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Abstract. The paper is devoted to the study of Markov processes in finite-
dimensional convex cones (especially Rd and Rd

+) with a decomposable generator,
i.e. with a generator of the form L =

∑N
n=1 Anψn, where every An acts as a

multiplication operator by a positive, not necessarily bounded, continuous function
an(x) and where every ψn generates a Lévy process, i.e. a process with i.i.d. incre-
ments in Rd. The following problems are discussed: (i) existence and uniqueness
of Markov or Feller processes with a given generator, (ii) continuous dependence
of the process on the coefficients an and the starting points, (iii) well posedness of
the corresponding martingale problem, (iv) generalized solutions to the Dirichlet
problem, (v) regularity of boundary points.

Keywords. Markov processes, Feller processes, pseudo-differential non-local
generators, martingale problem, exit time, Dirichlet problem, boundary points, cou-
pling.

Mathematics Subject Classification. 60J25,60J50,60J75.

1. Introduction, main results and content of the paper.

1.1. Basic notations. For a subset M ⊂ Rd, we shall denote by C(M) (re-
spectively Cb(M), Cc(M), C∞(M)) the space of continuous functions on M (re-
spectively its subspace consisting of bounded functions, functions with a compact
support, functions tending to zero as x ∈ M tends to infinity). All these spaces are
equipped with the usual sup-norm ‖.‖. If M is an open set and Γ is a subset of the
boundary ∂M of M , we denote by Cs(M ∪ Γ) (respectively Cs

b (M ∪ Γ)) the space
of functions having continuous (respectively continuous and bounded) derivatives
in M up to and including the order s that have a continuous extension to M ∪Γ. If
M is omitted, it will be tacitly assumed that M = Rd, i.e. we shall write, say, C∞
to denote C∞(Rd). We shall use all three standard notations f ′(x), ∇f(x), and
∂f
∂x (x) to denote the gradient field of a smooth function. Similarly, f ′′(x) denotes
the matrix of the second derivatives.
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For a locally compact space M (usually Rd, or its one-point compactification
Ṙd, or its subdomains) we shall use the standard notation DM [0,∞) to denote the
Skorokhod space of càdlàg paths in M .

We shall usually denote by the capital letters E and P the expectation and
respectively the probability defined by a process under consideration.

1.2. General description of results. Let ψn, n = 1, ..., N , be a finite family of
generators of Lévy processes in Rd, i.e. for each n

ψnf(x) = tr (Gn ∂2

∂x2
)f(x) + (βn,

∂

∂x
)f(x)

+
∫

(f(x + y)− f(x)−∇f(x)y)νn(dy) +
∫

(f(x + y)− f(x))µn(dy), (1.1)

where Gn = (Gn
ij) is a non-negative symmetric d × d-matrix, βn ∈ Rd, νn and µn

are Radon measures on the ball {|y| ≤ 1} and on Rd respectively (Lévy measures)
such that

∫
|y|2νn(dy) < ∞,

∫
min(1, |y|)µn(dy) < ∞, νn({0}) = µn({0}) = 0 (1.2)

(such a partition of the Lévy measure in two parts makes our further assumptions
on this measure more transparent), and where

tr (G
∂2

∂x2
)f =

d∑

i,j=1

Gij
∂2f

∂xi∂xj
.

The function

pn(ξ) = (Gnξ, ξ)− i(βn, ξ) +
∫

(1− eiξy + iξy)νn(dy) +
∫

(1− eiξy)µn(dy) (1.3)

is called the symbol of the operator −ψn. This terminology reflects the observation
that ψn is in fact a pseudo differential operator of the form

ψn = −pn(−i∇), ∇ = (∇1, ...,∇d) = (
∂

∂x1
, ...,

∂

∂xd
)

We shall denote by pν
n, pµ

n the corresponding integral terms in (1.3), e.g. pµ
n(ξ) =∫

(1− eiξy)µn(dy). We also denote p0 =
∑N

n=1 pn.
Let an be a family of positive continuous functions on Rd. Denote by An the

operator of multiplication by an. In the extensive literature on the Feller processes
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with pseudo-differential generators (see e.g. [14] for a recent review), special atten-
tion was given to the decomposable generators of the form

∑N
n=1 Anψn, because

analytically they are simpler to deal with, but at the same time their properties
capture the major qualitative features of the general case. On the other hand,
the decomposable generators appear naturally in connection with the interacting
particle systems (see [19]-[22]). In fact, the results of this paper (mainly the last
Theorems 9, 10) supply the corner stones to the proof of the main result of [20].
In the context of interacting particle systems, the corresponding functions an are
usually unbounded but smooth.

This paper addresses all fundamental issues of the theory of processes with
decomposable generators (with possibly unbounded an), namely the problems of
the existence and uniqueness of Markov process with a given generator (Theorem
1 and Theorem 3 (i)), the continuous dependence of the process on the coefficients
an and the starting points (Theorems 2 -5), the restriction of such processes to
a subdomain of Rd (Theorems 6 and 7) and the corresponding Dirichlet problem
(Theorem 8), and the application of these results to the analysis of processes in Rd

+

(Theorems 9 and 10). In Appendix we give some general results on the existence
of a solution to the martingale problems with pseudo-differential generator (not
necessarily decomposable) and on the classification of the boundary points.

We use a variety of techniques both analytic (perturbation theory, chronological
or T -products, Sobolev spaces) and probabilistic (martingale problem characteriza-
tion of Markov semigroups, stopping times, coupling, etc).

1.3. Existence and uniqueness of processes in Rd (perturbation theory, the
T-product method and the martingale problem approach). After a large amount of
work done by using different deep techniques, the results obtained on the existence of
Markov processes with decomposable generators are still far from being complete.
The two basic assumptions under which it was proved that to a decomposable
operator there corresponds a unique Markov process (see [9]) are the following:

(a1) reality of symbols: all pn(ξ) are real

(a2) non-degeneracy:
∑N

n=1 pn(ξ) ≥ c|ξ|α with some positive c, α.
Moreover, it was always supposed that an ∈ Cs

b (Rd) for all n and some s
(depending on the dimension d). As indicated in [13], using the methods from
[9,12] condition (a1) can be relaxed to the following one:

(a1′) |Im pn(ξ)| ≤ c|Repn(ξ)| for all n with some c > 0.
Clearly these conditions are very restrictive. For example, they do not include

even degenerate diffusions. Notice however that one-dimensional theory is fairly
complete by now (see e.g. the pioneering paper [1] and also [19] for more recent
developments). Some other related results can be found in [26].

In the present paper we start by proving the existence and uniqueness of the
Markov process with generator

∑N
n=1 Anψn under the following assumptions on the
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symbols pn: there exists c > 0 and constants αn > 0, βn < αn such that for each
n = 1, ..., N

(A1) |Im pµ
n(ξ) + Impν

n(ξ)| ≤ c|p0(ξ)|,
(A2) Re pν

n(ξ) ≥ c−1|prνn(ξ)|αn and |(pν
n)′(ξ)| ≤ c|prνn(ξ)|βn , where prνn is

the orthogonal projection on the minimal subspace containing the support of the
measure νn.

Remarks. 1. Clearly the condition |Impn| ≤ cRe pn (of type (a1’) above)
implies |Im pn| ≤ c|p0|, but is not equivalent to it. 2. Condition (A2) is practically
not very restrictive. It allows, in particular, any α-stable measures ν (whatever
degenerate) with α ≥ 1 (the case α < 1 can be included in µn). Moreover, if∫ |ξ|1+βnνn(dξ) < ∞, then the second condition in (A2) holds, because |eixy − 1| ≤
c|xy|β for any β ≤ 1 and some c > 0. In particular, the second inequality in (A2)
always holds with βn = 1. Hence, in order that (A2) holds it is enough to have
the first inequality in (A2) with αn > 1. 3. As no restrictions on the differential
part of pn are imposed, all (possibly degenerate) diffusion processes with symbols
are covered by our assumptions.

To formulate our results on existence that include possibly unbounded coeffi-
cients we shall also use the following conditions:

(A3) an(x) = O(|x|2) as x →∞ for those n where Gn 6= 0 or νn 6= 0, an(x) =
O(|x|) as x →∞ for those n where βn 6= 0,

(A3′) there exists a positive function f ∈ C2(Rd) with bounded first derivatives
such that f(x) → ∞ and |f ′′(x)| = |∂2f

∂x2 | = O(1)(1 + |x|)−1 as |x| → ∞, and
an(x)ψnf(x) ≤ c for some constant c ≥ 0 and all n,

(A4) an(x) is bounded whenever µn 6= 0,

(A4′)
∫ |y|µn(dy) < ∞ for all n,

(A4′′) an(x) = O(|x|) whenever µn 6= 0.

Theorem 1. Suppose (A1),(A2) hold for the family of operators ψn, and
suppose that all an are positive functions taken from Cs(Rd) for s > 2 + d/2.

(i) If (A3), (A4) hold, then there exists a unique extension of the operator
L =

∑N
n=1 Anψn (with the initial domain being C2(Rd)∩Cc(Rd)) that generates a

Feller semigroup in C∞(Rd).
(ii) If (A3′) and (A4′) hold, then there exists a unique strong Markov process

whose generator coincides with the operator L =
∑N

n=1 Anψn on C2(Rd)∩Cc(Rd).
Moreover, its semigroup preserves the set Cb(Rd), the process f(Xx

t )−∫ t

0
Lf(Xx

s ) ds
is a martingale and

Ef(Xx
t ) ≤ f(x) + Nct (1.4)

for all t and x, where Xx
t denotes the process with the initial point x.
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Remarks. 1. Some information on the domain of the generators of the Markov
processes obtained is given in the corollary to Theorem A1 of Appendix 1 for case
(A3) and at the end of Section 4 for case (A3′).

2. Clearly, condition (A3′) allows examples with coefficients increasing arbi-
trary fast (see Section 7).

3. Statement (ii) still holds if instead of condition an(x)ψnf(x) ≤ c for all n, one
assumes the more cumbersome but more general condition that

∑N
n=1 ãn(x)ψnf(x) ≤

c for all ãn such that 0 ≤ ãn ≤ an.
4. Statement (i) of Theorem 1 is a natural generalization to processes with

jumps of a well known criterion for non-explosion of diffusions that states that
a diffusion process does not explode and defines a Feller semigroup whenever its
diffusion coefficients grow at most quadratically and the drift grows at most linearly.

The proof of this theorem will be given in the next three sections (using also
Appendix 1), each of which is based on different ideas and techniques, which seem-
ingly can be used for more general Feller processes. In Section 2 we shall prove
(see Proposition 2.1) the result of Theorem 1 subject to some additional bounds for
coefficients an and under the additional assumption

(A1′) |Impn(ξ)| ≤ c|p0(ξ)|
on the symbols pn. Clearly (A1′) is a version of (A1) for the whole symbol, which
thus combines (A1) and some restrictions on the drift. The proof will be based
on the perturbation theory representation for semigroups in Sobolev spaces (as in
[18], and not for resolvents as in, say [9,10], [12,13]), which shall give us other nice
properties of the semigroup constructed, for example, that C2 ∩Cc is a core for the
generator.

In Section 3 we shall use the methods of T -products and of the ”interaction
representation” to get rid of the additional assumption (A1′).

In Section 4, we shall get rid of the bounds on the norms ‖an‖ and complete the
proof of Theorem 1 using the martingale problem approach. This last part of the
proof of Theorem 1 has three ingredients: a general existence result for the solution
to a martingale problem proved in Appendix 1, standard localization arguments for
proving the uniqueness of these solutions (see e.g. [9] in the similar context of Feller
processes and [6] in general), and a simple argument to prove the Feller property in
case (A3).

4. Continuity properties by the coupling method. Theorems 2 -5 formulated
below are proved in Section 5. We are going to use the coupling method to relax
the smoothness assumptions on the coefficients an(x) and to prove the continuous
dependence of the process on these coefficients. Unfortunately, we are able to do
it only under very restrictive assumptions on the measures νn, namely, we shall
assume that for all n

(A5) if νn 6= 0, then an(x) = an is a constant.
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Remark. The following results and their proofs are still valid if instead of (A5)
one assumes that d = 1 (one-dimensional case), an(x) is an increasing function of x
(respectively decreasing) and νn has a support on (0,∞) (respectively on (−∞, 0)).

Let us recall the notion of coupling (for details, see e.g. [4]). For a probability
measures P1, P2 on Rd, a measure P on R2d is called a coupling of P1, P2, if

P (B ×Rd) = P1(B), P (Rd ×B) = P2(B)

for all measurable B ⊂ Rd. The Wp-metric between P1 and P2 (sometimes called
also Kantorovich or Wasserstein metric) is defined by the formula

Wp(P1, P2) = inf
P
{
∫
|x1 − x2|pP (dx1, dx2)}1/p, p ≥ 1, (1.5)

where inf is taken over all couplings P of P1, P2. We shall write simply W for W1.
For the application of coupling the most important fact is that the convergence
of distributions in any of Wp-metric implies the weak convergence. For given Rd-
valued processes Xt, Yt, t ≥ 0, a process Zt valued in R2d is called a coupling of Xt

and Yt, if the distribution of Zt is a coupling of the distributions of Xt and Yt for all t.
In other words, the coordinates of the process Zt have the distributions of Xt and Yt

so that one can write Zt = (Xt, Yt). With some abuse of notations, we shall denote
by W (Xt, Yt) the W1-distance between the distributions of Xt and Yt. For Xt, Yt,
Zt being Feller processes with generators LX , LY , LZ respectively, the condition
of coupling can be written as LZfX(x, y) = LXf(x) and LZfY (x, y) = LY f(y)
for all f from the domains of LX and LY respectively, where fX(x, y) = f(x) and
fY (x, y) = f(y).

The following result reflects the continuous dependence of Feller processes with
decomposable generators on their coefficients and initial conditions.

Theorem 2. Let (A1), (A2), (A4′) hold and let an, ãn be two families of
positive functions from Cs(Rd) with s > 2 + d/2 such that (A3), (A4), (A5) hold
for both of them (see also the Remark after (A5)), ω = maxn ‖an − ãn‖ < ∞,

K = max( max
n:Gn 6=0

‖∇√an‖, max
n:βn 6=0 or µn 6=0

‖∇an‖) < ∞, (1.6)

and ãn = an if νn 6= 0. Let Xx0
t be the Feller process with generator (1.1) starting

from some point x0 and let Y y0
t be the Feller process with generator (1.1) where all

an are replaced by ãn and starting from y0. Then for any ε > 0 and T > 0 there
exists a coupling Zε

t = (Xx0
t , Y y0

y ) of Xx0
t and Y y0

t which is a Feller process with a
decomposable symbol starting from (x0, y0) such that for all t ∈ [0, T ]

Eε|Xx0
t − Y y0

t | ≤ C(T, K)(|x0 − y0|+ ε + max(ω,
√

ω)) (1.7)
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with some constant C(T,K) depending on T , K and the bound in (A4’). Here Eε

denotes the expectation with respect to the coupling process Zε
t . In particular, taking

ε → 0 and using definition (1.5) yields

W (Xx0
t , Y y0

t ) ≤ C(|x0 − y0|+ max(ω,
√

ω)). (1.8)

If additionally all measures µn have a finite second moment, i.e. if

sup
n

∫
|y|2µn(dy) < ∞, (1.9)

then

Eε|Xx0
t − Y y0

t |2 ≤ C(T, K)(|x0 − y0|2 + |x0 − y0|+ ε + ω + ω2). (1.10)

It is not difficult now to get the following improvements of the results obtained.
Theorem 3. (i) The statement of Theorem 1 still holds under assumptions

(A1), (A2), (A3), (A4), (A4′),(A5) if the positive functions an are not necessarily
smooth but such that

√
an (respectively an) are Lipschitz continuous whenever Gn 6=

0 (respectively whenever βn or µn do not vanish). (ii) The statement of Theorem 2
still holds if an and ãn are not necessarily smooth and instead of (1.6) the functions
an satisfy condition (i). Moreover, in (1.7) one can take ε = 0, i.e. there exists a
coupling Zt = (Xx0

t , Y y0
t ) obtained as the limit ε → 0 from the couplings Zε

t such
that

E0|Xx0
t − Y y0

t | ≤ C(T,K)(|x0 − y0|+ max(ω,
√

ω)) (1.11)

holds, and analogously (1.10) holds with ε = 0.
In the following theorem we collect some useful estimates describing in various

ways the continuous dependence of the process under consideration on their starting
points.

Theorem 4. Let P 0 and E0 denote the probability and the expectation given
by the coupling Z0

t = (Xx
t , Xy

t ) described in Theorem 3. Under the assumptions of
Theorem 3 (i)

lim
|x−y|→0

P 0( sup
0≤s≤t

|Xx
s −Xy

s | > r) = 0 (1.12)

for all r > 0,
lim

|x−y|→0
E0(|u(Xx

t )− u(Xy
t )|) = 0 (1.13)

for any bounded continuous function u and

lim
r→∞

P ( sup
0≤s≤t

|Xx
s − x| > r) = 0, lim

t→0
P ( sup

0≤s≤t
|Xx

s − x| > r) = 0, (1.14)
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the first limit being uniform for all x from any compact set and 0 ≤ t ≤ T and
the second limit being uniform for all x from any compact set and r ≥ r0 with
any r0 > 0. If all coefficients of the generator L are bounded, all limits above are
uniform with respect to all x.

We are going to generalize the main results obtained under condition (A3) to
a more general case of condition (A3′).

Theorem 5. Let an ∈ Cs(Rd) for s > 2 + d/2 and let conditions (A1), (A2),
(A3′), (A4), (A5) hold. Then for any ε > 0, there exists a coupling Zε

t = (Xx
t , Xy

t )
such that

lim
ε→0

lim
|x−y|→0

P 0( sup
0≤s≤t

|Xx
s −Xy

s | > r) = 0 (1.15)

for all r > 0, and
lim
ε→0

lim
|x−y|→0

E0(|u(Xx
t )− u(Xy

t )|) = 0 (1.16)

for any bounded continuous function u. Moreover, (1.14) holds.
1.5. Processes in cones and the Dirichlet problem. We shall turn now to the

study of the processes reduced to an open convex cone U ⊂ Rd (with the vertex
at the origin). We shall denote by Ū and ∂U the closure and the boundary of U
respectively. The dual cone {v : (v, w) > 0 for all non-vanishing w ∈ Ū} will be
denoted by U?.

Remark. More general domains could be considered, but for decomposable
generators defined in cones all results are much more transparent, the main example
being surely Rd

+ considered below in more detail.
To further simplify the formulation of the results, we shall assume that the

cone U is proper, i.e. U? ∩ U is also an open convex cone. Let e denote some
(arbitrary chosen) unit vector in U ∩ U?. Let L denote a decomposable operator
in U , i.e. L =

∑N
n=1 Anψn with ψn of type (1.1) and with An being the operators

of multiplications by the real functions an on U . We shall widely use the following
notion that has its origin in the theory of branching process.

Definition. If l ∈ U?, we shall say that L is l-subcritical (respectively, l-
critical), if ψnfl ≤ 0 (respectively, ψnfl = 0) for all n, where fl(x) = (l, x). (Notice
that ψnfl is a constant.) We say that l-subcritical L is strictly subcritical, if there
is n such that ψnfl < 0.

From now on, we shall use the classification of the boundary points, the defini-
tion of exit times and stopped processes together with the general characterization
of the stopped processes in terms of the martingale problem formulation, which are
given in Appendix 2. Here we shall study the continuity property (Feller property)
of the corresponding semigroups under the following conditions:

(B1) an ∈ Cb(Ū) for all n and they are (strictly) positive and smooth (of
class Cs(U) with s > 2 + d/2 in case of a non-vanishing νn and of class C1(U) for
vanishing νn) in U ;
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(B2) the support of the measure µn + νn is contained in U for all n (this
condition ensures that U is transmission admissible as discussed in Appendix 2);

(B3) there exists l ∈ U? such that L is l-subcritical.
Occasionally we shall use the following additional assumptions:
(B4) all an are extendable as smooth (strictly ) positive functions to the whole

Rd; in this case we shall assume that this extension is made in such a way that an

are uniformly bounded outside U − e.
Example. The operator x d2

dx2 on R+ can not be extended to R− as a diffusion
operator with a (positive) smooth coefficient.

The following result is simple.
Proposition 1.1. (i) Suppose (A1), (A2), (A4′), (B1)-(B4) hold for L. Then

there exists a function f ∈ C2(Rd) that coincides with fl inside U up to an additive
constant and such that condition (A3′) of Theorem 1 holds, and hence the martingale
problem is well posed for L and its solution uniquely defines a strong Markov process
Xt in Rd. In particular, condition (U1) of Appendix 2 holds. Moreover, Lφ ∈ C∞
whenever φ ∈ C2 ∩ Cc.

(ii) If (A1), (A2), (A4′), (B1)-(B3) hold, then the operator L and the domain
U satisfy the condition (U2) of Appendix 2 with Um = U + 1

me. Moreover, Lφ ∈
C∞(U) whenever φ ∈ C2 ∩ Cc.

Proof. (i) Choose a positive constant K such that fl + K is strictly positive
in U − e. Then let us extend the restriction of this function to U − e as a smooth
positive function φ on Rd such that φ′ is bounded and φ′′ = O(1 + |x|−1). Then
Lφ ≤ 0 in U −e by subcriticallity, and Lφ ≤ c everywhere with some c > 0 because
all an are bounded outside U − e. (ii) Similarly one can extend the restrictions of
an on Um to the whole Rd in such a way that they are bounded outside U and
Theorem 1 can be applied. The last statements in both (i) and (ii) are obvious.

Hence Proposition A1 from Appendix 2 holds under assumptions of Proposition
1.1, so that the stopped process Xstop

t in U is correctly defined and is uniquely
specified as a solution to the corresponding martingale problem.

The semigroup T stop
t of the process stopped on the boundary and the semigroup

of the corresponding process killed on the boundary are defined as

(T stop
t u)(x) = Exu(Xmin(t,τU )), (T kil

t u)(x) = Ex(u(Xt)χt<τU ) (1.17)

on the space of bounded measurable functions on Ū .
An important question is whether the semigroups (1.17) are Feller or not

(whether they preserve the class of continuous functions and the class of functions
vanishing at infinity). Clearly the second semigroup preserves the set of functions
vanishing on the boundary ∂U and actually coincides with the restriction of the first
semigroup to this set of functions. Hence the Feller property of the first semigroup
would imply the Feller property for the second one.
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Some criteria for boundary points to be t-regular, inaccessible or an entrance
boundary (that can be used to verify the assumptions in the following results) are
given in Appendix 3. The estimates for the exit times are discussed at the end of
Section 7 (Propositions 7.2 - 7.4).

Theorem 6. Under assumptions of Proposition 1.1 (ii), suppose that all νn

vanish, that Xt leaves U almost surely, and ∂U \∂Utreg is an inaccessible set. Then
(i) the set Cb(U ∪ ∂Utreg) of bounded continuous functions on U ∪ ∂Utreg is

preserved by the semigroup T stop
t ; in particular, if ∂U = ∂Utreg and (A3), (A4′′)

hold, the semigroup T stop
t is a Feller semigroup in Ū ;

(ii) the subset of Cb(U ∪ ∂Utreg) consisting of functions vanishing at ∂Utreg is
preserved by T kil

t ,
(iii) for any continuous bounded function h on ∂Utreg, the function Exh(XτU

)
is continuous in U ∪ ∂Utreg and for any u ∈ Cb(U ∪ ∂Utreg) and x ∈ U there exists
a limit

lim
t→∞

T stop
t u(x) = Exu(XτU

); (1.18)

(iv) if Px(τU > t) → 0 uniformly in x (in particular, if supx ExτU < ∞), then
the limit in (1.18) is uniform (i.e. it is a limit in the topology of Cb(U ∪ ∂Utreg)),
and moreover, the function Exh(XτU

) is invariant under the action of T stop
t for any

h ∈ Cb(∂Utreg).
It is not difficult to give an example when T stop

t does not preserve the whole
space Cb(U∪∂U). However, if (B4) holds and the inaccessible set ∂U\∂Utreg consists
of the entrance boundary points only, one can consider a natural modification of
T stop

t , where the process is supposed to stop only on ∂Utreg, i.e. one can define a
stopping time

τ̃U = inf{t : Xx
t ∈ ∂Utreg} (1.19)

and the corresponding semigroups

(T̃ stop
t u)(x) = Exu(Xmin(t,τ̃U )), (T̃ kil

t u)(x) = Ex(u(Xt)χt<τ̃U
) (1.20)

on the space of bounded measurable functions on Ū .
A simple example that illustrates the difference between T stop and T̃ stop is

given by the process in U = R2
+ = {(x, y) : x > 0, y > 0} with the generator

−∂/∂x. Here ∂Utreg = {(x, y) ∈ ∂U : x = 0}. One sees by inspection that T stop
t is

not Feller in Ū , but T̃ stop
t is. This example makes the following result not surprising.

Theorem 7. Let the assumptions of Theorem 6 and condition (B4) hold, and
let the inaccessible set ∂U \ ∂Utreg consist of the entrance boundary points only.
Then (i) the space Cb(Ū) is preserved by T̃ stop

t ; in particular, if (A3), (A4′′) hold,
the semigroup T̃ stop

t and the corresponding process on Ū are Feller; (ii) for any
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continuous bounded function h on ∂Utreg, the function Exh(Xτ̃U
) is continuous in

Ū , coincides with Exh(XτU
) for x ∈ U , and for any u ∈ Cb(Ū) there exists a limit

lim
t→∞

T̃ stop
t u(x) = Exu(Xτ̃U

).

A natural application of Theorems 6 and 7 is in the study of the Dirichlet
problem.

Definition. Let h ∈ Cb(Utreg). A function u ∈ Cb(U ∪ ∂Utreg) is called a
generalized solution of the Dirichlet problem for L in U if (i) u coincides with h on
∂Utreg, (ii) u belongs to the domain D(Lstop) of the generator Lstop of the semigroup
T stop and Lstopu = 0.

To show that this definition is reasonable, one should prove that any classical
solution (i.e. a function u ∈ Cb(U∪∂Utreg) which satisfies the boundary condition, is
two times continuously differentiable and satisfies Lu = 0 in U), is also a generalized
solution. This question as well as the well posedness of the problem are addressed
in the following theorem.

Theorem 8. Suppose the assumptions of Theorem 6 hold. Then
(i) a generalized solution exists, is unique, and is given by the formula

u(x) = Exh(XτU
)

for any h ∈ Cb(Utreg);
(ii) any classical solution is a generalized solution;
(iii) if, in addition, the conditions of Theorem 7 hold, the generalized solution

u is continuous (or can be extended continuously) on Ū , belongs to the domain of
L̃stop and L̃stopu = 0.

Some bibliographical comments on the Dirichlet problem for the generators of
Markov processes seem to be in order here. For degenerate diffusions the essential
progress was begun with the papers [15] and [7]. In particular, in [7] the Fichera
function was introduced giving the partition of a smooth boundary into subsets
Σ0, Σ1, Σ3,Σ4 which in one-dimensional case correspond to natural boundary, en-
trance boundary, exit boundary and regular boundary respectively studied by Feller
(see e.g. [24] for one-dimensional theory). A hard analytic work was done after-
wards on degenerate diffusions (see e.g. [27], [16,17], or more recent development in
[29], [32]). However, most of the results obtained by analytic methods require very
strong assumptions on the boundary, namely that it is smooth and the four ba-
sic parts Σ0, Σ1,Σ3, Σ4 are disjoint smooth manifolds. Probability theory suggests
very natural notions of generalized solutions to the Dirichlet problem that can be
defined and to be proved to exist in rather general situations (see [28] for a defini-
tion based on the martingale problem approach, [2] for the approach based on the
general Balayage space technique, [11] for comparison of different approaches and
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the generalized Dirichlet space approach), however the interpretation of the general
regularity conditions in terms of the given concrete generators and domains be-
comes a non-trivial problem. Usually it is supposed, in particular, that the process
can be extended beyond the boundary. For degenerate diffusions some deep results
on the regularity of solutions can be found e.g. in [28] and [8]. But for non-local
generators of Feller processes with jumps, the results obtained so far seem to be
dealing only with the situations when the boundary is infinitely smooth and there
is a dominating non-degenerate diffusion term in the generator (see e.g. [30,31]).
Theorem 8 above (in combination with criteria from Appendix 3) clearly includes
the situations without a dominating diffusion term and also the situations when the
process is not extendable beyond the boundary. The most important example with
U = Rd

+ is considered in more detail below. Our definition of the generalized solu-
tion to the Dirichlet problem is the same as used in [8] for degenerate diffusions (the
only difference is that we included the continuity of the solution in the definition)
. Similar results can be obtained by generalizing to jump processes the martingale
problem definition from [28].

6. Processes on Rd
+. There is a variety of situations when the state space

of a stochastic model is parametrized by positive numbers only. This happens,
for instance, if one is interested in the evolution of the number (or the density)
of particles or species of different kinds. In this case, the state space of a system
is Rd

+. Consequently, one of the most natural application of the results discussed
above concerns the situation when D = Rd

+. We shall discuss this situation in more
detail. Theorems 9 and 10 formulated below are proved in Section 7.

From now on, let a co-ordinate system {x1, ..., xd} be fixed in Rd and let U =
Rd

+ be the set of points with all co-ordinates being strictly positive. Then U? = U
and one can take as a unit vector e used above the vector e = (1, ..., 1). We shall
suppose that the assumptions (and consequently the conclusions) of Proposition 1.1
(i) or (ii) hold. We shall denote by Uj the subset of the boundary of U where xj = 0
and all other xk are strictly positive.

As Rd
+ is a proper cone, Theorems 6 - 8 in combination with the criteria

established in Appendix 3 (in particular see Remark 2 following Proposition A6)
can be applied to construct processes in that cone. In the next Theorem we are
going to single out some important particular situations which ensure also that the
corresponding semigroup is a Feller one.

Theorem 9. (i) Suppose (A1),(A2),(A4′),(B1)-(B3) hold for a decomposable
pseudo-differential operator L in U . For any j = 1, ..., d and n = 1, ..., N , let
an(x) = O((xj)2) in a neighborhood of Ūj uniformly on compact sets whenever
Gn

jj 6= 0 or
∫

(xj)2νn(dx) 6= 0, and an(x) = O(xj) uniformly on compact sets
whenever βn

j < 0. Then the whole boundary ∂U is inaccessible, and Proposition A5
is valid that ensures that there exists a unique solution to the martingale problem for
L in U , which is a Markov process whose semigroup Tt preserves the space Cb(U).

12



(ii) Suppose additionally that an(x) = O(xj) uniformly on compact sets when-
ever either βn

j 6= 0 or
∫

xjµn(dx) 6= 0. Then Tt preserves the subspace of Cb(Ū)
of functions vanishing on the boundary. If additionally conditions (A3), (A4′′) on
the growth of an hold, then Tt is a strongly continuous Feller semigroup on the
Banach space of continuous function on U vanishing when x approaches infinity or
the boundary of U .

Our last purpose is to study a natural class of processes which have possibly
accessible boundary but which do not stop on the boundary but stick to it as soon
as they reach it. For any subset I of the set of indices {1, ..., d}, let UI = ∩j∈IUj .

Definition. Let us say that the boundary subspace UI is gluing if for all j ∈ I,
x ∈ UI and all ξ

∂

∂ξj

N∑
n=1

an(x)pn(ξ) = 0.

Clearly if the boundary Uj , say, is gluing, the values Lf(x) for x ∈ Uj do not
depend on the behavior of f outside Uj . This is the key property of the gluing
boundary that allows the process (with generator L) to live on it without leaving
it. In the Theorem below, we shall call Uj accessible if it is not inaccessible.

Our main result on gluing boundaries is the following.
Theorem 10. Let (A1), (A2), (B1)-(B3) hold.
(i) Suppose that for any j, the boundary Uj is inaccessible or gluing and the

same hold for the restrictions of L to any accessible Uj, i.e. for the process on Uj

defined by the restriction of L to Uj (well defined due to the gluing property) each
of its boundaries Uji, i 6= j is either inaccessible or gluing, and the same holds for
the restriction of L to each accessible Uji and so on. Then there exists a unique
Markov process Yt in Ū with sample paths in DŪ [0,∞) such that

φ(Yt)− φ(x)−
∫ t

0

Lφ(Ys) ds

is a Px-martingale for any x ∈ U and any φ ∈ C2(Rd) ∩ Cc(Rd) and moreover
such that Yt ∈ Uj for all t ≥ s almost surely whenever Ys ∈ Dj. Moreover, this
process coincides with the process Xt which is uniquely defined as follows: for any
x ∈ U , the process Xt is defined as the (unique) solution to the stopped martingale
problem in U up to the time τ1 when it reaches the boundary at some point y ∈ Uj1

with some j1 such that Uj1 is not inaccessible and hence gluing. Starting from y
it evolves like a unique solution to the stopped martingale problem in Uj1 (with the
same generator L) till it reaches a boundary point at Uj1 ∩Uj2 with some j2, hence
it evolves as the unique solution of the stopped martingale problem in Uj1 ∩Uj2 and
so on, so that it either stops at the origin or ends at some UI with an inaccessible
boundary.

13



(ii) If additionally all νn vanish and ∂U \ ∂Utreg is an inaccessible set (for all
restrictions of L to all accessible boundary spaces), then the corresponding semigroup
preserves the set of functions Cb(U∪∂Utreg). In particular, if either ∂U = ∂Utreg or
∂U \∂Utreg consists of entrance boundaries only, then the space Cb(Ū) is preserved,
and if condition (A3), (A4′′) hold, then the corresponding semigroup is Feller in Ū .

(iii) In order that condition (i) holds it is sufficient that an(x) = 0 whenever
x ∈ Uj and either Gn

jj 6= 0, or βn
j 6= 0, or

∫
(xj)2νn(dx) 6= 0, or

∫
xjµn(dx) 6= 0.

Then all UI are gluing.
Remark. Surely the condition in (iii) is just a simplest reasonable criterion for

(i) to hold. Other conditions for (i), as well as various conditions for (ii) follow from
Propositions A6-A10 of Appendix 3.

The end of the Section 7 is devoted to some simple estimates for exit times
from U .

2. Perturbation theory in Sobolev spaces.

Recall first that a Sobolev space Hs is defined as the completion of the Schwarz
space S(Rd) with respect to the norm

‖f‖2s =
∫

(1 + |ξ|2)s|f̂(ξ)|2 dξ,

where f̂(ξ) = (2π)−d/2
∫

e−ixξf(x) dx is the Fourier transform of f . In particular,
H0 (with the norm ‖.‖0) is the usual L2-space.

Let an and ψn be as in Theorem 1. Let L0 =
∑N

n=1 ψn and

L = L0 +
N∑

n=1

Anψn (2.1)

(the pseudo-differential operator with the symbol −∑N
n=1(1+an(x))pn(ξ)). In this

section we shall prove the following result.

Proposition 2.1. Suppose (A1′) and (A2) hold for the family of operators ψn,
all an ∈ Cs

b (Rd) for s > 2 + d/2 and

2(c + 1)
N∑

n=1

‖an‖ < 1, (2.2)

where the constant c is taken from condition (A1′) (let us stress that ‖.‖ always de-
notes the usual sup-norm of a function). Then the closure of

∑N
n=1 Anψn (with the
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initial domain Cc∩C2) generates a Feller semigroup in C∞(Rd) and the (strongly)
continuous semigroups in all Sobolev spaces Hs′ , s′ ≤ s, including H0 = L2.

From now on, we shall suppose that the assumptions of Proposition 2.1 are
satisfied.

We shall start with defining an equivalent family of norms on Hs. Namely, let
b = {bI} be any family of (strictly) positive numbers parametrized by multi-indices
I = {i1, ..., id} such that 0 < |I| = i1 + ... + id ≤ s and ij ≥ 0 for all j. Then the
norm ‖.‖s,b defined by

‖f‖s,b = ‖f‖0 +
∑

0<|I|≤s

bI‖ ∂|I|

∂xI
f‖0 =

√∫
|f̂(ξ)|2 dξ +

∑

0<|I|≤s

bI

√∫
|ξ|2I |f̂(ξ)|2 dξ,

where |ξ|2I = |ξ1|2i1 ...|ξd|2id for I = {i1, ..., id}, is a norm in S(Rd) which is obvi-
ously equivalent to norm ‖.‖s. We shall denote by Hs,b the corresponding comple-
tion of S(Rd) which coincides with Hs as a topological vector space.

Lemma 2.1. Let a(x) ∈ Cs
b (Rd). Then for an arbitrary ε > 0 there exists a

collection b = {bI}, 0 < |I| ≤ s, of positive numbers such that the operator A of
multiplication by a(x) is bounded in Hs,b with the norm not exceeding ‖a‖+ ε (i.e.
the bounds on the derivatives of a(x) are essentially irrelevant for the norm of A).

Proof. To simplify the formulas, we shall give a proof for the case s = 2, d = 1.
In this case we have

‖f‖2,b = ‖f‖0 + b1‖f ′‖0 + b2‖f ′′‖0
and

‖Af‖2,b ≤ (‖a‖+ b1‖a′‖+ b2‖a′′‖)‖f‖0
+(b1‖a‖+ 2b2‖a′‖)‖f ′‖0 + b2‖a‖ ‖f ′′‖0.

Clearly by choosing b1, b2 small enough we can ensure that the coefficient of ‖f‖0
is arbitrary close to ‖a‖ and then by decreasing (if necessary) b2 we can make the
coefficient at ‖f ′‖0 arbitrary close to b1‖a‖. The proof is complete.

We are going to construct a semigroup in L2 and Hs with generator L which
is considered as a perturbation of L0. To this end, for a family of functions φs,
s ∈ [0, t], on Rd let us define a family of functions Fs(φ), s ∈ [0, t], on Rd as

Fs(φ) =
∫ s

0

eτL0

N∑
n=1

(L− L0)φτ dτ. (2.3)

From the perturbation theory one knows that formally the solution to the Cauchy
problem

φ̇ = Lφ, φ(0) = f (2.4)
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is given by the series of the perturbation theory

φ = (1 + F + F2 + ...)φ0, φ0
s = e−sL0f. (2.5)

In order to carry out a rigorous proof on the basis of this formula, we shall study
carefully the properties of the operator F . We shall start with the family of opera-
tors Ft on the Schwarz space S(Rd) defined as

Ft(φ) =
∫ t

0

esL0(L− L0)φds.

Lemma 2.2. Ft is a bounded operator in L2(Rd) for all t > 0. Moreover, for
an arbitrary ε > 0, there exists t0 > 0 such that for all t ≤ t0

‖Ft‖0 ≤ 2(c + 1)
∑

n

‖an‖+ ε

and hence ‖Ft‖0 < 1 for small enough ε.
Proof. As

Ft =
N∑

n=1

∫ t

0

e−sL0ψnAn ds−
N∑

n=1

∫ t

0

e−sL0 [ψn, An] ds

one has for f ∈ S(Rd):

[ψn, An]f(x) = (ψn(an))(x)f(x) + 2(Gn∇an,∇f)(x)

+
∫

(an(x + y)− an(x))(f(x + y)− f(x))(νn(dy) + µn(dy))

= 2
∑

k,l

∇k(Gn
kl(∇lan)f)(x) +

∫ ∑

k

yk((∇kanf)(x + y)− (∇kanf)(x))νn(dy)

+ (ψn(an)− 2
∑

k,l

∇k(Gn
kl∇lan))(x)f(x)

+
∫

(an(x + y)− an(x)− (∇an(x), y))(f(x + y)− f(x))νn(dy)

−
∫ ∑

k

(∇kan(x + y)−∇kan(x))f(x + y)ykνn(dy)

+
∫

(an(x + y)− an(x))(f(x + y)− f(x))µn(dy).
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Apart from the first two terms, all other terms in the last expression define bounded
operators of f in L2. Hence

Ft(f) =
N∑

n=1

∫ t

0

esL0ψnAn(f) ds + 2
N∑

n=1

∫ t

0

esL0
∑

k,l

∇k(Gn
kl(∇lan)f) ds

+
N∑

n=1

∫ t

0

esL0 ds
∑

k

∫
(ei(y,∇) − 1)ykνn(dy)(∇kanf) + O(t)‖f‖0.

We can estimate the first term using

‖
∫ t

0

esL0ψnAn ds‖0 ≤ ‖an‖‖
∫ t

0

e−sp0(ξ)pn(ξ) ds‖

≤ ‖an‖ ‖pn

p0
(1− e−tp0)‖ ≤ 2(1 + c)‖an‖

(due to (A1′), the second term as

‖
∫ t

0

esL0∇k(Gn
kl(∇lan)f) ds‖ = O(t1/2)‖∇an‖ ‖G‖

(to get the latter estimate one should decompose Rd in the orthogonal sum of the
two sub-spaces such that Gn is non-degenerate on the first subspace and vanishes
on the other one), and the last term using

‖
∫ t

0

esL0 ds

∫
(ei(y,∇) − 1)ykνn(dy)‖0 ≤ ‖

∫ t

0

e−s Re p0 |∇kpν
n|ds‖

= O(1)
∫ t

0

s−β/α ds = O(t1−β/α)

(which holds due to (A2)). These estimates prove the Lemma.
It turns out that the same holds in Hs.
Lemma 2.3. For an arbitrary ε > 0 there exists t0 > 0 and a family of positive

numbers b = {bI}, 0 < |I| ≤ s such that for all t ≤ t0 and s′ ≤ s

‖Ft‖s′,b ≤ 2(c + 1)
∑

n

‖an‖+ ε

Proof. Follows by the same arguments as the proof of Lemma 2.2 with the use
of Lemma 2.1 and the definition of the norm ‖.‖s,b.
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Lemma 2.4. The family Ft is strongly continuous in Hs′,b for all s′ ≤ s, i.e.
Ft+τf − Ftf → 0 in Hs′,b for any f ∈ Hs′,b.

Proof. From the estimates on Ft obtained in the proof of Lemma 2.2, we
conclude that we only need to prove that

∫ t

0
esL0ψnf ds → 0 as t → 0 (because

the other terms in Ft tends to 0 uniformly). By (A1′), it is sufficient to show that
(1 − etL0)f → 0 as t → 0, i.e that the family of operators of multiplication the
Fourier image f̂ of f by the function 1 − e−tp0(ξ) is strongly continuous, but this
is obvious (in a bounded region of ξ the function 1− e−tp0(ξ) tends to 0 uniformly,
and we can always choose a bounded domain such that outside of it the function f̂
is small).

We can now deduce the necessary properties of the operator F .
For a Banach space B of functions on Rd let us denote by C([0, t], B) the

Banach space of continuous functions φs from [0, t] to B with the usual sup-norm
sups∈[0,t] ‖φs‖B . We shall identify B with a closed subspace of functions from
C([0, t], B) which do not depend on s ∈ [0, t].

Lemma 2.5. Under conditions of Lemma 2.3, the operator F defined by (2.3)
is a continuous operator in C([0, t],Hs,b) and ‖F‖ < 1 for small enough t.

Proof. The statement about the norm follows from Lemma 2.3. Let us show
that F(φ) ∈ C([0, t],Hs,b) whenever φ ∈ C([0, t], Hs,b). One has

Ft+τ (φ)−Ft(φ)

=
∫ t

0

(e(t+τ−s)L0 − e(t−s)L0)(L− L0)φs ds +
∫ t+τ

t

e(t+τ−s)L0)(L− L0)φs ds (2.6)

The first integral in this expression tends to zero as τ → 0, because (1 − eτL0)
converges to zero strongly as τ → 0 (see proof of Lemma 2.4). Next, writing
φs = φt + (φs− φt) in the second integral and again using Lemma 2.4, we conclude
that the second integral also tends to zero as τ → 0.

As a consequence of Lemma 2.5 (and the assumptions of Proposition 2.1) we
get the following result.

Lemma 2.6. Under the conditions of Lemma 2.3, there exists t0 such that the
series (2.5) converges in C([0, t],Hs′,b) for all s′ ≤ s and t ≤ t0. Moreover, the
r.h.s. of (2.5) defines a strongly continuous family of bounded operators f 7→ Ttf
in all Hs′ , s′ ≤ s.

Prove of Proposition 2.1. By the Sobolev lemma, Hs can be continuously
imbedded in C∞ ∩ Cl whenever s > l + d/2. Hence, Tt defines also a strongly
continuous family of bounded operators in C∞. Next, as s > 2 + d/2, Ft(φ) is
differentiable in t for any φ ∈ C([0, t],Hs,b) and

d

dt
Ft(φ) = lim

τ→0

1
τ

(Ft+τ (φ)−Ft(φ)) = L0Ft + (L− L0)φt, (2.7)
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where the limit is understood in the norm of Hs−2. Therefore, one can differentiate
the series (2.5) to show that for f ∈ Hs, the function Ttf gives a (classical) solution
to the Cauchy problem (2.4). Since a classical solution in C∞ for such a Cauchy
problem is always positivity preserving and unique, because L is an operator with
the PMP (positive maximum principle) property (see e.g. [18], sect.8), we conclude
that Tt defines a positivity preserving semigroup in each Hs′ , s′ ≤ s, and in C∞ for
all t (using the semigroup property one can prolong Tt to all finite t > 0 thus taking
away the restriction t ≤ t0). By the standard arguments one can now deduce that
Tt defines a contraction semigroup (and thus a Feller semigroup) in C∞, for example
using Hille-Yosida theorem and the fact that the resolvent Rλf =

∫∞
0

e−tλTtf dt is
defined on the whole C∞ for all sufficiently large λ > 0.

3. T -products for Feller generators.

Let B1 ⊂ B2 be two Banach spaces with norms ‖.‖B1 ≥ ‖.‖B2 , such that B1

is dense in B2. Let Lt : B1 7→ B2, t ≥ 0, be a family of uniformly (in t) bounded
operators such that the closure in B2 of each Lt is the generator of a strongly
continuous semigroups of bounded operators in B2. For a partition ∆ = {0 = t0 <
t1 < ... < tN = t} of an interval [0, t] let us define a family of operators U∆(τ, s),
0 ≤ s ≤ τ ≤ t, by the rules

U∆(τ, s) = exp{(τ − s)Ltj}, tj ≤ s ≤ τ ≤ tj+1,

U∆(τ, r) = U∆(τ, s)U∆(s, r), 0 ≤ r ≤ s ≤ τ ≤ t.

Let ∆tj = tj+1 − tj and δ(∆) = maxj ∆tj . If the limit

U(s, r)f = lim
δ(∆)→0

U∆(s, r)f (3.1)

exists for some f and all 0 ≤ r ≤ s ≤ t (in the norm of B2), it is called the T -product
(or chronological exponent of Lt) and is denoted by T exp{∫ s

r
Lτ dτ}f . Intuitively,

one expects the T -product to give a solution to the Cauchy problem

d

dt
φ = Ltφ, φ0 = f, (3.2)

in B2 with the initial conditions f from B1. In particular, the following (not very
hard) statement is proved in [25] (Lemma 1.1). If the T -product exists for f ∈ B1

and the following basic assumption holds:
(C) the limit

lim
τ→0

‖exp{τLt}f − f

τ
− Ltf‖B2 = 0 (3.3)
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is uniform on the bounded sets of B1,
then T exp{∫ s

r
Lτ dτ}f is a solution of the problem (3.2).

From this fact, we shall deduce now the following simple statement.
Lemma 3.1. If (i) Ltf is continuous in t locally uniformly in f (i.e. for f

from bounded domains of B1), (ii) all exp{sLt} preserve B1 and define a strongly
continuous in s, t and a uniformly bounded family of operators in B1, (iii) condition
(C) holds, then

(i) the T -product (3.1) exists for all f ∈ B2,
(ii) the convergence in (3.1) is uniform for f from any bounded set of B1,
(iii) the obtained T -product defines a strongly continuous (in t, s) family of

uniformly bounded operators both in B1 and B2,
(iv) T exp{∫ s

0
Lτ dτ}f is a solution of the problem (3.2) for any f ∈ B1.

Proof. Due to the above stated result from [25], the statement (iv) follows from
(i)-(iii). Next, since B1 is dense in B2, it is enough to prove only the claims from
(i)-(iii) concerning B2. But they follow from the formula

U∆(s, r)− U∆′(s, r) = U∆′(s, τ)U∆(τ, r)|τ=s
τ=r =

∫ s

r

d

dτ
U∆(s, τ)U∆′(τ, r) dτ

=
∫ s

r

U∆(s, τ)(L[τ ]∆′ − L[τ ]∆)U∆′(τ, r) ds

(where we denoted [s]∆ = tj for tj ≤ s < tj+1) and the uniform continuity of Lt.
The aim of this section is to apply Lemma 3.1 to a particular example of Feller

generators and to prove the following result.
Proposition 3.1. The statement of Proposition 2.1 still holds if we assume

(A1) instead of (A1′).
Proof. The difference between (A1) and (A1’) concerns only the drift terms

of L. So, our statement will be proved, if we will be able to show, that if L is
as in Proposition 2.1 and γ be an arbitrary vector field of the class Cs

b (Rd), then
the statements of Proposition still holds for the generator L + (γ(x),∇). Let St

be the family of diffeomorphisms of Rd defined by the equation ẋ = −γ(x) in Rd.
With some abuse of notation we shall denote by St also the corresponding action
on function, i.e. Stf(x) = f(St(x)). In the interaction representation (with respect
to the group St), the equation

φ̇ = (L + (γ(x),∇))φ, φ(0) = f, (3.4)

has the form
ġ = Ltg = (S−1

t LSt)g, g(0) = f, (3.5)

i.e. equations (3.4) and (3.5) are equivalent for g and φ = Stg. We shall now
apply Lemma 3.1 to the operators Lt from (3.5) using the pair of Banach spaces
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B1 = Hs, s > 2 + d/2, and B2 = Hs−2. The only non-obvious condition to be
checked is (C). For this we observe that (i) the convergence in (2.7) is uniform on
the ”localized” subsets M ⊂ Hs−2, i.e. on such subsets M that for any ε there
exists a compact set K such that

∫
Rd\K(1 + |ξ|s−2)|f̂(ξ)| dξ < ε for all f ∈ M , and

(ii) the bounded subsets of Hs are localized subsets in Hs−2. Hence the validity of
(C) follows. Consequently the T -product yields the classical solutions of (3.5) (and
hence of (3.4)) for any f from Hs. But as we mentioned before, the uniqueness of
the classical solution follows directly from the PMP property. Hence we obtain a
semigroup in both Hs and C∞.

4. Martingale problem approach.

Proof of Theorem 1. Let us first prove the well posedness of the martingale
problem for the operator L =

∑
Anψn under the assumptions of Theorem 1 (see

Appendix 1 for the definition of the martingale problem). It follows from Theorem
A1 (given in Appendix 1) that under conditions (A3),(A4) the martingale problem
for the operator L =

∑
Anψn with sample paths in DRd [0,∞) has a solution. More-

over, in a neighborhood of any point in Rd one can represent the operator
∑

Anψn

in the form
∑

an(x0)ψn +
∑

(an(x) − an(x0))ψn in such a way that Proposition
3.1 can be applied, and hence in this neighborhood L coincides with an operator
for which the martingale problem is well posed (because for generators of the Feller
processes the martingale problem is known to be well posed, see [6]). Consequently,
assuming (A3), (A4) the uniqueness of the solution of the martingale problem with
sample paths in DRd [0,∞) (and hence the well-posedness) follows from the stan-
dard localization procedure (see Theorem 7.1 in [9] or Theorems 6.1, 6.2 in Chapter
4 of [6]).

Assume now that (A3′), (A4′) hold. For each n, let us choose an increasing
sequence of continuous positive bounded functions am

n (x) converging to an(x) and
let Lm denote the operator

∑
Am

n ψn, where Am
n denote the multiplication by am

n .
Due to Theorem A1 (ii) from Appendix, the processes

f(Xm
t )−

∫ t

0

Lmf(Xm
s ) ds (4.1)

is a martingale for all m. Moreover, from our assumptions it follows that am
n (x)ψnf(x) ≤

c for all m and n. Hence

0 ≤ Ef(Xm
t ) ≤ f(x) + tNc.

Moreover, since the negative part of the martingale (4.1) is uniformly bounded by
tNc, we conclude that the expectation of its magnitude is bounded by f(x) + 2Nct
and hence by Doob’s inequality

lim
r→∞

Px( sup
0≤s≤t

f(Xm
s ) > r) = 0 (4.2)
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uniformly for x from any compact set and t ≤ T with arbitrary T . This clearly
implies the compact containment condition and the relative compactness of the
family Xm

t (similar arguments are given in more detail in the proof of Theorem A1 of
Appendix). Hence, taking a converging subsequence we obtain as a limit a solution
to the martingale problem for the operator L which satisfies (1.4). Uniqueness
again follows by localization as above. Moreover, as the limit in (4.2) is uniform
on x from compact sets, it follows that for arbitrary r > 0 and ε > 0 there exists
R > 0 such that for the solution Pη of the martingale problem with an arbitrary
initial probability measure η

Pη( sup
0≤s≤t

|Xs| ≥ R, |X0| ≤ r) ≥ (1− ε)η({|X0| ≤ r}). (4.3)

Due to this estimate one can apply Theorem 5.11 (b), (c) from Chapter 4 of [6]
to deduce that the family Px of the solutions to the martingale problem is a fam-
ily of measures on DRd [0,∞) that depends weakly continuous on x and that the
corresponding semigroup preserves the space Cb(Rd).

Since it is well known (Theorem 4.2 from Chapter 4 of [6]) that the well posed-
ness of the martingale problem implies that its solution is a strong Markov process,
to prove Theorem 1 it remains to show that under condition (A3) the set of func-
tions vanishing at infinity is preserved by the corresponding semigroup. But this
follows from a more general Corollary to Theorem A1 from Appendix.

Let us give now some information on the domain of the generator of the (gen-
erally speaking not a Feller) contraction semigroup of the Markov process given by
Theorem 1 with condition (A3′).

Proposition 4.1. Let Xt be a Markov process given by Theorem 1 under
conditions (A1), (A2), (A3′), (A4′), let Tt denote the corresponding contraction
semigroup on Cb, and let C(L) denote the ”classical domain” of L, i.e. the space
of functions f ∈ C2 ∩ Cb such that Lφ ∈ Cb. Then

(i) if φ ∈ C(L), then the pair (φ,Lφ) belongs to the domain of the full generator
of Tt, i.e.

Ttφ− f =
∫ t

0

TsLφds; (4.4)

(ii) the mapping t 7→ Ttφ is strongly continuous for any φ from the closure
C̄(L) of C(L) in Cb;

(iii) if φ ∈ C(L) and Lφ ∈ C̄(L), then Ttφ is differentiable with respect to t
and d

dtTtφ = TtLφ for all t; in particular, such φ belongs to the domain D(L) of
the generator L in the sense that limt→0(Ttφ− φ)/t exists in the uniform topology
of Cb and equals Lφ.

Proof. (i) Let φ ∈ C(L), and let φm = φχm, m = 1, 2, ..., where χm is a smooth
function Rd 7→ [0, 1] such that χm(y) = 1 (respectively 0) for |y ≤ m (respectively
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|y| ≥ m + 1). As φm ∈ C2 ∩Cc, it follows that φm(Xt)− φm(x)− ∫ t

0
Lφm(Xs) ds is

a martingale with respect to any Px. To get the same property for φ itself from the
dominated convergence theorem we need the uniform boundedness of Lφm, which
does not seem to be obvious. To circumvent this difficulty let us apply Doob’s
option sampling theorem to conclude that

φm+K(m)(Xmin(t,τm))− φm+K(m)(x)−
∫ min(t,τm)

0

Lφm+K(m)(Xs) ds

is a Px-martingale, where K(m) is chosen in such a way that

µn(|y| ≥ K(m)) ≤ 1
n

( sup
j,|x|≤m

|aj(x)|)−1,

and τm is the exit time from the ball |y| ≤ m. Hence

Ex

∫ min(t,τm)

0

Lφm+K(m)(Xs) ds = Ex

∫ min(t,τm)

0

Lφ(Xs) ds + O(t/n)

and a random variable under the integral is uniformly bounded. Hence by the
dominated convergence theorem as m →∞ we get that

Exφ(Xt)− φ(x) =
∫ t

0

Exφ(Xs) ds.

This yields (4.4).
(ii) From (4.4) and due to the contraction property of Tt (which ensures that

TtLφ is uniformly bounded) it follows that t 7→ Ttφ is continuous for φ ∈ C(L).
One extends this property to all φ ∈ C̄(L) by a standard ε/3 trick.

(iii) If Lφ ∈ C̄(L), then the function under the integral in (4.4) is continuous
by (ii). Hence the statement follows from (4.4).

Remark. One can find examples where C(L) is rather poor. However, in many
reasonable situations it is pretty obvious that C(L) contains C2 ∩ Cc and hence
C̄(L) contains C∞. For instance, this is the case if all µn have a finite support, or
in the case of processes on cones considered in Sections 6 and 7.

5. Coupling for processes with decomposable generators.

Here we shall prove Theorems 2 - 5 essentially by the coupling method.
Proof of Theorem 2. We shall omit here for brevity the upper subscripts in the

notations of the process Xx0
t and Y y0

t . Moreover, also for brevity we shall assume
that all νn = 0 noting that if there exists a ñ such that νñ 6= 0 (and then añ is a

23



constant), one only needs to include in the coupling operator Lε given below the
extra term

añ

∫
(f(x + v, y + v)− f(x, y)− ∂f

∂x
(x, y)v − ∂f

∂y
(x, y)v)νñ(dv)

to get the same result.
For an arbitrary ε > 0 let Mε denote a regularized function of minimum, i.e. Mε

is an infinitely smooth function on R2 such that Mε(b, c) = min(b, c) for |b− c| ≥ ε
and min(b, c) − ε ≤ Mε ≤ min(b, c) for all b, c. As a coupling Zε

t let us take the
Feller process in R2d with the generator

Lεf(x, y) =
N∑

n=1

(
an(x) tr (Gn ∂2

∂x2
)f(x, y) + ãn(y) tr (Gn ∂2

∂y2
)f(x, y)

+2
√

an(x)ãn(y) tr (Gn ∂2

∂x∂y
)f(x, y)+ an(x)(βn,

∂

∂x
)f(x, y)+ ãn(y)(βn,

∂

∂y
)f(x, y)

+Mε(an(x), ãn(y))
∫

(f(x + v, y + v)− f(x, y))µn(dv)

+(an(x)−Mε(an(x), ãn(y)))
∫

(f(x + v, y)− f(x, y))µn(dv)

+(an(y)−Mε(an(x), ãn(y)))
∫

(f(x, y + v)− f(x, y))µn(dv)
)
. (5.1)

This is a sort of the combination of a regularized marching coupling for the jump
part of the generator with the standard coupling of the diffusion processes coming
from their representations as solutions to the Ito stochastic equations. The exis-
tence of the Feller process with the generator Lε follows from Theorem 1. The key
property of the generator Lε is the following: if a function f(x, y) depends only on
the difference (x− y), then Lεf(x, y) equals

N∑
n=1

(
(
√

an(x)−
√

ãn(y))2 tr (Gn ∂2

∂x2
)f(x, y) + (an(x)− ãn(y))(βn,

∂

∂x
)f(x, y)

+(an(x)−Mε(an(x), ãn(y)))
∫

(f(x + v, y)− f(x, y))µn(dv)

+(ãn(y)−Mε(an(x), ãn(y)))
∫

(f(x, y + v)− f(x, y))µn(dv). (5.2)
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Now let ρδ denote a regularized amplitude function on R, i.e.

ρδ(b) =
{ |b|, |b| ≥ δ

1
2δ b2 + δ

2 , |b| < δ
(5.3)

and let fδ(x, y) = ρδ(|x− y|) denote the corresponding regularized distance on Rd.
By Theorem A1 (ii) of the Appendix, the process

fδ(Zε
t )−

∫ t

0

Lεfδ(Zε
s) ds (5.4)

is a martingale. Consequently, using (1.6), (5.2) and the trivial formula

max
a,b≥0,|a−b|≤ω

|√a−
√

b| = max
x≥0

(
√

x + ω −√x) =
√

ω

yields
Eεfδ(Xt, Yt) ≤ fδ(x0, y0)

+C(T, K)
∫ t

0

Eε
(
(|Xs − Ys|+

√
ω)2 min(

1
δ
,

1
|Xs − Ys| ) + (|Xs − Ys|+ ω + ε)

)
ds.

Remark. Notice that one seemingly can not obtain a similar estimate for non-
trivial measure νn (and an(x) being not a constant).

Choosing δ =
√

ω yields

EZ
ε (|Xt − Yt|) ≤ EZ

ε fδ(Xt, Yt)

≤ |x0 − y0|+
√

ω + C

∫ t

0

(
EZ

ε (|Xs − Ys|) + max(
√

ω, ω) + ε)
)
ds,

and one gets (1.7) by the standard application of the Gronwall lemma. The proof
of (1.10) is quite analogous. Namely, one applies the martingale property of the
process (5.4) with f(x, y) = |x − y|2 (which is possible due to (1.9) and Theorem
A1 (iii) of the Appendix) to get the estimate

Eε|Xt − Yt|2 ≤ |x0 − y0|2

+C(T, K)
∫ t

0

Eε(|Xs − Ys|2 + |Xs − Ys|(ω + 1) + ω2 + ε) ds.

Estimating here Eε|Xs−Ys| by (1.7) and then using Gronwall’s lemma yields (1.10).
Proof of Theorem 3. (i) Approximating Lipshitz continuous functions an by

smooth functions ãω
n such that (1.6) holds and noticing that (due to Theorem 2) the
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family of process Y ω
t (constructed from the family ãω

n) is fundamental in W -metric as
ω → 0 one concludes that there exists a limiting process Yt (in W -metric and hence
in the sense of the weak convergence) that does not depend on the approximating
family ãω

n . (ii) The first part of this statement is now obvious. To get the coupling
with ε = 0 one needs only to notice that the only reason to have ε > 0 in the proof
of Theorem 2 is the necessity to have smooth coefficients in the coupling in order
to get the existence of the coupling process from Theorem 1. Since the Lipschitz
continuity of the coefficients an(x) and their square roots

√
an(x) is now proved to

be sufficient for the existence of the process, everything works fine with ε = 0 and
with the (non-smooth) function min instead of its regularized version Mε used in
the proof of Theorem 2.

Proof of Theorem 4. This proof borrows some ideas from the proofs of the
analogous results on degenerate diffusions from [8], the essential difference being
the use of Dynkin’s formula and the coupling Z0 instead of the use of stochastic
equations and Ito’s formula in [8]. Let F δ

t denote the martingale (4.4) where f =
fδ(x, y) as in the proof of (1.7) above, where ε = 0 (which is possible due to Theorem
3) and where Y y

t = Xy
t . From the estimates obtained when proving (1.7) it follows

that E0(|Fs|) ≤ C(|x−y|+ δ) for all s ≤ t and E0(
∫ t

0
|L0fδ(Z0

s )| ds ≤ C(|x−y|+ δ)
with some constant C = C(t). Hence by a standard martingale inequality

P 0( sup
0≤s≤t

|Fs| > r) ≤ C(r)(|x− y|+ δ)

and by the Chebyshev inequality

P 0(
∫ t

0

|L0fδ(Z0
s )| ds > r) ≤ C(r)(|x− y|+ δ)

with some constant C(r). This implies that

P 0( sup
0≤s≤t

|Xx
t −Xy

t | > r) ≤ P 0( sup
0≤s≤t

ρδ(|Xx
t −Xy

t |) > r) ≤ C(|x− y|+ δ)

with some (may be different) constant C. This implies (1.12) since δ can be chosen
arbitrary small.

Next, due to the continuity and boundedness of the function u, for any ε > 0
one can find a r > 0 such that |u(x1) − u(x2)| ≤ ε whenever |x1 − x2| ≤ r and
max(|x1|, |x2|) ≤ ε−1. Hence E0|u(Xx

t )− u(Xy
t )| does not exceed

ε + 2‖u‖(P 0(|Xx
t −Xy

t | > r) + P 0(|Xx
t | > ε−1) + P 0(|Xy

t | > ε−1))

≤ ε + 2‖u‖(r−1E0(|Xx
t −Xy

t |) + εE(|Xx
t |) + εE(|Xy

t |)).
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This expression can be made arbitrary small by choosing first small ε and then small
|x−y| (because of (1.11) and the boundedness of E|Xx

t | that follows from Theorem
A1 (ii) of the Appendix). This proves (1.13).

First limit in (1.14) is obvious, because it just expresses the non-explosion prop-
erty of the process. For the case of bounded coefficients an, the second limit in (1.14)
follows from a more precise and a more general formula (Ap7) of the Appendix. For
general situation one observes that changing the generator L outside a domain does
not change the behavior of the process inside this domain (see e.g. Theorem 6.1 of
Chapter 4 from [6] for a precise formulation of this result). Hence using the first
limit in (1.14) one can first reduce the situation to the set of trajectories living in
a ball, then change L to L̃ having bounded coefficients ãn that coincide with an

inside this ball and then again apply (Ap7).
Proof of Theorem 5. We define the coupling by the same operator (5.1). The

corresponding process is well defined as a strong Markov process due to Theorem
1 (ii) (see also Remark 3 after this theorem), where as a function f in condition
(A3′) one can take f(x)+ f(y). From (1.4) and the martingale property of f(Xt)−∫ t

0
f(Xs) ds it follows (by Doob’s inequality) that

P ε( sup
0≤s≤t

(|Xt|+ |Yt) > r) = o(1) (5.5)

as r → ∞. Again as in the proof of Theorem 4, one can change the generator Lε

to L̃ε having bounded coefficients ãn that coincide with an inside the ball of radius
r centered at the origin without changing the behavior of the process inside the
ball. Hence, (1.14)-(1.16) are obtained by first choosing r to make the r.h.s. of
(5.5) arbitrary small and then using (1.12)-(1.14) for a suitable modification of Lε

outside the ball of radius r.

6. Processes in cones and the Dirichlet problem.

Proof of Theorem 6. (i) Let u ∈ Cb(U ∪ ∂Utreg). Then

|Exu(Xt∧τU )− Eyu(Xt∧τU )| ≤ Eε|u(Xx
t∧τx

U
)− u(Xy

t∧τy
U

)|.

We need to show that this can be made arbitrary small by choosing |x − y| small
enough. Taking into account that the process leaves U almost surely, and hence
limT→∞ P (τx

U > T ) = 0, one concludes that one can assume additionally that both
τx
U and τy

U do not exceed some large (but fixed) T and that their trajectories lie
in some fixed compact set, because one can ensure that these properties hold with
probability arbitrary close to one.

By the definition of t-regularity, for arbitrary positive t and ε, and any z ∈
∂Utreg, there exists a ball Vz centered at z such that P (τv

U > t) < ε for all v ∈ Vz.
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Choosing a dense denumerable subset of ∂Utreg, we can get a denumerable covering
of ∂Utreg by these Vz. Now by the countable additivity of probability measures, we
can choose a finite number of these subsets Vj , j = 1, ..., q, such that P (Xτx

U
/∈ V )

is arbitrary small for V = ∪q
j=1Vj . Next, by Proposition A1 and again by the

countable additivity of probability measures one concludes that by choosing m large
enough one can ensure that Xs ∈ V for all s ∈ [τm, τU ] with probability arbitrary
close to one. Since for any fixed m, Theorem 5 is applicable, one deduces that for
arbitrary positive t and ε, there exists δ > 0, an integer m, and an open subset
V ∈ U ∪ ∂Utreg such that P (τv

U > t) < ε for all v ∈ V and for any y : |y − x| ≤ δ,
Xy

τy
m
∈ V with probability not less than ε. As τx

U and τy
U are both less than some

large (but fixed T ) for y near x, the trajectories Xx
t and Xy

t are uniformly close
to each other till the time τx

m ∧ τy
m (again with probability arbitrary close to one).

Hence by the above, one can ensure that τx
U and τy

U are arbitrary close to each other
with probability arbitrary close to one and hence by (1.14), Xτx

U
and Xτy

U
are also

arbitrary close (notice that we use the fact that the estimates (1.14) are uniform for
all Lm, because their coefficients are uniformly bounded in any compact domain).
Hence Eε|u(Xx

t∧τx
U
)− u(Xy

t∧τy
U

)| tends to zero as y tends to x for any continuous u.

Thus we have proved that T stop
t u(x) is continuous inside U , but exactly the

same argument shows that it is continuous for x ∈ ∂Utreg. At last, the Feller
property (i.e. that the set of functions vanishing at infinity is preserved by the
semigroup) in case (A3), (A4) follows directly from Theorem 1. In case (A4′′), we
notice that condition (Ap4′) from Appendix holds in U and the corresponding result
follows from Theorem A1, if one observes that its proof works also in the situation
when (Ap4′) holds on a cone and (Ap4) holds outside it.

Statement (ii) is obvious.
(iii) and (iv). The continuity of Exh(XτU

) is proved in exactly the same way
as above. To prove that the limit (1.18) exists, we write

T stop
t u(x) = Ex (u(Xt)1τU≥t) + Ex (u(XτU

)1τU <t) , (6.1)

where as usual 1M for an event M means the indicator of M that equals 1 if M holds
and vanishes otherwise. The first term here tends to zero, because we assumed that
the process leaves the domain almost surely in a finite time, and second term tends
to the r.h.s. of (1.18) by the dominated convergence theorem. If Px(τU ≥ t) → 0
as t →∞ uniformly in x, then the first term tends to zero uniformly and

Ex (u(XτU
)1τU <t)− Ex(u(XτU

)) = Ex (u(XτU
)1τU≥t)

also tends to zero uniformly in x. The invariance of Ex(u(XτU
)) is now obtained

by the application of T stop
t to both sides of (1.18).

Proof of Theorem 7. One just observes that all arguments given in the proof
of Theorem 6 hold for τ̃x

U for all x ∈ Ū .
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We shall give now some information on the generator of the stopped process
similar to the one given for Tt in Proposition 4.1. Similarly to the space C(L) used
in Proposition 4.1, we define now the space CU (L) (the classical domain of L in U)
as the space of functions φ ∈ C2(U)∩Cb(U∪∂Utreg) such that Lφ ∈ Cb(U∪∂Utreg).

Proposition 6.1. Let the assumptions of Theorem 6 hold. Then
(i) if φ ∈ C̄U (L), then T stop

t φ is a continuous function t 7→ Cb(U ∪ ∂Utreg);
(ii) if φ ∈ CU (L), Lφ ∈ C̄U (L), and Lφ(x) = 0 for all x ∈ ∂Utreg, then φ

belongs to the domain of the generator of the semigroup T stop
t in the sense that

limt→0(T
stop
t φ − φ)/t exists in the uniform topology of Cb(U ∪ ∂Utreg) and equals

Lφ.
Proof.
(i) If φ ∈ CU (L), then

T stop
t φ(x)− φ(x) = Ex

∫ min(t,tU )

0

Lφ(Xs) ds. (6.2)

Since Lφ ∈ Cb(U), it implies that T stop
t φ depends continuously on t. For general

φ ∈ C̄U (L), one gets the assertion by the usual ε/3-trick.
(ii) Since Lφ vanishes on the boundary, one concludes that the r.h.s. of equation

(6.2) can be written as

Ex

∫ t

0

Lφ(Xmin(s,τU )) ds =
∫ t

0

T stop
s (Lφ)(x) ds.

By (i), the function T stop
t (Lφ) depends continuously on t. Consequently, one gets

(ii) by differentiating (6.2).
Remark. Similar result can be obtained under assumptions of Theorem 7.
Proof of Theorem 8. (i) From Theorem 6,

u(x) = Exh(XτU
) ∈ Cb(U ∪ ∂Utreg).

Next, T stop
t u = u. In case supx Ex(τU ) < ∞, it is already proved in Theorem 6

(iv). In general case, this is a consequence of the strong Markov property of Xt

quite similar to the case of diffusions (see [8], p.224). Consequently u ∈ D(Lstop)
and Lstopu = 0. Hence u is a generalized solution. To show uniqueness, suppose u
is a solution vanishing at ∂Dtreg. Hence T stop

t u = u and from (1.21) it follows that
u = limt→∞ T stop

t u = 0.
(ii) If u ∈ C2(Rd) ∩ Cb(Rd), Lu = 0, then u ∈ D(Lstop) and Lstopu = 0 by

Proposition 6.1 (ii) (or simply because T stop
t u = u). If u ∈ C2(U) only, consider a

sequence of functions um ∈ C2 ∩Cb, Lu ∈ C∞ such that um coincide with u in Um

and vanishes outside Um+1. Hence

Exu(Xmin(t,τm))− u(x) = Ex

∫ min(t,τm)

0

Lu(Xs) ds = 0,
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where τm denote the exit times from Um, and by the dominated convergence theorem
T stop

t u = u, which again implies u ∈ D(Lstop) and Lstopu = 0.
(iii) Is the same as (i).

7. Processes in Rd
+.

Proof of Theorem 9. (i) This follows directly from Theorem 1 and Propositions
A4, A5 (ii).

(ii) The last statement follows from Theorem A1 (see proof of Theorem 6
above). Let us prove that Tt preserves the space of bounded functions vanishing on
the boundary. To this end, let us choose an arbitrary j ∈ {1, ..., d} and let us show
that

lim
R→∞,x→x0,x∈U

Px(τR
ε < t) = 0, (7.1)

t > 0, ε > 0, uniformly for x0 from an arbitrary compact subset K of Uj , where
BR = {x0 ∈ Uj : |x0| ≤ R} and τR

ε denotes the exit time from V R
ε = {x : d(x,BR) <

ε} (d denotes the usual distance, of course). By (1.14), by taking R large enough one
can ensure that the process does not leave the domain {x ∈ U : |x| ≤ R} with the
probability arbitrary close to 1 when started in x0 ∈ K. Let f(x) be a function from
C2({x : xj > 0}) such that f(x) = (xj)γ with some γ ∈ (0, 1) in a neighborhood of
V R

ε and vanishes outside some compact set. Then |Lf(x)| ≤ cf in a neighborhood
of V R

ε with some constant c and as in the proof of Proposition A6 from Appendix
3 (and taking into account that the whole boundary ∂U is inaccessible) one shows
that

Exf(Xmin(t,τR
ε )) ≤ f(x)ect

for x from V R
ε . As (up to an arbitrary small probability which allows the process

to leave the domain {x : |x| ≤ R}) the l.h.s. of this inequality can be estimated
from below by

Px(τε < t)min{f(x) : xj = ε} = Px(τε < t)εγ ,

the limiting formula (7.1) follows. This formula implies that for any given time t,
if the initial point of the process tends to a boundary point, the process is obliged
to stay near the boundary the whole time t. This clearly implies that Ttf(x) =
Exf(Xt) tends to zero as x tends to a boundary point whenever f(x) vanishes on
the boundary. Consequently the proof of Theorem 9 is completed.

Proof of Theorem 10. (i) Notice first that the process Xt described in the
Theorem is well (and uniquely) defined due to Theorem 1, Proposition A1 and
Proposition 1.1. If Yt solves the martingale problem and does not leave Uj after
reaching it, then applying the option sampling theorem we conclude that

E
[
φ(Ymin(τ1+t2,τ2))− φ(Ymin(τ1+t1,τ2))−

∫ min(τ1+t2,τ2)

min(τ1+t1,τ2)

Lφ(Ys) ds|Ymin(τ1+t1,τ2)

]
= 0
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for any t1 < t2, which is precisely the condition that Yt coincides with Xt between
stopping times τ1 and τ2. Similar formulas are valid for τk, k = 1, ..., d and hence
Yt coincides with Xt. Similar arguments show that conversely, Xt the solves the
global martingale problem, which completes the proof of (i).

(ii) This is obtained by the same argument as in the proof of Theorem 6 by
analyzing separately the cases with t ∈ [τk, τk+1].

(iii) Follows from the definition of a gluing boundary.
We shall conclude this Section with three Propositions that give some criteria

for the exit times from U that can be used to verify the corresponding assumptions
from Theorem 6 - 8. Let us assume for the rest of this Section that the assumptions
of Proposition 1.1 (i) or (ii) hold and U = Rd

+.
The following statement shows that the deterministic case (when the generator

has only drift terms) is quite special for the treatment of the exit from Rd
+.

Proposition 7.2. The process Xt leaves the domain U almost surely, if there
exists n such that an(x) is (strictly) positive up to the boundary ∂U and either
Gn 6= 0 or µn 6= 0.

Proof. A key argument in the proof is based on the observation that (due to
subcriticallity), the process Zt = fl(Xmin(t,τU )) is a positive supermartingale, and
hence it has a finite limit as t →∞ almost surely. Hence almost surely, there exists
a compact subset U b1,b2 = {x : b1 ≤ (l, x) ≤ b2} in U where the process lives all
the time starting from some time t0. Consequently, to prove the statement, one
only need to show that the process leaves any subset U b1,b2 almost surely using
Proposition A2 from Appendix 2. If there exist n and j such that Gn

jj 6= 0, one
takes as a barrier function a positive function that equals f(x) = λ−1(eλR− eλx) in
U b, where R and λ are large enough. Next, suppose Gn = 0 for all n. As µn 6= 0,
it follows that there exists j such that

∫
(l, x)µn(dx) > 0. Hence, by subcriticallity∑N

n=1(β
n, l) < 0. Consequently, one proves that Xt leaves U b1,b2 almost surely as

in Proposition A8 of Appendix 3.
Let us give now some estimates on the expectation of the exit time considering

separately the subcritical and critical cases.

Proposition 7.3. Let L be strictly l-subcritical and let n be such that ψnfl =
−c < 0. Then (i) if an(x) ≥ a > 0 for all x, then ExτU ≤ (l, x)/(ac); (ii) if
an(x) ≥ a(1 + |x|α) with some a > 0, α > 1, then

ExτU ≤ K min(1, (l, x)) (7.2)

for some K > 0; in particular, the expectation of the exit time is uniformly bounded
in U .

Proof. (i) Follows from Proposition A2 of Appendix 2 with the barrier function
fl(x) = (l, x).
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(ii) As a barrier function let us take the function f(x) = gα(fl(x)), where gα

is a real function such that gα(0) = 0 and g′α(y) = (1 + y)−α. Since f is positive
increasing and does exceed fl, it is easy to show that it satisfies the martingale
condition and hence Proposition A2 from Appendix is applicable. Next, as g′′α(y) <
0 for all y, it follows that the results of the application of the diffusion part of L
and the integral part depending on νn to f is always non-positive. As g′α(y) is
positive decreasing it follows that the result of the application of the integral part
of ψn depending on µn to f is positive and does not exceed g′(fl(x))

∫
(l, y)µn(dy)

at the point x, and hence, as g′α(y) is of order y−α, it follows that Lf(x) ≤ −b < 0
uniformly for all x. Hence, the statement follows from Proposition A2 and the
observation that f(x) ≤ C min(1, fl(x)) for some C.

Proposition 7.4. Let L be l-critical and let there exists n such that Gn 6= 0
and an(x) > a(1 + |x|1+α) with some α > 0. (i) If α > 1, then again (7.2) holds.
(ii) If α ∈ (0, 1), then ExτU ≤ K min((l, x)α, (l, x)).

Proof. Is the same as for Proposition 7.5 above: one uses Proposition A2 from
Appendix 2 and the barrier f = gα(fl(x)) taking into account that

tr (Gn ∂2f(x)
∂x2

) = (Gl, l)g′′α(fl(x))

is negative and of order |x|−(1+α).

Appendix 1. On the existence of solutions to martingale problems.

Here we prove a rather general existence result for the martingale problem
corresponding to a pseudo-differential (or integro-differential) operator of the form

Lu(x) = tr (G(x)
∂2

∂x2
)u(x) + (β(x),∇)u(x)

+
∫

(u(x + y)− u(x)− 1|y|≤1(y,∇)u(x))ν(x, dy), (Ap1)

where 1M (y) is an indicator function for a set M (that equals one or zero respectively
for y ∈ M and y /∈ M), ν(x, .) is a Lévy measure for all x (i.e. it is a Borel measure on
Rd such that ν(x, {0}) = 0 and

∫
min(1, y2)ν(x, dy) < ∞), and G(x) = (Gij(x)),

β(x) = (βj(x)), i, j = 1, ..., d, are respectively non-negative matrix and vector
valued functions on Rd.

We shall denote by Xt(ω) = ω(t), ω ∈ DṘd [0,∞), the canonical projections
of the Skorokhod space and by Ft = σ(Xs : s ≤ t) the corresponding canonical
filtration. For a given probability measure η on Rd, a probability measure Pη on
DRd [0,∞) (respectively on DṘd [0,∞)) is called a solution to the martingale prob-
lem for L and the initial measure η with sample paths in DRd [0,∞) (respectively
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in DṘd [0,∞)) if the distribution of X0 under Pη coincides with η and if for all
φ ∈ Cc ∩ C2 the process

φ(Xt)−
∫ t

0

Lφ(Xs) ds (Ap2)

is an Ft-martingale with respect to Pη. If for all initial distributions η there is a
unique solution, then the martingale problem is called well-posed. We some abuse
of notations we shall write shortly Px for Pδx

for any x ∈ Rd, and we shall denote
by Ex the corresponding expectation.

The following result (and its proof) generalizes Theorem 3.2 from [Ho2], where
the case of bounded real symbols was considered.

Theorem A1. (i) Suppose that the symbol

p(x, ξ) = (G(x)ξ, ξ)− i(β(x), ξ) +
∫

(1− eiξy + i1|y|≤1(y)(ξ, y))ν(x, dy) (Ap3)

of the operator (−L) is continuous, |G(x)| = O(x2),
∫
|y|≤1

y2ν(x, dy) = O(x2),
|β(x)| = O(|x|) as x →∞ and either

sup
x

∫

|y|>1

ν(x, dy) < ∞, (Ap4)

or
∫

|y|>1

|y|ν(x, dy) = O(|x|), supp ν(x, .) ∩ {|y| > 1} ⊂ {y : |y + x| > |x|}. (Ap4′)

Then the martingale problem corresponding to L has a solution Pη with sample paths
in DRd [0,∞) for any initial probability distribution η.

(ii) If (i) with (Ap4’) holds, or (i) with (Ap4) holds together with a stronger
condition

sup
x

∫

|y|>1

|y|ν(x, dy) < ∞, (Ap5)

then
Ex|Xt| ≤ (1 + |x|)eCt (Ap6)

for all x and t > 0 with some constant C, and for any (strictly) positive φ ∈ C2

such that |φ′(x)| is bounded and |φ′′(x)| = O(1)(1 + |x|)−1, the process (Ap2) is a
Px-martingale.

(iii) If (i) holds and moreover

sup
x

∫

|y|>1

|y|2ν(x, dy) < ∞,
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then
Ex(|Xt − x|2) ≤ (1 + |x|2)(eCt − 1) (Ap7)

for all t and process of type (Ap2) is a martingale for any φ ∈ C2 with uniformly
bounded second derivative. Moreover, if all coefficients are bounded, i.e. G(x), β(x),∫
|y|≤1

y2ν(x, dy) are bounded, then for any T > 0 and a compact set K ⊂ Rd

P (sup
s≤t

|Xx
s − x| > r) ≤ t

r
C(T,K) (Ap8)

for all t ≤ T and x ∈ K with some constant C(T,K).
Proof. (i) Writing L = L0 + L1 with

L1u(x) =
∫

{|y|≥1}
(u(x + y)− u(x))ν(x, dy),

and using a perturbation theory result (Proposition 10.2 from Chapter 4 of [6])
one concludes that if (Ap4) holds, the existence of the solutions to the martingale
problem for the operator L0 with sample paths in DRd [0,∞) implies the existence
for the same martingale problem for the operator L. This reduces the proof of
Theorem A1 to the case when either the support of all measures ν(x, .) is contained
in a unit ball or (Ap4′) holds. But in this case it is known (see Theorem 5.4 from
Chapter 4 of [6]) that there exists a solution to the martingale problem with the
sample paths in DṘd [0,∞). So, one needs to prove only that the paths of this
solution lie in DRd [0,∞) almost surely. Notice also that it is enough to prove this
for initial measures of type δx only.

Suppose first that the coefficients of the generator L are bounded, i.e. (A5)
holds, and the functions G(x), β(x) and

∫
|y|≤1

|y|2ν(x, dy) are bounded. Choose a
positive increasing smooth function fln on R+ such that fln(y) = ln y for y ≥ 2.
We claim that the process (Ap2) is a martingale for φ(y) = fln(|y|) under any Px.
Here one needs to be a bit cautious because the function fln(|y|) does not belong to
Cc∩C2. However, approximating it by the increasing sequence of positive functions
gn(y) = fln(|y|)χ(|y|/n), n = 1, 2, ..., where χ is a smooth function [0,∞) 7→ [0, 1)
which has a compact support and equals 1 in a neighborhood of the origin, noticing
that |Lgn(x)| is a uniformly bounded function of x and n (because gn and g′n are
uniformly bounded and the coefficients of L are uniformly bounded) and using the
dominated convergence theorem we justify the martingale property of (Ap2) with
φ = fln(|y|). Hence Exfln(Xt) ≤ fln(x)+ct with some constant c > 0. From Doob’s
martingale inequality we conclude that

Px

(
sup

0≤s≤t
f(|Xs|) ≥ r

)
≤ C(t + fln(x))

r
(Ap9)
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for all r > 0 and some C > 0. This clearly implies that, almost surely, the paths do
not reach infinity in finite time, which completes the proof for the case of bounded
coefficients.

In general case, we approximate G(x), β(x) and ν(x, .) by a (uniformly on
compact sets) converging sequence of bounded Gm, βm, νm such that all estimates
required in (i) are uniform for all m and all operators Lm obtained from L by
changing G, β, ν by Gm, βm, νm respectively have bounded coefficients. It follows
that |Lmφ(x)| is a uniformly bounded function of m and x for φ(y) = fln(|y|). But
the processes (Ap2) with this φ and with Lm instead of L is a martingale (as was
shown above). Hence we conclude that Em

x fln(Xt) ≤ fln(x)+ct uniformly for all m.
Again by Doob’s inequality it implies that (Ap9) holds uniformly for all processes
Xm

t defined by Lm. In turn this implies the so called compact containment condition
for the family of processes Xm

t (or the corresponding measures Pm
x ), i.e. that for

every ε > 0 and every T > 0 there exists a compact set Γε,T ⊂ Rd such that

inf
m

Pm
x {Xt ∈ Γε,T for all t ∈ [0, T ]} ≥ 1− ε. (Ap10)

Hence by a well known criterion (see Lemma 5.1 and Remark 5.2 from Chapter
4 of [6]) the family of measures Pm

x on DRd [0,∞) or the corresponding processes
Xx,m

t is relatively compact, and its limit will solve the martingale problem for the
operator L.

(ii) Process (Ap2) is surely a martingale for φ ∈ C2 ∩Cc and for their shifts on
constants. Let

ρ(x) =
{ |x|, |x| ≥ 1

(1 + |x|2)/2 |x| ≤ 1 (Ap11)

and for n > 1

ρn(x) =





ρ(x), |x| ≤ n
2n, |x| ≥ 2n
2n− (|x| − 2n)2/n, n ≤ |x| ≤ 2n

(Ap12)

Then each ρn can be obtained by shifting a function with a compact support by
a constant and hence (Ap2) is a martingale for each ρn. (Strictly speaking, the
second derivative of ρn is not continuous everywhere, but one can approximate it
by infinitely smooth functions having the same estimates on its first and second
derivatives.) Hence

Exρn(Xt) = ρn(x) +
∫ t

0

ExLρn(Xs) ds (Ap13)

As |ρ′n(x)| are uniformly bounded and |ρ′′n(x)| ≤ C(1 + |x|)−1 with some C for all n
and x, one concludes that

Lρn(x) ≤ Kρn(x)
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with some K > 0 uniformly for all n and x (by inspection, considering separately
the cases when |x| ≤ n, |x| ≥ 2n and n ≤ |x| ≤ 2n and the three terms in the
expression for L). Hence from (Ap13) and Gronwall’s lemma one gets

Exρn(Xt) ≤ ρn(x)eKt (Ap14)

with some K > 0 uniformly for all n and x. As ρn(x) is an increasing sequence
of functions converging to ρ(x) this implies by the monotone convergence theorem
that

Ex|Xt| ≤ Exρ(Xt) ≤ ρ(x)eKt ≤ (1 + |x|)eKt.

Next, for any φ from the condition (ii) of the theorem, let us take a sequence
gn(x) = φ(x)χ(|x|/n) where χ is an infinitely differentiable non-increasing function
on R+ with a compact support taking value in [0, 1] and equal to 1 in a neighborhood
of the origin. Then all gn have compact support and the process (Ap2) with gn for φ
is a martingale. As one sees by inspection |Lgn(x)| ≤ K(1+ |x|) with some constant
K > 0 uniformly for all n. As Ex(1 + |Xt|) is already proved to be bounded, one
can apply the dominated convergence theorem to the sequence gn to obtain the
required result for its limit φ.

(iii) This is quite similar to (ii). Namely, one first gets the result for the function
φ(x) = 1 + |x|2 approximating it by the sequence

φn(x) =
{

1 + x2, |x| ≤ n
1− n2 + 2nx |x| ≥ n

and then for general φ(x) approximating it by φ(x)χ(|x|/n). One gets (Ap7) picking
up φ(y) = (y − x)2 and then using Gronwall’s lemma.

At last, to prove (Ap8), picking up φ(y) = (y − x)2 and using the martingale
property yields now Ex(|Xt − x|2) = O(t) uniformly for all x and then applying
Doob’s inequality yields the estimate

rPx(sup
s≤t

(|Xs − x|2 + O(t)|Xt − x|2 + O(t)) > r)

≤ 3 sup
s≤t

Ex(|Xt − x|2 + O(t)|Xt − x|2 + O(t)),

which implies (Ap8) for small enough t. For finite t the result is straightforward.
Corollary. Under conditions of Theorem A1 (i) suppose additionally that the

solution to the martingale problem is unique, and hence this problem is well defined.
Then

(i) the corresponding process is a Feller process, i.e. its semigroup Tt preserves
the space C∞(Rd);
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(ii) if φ ∈ C2 ∩ C∞ is such that x2φ′′ ∈ C∞ and |x|φ′ ∈ C∞, then Lφ ∈ C∞
and φ belongs to the domain D(L) of the generator L, i.e. limt→0(Ttφ− φ)/t = Lφ
in the uniform topology of the space C∞.

Proof. (i) Suppose first that the function (Lgy)(x) is uniformly bounded as a
function of two variables, where gy(x) = ρ(x − y) with ρ from (Ap11) (this holds,
say, if the coefficients of L are bounded). Then, applying the statement of Theorem
A1 (ii) to the function gy yields the estimate Ey|Xt − y| ≤ KeKt with some K > 0
uniformity with respect to all y. Hence P (sup0≤s≤t |Xs − y| > r) tends to zero as
r →∞ uniformly for all y. Consequently, for a f ∈ C∞(Rd), one has Eyf(Xt) → 0
as y →∞.

Returning to the general case, first observe that due to the standard perturba-
tion theory result (if A generates a Feller semigroup and B is bounded and satisfies
the positive maximum principle, then A + B generates a Feller semigroup), it is
enough to prove the statement under additional assumption that either all mea-
sures ν(x, .) have a support in the unit ball or (Ap4’) holds. In this case, changing
the variable x 7→ x̃ where x̃(x) is a diffeomorphism of Rd such that x̃ = x for
|x| ≤ 1, x̃/|x̃| = x/|x| for all x, and |x̃| = ln |x| for |x| ≥ 3 allows to reduce the
problem to the case of an operator L̃ defined as (L̃g)(x̃) = (Lf)(x(x̃)) that has the
same structure as L but has bounded drift and diffusion coefficients. Moreover, one
observes that L̃gy(x̃) is uniformly bounded as a function of two variables y and x̃.
In fact, this is equivalent to the statement that Lfz(x) is uniformly bounded, where
fz(x) = ρ(x̃ − z), and the latter follows from the fact f ′z(x) = O(|x|−1) uniformly
for all z. Hence the previous arguments work for L̃, which completes the proof.

(ii) If, say, (Ap5) holds, it follows that

sup
x

ν(x, {Rd \ {y : |y| > r}}) ≤ 1
r

sup
x

∫

Rd\{y:|y|>r}
|y|ν(x, dy) → 0

as r →∞, which implies that
∫

Rd\{y:|y|>1}
φ(x + y)ν(x, dy) → 0

as x →∞ for any φ ∈ C∞. This implies that Lφ ∈ C∞ for any φ from the conditions
(ii). Next, using the martingale property (statement (ii) of Theorem A1), we find
that

Exφ(Xt)− φ(x) =
∫ t

0

ExLφ(Xs) ds

and hence

Ttφ(x)− φ(x) =
∫ t

0

Ts(Lφ)(x) ds.
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As Lφ ∈ C∞, Ts(Lφ) is a continuous function s 7→ C∞, which implies that
limt→0(Ttφ− φ)/t = Lφ. The proof is complete.

Remarks. 1. The statement (i) of this corollary is a particular case of a result
claimed in [3]. However, the general result from [3] seems to be erroneous as can
be seen already on a simple deterministic process with generator −x3(∂/∂x) on
the line, whose martingale problem is well posed but the corresponding group is
not Feller in the sense that it does not preserve the set of functions vanishing at
infinity. 2. Clearly statement (ii) still holds if instead of (Ap5) one assumes only
that supx ν(x, {Rd \ {y : |y| > r}}) → 0 as r → 0.

Appendix 2. Exit from domain and classification of boundary points.

Let U be an open subset of Rd and let L be given by (Ap1) in U , i.e. G(x),
β(x), ν(x, .) are well defined continuous functions on Ū . Let Uext be define as

Uext = {∪x∈U supp ν(x, .)} ∪ U

We shall say that U is transmission admissible (with respect to L), if U = Uext.
Remark. This terminology stems from the observation that L satisfies the so

called transmission property (see e.g [11] and references therein) in U whenever U
is transmission admissible by our definition.

From now on, we shall fix some U and L assuming that at least one of the
following two conditions holds.

(U1) The domain U is transmission admissible and the operator L can be ex-
tended to an operator on the whole Rd of form (Ap1) (which we shall again denoted
by L) in such a way that its symbol is continuous and the corresponding martingale
problem is well-posed (for instance, Theorem 1 or the results from [18,19] or[13]
are applicable). As above, we shall denote by Xt the corresponding strong Markov
process with sample paths in DRd [0,∞) and by Px the corresponding distribution
on the path space when the process starts at x.

(U2) There is a sequence of transmission admissible subdomains Um of U such
that Ūm ⊂ Um+1 for all m, ∪∞m=1Um = U and the operator Lm obtained from
L by the restriction to Um can be extended to an operator on Rd of form (Ap1)
(which we again denote by Lm) in such a way that (i) its symbol is continuous,
(ii) the corresponding martingale problems are well posed, (iii) for any compact set
K ⊂ Rd

sup
x∈K∩U

∫
min(y, y2)ν(x, dy) < ∞

(iv) for the corresponding Markov processes Xt,m the following uniform compact
containment condition holds: for any ε > 0, T > 0 and a compact set K ⊂ Rd,
there exists a compact set Γε,T,K ⊂ Rd such that

Px (Xt,m ∈ Γε,T,K ∀ t ∈ [0, T ]) ≥ 1− ε
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holds for all m and all x ∈ K.
There is a large variety of notions of regularity for boundary points of U . This

Appendix is devoted to a discussion of the basic notions of regularity, where we are
going to be more general than in usual texts on diffusions (see e.g. [8, 28]), but at
the same time more concrete than in general potential theory (see [2]). In particular,
we shall propose some generalization of the notion of the entrance boundary from
the theory of one-dimensional diffusions (see e.g. [24]) to the case of processes with
general pseudo-differential generators. Notice also that (U1) is a usual simplifying
assumption for dealing with subdomains, for example, the results of [8] and [11] are
formulated subject to this assumption. For our purposes, a generalization to (U2)
is of vital importance (see [19, 20]).

For an open D ⊂ U (including D = U) the exist time τD from D is defined as

τD = τx
D = inf{t ≥ 0 : Xx

t /∈ D or Xt− /∈ D} (Ap15)

if (U1) holds or as τD = limm→∞ τD∩Um
if (U2) holds. Clearly, if D itself is

transmission admissible and (U1) holds, then

τD = inf{t : Xx
t ∈ ∂D} (Ap16)

(where ∂D is the boundary of D), and the trajectories of Xx
t are almost surely

continuous at t = τD. We need a similar characterization of τD for the case (U2).

Proposition A1. (i) Under condition (U2), if τU = limm→∞ τUm < ∞, then
almost surely there exists a limit limm→∞Xm,τUm

and it belongs to ∂U .
(ii) The stopped process Xstop

t in Ū is correctly defined by
(1) Xstop

t = Xmin(t,τU ) in case (U1),
(2) Xstop

t = Xt for t ≤ τUm for some m and Xstop
t = limm→∞Xm,τm for t ≥

limm→∞ τUm in case (U2).
(iii) In case (U2) suppose additionally that Lφ ∈ Cb whenever φ ∈ C2∩Cc. The

stopped process in (ii) is the unique solution of the stopped martingale problem in U ,
i.e. for any initial probability measure η on U it defines a unique measure P stop

η on
DŪ [0,∞) such that X0 is distributed according to η, Xt = Xmin(t,τU ) almost surely
and

φ(Xt)− φ(X0) =
∫ min(t,τU )

0

Lφ(Xs) ds

is a P stop
η -martingale for any φ ∈ C2(Rd) ∩ Cc(Rd).

Proof. (i) The compact containment condition reduces the problem to the case
when the coefficients of all Lm are uniformly bounded. In fact, since changing the
generator outside a domain does not change the behavior of the process inside this
domain (see e.g. Theorem 6.1 from Chapter 4 of [6] for a precise formulation of this
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result), one can change L to some L̃ by multiplying by an appropriate smooth func-
tion a(x) outside a given compact set to get an operator with bounded coefficients
with all other conditions preserved. Next, again by the compact containment con-
dition there exists, almost surely, a finite limit point of the sequence Xm,τUm

which
clearly belongs to ∂U . At last, it follows from (Ap8) that this limit point is unique,
because if one supposes that there are two different limit points, y1 and y2, say, the
process must perform infinitely many transitions from any fixed neighborhood of y1

to any fixed neighborhood of y2 and back in a finite time, which is impossible by
(Ap8) and condition (iii) of (U2) that ensures that (Ap8) holds uniformly for all
processes Xt,m. In fact, the probability of at least n jumps is of order tn/n!.

(ii) This is a direct consequence of (i).
(iii) In case (U1) this is a consequence of a general Theorem 6.1 from Chapter

4 of [6]. In case (U2), from the same general result, it follows that the stopped (at
Um) processes Xstop

t,m give unique solutions to the corresponding stopped martingale
problem in Um, and by the dominated convergence theorem we get from (i) that
Xstop

t is a solution to the stopped martingale problem in U . Uniqueness is clear,
because the (uniquely defined) stopped processes Xstop

t,m defines Xstop
t uniquely for

t < τU , and hence up to τU inclusive (due to (i)). After τU the behavior of the
process is fixed by the definition. Proposition is proved.

We shall say that the process Xt leaves a domain D ⊂ U almost surely (re-
spectively with a finite expectation) if Px(τD < ∞) = 1 for all x (respectively if
ExτD < ∞ for all x ∈ D).

Definition. We shall say that
(i) a point x0 ∈ ∂U is t-regular if for all t

lim
x→x0

Px(τU > t) = 0; (Ap17)

(ii) a point x0 ∈ ∂U is normally regular, if there exists a neighborhood V of x0

such that
lim sup

x→x0,x∈U

ExτU∩V

|x− x0| < ∞;

(iii) a subset Γ ⊂ ∂U is inaccessible if Px(XτU ∈ Γ, τU < ∞) = 0 for all x ∈ U ;
(iv) a point x0 ∈ ∂U is called an entrance boundary if for any positive t and ε

there exist an integer m and a neighborhood V of x0 such that P (τx
U\Um

> t) < ε

and P (τx
U\Um

= τx
U ) < ε for all x ∈ V ∩ U , where Um are the domains from

condition (U2), if (U2) holds, or Um = {x ∈ U : ρ(x, ∂U) > 1/m} in case (U1)
holds (ρ denotes the usual distance).

We shall denote by ∂Utreg the set of t-regular points of U (with respect to some
given process).

Remarks. Notice that a point from an inaccessible set can be nevertheless
normally regular. The notion of t-regularity is the key notion for the analysis of the
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continuity of stopped semigroups (see Theorems 1.6, 1.7) and the corresponding
boundary value problems. The normal regularity of a point is required if one is
interested in the regularity of the solutions to a boundary value problem beyond the
simple continuity (see e.g. [8] for the case of degenerate diffusions under condition
(U1)).

For the analysis of the exit times from a domain and for the classification of the
boundary points, the major role is played by the method of barrier (or Lyapunov)
functions, which is essentially contained in the following simple statement.

We shall say that φ ∈ C2 satisfies the martingale condition, if (Ap2) is a
martingale for all measures Px in case (U1) or the same holds for all Lm in case
(U2). By definition, all φ ∈ C2 ∩ Cc satisfy the martingale condition, but not vice
versa.

Proposition A2. Method of barrier function. Let f ∈ C2 satisfy the martin-
gale condition and be non-negative in Dext for some D ⊂ U .

(i) If Lf(x) ≤ 0 for x ∈ D, then for all t > 0 and x ∈ D

f(x) ≥ Ex(f(Xmin(t,τD))).

If, moreover, f is bounded and the process leaves D almost surely, then also f(x) ≥
Ex(f(XτD

)).
(ii) If Lf(x) ≤ −c for x ∈ D with some c > 0, then

f(x) ≥ cEx(min(t, τD)).

In particular, the process leaves the domain D almost surely and Ex(τD) ≤ f(x)/c.
Proof. Consider the case (U2) only (the case (U1) being clearly simpler). Let

Dm = D ∩ Um. As f satisfies the martingale condition,

Exf(Xmin(t,τDm )) = f(x) + Ex

∫ min(t,τDm )

0

Lf(Xs) ds,

which implies the statements of the Proposition concerning min(t, τD) (using also
Fatou’s lemma for the statement (i)). To get the corresponding results for τD one
takes a limit as t →∞ and uses the dominated convergence theorem in (i), and the
monotone convergence theorem in (ii).

From Proposition A2, one can deduce some criteria for transience and recur-
rence for processes with pseudo-differential generators (see e.g. [23]). We shall use
it now to deduce some criteria of t-regularity and inaccessibility generalizing the
corresponding results from [8] devoted to diffusion processes under condition (U1).

Proposition A3. Suppose x0 ∈ ∂U , f ∈ C2(U) satisfies the martingale
condition (or, in case (U2), the restrictions of f to Um can be extended to C2(Rd)
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functions that satisfy the martingale conditions for Lm), f(x0) = 0, and f(x) > 0
for all x ∈ Ū \{x0}. Suppose there exists a neighborhood V of x0 such that Lf(x) ≤
−c for x ∈ U ∩ V with some c > 0. Then x0 is a t-regular point and

Ex(τV ∩U ) ≤ f(x)/c (Ap18)

for x ∈ V ∩U . In particular, if f(x) ≤ |x− x0| for x ∈ V ∩U , then x0 is normally
regular.

Proof. Proposition A2 implies (Ap18). Hence Ex(τV ∩U ) → 0 as x → 0. And
consequently Px(τV ∩U > t) → 0 as x → x0 for any t > 0. Next, by Proposition A2
(i), for x ∈ U ∩ V

f(x) ≥ Exf(XτV∩U
) = Ex(f(XτU

)1τV∩U=τU
)

+Ex(f(XτV∩U
)1τV∩U <τU

) ≥ min
y∈U\V

f(y)Px(τV ∩U < τU ),

where 1M for an event M denotes the indicator function of M . Hence Px(τV ∩U <
τU ) → 0 as x → x0. Consequently,

Px(τV ∩U < t and τV ∩U = τU ) → 1

as x → x0, x ∈ V ∩ U , and so does

Px(τU < t) > Px(τU < t and τV ∩U = τU ) = Px(τV ∩U < t and τV ∩U = τU ).

Proposition A4. (i) Let Γ be a subset of the boundary ∂U . Suppose there is a
neighborhood V of Γ and a twice continuously differentiable non-negative function f
on U such that f vanishes outside a compact subset of Rd, Lf(x) ≤ 0 for x ∈ V ∩U ,
and f(x) →∞ as x → Γ, x ∈ V ∩ U . Then Γ is inaccessible.

(ii) Suppose x0 ∈ ∂U and V is a neighborhood of x0 such that the set V ∩ ∂U
is inaccessible. Suppose for any δ > 0, there exist a positive integer m and a
non-negative function f ∈ C2 ∩ Cc such that f(x) ∈ [0, δ] and Lf(x) ≤ −1 for
x ∈ V ∩ (U \ Um). Then x0 is an entrance boundary.

Proof. (i) As U is transmission admissible, it is enough to prove that Γ is
inaccessible for the domain V ∩U . Let us give a proof in case of the condition (U2)
only (the other case being similar). For any m let us choose a function fm ∈ C2∩Cc

that coincides with f in Um. For any r > 0 there exists a neighborhood Vr of Γ such
that V̄r ⊂ V and inf{f(y) : y ∈ Vr ∩ U} ≥ r. By Proposition A2, for x ∈ Um ∩ V ,

f(x) = fm(x) ≥ Exfm(Xmin(t,τUm∩V ))

≥ min{fm(y) : y ∈ Vr ∩ ∂Um}Px(τ(Um∩V ) ≤ t, XτUm∩V ∈ Vr)
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Hence
Px(τ(Um∩V ) ≤ t, XτUm∩V

∈ Vr) ≤ f(x)/r

for all t, and consequently

Px(τ(U∩V ) ≤ t, XτU∩V ∈ Vr ∩ ∂U) ≤ f(x)/r.

Hence
Px(τ(U∩V ) ≤ ∞, XτU∩V ∈ Vr ∩ ∂U) ≤ f(x)/r.

Since ∩∞r=1Vr ⊃ Γ, the proof of (i) is complete.
(ii) First by reducing t if necessary one can ensure that the probability of

leaving V ∩ U in time t is arbitrary small (because V ∩ ∂U is inaccessible and
because the coefficients of L are uniformly bounded which implies (1.14)). Next, by
the Chebyshev inequality and Proposition A2 we conclude that

P (τx
V ∩(U\Um) > t) ≤ 1

t
Ex(τV ∩(U\Um)) ≤

1
t
f(x) ≤ δ

t

for x ∈ V ∩ (U \ Um), which can be made arbitrary small because δ is arbitrary
small.

In Appendix 3, we shall show how one can use the general results obtained
above in order to obtain more concrete criteria (in terms of the coefficients of L).
Now we shall give only the following simple (but important) consequences to Propo-
sition A1.

Proposition A5. (i) Under conditions of Proposition A1 (iii) suppose that
Γ ∈ ∂U is inaccessible and Lφ(x) = 0 for any x ∈ ∂U \ Γ and any φ ∈ C2 ∩ Cc.
Then for any x ∈ U , the stopped process Xstop

t defines the unique distribution Px

on DŪ [0,∞) such that X0 = x and Xt = Xmin(t,τU ) almost surely, and (Ap2) is a
martingale for any φ ∈ C2 ∩ Cc.

(ii) If
lim

m→∞
P (τm ≤ t) = 0 (Ap19)

almost surely for any t and any initial probability measure on U (in particular,
(Ap19) is satisfied, if for any x0 ∈ ∂U there exists a neighborhood Γ of x0 in ∂U
such that Proposition A4 holds), then for any measure η on U there exists a unique
measure Pη on the Skhorohod space DU [0,∞) such that (Ap2) is a Pη-martingale
for any φ ∈ C2(U) ∩ Cb(U) vanishing outside a bounded domain of Rd. Moreover,
this measure defines a strong Markov process whose the semigroup Tt preserves the
space Cb(U).

(iii) Under condition (ii), if both (U1) and (U2) hold, then the semigroup Tt

of the corresponding Markov process in U preserves the subspace Cb(Ū).
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Proof. (i) It follows from Proposition A1 (iii) and the observation that

∫ min(t,τu)

0

Lφ(Xs) ds =
∫ t

0

Lφ(Xs) ds

under conditions from (i).
(ii) For φ ∈ C2∩Cc the required martingale property follows again from Propo-

sition A1, or in this particular case it is in fact a direct consequence of Theorem 6.3
from Chapter 4 of [6]. For φ ∈ C2(U) ∩ Cb(U) ∩ Cc(Rd), it follows by first consid-
ering the stopped martingale problems in Um and then as usual by the dominated
convergence theorem. The last statement follows from Theorem 5.11 (b), (c) from
Chapter 4 of [6],

(iii) By the same theorem 5.11 (b), (c) from Chapter 4 of [6], under (U1),
(U2), the semigroup Tt of the process defined by L preserves the space Cb(Rd).
Since Ttφ = T stop

t φ for all x ∈ U and all φ ∈ C2(Rd) ∩ Cc(Rd), it follows that
T stop

t φ ∈ Cb(D̄) for these φ. As C2(Rd) ∩ Cc(Rd) is dense in Cb(D̄), the required
statement follows.

Appendix 3. Examples of barrier functions.

In this Appendix, we shall show how one can choose barrier functions in Propo-
sitions A2-A4 above in order to obtain the corresponding criteria in terms of the
coefficients of the generator L of form (Ap1). More precisely, we shall consider the
operator L̃ given by

L̃f(x) = Lf(x) +
∫

(f(x + y)− f(x)) µ(x, dy) (Ap20)

where µ is a Borel measure on Rd \ {0} such that
∫ |y|µ(x, dy) is finite for all x and

L is of form (Ap1). Surely L̃ can be written in form (Ap1), but it is convenient
to have special criteria for integral terms written in a form with µ above (which is
possible to do when a Lévy measure has a finite first moment).

We are going to give local criteria for points lying on smooth parts of the
boundary (however, they can be used also for piecewise smooth boundaries, see
Remark 2 after Proposition A6). Since locally all these parts look like hyper-spaces
(can be reduced to them by an appropriate change of the variables), we shall take
U here to be the half-space

U = R+ ×Rd−1 = {(z, v) ∈ Rd : z > 0, v ∈ Rd−1}

and we shall denote by βz and βv the corresponding components of the vector field
β and by Gzz(x) the first entry of the matrix G(x). We shall assume that the
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supports of all ν(x, .) and µ(x, .) belong to U and that condition (U2) holds with
Um = {z > 1/m}. Let us pick up positive numbers a and r, and for any ε > 0 let

Vε = {z ∈ (0, a), |v| ≤ r + ε}. (Ap21)

Proposition A6. If

βz(x) = O(z), Gzz(x) = O(z2),
∫

z̃2ν(x, dx̃) = O(z2), (Ap22)

in Vε, then the ball {(0, v) : |v| ≤ r} belongs to the inaccessible part of the boundary
∂U .

Remark 1. As one could expect, the measure µ does not enter this condition
at all.

Remark 2. This criterion can be used also for piecewise smooth boundaries.
For example, let Ũ = U ∩ {v : v1 > 0} and condition (Ap22) holds in Vε ∩ Ũ . Then
the same proof as below shows that {|v| ≤ r} ∩ {v : v1 > 0} is inaccessible. The
same remark concerns other Propositions below.

Proof. A direct application of Proposition A4 is not enough here, but a proof
given below is in the same spirit. Let a non-negative f ∈ C2(U) be such that it is
decreasing in z, equals 1/z in Vε and vanishes for large v or z. By fm we denote
a function f ∈ Cc ∩ C2 that coincides with f in Um. Let τm denote the exit time
from V ∩Um. Condition (Ap22) implies that L̃f(x) ≤ cf(x) for all x ∈ V and some
constant c ≥ 0. Hence, considering the stopped martingale problem in V ∩Um and
taking as a test function fm ∈ C2 ∩ Cc one obtains that

Exf(Xmin(t,τm))− f(x) = Ex

∫ min(t,τm)

0

L̃f(Xs) ds

≤ cEx

∫ min(t,τm)

0

f(Xs) ds ≤ cEx

∫ t

0

f(Xmin(s,τm)) ds.

Consequently, applying Gronwall’s lemma yields the estimate

Exf(Xmin(t,τm)) ≤ f(x)ect.

Hence
Px(τm ≤ t, Xτm ∈ ∂Um ∩ Vε) ≤ 1

m
f(x)ect,

which implies that (a neighborhood of) Γ is inaccessible by taking the limit as
m →∞.
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Proposition A7. Suppose there exist constants 0 ≤ δ1 < δ2 ≤ 1 such that

Gzz(x) = O(z1+δ2),
∫

z2ν(x, dx̃) = O(z1+δ2)

in Vε and also either
βj(x) ≥ ωzδ1

or βj(x) ≥ 0 and ∫

Vε∩{z≤z̃≤3z/2}
z̃µ(x, dx̃) ≥ ωzδ1

in Vε/2 with some ω > 0. Then the ball {(0, v) : |v| ≤ r} belongs to the inaccessible
part of the boundary.

Proof. This is a direct consequence of Proposition A4, if one takes the same
function f from Proposition A6 above to be a barrier function and observes that
under the given conditions the diffusion term and the integral term depending on ν
in L̃ are both of order O(zδ2−2) and either the drift term is negative of order zδ1−2

and the integral term depending on µ is negative (because f is decreasing in z) or
the drift term is negative and the integral term depending on µ is negative of order
zδ1−2.

Proposition A8. Suppose that for |v| ≤ r+ε either Gzz(0, v) does not vanish,
or ∫

Vε/2∩{z̃≤b}
z̃2ν((0, v), dx̃) ≥ ωbδ

with some δ > 0, ω > 0 and all sufficiently small b, or βz(0, v) < 0. Then the origin
0 belongs to ∂Utreg.

Proof. Let us prove that 0 ∈ ∂Utreg. Let f be defined as

f(x) =
{

cv2 + z − bz2, z < 1/2b
cv2 − 1

4b , z ≥ 1
2b

in Vε and belongs to C2 and is bounded from below and above by some positive
constants. Then

L̃f(0, v) = βz(0, v)− 2bGzz(0, v) +
∫

min(z̃ − bz̃2,
1
2b

)µ((0, v), dx̃)

+
∫

(min(z̃ − bz̃2,
1
2b
− z̃)ν((0, v), dx̃) + O(c).

Clearly the integral term depending on µ tends to zero as b → ∞, the integral
depending on ν over the subset z̃ ≥ 1/2b is negative. Hence

L̃f(0, v) ≤ βz(0, v)− 2bGzz(0, v)− b

∫

Vε∩{z̃≤1/2b}
z̃2ν((0, v), dx̃) + o(1),
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where o(1) tends to zero if c → 0, b → ∞, and z → 0. Clearly, if βz < 0, this
expression becomes negative (for small c and large b), and otherwise, other two
assumptions of the Proposition ensure that this expression becomes negative for
large enough b > 0. By continuity, it will be negative also for (z, v) with small
enough z. Consequently, the application of Proposition A3 completes the proof.

Proposition A9. Suppose Gzz(z, v) = κ(v)z(1 + o(1)) as z → 0 in Vε. (i)
If κ(v) > β1(v) for |v| ≤ r + ε, then the ball {|v| ≤ r} belongs to ∂Utreg. (ii) If
κ(v) < β1(v) for |v| ≤ r + ε, then the ball {|v| ≤ r} belongs to the inaccessible part
of the boundary.

Proof. (i) As a barrier function, let us take f that equals zγ + cv2 with a
γ ∈ (0, 1) in Vε and is smooth and bounded from below and above by positive
constants outside. Then near the boundary the sum of the drift and the diffusion
terms of Lf is

γzγ−1(β1 − (1− γ)κ + o(1)),

which can be made negative by choosing small enough γ. The integral term depend-
ing on ν is negative and the integral term depending on µ can be made small by
changing f outside an arbitrary small neighborhood of the boundary. Then the ori-
gin belongs to ∂Utreg by Proposition A3, and similarly one deals with other points
of {|v| ≤ r}. (ii) This follows from Proposition A4 if one uses the same barrier
function as in Propositions 6 and 7 above.

The set where κ(v) = β1(v) is known to be a nasty set for the classification
even in the case of diffusions (see e.g. [8], [28], [32]). The following simple result
is intended to show what kind of barrier function can be used to deal with this
situation.

Proposition A10. Let the boundary of the open set Γ = {v : βz(0, v) > 0} in
∂U is smooth, the vector field β(x) on ∂Γ has a positive component in the direction
of outer normal η to ∂Γ, and diffusion term and the integral terms vanish in a
neighborhood of Γ in Ū . Then the closed subset Γ̄ = Γ ∪ ∂Γ of the boundary ∂U is
inaccessible.

Proof. Consider the barrier function f = (z2 + ρ(v)2)−1, where ρ denotes the
distance to Γ. Then

Lf ≤ −2
zβz(x)

z2 + (ρ(v))2
− 2ρ(v)

(βv(x), η)
z2 + (ρ(v))2

,

and the second term dominates in a neighborhood of the boundary of Γ, because
βz(x) is of order ρ(v). Hence the proof is completed by the application of Proposition
A4.

We conclude with a criterion for a point to be an entrance boundary.
Proposition A11. Let Vε be defined by (Ap21) and let the ball {(0, v) : |v| ≤

r + ε} is inaccessible. Suppose βz(x) ≥ c > 0 and
∫

z2ν(x, dx̃) = O(z) in Vε. Then
all points from the ball {(0, v) : |v| ≤ r} are entrance boundaries.

47



Proof. Clearly it is enough to prove the statement for the origin. Suppose for
brevity that ν(x, .) vanishes in Vε (the modifications required in the general case are
as above). Then our claim is a consequence of Proposition A4 (ii), if as a barrier
function one takes a function f(x) that equals δ − z/c for z < cδ/2 and which is
non-negative and decreasing in z. Then f(x) ∈ [δ/2, δ] for z ≤ cδ/2 and Lf(x) ≤ −1
for these z, because the contributions from the diffusion part of L and the integral
part depending on µ are clearly negative.
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