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Abstract 

In this thesis we generalize a theorem of W. H. Lin. 

Lin's results are concerned with the homotopy and cohomotopy 

of an inverse system of spectra fp-k }. Using the quadratic 

construction we construct an inverse system of spectra {P-k (E)} 

We generalize Lin's results by studying the homotopy and cohomotopy 

of {P- k(Eýl ' 
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§I. Introduction 

M. Mahowald investigated the homotopy groups of stunted real pro- 

jective, spaces and found that they exhibited interesting periodic 

properties. Mahowald made a conjecture based on these calculations 

which was described by J. F. Adams in [2 1. W. H. Lin verified Mahowald's 

conjecture in [151 and also proved a 'dual' version in cohomotopy. Lin's 

theorem was the essential step in his verification of Segal's conjecture 

for the case G= 2Z/2 . 

We begin by briefly describing Lin's iheorem. It is possible to 

construct spectra Pk'k cZZ , and maps of spectra Pk -* P k+1 with 

the following properties: 

k-1 (a) Ifk ; -> 1Pk= IRP IRP and P0= IRP+ (+ means add a disjoint 

basepoint). 

(b) If IF2[u, u -1 1 is given the structure of a module over the mod 2 

Steenrod algebra, A, by 

Sqjul = (bu"i 

then H*(P-k; Z/2) is isomorphic to the A-submodule of IF[u, u-11 

generated by u-t ,tý: -k . 

(C) H*(P-k. '2Z) has no odd torsion. 

The map of spectra Pk -* P k+j induces the obvious inclusion in 

mod 2 cohomology. 
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The maps P 
-k -ý-P -k+l 

give us an inverse system of spectra 

... -* Pk 
-I 

P- k -* P- k-1 

Let Tr* and ;* denote the homology and cohomology theories associated 

to S9^ 2) ' the Moore spectrum of the 2-adic integers. Then 

7T *P -k-I 
-* Tr. *P- k -*. 7T*P- k+l 

is an inverse system of abelian groups (as -k -iý --) and 

A 

7r *P- k+l -)0' ; *P-k 

is a direct system (as -k -* --) of abelian groups. If "mk denotes 

the inverse limit and co"mk denotes the direct limit, then the 

following result is a direct consequence of Lin's results: 

Lin's Theorem ([15]). 

There are isomorphisms: 

ýv .-1 

lim P- = k"* 

(b) colim k 
; *p_ k 

'ý ; *So . 

In this thesis we shall generalize Lin's Theorem. The key 

observation is that the spectra {P 
-k 

} can be constructed by using 

- the quadratic construction. 
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Let X be a CW-complex with basepoint xO Define a free 

involution on SOOX(XAX) by T(w, xAy) (-W, YAX) The quadratic 

construction on X written D 2(X) is the complex 

S'x T XAX/SOOX Tx0 AXO Let Sp denote the homotopy category of CW- 

spectra. Then May et al (1131 and [181) have extended this con- 

struction to a functor 

D2 : Sp -ý- Sp . 

There is a natural transformation of functors 

SD 2 (E) -,,, D2 (SE) ,EE 
Sp 

. 

For each k E2Z we define functors (1121) P-k : Sp -ý- Sp by 

P-k (E) =SkD 2(S- 
k E) . 

If we take E= S- kX 
,XE 

Sp 
, then the above natural transformation 

gives us a map of spectra 

SD -k X) -)- D, -k+l X) 2(S 2(S 

k-l hence, after applying S to the above map we obtain a map of spectra 

P- k(x) =, Sk D2(S -kX) _> Sk-1 D2(S- k+l X) = P-k+1(X) ' 

Thus we obtain an inverse system of spectra 
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... -).. P- k-1 (E) -" P-k (E) -" P-k+l (E) 

If we let P- k= P- OS 0), then 1P-k } is an inverse system of 

spectra satisfying properties (a) through (d) and Lin's Theorem 

is true for this inverse system. We are led to ask 'under what hypothesis 

on E will Lin's Theorem hold with the inverse system . TP-k I replaced 

by {P_ k (E)} V 

In sp we can form the homotopy inverse limit, written hol'mk * 
If p is a prime and E is a spectrum, we can define the p-completion 

of E written Ep We say that E is a spectrum of finite type if 

each skeleton of E is finite. 

Theorem A 

If E is a spectrum type, then there is a natural equivalence of 

spectra 

S- 1E 
2 -* holim k P- k(E) 

The hypothesis of Theorem A is sufficient to ensure that 

v*holin. P_ k k(E) lim k"*P-k(E) 

Thus we obtain the following corollary which is a generalization of 

. part (a) of Lin's Theorem. 
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Corollary 

If E is a spectrum of finite type, then there is a natural 

isomorphism 

; 
*S- 

IE '-ý 
.1im k"* P- k(E) . 

The generalization of part (b) of Lin's Theorem is not quite so 

nice. 

Theorem B (1121) 

If E is a finite spectrum, then there is a natural isomorphism 

colim k ; *p_ k (E) . 

In Theorem B we cannot replace 'finite spectrum' by even 'CW-complex of 

finite type' since we show that 

; *p 0ý colim k IT *P- k(PO) 

However, we are able to construct a particularly nice isomorphism for 

Theorem B. Note that P_t(st StD 0) 
= sýRp" There is a canonical 

0 
2(S + 

map IRP+ -* S defined by 'map the basepoint to the basepoint and IRPOO 

to the other Point'. This defines a map 

p: P_t(st) -ý- St . 
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If cT is the composite of maps from the inverse system {P-k(Xýl 

k ý: 0, 

P- 
t-Y, (X) -* P-t(X) 9 

then define 

'It, z 
: 7f X 

-ý- Tr P- 
t-k 

(X) 

by Yt, t(a) : - Cy*(PP_t(a)) 9aE W-tX . If z ?: 1, then -yt, z 
is a 

homomorphism, and -yt,, extends to a homomorphism 

Yt, t: Tr ir P- t-t(X) - 

Choose t -. ý: 1 and let r be the composite 

;tx lt--, -L> ;tp Tr (X) -> Col im ir P 
k^ -k(X) 

where the last map is the usual homomorphism from a term in a directed 

system into the direct limit. By construction r is independent of 

y ý: I. r is essentially the total power operation in cohomotopy. 

Theorem C (1121) 

If E is a finite spectrum, then 

r:; *E -)- colim w*p k k(E) 

is an isomorphism. 



- 

Next we briefly remark on the proofs of Theorems A, B and C. 

To prove Theorem B we show that cOlimk? P-k (E) is a cohomology theory 

(not necessarily satisfying Milnor's wedge axiom). Then we construct 

a natural transformation of cohomology theories that is an isomorphism, 

using part (b) of Lin's Theorem, when E= So . The Eilenberg-Steenrod 

uniqueness theorem will complete the proof. To prove Theorem C we use 

Theorem B to regard r as a cohomology operation in i^r*. We show that 

this operation is the identity by evaluating it on Ic ; *So and Theorem 

C follows. 

The proof of Theorem A is slightly more technical. Fix a prime p 

and let t=Ep. for EE Sp . Given a spectrum of finite type X and 

tyk } an inverse system of spectra, each Yk of finite type, we construct 

a spectral sequence converging in a strong sense to the group 

[X, holim A]* 
- 

This spectral sequence is constructed by taking inverse limits of Adams 

spectral sequentes. To prove Theorem A we construct a map 

s- 1E 
-). holim k P- k (E) . 

Then we use this map to construct a morphism of spectral sequences, namely, 

from the Adams spectral sequence converging to r*f to the above spectral 

sequence converging to R*holim k P- k(E) - Using a theorem of Adams, 
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Gunawardena and Miller (14 1) we show that this morphism is an 

isomorphism of spectral sequences. Convergence arguments complete 

the proof. 

Another interesting inverse system of spectra to consider is 

... -ý- P- k-I 
AE -ý- P-k AE -).. P- k+ 1 

AE -* ... 

obtained by smashing the maps in the inverse system {P_ kI with the 

identity map on E- If bo and H(Z! ) denote the representing spectra 

for connecti*ve KO-theory and integral cohomology, then Davis and Mahowald 

prove: 

Theorem D ([111) 

There is an equivalence of spectra 

V S4j -'H(I ))A ý holim P_ Abo 
ja 2kk 

We use the spectral sequence mentioned above to prove Theorem D. 

For the sake of clarity and completeness, the first three sections 

lay down the technical groundwork for the remaining sections and are dis- 

tilled from the literature. Section two contains an account of inverse 

limits and completions, and is taken mainly from [5 1 and [6 ]. 

Section three is taken from 171 and discusses spectral sequences 
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i 

and convergences. Section four contains an account of the Adams spectral 

sequence and its convergence properties taken from 17 1. 

In section five we construct the spectral sequence we needpaying- 

full attention to its convergence properties. In section six we prove 

Theorem A. In section seven we prove Theorems B and C and provide the 

counter-example mentioned above. In section eight we give our proof of 

Theorem D. Lastly we provide a proof in the appendix of the Theorem of 

Adams, Gunawardena and Miller. This proof comes directly from notes 

taken in seminars given by Adams and Miller. 
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§2. Inverse limits and completions 

This section has been distilled from [5 1 and [6 1. 

An inverse system of abelian groups is a collection of abelian 

groups {A 
nI, 

indexed by the natural numbers, and homomorphisms 

a n+l :A n+l 
An. 

Given two inverse systems (A 
n} and (B 

n} with homomorphisms {an} 

and le 
nI, a map of inverse systems is a collection of homomorphisms 

ff 
n} 

:A nn 

that satisfy 0nfn ; -- f n-1'7n * 

Given an inverse system {Ad , define a homomorphism 

11 11 
nn 

by d(a 
n)=a n-an+l a n+l 

Then we define the inverse limit of the inverse 

system '{An written lim 
nAn 

by lim 
nAný 

ker d. Clearly lim 
nAn 

is the subgroup of HAn consisting of sequences (a 
n) with 

n 
an n+l a n+l 6 We also define Rlim 

nAn= coker d. Then we have an 
i 

- exact sequence 

1 im 
nAn -> iiA 

nd -* 11 An -> Rlim 
nAn -> 0 
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We now record standard results about lim 
n, paying particular 

attention to its exactness properties. 

Let (A 
S, t 

I be a collection of abelian groups with homomorphisms 

{Cr 
t 

{0 
s) making the following diagram conTnute: 

A 
S+l t+l 

t+l A 
S+l 't 

0 
s+l+ +0 S+l 

A 
S, t+l cr t+l S, t 

Lema 2.1 (1 5 3) 

Let fA I be as above. Then 
S, t 

lim lim tA s't 
lim t lim 

sA s't * 

Lemma 2.2 (16 1) 

if 

0 -* f Anl -, - fBd -" {Cn 0 

is a short exact sequence of inverse systems, then 

im 
nAn *> "nln Bn -� 1 im 

nCn -> Rl im 
nAn -> Rlini 

nBn -* 
RlimrCr, >0 

is exact. 
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Let 

--)- ICS+l (k) I, 
{ds+l (k) } 

> {C 
s 

(k) } -).. ... -i- (Co (k) } 

be an inverse system (indexed by k) of chain complexes. We make 

the following definitions 

zs (k) = Kerd 
s 

(k) 
s 

(k) = lm ds+, (k) Hs (k) =Zs (k)/B 
s 

(k) 

cs = lim kcs (k) 

= Kerd 

Lemma 2.3 (15 1) 

ds = lim kds (k) 

s= 
lmd 

S+l 
HS =Zs /B 

s. 

If Rlim k Hs(k) =0 and Rlim kBs 
(k) =0, then lim kHS (k) =Hs 

The next lemma gives sufficient conditions for the vanishing of 

Rl im. 

Lemma 2.4 (1 51) 

Let [An be an inverse system with homomorphisms 'an Then 

either of the following conditions implies that Rlimn An=0 

(a) For each n there exists m with 

lm(a 
P ocr P-10**"cn) ý lm("mo-o"d 

whenever p2m. 
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(b) Each group An is compact and Hausdorff under a topology that 

makes each an continuous. 

Condition (a) above is known as the Mittag-Leffler condition, but 

condition (b) will be more useful in this thesis. We shall use the 

p-adic topology to construct topologies that satisfy (b). 

Given an abelian group A and a filtration of A by subgroups 

S-1 s S+l s 
cFcFcFc... UF 

s 

let neighbourhoods about aeA be the cosets a+A . The topology 

that this defines is called the filtration topology. This topology is 

s Hausdorff if nF =0. The completion of A with respect to the 
s 

filtration topology, written is given by 

As A= lim 
s 

AIF 

For a prime p, when we set Fs=psA the filtration topology is 

called the p-aqic topology; we write AP for the p-adic completion 

of A. Note that any homomorphism f: A -* B is continuous with respect 

to the p-adic topologies on A and B since 

pnAs f- IpnB. 

Let 2z. ' denote the p-adic completion of 2Z , called the p-adic P 
integers. 
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Lemma 2.5 (16 1) 

If A is a finitely generated abelian group, then 

1- A& 2Z 
p ZZ P 

Give each A/p SA the p-adic topology and n A/psA the usual 
s 

product topology. Then the subspace topology on Ap 

Ap = lim 
s 

A/p Acn A/p A, 

that this defines is the same as the p-adic topology on AP* 

Lemma 2.6 

If A is finitely generated, then the p-adic topology on AP is 

compact and Hausdorff. 

Pf Let A(p) denote the p-torsion subgroup of A. Then Ap ^-Y lim 
s 

A(p)/p S A(p) . Each of the groups A(p)/p S A(p) has a compact, Hausdorff 

p-adic topology, hence R A(p)/p s A(p) is compact and Hausdorff. 
s 

lim 
s 

A(p)/pSA(p) is a closed subspace of u A(p)/pSA(p) , so AP is 

compact and Hausdorff. 
s 
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§3. Spectral sequences and convergence 

In this section we discuss spectral sequences and convergence 

following C7 1 and [171. A collection of chain complexes {Er d 

1 :! ý r< - with differentials 

d :EsE s+r 
rrr 

is said to be a spectral sequence, written (E 
rdr 

if for each r 

there are isomorphisms 

H(E 
rE r+l 

Construct subgroups Zs c Es inductively as follows: Let Zs =Es r-1 

At stage 'r' we have constructed subgroups 

zscZszs 
r r-1 ': **'I 

sss 
and quotient maps qr: Zr -* Er Define Z 

r+l 

of elements aeZs with d (q a) =0. Let 
rrr 

Bs to be the subgroup of' Zs whose image un, rr 
s-r s to the image of dr :ErEr This gives a 

Cz to be the subgroup 
r 

Bs=0. Then define 
1 

Jer q :Zs -* Es corresponds rrr 
sequence of subgroups 

Bs cBsc... c: Bsc Zs C-. c ZS Es 12rr11 
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By construction 

ss zr /B 
r 

d :Zs /B s 
_, Zs+r /B s+r 

rrr11 

Kerd `= zs /B s Imd = Bs+r /B s+r 
r r+l rr r+l r 

We also define groups 

zsnZscEs 
00 r-1 

Bs uBsc Es 
Oo r r 
s Eco ss Zoo/ Bco 

All of the above groups are meant to be graded groups, graded by 

codegree (the codegree of a graded group is minus the degree) since 

we are using 'cohomology notation'. The differential, dr9 is required 

to have codegree +1 that is dr raises codegree by one. We shall 

rarely need to specify the codegree so generally we will supress the 

grading. 

A morphism of spectral sequences 

Q(E 
rdd4 

(ersad 

is a collection of honionlorphisms 

f :Es rr 
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each of which fits into the commutative diagram 

Es 
r 

r++ar 

E S+r -s+r 
rfr>Er 

We record the standard comparison theorem for spectral sequences 

(e. g. see 17 1). 

Theorem 3.1 

Let f: (E 
rdr)4. 

(E 
r@ r) 

be a morphism of spectral sequences with 

fk: EkEk 

an isomorphism for some k. Then 

fr :ErEr 

is an isomorphism. 

Let (E 
rdr) 

be a spectral sequence and let G be a group 

filtered by subgroups Fs, s cZZ , with uFs=G. We say that 
s 

(E 
rdr): 

(a) converges to G weakly if we are given isomorphisms 

ss S+l E(" F/F 
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(b) converges to G if (a) holds and the filtration topology on 

G is Hausdorff; 

(c) converges to G strongly if the spectral sequence converges to G 

and 

flu 
G= lim 

s 
G/Fs 

i. e. the filtration topology on G is complete. 

If (E 
rdr) and (E 

rar) converge weakly to G and ý, then 

we say that a morphism f: (E 
rdr)rar) 

is compatible with a homo- 

morphism g: G if, using the isoMorphisms in (a) above, 

> Es 
Co Co 

-112 112 

s s+I -s -s+l F /F >F /F 

commutes. 

Theorem 3.2 ([ 7 1) 

Suppose that (E 
r 

d, ) and (E 
ra r) converge strongly to G and 

Let f: (E 
rdr)-, 

(E 
rad 

be a morphism compatible with g: G -+ 6. If 

fk :Ek Ek 

is an isomorphism for some k :g then 9: G is an isomorphism of 
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filtered groups, i e. FsG '-ý Fs6 

Nearly all the spectral sequences that'we shall use arise from 

the method of unravelled exact couples. We say that the diagram of 

graded (by codegree) abelian groups 

As+' a> As a>A S-1 

EsE S-1 

is an unravelled exact couple if each of the sequences 

Asj> Es 6 
--As+' ---L-> As 

is long exact. The homomorphism s is required to have a codegree 

+1 while a and i are to have codegree zero. 

From the above unravelled exact couple we obtain a spectral sequence 

(E d) as follows: define subgroups rr 

zs lm(a r-I : As+r _,. A S+l cEs r 

Bs=i Ker(ar-1 : As -> A s-r+I )c Es 

wi th 

Bs c... c Bs c.. c Zs cCzs 1rr1 
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and define Es =Zs /Bs r 2: 2, Es= Es Define the differential 
rrr 

d :Es-,,. Es+r bY lifting 
rrr 

6E c As+' 
r 

to A s+r and then applying j This is well defined and it is easy 

to verify that H(E 
rE r+l * Then, as before 

Zs n ZS c Es 
Co r- 1 

r 

Bs =uBsc Es 
Co r- 1 r 

Es 
Co =Zs /B s 

Co 00 

A morphism of unravelled exact couples 

F': {A sEsa, j. 61 -ý' {AS, Es, a, j, Z) is a collection of homomorphisms 

fs: A s 
-). As 

9gs :Es -*. E S-1 that fit into the commutative diagram 

s+l a s+I A: As j Es 265- A 

f s+l fsgsf s+I 

ÄS+l a , Äs 3 Es Z >. 
i 

-> ÄS+l 

- Note that such a morphism induces a morphism of the corresponding 

spectral sequences. 
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s Suppose that E=0s<0, then we say that the resulting 

spectral sequence is a right-half-plahe spectral sequence. Given 

such a spectral sequences-we take as its target group (for convergence) 

A0=G and we filter G by the subgroups 

FsG= lm(a s :As -ý- 

Suppose that f: {As, E sI 
-)- {AS, Es) is a morphism of unravelled 

exact couples and that f: (E 
rdd -)- (Er ar) is the corresponding 

morphism of spectral sequences. Then, if (Er dr) and (E 
rar) converge 

weakly to A0 and AO f: (E 
rd r) -* (Er ar) is compatible with 

f: AO -, AO 
. 

The convergence properties of spectral sequences arising from 

unravelled exact couples takes on a particularly nice form. Following 

Boardman ([ 71), we say that a right-half-plane spectral sequence 

converg s conditionally to G=A0 if 

lim 
sAs=0 

Rlim 
sAs=0 

Note that without extra assumptions a conditionally convergent spectral 

sequence need not converge weakly to G. 

Let RES = Rlim ZS 
co rr 
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Theorem 3-3. (1 7 1) 

Let (Erd 
r) 

be a right-half-plane spectral sequence, arising from 
0 an exact couple, that converges conditionally to G=A. Then 

(a) the filtration topology on G is complete; 

(E d) converges strongly to G if and only if RE* =0 rr 00 

A left-half-plane spectral sequence is a spectral sequence arising 

from an unravelled exact couple TA SESI that satisfies Es =0 for 

s>0. Let colim sAS=0 then we filter the target group H=AI 

by 

FsH= Ker(A 1a S-1 
> As) 

Theorem 3.4 (E 7 1) 

If (E 
rd r) 

is a left-half-plane spectral sequence as above, then 

(E 
rdr) converges strongly to H 
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94. Convergence of the Adams spectral sequence 

We begin this section by setting down some basic properties of 

Sp (See 13 1,17 1 and [8 1 for general references. ) For X 

and YE Sp , let IX, Y] denote homotopy classes of maps 'X -ý- Y 

and let IX, Y]t =IS 
t X, Y] . If ac EX, Y]t , then we say that a has 

degree t or codegree -t . 

An inverse system of spectra is a collection of spectra 'Ykl 

indexed by the natural numbers, with maps of spectra 

a k+l :y k+l -" yk* 

In Sp we can form the spectrum nYk constructed so that, for any 
k 

spectrum W 

[w, 11 Yk 1* ý! 11 lw, Y k 1* 
kk 

In particular, let 14 = 11 Yk and define the projections pn : HY k -" yn 
kk 

by 

1-w = (Pn) - 

Then we define a map d: nY k -* Ry k by 
kk 

(p 
n-cFn+lPn+l) 'E 11 Ellyk' ynI 

nk 
0 

V 
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We define the homotopy inverse limit of the inverse system {Y d 

written holim Y by holim Y fibre(d) . This definition is kkkk 

motivated by 

Ker (d*: ]TiT*Y k -)- Illf*Y k) = lim k 7T*Y k kk 

Proposition 4.1 ([31) 

If W is a spectrum and ly kI is an inverse system of spectra, 

then there is an exact sequence 

0 -).. Rl im k [W, Y k ]*+, -* [W, holim 
kyk 1* -* lim k [W, Y k]* -ý- 0. 

'Dual' to Proposition 4.1 we have 

Proposition 4.2 (1191) (Milnor's exact sequence. ) 

Let X be 
.a 

spectrum filtered by subspectra Xs with u Xs =x 
S 

Then for any spectrum E there is a short exact sequence 

Rlim 
s 

[X 
s 

EIk+, -> [X, EI� -> lim 
s 

[X 
s, 

EI� 

If G is an abelian group let SG denote the Moore spectrum of 

type G (see 13 1). If E is a spectrum, then there is an inverse 

system of spectra 
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.. -*- S ZZP 3 AE -* S 2Z/p 2 AE -* S 2Z/PAE 
. 

The p-completion of E, written Ep. is the homotopy inverse limit 

of this inverse system. 

Lemma 4.3 

If E is a spectrum of finite type, then 

EEAS ZZ 
p 

Pf Since E is of finite type 

ii EAS ZZ/ pnEA IS ZZ/pn 
nn 

(see [3 1) and the result follows. 

Lemma 4.4 

If F is a finite spectrum and E is a spectrum of finite type, 

then 

A eu 
EF, E 1* = EF, El* QZ 

p 2Z P 

Pf The previous lema shows that 

^ ru 

E- EAS Z 
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Since F is finite there is a short exact sequence 

ýz A 0 -)- EF, El* QZ [F, EAS 2Z 1* -* Tor ([F, El*_, , 2Z 0 
2Z pp1p 

(see [3 1). The group ZZ 
P 

is torsion free, so Tor 1 vanishes and the 

result follows. 

We now give an account of the classical modp Adams spectral 

sequence. For a prime p let H(p) denote the representing spectrum 

for modp cohomology. Let i: SO 4- H(p) be the inclusion. Let A(p) 

be the fibre of i then we have the exact triangle 

A (P) -,,. H (P) __q_, Si R (P) . 

For convenience define 

S I= Slfl(p) AA Slp(p) 

s times 

Then for any spectrum Y and each s we have an exact triangle 

s lAiAl S lAaAl S+j s IAY )- I A. H(p) AYIAY 4- SIAY 

. 
If X is a spectrum, then by applying [X, -]* to the. above exact 

triangles we obtain the unravelled exact couple 
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X, I 
S+l 

Ay]*_a__,, E X, IsAy3 [X, Yl* 

Ix'i s AH(p)Ay]* 

The spectral sequence (E 
rdr) associated to this unravelled exact 

couple is the classical modp Adams spectral sequence. 

We wish to show that this spectral sequence converges conditionally, 

i 

lim 
s 
ix, i s Ayl* =0 Rlim 

s 
ix, i s tY]* = 

For general Y, however, it is not obvious that either of these con- 

ditions will hold. So we will construct a new unravelled exact couple 

that satisfies the convergence conditions and gives rise to the same 

spectral sequence -(E rd r) - 

To begin, define 

y cm holim ISAY 
. 

Then form the exact triangle 

y en Is AY -> Is AY/y, (p) -, » (p) ->, sy, (p) , 

Since the homotopy inverse limit of a system of exact triangles is an 
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exact triangle, 

holim (1',, Y/Y'" 
s (P) 

Hence Proposition 4. -l shows 

lim 
s 

[X, l SAY/Y' ],, =0 Rlim 
s 
lx, i SAY/Y' ]* =0 (P) (P) 

The commutative diagram of exact triangles 

y 

(p) 
y %» 

(p) -. >. sy, 

(p) 
1 s+I 

AY -> 1s t%Y -> Ist%H co) "Y -* Si s+l 
Ay 

s+l , I Avy (p) ->, s (» 

1., \Y/y (p) 
s IAH(P)AY s+l SI \Y/Y7 (p) 

SY 
(p) sy, 

(p) -, > s2y Co 
(p) 

gives us, via the third row from the top, a new unravelled exact couple 

-> EX, IS+l AM wa Co : IM AY/y. (p) 
l* EX, Y/Y 

(p) 
1 

[Xli s 
AH (P)"yl* 

and, using the middle row of vertical maps, a morphism of unravelled 

exact couples 
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f: {[X, I s AYI*, [X, j s AH(P)AYI*l -* {1X, I s AY/Y'P)], [X, ISAH yl*) (P) 

Theorem 4.5 (1 7 1) 

For any spectra X and Y the classical modp Adams spectral 

sequence converges conditionally to the group [X, Y/Y"O (p) 

Pf If we let (Er ar) denote the spectral sequence associated with 

the unravelled exact couple ' 

(EX, i s tYIY, ( 1. kl[Xli 
SAH 

then the morphism of unravelled exact couples f induces a morphism of 

spectral sequences f: (E 
rd r) -* (Er ar The homomorphism fl: E I 

is an isomorphism so Theorem-3.1 applies to show that f is an isomorphism 

of spectral sequences. Since 

Rl im 
s 

EX, Is J\Y/Y"o l* =0 lim 
s 

EX, i s AY/y, 
p) 

l* =0, 

(E a) converges conditionally to (X, Y/YcO I* 
rr (P) 

This completes the proof. 

We would of course like to know what Y/Y"* is and Bousfield [9 1 

provides the answer. 
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Theorem 4.6 U9 1) 

If Y is a spectrum of finite type, then Y/YcO y (p) 
p 

If Y is of finite type, define 

s=s. s= 

A [X, I AY 
p 

lk E [X, ISAH(P)AYI* 

Recall that a, j, 6 are the homomorphisms in the unravelled exact couple 

{As, E sI- 

Lemma 4.7 

If X and Y are spectra of finite type, then there are compact 

Hausdorff topologies on As and ES which make a, j and 6 continuous. 

Pf Filter X by its finite skeleta *[X 
n 

Then we have Milnor's 

exact sequence 

0 

-). RI im 
n 
[X 

n, 
ISAY 

p 
[XIISAY 

p1 1* 
4- lim 

n 
[X 

nI 
ISAY 

p30 

Lemma 4.4, Lemma 2.5 and Lemma 2.6 show that each group [X 
nIs AY p 

has a compact, Hausdorff p-adic topology. Thus by Lemma 2.4 (b) 

s RI'mn [X 
nI 

AY 
p 

1* 
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hence 

sAsA [X, I AY 
p 

1" = lim 
n[Xn 

I AY 
p 

3* 

If each factor has the p-adic topology, then 

IlIx Is AY 1* 
nnp 

is compact and Hausdorff under the product topology. The subspace 

s=AA A lim 
n 
IX 

n IISAY p 1* [X 
n 'ISAY p 

1* 

n 

is closed, hence compact and Hausdorff. 

Since the group- EX 
n 

IS AH(P)All* is'a finite p-group it'is compact 

and Hausdorff under the p-adic topology. Thus the above procedure shows 

that 

Es=. lim 
n 
[x 

nIs 
AH(P)All* a R[X nIs 

AH(P)Allk 

n 

is a compact, Hausdorff subspace. The homomorphisms a, j and 6 extend 

to continuous homomorphisms of the product spaces, hence they are continuous. 

Theorem 4.8 

if X and Y are spectra of finite type, then the classical modp 
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A 

Adams spectral sequence converges strongly to [X, Y 
P 

I* 

Pf Recall the definition 

s r-1 s+r S+l s 
r 

lm(a :A -* A)2E 

Then the previous lemma shows that each Zs is a compact, Hausdorff 
r 

subspa . ce of ES Each of the inclusions 

cZsc.. c ZS c ZS 
r21 

is automatically continuous, so the inverse system {ZsI satisfies r 
the hypothesis of ýemma 2.4 

. 
(b). Hence Rlim Zs =0. Theorem 4.5, 

rr 
Theorem 4.6 and Theorem 3.3 complete the proof. 
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§5. The construction of the spectral sequence 

Throughout this section let X be a spectrum of finite type and 

let {Y k} *be an inverse system of spectra, each Yk a spectrum of 

finite type. For convenience fix a prime p, and write H= H(P) and 

E=Ep Then we will construct in this section a spectral sequence 

converging strongly to 

EX, holim kyk l* . 

In the previous section we showed that the unravelled exact couple 

S+l a(k) SA 
4. EXI I Ay 

k 1* X, I AY k Exty k 1* 

6 (k) 
- ul-ý j (k) "1 

lx, i s AHAY 
k 1* 

gives rise to the classical modp Adams spectral sequence converging 

strongly to the-group [X, Y k1* - We will construct-the spectral sequence 

by taking the inverse limit, over k, of the above unravelled exact 

couples. 

To begin, define 

A (k) = [X, ISAYý 
k1A= lim 

kA 
(k) 

ss E (k) = [X, Isi\Y' k] E= lim kE (k) 
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a= lim k a(k) 6= lim k 6(k) j= lim k j(k) . 

Proposition 5.1 

The following is an unravelled exact couple: 

S+j aSa S-1 0 AAAA 

Z 
s S-1 

EE 

Pf We are required to show that each'of the sequences 

S+j A 

Es 

is exact. Lemma 4.7 shows that each of the inverse systems {Ims(k)l 

{Ima(k)) and {Imj(k)) satisfies condition (b) of Lemma 2.4. Lemma 

2.3 proves the result. 

Let (E 
rdr) 

denote the spectral sequence determined by Proposition 

5.1. Recall the definitions 

sM= s- 11 
ni (a (k )r-I : As +r (k) -*. As+ I (k) E5 (k) 

r (k) 

Bs (k) = i(k)Ker(a(k)r-I : As(k) -* As -r-I (k)) S ES(k) 
r 
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s r-I S+r S+l s 
r lm(a :A -* A)2E 

Proposition 5.2 

The sequence of chain complexes (lim kEr (k), lim kdr (k)) is a 

spectral sequence. 

Pf 'Using Lemma 4.7, the'groups Zs(k) and Bs(k) are compact, rr 
Hausdorff subspaces of Es (k) . Thus, under the quotient topology, 

the inverse system 'W(k)) satisfies condition (b) of Lemma 2.4, 
rk 

hence 

Rlim Es (k) kr 

Likewise, using lmd (k) =B s+r( k)/- B s+r (k) , we see that r r+l r 

Rl im k Imd (k) =0*. 

Lemma 2.3 now proves the result. 

Proposition 5.3 

There is an isomorphism of spectral sequences 

(E 
rdr 

)"2 (lim kE r(k), 
lim kdr (k» . 

0 
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Pf The obvious morphism of unravelled exact couples 

{A sEsI 
-* {A s (k), Es(k)) 

induces a morphism of spectral sequences 

(E 
rdr) -jý- (E 

r 
(k), d 

r 
(k)) 

This gives a morphism of spectral sequences 

(E 
rdr) -+ (1 im kEr (k), 1 im kd (k) ) 

which is an isomorphism when r=I. Theorem 3.1 completes the proof. 

We. turn now to the question of convergence: 

Theorem 5.4 

The spectral sequence (E 
rdd converges strongly-to EX, hol'mkyk3* 

Pf First we note that by Lemma 4.7, Lemma 2.4(b) and Proposition 4.1, 

[X, holim kY k]* = "mk [X'Y k]*-$ 

So to prove the theorem, by Theorem 3.3, it suffices to show that 

lim As=0 Rlim As=0 Rlim Zs=0 ssrr 0 



- 37 - 

As a subspace of H As(k) ,As is compact and Hausdorff by Lemma 4.7. 
k 

The maps in the inverse system {A s} are continuous under this topology 

s so Lemma 2.4(b) applies to show that Rlims A=0 

Recall that for each k lim 
sAs 

(k) =0 by Theorem 4.5. Thus, 

using Lemma 2.1, 

lim 
sAs= 

lim 
s 
lim kAs (k) = lim k lim 

sAs 
(k) =0. 

Lemma 4.7 shows that as a subspace of 11 Es (k) , Es is compact 
k 

and Hausdorff. Likewise As is a compact, Ha'usdorff subspace of IiAs(k) 
k 

and the homomorphisms a, j and 6 are continuous. Thus Zs is a r 

compact, Hausdorff subspace of Es Each of the inclusions 

czsc... c Zs c ZS 
r21 

s 
is automatically continuous, hence Lemma 2.4(b) shows that Rlim 

rZr=0 

This completes Ihe proof. 

Let A(p) denote the mod 

Mký: HYk* Since {Y k) is an 

modules Mk form a directed sy: 

identification of the E 2- term 

p Steenrod algebra, B=HX and 

inverse system of spectra, the A(p)- 

; tem. Let M= colim kMk' 
The standard 

of (E 
r 

(k), d 
r 

(k)) (see C3 1) is 

E s, * (k) = Ex S 
2 tÄiP) (Mk B) * 
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I 
Then, using Proposition 5.3, the E 2- term of (E 

rdr) 
is given by 

s* 
E S, = lim Ex k tÄip)(Mk'B) * 

We note that the codegree of E S, t is s-t ([7 1). 2 

Theorem 5.5 

The homomorphism 

E- s* (M, B) lim Extsl* B) xlý(, P) k A(p)(Mk 

is an isomorphism. 

Pf Let Js- be an injective A(p)-coresolution of B. Then 

lim Ho (m s) ýi 
k MA(p) k'j - "OMA(p)(M ). 

Let CsI*(k) and bs'*(k) denote the cycles and boundaries of the cochain 

complex HomA(p)(M k' B) . The cohomology of this cochain complex is 

Ext s, (M SIB) A(p) k 

(M, B) and the cohomology of the cochain complex 
I 
HomA(p) 

Ex S* (M, B) (see 1171). Iýip) 
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Using the identification from the Adams spectral sequence 

E s, * (k) = Ex s 
2 tÄýp)(Mk'B) ') 

in the proof of Proposition 5.2 we showed that 

Rlim xs (M B) =0. k' 'Äýp) k' 

For each K let Qk - denote the kernel of the homomorphism 

mk -ý- M k+l Let Ak be the A(p)-module defined by the short exact 

sequence 

Qk -* 

Then we have a short exact sequence of inverse systems 

{Q kI -)- k) -)- {A kI -+ 0, 

with the homomorphisms in 'Qk I being zero, and the homomorphisms in 

{M I being injective. Because Js is injective, Ho *(P)(-, Js) is 
k mA 

exact (see [171), so 

is )I -I. m*sm*is 0 -* {Hol"A(p) (Rk' {110 A (P) (ok'j {110 A (P) (Qk ', )I -" 0 

. is a short exact sequence of inverse systems. The homomorphisills in 
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ss 
"OMA(p)(M VJ )} are onto and the homomorphisms in {HomA(p)(Qk'j 

are zero. Hence these systems satisfy the Mittag-Leffler condition and 

Rl im k HomA (p) (MVJ )=0= Rl 'mkHOMA (p ) (Qk 

by Lemma 2.4(a). Lemma 2.2 now shows that 

Rlim mm 'i 
s 

k Ho A (p) (k) : -- 0 

The short exact sequence of inverse systems 

IC S, * (k)} k -* (M Vi 
S)l 

-* ID S, * (k)) -ý. 0 "OMA(p) kk 

and Lemma 2.2 show that 

Rlim kDS, 
* (k) =0. 

Lemma 2.3 now completes the proof. 

We summarize the results of this section with the following theorem: 

Theorem 5.6 

If X is a spectrum of finite type and {Yk ) is an inverse system 

of spectra, each of finite type, then there is a spectral sequence with 

E 2- term 

ES'* = Ex s*H*Y 
2 tÄýP)(CO"mk PH X) 

converging strongly to 

[X, hol'mkyk]* 
- 
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§6. The proof of Theorem A 

Given a spectrum E we define 

P- k (E) = Sk D 2(S-. 
k E) 

using the quadratic construction on spectra, D2 (see 1121,1131). 

Let C denote the homotopy category of CW-complexes. Let. S denote 

the full subcategory of Sp consisting of objects SZX ,zeZ and 

XCC. We refer to S 'as the stable category. We recall five facts 

about the functors, P- k which we will need in this section and section 

seven (see [131 or 1121). 

Fact 1 

Given a CW-complex Z' and a spectrum E, there is a map of spectra 

ý(Z, E): ZAP_ k (E) -" P-k (ZAE) 

which is a natural transformation of functors CxSp -* Sp . 

If W, EE Sp let T: EAW -ý- WAE be the map which switches factors. 

Fact 2 

Given CW-complexes Z and X, and a spectrum E, the following 

- di. agram connutes: 

0 
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ZAXAP_ 
k (E) 1Aý(X, E)ý. ZAP_ 

k 
(XAE) O(Z, XAE) 

P-k (ZAXAE) 

TAJ 
+P-k 

(TAl) 

(XAZAE XAZAP (E) > XAP_ (ZAE) P-k 
-k JAý-(Z, E) k 

ý(XJAE) 

For EE Sp let a_ k : P- k (E) -"' P-k+l (E) be the natural map 

defined by 

O-k = s- ý(s E) . 

Fact 3 

There are natural maps of spectra 

"-k : S- k AEAE -)- P- k (E) 

P 
-k: 

P-k (E) -* S- k AEAE 

which fit into the exact triangle 

aI 
S-k AEAE 

k> P_k (E) 'J-k> p_ k+l (E) P-k+l> 
S-k+ 

1AEAE 

Moreovert P-k i- k `2 1+ (-l) kT. 

The maps "-k give us an inverse system {P-k (E)} . 
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Fact 4 

If we define an inverse system of spectra {P_ I by '22 P0 k ? 
-k ' -k(S 

then {P- k1 satisfies properties (a) through (d) in the introduction 

and Lin's Theorem holds for this inverse system. 

Fact' 5 

Given an exact triangle in C 

A -* X -ý- Y -ý- SA , 

there is a spectrum P_ k (X; A) and an exact triangle in Sp 

P- k (A) -"* P-k(X) "' P-k (X; A) -"' Sp-k (A) . 

11 2 If A: S -* S is the diagonal map, then there are maps 

P-k (X; A) -"'P-k+l (X; A) which fit into the commutative diagram of exact 

triangles 

s- 
k 
AAY -* P_ k (X; A) -ý- P_ k(y) ,, S-k+l AAY 

s- k-I AAJ 
G-k s- k AAJ 

s- k+l AAY -+ P k+l (X; A) -i- P-k(y*) ** S- k+2 AAY 

Note that the vertical maps to the far right and the far left are zero. 
. 
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Our first task is to construct a map of inverse system of spectra 

{P- k (E) I 

Recall that Lin's Theorem shows that 

7r-ip- 

Choose a map of inverse systems 

1 tp_ 

that passes to 1 e2Z 2 under the above isomorphism. Given a spectrum 

of finite type E let '{E 
nI 

denote the set of all finite subspectra 

of E. For each m there exists Lm2: 0 with 

SýnE 
mcC. 

Using Fact 1 we form the composite 

S-IAS 
zm 

Em 
4-t 

m 
Al 

>P AS 

tmE gs mEm 
Is 

0> 
P- (S . 

1m 
EM) 

-kmm- k-k 
ni 

which we desuspend to form the composite 

S-1EM -> P- k-t 
ni 

AE m -> S 
-Z mp- 

k-t (SzrnEm) 
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Using (E _kM P, 
P-k 

mS P- k-l' (S mEm) and the map of spectra 
m 

P- k (Em) "' P-k (E) , induced by the inclusion, we obtain the composite 

s- I Em -"' P-k- 
ZMAE rn -"* 

p-k (E 
m) -"' P-k (E) . 

Given an inclusion EmSEn9 Zn A tm 9 using Fact 2 we obtain the 

commutative diagram 

s- Em P-k-Im AE 
mP-k(Em) 

++ P-k (E) 

s- En P- k-ln AE n 
P- k (E 

n) 

Since E=uEn we have-constructed a map 0k : S- 1E 
-* P-k (E) . Fact 2 

n 
and the construction show that these maps form a map of inverse systems 

S-1 E -)- {P-k (E) I 

We wish to identify this map in mod 2 cohomology, H Let A 

denote the mod 2 Steenrod algebra. Following Singer ([201), given 

a left A-module M, define the 2Z/2-vector space A(M) by 

IF 2 Eu, u- 
IIQm. 

- Give A(M) the structure of a left A-module via 

Sq a (U 2 Rm) = E( Z-i )U £+a-j 2 Sqjm, maM. 
i a-2j 
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Note that as a functor from the category of left A-modules to itself, 

A is exact. 
There is an A-homomorphism (see 1201) c: A(M) -1, E-lM defined by 

I qz+lm 
c (u Qm) = 

0 otherwise. 

After applying mod 2 cohomology to the inverse system {P-k (Q) 

we obtain a direct system of A-modules. The following observation is 

due to H. Miller and a proof may be found in [121. 

Proposition 6.1 

There is a naýural isomorphism defined on Sp 

A(H E) colim kH P_ k (E) 

Let 0 colim H (E) HE 
. 
0k: co"mk (P-k 

Proposition 6.2 ([121) 

If F is a finite spectrum, then 

Corollary 6.3 

If E is a spectrum of finite type, then D* = 
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Pf Let En denote the collection of all finite subspectra of E 

Then we have the commutative diagram 

A(H 
* E) lý 

> E- 1H*E 

ä(H E 
n) --w-> Z- HEn- 

Fixing .* choose m so that H*E '=" H*E 
m. 

Since A is exact, if 

xc H*E then under the homomorphism A(H*E) -* A(H*Em) 

QX -* Utax. 

Proposition 6.2 now completes the proof. 

We quote a theorem of Adams, Gunawardena and Miller ([4 ]) which 

will be proved in the appendix. 

a 

Theorem 6,4 (1 41) 

If M is a left A-module, then the homomorphism 

so Extý M, 2Z/2) ExtAS* (M) , 2Z/2) 

is an isomorphism. 

Proposition 6.5 

If E is a spectrum of finite type, then the spectrum hol'mkp-k (E) 

is two-complete. 
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Pf First we will show that for k odd 7r*p-k (E) is finite. Let 

H, (Q) denote rational homology, then 

Tr* P 
-k 

(E) QQ H*(Q)(P_ k(E)) I 

Using Fact 3 we construct an unravelled exact couple 

H*(Q)(P-k(E)) -ý- H,, (Q)(P_ k+I(E)) H*(Q)(P-k+s (E)) 

i P* 

H* (Q) (EAE ) 

which determines a left-half-plane spectral sequence converging, by 

Theorem 3.4, strongly to H,, (Q)(P_ When k is odd Fact 3 
k (E)) 

shows that 

H) k+s 

so E* =0. T; us'when k is*odd 
2 

-rr*p-k (E) 9Q 
Z! 

hence 7r*P-k (E) is finite since P_ k(E) is of finite type. 

Next we will show that w*P_ k(E) is a two-group when k is odd. 

If p is prime and H*(p) denotes mod p homology, then using Fact 3 
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we obtain just as before a left-half-plane spectral sequence converging 

strongly to H*(p)(P_ k (E)) . The differential d, is determined by 

s P*i* =1+ H) k+s 

Hence if pt2, p is prime and k is odd, E2=0. Thus 

H*(p)(P_ k (E)) =0. This shows that w*P_ k (E) is a two-group when 

k is odd. 

If A denotes the two-completion of spectra, then 

Cholim P_ (E) ]A = hol A (E) Since each spectrum P is of kk 
'mkP 

_k_k 
(E) 

finite type PA (E) %o P (E) A S( 7ZA ) by Lemma 4.3. Hence the inverse 
-k 

"' 
-k2 

system {7r*P A (Q) satisfies condition (b) of Lemma 2.4 by Lemma 4.4, 
-k 

Lemma 2.5 and Lemma 2.6. Proposition 4.1 now shows that 

7r,, hol im PA (E) ' 
k -k 

'2 "mk"*P-k 

Since the groups w*P_k (E) are finite for each odd k the inverse 

system {lr*p-k (E)l satisfies the Mittag-Leffler condition. Lemma 2.4 

and Proposition 4.1 now show that 

71*holim P k -k(E) 
lim k"*P- k(E) 
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We have the commutative diagram 

7r*holim k P- k(E) -ý- w*holim PA (E) 
k -k 

112 112 

lim 7r,, P_ (E) A (E) kk -" 1 'mk"*P-k 

Since for each odd k 'Tr*P_ k (E) is a two-group and using Lemma 4.4. 

1 im ir*P_ (E) "2 
kk "mk"*pAk(E) 

. 

This completes the proof. 

Proof of Theorem A. 

Let (Er a 
r) 

denote the Adams spectral sequence converging to 

7r*s- 
IEA 

and let (Er d 
r) 

denote the spectral sequence of Theorem 5.6 

converging to w*holim k P- k (E) by Proposition 6.5. Then the map of 

inverse systems 

-I 
(I, d 

{P- k (E) 

induces a morphism of spectral sequences f: (E 
rarEr, 

dr On the 

E 2- terms, f2 which is an isomorphism by Corollary 6.3 and Theorem 

6.4. Theorem 4.8, Theorem 5.6 and Theorem 3.2 complete the proof. 
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§7. The proofs of Theorem B and C 

This section comes from 1121. If X 'is a CW-complex, then 

Fact 1 gives a natural map of spectra 

t 

ý(X, SO): P_ k ̂ X -> P- k(X) * 

We write P for the map of inverse systems of spectra 

{P-k AX} -* {P_ k(X)l induces by the maps ý(X, S 0). In this thesis we 

do not require a cohomology theory to satisfy Milnor's wedge axiom. 

Theorem 7.1 (1121) 

Let E be a cohomology theory defined on Sp . Then 

(a) co"mk E P_k(E) is a cohomology theory defined on S 

(b) the natural transformation of cohomology theories, defined on C, 

0 : colim kE P_ k(X) ->" CO"mk E P_ k Ax 

is an isomorphism when XcC is finite. 

Pf (a) The only difficult point in the proof is showing that 

colim kE P_ k(-) takes exact triangles in S to long exact sequences. 

- Recall that co"mk is an exact functor. Then given an exact triangle 

in 
A -*. X -)- Y- SA , 
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Fact 5 shows that colim E*P= colim EP Thus, using k- k(y) kk (X, A) 

Fact 5, we obtain the required long exact sequence 

col im kE P-k(y) -" Co"mk E P_ k (X) -)- col im kE P-k(A) 

. 
(b) It is clear that colim kE* P- k AX is a cohomology theory 

defined on -Sp defined on C, is a natural transformation 

of cohomology theories. When X= So Fact 4 shows 

that 0 is an isomorphism. The Eilenberg-Steenrod uniqueness theorem 

shows that is an isomorphism for each finite XcC 

Corollary 7.2 

If X is a finite spectrum then there is a natural isomorphism 

B: colim kE P_ OX) col'mk E P-k AX 

Pf Since X is a finite spectrum, for some z 'a 0 SZX eC. Now 

use Theorem 7.1 . 

Proof of Theorem B 

Fact 4 shows that PO(PO) f'\"#IRP"O , hence we have the canonical map 

P: PO(S 0 IRPOO -)-. S0 

described in the introduction. Recall that la-d is the collection of - 
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maps in the inverse system of spectra {P_ k). Then we define maps 

9-k: p-k -" S0 by 9-k `ý PO'7-10 ... a_ k* The'maps 9-k Al determine 

a homomorphism 

G: iýM -* col im n*p AX . kk 

which is a natural transformation of coholomolgy theories, defined on 

Sp . When X=S0 Lin's Theorem shows that G is an isomorphism (see 

[151), hence G is an isomorphism, by the Eilenberg-Steenrod uniqueness 

theorem, when X is a finite spectrum. Now use corollary 7.2 to complete 

the proof. 

We turn now to the proof of Theorem C. Recall that in the introduction 

we defined a map ' 

Yt, x: 
tX 

-> col im 
k 7r P- 

t g. 
(X) 

. 

Let q, and q2 be the projections of Xvy onto X and Y. Define 

f: P- k(Xvy) "' S- k XAY to be the composite 

P-k A s- kqI 
Aq 2k P-k(Xvy) -" S (XVY)A(XVY) -). S- XAY 

. Lemma 7.3 

The map of spectra 
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H: P- k(Xvy) -" P-k(X) v P-k(y) vS -kXAY 

with components P_ k (ql) , P_ k (q 2) and f is an equivalence. 

Pf Let i1 and j2 be the inclusions of X and Y into XvY 

Define g: S- kXAy 
_). p_ k(Xvy) to be the composite 

sA j, Aj 
s- k xvy ___. 

2> S-k(Xvy )A(XVY) 'k> p_ k(Xvy) 

Then the map P_ k (X)vP_k(Y)vS- k XAY -*. Pk (XvY) , with components 

P- Ojl)ý P-k(j2) and g, is an inverse for H 

Lemma 7.4 (1121) 

For a, a c ir 
tX, Xc Sp 

Yt, o(a+$) = -yt, o(a) + Yt, o(s) + s- t 
aAop_t 

Pf Let W: X -* XvX be the map with both components the identity. 

Then the composite 

p 
P-t(w) 

p xvx) -. 
L> 

P (X)VP -t Wx) a --- > 
-t A _t(X)VS 

XAX 

has as its first two components the identity and p_t as its last. 

The proof now follows. 
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Lema 7.5 (1121) 

The map yt,,, is a homomorphism if 

Pf Use the previous lema and the fact that 

cr 

>pk>S AXAX 
- t(X) 

ýn 

is part of an exact triangle to show that 

Yt, (a+0 = yt, z(a) + yt, y. 
(O) 

when t> 

Lemma 7.6 (1121)- 

if X is a finite spectrum, and z ýt 1, then yt', extends to, 

a homomorphism 

^t 

ýt 7r X 4. IT P-t-t(x) 

Pf ýIf XeC and n? -k , define the spectrum Pn (X) by replacing 
-k 

S'" with Sn+k throughout the definition of P_ k(X) . This works when 

Xc Sp, as well (see [121). We define. maps 
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tn 

just as before which are homomorphisms when t ý: 1- If X is a 

finite spectrum, then Pn is finite and by Lemma 4.4 n extends 
-k(X) t,. t 

to a homomorphism 

Yt, 9. 
: Iff x 

-->. ir P- 
t-t (x) . 

tn=t Following the proof of Lemma 4.7 we see that limn7r Pt, 2. 
M 7r P_ t-Z 

M 

hence the. homomorphisms Irn 11 
. -define a homomorphism t,. t n 

:^t^t 

yt, L ir X -> ir p- 
t-L(X) - 

Proof of Theorem C 

At If XcS and acnX, then yt+,,, (Sa) = Syt', (a), hence r 

commutes with the suspension isomorphism in the two cohomology theories. 

00 If 1S is the unit, B is the isomorphism in Corollary 7.2 and 

G is the isomorphism in the proof of Theorem B, then r(l) = B- 1 
oG(l) . 

Since r and B oG are natural and commute with suspensions they agree 

on finite spectra. Thus r is an isomorphism on finite spectra since 

B- 1 
oG is. 
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Lastly we show that Theorem B is false when X=P01 Given a 

finite abelian group G, let BG denote the classifying space of 

G. Let A(G) denote the Burnside ring of G completed at its 

augmentation ideal. G. Segal made the conjecture for finite groups G 

7r 
t BG A (G) t0 

0t>0 

Let D4 be the dihedral group with eight elements. Then (11 1) 

p0=B Z/2+ ,P0 AP 0= B(2Z/2 x2Z/2)+ , PO(PO) = BD 4+ ' 

[AU/2)1 2= @Z 2) [A( ZZ/2 x 212)1 2=9 ZZ 2) 

[A(D 0 4) 32 
8 

212 

Adams, Gunawardena and Miller (14 1) verified Segal's conjecture 

when G= 2Z/2 x Z/2 . Carl sson ([10]), usi ng thei r resul ts, proved the con- 

jecture., Hence*the cohOmOtopy exact sequence of the exact triangle 

S-kp 0 AP 0* P- k(PO) -"' P-k+l (PO) -" S- k+l poAP 0 

shows that 

0 
0) 

i, -O(p colim k'ýff P-k (P 71 
-, 

(P0» 
- 

AO A 
However, wP0 2Z ([151)*so ^0 022 Tr (PO) cannot be isomorphic to 

0 
col im Or P- k (PO) 

0 

Using the same exact triangle with k=1, we see that rank 
zz A Tr P_I(PO) ý 3. 

2 
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§8. The proof of Theorem D 

In this section we will prove Theorem D using the spectral sequence 

constructed in section five. 

For each r ý: I let A denote the subalgebra of A generated 
r 

by Sq 2J 
with 0 :9i :9r- Recall from section six that 

,& =IF 2 lu'u- 11 

is a left A-module with its A-action defined by 

Sqju P. 
=(iE )u Z+j 

. 

Let Ft, 
r 

be the A 
r- submodule of A generated by uj with i 

Lemma 8.1 (1161) 

Given iEZ define It iE 2Z: i1 (41) Then 

there is an isomorphism of A-modules 

AQA A/F 0 (A QA ZZ/2) 
II jel 0 

Lernma 8.2 

If saI and mc 2K , then 
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Ext S's-I ( ZZ/ 2, E4 MAP ZZ/2) =0 A0A0 

Pf For some free AO-module F there is an isomorphism of AO-modules 

A 2z A /2 Z! /2 9F 

Hence for s zt 1 

Ext s, s-1 ( ZZ/2, E4MAG 2Z/2) 1-u Ex S IS-1 ( 2Z/2, E 
4m ZZ/2) =0,, A0A0 tÄ 

0 

Lemma 8.3 

If s ý: 1, m -- 2z, then 

s S-1 4m-1 ExtA' (A OA 
1 
A, 2: A@ A0 ZZ/2) =0 

Pf Each F is bounded above. In fact F is zero in dimensions 
. t, l* z 'l 

>i+6 Given M, t E2Z s>0, we may choose t so that 

Ext s 't(Ft', , 
4m-1 A@ 2Z/2) =0 AIA0 

The change of rings isomorphism (see 131) shows that 
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st 4m- 1 4m-1 Extý, ' (F, 
",, 

E A& A0 ZV2) '-2' Ext A 't(AQ AIF XJIE 
A&A 

0 
2Z/2) 

Fix m -EZZ and s ýt I, then after apply Ext to the short exact 

sequence 

A@ F A& Ag OF A1AA 

we see that for some z 

s s-1 4M-1 t A/F 
4M-1 ExtÄ' (AGA As AG ZZ/2) 'l' Ex S AG 7-/2) . 1A0T 

(ýGA 
1 z, 1 IE A0 

Lernma 8.1 shows that 

Ex s s-1 (Ag A/F 
4-1 AG ZZ/2) IÄ' 

L, 1 IE 

Aj = 11 Ext A IS-1 (E4R A V2, E 
4m- 'A&A ZZ/2) 

jEI 
z00 

The change of rings isomorphism 

Ext s, s-1 (EjAG ZZ/2 9E 
4m-1 AG 2Z/2) 'IJ 

AA0A0 

4M-1 Ex S 's-1 (zi 2Z/2, r AG 2Z/2) tÄ 
0A0 

and Lemma 8.2 complete the proof. 
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Proof of Theorem D 

First note that since the inverse system {P-4k-3 Abol is 

cofinal in {P- k Abo), 

hol im k P- 4k-3 \bo '%" hol im k P- k tbo . 

Each-of the spectra P-4k-3 Abo is two-complete which shows. that 

holim kp-4k-3 Abo is two-complete. Theorem 5.6 gives us a spectral 

sequence with E2-term 

s* r4m-1 
* Ex P Abo .H H( ZZ) T (CO"mk H-k 

converging strongly to 

[S 4M-1 H( M), holim kp-4k-3 Abole . 

r%j "' A@ ZZ/2 and Recall that col'mk H P- kA9H bo A 

HH( 2Z) Ag A 2Z/2 (1 31 hence we may rewrite the E 2- term: 

S, * s* 4m-1 E2 Extý' (AQA, A, E A& A0 2Z/2) 

Using the change of rings isomorphism, 

V 
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00 Am-1 00 4m- 1 Extýl (AQA A'E A@ A 2Z/2) '-ý Extý' (A, E A@ A 2Z/2) 
1010 

The map ýmE Hom 0(,,, 4m-1 AG A 2Z/2) defined by 
10 

Sq Y, +l -4m 4m-1 
(u k) 

ý- 
0 otherwise 

is an A -homomorphism, hence defines an element ýcE0,0 1m2 

Lemma 8.3 shows that ým c E,,, thus defines a map of spectra 

fm : S4M-1 H( 2Z) -: hol im k P- 4k-3 tbo . 

For each K let a_ Oholim k P- 4k-3 Abo -ý- P-4-3 Abo be the projection. 

Then from the construction of fm 

oa* :H 
4m-1 p Abo -)- H4m-1 s 4m-1 H(2Z) 

m 4m-3 

is an isomorphism. Thus 

atn*o fm*: "4m- 1S 
4m-1 H( 2z) -*. 7T 4m-1 p 41n-3 Abo 

is onto. The homotopy of holim k P- k Abo is well known (see [111). We 

have 
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Z/2 (k+3)/2 K -2 3(8) k>0 

7r 4n+k(p4n+l Abo) 2Z/2(k+l)/2 K. = 7(8) k>0 

Z/2 K =- 1,2(8) k>0 

0 otherwise; 

for each k and n c2E , the homomorphisms 

Tr 4n-I P- 4k-3 Abo -)- v 4n-1 P- 4k+ 1 Abo 

are onto. Hence 

zz AiE 
3(4) 

IT i holim k P- 4k-3 Abo T0 

otherwise. 

The homomorphism 

Im k: w 4m-ls 
4M-1 H 7Z) ->' "4m- , hol ' rnkp-k ibo 

is the completion homomorphism ZZ _ý. 
jA 

. Thus the map 2 

f= nfm E R[S4M-l H( Z), holim kp-4k-3 Abol 
mm 

- induces the equivalence 

(V s 4m-1 H( 2Z))A holim P- Abo 
ol 

2k U-3 
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Appendix 

We shall prove Theorem 6.4here. The proof is taken from notes of 

seminars given by Adams and Miller and is entirely due to Adams, 

Gunawardena and Miller. We include the proof only for the sake of 

completeness as their paper has not yet been circulated. 

. Let M be a left A-module. Recall from section six that Singer 

defines a left A-module 

A(m) =F2 [U, U- 
IIam 

with left A-action given by 

Sq a (u z 9m) X-i )u t+a -jGSqjm 
a-2i 

We give A(A) a right A-action by (u I Qb)Sq a= ut&bSq a. 

Lema A. I 

Let M be a left A-module. Then as left A-modules 

'2 A(A) 9AM 

Pf Define a map G: A(A) 9AM -ý- A (M) by 

G(u 19 Sq a0 
M) = ut Q Sq m 
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Then G is well defined and an A-homomorphism. G is the required 

isomorphism. 

If N is a left Ar -module, then A(N) is a left A 
r+l -module. 

A(A 
r) 

is a right A 
r-module. 

Lemma A. 2 

Let M be a left A-module. Then as left A -modules r 
A(M) A(A r-1) 

QA 
r-l 

M 

Pf The A 
r- 

homomorphism G: A(A 
r-1) 

OA M -* A(M) defined as above 

is the required homomorphism. 

Lemma A-3 

As a left A 
r- module, A(A is free on generators U 

k. 2 r+l- Ia1 

kc 2Z 

Pf First we will show that for all kcZIuk. 2 r+l- 191 is non-zero in 

2/2 0A A(A 
r-1) . Let 0 -5 a<2 r+l 

and t+a = k+2 r+l_l 
. Then 

Sq a (u Igl) 
= E(I-i )ut+a-j Q Sqj 

i a-2j 
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However 

(z)=( L-k 2 r+l a-1 2a)'= 0 
a 

(a 

Let Ar denote the*augmentati, on ideal of Ar* We have shown that 

k. 2 r+l_, k. 2 r+l- I 
u Ij A A(A hence uI is non-zero in 

r r-1) 

2Z/2 QA A(A r-1) * 

Given k, let uzQA r-I 
denote the 2Z/2-vector subspace of 

A(A r-l') generated by elements of the form ut Qb, bEA 
r-I * 

Since , Sq 1 (u k. 2r+l_l 
.a C) =uk. 

2 r+l 
&c 

k. 2 r+l. 
QA_A A(A 

r-1 cr 

Suppose by induction we have shown that for some m< (k+1)2 r+l- I 

AAEAA (A 
. r-1 r r-I 

whenever k. 2 r+l ,L<m. If ccA r-1 ' then the A 
r- action on 

, &(A 
r-1) 

shows that there are yj cA r-l and aný: 0 with 

m-k. 2r+l+l 2r+l_, mn _j Sq (u C) U9c+EU9 Yj 
j=j 
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Thus LP 61 A 
r-I 2ýýr &(Ar-1) ' Hence by induction 

19 AAr A(A 

whenever ifk. 2 r+l 
_1, kc 2Z . If 0<m<2r then Sq mEA 

r-1 * 
Then given cEA r-I and k E7Z 

Sq 2m (u k. 2 r+l_m_l 
& c) = uk. 

2 r+l- 19 Sq mc + 

M-1 k. 2 r+l_m_, 
_j ) uk. 

2 r+l +M-l-jQ Sqjm +1( 2m-2j i=o 

Thus u 
k. 2 r+l 

-1QA 
r-I 2Ar6 (A 

r-1) * We have shown that 2Z/HA A(A r-l-) r 
k. 2 r+l 

-1 is precisely the set of elements u&1, k rL7Z . An easy 'counting 

ranks' argument shows that A(A 
r-1) 

is freely generated over Ar by 

these elements. This completes the proof. 

Recall that there is an A-homomorphism 

c: A(M) 4- Z-lM 

defined by 

Sq Wmt 

c (u AM) = 
0 otherwise. 
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Proposition A. 4 

Let M be a left A-module. Then l9c: 2Z/2 gA A(M) _ý-Z/2 QA E-im 

is an isomorphism of Z/2-vector spaces. 

Pf First we note that 

Z/2 A AA(M) Co"Mr 2Z/2 &A A(m) 
r 

Lema A. 2 shows that 

Z/2 9Ar A(M) =2Z/2 0ArA (A 
r-I 

) QA 

We write (D uk. 
2 r+l- 101 for the Z/2-vector space generated by 

k 
k. 2 k+l- 1 

uAI, keZ. Then by Lemma A. 3 

2Z/ 29A (A gu2 
r+l 

-1 A A r-I AM 
'ý @Q19 

r r-I k r-1 

hence 

Z /2 @A A(M) "ý @uQA 
r-1 

m 
rk 

After taking direct limits 

colim r 
Z/2 9A AN ý-" U-1 QAM 

r 
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The map 1Qe is seen to be an isomorphism as claimed. 

Ar 

Let M be a left A-module. Then the induced homomorphism 

c,,: Tor A 
t( ZZ/2, A(M)) -* Tor A 

t( Z/2, E- I M) 
ss 

is an isomorphism. 

Pf Let CS be a projective A-resolution of M. Then as Ar-l -modules 

each CS is projective, (e. g. see 1141) hence flat. Given a short 

exact sequence of A-modules 

M2 -* M3 -ý- 0, 

0 -* MlQA 
r 
A(A 

r-09A r-1 
cs -* M2QAr A(A 

r-l)QA r-1 
cs -* 

M3QAA (A 
r-1 

)QA cs -*. 0 
-r r-1 

is short exact by Lemma A. 3. Since colim k is an exact functor 

MIAA A(A)Q Acs -). M29A A(A)a Acs -ý- M3QAA (A )GA cs -ý- 

is short exact. Thus Lemma A*. I shows that the A-moduleS A(CS) 

are flat. Hence the homology of the chain complex {Z/2 0A A(C S 
)) is 
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Tor A (2Z/2, A(M)) (see [171). The homomorphism e induces an 
S, t 

isomorphism of chain complexes 

DZ/2 GAA (C 
s)1 -' 

@E-: 
-> {Z/2 2A s- 

1cs1- 

Since the homology of {Z/2 QA 
1 

E- CsI A -1 is Tor 
S, t( 

1/2, z Cs this 

proves the theorem. 

Theorem A. 6 

Let M be a left A-module. Then the induced homomorphism 

S, t -1 S, t c*: Exlý (E M, Z/2) -* Extý (A(M), Z/2) 

is an isomorphism. 

Pf Given a Z/2-vector space V, let V* denote its dual space. 

Then for any left A-module N 

Ex S' t (N, Z/2) '=" (Tor A( 2Z/2, N» IÄ s, t 

(see [161). Now use the previous theorem. 
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