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Abstract 
 

This paper examines seven common CFAR techniques and describes a spatially adaptive CFAR that 
captures the best performance in respect of PD and Pfa in the presence of long tail and target corrupted 
clutter.  

 

Introduction 
 
Detection of small targets in littoral 
environments forms a challenge for modern 
radar systems.  Often high target densities are 
present, and the scene is complex with the 
local clutter statistics varying both spatially 
and temporally.   

After describing the problems encountered 
when attempting to detect targets in littoral 
waters using common CFAR (Constant False 
Alarm Rate) adaptive detection threshold 
techniques a deeper examination of Detection 
and CFAR techniques follows together with a 
discussion of the assumptions on which the 
design of CFAR systems is based and how 
these are flawed and a spatially adaptive 
CFAR window is suggested. 

An assessment of the performance of seven 
CFARs is described with the aim of 
answering the question ‘How do the different 
forms of CFAR cope with either 
inappropriate threshold multipliers or the 
typical compound distributions that are 
observed from non-homogenous clutter 
regions?’ 

The conclusion is that the ideal CFAR for use 
with large window sizes is either a 2nd order 
ordered statistic method, for when more 
target corruption is expected than true long-
tailed clutter; or a Fisher-Tippet 2nd order 
CFAR for when long-tailed statistics may be 
present but with mild target corruption.  The 
Fisher-Tippet CFAR is recommended on the 

basis of simple processing as the best 
compromise solution.  

Having established the form of CFAR to be 
employed and the number of cells required in 
the window a self-organising software 
intelligent agent based spatially adaptive 
CFAR method is described.  The CFAR has a 
lowered threshold in order to detect smaller 
targets allowing the probability of detection 
to be improved, whilst providing effective 
control of the false alarm rate.  

The Problem of Detecting Small Targets in 
Littoral Waters 

In commonly used methods of target 
detection, target returns that cross a detection 
threshold derived from the clutter level in 
range cells adjacent to the cell under test are 
taken as ‘potential targets’.  The decision 
mechanism directly affects the probability of 
target detection and the probability of a false 
alarm.   

Discrimination against false alarms is 
ultimately performed in the tracking system, 
and the capabilities of the tracker will 
determine the maximum false alarm rate that 
can be tolerated, and therefore the minimum 
value for the decision threshold. In littoral 
environments the target density can be very 
high and the environment is unknown and 
temporally unstable.  In order to calculate a 
threshold location, the underlying clutter 
probability density function shape must either 
be known, or it must be possible to estimate 
the shape of the distribution from the radar 
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alarms being generated.  The result is a slight 
reduction in the probability of detection 
equivalent to a small loss of signal to noise 
ratio.  

Using a large number of samples reduces the 
error in the measured parameter but increases 
the risk that some of the farther samples are 
not representative of the clutter in the region 
of the test cell.  It also increases the chance 
that the cells may contain targets, which again 
are not observations.  To detect very small 
targets, the threshold must be lowered 
resulting in an increased false alarm rate.  If 
the threshold is reduced too far, the number 
of false alarms increases dramatically.  It is 
therefore not a trivial matter to depress the 
detection threshold and simultaneously 
control the false alarm rate in a difficult 
littoral environment. 

Detection and CFAR 
The detection of targets relies on being able 
to separate target returns from background 
signal.  In practice, a cell will contain either a 
background signal (receiver noise + clutter 
echo), or target plus background.  The 
premise underlying classical CFAR 
processing is that if the statistics of the 
noise/clutter are known and a good estimate 
of the low-order moments (or central 
moments) is generated from the measured 
data (typically 30 samples) a threshold level 
can be calculated that will achieve the 
maximum probability of detection together 
with the maximum tolerable probability of 
false alarm.   

In reality, both the statistical distribution of 
the target and the statistical distribution of the 
background are unknown, and in a non-
stationary littoral environment, it may also 
not be possible to determine the instantaneous 
probability distributions of either. 

All this requires that the threshold be adjusted 
locally to maintain a maximum probability of 
detection, whilst not exceeding the maximum 
tolerable probability of false alarm.  The best 
that can be achieved in reality is to set a 
threshold level that provides the highest 
number of total returns that the tracker can 

process and separate into target tracks and 
clutter.  Due to the complexity and non-
stationary statistics of the environment, the 
probability of detection that results will be the 
best that is achievable for the target at the 
instant of observation. 

It has been found that in order to gather 
sufficient samples to obtain a reasonable 
estimate of the mean and standard deviation 
of the clutter statistics, the samples must be 
drawn from a spatio-temporal region.  In 
order to make the samples as consistent as 
possible, the topology of each local region 
must be optimised to the current environment 
and since this is unknown and dynamic, the 
region must be adaptive.  As the statistics are 
non-stationary, only a limited time history 
may be used.  Although sources of thermal 
noise are likely to be independent, clutter 
samples tend to be highly correlated.  Thus 
the number of truly independent samples is 
reduced, again leading to poor estimates of 
the statistics. 

Constant False Alarm Rate (CFAR) 
Techniques 

All CFARs maintain a constant false alarm 
rate at the expense of detection probability 
and so introduce a processing loss. This loss 
depends upon the particular implementation 
and is often in the region of 1 - 2 dB and is 
related to the number of samples that are 
gathered in order to determine the statistical 
properties of the local background. 

The optimal CFAR process for thermal noise 
is the Cell Averaging CFAR, in particular 
such techniques perform optimally in uniform 
Rayleigh clutter [1].  Although the detection 
threshold is adaptive there are a number of 
disadvantages to this scheme. The statistical 
parameter is estimated from a relatively small 
number of samples and so is likely to differ 
from the true population value.  The 
uncertainty in the threshold level results in it 
being set high side to prevent an excessive 
number of false representative of the clutter. 

On the other hand a small number of cells 
will reduce the chance of non-representative 
values being present but gives a poorer 
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measure of the parameter and a greater CFAR 
loss. 

Very many variants of the cell averaging 
CFAR have been developed with one of the 
most successful in practice being the Order 
Statistic CFAR (OSCFAR).  Here a non-
parametric ranking process is used to 
determine the threshold level.  The OSCFAR 
performs robustly in clutter regions, but the 
threshold is often set pessimistically in 
regions of pure noise.  The OSCFAR is 
related strongly to the process of median 
filtering. 

Anastassopoulos and Lampropoulos [1] 
discuss a number of other CFAR schemes 
that attempt to overcome the problems of 
clutter edges, multiple targets and non-
Rayleigh clutter.  Although a solution is 
presented the authors admit that the CFAR 
proposed requires an execution time that is 
nearly a factor of three greater than an order 
statistic CFAR of the same length. 

Second-Order CFAR 
If higher order statistics can be estimated 
accurately, any variations in both the spread 
and the shape of the clutter distribution could 
be accounted for and be used to set a 
threshold dependent not only on the mean of 
the clutter level but also the standard 
deviation.  The disadvantage would appear to 
be the need for an even larger number of 
samples than is required for simple CA-
CFAR.   

In order to answer the question ‘how many 
samples are needed in practice?’ seven first 
and 2

nd
 order CFAR systems were 

considered. The processes are summarised in 
equations 2 to 7, where T1 is the threshold for 
the first order CFAR, T2 is the 2nd order 
threshold level, vi are the background voltage 
magnitude samples from the local region and 
k1 and k2 are the multiplication factors 
required to give the desired false alarm 
probability for the 1st and 2nd order CFARs 
respectively. 

• Linear CA:           v > k1 × mean(v) 

In CA-CFAR the threshold is set at the mean 
of the levels either side of the cell being 
examined multiplied by a factor.   

1
1 1

1

N

iN
i

T k v
=

= ∑                                (1) 

• 2
nd

 Order Linear CA: 

v > k2 × std(v) + mean(v) 

The simplest 2nd order CFAR is an extension 
of linear cell-averaging [2].  The concept is 
instead of setting the threshold as a factor 
times the mean background voltage, the 
threshold is set to the mean background 
voltage plus a factor times the standard 
deviation.   
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• OS:                     v > k1 × median(v) 

• 2
nd

 OS:                 

v > k2 × range(25-75)(v) + 
median(v) 

Order Statistic methods are described by 
equations 3 and 4 where V is the vector of all 
local target voltage samples, P25, P50 and P75 
are the 25th percentile, 50th percentile 
(median) and 75th percentile respectively. 

1 1 75 ( )T k P V=                                               (3) 

( )2 50 2 75 25( ) ( ) ( )T P V k P V P V= + −       (4) 

• 2
nd

 Order Fisher-Tippet CA:    

 log(v) > k2 × std(log(v)) + mean(log(v)) 

Given that sea and land clutter can often have 
a long-tailed probability distribution, it makes 
sense to investigate approaches that estimate 
the shape (i.e. length of tail) directly.  If the 
clutter has a log-normal probability density 
function, then after passing the received 
signal through a logarithmic amplifier, the 
probability density function will be normally 
distributed, with the mean and standard 
deviation of the probability density function 
describing its shape uniquely.   
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If the clutter follows a Weibull distribution, 
then after a logarithmic amplifier, the 
statistics will follow a Fisher-Tippet 
distribution.  Equation 5 describes a 2nd order 
CFAR process based on processing the 
logarithm of voltage.  

1
2

1

2
21 1

2 1
1 1

log( )

log( ) log( )

N

iN
i

N N

i iN N
i i

T v

k v

=

−
= =

= +

⎛ ⎞− ⎜ ⎟
⎝ ⎠

∑

∑ ∑ v
 (5) 

In order to compare the performance of a 
range of CFAR systems, square-law cell 
averaging, and root-law cell averaging have 
also been considered and are described by 
equations 6 and 7. 

• Square CA:        v2 > k1 × mean(v2) 

21
1 1

1

N

iN
i

T k v
=

= ∑       (6) 

• Root CA:           √v > k1 × mean(√ v) 

1
1 1

1

N

iN
i

T k v
=

= ∑    (7) 

Comparative CFAR Performance 
Assessment 

A simple experiment has been devised to 
establish the relative performance of the 
different CFAR methods as the number of 
available samples (window size) is varied 
under realistic operating conditions.   

The hypothesis is that as the window size 
increases, the aggregate performance of all of 
the CFAR methods will saturate, with no one 
method being superior.  It is however 
anticipated that the false alarm performance 
of some methods may be more attractive than 
others.  

Unknown clutter experiment 
The purpose was to investigate how the 
different forms of CFAR cope with either 
inappropriate threshold multipliers or the 
typical compound distributions that are 
observed from non-homogenous clutter 
regions. As the exact structure of the 
compound probability density functions are 

not known, the number of assumptions used 
in the analysis has been minimised by using a 
Monte-Carlo process where few a-priori 
assumptions are needed.  

The experiments where conducted based on 
an unknown clutter distribution.  Rayleigh 
noise was generated and a multiplier, k, was 
calculated to provide a given Pf.a.  K-
distributed samples were drawn and a 
threshold calculated based on the CFAR 
method being evaluated and the previously 
calculated multiplier k. 

A K-distributed clutter sample and a ‘target 
plus K-distributed clutter sample’ were tested 
against the threshold, allowing actual PD and 
Pfa to be established (from 10,000 trials). 

 The experiments were repeated for a range of 
window sizes 
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Figure 1. Plot of relative CFAR performance 
with respect to window size, for the case of 

long-tailed K-distributed clutter. 

Figure 1 shows that as the window size 
increases the performance of the various 
CFARs becomes comparable thus supporting 
the hypothesis.  The conclusion from Figure 1 
is that for an ~300 sample window the 
performance of all the CFARs under 
consideration would be similar.  
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Figure  2.  Receiver Operating Curve for 294 
cell window and long-tailed clutter 

Figure 2 shows that the Receiver Operating 
Curve for a 294 point window indicates that 
all of the 7 methods have comparable 
performance, as they all lie on the same ROC 
trajectory.  It is clear however, that the 
methods do not behave in the same manner as 
the cell averaging approaches appear to be 
producing large numbers of false alarms due 
to a lower than expected threshold (and 
therefore a corresponding increase in the 
probability of detection). 
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Figure 3 Plot of actual false alarm versus the 

intended false alarm probability for long-tailed 
K-distributed clutter. 

This behaviour is confirmed in Figure 3 
where the actual Pfa is plotted with respect to 
the intended Pfa.  The figure shows that all of 
the CFAR methods produce more false alarm 
returns than intended, however some are 
much more extreme than others.  The 2nd 
order CFAR methods outperform the 1st order 
methods, with the 1st order methods all 
consistently setting the threshold much too 

low and therefore generating very large 
numbers of false-alarms.  The experiment 
demonstrates that in unknown long-tailed 
clutter, if 2nd order statistics can be estimated, 
then a more appropriate threshold choice can 
be made.  

It is clear that with large window sizes (>200 
cells) the performance difference between the 
different CFARs is minimal, i.e. when 
plotted, the CFAR ROC curves all lie on the 
same ROC trajectory.  Thus a method is now 
required that can gather groups of 100+ 
homogenous cells from the scene of interest.  
The second experiment, looking at target 
corruption of these regions, will determine 
how accurately the regions need to be 
defined. 

Target corruption experiment 
In a real scenario, the CFAR threshold may 
be set based on an a-priori assumption of the 
noise statistics (e.g. Rayleigh), yet the true 
clutter may be very long-tailed, or the local 
cells corrupted by targets or other 
environmental artefacts.  The effect of 
corruption is that the probability density 
function describing the background becomes 
a compound distribution, comprised of 
clutter-like and target-like samples.  If a few 
target returns are included in the background 
sample, the tail of the distribution is 
‘stretched’, however the distribution is now 
multi-modal (i.e. multiple peaks of high 
density), rather than long-tailed.   

The experiments where modified to produce a 
compound background distribution.  A 
percentage of the samples had contributions 
from a Swerling 2 target added and the 
threshold location was calculated from the 
modified sample set, based on the CFAR 
method being evaluated and the calculated 
multiplier k. 

A Rayleigh distributed ‘noise’ sample and a 
‘target plus noise sample’ were tested against 
the threshold, allowing actual PD and Pfa to be 
established (from 10,000 trials); 
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Figure 4  Receiver Operating Curve for 294 
cell window and a compound distribution, 

where 10% of the cells have been corrupted by 
target-like returns 

The ROC curve for a 294 point window 
shown in Figure 4 indicates that all 7 methods 
have comparable performance, i.e. no one 
method outperforms the other methods 
significantly as all the methods lie on 
essentially the same ROC curve trajectory.  

Again it is clear, that the methods do not 
behave in the same manner.  Figure 5 shows 
the Pfa performance of all 7 methods.  All of 
the methods provide fewer (better) false 
alarms than the design intention, with an 
associated reduction in the PD.   Since the 
false alarms do not explode out of control, 
unlike in the true long-tailed distribution; 
although undesired, all of the methods could 
tolerate some degree of target corruption.  
Interestingly, there is no clear distinction 
between the performance of first and second 
order CFAR methods, rather the order-
statistic methods (best being 1st order, 
followed by the 2nd order) are the best 
performing, then root and linear cell 
averaging, and then the Fisher-Tippet CFAR 
etc.  The performance with changing window 
size is very similar to the long-tailed clutter 
experiment with 200 to 300 cell window sizes 
providing good performance for all of the 
CFAR methods. 
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Figure 5 Graph of actual Pfa versus intended 
Pfa for a 294 cell window and 10% corruption 

by target-like returns. 

Experiment summary 
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Figure 6.  Trade Off Surface for various CFAR 

Surfaces 

A trade-off comparison can be made using 
the Pfa performance for the larger range-
azimuth window since the ROC performance 
can be considered ‘equivalent’,  

The ranks of the different methods for the two 
different noise distributions have been plotted 
in Figure 6 (rank=1 is best, 7 is worst). 

The trade-off surface reveals: 
• for clutter-dominated scenarios (e.g. 

spatio–temporal CFAR), the 2nd order 
Fischer-Tippet approach is 
recommended. 

• For noise-alone operation where target 
corruption may be an issue, 1st order 
order-statistic CFAR is best 

• For mixed operation where both target 
corruption and long-tailed clutter may 
be present, 2nd order order-statistic 
CFAR is the best compromise. 
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• A 200+ cell window is best when 2nd 
order CFAR is being applied. 

The two experiments have demonstrated 3 
key observations in the comparison of 1st and 
2nd order CFAR methods.  

The first observation is that with window 
sizes greater than approximately 100 cells, 
the performance of all of the CFAR methods 
converge to lie on the same ROC trajectory, 
indicating that no one method could be 
considered superior when both PD and Pfa 
performance are considered simultaneously. 

The second observation is that in the presence 
of long-tailed clutter, with an unknown 
distribution, the 2nd order CFAR methods 
provide the most reliable threshold locations 
(when moderate to large window sizes are 
considered). Many of the 1st order methods 
place too low a threshold and the number of 
false alarms may be much higher than 
anticipated. 

The 3rd observation is that when the gathered 
cells are partially corrupted by target returns, 
resulting in a compound distribution, the 
order statistic methods provide the best 
performance, however all of the methods set 
the threshold high, reducing the PD, but not 
incurring an increase in the number of false 
alarms that are observed. 

Choice of CFAR 
The ideal CFAR for use with large window 
sizes is therefore either a 2nd order ordered 
statistic method, for when more target 
corruption is expected than true long-tailed 
clutter; or a Fisher-Tippet 2nd order CFAR for 
when long-tailed statistics may be present but 
with mild target corruption.  In practice 
however, the Fisher-Tippet CFAR is far 
simpler to process and has been selected as 
the best compromise solution. 

As previously observed the homogeneity and 
stationarity of the clutter in the littoral 
environment is poor.  If a large number of 
spatial samples is gathered, implying that the 
statistics are gathered over a wide tempo-
spatial area, the region around the cell-under-
test must be as clear as possible of artefacts 

such as buoys, harbour walls, cliffs etc. in 
order to maximise the performance of the 
Fisher-Tippet CFAR.  The problem now 
becomes how to gather an effective 200+ 
cells whilst minimising corruption by target 
returns and also attempting to collect from 
regions where the statistics are as 
homogenous as possible. 

To overcome these problems a novel self-
organising system based on the use of 
multiple intelligent software agents (MISA) 
has been developed.    The agent system 
reacts to features in the environment 
according to simple rules and modifies the 
areas over which the statistics gathering 
processes are performed accordingly such 
that the spatio-temporal data gathering is 
more effective and therefore better suited to 
the 2nd order CFAR process.  

The key design philosophy has been to 
recognise that as the statistics of the scene are 
changing too rapidly to allow calculation to 
sufficient accuracy for idealised detection 
algorithms; any processing that is applied can 
only ever be sub-optimal.   

The Multiple Intelligent Software Agent 
Spatio-Temporal CFAR Subsystem 

Integration is 
restriced

Inactive Agent

All local cells 
integrated  

Figure 7 Layout of cells and agents 

The CFAR cells are arranged as elements of a 
range-azimuth map.  The map contains two 
types of agents: range-azimuth cells 
containing two identical IIR filters that 
perform temporal integration of successive 
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target returns and the square of the returns 
and ‘bridging agents’ located between pairs 
of range-azimuth cells that attempt to assess 
whether the pair of cells have similar 
statistics or not.  This process is illustrated in 
Figure 7.  The ‘bridging’ agents use the 
temporal statistics gathered by the range-
azimuth cells in order to inform their 
decision, and if they decide that the pair of 
cells have statistically different 
characteristics, they prevent the spatial data 
gathering across the boundary of the 
statistical agents.  The main effect is that land 
masses and other anomalous areas of clutter 
are formed into distinct areas. This ability to 
restrict spatial data gathering allows the 
statistics to better represent distinct areas of 
homogenous clutter. Local threshold 
calculations may be made based upon data 
which is comprised primarily of one 
probability density function, rather than being 
a compound distribution.  In addition the 
problems observed with traditional CFAR 
where targets are difficult to detect in the 
vicinity of clutter boundaries have been 
largely eliminated.  

Temporal Processing 
Temporal processing is performed by two 
identical IIR filters that perform temporal 
integration of successive target returns, and 
the square of the returns.  The IIR filter that 
calculates the mean is described by the 
following recurrence relationship 

0.9 ( , , 1) ( , , )
( , , )

1 0.9
T R t I R t

T R t µ
µ

θ θ
θ

− +
=

+
 (8) 

Where Tµ(R,θ,t) is the temporal mean at each 
range, azimuth and time, I(R,θ,t)  is the new 
raw input data.  The filters produce the sum 
of exponentially decaying contributions from 
previous radar returns.  The factor of 0.9 in 
the numerator and denominator provides the 
time constant of the filter.  Approximately 10 
scans of data influence the mean value that is 
calculated.  In very non-stationary clutter, it is 
important to gather data only from a temporal 
history that can be assumed stationary.  In 
some measured data that has been analysed, a 
maximum of 10 scans could be observed 

before the stationarity of the data was 
questionable. 

A similar filter, Tσ(R,θ,t), that sums the 
squares of the input voltages is also applied 
with I(R,θ,t) replaced by its square. Thus the 
variance (and therefore standard deviation) 
may be approximated as Tσ(R,θ,t) – Tµ(R,θ,t)2.   

This simple approach to generating the mean 
and standard deviation of spatio-temporal 
regions allows the Fisher-Tippet 2nd order 
CFAR process to be applied very easily.  In 
order for the Fisher-Tippet CFAR to be used, 
the logarithm of the radar return amplitude is 
passed to the statistic gathering process. 

Spatial Processing 
For the spatial processing, each range-
azimuth cell has 4 intelligent agents, the 
bridging or B agents, shared with its 
neighbours around its borders, as shown in 
Figure 5.  The B agents prevent the spatial 
integration from being disturbed by fixed 
targets and other boundaries.  Each B agent 
monitors the Tµ(R,θ,t) and Tσ(R,θ,t) values of 
the cells on either side of it, and if either 
Tµ(R,θt) or Tσ(R,θ,t)  are consistently 
different, it switches to a blocking state and 
prevents spatial integration occurring across 
the boundary.  Each B agent maintains  µ and 
σ values, the µ value, Bµ, being: 

( , , )

( , , )
0.9 ( , , 1) sgn

( 1, , )

B R t

T R t
B R t

T R t

µ

µ
µ

µ

θ

θ
θ

θ

+

⎛ ⎞
= + − + ⎜ ⎟⎜ ⎟− +⎝ ⎠

 (9) 

Where the notation B(R+,θ,t) denotes the 
agent that lies between cells (R, θ) and (R+1, 
θ) etc.  The agent B(R,θ+,t) is the equivalent 
in the orthogonal grid direction.    The use of 
the signum function rather than the raw 
difference results in an indication of the 
median rate of dissimilarity rather than the 
mean of the difference between the agents.  
Again, the factor of 0.9 used in the equation 
has been set to provide reasonable results on 
data where stationarity may be approximated 
over 10 scans of data. 

The decision as to whether the agent should 
block is generated by identifying the B agents 
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which separate cells having the greatest 
dissimilarity (one agent for Tµ data and one 
for Tσ)   Thus the agents with the largest 
difference between means, and the largest 
difference between the squared returns are 
identified.  The magnitudes of these two 
values are then used to set a threshold to 
determine the bridging agent’s activity.  The 
agent will record B(R, θ+, t)=0 if  either the 
|Bµ| or |Bσ| is greater than 70% of ( )max

|Bµ σ .  

Expressed in formal logic the truth value for 
the blocking action, for a single azimuth B 
agent is 

( )
( )

( ) ( ) ( )max max

, ,

, ,

0.7 | , , 0.7

B R t

B R t

B B R t B

µ

µ σ σ

θ

θ

θ

+ ⇔

⎛ +
⎜¬
⎜> + >⎝

⎞
⎟
⎟
⎠

(10)  

Where TRUE and FALSE correspond to 1 
and 0 respectively  

This empirical rule provides a trade-off 
between adequate detection of clutter edges 
and false activations in the scene of the 
respective maximal values.   

The spatial integration of the means is then 
described by: 

( )
4

4

( , , )

0.9 ( , , 1) 0.7 ( , , )

( 1, 1, 1) ( , , )

0.9 ( , , ) 0.7

S R t
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B R t

µ

µ µ

µ
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θ θ

θ θ

θ
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− +⎛
⎜
+ ± ± − ± ±⎜
⎝

⎛ ⎞+ ± ± +⎜
⎝

∑

∑

⎞
⎟
⎟
⎠

⎟
⎠

 (11) 

The integration of the squared returns is 
performed in a similar manner. 

In the absence of blocking agent action 
statistics are gathered over an approximately 
5×5 cell area.  The result is that the statistics 
are based on ~250 samples allowing a 
reasonable estimate of the 2nd order statistics 
to be made. 

CFAR Threshold 
A threshold is calculated based on the S 
results and the Fisher-Tippet CFAR equation 
is used to threshold the input data in I.  To 

prevent moving targets from disrupting the 
mean and standard deviations, target 
detections, based on the thresholds calculated 
in the previous scan, are censored from the 
integration process.  The censoring process 
simply prevents T level updates for any cells 
in which detections have been made.  The 
censoring process is monitored to ensure that 
the censoring is only applicable to transient 
(i.e. moving targets) and that fixed targets are 
captured by the bridging agents. 

The controlled spatial integration allows more 
samples to be gathered and more stable and 
accurate estimates of mean and variance to be 
obtained with edges in the scene preserved as 
sharp discontinuities.  This process allows 
accurate thresholds to be determined to within 
a few cells of features within the 
environment.  The new adaptive spatio-
temporal CFAR is essentially an edge-
preserving low-pass filter in a similar vein to 
median filters and Beltrami Flow [3].  
However, median filtering and Beltrami flow 
derive the clutter-edge information 
independently for each scan and therefore 
rely on the noise levels to be much less than 
the intensity difference of the edges to be 
preserved.  In contrast, with the new agent 
system, the clutter ‘edges’ are determined 
temporally over a sequence of scans and can 
therefore tolerate significantly more noise and 
are more stable between scans. 

Conclusion 
Many existing CFAR approaches will 
produce very good results if the clutter 
statistics are known exactly, but can perform 
badly if there is even a small error in the 
estimated parameters.  The result is that by 
attempting to provide an optimal solution a 
very fragile process is created. 

The self-adaptive spatio-temporal CFAR is 
proving effective at gathering large numbers 
of statistically homogeneous data samples 
from complex and difficult environments.  
The ability to gather large sample sizes means 
that robust estimates of threshold locations 
can be generated through 2nd order CFAR 
processing, reducing fluctuations in false 
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alarm rates and allowing depressed thresholds 
to be used in combination with a pre-track 
system.  Even though the approach is 
essentially cell-averaging CFAR, the 
performance is proving to be extremely 
reliable in complex environments and 
processing losses are small as accurate 
threshold locations can be calculated.  
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