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It is proposed that critical balance – a scale-by-scale balance between the linear
propagation and nonlinear interaction time scales – can be used as a universal
scaling conjecture for determining the spectra of strong turbulence in anisotropic
wave systems. Magnetohydrodynamic (MHD), rotating and stratified turbulence are
considered under this assumption and, in particular, a novel and experimentally
testable energy cascade scenario and a set of scalings of the spectra are proposed for
low-Rossby-number rotating turbulence. It is argued that in neutral fluids the critically
balanced anisotropic cascade provides a natural path from strong anisotropy at large
scales to isotropic Kolmogorov turbulence at very small scales. It is also argued that
the k−2

⊥ spectra seen in recent numerical simulations of low-Rossby-number rotating

turbulence may be analogous to the k
−3/2
⊥ spectra of the numerical MHD turbulence

in the sense that they could be explained by assuming that fluctuations are polarised
(aligned) approximately as inertial waves (Alfvén waves for MHD).

Key words: MHD turbulence, rotating turbulence, stratified turbulence

1. Introduction
Ability to support both linear waves and nonlinear interactions is ubiquitous in

natural systems. Wave turbulence is, therefore, a very generic situation in such systems
when dissipation coefficients are small and energy injected at some system-specific
scale has to be dissipated at much smaller scales (Zakharov, L’vov & Falkovich 1992).
Theory of turbulence is concerned with the ways in which the energy is transferred
from large (injection) to small (dissipation) scales and, consequently, with the structure
of the fluctuations in the intervening scale range.

A common property of many such systems is the presence of some mean field
that introduces a special direction. Examples are plasmas embedded in a mean
magnetic field, rotating fluids and stably stratified fluids with a mean temperature
or density gradient (in real systems usually in the direction of gravity). Both linear
and nonlinear physics are affected by the mean field: turbulent fluctuations in such
systems tend to display a high degree of anisotropy. The typical wavenumbers parallel
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and perpendicular to the special direction associated with the mean field often satisfy
k‖ � k⊥, while the wave dispersion relation is of the form

ω = k‖v(k⊥). (1.1)

For Alfvén waves in magnetohydrodynamics (MHD), v = vA, the Alfvén speed, and
for inertial waves in rotating fluids, v = 2Ω/k⊥, where Ω is the rotation frequency.
Our arguments will apply directly to these two cases; in stratified turbulence, k‖ � k⊥,
so the roles of k‖ and k⊥ are reversed and certain adjustments to the general argument
will be needed – they are explained in § 5. Note that low-frequency waves in magnetised
plasmas generally satisfy the gyrokinetic dispersion relation, which is also of the form
(1.1) (Howes et al. 2006) and of which the Alfvén-wave dispersion relation is a
large-scale limiting case.

The dispersion relation of the type (1.1) implies that waves propagate primarily
in the parallel direction: indeed, the parallel and perpendicular group velocities are
v‖ = v(k⊥) and v⊥ = (k‖/k⊥)k⊥v′(k⊥) � v‖. If the nonlinearity is of the fluid type,
u · ∇u, where u is the fluid velocity, then k‖ � k⊥ implies that nonlinear interactions
are primarily perpendicular: u · ∇u � u⊥ · ∇⊥u, so the nonlinear decorrelation time is
given by

τ−1
NL ∼ k⊥u⊥(k⊥), (1.2)

where u⊥(k⊥) is the characteristic velocity fluctuation amplitude corresponding to
the wavenumber k⊥ (this formula assumes that fluctuations are not polarised in any
particular way that might reduce the nonlinear interactions; if one assumes they
are, in fact, so polarised, the scaling theory presented below has to be modified as
explained in § 4.5). Note that incompressibility ∇ · u = 0 and k‖ � k⊥ imply that the
perpendicular motions are individually incompressible, ∇⊥ · u⊥ =0 (see Appendix A).

For anisotropic wave systems, Kolmogorov-style dimensional theory alone does
not fix the scalings of the energy spectra. Indeed, assuming a local (in scale) energy
cascade and hence a scale-independent energy flux ε,

k⊥E(k⊥) ∼ u2
⊥(k⊥) ∼ ετ (k⊥), (1.3)

where E(k⊥) is the one-dimensional (1D) perpendicular energy spectrum and τ (k⊥) is
the ‘cascade time’ corresponding to the characteristic wavenumber k⊥. In the absence
of waves or anisotropy, it is dimensionally inevitable that τ (k) ∼ τNL(k), whence
E(k⊥) ∼ ε2/3k−5/3, the Kolmogorov spectrum. However, with waves and anisotropy,
two additional dimensionless ratios arise: k‖/k⊥ and ωτNL ∼ k‖v/k⊥u⊥, which measure
the strength of the anisotropy and the relative time scales of the linear propagation
and nonlinear interaction (equivalently, the relative size of the fluid velocity and the
wave phase speed). The spectrum can, as far as dimensional theory is concerned, be
an arbitrary function of these two ratios, both of which can have some non-trivial
scaling with k⊥.

Clearly, an additional physical assumption is necessary to fix the scalings. In
strong MHD turbulence, it is known as the critical balance (CB ) and states that
the characteristic linear and nonlinear times are approximately equal at all scales:
ω ∼ τ−1

NL (Higdon 1984; Goldreich & Sridhar 1995). We propose that CB be adopted
more generally as a universal scaling conjecture for anisotropic wave turbulence. This
removes the dimensional ambiguity in determining the cascade time, so we may set
τ ∼ τNL and recover the Kolmogorov spectrum,

E(k⊥) ∼ ε2/3k
−5/3
⊥ . (1.4)
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The CB itself, ω ∼ τ−1
NL, then gives us a relationship between the parallel and

perpendicular scales:

k‖ ∼ [τNL(k⊥)v(k⊥)]−1 ∼ ε1/3 [v(k⊥)]−1 k
2/3
⊥ . (1.5)

Note that while these scaling arguments suggest that in some appropriately defined
sense the energy distribution in the (k⊥, k‖) plane will have a peak along the CB curve
(1.5), they do not tell us what the functional shape of this distribution is (the ‘width’
of the peak). However, as we will see in § 4.2, (1.5) is in fact sufficient to produce a
testable quantitative prediction of the energy spectrum with k‖.

In what follows, we first give a general argument in favour of the idea of CB (§ 2)
and then discuss three examples: MHD (and, more generally, plasma) turbulence,
from whence these ideas originate (§ 3), rotating turbulence, for which we propose a
novel energy cascade scenario (§ 4), and stratified turbulence (§ 5). Note that in § 4.5,
we propose the extension to the rotating turbulence of the concept of polarisation
alignment (also originating from MHD turbulence; see Boldyrev 2006), which may
help interpret the k−2

⊥ spectra reported in numerical simulations (Mininni, Alexakis
& Pouquet 2009; Thiele & Müller 2009). The section on rotating turbulence is the
main part of this paper, while the MHD and stratified cases are discussed only briefly
to emphasise what appears to be universal nature of some of the scaling arguments
involved. In § 3.1 and in our concluding remarks (§ 6), we will also mention a few other
examples of CB emerging as a general physical principle in wave systems, including
those that are different from the anisotropic wave type discussed here.

2. Why anisotropic turbulence is neither weak nor two-dimensional
In turbulent wave systems, if the fluctuation amplitudes at the injection scale are

so small that ωτNL � 1, the nonlinearity can be treated perturbatively and what is
known as weak turbulence theory emerges as a controlled approximation (Zakharov
et al. 1992). In anisotropic wave systems, it typically predicts a turbulent cascade
primarily in k⊥ (because the nonlinearity is primarily perpendicular), at constant k‖ –
either exactly (in MHD; see Galtier et al. 2000) or approximately (in rotating
turbulence; see Galtier 2003). While the analytic calculations can be quite involved,
the basic result can be recovered in a simple non-rigorous way. If ωτNL � 1, nonlinear
interactions between wavepackets result in small perturbations of the amplitudes
δu⊥ ∼ (ωτNL)−1u⊥. These perturbations can be assumed to accumulate as a random
walk and then the cascade time τ is by definition the time that it takes for the
cumulative perturbation to become comparable to the amplitude itself: n1/2δu⊥ ∼ u⊥,
where n ∼ τω is the number of interactions. This gives τ ∼ ωτ 2

NL and, using (1.1)–(1.3),
we get the 1D perpendicular energy spectrum

E(k⊥) ∼ (εk‖)
1/2 [v(k⊥)]1/2 k−2

⊥ . (2.1)

We stress that, since we have assumed that there is no parallel cascade, the energy-
injection rate ε can be an arbitrary function of k‖. Thus, in (2.1) and in all other
subsequent developments pertaining to weak turbulence, k‖ is a parameter – it is the
characteristic parallel wavenumber at which energy is injected. For simplicity, one may
assume that the injection is isotropic and so k‖ ∼ k0, the energy-injection wavenumber
that will appear in §§ 3 and 4. Note that in other anisotropic wave systems there can
be a cascade in the parallel direction. The weak turbulence spectra for some such
systems (historically the first example of anisotropic wave spectra) were found by
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Kuznetsov (1972). The parallel energy transfer in weak rotating turbulence (ignored
by us) is discussed in great detail by Bellet et al. (2006).

Using (1.1)–(1.3) and (2.1), it is easy to work out the condition under which the
weak turbulence approximation is valid: ωτNL ∼ k‖v(k⊥)ε−1/3k

−2/3
⊥ � 1. Unless v(k⊥)

increases sufficiently fast with k⊥, the nonlinearity becomes stronger with increasing
k⊥ compared to the linear propagation and the weak turbulence condition is broken
at k⊥ given by (1.5). Thus, the weak turbulence cascade drives itself into a critically
balanced state (see Schekochihin & Nazarenko 2011 for a somewhat less conventional
but conceptually perhaps more convincing argument to this effect).

The opposite limit is a pure two-dimensional (2D) state: k‖ is assumed so small
that ωτNL � 1 and wave propagation is neglected. As generically happens in 2D, the
energy cascade should then be inverse, from larger to smaller k⊥. As k⊥ decreases, τNL

becomes longer, so the 2D approximation, ωτNL � 1, is eventually broken and CB is
reached, at which point the turbulence is again three-dimensional (3D). Thus, both
from the weak-turbulence limit (small amplitudes) and the 2D limit, the turbulence
naturally evolves towards a state of CB.

There exists another argument, which is independent of the assumption of inverse
cascade and suggests that 2D motions are fundamentally unstable. Consider two
perpendicular planes separated by some distance. The motions in each plane will
decorrelate on the time scale τNL. In the parallel direction, information is transmitted
by waves, so perfect correlation between the two planes required for a pure 2D state
can only be sustained if a wave can propagate between them in a time shorter than
τNL. Thus, for any given k⊥, there will be some parallel distance, k−1

‖ , given by the CB

relation (1.5), beyond which the motions will decorrelate and become 3D. Thus, an
initially 2D perturbation will tend to a state of CB (this argument was suggested to
us by S. C. Cowley, private communication 2004). This process can be interpreted as
an instability of the 2D motions with respect to Cherenkov-type emission of waves.

3. MHD (Alfvénic) turbulence
The ideas laid out above in a general form originate from considerations of MHD

turbulence. In MHD, (1.1) describes Alfvén waves with v = vA = B0/
√

4πρ, where
B0 is the mean magnetic field and ρ is the density of the conducting fluid. Small
anisotropic fluctuations in such a turbulence are Alfvénic, u⊥ ∼ δB⊥/

√
4πρ, where δB⊥

is the perpendicular perturbation of the magnetic field (mathematically this statement
can be formalised in terms of the reduced MHD (RMHD) equations; see the end of
Appendix A).

Both weak-turbulence (Galtier et al. 2000) and 2D (Montgomery & Turner 1981)
theories for MHD turbulence have been proposed. By the general arguments given
above, both will naturally evolve towards a CB state, k‖vA ∼ k⊥u⊥, with a Kolmogorov
spectrum (1.4) and a scale-dependent anisotropy given by (1.5):

k‖ ∼ ε1/3v−1
A k

2/3
⊥ . (3.1)

Note that as k⊥ increases the turbulence becomes more anisotropic (k‖/k⊥ decreases).
If the turbulence is weak at the injection scale, its spectrum is expected to be (see

(2.1))

E(k⊥) ∼ (εk‖vA)1/2k−2
⊥ (3.2)

and there is no cascade in k‖ (Galtier et al. 2000). From (3.2), urms ∼ (εvA/k0)
1/4, where

k0 is the wavenumber of energy injection (assumed isotropic); so ε ∼ M4
Av3

Ak0, where
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MA = urms/vA � 1 is the Alfvénic Mach number. Then the wavenumber at which weak
turbulence breaks down and the critically balanced cascade begins is, from (3.1),

k⊥c ∼ ε−1/2(k‖vA)3/2 ∼ k0M
−2
A . (3.3)

The anisotropy of Alfvénic turbulence and even (3.1) appear to have been confirmed
by numerical simulations (Cho & Vishniac 2000; Maron & Goldreich 2001) and solar
wind measurements (Horbury, Forman & Oughton 2008; Podesta 2009; Wicks et al.
2010; Chen et al. 2011) – this will be discussed further in § 4.2. The weak turbulence
spectral scaling (3.2) has also been checked numerically (Perez & Boldyrev 2008).
The precise nature of the scaling of the energy spectrum in the CB regime remains
somewhat mysterious: while the solar wind measurements support k

−5/3
⊥ (e.g. Bale

et al. 2005; Horbury et al. 2008; Sahraoui et al. 2009; Wicks et al. 2010; Chen et al.
2011), numerical simulations give spectra much closer to k

−3/2
⊥ (Maron & Goldreich

2001; Mason, Cattaneo & Boldyrev 2008) – a modified critical balance argument
proposed by Boldyrev (2006) to explain these results will be discussed in § 4.5, where
we will show how it can be adapted to the case of rotating turbulence.

3.1. Plasma turbulence

Beyond the MHD approximation, the gyrokinetic dispersion relation for low-
frequency waves in magnetised plasmas is also of the form (1.1) (Howes et al.
2006). The general idea of a critically balanced cascade can be extended to various
types of gyrokinetic turbulence, e.g. for plasma turbulence below the ion Larmor
scale (Cho & Lazarian 2004; Schekochihin et al. 2009). Further details can be found
in Schekochihin et al. (2009) (§ 7); the important point to keep in mind is that
generalising the argument proposed in the present paper to plasma systems requires
correctly identifying the cascading quantity (not always kinetic energy) and the type
of nonlinearity (not always u · ∇u).

In the case of the turbulence of kinetic Alfvén waves (dispersive waves that replace
the MHD Alfvén waves below the ion Larmor scale), the scaling predictions resulting
from the application of the CB conjecture to their dispersion relation (also of the
form (1.1)) have been confirmed numerically (Biskamp et al. 1999; Cho & Lazarian
2004, 2009); the sub-Larmor-scale spectra and structure functions measured in the
solar wind also appear to be consistent with the CB prediction (Sahraoui et al. 2009;
Chen et al. 2010). This is the first example of confirmed applicability of the CB
conjecture beyond its original target of MHD turbulence.

4. Rotating turbulence
Are magnetic anisotropy and magnetised plasma waves a special case or can CB

be adopted as a universal scaling conjecture? A key test of universality would be to
find a critically balanced cascade in a purely hydrodynamic setting. We propose the
following scenario for the rotating turbulence.

4.1. Critically balanced rotating turbulence and restoration of isotropy

The dispersion relation for inertial waves in a rotating incompressible fluid is
ω = 2Ωk‖/k. Suppose that the energy is injected isotropically at some characteristic
wavenumber k0 and the Rossby number Ro = urmsk0/Ω � 1, i.e. the amplitudes at
the injection scale are so low that turbulence is weak. Then the energy cascade
will proceed anisotropically: let us assume for maximum simplicity that the parallel
cascade is negligible, i.e. k‖ stays of the order of k0 while energy moves towards larger
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k⊥ (Galtier 2003). When k⊥ � k‖, the dispersion relation takes the form (1.1) with
v(k⊥) = 2Ω/k⊥; the weak turbulence spectrum is then given by (2.1) (analogous to
(3.2)):

E(k⊥) ∼ (εk0Ω)1/2k−5/2
⊥ . (4.1)

Note that this implies urms ∼ (εΩ)1/4k
−1/2
0 and so ε ∼ Ro4Ω3k−2

0 . As k⊥ increases, the
nonlinearity becomes stronger and CB is reached at a critical k⊥ that can inferred
from (1.5) by setting k‖ ∼ k0 (analogous to (3.3)):

k⊥c ∼ ε−1/5(k‖Ω)3/5 ∼ k0Ro−4/5. (4.2)

For k⊥ >k⊥c, the turbulence is no longer weak, but it is still anisotropic and the
cascade is critically balanced: the spectrum is given by (1.4), while (1.5) becomes

k‖ ∼ ε1/3Ω−1k
5/3
⊥ (4.3)

(cf. Galtier, Pouquet & Mangeney 2005). This relation is qualitatively different from
the MHD case (3.1) in that the fluctuations become less, rather than more, anisotropic
as k⊥ increases. Isotropy is reached when k⊥ ∼ k‖ ∼ ki , where

ki ∼ ε−1/2Ω3/2 ∼ k0Ro−2 (4.4)

(cf. Zeman 1994). At this wavenumber, the velocity is u(ki) ∼ (ε/Ω)1/2 (using (1.3)
and (1.4)) and so the Rossby number at the corresponding scale is kiu(ki)/Ω ∼ 1.
Therefore, at k > ki , rotation is irrelevant and turbulence is of the familiar isotropic
Kolmogorov type, with E(k) ∼ ε2/3k−5/3. This is, of course, the physically inevitable
outcome because unlike in the case of magnetised turbulence, which can feel the
mean magnetic field at any scale, the hydrodynamic turbulence cannot feel the mean
rotation rate if the local Rossby numbers are large. It is reassuring that the critically
balanced cascade predicted by the general argument proposed here has naturally led
to this Kolmogorov state.

The cascade path and the resulting spectrum are sketched in figure 1. We have
illustrated the case discussed above, where energy is injected isotropically and in
the weak turbulence regime. More generally, we expect that energy injected at a
given (k⊥, k‖) will travel towards the CB path (4.3) followed by isotropic Kolmogorov
cascade (as, e.g., shown in figure 1 for the case of quasi-2D injection, discussed in
§ 4.3). Obviously, if the energy is injected at k0 >ki , i.e. if Ro > 1 at the injection
scale, the cascade will start and remain isotropic because rotation can be ignored.
Note that both the relationship (4.3) between the parallel and perpendicular scales
and the wavenumber (4.4) of the transition to isotropy depend only on ε and Ω , but
not on the injection scale(s). Thus, the CB-to-isotropy path represents the ‘natural’
state of rotating turbulence – probably applicable to the decaying case as well as
the forced one. Thus, we suspect that (4.3) should prove to be a good prediction
for the relationship between the parallel and perpendicular correlation lengths in the
columnar vortical structures observed in experiments (e.g. Davidson, Staplehurst &
Dalziel 2006).

Our predictions of the spectral slopes (4.1) and (1.4) and the scaling of the transition
wavenumber (4.2) with Ro are experimentally and numerically verifiable (but see § 4.5
for possible alternative scalings). A transition from anisotropic to isotropic turbulence
at the local Ro ∼ 1 [(corresponding to the wavenumber ki , (4.4)) appears to have
been observed first by Jacquin et al. (1990). A change of spectral slope from ∼ −2.2
(perhaps consistent with −5/2) to ∼−5/3 (corresponding, in our theory, to the critical
wavenumber k⊥c, (4.2)) may have been observed in rotating turbulence experiments
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Figure 1. A sketch of cascade path and spectra for the rotating turbulence: both the case
of injection at k⊥ = k‖ = k0 (and Ro � 1) and that at k‖ � k⊥ = k2D are shown (see §§ 4.1 and
4.3). In the case of polarisation alignment, scalings shown in the two upper panels should be
modified as explained in § 4.5. The absence of the parallel cascade in the weak regime is a
simplifying assumption, as acknowledged at the start of § 4.1.

with small initial Ro (figure 5b in Morize, Moisy & Rabaud 2005), although it is
premature to say if these results are definitely related to the transition to CB or merely
to instrumental noise at high wavenumbers. What does seem to be known definitely is
that rotating turbulence has a clear tendency to a state where the local effective value
of the Rossby number is ∼1, i.e. the linear and nonlinear time scales are comparable
and both linear and nonlinear dynamics are manifestly present (Davidson et al. 2006).
This is consistent with the transition to CB that we are proposing and the non-trivial
prediction is that, whereas the spectrum is Kolmogorov for wavenumbers above this
transition k⊥ >k⊥c, the turbulence remains anisotropic up to the second transition
wavenumber ki .

In designing or interpreting both laboratory and numerical experiments to test
our predictions, one has to be mindful of the following caveat. In order for the full



Critical balance: towards a universal scaling conjecture 141

cascade path sketched in figure 1 to be realised, the system domain must be large
enough to accommodate both the parallel and perpendicular scales implied by the
CB state. If it is not, this will impose infrared cutoffs in the (k⊥, k‖) – these can restrict
energy flows, possibly leading to 2D effects such as inverse cascades and (in periodic
numerical simulations) finite-box effects such as formation of a k‖ = 0 condensate (see
further discussion in § 4.4).

Another important caveat concerns the absence (or negligibility) of the parallel
cascade in the weak-turbulence regime. Unlike in the case of MHD turbulence, for
rotating turbulence this is not an exact result, but an assumption (Galtier 2003) – and
possibly a gross simplification of a fairly complicated precise situation (Bellet et al.
2006). We have made this simplification because the detailed properties of the weak-
turbulence regime are less important in our view than its general tendency towards a
strongly nonlinear CB state, in which the exact form of the resonant manifold in the
wavenumber space is irrelevant.

4.2. Local scale-dependent anisotropy

Quantitatively checking (4.3) is non-trivial. One possibility is to measure the energy
spectrum with respect to parallel wavenumbers: by definition, k‖E(k‖) ∼ u2

⊥ ∼ k⊥E(k⊥),
so, using (1.4) and (4.3), we find a distinctive scaling:

E(k‖) ∼ ε4/5Ω−2/5k
−7/5
‖ , k0 < k‖ < ki, k⊥c < k⊥ < ki (4.5)

(note that this is only valid in the CB regime). There is a similar result for Alfvén-wave
turbulence based on (3.1):

E(k‖) ∼ εv−1
A k−2

‖ , k‖ > k0, k⊥ > k⊥c (4.6)

which has recently been corroborated by the solar wind measurements (Horbury et al.
2008; Podesta 2009; Wicks et al. 2010; Chen et al. 2011).

It is from the MHD experience that one learns about an important subtlety in the
definition of k‖ or, more precisely, of the parallel scale l‖ ∼ k−1

‖ (in practice, scalings

are usually extracted via structure functions rather than spectra: δu2
⊥(l) ∼ l−1E(l−1)).

In order for the scale-dependent anisotropy to become apparent, l‖ had to be defined
with respect to the ‘local mean field’, i.e. the global mean magnetic field plus its
perturbations at all scales larger than the one we are interested in (Cho & Vishniac
2000; Maron & Goldreich 2001; Horbury et al. 2008; Chen et al. 2011). Physically,
this is because an Alfvénic perturbation can only ‘see’ the local field, not the globally
averaged one. Mathematically, measuring l‖ with respect to the global mean field
would only capture the anisotropy of the largest-scale perturbation, while for all
smaller-scale ones, such globally defined l‖ ‘slips off’ one field line to a neighbouring
one and effectively picks up perpendicular variation rather than the parallel one.

Similarly, for rotating turbulence, we anticipate that some scheme might have to be
devised to measure parallel correlations along the local mean vorticity direction rather
than along the global rotation axis. Indeed, it is physically intuitive that the inertial
waves would propagate along the total vorticity ω = 2Ω + δω, where δω = ∇ × u (see
further discussion in Appendix A). In the CB regime, this deviation, while significant
for measuring k‖, is small: δω/Ω ∼ ku/Ω ∼ u/v ∼ k‖/k⊥ � 1; once isotropy is restored,
δω/Ω ∼ 1 (so inertial waves no longer have a definite direction of propagation).

A practical method for measuring parallel correlations might be inspired by the
wavelet (Horbury et al. 2008; Podesta 2009) or structure-function technique (Chen
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et al. 2010, 2011) used for the solar wind. Their method of measuring parallel spectra
could in fact be taken as a good definition of what k‖ precisely means.

4.3. Is inverse cascade possible in rotating turbulence?

Another interesting experimental possibility would be to stir the turbulence in a 2D
way and find out whether it will develop an inverse cascade, bringing it first to the
CB state and then to the isotropic Kolmogorov state. This possibility depends on the
inverse cascade proceeding at a rate larger than the 2D structures radiating inertial
waves, with energy thus directly transferred into the CB state (see the argument at
the end of § 2 regarding the instability of a 2D state).

A putative inverse cascade followed by a direct critically balanced cascade is
sketched in figure 1. Suppose the energy is injected at k⊥ = k2D � k‖. The inverse
energy cascade, if it is sustainable, will give rise to the spectrum (1.4) for k⊥ < k2D .
This will extend, presumably at constant k‖, to k⊥ ∼ k⊥c, given by the first expression
in (4.2). At this point the turbulence is again 3D and the cascade should ‘turn around’
and follow the CB path as before. Interestingly, the net perpendicular energy flux
(integrated over k‖) is zero for k⊥ <k2D , although the spectrum is k

−5/3
⊥ extending to

wavenumbers both larger and smaller than k2D , with the infrared cutoff given by k⊥c.
Since the velocity at k⊥c is urms ∼ ε2/5(k‖Ω)−1/5, we have k⊥c ∼ (k‖Ω/urms)

1/2, where k‖
is the parallel wavenumber at which the energy was injected. Note that the cascade
reversal is a non-trivial consequence of anisotropy; in isotropic turbulence, zero flux
would imply thermodynamic energy equipartition, E(k) ∝ k2.

Note that, as discussed at the end of § 4.1, a 2D inverse cascade can also occur in
a geometrically constrained situation where the system domain restricts the cascade
path and makes the turbulence effectively 2D: e.g., if the infrared cutoff in k⊥ lies
to the right of the CB line in figure 1 (then the CB state cannot be reached and no
cascade reversal is possible). Mathematically this means that the ∂/∂z terms in (A 4)
and (A 5) are negligible – without them, the perpendicular velocity decouples from
the parallel one, the latter becomes a passive tracer and the former a 2D velocity field
unaware of the rotation.

4.4. Numerical evidence and finite-box effects

There is a large body of literature on numerical simulations of rotating turbulence.
The two most recent and best-resolved numerical studies are by Mininni et al. (2009)
and Thiele & Müller (2009). We refer the reader to these papers for a comprehensive
list of references to previous numerical work, which we will not replicate here. Let us
discuss the results, which appear to be consistent in many independent investigations.

Relating numerical evidence to scaling theories like the one proposed above is far
from straightforward because simulations are typically done in periodic boxes and we
have not discussed the effects of finite dimensions of the containing volume on wave
turbulence. For MHD turbulence, it was shown by Nazarenko (2007) that a finite box
size along the mean magnetic field can lead to suppression of nonlinear interactions
between modes with different k‖. This results in a qualitatively different evolution of
the 2D non-propagating k‖ = 0 mode and the wave modes with finite k‖ (see also
Bourouiba 2008; Boldyrev & Perez 2009; Schekochihin & Nazarenko 2011). Similar
effects are probably operative in the numerical simulations of rotating turbulence,
especially in relatively shallow boxes (because of the anisotropy, even cubic boxes are
effectively shallow – this is well known in MHD turbulence, where simulations are
routinely done in long boxes; see, e.g., Maron & Goldreich 2001; Mason et al. 2008).
Both Mininni et al. (2009) and Thiele & Müller (2009) (as well as many previous
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publications, e.g. Smith & Waleffe 1999) report significant accumulation of energy
in the k‖ = 0 modes, via a non-local inverse cascade. The k‖ = 0 modes also have a
different spectrum than the finite-k‖ modes. Note that in the local inverse cascade
scenario of § 4.3 we envisioned energy injection at very small, but finite k‖ and did
not consider the dynamics of the exact k‖ = 0 modes (whose existence is particular to
numerical boxes).

Another feature of the numerical simulations where the Rossby numbers associated
with the forcing scale are low (the case we are considering in this paper) is what
appears to be a robust k−2

⊥ scaling of the energy spectrum (see papers cited above
and references therein). Is this a contradiction with the scaling predictions of § 4.1? It
must be stressed here that the appearance of the k−2

⊥ spectrum cannot be explained
by theories that assume weak isotropic turbulence and infer a k−2 spectrum (Dubrulle
& Valdettaro 1992; Zeman 1994; Zhou 1995; Canuto & Dubovikov 1997), because
numerical evidence appears clear that the turbulence is not isotropic. A similar
problem was encountered in interpreting numerical simulations of MHD turbulence,
which consistently give E ∼ k

−3/2
⊥ (Maron & Goldreich 2001; Mason et al. 2008),

rather than k
−5/3
⊥ that followed from the scaling arguments of § 3. There again, the

k−3/2 spectrum that MHD turbulence would have if it were weak and isotropic
(Iroshnikov 1963; Kraichnan 1965) is not relevant because MHD turbulence in these
simulations is provably anisotropic. To resolve this problem, Boldyrev (2006) proposed
a modification of the CB argument based on the idea that nonlinearity is weakened
in a scale-dependent fashion if the fluctuating fields align in a certain way. It turns
out that a similar modification can be constructed for rotating turbulence and yields
a spectrum that agrees with numerical evidence.

4.5. Polarisation alignment

The estimate (1.2) for the nonlinear decorrelation time was correct subject to
assuming implicitly that fluctuations are not polarised in any particular way that
might weaken the nonlinearity, i.e. that the direction of u⊥ decorrelates over
the same scale as its amplitude. Let us consider what happens if we suppose
instead that a typical turbulent fluctuation is three-dimensionally anisotropic with
characteristic wavenumbers kx � ky � kz ≡ k‖, where x is the direction of maximum
gradients remaining approximately the same throughout the fluctuation and z is
the direction of the propagation of the inertial waves. Then, since in a system
with k‖ � k⊥ the perpendicular velocity is individually incompressible, ∇⊥ · u⊥ = 0,
we have ux ∼ (ky/kx)uy � uy . Note that if we took ky = 0 we would simply have a
monochromatic inertial wave, which, as it is easy to show, is an exact nonlinear
solution (see Appendix A). However, if a wavepacket of such waves is introduced,
there would be nonlinear interaction and we are now attempting to determine how
much the inertial-wave-like polarisation of fluctuations can be preserved in a strongly
turbulent nonlinear state.

To estimate the nonlinear decorrelation time, we now replace (1.2) with

τ−1
NL ∼ kyuy ∼ k⊥u⊥(k⊥)θ(k⊥), (4.7)

where k⊥ ∼ kx , u⊥ ∼ uy and θ ∼ ky/kx ∼ ux/uy � 1 is the velocity angle responsible for
weakening the nonlinearity (θ = 0 would correspond to an inertial wave). To determine
this angle, we need a physical hypothesis about the degree to which the inertial-wave
polarisation of the velocity field is preserved across a typical turbulent fluctuation.
We argued in § 4.2 that, physically speaking, inertial waves should propagate along
the local mean vorticity direction rather than the global rotation axis and so the
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direction of anisotropy is scale-dependent. Thus, all directions within a fluctuation
are determined to within an angular uncertainty δθ ∼ δω⊥/Ω set by the local value of
the perpendicular vorticity fluctuation. One might then postulate that θ ∼ δθ , i.e. that
there is a tendency to preserve the inertial-wave polarisation to the maximal possible
degree (polarisation alignment conjecture). Then

θ ∼ δω⊥

Ω
∼

kxu‖

Ω
∼ uy

v
, (4.8)

where we have taken u‖ ∼ uy (as in an inertial wave) and used v ∼ Ω/kx . Therefore,
(4.7) becomes

τ−1
NL ∼ k⊥ [u⊥(k⊥)]2 [v(k⊥)]−1 . (4.9)

Note that if we use the CB conjecture, τ−1
NL ∼ k‖v, and the fact that θ ∼ kx/ky by

definition, we find from (4.7) and (4.8) that θ ∼ k‖/ky ∼ (k‖/kx)
1/2, ky ∼ (k‖kx)

1/2, and
(4.9) can be rewritten as τ−1

NL ∼ (k⊥k‖)
1/2u⊥(k⊥).

Combining (1.3) and (4.9) and using CB, τ ∼ τNL ∼ (k‖v)−1, we find

E(k⊥) ∼ [εv(k⊥)]1/2 k
−3/2
⊥ ∼ (εΩ)1/2k−2

⊥ , (4.10)

k‖ ∼ ε1/2 [v(k⊥)]−3/2 k
1/2
⊥ ∼ ε1/2Ω−3/2k2

⊥. (4.11)

These formulae replace (1.4) and (4.3) for rotating turbulence with polarisation
alignment. Equation (4.11) implies that isotropy is again restored at the wavenumber
ki given by (4.4), while the transition wavenumber from weak to critically balanced
turbulence is, instead of (4.2), determined by

k⊥c ∼ ε−1/4k
1/2
‖ Ω3/4 ∼ k0Ro−1. (4.12)

The sketch of the cascade path in figure 1 is still valid, but with the new scalings
for the CB regime (so at k⊥ = k⊥c, the spectral slope now changes from −5/2 to −2
and at k⊥ = ki from −2 to −5/3; for k⊥c < k⊥ <ki , k‖ ∝ k2

⊥). The parallel spectrum is
derived as in § 4.2 and so (4.5) is replaced by

E(k‖) ∼ ε [v(k⊥)]−1 k−2
‖ ∼ ε3/4Ω−1/4k

−3/2
‖ . (4.13)

Interestingly, Dubrulle & Valdettaro (1992) argue that a transition from k−2 to
k−5/3 scaling is observed in the spectrum of motions in the galactic disk and might be
attributable to a transition from rotating to standard isotropic Kolmogorov turbulence
(although in their theory the rotating turbulence is isotropic and weak, so the origin
of their k−2 scaling is different than that proposed here).

Finally, we stress that the possibility of polarisation alignment in rotating turbulence
(or a similar effect in MHD turbulence, discussed in § 4.6) does not undermine CB
as a universal scaling conjecture – what is revised in this version of CB turbulence is
the assumption of 2D isotropy in the perpendicular plane.

4.6. Polarisation alignment in MHD turbulence

The argument presented above is more or less analogous to the argument proposed
by Boldyrev (2006) for MHD turbulence: he conjectured polarisation alignment
between the perpendicular velocity and magnetic field fluctuations, which amounts to
assuming that an Alfvén-wave polarisation is approximately preserved. The scalings
he derived can be read off from (4.10), (4.11) and (4.13) by setting v(k⊥) = vA instead
of 2Ω/k⊥ (note that (4.6) remains unchanged). Numerical simulations have confirmed
both these scalings and specifically the scale-dependent alignment between the fields
(Mason et al. 2008; Boldyrev, Mason & Cattaneo 2009; see, however, Beresnyak
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2011). It appears plausible that the k−2
⊥ spectra observed in simulations of forced

rotating turbulence (Mininni et al. 2009; Thiele & Müller 2009) could be similarly
explained by the polarisation alignment argument we have given here. However,
a word of caution: most solar wind measurements of Alfvénic turbulence do not
support the k

−3/2
⊥ scaling and incline rather towards k

−5/3
⊥ (Bale et al. 2005; Horbury

et al. 2008; Sahraoui et al. 2009; Wicks et al. 2010; Chen et al. 2011). Thus, it remains
unclear whether polarisation alignment occurs in nature as well as in numerical boxes.

We note in passing that polarisation alignment may also be responsible for the
robust k

−3/2
⊥ spectra reported in simulations of 2D MHD turbulence (Biskamp &

Welter 1989; Biskamp & Schwarz 2001). There is no ‘parallel’ Alfvénic propagation
there, but assuming kx � ky , ux � uy , δBx � δBy and uy ∼ δBy/

√
4πρ still leads to a

reduction of nonlinearity by θ ∼ ky/kx . This angle can again be assumed to scale with
the typical angular uncertainty at a given scale: θ ∼ δBy/δBrms , where δBrms is the rms
amplitude of the magnetic fluctuations (i.e. the field at the outer scale). The argument
is then the same as outlined in this section, leading to E(k⊥) ∼ (εvA)1/2k−3/2

⊥ , where
vA = δBrms/

√
4πρ ∼ (ε/k0)

1/3. The CB conjecture does not come in here because there
is no parallel linear propagation. This argument highlights an aspect of MHD that
is not analogous to the rotating case: a pure 2D state for the latter is simply 2D
hydrodynamics, with no effect from the rotation (see the end of § 4.3), whereas for
MHD, setting ∂/∂z = 0 in (A 7) and (A 8) leaves velocities and magnetic fields still
nonlinearly coupled via the Lorentz force. As we argued at the end of § 2, however,
a pure 2D state is not sustainable in a 3D world, so exact 2D MHD is an artificial
situation.

5. Stratified turbulence
Another hydrodynamic example where a critically balanced cascade should emerge

is the stably vertically stratified turbulence, anisotropic with k‖ � k⊥, where k‖ and
k⊥ are the vertical and horizontal wavenumbers, respectively (see, e.g., Cambon
2001; Godeferd & Staquet 2003; Laval, McWilliams & Dubrulle 2003; Kaneda
& Yoshida 2004). The dispersion relation for (incompressible) gravity waves is
ω =Nk⊥/k ≈ Nk⊥/k‖, where N is the Brunt–Väisälä frequency. Since the roles of
k‖ and k⊥ are reversed compared to the MHD and rotating turbulence, the arguments
presented above have to be modified.

First, the incompressibility ∇ · u =0 now implies u‖ ∼ (k⊥/k‖)u⊥ � u⊥ (since k⊥ � k‖,
it is no longer true that ∇⊥ · u⊥ = 0 as was the case for MHD and rotating turbulence).
This implies that the nonlinear interaction time continues to be given by (1.2). If CB
is assumed, the horizontal energy spectrum is, therefore, still Kolmogorov (1.4), while
the relationship between the horizontal and vertical wavenumbers is (analogous to
(3.1) and (4.3))

k⊥ ∼ εN−3k3
‖ = l2Ok3

‖, (5.1)

where lO = ε1/2N−3/2 is called the Ozmidov scale (Ozmidov 1992). Using (5.1), we can
calculate the vertical energy spectrum corresponding to the horizontal spectrum (1.4)
in a way analogous to the derivation of (4.5):

E(k‖) ∼ N2k−3
‖ , (5.2)

a spectrum previously proposed on dimensional grounds by Dewan (1997) and by
Billant & Chomaz (2001). This argument is basically a reformulation in the CB
language of the scaling hypothesis put forward by Lindborg (2006), to whose paper
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we refer the reader for discussion and references on the atmospheric measurements
and numerical simulations, which appear to be consistent with this theory (see also
Kaneda & Yoshida 2004; Lindborg & Brethouwer 2007).

The situation here is similar to rotating turbulence in that the anisotropy gets weaker
as k‖ increases. The cascade becomes isotropic at the Ozmidov scale, k⊥ ∼ k‖ ∼ l−1

O ,
where the local Froude number is u⊥/lON ∼ 1. At smaller scales, the turbulence
cannot feel the mean gradient and becomes isotropic. Then both horizontal and
vertical spectra are Kolmogorov, so there should be a spectral break at the Ozmidov
scale for the vertical spectrum (transition from (5.2)), but not the horizontal one,
which is Kolmogorov already in the CB regime. The cascade path is similar to
figure 1 with k‖ and k⊥ swapped and (5.1) used for the CB line.

Despite these similarities, it must be acknowledged that, because of the inversion of
roles between k‖ and k⊥, the case of stratified turbulence is perhaps somewhat special
compared to the rather close analogy between MHD, plasma and rotating systems. In
the latter cases, we had a two-dimensionally incompressible perpendicular turbulence
and linear wave propagation in the 1D parallel direction setting the correlations
between distant perpendicular 2D planes. In the case of stratified turbulence, the
linear propagation is in the 2D horizontal plane, while the 1D vertical direction
enters via wave dispersion and the nonlinearity (τ−1

NL ∼ k⊥u⊥ ∼ k‖u‖). Interestingly,
the vertical spectrum (5.2), unlike its analogs (4.5) and (4.6), is independent of ε.
Such flux-independent spectra emerge quite commonly as a result of the breakdown
of weak turbulence in 1D systems (e.g. Newell & Zakharov 2008; for discussions of
universal flux-independent spectra see Denissenko, Lukaschuk & Nazarenko 2007 and
Cardy, Falkovich & Gawedzki 2008, p. 12). They are often associated with formation
of singular structures (see Appendix B), a phenomenon we do not expect to be a key
player in MHD or rotating turbulence. Thus, the CB in stratified turbulence might
not be the whole story and the matter deserves further study. One can also envision
quite complicated regimes and multiple scale ranges emerging in systems that are
both rotating and stratified, e.g. the Earth’s atmosphere.

6. Conclusion
We have proposed that the critical balance of linear and nonlinear time scales,

originally introduced for Alfvénic turbulence (Higdon 1984; Goldreich & Sridhar
1995) and, more recently, for other types of magnetised plasma turbulence (Cho
& Lazarian 2004; Schekochihin et al. 2009), should be used as a universal scaling
conjecture for anisotropic turbulence in natural systems capable of supporting linear
waves. While there are some indications that this idea works for stratified turbulence
(Lindborg 2006), it has not been tested in rotating turbulence, for which we have
proposed a novel energy cascade scenario and a set of verifiable predictions.

In neutral fluids, the two examples we have considered – rotating and stratified
turbulence – suggest that the critically balanced cascade provides a path from the
strongly anisotropic fluctuations caused by the presence of an external field (mean
rotation or gradient) to isotropic Kolmogorov turbulence inevitable at sufficiently
small scales (cf. Davidson et al. 2006). In that way, neutral fluids are different from
conducting fluids and plasmas, where the presence of a mean magnetic field is felt at
all scales and the anisotropy only gets stronger at smaller scales.

We observe that one might draw parallels between the CB principle and the
‘generalised Phillips spectra’ (Newell & Zakharov 2008) that are thought to emerge
from the breakdown of weak turbulence in many wave systems, e.g. surface water
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waves (Phillips 1958, 1985; Newell & Zakharov 2008), Rossby waves (Rhines 1975),
Kelvin waves in cryogenic turbulence (Vinen 2000) and Bose–Einstein condensates
(Proment, Nazarenko & Onorato 2009). We note, however, that some of these
examples do not quite fit the anisotropic 3D type considered here and the breakdown
of weak turbulence there may be related to formation of singular structures: this is
discussed in more detail in Appendix B.

We acknowledge important discussions with P. Berloff, S. Cowley, P. Davidson, K.
Julien, J. McWilliams, F. Moisy and A. Newell. We are also grateful to the numerous
anonymous referees for raising a number of important issues, which led to significant
expansion and improvement of the paper. This work was supported by STFC (A.A.S.)
and the Leverhulme Trust Network for Magnetised Plasma Turbulence.

Appendix A. Reduced equations
A remarkable simplification of the underlying dynamical equations for turbulent

fluctuations can be achieved by systematically taking into account their anisotropy.
Here again CB serves as a guiding principle, but this time as an ordering assumption:
the expectation that the linear and nonlinear time scales would be comparable tells one
how to order the fluctuation amplitudes with the expansion parameter ε = k‖/k⊥. This
leads to reduced systems of equations, which are often more transparent physically and
require less computational power to simulate numerically. An additional advantage
of simulating reduced equations is that the transition to the asymptotic anisotropic
regime is carried out analytically and so does not eat up resolution.

Three well-known examples of such reduced systems are the RMHD equations
for the Alfvénic turbulence (reproduced in § A.2) electron reduced MHD (ERMHD)
equations for the turbulence of kinetic Alfvén waves at sub-Larmor scales and Hall
reduced MHD (HRMHD) equations for Alfvénic turbulence in cold-ion plasmas (all
three are derived under the CB ordering in Schekochihin et al. 2009; the RMHD
has been known since Strauss 1976; equations mathematically similar to ERMHD
have been used to describe whistler turbulence in plasmas by, e.g., Biskamp et al.
1999; HRMHD has been studied by many authors, e.g., Gómez, Mahajan & Dmitruk
2008). A kinetic reduced system that emerges from the same principles is gyrokinetics
(Frieman & Chen 1982; Howes et al. 2006), a general description of magnetised
plasma turbulence of which RMHD, ERMHD and HRMHD are particular limits.
All of these equations have been successfully simulated numerically (Gómez et al.
2008; Howes et al. 2008; Perez & Boldyrev 2008; Cho & Lazarian 2009); and in
the case of RMHD and ERMHD, the results have explicitly been shown to be
asymptotically consistent with simulations of the unreduced equations.

Here we explain the procedure for deriving a reduced system on the example of
rotating turbulence, showing again its very close resemblance to magnetised fluid
systems and providing concrete justification for some of the assumptions made in the
main text.

A.1. Reduced rotating hydrodynamics

Our starting point is the Navier–Stokes equation for an incompressible fluid of
viscosity ν and density ρ = 1 rotating at the rate Ω = Ω ẑ (z is the rotation axis):

∂u
∂t

+ u · ∇u + 2Ω × u = −∇p + ν∇2u, (A 1)
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where p is pressure determined by ∇ · u =0. This equation supports inertial waves with
frequency ω = ±2Ωk‖/k and corresponding eigenfunctions u = (±ikz/k, 1, ∓ikx/k)uy ,
where k = (kx, 0, kz) without loss of generality. Note that, for an inertial wave, the
perturbed vorticity is aligned with velocity, δω = ∓ku, and so a monochromatic
inertial wave is an exact nonlinear solution of (A 1) (because u · ∇u = δω × u +∇u2/2;
the gradient part can be absorbed into pressure).

In the anisotropic regime (low Rossby numbers), (A 1) is expanded in a small
parameter ε = k‖/k⊥. Using the CB as an ordering prescription, we order the time
scale of the fluctuations as ω ∼ εΩ ∼ u⊥ · ∇⊥. We also order u‖ ∼ u⊥ guided by the
relationship between them in an inertial wave.

To lowest order in ε, ∇ · u = ∇⊥ · u⊥ = 0, so the perpendicular motions are
individually incompressible and can be represented by a stream function:
u⊥ = ẑ × ∇⊥Φ . In the next order, the incompressibility condition allows us to find
the divergence of the second-order correction to u⊥ (to be useful shortly):

∇ · u = ∇⊥ · u(2)
⊥ +

∂u‖

∂z
= 0. (A 2)

The perpendicular part of (A 1) is (keeping two lowest orders)

∂u⊥

∂t
+ u⊥ · ∇⊥u⊥ − ν∇2

⊥u⊥ = −2Ω ẑ × u⊥ − ∇⊥p. (A 3)

In the lowest order, the left-hand side disappears and so right-hand side must vanish
too. This gives p = 2ΩΦ . Now taking the perpendicular curl (∇⊥ ×) of (A 3), we get

∂

∂t
∇2

⊥Φ +
{
Φ, ∇2

⊥Φ
}

= 2Ω
∂u‖

∂z
+ ν∇4

⊥Φ, (A 4)

where {f, g} = ẑ · (∇⊥f × ∇⊥g) and we have used (A 2) to express ∇⊥ × (2Ω ẑ ×
u(2)

⊥ ) = 2Ω ẑ∇⊥ · u(2)
⊥ . Finally, taking the parallel part of (A 1) to lowest order and

using p = 2ΩΦ , we get

∂u‖

∂t
+

{
Φ, u‖

}
= −2Ω

∂Φ

∂z
+ ν∇2

⊥u‖. (A 5)

Equations (A 4) and (A 5) are the desired reduced system, which we will refer to
as reduced rotating hydrodynamics (RRHD). Up to notational differences, they are
equivalent to the reduced system of Julien, Knobloch & Werne (1998) (derived under
slightly differently formulated assumptions; see also Julien & Knobloch 2007 and
references therein for a uniform mathematical discussion of RRHD and reduced
models generally). Let us itemise some of the properties of these equations:

(i) they support inertial waves with ω = ± 2Ωk‖/k⊥ and corresponding
eigenfunctions u‖ = ±k⊥Φ (so, the wave is circularly polarised: as it propagates along
ẑ, the velocity vector rotates in the plane perpendicular to k⊥); inertial wavepackets
with fixed k⊥ and arbitrary amplitude are exact nonlinear solutions;

(ii) the velocity is u = ẑ × ∇⊥Φ+ ẑu‖ and the (perturbed) vorticity δω = − ẑ × ∇⊥u‖+
ẑ∇2

⊥Φ; therefore, the RRHD equations can be written as (omitting viscosity)

∂

∂t
∇2

⊥Φ +
{
Φ, ∇2

⊥Φ
}

= (δω + 2Ω) · ∇u‖,
∂u‖

∂t
= −(δω + 2Ω) · ∇Φ, (A 6)

thus, besides the 2D self-advection of the perpendicular velocity, the basic physical
process is propagation of inertial waves along the total vorticity lines (recall § 4.2);
(iii) the 3D nature of the turbulence is enforced via linear propagation terms

(recall § 2); when they are present, the system conserves one invariant, kinetic energy
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∫

d3r (|∇⊥Φ|2 + u2
‖)/2 and should have a direct cascade; when ∂/∂z = 0, there are

three invariants: perpendicular kinetic energy
∫

d3r |∇⊥Φ|2/2 (inverse cascade; recall

§ 4.3), enstrophy
∫

d3r |∇2
⊥Φ|2/2 (direct cascade) and parallel kinetic energy

∫
d3r u2

‖/2

(direct cascade of a passive quantity);
(iv) while the RRHD equations were derived under the CB ordering, they allow

both the weak and the strong turbulence regimes and so can track the transition from
the former to the latter (§ 4.1); they also remain valid if polarisation alignment occurs
(§ 4.5) and so can be used to measure and study it.

(v) when non-dimensionalising the RRHD equations, one can rescale the parallel
and perpendicular distances separately (subject to appropriate rescaling of the
amplitudes), i.e. the aspect ratio of the ‘box’ is formally infinite – this is because
the anisotropy of the fluctuations was the basis for the asymptotic expansion that led
to RRHD; note that the scaling arguments of § 4 imply that the anisotropy of rotating
turbulence diminishes with scale, so (A 4) and (A 5) will produce solutions that, at
sufficiently small scales, violate the ordering assumptions behind the equations–
this should be manifested by the development of ever finer parallel structure
(see § 4.2).

A.2. Reduced magnetohydrodynamics

Finally, for comparison, let us give the RMHD equations for the Alfvénic turbulence
(derived from MHD in exactly the same way as RRHD was derived from (A 1); see,
e.g., Schekochihin et al. 2009, § 2):

∂

∂t
∇2

⊥Φ +
{
Φ, ∇2

⊥Φ
}

= vA

∂

∂z
∇2

⊥Ψ +
{
Ψ, ∇2

⊥Ψ
}

= vA b̂ · ∇∇2
⊥Ψ, (A 7)

∂Ψ

∂t
= vA

∂Φ

∂z
+ {Ψ, Φ} = vA b̂ · ∇Φ, (A 8)

where Φ and Ψ are the stream functions of the perpendicular velocity and magnetic
fluctuations: u⊥ = ẑ × ∇⊥Φ , δB⊥ = ẑ × ∇⊥Ψ (unlike in the rotating case, the parallel
velocity and magnetic field fluctuations decouple and are passive with respect to the
perpendicular ones; see Schekochihin et al. 2009), and b̂ = ẑ + δB⊥/B0 is the direction
of the total magnetic field (along which the Alfvén waves propagate; recall § 4.2).

The similarities with the equations for rotating turbulence are obvious, but there
are also differences originating from the physical differences between the inertial and
Alfvén waves: the latter are non-dispersive (ω = ± k‖vA), the perpendicular velocity
and magnetic field fluctuations are linearly polarised and the eigenfunctions Φ = ±Ψ

represent exact nonlinear solutions for arbitrary-shaped wavepackets (the Elsasser
solutions; Elsasser 1950). It is also worth pointing out that, whereas the coupling of
Φ to u‖ (perpendicular to parallel velocity) in (A 4) is purely linear, the coupling of Φ

to Ψ (velocity to magnetic field) in (A 7) is both linear and nonlinear (via the Lorentz
force).

Appendix B. Critical balance and coherent structures
It might appear tempting to relate the CB principle to the emergence of coherent

structures for the following two reasons. Firstly, some coherent structures arise due
to wave breaking, e.g. in the system of water surface gravity waves or internal
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gravity waves, and such a wave breaking occurs precisely when the nonlinearity
becomes of order of the linear contributions. Secondly, in some well-known examples
of coherent structures, such as solitons or shocks, the linear and the nonlinear terms
are in balance.

First, consider the coherent structures that result from wave breaking. Such
structures are typically singular, e.g. the wave profile has a derivative discontinuity.
To be specific, consider the water-surface gravity waves, where the CB approach,
i.e. scale-by-scale balance of the linear and the nonlinear time scales, gives the well-
known Phillips spectrum (Phillips 1958). Its connection to singular wave breaking
structures has been widely discussed since it was first suggested by Kadomtsev
(1965) and later adopted by Phillips (1985) himself (his original 1958 paper does not
mention wave breaking). However, there is an uncertainty related to the geometry
and the dimensionality of the wave crests. Kuznetsov (2004) argued that the Phillips
spectrum should correspond to wave crests with singularity at isolated points (cone-
like shapes), whereas more realistic 1D crests would give a different spectral exponent.
Furthermore, coherent structures of different strengths or sizes can coexist and the
resulting spectrum can depend on their distribution (e.g., in his refinement of the
original theory, Phillips 1985 introduced a distribution function for the crest lengths
per unit area of the water surface). Thus, there is no obvious universal link between
the CB state and singular coherent structures of the wave-breaking type: there may
be structures with spectra different from the CB prediction, but one can also imagine
a CB state without any singular structures at all.

Now let us turn to the non-singular coherent structures. The most basic of the
relevant nonlinear models is the Korteweg–de Vries (KdV) equation, ut + uux +
µuxxx =0, where µ is the dispersion coefficient. Does CB work for KdV turbulence?
Naively, the idea might seem promising because the KdV model predicts formation
of solitons – coherent structures in which the nonlinear and the linear terms are
balanced, in the spirit of CB. Balancing the nonlinearity and dispersion scale by scale
(the second and the third terms in the KdV equation), we get E(k) ∼ k3. However,
if the separations between the solitons are much greater than their widths, then for
the scales intermediate between the soliton width and the intersoliton separation, the
spectrum is that of a set of delta functions, so E(k) ∼ const., which is very different
from the CB prediction. This is because the interaction is non-local in scale, whereas
CB assumes locality. Note, also, that this is a 1D dispersive system and the physical
arguments in favour of CB in anisotropic wave-supporting environments presented
in § 2 do not generalise to it.

In conclusion, there does not seem to be a universal link between the CB and
coherent structures. In some systems there may be coherent structures but not CB
because the latter assumes locality, which is not automatically guaranteed. Even if
both coherent structures and a CB spectrum are present, the former need not be the
cause of the latter as coherent structures might occupy a negligible volume. Finally,
we reiterate that the physical argument for the formation of a CB state in MHD,
which, as we showed above, may similarly be applied to the rotating turbulence,
does not invoke either wave breaking or coherent structures but is rather based on
local nonlinear energy transfer and anisotropic spatial decorrelation arguments (§ 2).
As discussed at the end of § 5, the case of stratified turbulence is more ambiguous
because there a CB-based argument leads to a flux-independent vertical spectrum
(5.2) reminiscent of the Philips-type spectra produced by wave breaking. Whether
this is a useful hint about the nature of stratified turbulence is clearly an intriguing
question for future investigation.
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