(1))v — Hyp(X (1), P(7))w (2.18)
We say that points X (71), X (72) are conjugate if there exists nontrivial (not van-
ishing identically) solution (v(7),w(7)) of (2.18) such that v(m) = v(r2) = 0.

Proposition 2.5. Suppose Hamiltonian H(x,p) is smooth and strictly convez in
p. If a characteristic X(7) contains two conjugate points X (1), X (m2) then for
any 6 > 0 the curve X(7) 7 € [11, T2 + 0] does not provide even a local minimum
amonyg curves joining X (11) and X (12 + 96) in time 7o — 11 + 6.

The proof of the above Proposition can be found in [1, p.77 Theorem 1]. Follow-
ing [4] we say that for some 2o € R? the point (t,z) € Ry x R? is reqular and write
(t,z) € Reg(xo) if (i) points z,xo are not conjugate; (ii) the absolute minimum
is attained on a unique curve; (iii) this curve is a characteristic Z(7, ¢, z, xg) with
boundary conditions Z(0) = xg, Z(t) = x.

Theorem 2.6. Under the conditions of Theorem 2.1 for any o € R? the set of
reqular points is open, connected and everywhere dense in R, x R%. For any fized
t > 0 the set {x € R?: (t,x) € Reg(zq)} is open and everywhere dense in RY.

Proof. For any t > 0, x,z9 € R? we take characteristic Z(7) = Z(7;t,z,7) which
delivers absolute minimum for I,(7,z,x¢). Note that the existence of such z(7)
is guaranteed by Theorem 2.4. We show that for any 7 € (0,t) characteristic
Z(s), s € [0, 7] delivers the unique absolute minimum to I, (7, z(7),xo). Clearly
Z(s) provides an absolute (a priori not unique) minimum to I,(7,Z(7),zo). If
another function y = y(s), s € [0,7] with y(0) = =g, y(7) = Z(7) also provides
an absolute minimum, then defining it on (7,t] by y(s) = Z(s), s € [r,t] we deduce
that 7 also provides a minimum for I,(¢,z,x¢). Take s’ < 7 < s” such that
y(s"),y(s") € Ba-1,,(y(7)), and so |y(s’) — y(s”)| < ri. By Corollary 2.3 the
characteristic connecting y(s’) and g(s”) in time s” —s’ provides the unique absolute
minimum. Therefore Z(s) = y(s) for s € [¢/, s”]. Consequently we have Z(s) = y(s)
for all s € [0, 7].

By Proposition 2.5 Z(0) and Z(7) are not conjugate. Hence (7,Z(7)) is regu-
lar. This immediately implies that Reg (z¢) is connected and everywhere dense in
R, x R%. Moreover, z-projection of Reg (z¢) is everywhere dense in RY. To prove
that Reg (z¢) is open, note that if (¢, ) is regular then X (¢, zo,po)/dpo # 0. An
application of implicit function theorem gives that py = po(t, x, zg) is well-defined
by (2.3) in some neighborhood U (¢, ) C R4t of (t,7). As we know the characteris-
tic (1) = Z(1;t', 2, 2p) delivers local minimum for any (¢',z’) € U(¢, z). Since the
quantity min,, I, (', 2", 2¢) depends continuously on (¢',z’) and for (¢',2') = (t,z)
the unique absolute minimum is provided by Z(7;t, z, x), then x(7;¢', 2, 2¢) pro-
vides an absolute minimum for any (¢, ') € Uy(t, z) for some Uy (¢, z) C U(t, x).

Similarly fixing ¢ > 0 one shows that the set {x : (t,z) € Reg(zo)} is open. O
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3. AUXILIARY RESULTS

In this section we will deduce some implications from (2.1) and (i), (ii) Theorem
2.1.
Notation. Throughout this paper € > 0 will be from the conditions of Theorem
2.1 and M = M(h) > 0 will be the constant from (2.1). In sections 3 - 5 we will
construct constants My, ..., M, >0, p > 0,

1>t 2t2>2T2>2T1 >0, 1>c1>2ce>0, r>r;>0
which depend only on ¢ and h(z).
Lemma 3.1. The functions h € F satisfy the following inequalities
(') ™) (2)(h(2))" | < [W(2)|" n € No,
(ii) ‘h(") (= + All,?(())'l)‘ < 3™ (2)], n € Ny
for all z > M and || < 1.

Proof. The case n = 0 in (i) is trivial. We assume that n > 1. By repeated
application of (2.1) we obtain

B (2) (h(2))" 71| < BTV (2) (h(2))"2H (2)] < -+ < W (2)]"
and (i) follows. We proceed with (ii). Using Taylor’s development h(™(z + a) =
S o WM (2)a™ /ml with a = [Ah(2)/K (2)] gives

n )Y _ =\ m P () ()™
h()(z+>\|h/(z)‘)f2\)\| .

= mb | (2)[™

Since, by (2.1),
B ) (A(2)™] < D @ () ()™ < - < AR )]

it follows

n |7 (2)] n o A" n
i )(Z+)\|h,(z)|)’ < |n )(Z)|mzzoW < | (2)] exp{1},

where we used |A| < 1. O

Lemma 3.2. Let h € F, H € C*(R?%) be such that conditions (i), (ii) of Theorem
2.1 hold. Then for some constants My, My, M3 > 0

(i) |h™)(2)| is monotone on (My,400) for allm =0,...,3,

(ii) |h'(2)| increases on (My,+00),

(ili) |H, (:E p)| > elh(|p|)| — My for all z,p € RY,

(iv) (p. Hy(w,p)) = elW/(Ip])] p| = M; for all z,p € RY .

Proof. An application of (2.1) with n =m + 2, m € Ny implies

((9())*)" = 29" (2)9(2) + 2(¢'(2))* > 0
for g(z) = h™)(z). Therefore, g(z) has at most two intervals of monotonicity.
Hence g(z) is monotone for z > M, ,, for some My ,, > 0. Take

M1 = E_l + max 3M1’m

m=0,...,

and (i) follows.
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By (i) Theorem 2.1 we have H,,(x,p) > eE4. Hence

|p| ‘Hp(xap” > (p’ Hp(aj’p)) = (p’ Hp(SL‘,O)) +/0 (p, pr(a:,Tp)p) dr (3'1)

> (p, Hy(,0)) + ¢ |pl? (3-2)
>elpl* —e7Mpl,
where we used that, by (ii) Theorem 2.1, |H,(x,0)| < e~' . Hence
|Hp(z,p)| > elp| ="
Using (ii) Theorem 2.1 we get
| (2)| >ez—e? (3.4)

for z > My (recall My > e~ 1). This and (i) Lemma 3.2 imply (ii) Lemma 3.2.

We proceed with (iii) and (iv). Without loss of generality we may assume that
1 (z) increases for z > M;. (Otherwise we replace h by —h noticing that the
conditions of Theorem 2.1 for —h and H still hold.) So

h"(z) >0 forall z> M.
Hence for |p| > M; we get

| weleblipldr = [, wriph loldr = 1 (o)~ 2 O).

0 7l

Consequently, due to (i) Theorem 2.1,

/ (p, Hy(ar, 7p)p) dr > lpf? / (1+ (1 (rlpl)) dr
0 0

> elpl (Ip + A'(lpl) — 7' (M1)) -
Using this and the first line in (3.1) we have
(p, Hp(x,p)) = —~"[p| +elp| (Ip] + 7 ([p]) — h'(M1)) (3.5)
> el’(|pl) |pl = Ms,,
where
M; = —m;g{—g_lz +ez(z— W (My))}.

Using again (3.5) we get

[Hy(z,p)] 2 =" +e(Ip| + h'(Ip]) — b (M) > b/ (|p]) — ™! — b/ (M), (3.7)
where My := e~ + eh/(My). O

Lemma 3.3. Under the conditions of Theorem 2.1 there exist t1, My > 0 such that
for all c € (0,1/2), t € (0,t), o € R?,

po € Veu:={p € Rt/ (]p|)| < ¢} (3.8)
and T € [0,t] we have
RO (IP(r)D] < Ma([R™ (|pol)| +1) = 0,1,2. (3.9)
Moreover,
| X (t, 20, po) — wo| < Mat(|h/(lpol)] + 1) , (3.10)

|P(t, 0, po) — po| < Mut(|h(|po|)] +1). (3.11)
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Proof. We choose 0 < t; < 1 such that the system (1.4) has a solution on [—#¢y,t1].
Let us first (in Steps 1 and 2) assume that

|P(T)] > M; forall 7€][0,t]. (3.12)
Step 1. Notice that (i), (ii) Lemma 3.2 imply that
|h(z)| increases for z > M. (3.13)

In particular h(z) preserves sign for z > M;. Without loss of generality we may
assume (in Steps 1 and 2) that h(z) > 0 for z > M;. Using (ii) Theorem 2.1 and
M; > e~ ! we find from (3.12) and the system (1.4)

W@*MSAHMXMfMWhgéwﬂﬁMT

and so .

t
ml= [ WP@Ddr < 1POI < ]+ [ WP dr.
Due to (3.13) and Gronwall Lemma,
y1(7) < [P(7)] < ya(7),
where y;(7) @ = 1,2 solve the equation
9i(1) = (=1)" h(yi(r)),  5i(0) = |pol.
One readily sees that y;(7) = @' (®(|po|) + (—1)'7), i = 1,2, where

A
d¢
d(\) = —.
W= o 10
Hence
71 (@(|pol) — 7) < [P(7)] < @7 (@(|po|) + 7). (3.14)
Step 2. An application of Taylor’s formula on ® ! yields
(o)
_ an(z) ,
i) 1(<I’(z)+7'):z+z:1 ;f!)r, (3.15)
where &
an(2) = o @7H(@(2) +7) |, = (@)™ (2(2))
or
an (@71 (k) = (@) (k) (3.16)
with k = ®(z). We differentiate (3.16) in x to get
ap (@7 (1)@ (K)) = (@) "V (R) = a1 (71 (R)) - (3.17)
Consequently, (3.17) and (®~1(k))’ = dz/dk = (9'(2))~! = h(z) imply
a1(z) = h(z) and any1(z) = al,(2)h(z). (3.18)
Using induction we deduce from (3.18)
an(z) = SR ()R ()h(z) mz 2, (3.19)
where the sum Z' is taken over some mq,...,m,_1 € Ng such that m; + --- +
mp—1 =n — 1 and contains (n — 1)! terms. It follows
2(2)] < (n—1)! R () R (2)h(2)] .
@ < G- max A () (2)h(2)]
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By (i) Lemma 3.1 and because of Zz;ll (my — 1) = 0 we have

n—1

R0 (2) L R0 (2)] = TT 1R (2) (=)™ < [0 ()"
k=1

Consequently,
lan(2)7"] < (n — D TH (2)]" L 7|h(2)).
Since, by (3.8), |[7h/(|po])| < ¢, it follows that

a T" -
R LU (3.20)
Substituting (3.20) in (3.15) we get
1
@~ (@(Ipo) + ) < [pol + 7= 7IR(lpo])| < [po| + 27IA(Ipo))| (3.21)
for ¢ € (0,1/2). Similarly we obtain
= (@ (|pol) — ) = Ipol — 27|A(Ipo])| (3.22)

for ¢ € (0,1/2). Combining (3.14), (3.21) and (3.22) we obtain

Ipol = 27[h(Ipo])| < [P(7)] < [pol + 27[(|po])]
for ¢ € (0,1/2). Using pg € V. gives 7 <t < ¢/|h/(|po|)| and so

[2(Ipo)) 2(Ipol)l
[po| = 2¢ o= < P(T)] < [pol + 2¢ 72— (3.23)
1A' (lpol)] |7/ (lpol)|
An application of (ii) Lemma 3.1 with A = 2¢ < 1 gives
[h(Ipol)l h(lpol)
K™ (|P(r))] < max {A(|po| + 2¢ 77 50) Alpo| — 2¢
ol 20 o) M0l =2 i 5.0
<3 (|pol)l n=0,1,2.
Similarly one can check (we will need this in the proof of Lemma 3.4) that
K™ (|P(r)])] < 3R (IP()])] n=0,1,2 (3.25)

for any 71,72 € [0, ¢].
Step 8. Finally we suppose that (3.12) does not hold. If |P(7)| < M; for all
T € [0,1] then taking

My :=3+3 max |h( (2)| (3.26)
z€[0, M1],n=0,1,2

we have )
RO (PN < 5 My n=0,1,2 (3.27)

for all 7. If |P(so)| = My and |P(7)| > M; on [sg,s1] C [0,t1] for some sg < s,
then (3.24) is applicable to P(7) on [sg, s1] and so

(PP < 3R (ML) < My n=0,1,2 (3.28)
for T € [sg, $1]. Combining (3.27) and (3.28) we have
WO (PN < My n=0,1,2 (3.29)

Combining this and (3.24) we arrive at (3.9). Estimates (3.10), (3.11) are direct
consequences of (ii) Theorem 2.1 and (3.9). O
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Lemma 3.4. Let us define w : [My, +00) — R by the identity
w(|W (2)]) = 2. (3.30)

Then there exist ¢; € (0,1/2) and constants Ms, Mg > 0 such that for allt € (0,t1),
c€ (0,¢1), z0 €RY, py € V.4 one has

(i)
Ipo| > w(M;! @ — Ms)  provided that M;lw ~ My > My,
(i)
2 |x — xo
[pol < w(Z ==+ Ms5),

(iii)

17 — o]

(o, m_txo) > lpol (M

where we write for short x = X(t, Z0,P0)-

Remark 3.5. Notice that (ii) Lemma 3.2 and the fact that My > |h/(M;)| imply
the correctness of definition (3.30).

_MS)_M67

Proof. Step 1. In this step we show that
((Po, Hy (X (7), P(7)) = Hy (o, po))| < 272 W' ([po])lIpo] + 20(Ma)(e™ + My).

(3.31)
Let us first assume that
|P(T)| > My V7 €]0,¢]. (3.32)
From (1.4), (3.25) and (ii) Theorem 2.1 (recall M; > e71) we deduce
[(X(7) = z0); P(r))| dr
3 e ol
! /
StorgggtIh(IP(T) | < 3t|7(Ipo)|
and
d
SI(P() — po)y| <t max AP < 3t|Apo)].
i=1 ==
Denote by
R:= H,(X(r),P(1)) — Hp(z0,Dp0) (3.33)

R=(Ry,...,Ry ) Using the mean value theorem we get

R; = ZH”:J Vz»&z)( _370 +Z PiDj VZ)E’L () pO)j

j=1
=: R! + R?
for some v; € [x0, X(7)], & € [po, P(7)], i=1,...,d. It follows that
2
o<
IRE <, o [Hy (4,61 (Zl ).

Due to |;| > M; > e7! and (ii) Theorem 2.1 we get
[ Hpop, (vi &)] < [R"(1&])] < max{|R"(Ipo])], K" (|P(T)DI} < 3|h" (Ipo])]
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i,7=1,...,d and so
|R| < 9t[h" (Ipol)(lpo)| < 9t|1/(Ipol)
Similarly [R}| < 9¢|1(|po|)|”

’2
. Consequently,

d 2
[R| < |Ri| < 18dt|h/(Ipo])|” -

i=1
Setting ¢; = /(36 d) and using t < |h/(|po|)| ! ¢ we get (under assumption (3.32))
€
|[Hyp(X(7), P()) = Hp(z0, po)| < 5 I (Ipo])] (3.34)
If (3.32) does not hold then, by (3.29) and (ii) Theorem 2.1,
[Hp(X (), P(N)| < e + W (IP(T)])] < &7 + M.

Using, by (3.29), |h'(|po])] < M4 and the fact that z > w(My) implies |h'(2)| > My
we obtain |pg| < w(My). Hence

[(pos Hy (X (), P(r)) = Hy(wo,po))| < 20(Ma)(e™" + M)

Combining this and (3.26) we arrive at (3.31).
Step 2. If (3.32) holds then, by (3.34)

v — x| — t|Hp(w0,p0)| > — |2 — 20 — tHp(x0,p0)]
= | [ 5 ). P@) =~ Hy (o) e

te
>~ (o)
and so using (iii) in Lemma 3.2, we get
et
|z — zo| = §|h/(|P0|)| —tMs. (3.35)
If (3.32) does not hold, then, due to (3.29),
|z — 20| >0 > t|h (|po])| — Mat. (3.36)
Combining (3.35) and (3.36) (recall € < 1) we arrive at

|z — ol
— >

€
= W (pol| — M — M.
This and (3.10) yield

|z — ol 2 |z — x|

!/
My < (ol < 2
where My := 2¢~! (My + My). Applying w(-) to both sides of (3.37) proves (i) and
(ii) Lemma 3.4.
Step 3. An application of (3.31) and (iv) Lemma 3.2 give

Mt + M;, (3.37)

(po, ® — o) =t (po, Hp(x0, po)) —|—/O (po,Hp(X(T),P(T)) — Hp(xo,po)) dr (3.38)

>t (po, H (w0, p0)) — %t W (Ipol)| Ipo| — 2w(Ma)(e™" + My)t  (3.39)

et

> 5 |1 (|pol)| Ipo| — Mzt — 2w(My)(e™" + My)t. (3.40)
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Using the first inequality in (3.37) and setting Mg := M3z + 2w(My) (e~ + My) we
complete the proof. O

4. PROOF OF THEOREM 2.1

Let

1Bl = _, max _[(B)i] (4.1)

for any B € R™*™. We say that R(t) = O(r(t)) t € T C R, where R(t) € R™*™,
IR < Cr(t) (4.2)
for some constant C' >0 and all ¢t € T.

Lemma 4.1. Let c¢1,t1 be as in Lemma 3.4 and the conditions of Theorem 2.1 be
satisfied. Then for allt € (0,t1), c € (0,¢1), 29 € RY, pg € Vs one has

0X (s
X6) oy (z0.p0) + 90(e + 1), (43)

Po

OP(s)
=F O t 4.4
apo d+ (C + )7 ( )
where s € [0,t], Ey is the identity matriz,

v =R (Ipo])| + 1 (4.5)

and O(+) is taken uniformly in xo,po and s.
Proof. Step 1. From the system (1.4) we find
X(r)=A(X(r),P(1)), A(z,p)= HpuH, — HypH,. (4.6)

Here we omit x,p in arguments of the derivatives of H, the terms Hp,H,, Hy,,H,
are understood as matrix products and A(x,p) € R?. Differentiating with respect
to po the Taylor’s developments

X(s) :ajo—i—X(O)s—l—/Os(s—T)X(T)dT,

s (4.7)
P(s) =po+ /O P(r)dr
and using 90X (0)/dpo = Hpp(20,po) gives
6(;;(05) = H,,(xo,po)s + /Os(s -7) ag(p(;-) dr (4.8)
and
dP(s) _ TOP(r)
apy Eq +/0 00 d (4.9)
respectively, where
20 - axepen B axpen D @)
GP(T) o . . 0X(71) B . . OP(7)
D) HoalX (7). P) D — Ho(X (), P T (111)
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We take 2d x 2d matrix

o, ) = (( )T AL(X(7), P(r)) 57 (s~ T)v Ap(X (1), P<T>>>
’ 7y Ho (X (7). P(7)) ~Hy(X(1),P(r) )"

where v is given by (4.5). Define a mapping L : C([0,¢], R2?x4) — ([0, ¢], R2¢*4)

by
/€ST

M(-) € C(]0,t], R24*4). We rewrite (4.8)-(4.9) as M = Mg + LM, where

1 0X(s)
M=|* 2m and My = Hyp (0, po) .
oP(s) +E
v Opo d

Using (ii) in Theorem 2.1, we get || My]| = O(y). Thus

M= "L"My= Mo +|L|[O(y) (4.12)
n=0
provided || L] < 1.
Step 2. We now estimate ||L||. Using the elementary formula

||BlB2|| < V”Bl”HBQH VB; € RnXV7BQ e Rvxm™ (413)
we obtain
max / L(s, T)M(T) <sd max_ ||£(s )| max ||M(7)] .
0<s<t || /o 0<7<s 0<r<t
Hence

LI < sd | max_ [[¢(s, 7]l

Since 7 < s and s~ (s — 7) < 1, it follows that

< 71
Jamax [, 7)< s max |4, (X (7). P() |+ max, [ 4,(X(7), ()]

57 e | oo (X (7). P(0) | + masx | Hop(X(7), P(D)].

(4.14)
Applying (2.1) and (ii) Theorem 2.1 to (4.6), we have
[A(z, p)|| < dl[Hap|| | Hpll + dl| Hppl| | He |
< d|n'(Ip))[* + d|h" (lp))A (|p])] (4.15)

< 24|l (p])?,
provided |p| > M;. Similarly we obtain
|4z (z, p) || < 4d |R'(|p])]?,
14, (2, p) || < 3[R (Ipl) b’ (Ip])] + d[R" (Ip]) h(lp)]
< 4d|h"(Ip) B ([p))|
for |p| > M;. Consequently,
Ag(z,p) = (h /(lpl))2 (1) +0(1), (4.16)
Ap(z,p) = [ (Ip]) 1 (Ip])|O(1) + O(1) (4.17)
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for all p € R%. Hence
s?Ax(X (1), P(1)) = O([sh(|P(T))]*) + O(s?) .
By (3.9), we get
sIh'(IP(7))] < Ma(s|h'(Ipol)| + s) < Ma(c+ s) (4.18)
and so
s2A.(X (1), P(1)) = O(c* 4 t?). (4.19)
fSiiriice7 by (3.9), v L[R"(|P(7)|)| = O(1), then using (4.17), (4.18) and v~ < 1 we
77 Ap(X (1), P(7)) = O(|sh'(P(7))]) +77'0(s) = O(c + ). (4.20)
Piecing together (4.19) and (4.20) gives
2 s, |14.(X(0), PO + 577" mas, [4,(X(0), P = Ole +1). (421

Similarly we get

sy max | o (X (7). P(0) | + 5 max | Hop(X(7), P(T))| = Ole+1). (422

Combining (4.14), (4.21), (4.22) we arrive at s maxo<r<s<t [|[€(s,7)|] = O(c + t).

Hence | L|| = O(c +t). Consequently we rewrite (4.12) as

10X
LOX(S) _ r (w,po) +4O(c 4+ 1), (4.23)
s Opo

OP(s)
Ipo
Multiplying (4.23) and (4.24) by s and v~ ! respectively we complete the proof. [

— (Eq+ O(c+1)). (4.24)

Corollary 4.2. Under the conditions of Theorem 2.1 there exist ca € (0,¢1), to €
(0,t1) such that for allt € (0,t2), ¢ € (0,c2) and p1,p2 € V.1 one has

122
| X (t,20,p2) — X (t,0,p1)|* > 5 b1 — 2l (4.25)
Proof. One has
X (t, 20, p2) — X (t, 0, p1)|?

/ / (p2 —p1)" ;((t 0,1 + 5(p2 _pl)))T (4.26)

< (G (o pa + 702 = ) (2 = ) s,

where (0X/0po)T is transposed matrix to 9X/dpg. We denote by
@r=p1+sp2—p1), @=p1+7(p2—p1).
From (4.3), we obtain

(8X(t, Zo, ql))TaX(t’ Zo, (ZQ)
Ipo Ipo

= t*(Hpp(20, q1) + 71 R1) (Hpp(20, G2) + Y2 R2)

=:t*H,, (0, q1) Hpp(20, ¢2) + t*R,
(4.27)
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where v; = |h'(|¢:|)] + 71, i = 1,2 and |R;|| < (¢ + t)x for some constant x > 1.
Using (4.13) we get

1BIl < d ([l Hpp(x0, g2)[ [ Ball + Y2l Hpp (o, g1) || [ B2l + y1v2 [ Ba|l | B2 )

Let us take ¢y < ¢1,t2 < t; such that

4d*(cy + ta)k?e ™ < (4.28)

DN | =

Because of (ii) in Theorem 2.1, ||H,,(x0,¢:)|| < 7. Hence

IR < dlc+ ) (I Hpp(zo, a) |k + | Hpp(0, g2) [ 5 + (¢ + ) 717257)

< d(cH+t)(y1k + Yok + 27172K%)

<4dd(c+1t)
=4d(c+t)k

’7172/‘€
e R () (e + 7" (la2DI )

where we have used k,v1,72 > 1, c+t < c1 +t1 < 2. Due to this estimate and the
fact that, by (i) Theorem 2.1,

2
// 930#11 pp(x07QQ)d8dT_ / xo,m)dS)

. (4.29)
2
252</ (1+|h”(\q1|)|)ds) Ed
0
we get
1 1 1 2
/ / |R|| dsdr Eq §4d(c+t)525*2(/ (1+|h”(|q1\)|)ds) Ey
o Jo 0 (4.30)
< dd(c+t)K? _4/ / p(20, q1) Hpp (w0, g2) dsdr .
Substituting (4.28) in (4.30) and using the elementary formula (recall (4.1))
—d|B||Eqa < B < d|B|E4 VB € R
we obtain
1ol 1
/ / Rdsdr > —d/ / | R|| dsdT Eq
0 0 0 0 (431)

1 1 1
2 _5 / / pr@Oan)pr(an%)d5d7'~
0 Jo

Then combining (4.27), (4.31) and using again (4.29) we arrive at

/ / aX t xo,ql))TaX(t x0)q2) dsdr
dpo

Z / / pr 1’0,(]1 pp($0aQ2) dsdr

t22

“°E
5 -

Combining this and (4.26) we complete the proof. O

Y
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Proof of Theorem 2.1. Let ta,co be as in Corollary 4.2, M, is from Lemma 3.3,
€ > 0 is from the conditions of Theorem 2.1.

Let us take
_ 2 _ _
My = max [(8 LR (DD (T (D) (67 Ih(\pl)l)} ;o (432)
€

= 1 — s 4

p 17(1111{861(4‘]\44%_’_]\47)7 et (4.33)
. Ep ep

T := 4.34
mm{4M4(|h,(0)|2+1), oM, 7P7t2}, (4.34)
ro= %. (4.35)

Let Wy :=V, 4 (recall (3.8)) and
D:py— X(t,zo,p0), D:W; —R? (4.36)

Step 1. We will show that B,(zo) C D(W). Using (4.6), (4.7), (iii) in Lemma 3.2
and the fact that X (0) = Hp(zo,po), we have

X (1) — o] > 11X (0)] - / (t - 7)1 X ()] dr

Ztal(zo,po)l—/O (t —7)|AX (1), P(1))| dr (4.37)
> et|l(po|)] — tMa — ¢ Jax, [A(X(7), P(7))]-

Due to (4.32),
[A(z, p)|| < dl|[Hap|| [| Hpll + dll Hpp| || He |
<d[ (7 + (D) + 7+ R (D) (7 + [R(eD]) ]
< dMjy
for any z € R%, |p| < M;. Piecing together this and (4.15) we obtain
[ Az, p)|| < 2d |0 (|p])[* + dM7
for all z,p € R™. This and (3.9) imply
[A(X (7), P(7))| < 2d M (|0 (Ipo])| +1)* + d M+
< 4d ME(|W' (|pol)[* + 1) + dM7 (4.38)
< d(4MF + Mr)(IW (Ipo])* + 1)
Substituting (4.38) into (4.37) and using 2tMs < €p, t|h'(|po|)| = p we obtain
X () — wo| > et|h'(Ipo])| — tMz — t*d(4MF + Mz)(|F (Ipol)|* + 1)

> L — (M} + M) (0 + 1)

for pg € OW;, 19 € RY. Since t < T < p and & > 8d(4MZ + My)p, it follows that
X () — xo| > % — 2d(4M? + M7)p? > %

or

i X(t, zo, — > 4.39
polgg‘}vj (t,20,p0) — To| > 7 ( )
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for any zo € R%. On the other hand, using (3.10) with py = 0 and (4.34) we have

X (¢, 0, 0) — o] < tMy(|R(0)] +1) < TMy(|K(0)] + 1) < %’) —r.  (4.40)

Combining (4.39), (4.40) shows that xg € ©(W;). Moreover, B, (xq) C D(Ws).
Step 2. Corollary 4.2 implies that ® is injective. It suffices to notice that, by

(4.3) and (i) Theorem 2.1, X /dpy # 0 and so the implicit function theorem implies

that ® is a local diffeomorphism for any ¢ < T'. O

5. PROOF OF LEMMA 2.2

For all 29,z € B,.(x¢) and t < T we define the action function by

o(t,xo,p0) = /0 P(r)dX(r) — H(X (), P(r))dr. (5.1)

Recall that X (7) = X(7,z0,p0), P(T) = P(7,20,po) is solution for (1.4) with
initial conditions X (0) = xq, P(0) = pg and po(t, , zo) is defined from the equation
X (t, 29, po(t, z,70)) = x. For any fixed 7o € R? we set

p(t, 'I) = P(tv x07p0(t7 Zz, IO)) .
The convexity of H(x,p) with respect to the second variable and (1.3) imply

L(z,v) = S;le(pv — H(z,p)).

Hence

t t
I,(t, @, z0) =/ L(y(r),y(r)) dr 2/ [(T)p(,y(7)) = H(y(7), p(7, y(7)))] dr
0 0
(5.2)
for any smooth trajectory y(7) with boundary conditions y(0) = z, y(t) = z.
However for y(7) = X (7) we have p(7,y(7)) = P(r). Thus the r.h.s. of (5.2) is
equal to o(t,zq, po(t, z,z¢)). This and (2.5) yield
S(t7l‘,ﬂjo) = U(tszapo(ta .T,ZE())) .
Lemma 5.1. For each t € (0,T), 29 € R? we have
S(t,xo,l‘o) S Mg (53)
for some constant Mg > 0.
Proof. Using (4.25) with p; = 0 and pa = po(t, zo, xo) gives
|X(t7 Zo, 0) - $0|2 = |X(t7 Zo, O) - X(t, anPO(ta Zo, xO))‘z
t2€2 (54)
Z T |p0(ta$07$0>|2 .
Due to (3.10),
X (¢, 20, 0) = wol* < M (1 + W' (J0])]).
Combining this and (5.4) gives

2 2
po(t, zo, zo)|* < ;sz(l + [R'([0])])" (5.5)

On the other hand, an application of (ii) in Theorem 2.1 and (3.23) to (5.1) shows
that o(t,zo,po) is bounded if |pg| is bounded. This remark together with (5.5)
completes the proof. O
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Proof of Lemma 2.2. Let us choose Mg > 0 such that

My
— — M;s > | (M .
My ) (56)
S Mg M9
M10 = §QJ(E - M5) (E - M5) MG >0. (57)
We take t € (0,T), y,yo € R? such that |y — y| = r. Using
3S(t, Y, yO)
A DI o (t
o Ppo(t, ¥, yo)
and applying the elementary formula ¢(1) = ¢(0) + fo @' (1) dr to

o(1) == Sty y + T(yo — )
€ [0,1] we get

S(t,y,90) = S(t,y,y) + /0 (po(t,y,y +7(yo —¥)),y — yo) dr
(5.8)

dr

1
=S(t,y7y)+/0 Py — &) —

where & =y + 7(yo — y) and p§ = po(t,y,&-). By (i) and (iii) in Lemma 3.4, we
have

[pg| > w(% — M5) provided that 7t;4 — My > My, (5.9)
(po,y — &) = 2\ 0|( — tMs) — tMs, (5.10)

where we have used |y — &;| = 7r. Setting s = tMg/r and using (5.9)-(5.10) we get
My
_2‘p0|(tﬁ tM5)—tM6>tM10>O fOI‘TG[S,l],
where we have used 7r > tMy. Notice that due to (5.6) the condition in (5.9) is
satisfied.
If we assume that t <r/(2My), then s < 1/2 and so

(pO’ Y- ET)

1 1
dr
/ g,y — &) — = / (5.11)
0 T 1/2
Using again (5.10) and, due to (i) Lemma 3.4,
T > M
lpo| > w(tM 5)
we obtain
. S
P,y — &) = §|Po\(m - tMs) — tMg (5.12)

€ T 1

On the other hand, due to (ii) Lemma 3.4 for 0 <7 <'s, we have
2rr 2
‘p70—| < w(g 7 + M5) < W(g Mg + M5> =: My
and so

S dT S
[ whu—e) T <r [ 1s6lar < ran. (5.14)
0 0



