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and
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Abstract. It is shown that Markov chains in Zd
+ describing k-nary interact-

ing particles of d different types approximate (in the continuous state limit) Markov
processes on Rd

+ having pseudo-differential generators p(x, i ∂
∂x ) with symbols p(x, ξ)

depending polynomially (degree k) on x. This approximation can be used to prove
existence and non-explosion results for the latter processes. Our general scheme of
continuous state (or finite-dimensional measure-valued) limits to processes of k-nary
interaction yields a unified description of these limits for a large variety of models
that are intensively studied in different domains of natural science from interacting
particles in statistical mechanics (e.g. coagulation-fragmentation processes) to evo-
lutionary games and multidimensional birth and death processes from biology and
social sciences.

Key words. Interacting particles, k-nary interaction, measure-valued limits,
Markov processes with pseudo-differential generators, growing symbols, martingale
problem, evolutionary games, population dynamics.
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1. Introduction.

This paper is the second in a series of papers devoted to k-nary interacting
particles (see [18, 19]) and ideologically it is a development of [18]. However formally
it does not depend on [18] that is devoted to one-dimensional processes, where quite
special tools are available. On the contrary, the main results of this paper dwells
on the theory developed in [17].

Let Zd denote the integer lattice in Rd and let Zd
+ be its positive cone (which

consists of vectors with non-negative coordinates). We equip Zd with the usual
partial order saying that N ≤ M iff M −N ∈ Zd

+. A state N = {n1, ..., nd} ∈ Zd
+

will designate a system consisting of n1 particles of the first type, n2 particles of
the second type, etc. For such a state we shall denote by supp(N) = {j : nj 6= 0}
the support of N (considered as a measure on {1, ..., d}). We shall say that N has
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a full support if supp(N) coincides with the whole set {1, ..., d}. We shall write |N |
for n1 + ... + nd.

For a locally compact topological space, we denote by B(X) (resp. C(X)) the
Banach space of all measurable bounded functions (resp. continuous and bounded)
equipped with the usual sup-norm. By Cc(Rd) (respectively Cs(Rd)) we shall de-
note the space of continuous functions with a compact support (respectively having
s continuous derivatives). We shall also use the standard notations of the theory
of pseudo-differential operators. Namely, for a continuous function p : R2d 7→ C
we shall denote by p(x,−i∇) the (pseudo-differential) operator with the symbol p
defined as

p(x,−i∇)u(x) = (2π)−d/2

∫

Rd

eixξp(x, ξ)û(ξ) dξ, u ∈ S(Rd),

where û(ξ) = (2π)−d/2
∫

e−ixξu(x) dξ is the Fourier transform of u.
Roughly speaking, k-nary interaction means that any group of k particles (cho-

sen randomly from a given state N) are allowed to have an act of interaction with
the effect that some of these particles (maybe all or none of them) may die produc-
ing a random number of offspring of different types. More precisely, each sort of
k-nary interaction is specified by:

(i) a vector Ψ = {ψ1, ..., ψd} ∈ Zd
+, which we shall call the profile of the

interaction, with |Ψ| = ψ1 + ...ψd = k, so that this sort of interaction is allowed to
occur only if N ≥ Ψ (i.e. ψj denotes the number of particles of type j which take
part in this act of interaction);

(ii) a family of non-negative numbers gΨ(M) for M ∈ Zd, M 6= 0, vanishing
whenever M ≥ −Ψ does not hold.

The generator of a Markov process (with the state space Zd
+) describing k-nary

interacting particles of types {1, ..., d} is then an operator on B(Zd
+) defined as

(Gkf)(N) =
∑

Ψ≤N,|Ψ|=k

Cψ1
n1

...Cψd
nd

∑

M

gΨ(M)(f(N + M)− f(N)), (1.1)

where Ck
n denote the usual binomial coefficients. Notice that each C

ψj
nj in (1.1)

appears from the possibility to choose randomly (with the uniform distribution)
any ψj particles of type j from a given group of nj particles. Consequently, the
generator

∑|K|
k=0 Gk of k -nary interactions with profiles not exceeding a given profile

K can be written as

(GKf)(N) =
∑

Ψ≤K

Cψ1
n1

...Cψd
nd

∑

M∈Zd

gΨ(M)(f(N + M)− f(N)), (1.2)

where we used the usual convention that Ck
n = 0 for k > n. The term with Ψ = 0

corresponds to the external input of particles.
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The aim of the paper is to show that the measure-valued limits (which in the
present finite-dimensional framework means just the continuous state limits) of the
Markov chains with generators (1.2) are given by Markov processes on Rd

+ having
pseudo-differential generators with polynomially growing symbols. and to use this
limiting procedure in order to prove the existence and non-explosion of such Markov
processes on Rd

+.
To this end, instead of Markov chains on Zd

+ we shall consider the corresponding
scaled Markov chains on hZd

+, h being a positive parameter, with generators of type

(Gh
Kf)(hN) =

∑

Ψ≤K

h|Ψ|Cψ1
n1

...Cψd
nd

∑

M∈Zd

gΨ(M)(f(Nh + Mh)− f(Nh)), (1.3)

which clearly can be considered as the restriction on B(hZd
+) of an operator on

B(Rd
+) (which we shall again denote by Gh

K with some abuse of notations) defined
as

(Gh
Kf)(x) =

∑

Ψ≤K

Ch
Ψ(x)

∑

M∈Zd

gΨ(M)(f(x + Mh)− f(x)), (1.4)

where we introduced a function Ch
Ψ on Rd

+ defined as

Ch
Ψ(x) =

x1(x1 − h)...(x1 − (ψ1 − 1)h)
ψ1!

...
xd(xd − h)...(xd − (ψd − 1)h)

ψd!

in case xj ≥ (ψj − 1)h for all j and Ch
Ψ(x) vanishes otherwise.

As

lim
h→0

CΨ(x) =
xΨ

Ψ!
=

d∏

j=1

x
ψj

j

ψj
,

one can expect that (with an appropriate choice of gΨ(M), possibly depending on h
) the operators Gh

K will tend to the generator of a stochastic process on Rd
+ which

has the form of a polynomial in x with ”coefficients” being generators of spatially
homogeneous processes with i.i.d. increments (i.e. Lévy processes) on Rd

+, which
are given therefore by the Lévy-Khintchine formula with the Lévy measures having
support in Rd

+.
The paper is organized as follows. In Section 2 we formulate our main results:

Theorems 1 -3. Theorems 2 and 3 are obtained as consequences of more general
results from [17] (obtained by developing some ideas from [14-16] and [13]), and
Theorem 1 is proved in Section 3. Section 4 is devoted to some examples of the
processes with k-nary interaction taken from various domains of natural science.

Let us stress for conclusion that this paper describes a Rd
+-valued limit of a

re-scaled number of particles under k-nary interaction. As Rd
+ is the space of mea-

sures on a finite set {1, ..., d}, we have got a measure-valued limit of the Markov
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chain initially defined on Zd
+. Alternatively, as is usual in the theory of superpro-

cesses and interacting superprocesses (see e.g. [9, 10, 23] and references therein),
one considers points on Zd

+ as integer -valued measures on {1, ..., d} (empirical mea-
sures) and the limit Nh → x, h → 0, describes the limit of empirical measures as
the number of particles tend to infinity but the ”mass” of each particle is re-scaled
in such a way that the whole mass tend to x. The finite-dimensionality of the
limit is of course due to the fact that we have considered only a finite number of
types of particles. In the next papers of this series (see [19, 20]), we shall consider
the bona fide (infinite dimensional) measure-valued processes, which arise as the
limits for general systems of k-nary interacting particles (which may be charac-
terised by various discrete or continuous parameters like position in space, mass, or
genotype for biological models, etc) and which can be described by generators that
have the form of polynomials with coefficients given by Lévy-Khintchine formula
or its infinite-dimensional analogues. (the case of linear polynomials corresponds
to superprocesses). More precisely, if all jumps are scaled uniformly one obtains a
deterministic limit described by a general kinetic equation (derived formally in [4]
developing some ideas from [3]) that includes as particular cases the well known
equations of Vlasov, Boltzman, Smoluchovskii and others. If one accelerates some
short range interactions (say, with |M | = 1 in (1.3)), one gets a second order
parabolic operator as part of a limiting generator, and if one slows down the long
range interactions (large M in (1.3)), one gets non-local (Lévy-type) terms.

2. Results.

By Zt(GK) (respectively Zt(Gh
K) we shall denote the minimal Markov chain

on Zd
+ (respectively on hZd

+) specified by the generator of type (1.2) (respectively
(1.3)). For a given L ∈ Zd

+, we shall say that Zt(GK) and the generators GK , Gh
K

are L-subcritical (respectively L-critical) if
∑

M 6=0

gΨ(M)(L,M) ≤ 0 (2.1)

for all Ψ ≤ K (respectively, if the equality holds in (2.1)), where (L,M) denotes
the usual scalar product in Rd. Putting for convenience gΨ(0) = −∑

M 6=0 gΨ(M),
we conclude from (2.1) that the Q-matrix QK of the chain Zt(GK) defined as

QK
NJ =

∑

Ψ≤K

Cψ1
n1

...Cψd
nd

gΨ(J −N) (2.2)

satisfies the condition
∑

J QK
NJ(L, J −N) ≤ 0 for all N = {n1, ..., nd}.

Proposition 2.1. If GK is L-subcritical with some L having full support, then
(i) Zt(GK) is a unique Markov chain with the Q-matrix (2.2), (ii) Zt(GK) is a
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regular jump process (i.e. it is non-explosive), (iii) (L,Zt(GK)) is a non-negative
supermartingale, which is a martingale iff GK is L-critical.

Proof. This is a direct consequence of (2.1), (2.2) and the standard theory of
continuous-time Markov chains. For example, statement (iii) follows either from
Dynkin formula (see e.g. [6]) or from the Feller backward integral recursion formula
(see e.g. [2]) for Zt(GK).

Let us describe now precisely the generators of limiting processes on Rd
+ and

the approximating chains in Zd
+. Suppose that to each Ψ ≤ K there correspond

(i) a non-negative symmetric d×d-matrix G(Ψ) = Gij(Ψ) such that Gij(Ψ) = 0
whenever i or j does not belong to supp(Ψ),

(ii) vectors β(Ψ) ∈ Rd
+, γ(Ψ) ∈ Rd

+ such that γj(Ψ) = 0 whenever j /∈ supp(Ψ),
(iii) Radon measures νΨ and µΨ on {|y| ≤ 1} ⊂ Rd and on Rd

+\{0} respectively
(Lévy measures) such that

∫
|ξ|2νΨ(dξ) < ∞,

∫
|ξ|µΨ(dξ) < ∞, µ({0}) = ν({0}) = 0 (2.3)

and supp νΨ belongs to the subspace in Rd spanned by the unit vectors ej with
j ∈ supp(Ψ).

These objects define an operator in C(Rd
+) by the formula

(ΛKf)(x) = −
∑

Ψ≤K

xΨ

Ψ!
pΨ(−i∇), (2.4)

where

−pΨ(−i∇) = tr (G(Ψ)
∂2

∂x2
)f+

d∑

j=1

(βj(Ψ)−γj(Ψ))
∂f

∂xj
+

∫
(f(x+y)−f(x)−f ′(x)y)νΨ(dy)

+
∫

(f(x + y)− f(x))µΨ(dy) (2.5)

is the pseudo-differential operator with the symbol −pΨ(ξ), where

pΨ(ξ) = (ξ, G(Ψ)ξ)− i(β − γ, ξ)

+
∫

(1− eiyξ + iyξ)νΨ(dy) +
∫

(1− eiyξ)µΨ(dy) (2.6)

and where as usual

tr (G(Ψ)
∂2

∂x2
)f =

d∑

i,j=1

Gij(Ψ)
∂2f

∂xi∂xj
.
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Operator (2.5) is known to represent the generator of a Lévy process in Rd,
or a process with i.i.d. (independent identically distributed) increments. Hence
one can say that operators (2.4) are polynomials in x with ”coefficients” being the
generators of Lévy processes.

Remark. Conditions in (i) and (iii) concerning the supp(Ψ) mean simply that a
particle of type i can not kill a particle of type j without an interaction. Condition
(iii) highlights the fact that in the framework of interacting particles, it is natural
to write the generators of a Lévy process in the form (2.5) with two measures ν and
µ (the first one having bounded support but infinite first moment), because only ν
is subject to an additional condition on its support.

We shall say that operator (2.5) is L-subcritical (respectively L-critical) for an
L ∈ Zd

+, if

(β(Ψ)− γ(Ψ) +
∫

yµΨ(dy), L) ≤ 0 (2.7)

for all Ψ (respectively, if the equality holds in (2.7)).
Next, let ∆h(Ψ, G) be a finite-difference operator of the form

(∆h(Ψ, G)f)(x) = 1
h2

∑
i∈supp(Ψ) ωi(Ψ)(f(x + hei) + f(x− hei)− 2f(x))

+ 1
h2

∑
i 6=j:i,j∈supp(Ψ)

[
ωij(Ψ)(f(x + hei + hej) + f(x− hei − hej)− 2f(x))

+ω̃ij(Ψ)(f(x + hei − hej) + f(x− hei + hej)− 2f(x))
] (2.8)

with some constants ωi, ωij , ω̃ij (where ej are the vectors of the standard basis in
Rd) that approximate tr (G(Ψ) ∂2

∂x2 ) in the sense that

‖ tr (G(Ψ)
∂2

∂x2
)−∆h(Ψ, G))f‖ = O(h)‖f ′′′‖. (2.9)

for f ∈ C3(Rd). If f ∈ C4(Rd), then the l.h.s. of (2.9) can be better estimated by
O(h2)‖f (4)‖.

Remark. Such ∆h(Ψ, G) is surely not unique, but its existence is clear, because
(2.8) is just a standard finite difference approximation of the second order operator
tr (G(Ψ) ∂2

∂x2 ). Moreover, other finite difference approximations to tr (G(Ψ) ∂2

∂x2 )
could be used.

Putting Bh = {x ∈ Rd
+ : 0 ≤ xj < h ∀j} and choosing an arbitrary ω ∈ (0, 1)

we can now define an operator of type (1.4) as

Λh
K =

∑

Ψ≤K

Ch
Ψ(x)πh

Ψ
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with

(πh
Ψf)(x) = (∆h(Ψ, G)f)(x)

+
1
h

∑

j

(βj(Ψ)(f(x + hej)− f(x)) + γj(Ψ)(f(x− hej)− f(x)))

+
∑

M :Mj≥h−ω∀j

(f(x + Mh)− f(x) +
∑

j

Mj(f(x− hej)− f(x)))v(M,h)

+
∑

M :Mj≥h−ω∀j

(f(x + Mh)− f(x))µΨ(Bh + Mh),

(2.10)

where
v(M,h) =

1
h2M2

ν̃(Bh + Mh), ν̃(dy) = y2ν(dy)

Proposition 2.2. Operator (2.10) is L-subcritical, if and only if

(β(Ψ)− γ(Ψ) +
∑

M

MµΨ(Bh + Mh), L) ≤ 0.

In particular, if ΛK is L-subcritical or critical, then the same holds for its approxi-
mation Λh

K .
Proof. It follows from a simple observation that operator (2.8) and the operator

given by the sum in (2.10) that depends on the measure ν are always L-critical for
any L, i.e. they are ej-critical for all j.

Let Zx,h
t denote the minimal (càdlàg) Markov chain in x+hZd

+ ⊂ Rd generated
by Λh

K .
We shall denote by DR̄d

+
[0,∞) (respectively DRd

+
[0,∞)) the space of càdlàg

sample paths [0,∞) 7→ R̄d
+ (respectively [0,∞) 7→ DRd

+
[0,∞)) equipped with the

canonical filtration Ft = σ(Xs : s ≤ t), and by Xt(ω) = ω(t), ω ∈ DR̄d
+
[0,∞), the

corresponding canonical projections. We shall say that a probability measure Px on
DR̄d

+
[0,∞) (respectively DRd

+
[0,∞)) is a solution to the martingale problem with

sample paths in DR̄d
+
[0,∞) (respectively in DRd

+
[0,∞)) and with the initial position

x ∈ Rd
+, if X0 = x Px almost surely and for any function φ ∈ C∞(Rd) ∩ Cc(Rd)

the process

φ(Xt)− φ(x)−
∫ t

0

Lφ(Xs) ds (2.11)

is a Ft-martingale with respect to Px. We say that the martingale problem is well-
posed if for any x ∈ Rd

+, a solution exists and is unique. Our first result is the
following.
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Theorem 1. Suppose ΛK of form (2.4), (2.5) is L-subcritical with some L
having full support.

(i) There exists a solution to the martingale problem for Λh
K from (2.7) with

sample paths DR̄d
+
[0,∞) for any x ∈ Rd

+.

(ii) The family of processes ZhN,h
t , h ∈ (0, 1], N = x/h, with any given x ∈ Rd

+

is tight and it contains a subsequence that converges (in the sense of distribution)
as h → 0 to a solution of the martingale problem for ΛK .

Part (i) is a consequence of (ii), and part (ii) is proved in Section 3.
Surely this result is not quite satisfactory, because it does not include the

uniqueness of the limiting point for ZNh,h
t . And without uniqueness one even can

not be sure that the solution to the martingale problem defines a Markov process.
The uniqueness of a solution to a martingale problem is known to be usually much
harder to get than the existence. In case without interaction (|K| = 1 in our setting),
i.e. for superprocesses, the uniqueness is usually obtained via duality, which seems
to be not available in the general case. We shall get the uniqueness under some
additional assumptions using results from [17].

First we shall need some assumptions on the measures µ and ν. Let

p0(ξ) =
∑

Ψ≤K

pΨ(ξ).

We shall suppose that there exists c > 0 and constants αΨ > 0, βΨ < αΨ such that
for each Ψ

(A1) |Im pµ
Ψ(ξ) + Impν

Ψ(ξ)| ≤ c|p0(ξ)|,
(A2) Re pν

Ψ(ξ) ≥ c−1|prνΨ(ξ)|αΨ and |(pν
Ψ)′(ξ)| ≤ c|prνΨ(ξ)|βΨ , where prνΨ is

the orthogonal projection on the minimal subspace containing the support of the
measure νΨ.

Remarks. These conditions are not very restrictive. It allows, in particular, any
stable Lévy measures of any degree of degeneracy. Moreover, if

∫ |ξ|1+βΨνΨ(dξ) <
∞, then the second condition in (A2) holds, because |eixy − 1| ≤ c|xy|β for any
β ≤ 1 and some c > 0. In particular, the second inequality in (A2) always holds
with βΨ = 1. Hence, in order that (A2) holds it is enough to have the first inequality
in (A2) with αΨ > 1.

Let us say that a type j of particles is immortal, if for any solution of the
martingale problem for ΛK , the j-th co-ordinate of the process Xx

t will be positive
for all times almost surely whenever the j-th co-ordinate of x was positive. In other
words this means that the boundary Ūj = {x ∈ R̄d : xj = 0} is inaccessible. Various
criteria for immortality can be found in Appendix 3 of [17], for instance, as a simple
sufficient condition one can assume that ψj ≥ 2 whenever either Gjj(Ψ) 6= 0 or∫

(xj)2νΨ(dx) 6= 0.
Now we can formulate our first result on uniqueness.
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Theorem 2. (i) Let the conditions of Theorem 1 together with (A1), (A2) be
satisfied. If, in addition, all types of particles are immortal, then the martingale
problem of ΛK is well-posed and has sample paths in DRd

+
[0,∞); i.e. the boundary

is almost surely inaccessible. Hence this solution defines a strong Markov process
in Rd

+, which is a limit (in the sense of distributions) of the Markov chains ZNh,h
t ,

as h → 0 with Nh tending to a constant.
(ii) If, in addition to the hypotheses in (i), ψj ≥ 2 whenever either Gjj(Ψ) 6= 0

or
∫

(xj)2νΨ(dx) 6= 0, and ψj ≥ 1 whenever either βj(Ψ) 6= 0 or
∫

xjµΨ(dx) 6= 0,
the semigroup of the corresponding Markov process preserves the space of bounded
continuous functions on R̄d

+ vanishing on the boundary. If, moreover, |K| ≤ 2
(i.e. only binary interactions are allowed) and for |K| = 2 the drift term and the
integral term depending on µΨ vanish, the corresponding semigroup is Feller, i.e.
it preserves the space of continuous functions on Rd that tend to zero when the
argument approaches either the boundary or infinity.

Proof. This is a consequence of a more general Theorem 9 in [17].
Our second result on uniqueness will be more general. Let us say that a type j

of particles is not revivable if βj(Ψ) = 0 whenever j is not contained in the support of
Ψ, and suppµΨ belongs to the subspace spanned by the vectors ej with j ∈ supp Ψ.
In more general terminology from [17] this means that the boundary hyperspace
Ūj = {x ∈ R̄d : xj = 0} is gluing. The meaning of the term revivable is revealed in
the following result.

Theorem 3. Under the conditions of Theorem 1 and conditions (A1), (A2),
suppose that all types of particles are either immortal or are not revivable. Then
for any x ∈ Rd

+ there exists a unique solution to the martingale problem for ΛK

under the additional assumption that, for any j, if at some (random) time τ the j-th
coordinate of Xt vanishes, then it remains zero for all future times almost surely
(i.e. once dead, the particles of type j are never revived). Moreover, the family of
Markov chains ZNh,h

t converges in distribution to this solution to the martingale
problem.

Proof. The uniqueness follow from more general Theorem 10 from [17]. Since
the family of processes ZNh,h

t converges in distributional sense to the martingale
solution Xt, Theorem 1 applies to the effect that Xt inherits the non-revivability
property, because each process ZNh,h

t is non-revivable.
Remark. Various criteria for the semigroup of the process from Theorem 3 to

be Feller can be found in [17].

3. Proof of Theorem 1.

Step 1. The family of processes ZNh,h
t , h ∈ (0, 1], Nh = x is tight.
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Proof. First we observe that the compact containment condition holds, i.e. for
every ε > 0 and every T > 0 there exists a compact set Γε,T ⊂ Rd

+ such that

inf
h

P{ZNh,h
t ∈ Γε,T ∀t ∈ [0, T ]} ≥ 1− ε

uniformly for all starting points x from any compact subset of Rd
+. In fact, the

compact containment condition for (L,ZNh,h
t ) follows directly from maximal in-

equalities for positive supermartingales and Proposition 2.1. It implies the compact
containment condition for Xx

t , because L is assumed to have full support. The
tightness can now be deduced by standard methods. First, as the Dynkin formula
for f(ZNh,h

t ) with any f ∈ S(Rd) gives explicit expressions for predictable projec-
tion and the quadratic variation of supermartingale f(ZNh,h

t ), the tightness follows
from Aldous-Rebolledo criterion in precisely the same manner as in e.g. [10] for
the case of superprocesses. Alternatively, even simpler, one deduces the tightness
directly from Remark 5.2 in Chapter 4 of [11] and Step 2 below.

Step 2. The operators Λh
K approximate ΛK on the space C3(Rd

+) ∩ Cc(Rd),
i.e. for an arbitrary function f in this space

‖(Λh
K − ΛK)f‖ = o(1) sup

x
(1 + |x||K|) max

|y|≥|x|−h
(|f ′(y)|+ |f ′′(y)|+ |f ′′′(y)|), (3.1)

with o(1) as h → 0 not depending on f (but only on the family of measures µΨ, νΨ,
see (3.2), (3.4) below for a precise dependence of o(1) on h).

Proof. Estimate (2.9) shows that the diffusion part of ΛK is approximated by
finite sums of the form ∑

Ch
Ψ(x)∆h(Ψ, G)

in the required sense. It is obvious that the drift part of λK is approximated by
the sum in (2.10) depending on β and γ. Let us prove that the integral part of
−pΨ(−i∇) depending on νΨ is approximated by the corresponding sum from (2.10)
(similar fact for the integral part depending on µ is simpler and is omitted).

Since

(f(x− hej)− f(x)) = −hf ′(x) +
1
2
h2f ′′(x− θej), θ ∈ [0, h],

and
∑

M :Mj≥h−ω

d∑

j=1

Mjh
2v(M,h) ≤ 2

∑

M :Mj≥h−ω

d∑

j=1

Mjh
2ν(Bh + Mh)

≤ 2h

d∑

j=1

∫

y:yj≥h1−ω ∀ j

yjν(dy) ≤ 2hω

∫
|y|2ν(dy),
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the sum in (2.10) depending on ν can be written in the form

∑

M :Mj≥h−ω

(f(x + Mh)− f(x)− h(f ′(x),M))v(M, h)

+O(hω) sup
|y|≥|x|−h

|f ′′(y)|
∫
|y|2ν(dy)

and hence the difference between this sum and the corresponding integral from (2.5)
has the form

∑

M :Mj≥h−ω

(f(x + Mh)− f(x)− h(f ′(x),M))v(M, h)

−
∫

y:yj≥h−ω ∀ j

(f(x + y)− f(x)− f ′(x)y)ν(dy))

+ sup
|y|≥|x|−h

|f ′′(y)|
(

O(1)
∫ h1−ω

0

|y|2ν(dy) + O(hω)
∫
|y|2ν(dy)

)
.

(3.2)

To estimate the difference between the sum and the integral here, we shall use the
following simple general estimate

|
∑

M

g(Mh)ν̃(Mh + Bh)−
∫

g(x)ν̃(dx)| ≤ h‖g′(x)‖
∫

ν̃(dx), (3.3)

which is valid for any continuously differentiable function g in the cube B̄1. Esti-
mating the difference between the sum and the integral in (3.2) by means of (3.3)
with g(y) = |y|−2(f(x + y) − f(x) − f ′(x)y) (that clearly satisfies the estimate
‖g′‖ ≤ sup|y|≥|x| |f ′′′(y)|) yields for this difference the estimate

sup
|y|≥|x|

|f ′′′(y)|O(h)
∫
|y|2ν(dy). (3.4)

Clearly (3.1) follows from (3.2), (3.4) and the observation that Ch
Ψ(x) = O(1+|x||K|)

for Ψ ≤ K.
Step 3. End of the proof. As the coefficients of ΛK grow at most polynomially

as x →∞, similarly to (3.1) one shows that the operators Λh
K , h > 0, approximate

ΛK on the Schwarz space S(Rd), i.e. for an arbitrary f ∈ S(Rd) the estimate
‖(Λh

K − ΛK)f‖ = o(1) as h → 0 holds uniformly for all f from the ball supx(1 +
|x|)|K|+4|f ′′′(x)| < R with any R. Since S(Rd) is an algebra that separates points
and vanishes nowhere, one uses Remark 5.2 from Chapter 4 of [11] to complete the

11



proof of tightness from Step 1 and Lemma 5.1 from Chapter 4 of [11] to conclude
that the distribution of the limit of a converging subsequence of the family ZNh,h

t

solves the martingale problem for ΛK .

4. Examples.

We discuss here shortly some examples of k-nary interactions from statistical
mechanics and population biology giving some preference to the models, where
Theorems 2 or 3 are applicable. For general background on interacting particles we
refer to monographs [7] or [21].

1. Branching processes and finite-dimensional superprocesses. Branching with-
out interaction in our model corresponds clearly to the cases with K = 1 and hence
represents the simplest possible example. In this case the limiting processes in Rd

have pseudo-differential generators with symbols p(x, ξ) depending linearly on the
position x. The corresponding processes are called (finite-dimensional) superpro-
cesses and are well studied, see e.g. [9, 10].

2. Coagulation-fragmentation and general mass preserving interactions. These
are natural models for the applications of our results in statistical mechanics. For
these models, the function L from Theorem 1 usually represents the mass of a par-
ticle. We do not discuss this here, because the next issues of this series (see [19, 20])
deal with these models in detail; the discussion includes also infinite-dimensional
measure-valued limits. Notice only that in the present finite-dimensional situation
we always get an inaccessible boundary so that Theorem 2 applies.

3. Local interactions (birth and death processes). Generalizing the notion of
local branching widely used in the theory of superprocesses (see e.g. [9, 10]), let us
say that the interaction of particles of d types is local, if a group of particles specified
by a profile Ψ can produce particles only of type j ∈ suppΨ. Processes subject to
this restriction include a variety of the so called birth and death processes from the
theory of multidimensional population processes (see, e.g. [2] and references therein)
such as competition processes, predator-prey processes, general stochastic epidemics
and their natural generalizations (seemingly not much studied yet) that take into
account the possibility of birth from groups of not only two (male, female) but also
of more large number of species (say, for animals, living in groups containing a male
and several females, as by gorillas). Excluded by the assumption of locality are
clearly migration processes. In the framework of our general model, the assumption
of locality gives the following additional restrictions to the generators (2.4), (2.5):
βj(Ψ) = 0 whenever j is not contained in the support of Ψ, and supp µΨ belongs to
the subspace spanned by the vectors ej with j ∈ supp Ψ. This clearly implies that
the whole boundary of the corresponding process in Rd

+ is gluing and Theorem 3 is
valid giving uniqueness and convergence.

12



4. Evolutionary games. A popular way of modelling the evolution of behav-
ioral patterns in populations is given by the replicator dynamics (see [12, 22] for
an extensive account of the theory), which is usually deduced by the following ar-
guments. Suppose a population consists of individuals with d different types of
behavior specified by their strategies in a symmetric two-player game given by the
matrix A whose elements Aij designate the payoffs to a player with the strategy i
whenever the players apply the strategies i and j. Suppose the number of individ-
uals playing strategy i at time t is xi = xi(t) with the whole size of the population
being µ(x) =

∑d
j=1 xj . If the payoff represents an individual’s fitness measured as

the number of offsprings per time unit, the average fitness Aijxj/µ(x) of a player
with the strategy i coincides with the payoff of the pure strategy i playing against
the mixed strategy x/µ(x) = {x1/µ(x), ..., xd/µ(x)}. Assuming additionally that
the background fitness and death rate of individuals (independent of outcomes in
the game) are given by some constants B and C yields the following dynamics

ẋi =


B − C +

d∑

j=1

Aij
xj

µ(x)


 xi, (4.4)

called the standard replicator dynamics (which is usually written in terms of the
normalized vector x/µ(x)). A rigorous deduction of this system of equation in Rd

+

from the corresponding Markov chain on Zd
+ is given in [5]. Of course, it follows

from our general Theorem 3.
Having in mind the recent increase in the interest to stochastic versions of

replicator dynamics (see [8] and references therein), let us consider now a general
model of this kind and analyze the possible stochastic processes that may arise
as continuous state (or measure-valued) limits. Denoting by Nj the number of
individuals playing the strategy j and by N =

∑d
j=1 Nj the whole size of the

population, assuming that the outcome of a game between players with strategies i
and j is a probability distribution Aij = {Am

ij} of the number of offsprings m ≥ −1
of the players (

∑∞
m=−1 Am

ij = 1) and the intensity aij of the reproduction per time
unit (m = −1 means the death of the individual) yields the Markov chain on Zd

+

with the generator

Gf(N) =
d∑

j=1

Nj

∞∑
m=−1

(
Bm

j +
d∑

k=1

ajkAm
jk

Nk

|N |

)
(f(N + mej)− f(N)) (4.5)

(where Bm
j describe the background reproduction process), which is similar to the

generator of binary interaction G2 of form (1.1), but has an additional multiplier
1/|N | on the intensity of binary interaction that implies that in the corresponding
scaled version of type (1.3) one has to put a simple common multiplier h instead
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of h|Ψ|. Apart from this modification, the same procedure as for (1.1)-(1.3) applies
leading to the limiting process on Rd

+ with the generator of type

ΛEG =
d∑

j=1

xj

(
φj +

d∑

k=1

xk

µ(x)
φjk

)
, (4.6)

where all φj and φjk are the generators of one-dimensional Lévy processes, more
precisely

φjkf(x) = gjk
∂2f

∂x2
j

(x) + βjk
∂f

∂xj
(x)

+
∫ (

f(x + yej)− f(x)− 1y≤1(y)
∂f

∂xj
(x)yj

)
νjk(dy), (4.7)

φjf(x) = gj
∂2f

∂x2
j

(x)+βj
∂f

∂xj
(x)+

∫ (
f(x + yej)− f(x)− 1y≤1(y)

∂f

∂xj
(x)y

)
νj(dy),

(4.8)
where 1M denotes as usual the indicator function of the set M and all νjk, νj

are Borel measures on (0,∞) such that the function min(y, y2) is integrable with
respect to these measures, gj and gjk are non-negative. Let ν̃jk(dy) = y2νjk(dy),
ν̃j(dy) = y2νj(dy) and vjk = (hl)−2ν̃jk([lh, lh + 1)), vj = (hl)−2ν̃j([lh, lh + 1)).
Then the corresponding approximation to (4.6) of type (4.5) after scaling can be
written in the form

Λh
EGf(Nh) = h

d∑

j=1

Nj

(
φh

j +
d∑

k=1

Nk

µ(N)
φh

jk

)
f(Nh), (4.9)

where µ(N) =
∑d

j=1 Nj and φh
jkf(Nh) equals

1
h2

gjk(f(Nh+hej)+f(Nh−hej)−2f(Nh))+
1
h
|βjk|(f(Nh+hej sgn (βjk))−f(Nh))

+
∑

l≥h−ω

[f(Nh + lhej)− f(Nh) + l(f(Nh− hej)− f(Nh))]vjk(l, h)

+
∞∑

l=1

[f(Nh + (1 + lh)ej)− f(Nh)]νjk([1 + lh, 1 + lh + h)), (4.10)

and similarly φh
j are defined. The terms in (4.10) that approximate diffusion, drift

and integral part of (4.7) have different scaling and have different interpretation in
terms of population dynamics. Clearly the first term (approximation for diffusion)
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stands for a game that can be called ”death or birth” game, which describes some
sort of fighting for reproduction, whose outcome is that an individual either dies or
produces an offspring. The second term (approximating drift) describes games for
death or for life depending on the sign of βjk. Other terms describe games for a large
number of offsprings and are analogues of usual branching but with game-theoretic
interaction. The same arguments as given for the proof of Theorem 1 and 3 yield
the following result (observe only that no particles are revivable in this model, and
no additional assumption of subcriticallity is required due to Theorem 1 in [17],
since the coefficients grow at most linearly):

Proposition 4.1 Suppose conditions (A1), (A2) hold for all measures νjk, νj.
Then for any x ∈ Rd

+ there exists a unique solution to the martingale problem for
ΛEG under the additional assumption that, for any j, if at some (random) time τ
the j-th coordinate of Xt vanishes, then it remains zero for all future times almost
surely. Moreover, the family of Markov chains ZNh,h

t defined by Λh
EG converges in

distribution to this solution to the martingale problem as h → 0 and Nh → x.
If the limiting operator is chosen to be deterministic (i.e. the diffusion and

non-local term vanish and only a drift term is left), we get the standard replicator
dynamics (4.4).

Similarly one obtains the corresponding generalization to the case of non-binary
(k-nary) evolutionary games (see e.g. [8] for biological and social science examples
of such games), the corresponding limiting generator having the form

∑d
j=1 xjΦj ,

where Φj are polynomials of the frequencies yj = xj/
∑d

i=1 xi with coefficients being
again generators of one-dimensional Lévy processes.
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