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Abstract

In this thesis we generalize a theorem of W.H. Lin.
Lin's results are concerned with the homotopy and cohomotopy'
of an inverse system of spectra P} - Using the quadratic
construction we construct an inverse system of spectra {P_ (E)]

We generalize Lin's results by studying the homotopy and cohomotopy

of {P_k(E)}
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§1. Introduction

M. Mahowald investigated the homotopy groups of stunted real pro-
jective spaces and found that they exhibited interesting periodic
properties. Mahowald made a conjecture based on these calculations
which was described by J.F. Adams in [2 3. W.H. Lin verified Mahowald's
conjecture in [15] and also proved a 'dual' version in cohomotopy. Lin's

theorem was the essential step in his verification of Segal:s conjecture

for the case G =72/2 .

We begin by briefly describing Lin's theorem. It is possible to
construct spectra P, , k €Z , and maps of spectra P, P, ., with

the following properties:

k-1 and P =]RPT (+ means add a disjoint

(a) If k=21 P, =RP/RRP 0

basepoint).

(b) If ]FZEU.U-]J is given the structure of a module over the mod 2

Steenrod algebra, A, by

] £ 2. 2+)
Sun = (j)u ) ’

-1
then H*(P_kﬁl/Z) is isomorphic to the A-submodule of IFlu,u "]

L
’Raz-ki

generated by u
(c) H*(P_k; ) has no odd torsion.

(d) The map of spectra P, » P, 4y induces the obvious inclusion in

mod 2 cohomology.



The maps P_, - P give us an inverse system of spectra

-k+1

. > Py +-P_k +-P_k_] > ..

let m, and 7* denote the homology and cohomology theories associated .

to S@ZE) , the Moore spectrum of the 2-adic integers.' Then

. "’" 'IT*P_k_-I -> 'IT*P_k -> TT*P_k+-I > e e

is an inverse system of abelian groups (as -k » -») and

A

k > 'TT*P_k_-I “>e o »

« 'H'*P_k_l_-l - ;T*P

is a direct system (as -k + -=) of abelian groups. If Tlim _ denotes
the 1nverse 1imit and colimk denotes the direct 1imit, then the

following result is a direct consequence of Lin's results:

Lin's Theorem ([15]).

There are isomorphisms:

(a) TimmP, Y787

c

e

ragl

(b) colim 7*P_,

In this thesis we shall generalize Lin's Theorem. The key

observation is that the spectra {P_, } can be constructed by using

+ the quadratic construction.



Let X be a CW-complex with basepoint Xy - Define a free
involution on S x(XAX) by T(w,xay) = (-w,yAx) . The quadratic
construction on X , written D,(X) » 15 the complex
SmxTXAX/SmxTonxO . Let Sp denote the homotopy category of CH-
spectra. Then May et al ([13] and ([18]) have extended this con-

struction to a functor

DZ:Sp + Sp .

There is a natural transformation of functors
SDZ(E)+-DZ(SE) , £ € Sp .
For each k ¢Z we define functors ([121) P_ :Sp + Sp by

ke -k
P_ (E) = STD,(ST°E) .

K

If we take E =S "X, X € Sp, then the above natural transformation

gives us a map of spectra
-k )
SD,(S™°X) > Dy(s™¥Hxy

k-1

hence, after applying S to the above map we obtain a map of spectra

K -k - -
P-k(x) =3 DZ(S X) » Sk ]DZ(S kHX) = P_k+-|(X) -

Thus we obtain an inverse system of spectra



cee > P_k_](E)-+ P_, (E) +-P_k+](E) > e

If we let P-k = P_k(SO) , then {P_ is an inverse system of

}
K
spectra satisfying properties (a) through (d) and Lin's Theorem

is true for this inverse system. We are led to ask 'under what hypothesis

on E will Lin's Theorem hold with the inverse system {P_,} replaced
by {P_, (E)} 7'

In Sp we can form the homotopy inverse Timit, written holimk

If p is a prime and E 1is a spectrum, we can define the p-completion

M

of E , written Ep . VWe say that E is a spectrum of finite type 1f

each skeleton of E 1is finite.

Theorem A

If E s a spectrum type, then there is a natural equivalence of

spectra
--Iﬁ .
5 'E, +~h0]1mkP_k(E) .

The hypothesis of Theorem A is sufficient to ensure that
w*holimkP_k(E) = ]imk"*P-k(E) _

Thus we obtain the following corollary which is a generalization of

" part (a) of Lin's Theorem.



Corollary

If E 1is a spectrum of finite type, then there is a natural

isomorphism
Al v,
Ted L = ]1mkﬂ*P_k(E) :

_The generalization of part (b) of Lin's Theorem is not quite SO

nice.

Theorem B ([121])

If E is a finite spectrum, then there is a natural i1somorphism
~ \, . A
n*E = co]1mkn*P_k(E) ‘

In Theorem B we cannot replace 'finite spectrum' by even 'CW-complex of

finite type' since we show that
| %*P0¥ colimkn*P_k(PO) :

However, we are able to construct a particularly nice isomorphism for
Theorem B. Note that P_t(st) = StDZ(SO) = sﬁRP: . There is a canonical
map ]RP': -+ S0 defined by 'map the basepoint to the basepoint and RP

to the other point'. This defines a map

t
p:P_t(S ) > St .



If o 1s the composite of maps from the inverse system {P_k(X)} ,

2 =20,
P_e-g(X) = P_.(x) ,

then define

t

by vy  fa) = o*(pP_i(a)) s aen X . If 221, then y, 1isa

homomorphism, and Yt o extends to a homomorphism
’

3’ ~1
Yt,g:“ X > 7 P_t_R(X) .

Choose ¢ 21 and let 1 be the composite

*t Yt,l

T X >'FrtP

. At
-t-g(x) + colim m P_k(X)

where the last map is the usual homomorphism from a term in a directed

system into the direct limit. By construction T 1is independent of

y 21 . T 1s essentially the total power operation in cohomotopy.

Theorem C ([12])

If E s a finite spectrum, then
r:n*k e-colimkﬁ*P_k(E)

is an isomorphism.



Next we briefly remark on the proofs of Theorems A, B and C.
To prove Theorem B we show that co]imk‘?P_k(E) is a cohomology theory
(not necessarily satisfying Milnor's wedgé axiom). Then we construct
a natural transformation of cohomology theories that is an isomorphism,
using part (b) of Lin's Theorem, when E = SO . The Eilenberg-Steenrod
uniqueness theorem will complete the proof. To prove Theorem C we use

N,

Theorem B to regard T as a cohomology operation in =*. We show that

~ wc 0

this operation is the identity by evaluating it on 1 ¢ #*S” and Theorem

C follows.

The proof of Theorem A is slightly more technical. Fix a prime p
and let E = Ep , for E e Sp . Given a spectrum of finite type X and
{Yk} an inverse system of spectra, each Yk of finite type, we construct

a spectral sequence converging in a strong sense to the group

M

[X, hollkak]* .

This spectral sequence is constructed by taking inverse limits of Adams

spectral sequences. To prove Theorem A we construct a map

L |
S 'L 4h011mkP_k(E) :

Then we use this map to construct a morphism of spectral sequences, namely,

A

from the Adams spectral sequence converqging to w,b to the above spectral

sequence converging to nyholim P_, (E) . Using a theorem of Adams,



Gunawardena and Miller ([ 41) we show that this morphism is an
isomorphism of spectral sequences. Convergence arguments complete

the proof.

Another interesting inverse system of spectra to consider 1is

o > Py A > P AR P AR

obtained by smashing the maps in the inverse system {P_ } with the
identity map on E . If bo and H(Z) denote the representing spectra

for connective KO-theory and integral cohomology, then Davis and Mahowald

prove:

Theorem D ([113])

There is an equivalence of spectra

(V 543-]HGZ ))g Y ho]imkP_kAbo .
je

We use the spectral sequence mentioned above to prove Theorem D.

For the sake of clarity and completeness, the first three sections
lay down the technical groundwork for the remaining sections and are dis-
tilled from the literature. Section two contains an account of inverse
limits and completions, and is taken mainly from [5 ] and [6 1.

" Section three is taken from [ 7] and discusses spectral sequences




&

and convergences. Section four contains an account of the Adams spectral

sequence and 1ts convergence properties taken from [7 ].

In section five we construct the Spectrﬁl sequence we need, paying
full attention to its convergence properties. In section six we prove
Theorem A. In section seven we prove Theorems B and C and provide the
counter-example mentioned above. In section eight we give our proof of

Theorem D. Lastly we provide a proof in the appendix of the Theorem of

Adams, Gunawardena and Miller. This proof comes directly from notes

taken in seminars given by Adams and Miller.
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§2. Inverse limits and completions

This section has been distilled from [5 3] and [6 1.

An inverse system of abelian groups is a collection of abelian
groups {An} , indexed by the natural numbers, and homomorphisms

: A + A

o n+l q

ntl

Given two inverse systems {An} and {Bn} with homomorphisms {cn}

and {en} , a map of inverse systems is a collection of homomorphisms

{f

f :A - B
N n n

that satisfy ann = f 19

n=4i{ N

Given an inverse system {An} , define a homomorphism

by d(a,) = a,9,4,13,47 + Then we define the inverse limit of the inverse
‘ . . . . - . -I . A
system {A } , written TimA , by 1lim A =ker d. Clearly limA,

is the subgroup of T A_ consisting of sequences (a ) with
n

an = 0n+lan+] . We also define RlimnAn = coker d. Then we have an

)

- exact sequence

. d .
0 -)-.l'lmnAn-*gAn —r-g An+R]1mnAn+0 .
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We now record standard results about limn , paying particular

attention to its exactness properties.

Let {AS t} be a collection of abelian groups with homomorphisms

{crt} , {es} making the following diagram commute:

As+1 s t+1 g As+1 o t
0 v,
s+'l+ ' s+]1
A > A
S, t+] 0t+] s,t

Lemma 2.1 ([ 51)

Let {A_ .} be as above. Then

11mshmtAS = 1im 11mSAS

st t ,t

Lemma 2.2 ([ 6 1)

il ————

If

0~ {An} -+ {Bn} -+ {Cn} > 0

is a short exact sequence of inverse systems, then
nn

0 - Tim A - 11man'f Tim C_ - Rlim A~ Rlim B - RlimC -0

is exact.
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Let

(d_.(k)} .
> {0 ()Y =5 qe (k)Y > aaw > (Cy(K))

be an inverse system (indexed by k) of chain complexes. We make

the following definitions

Zs(k) = Kerds(k) Bs(k) = Im ds+1(k) Hs(k) = Zs(k)/BS(k)
C, = 1ikaS(k) dS = 1imkds(k)
Zs = KerdS Bs = 1mds+] Hs = Zs/Bs

Lemma 2.3 ([ 51)
If RlimkHS(k} =0 and R1ikaS(k) =0, then 11mkHs(k) = HS .

The next lemma gives sufficient conditions for the vanishing of

R1im.

Lemma 2.4 ([ 5 ]Z

Let {A } be an inverse system with homomorphisms {o_} . Then

ejther of the following conditions implies that RTim A = 0 :

(a) For each n there exists m with

]m(UpOUp-lo"OUh) = Im(og o0...00. )

whenever p zm .
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(b) Each group An 1s compact and Hausdorff under a topology that

makes each cn continuous.

Condition (a) above is known as the Mittag-Leffler condition, but
condition (b) will be more useful in this thesis. We shall use the

p-adic topology to construct topologies that satisfy (b).

‘Given an abelian group A and a filtration of A by subgroups

_ S |
e e LTI
S

let neighbourhoods about a € A be the cosets a+A . The topology

that this defines is called the filtration topology. This topology is

Hausdorff if nF> =0 . The completion of A with respect to the
S

A

filtration topology, written A , 1is given by
A = lims AJES .

For a prime p , when we set F> = bsA the filtration topology 1is
called the p-aqic topology; we write Ep for the p-adic completion
of A . Note that any homomorphism f:A -~ B is continuous with respect

to the p=-adic tdbo]ogies on A and B since
n -1 n
pPAcf pB.

Let Zp denote the p-adic completion of Z , called the p-adic

integers.
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Lemma 2.5 ([ 6 1)

If A 1is a finitely generated abelian group, then

{ o

A = A

RZ
P /i

D

Give each A/pSA the p-adic topology and T A/pSA the usual
S

f

product topology. Then the subspace topology on Ap .

ﬁp = Tim A/p°A < 1 A/pSA
S

N

that this defines is the same as the p-adic topology on Ap .

Lemma 2.6

M

If A 1is finitely generated, then the p-adic topology on Ap 1S
compact and Hausdorff.
“~ L
Pf Let A(p) denote the p-torsion subgroup of A . Then Ap = 11ms
A(p)/p>A(p) . Each of the groups A(p)/p°A(p) has a compact, Hausdorff
p-adic topology, hence T A(p)/pSA(p) is compact and Hausdorff.
S

lim A(p)/p°A(p) is a closed subspace of I A(p)/p A(p) , SO Ap is
S
compact and Hausdorff.
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§3. Spectral sequences and convergence

In this section we discuss spectral sequences and convergence

' x
following [71 and [17]. A collection of chain complexes {Er’dr}

1] < r<e with differentials

=S S+r
dr‘Er > Er

is said to be a spectral sequence, written (Er’dr) , 1f for each r
there are isomorphisms

H(Er) = Eri

S

Construct subgroups Zi c E3 inductively as follows: Let Z? = B3

:

At stage 'r' we have constructed subgroups
S
]

and quotient maps qr:zi **Ei . Define Zi+] = Zi to be the subgroup

of elements a e Zi with dr(qra) =0 . Let B? = 0 . Then define

Bi to be the subgroup of Zi whose image under qr:Zi +-Ei corresponds
to the image of dr=Ei-r +-Ei . This gives a sequence of subgroups
_nS S S S S _ ¢S
0 = B] - B2 C.,..C Br c,.C Zr C,,.C Z] = E]
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By construction

.75 /nS S+r ,0S+r
dr.Zr/Br > 7 /B.l

_ 73 S _ pStr, o 5tr
Kerdr = Zr+1/Br Imdr = Br+1/Br

We also define groups

S S S

L =nl ckt
A § ]
S S S
B~ = u B cE
00 - r 'I
E> = 70/B]

A11 of the above groups are meant to be graded groups, graded by

codegree (the codegree of a graded group is minus the degree) since

we are using 'cohomology notation'. The differential, dr , 1S required
to have codegree + 1 , that is dr raises codegree by one. We shall

rarely need to specify the codegree so generally we will supress the

grading.

A morphism of spectral sequences
f:(Er’dr‘) > (Er’dr)
is a colliection of homomorphisms

e =S
fr.Er > Er
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each of which fits into the commutative diagram

f
S r =S
Er > El“
dr' ¥ ¥ dr
S+r =S+r
Er '_?;> Er

We record the standard comparison theorem for spectra1+sequences

(e.g. see [71]).

Theorem 3.1

Let f:(E ,d) +-(Er,ar) be a morphism of spectral sequences with

f :E_ -+ E k €< r £ w

is an isomorphism.

Let (Er’dr) be a spectral sequence and let G be a group

filtered by subgroups F> s S eZl , with v > -G . We say that
- S
(E.0d,)

(a) converges to G weakly if we are given isomorphisms

-—-———-—-—1——-_—-—_1-___.______-

S X FS/Fs+]

o0 ’



- 18 -

(b) converges to G if (a) holds and the filtration topology on

G 1s Hausdorff;

(c) converges to G strongly if the spectral sequence converges to G

and
G = Tim, G/F°
i.e. the filtration topology on G 1is complete.

If (E..d)) and (Er,ar) converge weakly to G and G , then

we say that a morphism F:(E..d ) +-(Er,dr) is compatible with a homo-

morphism g:G - G if, using the isomorphisms in (a) above,

ES oo

oo o

112 |12

Y Akl —

oy

commutes.

Theorem 3.2 ([ 7 1])

Suppose that (E,,d.) and (E ,d ) converge strongly to G and G .
Llet f:(E.,d) > (E.,d)) be a morphism compatible with g:6 »G . If

is an isomorphism for some Kk <o , then g:G -+ G is an isomorphism of °
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ne

filtered groups, i.e. F°G =~ F°G
Nearly all the spectral sequences that we shall use arise from
the method of unravelled exact couples. We say that the diagram of

graded (by codegree) abelian groups

is an unravelled exact couple if each of the sequences

AS———‘j-——>ES S >AS+] a >AS

is long exact. The homomorphism & 1is required to have a codegree

+ 1 while a and Jj are to have codegree zero.

From the above unravelled exact couple we obtain a spectral sequence

(Er’dr) as fb}Jows: define subgroups

25 = " im(a" T AST L, a5ty ¢ S
Bi = ] Ker‘(ar_]:As -+ AS'H]) c E°
~ with
l ro° CeeeC Ly
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and define E° =2°/B> r =22, E] =E> . Define the differential
d :E + E" by Tifting
GEr C'As+1
to ASTY and then applying J . Thjs is well defined and it is easy

to verify that H(Er) = E Then, as before

r+l °

Zi=nZS,<_::_E?

o T

Bi=uBis_E?
r

> = 23/8°

A morphism of unravelled exact couples

FE{AS,ES,a.j,G} *-{55,55,5,3,5} is a collection of homomorphisms

fS:AS *-ﬁs . gs:ES--»-ES'1 that fit into the commutative diagram
T3 a5 4 s g
S+] S S S+]
f ' f ' g, +f

*

gs+] a AS J S 8 gs+1

- Note that such a morphism induces a morphism of the corresponding

spectral sequences.
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Suppose that E5 =0 s <0 , then we say that the resulting
spectral sequence is a right-half-plane spectral sequence. Given

such a spectral sequences we take as its target group (for convergence)

AO = G and we filter G by the subgroups

FSG = m(aS:AS » AY) .

Suppose that f:{A°,E>} + {A>,E>} is a morphism of unravelled
exact couples and that f:(E ,d )+ (E ,d ) is the corresponding
morphism of spectral sequences. Then, if (Er’dr) and (Er’ar) converge

weakly to A% and RO

f:A0'+-ﬁ0 .

, Fi(ELd ) » (E..d) s compatible with

The convergence properties of spectral sequences arising from

unravelled exact couples takes on a particularly nice form. Following

Boardman ([ 71), we say that a right-half-plane spectral sequence

converges conditionally to G = Al i f

.S -
11mSA = () R]1mSA =0 .

Note that without extra assumptions a conditionally convergent spectral

sequence need not converge weakly to G .

S _ o1 S
Let REm = Rhmr Zr .
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Theorem 3.3 ([ 7 1)

Let (Er’dr) be a right-half-plane spectral sequence, arising from

an exact couple, that converges conditionally to G = AO . Then

(a) the filtration topology on G 1is complete;
*
(b) (Er’dr) converges strongly to G if and only if RE_ =0 .

A left-half-plane spectral sequence is a spectral sequence arising

from an unravelled exact couple {A>,E°} that satisfies E> =0 for
s >0 . Let coh‘mSAS = 0 ; then we filter the target group H = A]
by

S~}
FSH = Ker(A! 22— AS)
Theorem 3.4 ([7 J)*

If (E.,d ) is a left-half-plane spectral sequence as above, then

(Er’dr) converges strongly to H .
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54. Convergence of the Adams sEectra1 sequence

We begin this section by setting down some basic properties of

Sp. (Seel[31, [7]1 and [81 for general references.) For X
and Y € Sp , Tet [X,Y] denote homotopy classes of maps X -+ Y ,

and let [X,Y]t =[StX,Y] . If a e [X,Y] then we say that a has

t ?
degree t or codegree -t .

An 1nverse system of spectra is a collection of spectra {Yk} ’

indexed by the natural numbers, with maps of spectra

Ors1 ¢ V4l *-Yk .

In Sp we can form the spectrum 1 Y, constructed so that, for any

% k

spectrum W

1, =1 W,Y

W, T Y, ; T -

k

In particular, let W = Y, and define the nrojections pn:ng*+ Yn

I
K
by

Iw ) (pn) )

Then we define a map d:nY, - ny, by
K& kK

N

, k’YnJ
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We define the homotopy inverse limit of the inverse system {Yk} .
written _ho]ikak » DYy ho]ikak = fibre(d) . This definition 1is
motivated by

Ker(d*:]lzﬂ*Yk -* En*Yk) = Hmk'n*Yk

Proposition 4.1 ([31)

If W 1s a spectrum and {Y,} is an inverse system of spectra, |

K
then there is an exact sequence

0 ~ RTim [W,Y, 1y 1 = [W,holim Y, 3, » Tim [W,Y, 1, = O .

k*
'‘Dual’ to Proposition 4.1 we have

Proposition 4.2 ([191]) (Mi]nbr's exact sequence.)

X =X.

Let X be a spectrum filtered by subspectra X with ‘

u
S
Then for any spectrum E there is a short exact sequence

0 ~» R]‘imS[XS.EJ*H -+ [X,E], - Hms[Xs,E]* -+ 0

If G 1is an abelian group let SG denote the Moore spectrum of

| type G (see L3 1). If E is a spectrum, then there is an inverse

system of spectra
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. > SZPSAE > S Z/p°AE + S Z/pAE

My

The p-completion of E , written Ep ;

of this inverse system.

Lemma 4.3

If E 1is a spectrum of finite type,

E xEASZﬁ.
P P

Pf Since E 1is of finite type

L

N EASZ/p" %~ E A nSZ/p"
n N

(sée [3]1) and the result follows.

Lerma 4.4

is the homotopy inverse limit

then

If F 1s é finite spectrum and E 1is a spectrum of finite type,

then

A

E 1, ¥ [F,E "
[FLE 3 = I ]*2 z,

Pf The previous lemma shows that

Ep n EAS Z; .
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Since F 1is finite there is a short exact sequence

A ‘A Z A
0 -~ [F,E], ﬁﬁ Zp -+ [F,EAS Zp]* + Tor (CF,ETw_qs Zp) + 0
(see [ 31). The group Z; is torsion free, so Tor% vanishes and the

result follows.

We now give an account of the classical modp Adams spectral

sequence. For a prime p , Tlet H(p) denote the representing spectrum

for modp cohomology. Let i:5° » H(p) be the inclusion. Let H(p)

be the fibre of 1, then we have the exact triangle

0

fi(p) » 0 —s H(p) —3 s'A(p) .

For convenience define

15 = s'A(p) ... S]H(p) :
s times

Then for any spectrum Y and each s we have an exact triangle
15 Ay MM A H(p) A Y IAGASHL oy L s1S Ay

~If X is a spectrum, then by applying [X,-], to the, above exact

triangles we obtain the unravelled exact couple
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DX, IBHAYT, 2 X, I5AYD, .. o [X,Y],

N

LX,] AH(p )AY],

The spectral sequence (Er’dr) associated to this unravelled exact

couple is the classical modp Adams spectral sequence.

We wish to show that this spectral sequence converges conditionally,

1.e.
Tim [X,1°AY], = 0 R14m [X,1%AY], = 0 .

For general Y , however, it is not obvious that either of these con-
ditions will hold. So we will construct a new unravelled exact couple

that satisfies the convergence conditions and gives rise to the same

spectral sequence '(Er,dr) .

To begin, define

o0

— halim TS
Y(p) = h011mSI AY
Then form the exact triangle

Yo o IPAY & ISAY/YT .

Since the homotopy inverse 1imit of a system of exact triangles is an
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exact triangle,
: S ® N
holim (I AY/Y(p)rb :

Hence Proposition 4.1 shows

1im [X,ISAY Ym = | S * =
1 S / (p)]* 0 R11ms[X,I AY/Y(p)]* 0 ]
The commutative diagram of exact triangles
Y, Y, ®
(p) ~ (p) ~ T
¥ Y ¥ \ {
| ISHAY -+ ISAY > ISAH . WAY o SISH AY
' ' (p)
S+] o S S ¥ ] '
AY/Y I°AY/Y, S+ ®
I / (p) + I° / (p)'+ IAH(p)AY -+ SI AY/Y(p)
o Y o ¥ ¥ 2+
Y SY * ~
oy TN 7 > S p)

gives us, via the third row from the top, a new unravelled exact couple

s X ISHAY/Y 1)3x 30X AV/YY

\ .

[X,1° AH(p)AY]*

(p)* e oo LA m(p)

and, using the middle row of vertical maps, a morphism of unravelled

exact couples
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f:{[X,ISAY]*,[X,ISAH(p)AY]*}-+ {[X,ISAY/Y?p)lp[X,ISAH(p) Y1,)

Theorem 4.5 ([ 7 1)

For any spectra X and Y the classical modp Adams spectral

sequence converges conditionally to the group [X,Y/YTD)J*

Pf If we let (E ,d) denote the spectral sequence associated with

the unravelled exact couple
{EXQISAY/Yw ]*s[X,ISAH AY] }
(p) ) it

then the morphism of unravelled exact couples f induces a morphism of
spectral sequences f:(E ,d ) ~ (Er,ar) . The homomorphism f,:E, »-E]
is an isomorphism so Theorem 3.1 applies to show that f is an isomorphism

of spectral sequences. Since

o

: S _ : S
R11ms[x,f A/ (0y3e =0 Tim DX, AY/Y

o0

(p)yix = 9 >

(Er,ar) converges conditionally to [X,Y/Y?p)]* :

This completes the proof.

We would of course like to know what Y/Y is and Bousfield [9 ]

provides the answer.
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Theorem 4.6 (L 9 1)

If Y 1is a spectrum of finite type, then Y/YTp) n ?p .

If Y 1s of finite type, define
AS = [X,15AY 1, ES = [X,IS Y
p~* Ko TAH oy AT Ly

Recall that a,j,s§ are the homomorphisms in the unravelled exact couple

(AS.E5} .

Lemma 4.7

If X and Y are spectra of finite type, then there are compact

Hausdorff topologies on AS and E> which make a, j and & continuous.

Pf Filter X by its finite skeleta *{Xn} . Then we have Milnor's

exact sequence

. s 2 g ~ . g »
0 -+ REim [X ,17AY 1oy + DX, Avp1#+ Tim [X 1 Ava* + 0

Lemma 4.4, Lemma 2.5 and Lenma 2.6 show that each group [Xn,ISAYp]*

has a compact, Hausdorff p-adic topology. Thus by Lemma 2.4 (b)

. S &
RIim X, PAY 1y = 0,
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hence

S 3 g S O
[X,] AYp]* = 11mn[Xn,I AYp]*

If each factor has the p-adic topology, then

S N
EEXn’I AYp]*

is compact and Hausdorff under the product topology. The subspace

S _ 4. S v S v
A" = 11mn[xn,1 AYp]* s,g [Xn,I AYp]*

is closed, hence compact and Hausdorff.

Since the group [Xn,ISAH(p)AY]* is a finite p-group it is compact
and Hausdorff under the p-adic topology. Thus the above procedure shows

that

S 4. S S
E —_]1mn[Xn,I AH(p)AY]* g,g[Xn,I AH(p)AYJ*

is a compact, Hausdorff subspace. The homomorphisms a, j and & extend

to continuous homomorphisms of the product spaces, hence they are continuous.

Theorem 4.8

If X and Y are spectra of finite type, then the classical modp



- 32 -

Adams spectral sequence converges strongly to [X,? 1. .

P

Pf Recall the definition

Zi _ 5-1 1m(ar-1:As+r¢_As+1) E_ES _
Then the previous lemma shows that each Zi is a compact, Hausdorff

subspdce of E> . Each of the inclusions

. C Zi c ., C Z; - Z?

1S automatically continuous, so the jnverse system {Zi} satisfies

the hypothesis of Lemma 2.4 (b). Hence R]ieri =0 . Theorem 4.5,

Theorem 4.6 and Theorem 3.3 complete the proof.
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§5. The construction of the spectral sequence

Throughout this section let X be a spectrum of finite type and
let {Yk} ~be an inverse system of spectra, each Y, @ spectrum of

finite type. For convenience fix a prime p , and write H = H(p) and

N, M

E = Ep . Then we will construct in this section a spectral sequence

converging strongly to

LX, h011kak]

In the previous section we showed that the unravelled exact couple

—P[X IS-I--I Y >[X I AY ] "".-."‘"[X:Qk]*
5(k) \ /J(k)
[X, 1 AHAY 1,

gives rise to the classical modp Adams spectral sequence converging
strongly to the-group [X,;k]* . We will construct. the spectral sequence
by taking the inverse limit, over k , of the above unravelled exact

| couples.
To begin, define
AS (k) = (X, 1%V, 1 A = Tim A (k)

Es(k) = [X,ISAYk] ES = 1imkES(k)
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= 1imka(k) § = 1imk6(k) J = limkj(k)

Proposition 5.1

The following is an unravelled exact cohple:

Pf We are required to show that each of the sequences

As+] AS

is exact., Lemma 4.7 shows that each of the inverse systems {Ims(k)} ,
{Ima(k)} and {Imj(k)} satisfies condition (b) of Lemma 2.4. Lemma

2.3 proves the result.

let (Er’dr) denote the spectral sequence determined by Proposition

5.1. Recall the definitions

25 (k) = (k) tm{a (k)™ :ASH (k) » AT (K)) < ES(K)

j(k)ker(a(k)™1:aS (k) = ASTT (k) < ES(K)

i

B, (k)
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Proposition 5.2

The sequence of chain complexes (1imkEr(k),limkdr(k)) is a

spectral sequence.

Pf “Using Lemma 4.7, the groups Zﬁ(k) and B;‘i(k) are compact,
Hausdorff subspaces of Es(k) . Thus, under the quotient topology,
the inverse system '{Ei(k)}k satisfies condition (b) of Lemma 2.4,
hence

. S
R11mkEr(k) =0 .

Likewise, using lmdr(k) = Bi:q(k)/5i+r(k) , we see that

i
-

R.Hmk 1mdr(k)

Lemma 2.3 now proveé the result.

ProEosition'S.B

There is an isomorphism of spectral sequences

(Epsdp) = (VimE (k), Vimd (k) .



Pf The obvious morphism of unravelled exact couples

(A%,ESY = {(AS(Kk),ES(Kk))
induces a morphism of spectral sequences

(E»d.) > (E.(K),d (K)) .

This gives a morphism of spectral sequences
(Er,dr)-+ (1imkEr(k),]imkdr(k))

which is an isomorphism when r =1 . Theorem 3.1 completes the proof.

We turn now to the question of convergence:

Theorem 5.4

The spectral sequence (Er’dr) converggs strongly-to [X,ho]ikak]* .

Pf First we note that by Lemma 4.7, Lemma 2.4(b) and Proposition 4.1,

[X, holim Y, 1, = 1imk[X,Yk]*_.

So to prove the theorem, by Theorem 3.3, it suffices to show that

. S _ . AS .
]1mSA = 0 RllmSA = 0 R11err =0 ,
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As a subspace of I As(k) , A s compact and Hausdorff by Lemma 4./7.
k

The maps in the inverse system {A>} are continuous under this topology

so Lemma 2.4(b) applies to show that RHmS AS =0 .

Recall that for each k limSAS(k) = 0 by Theorem 4.5. Thus,

using Lemma 2.1,

. S . . S . . S
11m58 = 11m511mkA (k) = 11mk11mSA (k) = 0 .

Lemma 4.7 shows that as a subspace of 1 E°(k) , > §s compact
k
and Hausdorff. Likewise A> is a compact, Hausdorff subspace of A> (k)

K

and the homomorphisms a,j and & are continuous. Thus Zi is a

compact, Hausdorff subspace of E> . Each of the inclusions

: . =S
is automatically continuous, hence Lemma 2.4(b) shows that Rhmr_Zr =0 .,

This completes the proof.

*
Let A(p) denote the mod p Steenrod algebra, B =H X and

*
M, = HY Since {Y,} 1is an inverse system of spectra, the A(p)-

k k °
modules M, form a directed system. Let M = colimkMk . The standard

identification of the E,-term of (Er(k)’dr(k)) (see [ 31) s

X

£, (K) = Extizp) (M, ,B) .
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Then, using Proposition 5.3, the E,-term of (Er’dr) is given by

EZ’ Tim ExtA( )(M B) .

We note that the codegree of Eg’t is s-t (L7 1).

Theorem 5.5

The homomorphism

*

A(p)( ) h K xtA(p)(Mk’B)

Pf Let J° be an injective A(p)-coresolution of B . Then

* *
im H A S
]1mk OmA(p)(bk J~) HomA(p)(M,J ) .

Let CS’ (k) and D (k) denote the cycles and boundaries of the cochain

complex HomA(p)(Mk,B) . The cohomology of this cochain complex 1is

. and the cohomology of the cochain complex Hom:(p)(M,B) is
M,B see [17]
(p)( ) | 71).
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Using the i1dentification from the Adams spectral sequence

in the proof of Proposition 5.2 we showed that
RTim ExtS? (M, ,B) = 0
im EX A(p)( 38) =0 .

For each K let Q . denote the kernel of the homomorphism

Me > Mgy - Let IT1k be the A(p)-module defined by the short exact

K
sequence

+ M, =+ 0

0> Q =M M

Then we have a short exact sequence of inverse systems
0 {Q} » M}~ )~0 ,

with the homomorphisms in {Qk} being zero, and the homomorphisms 1in

- o ® . . . ‘ _ +* G .
(M} being injective. Because J° is injective, HomA(p)(-,J ) s

exact (see [171), soO

0 » {Hom* (F‘l JS)} -> {Hom* (M JS } -+ {H m* (Q JS)} >
A(p) 'k’ A(p) M) TA(p) kT

is a short exact sequence of inverse systems. The homomorphisms 1in
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+* - S )
M : ] S
{HomA(p)( ” )} are onto and the homomorphisms in {HomA(p)(Qk,J }}

are zero. Hence these systems satisfy the Mittag-Leffler condition and

* L

R11 H S = = ] * - >
1mk OmA(p)(Mk’J ) 0 R]]mkHOmA(p)(kaJ )
by Lenma 2.4(a). Lemma 2.2 now shows that
R1im, Hom: (1, ,J5

The short exact sequence of inverse systems

x * *
0+ {C* (k)}, - (Homy ) (M 53°)}, > {D>* (K)}, ~ O

and Lemma 2.2 show that

R1im DS (k) = 0 .

k
Lemma 2.3 now completes the proof.

We summarize the results of this section with the following theorem:

Theorem 5.6

If X is a spectrum of finite type and {Yk} is an inverse system

of spectra,each of finite type, then there is a spectral sequence with

Ez-term

converging strongly to

[X, holikak]*
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56. The proof of Theorem A

Given a spectrum E we define

P_ (E) = 5°D,,(57¥E)

using the quadratic construction on spectra, D, (see [12], [131).
Llet C denote the homotopy category of CW-complexes. Let: S denote
the full subcategory of Sp consisting of objects s*X , 2 ¢Z and
XeC . Werefer to S as the stable category. We recall five facts

about the functors P_, which we will need in this section and section

seven (see [131 or [121]).

Fact 1

Given a CW-complex Z and a spectrum E , there is a map of spectra
$(Z,E):ZaP_, (E) » P_, (ZAE)

which is a natural transformation of functors CxSp = Sp .

If W, EeSp let T:EAW > WAE be the map which switches factors.

Fact 2

Given CW-complexes Z and X , and a spectrum E , the following

. diagram commutes:



- 49 -

2w (E) 2D, 70p (xaE) $AZK2E), b (7axaE)

TAT | - . k(TA])

(E) ———— XAP_, (ZaE > P_y (XAZAE
T 1 (24E) K $ (X, ZAE) -k )

¥

For E e Sp let o :P_ (E)+-P_k+](E) be the natural map
defined by

o) = S-]¢(S],E) ;

Fact 3

There are natural maps of spectra

.k |
1,55 "AEAE - P_k(E)

-k

P _y P (E) = S "AEAE

which fit into the exact triangle

Moreover, p-ki-k =1+ (-1)'7T.

The maps o_, give Us an inverse system {P_ (E)} .
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Fact 4

If we define an inverse system of spectra (P} by P, = P_k(so) ’
then {P_, } satisfies properties (a) through (d) in the introduction

and Lin's Theorem holds for this inverse system.

Fact 5

Given an exact triangle in C
A->X-=>Y=>5A,

there is a spectrum P_k(X;A) and an exact triangle in Sp

A) .

P_i (A) ~ P_ (X) + P_ (X3A) + SP_,

If A:S] a-Sz is the diagonal map, then there are maps

P_ (X3A) > P_, ,1(X;A) which fit into the commutative diagram of exact

triangles

-k | -
STEAN = P (GA) - P (v) o+ sTMaay
Yy 0y 5™Kan)

ck+] _
STANY P (GR) & P (V) > 5K Ay

Note that the vertical maps to the far right and the far left are zero.
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Our first task is to construct a map of inverse system of spectra

s™'E » {P_, (E))

Recall that Lin's Theorem shows that
~a
22 = ]1mk1r_.| P_k
Choose a map of inverse systems

.1 uoyd

S > {P_ }

that passes to 1 eZZ under the above isomorphism. Given a spectrum
of finite type E , let ’{En} denote the set of all finite subspectra

of E . For each m there exists am 20 with

Sﬂ-mEm e C

Using Fact 1 we form the composite

P Al m
1 % -k-lm L ¢(S E »5 ) %n

- m
S 'AS Em

which we desuspend to form the composite

4 L

m m
p-k-am(s Em)

]Em -»> P"'k'ﬂ, AEm -3 S

m

o
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-2 2
Using P-k(Eh) =S mP_k_lﬁ(s mEm) and the map of spectra

P (E ) +P_ (E) , induced by the inclusion, we obtain the composite

-1
S Em -+ P-k-RmAEm + P_k(Em) -+ P_k(E) .

Given an inclusion Em g_En » 220, using Fact 2 we obtain the

commutative diagram

-1
ST * Pagen B > P ()

' ~ ; P (E)

-1
S B #-P_k_gnAEn +-P_k(En)

Since E =u E_ we have constructed a map ¢k:s-1E +~P_ (E) . Fact ¢
o .

and the construction show that these maps form a map of inverse systems
sTIE > (p_ (E)}

*

We wish to identify this map in mod 2 cohomology, H . Let A

denote the mod 2 Steenrod algebra. Following Singer ([201), given
a left A-module M , define the Z/2-vector space a(M) by

|

A(M) = Flu,u '] @M

+ Give A(M) the structure of a left A-module via

a, % -] \ R+a-1
Sq (u €m) = ?(a_%j)u e f | Squ, meM
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Note that as a functor from the category of left A-modules to itself,

A 1S exact.

|

There is an A-homomorphism (see [20]) e:a(M) = & M defined by

0 Sq£+]m L 2 -]
c(u@m) =

0 othefwise.

After applying mod 2 cohomology to the inverse system {P_k(E)}

we obtain a direct system of A-modules. The following observation 1S

due to H. Miller and a proof may be found in [12].

Progosition 6.1

There is a natural isomorphism defined on Sp

N,

* *
A(H E) = colim, H P, (E) .
k™ =k
* - colim, @, :colim H (P_, (E)) » £ 'H’
Let ¢ = co]1mk¢k.co m ( -k( )) > HE.

Proposition 6.2 ([12])

If F 1is a finite spectrum, then o = c

~ Corollary 6.3
x

If E 1s a spectrum of finite type, then @ = ¢ .
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Pf Let E  denote the collection of all finite subspectra of E .

Then we have the commutative diagram

¥
AMHE) — W'
B ¢ h }

* . -1, %
A(H En) —_—> I 'H En .

LA
’

* * -
Fixing - * choose m so that H E = H E . Since & is exact, if

X € H'E then under the homomorphism A(H*E) *-A(H*Em)

FAX > aX .

Proposition 6.2 ﬁow completes the proof.

We quote a theorem of Adams, Gunawardena and Miller (L4 3) which
will be proved in the appendix.

Theorem 6.4 ([ 41)

If M is a left A-module, then the homomorphism

L

eX

c S, ¥, -1
Xta (z M, Z/2)

S,* |
> Exty? (a(M), Z/2)
is an isomorphism.

Progdsition 6.5

If E is a spectrum of finite type, then the spectrum holimP_, (E)

is two-complete.
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Pf First we will show that for k odd meP_ (E) s finite. Let

H,(Q) denote rational homology, then

Py (E) 8 Q= Ha(Q)(P_ (E)) .

Using Fact 3 we construct an unravelled exact couple

Hie (Q)(P_i (E)) = Ho(Q)(P_y 1 (E)) oo H(Q)(P_ ,(E)) + ...

W\ e,

H, (Q) (EAE)

.-.Il

which determines a left-half-plane spectral sequence converging, by

Theorem 3.4, strongly to He (Q)(P_, (E)) . When k s odd Fact 3
shows that

d? = Pyly = 1+ ('])k+s ,

so E, =0. Thus when k is odd

Ny

n*P_k(E)ﬁﬁ Q =0,

hence m,P_, (E) is finite since P_ (E) is of finite type.

Next we will show that "*P-k(E) is a two-group when k is odd.

If p is prime and H,(p) denotes mod p homology, then using Fact 3



- 49 -

we obtain just as before a left-half-plane spectral sequence converging

strongly to H*(P)(P_k(E)) . The differential d] is determined by

d? = Pyiy = 1+ (-1)k*s
Hence if p #2, p is prime and k 1is odd, E, =0 . Thus
H*(p)(P_k(E)) =0 . This shows that “*P-k(E) is a two-group when
k 1is odd.

If A denotes the two-completion of spectra, then
[holimkP_k(E)]A = ho]imkak(E) . Since each spectrum P_, (E) 1is of
finite type Pfk(E) " P_ (E) A S(ZS) by Lemma 4.3. Hence the inverse
system {n*Pfk(E)} satisfies condition (b) of Lemma 2.4 by Lemma 4.4,

Lemma 2.5 and Lemma 2.6. Proposition 4.1 now shows that
meholim P2, (E) = Tim m,P_ (E) .

Since the groups "*P-k(E) are finite for each odd k the 1inverse

system {w*P_k(E)} satisfies the Mittag-Leffler condition. Lemma 2.4

and Proposition 4.1 now show that

nyholimP_, (E) = Tim n,P_ (E) .
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We have the commutative diagram

el 'iﬂ'lkp_k(E) +~ m,hol 1mkak(E)
|12 |2

lim w, _k(E) > Tim w P (E)
Since for each odd k 'mP_, (E) is a two-group and using Lemma 4.4.
lim m,P _k(E) 1im P _k(E)

This completes the proof.

Proof of Theorem A

Let (E.,d) denote the Adams spectral sequence converging to
Ty ]E and let (E ,d ) denote the spectral sequence of Theorem 5.6
converging to wcholim P_, (E) by Proposition 6.5. Then the map of

inverse systems

(o, }
5™l —X— {P_, (E))

induces a morphism of spectral sequences f:(Er,ar) 4-(Er,dr) . On the
%
¢ which is an isomorphism by Corollary 6.3 and Theorem

- Ez-tems, fz
6.4, Theorem 4.8, Theorem 5.6 and Theorem 3.2 complete the proof.
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§7. The proofs of Theorem B and C

This section comes from [12]. If X 'is a CW-complex, then

Fact 1 gives a natural map of spectra

*

p(X,80):P_ AX > P_ (X) .

We write ¢ for the map of inverse systems of spectra
(P_ X} » {P_ (X)} induces by the maps ¢(X,S’) . In this thesis we

do not require a cohomology theory to satisfy Milnor's wedge axiom.

Theorem 7.1 ([ 121)
x
Let E be a cohomology theory defined on Sp . Then

%
(a) colimkE P-k(E) is a cohomology theory defined on S 3

(b) the natural transformation of cohomology theories, defined on C ,

* * *
0 :c?limkE P_k(X) +-co]imkE P, AX

K

is an isomorphism when X e C 1is finite.

Pf (a) The only difficult point in the proof is showing that

x
colimkE P_k(-) takes exact triangles in S to long exact sequences.
* Recall that conk is an exact functor. Then given an exact triangle
in S |
A+ X-=+Y>SA,
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*
Fact 6 shows that colim E'P_, (Y) = colim € P_ (X,A) . Thus, using

Fact 5, we obtain the required long exact sequence

. * ' . * . *
.+ colim E P_, (Y) » colim E P_i (X) + colim E P_k(A)-+ .o

(b) It is clear that colimkE*P_

N .
defined on Sp. ¢ , definedon C , 1is a natural transformation

of cohomology theories. When X = SO Fact 4 shows

kAX is a cohomology theory

x
that & is an isomorphism. The Eilenberg-Steenrod uniqueness theorem

%*
shows that ¢® is an isomorphism for each finite X € C

Corollary /.2

If X 1is a finite spectrum then there is a natural isomorphism
n, *

x
B:colim E P_ (X) = colim E P_, AX .

Pf Since X 1s a finite spectrum, for some 2 = 0 s*x e ¢ . Now

use Theorem 7.1,

Proof of Theorem B

Fact 4 shows that PO(PO) 3RP: , hence we have the canonical map

0 0 0
p:PO(S ) =IRP_ = S

described in the introduction. Recall that {U_k} is the collection of .
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maps in the inverse system of spectra {P_k} . Then we define maps
g_k:P_k_+-SO by 9_, =poo_jo...0_, . The maps g_ Al determine

a homomorphism

Gam*X » colim w*P_ AX

which is a natural transformation of coholomolgy theories, defined on

Sp . When X = S0 Lin's Theorem shows that G is an isomorphism (see

- [151), hence G 1is an isomorphism, by the Eilenberg-Steenrod uniqueness
theorem, when X 1is a finite spectrum, Now use corollary 7.2 to complete

the proof.

We turn now to the proof of Theorem C. Recall that in the introduction

we defined a map

t

cr X = CO'I'imk'rrt

Yt P_t-a %)

Let q) and q; be the projections of XvY onto X and Y . Define

f;p_k(xyy) +-S-kXAY to be the composite
Pag ok ST,
P_k(XvY) + S T (XvY)A(XvY) += S TXAY .

" Lemma 7.3 ([12])

The map of spectra .
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Ky Ay

HiP_ (XVY) > P (X) v P_(Y)V si

with components P_, (q;) , P_(a,) and f is an equivalence.

Pf LlLet j] and j2 be the inclusions of X and Y idinto XW .
k

Define g:S "XaY - P_ (XW) to be the composite

. i
s7Ryvy —LEs sTE(xv ) a(xvY) —K5 P (xvY)

k

Then the map P_k(X)VP_k(Y)vS' XAY 4-R4$XVY) , with components

P (J7)s P (J5) and g , s an inverse for H .

Lemma 7.4 ((121])

For o,B € ﬂtX , X e 3p

~ -t
Yt,O(a+B) = Yt,O(a) + Yt,O(B) + S GABp_t

Pf Let W:X - XvX be the map with both components the identity.

Then the composite

P_y (W) :

H -
P_(X) > P_y (XVX) —— P_ (X)VP_, (X)vS™ "XaX

has as its first two components the identity and Py 3S its last.

The proof now follows.
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Lemma 7.5 ([121)

The map Yi.n 1s a homomorphism if vy 21 .

Pf Use the previous lemma and the fact that

O . P }
t-1 k>StAXAX

P_t_](x) > P_t(X)

is part of an exact triangle to show that
Yt, (U+B) = Yt,a(a) T Yt,E(B)
when ¢21.

Lemma 7.6 ([121)

If X is a finite spectrum, and 2 = 1 , then Y5 extends to

a homomorphism

t

Yt,l:“ X = P-t-ﬂ,(x) )

Pf If XeC and n2-k, define the spectrum P, (X) by replacing

S~ with Sn+k throughout the definition of P_k(X) . This works when

' X e Sp as well (see [12]). We define maps
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n .t ton
Yt,ﬂ..“ X = 7T -t-ﬂ(x)

just as before which are homomorphisms when £ 21 . If X is a

finite spectrum, then P, (X) {s finite and by Lemma 4.4 v, , extends

to a homomorphism

n ~t, N
Yi gt FX > P_t_R(X) ,

~t,n

Following the proof of Lemma 4.7 we see that ]1m n Pt (X) = t

Py, (X))

hence the homomorphisms {Yg z}ﬁ -define a homomorphism

~t ~t
Yi,goT X = P-t-R(x) :

Proof of Theorem C

~t
If XeS and o e m°X , then Yt+],£(5a) = STt,R(a)’ hence T

commutes with the suspension isomorphfsm in the two cohomology theories.

0.0

If 1 enS s the unit, B is the isomorphism in Corollary 7.2 and

G is the isomorphism in the proof of Theorem B, then Tr(1) = B-]oG(l) .
. ol ] * :

Since T and B oG are natural and commute with suspensions they agree

on finite spectra. Thus T 1{s an isomorphism on finite spectra since

B-]oG is.
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Lastly we show that Theorem B is false when X = Py - Given a
finite abelian group G, 1let BG denote the classifying space of
G . Let A(G) denote the Burnside ring of G completed at its

augmentation ideal. G. Segal made the conjecture for finite groups G

|

cr ¢t
\Y4
o O

Let D4 be the dihedral group with eight elements. Then (L1 1)

PO = BZ/2+ . POAPO = B( /2 32/2)4_ > Po(PO) = BD4+ :

N

N

[A(D4)]2 - glz .

Adams, Gunawardena and Miller ([4 1) verified Segal's conjecture
when G =Z/2 xZ/2 . Carlsson ([10]), using their results, proved the con-

jecture.. Hence the cohomotopy exact sequence of the exact triangle

-k -k+1
S POAPO N P_k(PO) > P-k'l'](PO) -+ S POAPO

shows that
. 20, n ~()
C0]1mkn P_k(PO) = (P-](PO)) '
Using the same exact triangle with k = 1 , we see that rank A%OP_](PO) 2 3.

£,

~0 A A .
However, m Py = 222 ([151) "so nO(PO) cannot be isomorphic to

colimkﬁoP_k(PO) :
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§8. The proof of Theorem D

In this section we will prove Theorem D using the spectral sequence

constructed in section five.

For each r 21 let Ar denote the subalgebra of A generated

J
by qu with 0 =3 <r . Recall from section six that

- -1
A -IF2[u,u ]
is a left A-module with its A-action defined by

quuﬂ _ (§)u£+3

let F, . be the .Ar-submodule of A generated by w owith j < 2.

Lemma 8.1 ((161)

Given % eZ define 1 ={i eZ:i 22, i

there i1s an isoﬁorphism of A-modules

i

-1(4)} . Then

AR, oF, % 8 e, /)
b s TR 3 Ag

Lenma 8.7

If s21 and meZ ,  then
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S,S~1]

ExtA

(zZ/2 , £*™a, ZZ/2) =0 .
0 Ao ,

Pf For some free Ao-modu1e F there is an isomorphism of Ao-modU1eS

A 8, ZZj2 = /2 O F .
0

Hence for s 2 1

4m

Exts’s'](ZZ/Z,z4mAﬂA 72/2) ¥ ExtS STV (z/2,£ ™ 1/2) = 0 ..

Ag 0 Ro

Lemma 8.3

If s=21, l_neZ, then

SsS-1 4m-1 _
Exty®™ (A EA]A,Z A@AO Z/2) =0 .
Pf Each F, .. 1s bounded above. In fact F ., 1s zero in dimensions

> +6. Given myt eZ s >0, we may choose 2 SO that

, € 4m-1 *
(FR.,],E AQA 2/2) - 0 .

S
Ext
A] 3

The change of rings isomorphism (see [ 3]) shows that
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Extz’t(F

4m-1 Y S,t 4m-1
] o 1oL A8y Z/2) = Exty> (AR, F, 1,27 A8, Z/2)

0 A A] L,17 0

Fix meZ and s 21, then after app'ly Ext to the short exact

sequence

0 #-AEA]Fg’] +-AQA]A*+-A@A]A/F£’1 + 0
we see that for somet )

Exty ) (ABA]A,z4m'1AEAO z/2) * Extf\’t(aaAla/FR,],24“‘";4@% Z/2) .
Lemma 8.1‘shows that

Extz’s'i (AQA]A/F£’1 2 m=1ag : Z/2)

The change of rings isomorphism‘
S=1,.J -
Exty > (E"AQAOZZ/ZJ“”‘ 'na, z/2) *
0

v e $,8<1, 5 5, JAm-]
2 ExtAOS "I zy2,0™ A8y 2/2)

and Lemma 8.2 complete the proof.
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Proof of Theorem D
First note that since the inverse system {P_, _5ADO} s

cofinal in {P_ Abo},

holim, P_g, _3bo ~ holim P_, abo .

K

Each of the spectra P_4k_3Abo is two-complete which shows that

ho]imkP_4k_3Abo is two-complete. Theorem 5.6 gives us a spectral

sequence with Ez-term

x * -
Exti’ (colim H P_kAbo,zqm 1H*H(ZZ))

k

converging strongly to

4m-1 :
LS H({ Z) ,ho]1mkP_4k_3Ab0]* .

. x A, * n
Recall that c011mkH P, =4, Hbo =AR, ZZ/2 and
. 1
H'H(Z) ¥ A8, Z/2 ([31), hence we may rewrite the E,-term:
0
S!* ? Sa* 4m-]
E5 = Exty (AEA]ﬁ.E A@AO Z/2)

Using the change of rings isomorphism,
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Am-1

Exty0(AB, 8,1 z/2) ¥ Exta’0(a,2" 'hg, 7/2)

AR

A Ag A Ao

Th 0,, 4m-1 .
e map ¢m ¢ Hom™ (4,2 A@A Z/2) defined by

0 |

Sq£+]-4m 0 2‘4m-]

L
o (U) 3
0 otherwise

is an A,-homomorphism, hence defines an element ¢ e Eg’o

Lemma 8.3 shows that ¢ e E , thus defines a map of spectra

4

f : H(Z) -+ holim P

-4k 37bo .

For each K let a_p:holim P_,, _aAbO + P_s,37b0 Dbe the projection.

Then from the construction of fm

f*oa :Ham'—.l

4m-1..4m-
oa* P, Abo + H-lgAm=ly 7

4m=-3
is an isomorphism. Thus

4
am*Of * 4m_'ls H( Z) -> ﬂqm"]P4m"3Ab0

* is onto. The homotopy of ho]imkP_kAbo is well known (see [111). We

have
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z/2k+30/2 ¢ = 3(8) k > 0
Tansk Pane1*00) = ) z/0(71)/2 2 708y & > 0
Z/? K =1,2(8) k >0
0 otherwise;

for éach k and neZ , the homo}ﬁorphisms

P

"4n-1P-4k-3"P0 ~ Tgn-1P_gy47 70O

are onto. Hence

4v

7. holim, P AbO =
1 .k -4k=3 0 otherwise.

The homomorphism

) 4dm-1 _
foxTam-1° H(Z) > «, . holim P_, Abo

A

is the completion homomorphism Z "'iz

Thus the map

f=1f e ns"™ e z), holim
mm

abol
m k

P_qk-3

. induces the equivalence

(v S4m-1

i1

H( Z))g ~ holim P bo .

k' -4k=3"
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AppendiXx

We shall prove Theorem 6.4 here. The proof is taken from notes of
seminars given by Adams and Miller and is entirely due to Adams,
Gunawardena and Miller. We include the proof only for the sake of

completeness as their paper has not yet been circulated.

'Let M be a left A-module. Recall from section six that Singer

defines a left A-module

1

A(M) =1F2[u,u' 1 @M

with left A-action given by

Sqa(uaﬂm) = g(i:%j)u£+a'3ﬂ5q3m .
J

We give A(A) a right A-action by (uggb)sqa = uigbsqa .

Lemma A.]

let M be a left A-module. Then as left A-modules

6(“) EFA(A) BA M.
Pf Define a map G:A(A) &) M A(M) by

) .
G(U f Sqa 2 m) — un Q Sqam .
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Then G 1is well defined and an A-homomorphism. G is the required

isomorphism,

If N is a left A -module, then A(N) is a left Ar+]-modu1e.

A(Ar) is a right A -module.

Lemmé A.2

let M be a left A-module. Then as left Ar-modules

A(M) = A(A._7) 8, M
r-1

Pf The A -homomorphism G:A(A._;) 8, M- A(M) defined as above
r-i
is the required homomorphism.

Lemma A.3
" 2r+1_]
As a left A -module, (A _,) is free on generators u" a1,
k e Z .
K 2r+1_] . _

Pf  First we will show that for all k e Z\u ' Q] 1S non-zero 1in
Z]2 EA A(Ar_]) . Let 0 < a < 2r+] and +a = k+2r‘+-l -1 . Then

r

a £ _' o2 ’
Sq (u'R1) = §(:_%j)u£+a J g sqY .
J
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However

r+] -
(g) _ (a-k.z ~ (-a-l) _ 2a)

)= (8 () =0

Let Ar denote the augmentation ideal of Ar . We have shown that

k.2"o k.21
u R A. a(A._4) » hence u

B 1 1is non-zero in

/2 @Ar a(A_q) -

Given £, let u® 8 A._y denote the Z/2-vector subspace of
A(Ar_]) generated by elements of the form u* Qb , D € Ar-l .

AR wial

Since Sql(uk fc) =u e

K 2r+1

u° -8 Ar'-l __C_f\_[ A(Ar-l) :

+]
Suppose by induction we have shown that for some m < (k+1)2r -

A
um 8 A ;A A(Ar-])

whenever k.2r+] Sft<m., If ce Ar-] , then the Ar-action on

A(Ar_]) shows that there are Y5 € A and a n 2 0 with

1

n-k.2" 4

r+l n
Sq uk.Z -1

ﬂc)=um9c+ L
j=1

( l..lm-n':| 2. ,Yj
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Thus u" 8 A1 Al A(A._7) . Hence by induction

3
u- @ Ar-] c Ar' A(Ar_.l)

L )

whenever 2 ¢ k.2r+] -1 ,keZ . If 0<m<2 then Sqm € Ar-l .

Then given c e A ; and k eZ

r+l r+1
Sq2m(uk.2 m ]9 c) = y K2 -1g Sqmc s
m-1 r+] : r+] : .
k.2 -m-1-3, k.2 ~“4m=1-] J
* ji ( 2m=-23 v 4S9
k.2™ *
Thus u Q ﬁﬁ.‘] 55_\: A(Ar_]?) . We have shqwn that Z/ZQAr (A1)
k.2

is precisely the set of elements u 81, k eZZ . An easy ‘counting

ranks' argument shows that A(A _,) 1is freely generated over A, Dy

these elements. This completes the proof.

Recall that there is an A-homomorphism

e:A(M) » Z-]M

defined by

Sq£+]m L2 =]

0 otherwise.
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Proposition A.4

Let M be a left A-module. Then 18e: Z/Z2 QA A(M) »~Z/2 @A ):']M

is an 1somorphism of Z/2-vector spaces.

Pf First we note that

A—

" ,
Z/?2 EAA(M) = colim Z/2 EArA(M) .

Lemma A.2 shows that

Z/2 8y A(M) =Z/2 8, (A ) 8, M.

r r r-1
k2"
We write 8 u™° Q@ 1 for the Z/2-vector space generated by
k
K 2k+1_] - |
. @1, keZ . Then by Lemma A.3
N K 2r+1_]
r r-1 k r=1
hence
r+i
Z/28, AM) 0 u*% “lgp m,
r k r-1

After taking direct limits

colim, 2/2 6, a() 2 laam.,
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Themap 1 & € 1is seen to be an isomorphism as claimed.

Theorem A.5

Let M be a left A-module. Then the induced homomorphism

1

Z/2,5 M)

s*:TorQ,t( L[2,86(M)) » Tor*?,t(

is an isomorphism,

Pf Let C. bea projective A-resolution of M . Then as Ar_]-modulesi

each C¢ is projective, (e.g. see [14]) hence flat. Given a short

exact sequence of A-modules

0+M]+M2+M3-+0 ,

0~ M8, A(A )8 Cc > M 8, A(A_ ,)B C >
VAV r=1TAL 7S 27A 7 -1 A1 S

Ce > 0

-+ M8 S

: a(A._1)8
SAL T T=TTAL

is short exact by Lemma A.3. Since colim, 1is an exact functor

k
0 -+ MIBAA(A)QACS - MZEAA(A)QACS -+ MBEAMA)EACS + 0

is short exact. Thus Lemma A.} shows that the A-modules a(CS)

are flat. Hence the homology of the chain complex {Z/2 ﬂAa(CS)} is
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Torg’t( Z/2,6(M)) (see [171). The homomorphism e 1induces an

isomorphism of chain complexes

18¢ -1
Z/2 BAA(CS)} —> {Z/2 8,F CS}
Since the homology of {Z/2 GA z"]CS} 1S Torﬁ t(ZZ/Z,z']CS) , this

proves the theorem.

Theorem A.6

Let M be a left A-module. Then the induced homomorphism
. S,t -1 ’ *
e*:Exty’ “(27 M, Z/2) + Exty* F(a(M), Z/2)
is an isomorphism.

*
Pf Given a Z/2-vector space V , let V denote its dual space.

Then for any left A-module N ,
extS (N, 2/2) ¥ (Tor? L (z72,M)"

(see [161). Now use the previous theorem.
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