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Abstract1

In the present work, the potential of an electronic nose to differentiate the quality of fermented green2

table olives based on their volatile profile was investigated. An electronic gas sensor array system3

comprising of a hybrid sensor array of 12 metal oxide and 10 metal ion based sensors were used to4

generate a chemical fingerprint (pattern) of the volatile compounds present in olives. Multivariate5

statistical analysis and artificial neural networks were applied to the generated patterns to achieve various6

classification tasks. Green olives were initially classified into three major classes (acceptable,7

unacceptable, marginal) based on a sensory panel. Multivariate statistical approach showed good8

discrimination between the class of unacceptable samples and the classes of acceptable and marginal9

samples. However, in the latter two classes there was a certain area of overlapping in which no clear10

differentiation could be made. The potential to discriminate green olives in the three selected classes was11

also evaluated using a multilayer perceptron (MLP) neural network as a classifier with a 18-15-8-312

structure. Results showed good performance of the developed network as only two samples were13

misclassified in a 66-sample training dataset population, whereas only one case was misclassified in a 12-14

sample test dataset population. The results of this study provide promising perspectives for the use of a15

low-cost and rapid system for quality differentiation of fermented green olives based on their volatile16

profile.17

18
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1. Introduction1

Odour is a major olfactory parameter determining the sensory quality of food products and it2

is therefore of interest to investigate if volatile compounds contributing to the characteristic3

odours can be measured as indicators of quality assessment. This is also important for green table4

olives, one of the most popular fermented vegetables in the Western world. The production of5

volatile compounds tends to be the first mechanism for the development of flavour specific to a6

particular fermented food. Lowering the pH in lactic acid fermentation may reduce the enzymatic7

activity in olive tissue that generate either flavour components or flavour precursor compounds.8

Additionally, the microorganisms during the course of fermentation may directly metabolise9

precursor flavour compounds of flavour components producing a plethora of volatile compounds10

(esters, acids, alcohols, aldehydes, ketones, phenols, etc.) that characterise the process [1].11

Generally, sensory analysis based on a trained expert panel is necessary for table olive12

classification and quality control but it is not always feasible due to high cost, while it is time-13

consuming and often without any objective value. In the last decades many efforts have been14

made to study the aromatic fraction of fermented olives based mainly on chromatographic15

determinations [2-9]. However, these analytical techniques are also time-consuming and require16

sophisticated equipment and skilled personnel. It would be therefore of great interest to17

investigate the potential of low-cost, rapid and non-destructive analytical procedure, such as the18

electronic nose, to quantify the overall quality of table olives.19

In the last decade the electronic nose technology has offered the possibility to exploit, from a20

practical point of view, the information contained in the headspace in many different application21

areas. The use of the electronic nose for quality evaluation as a means of non-destructive22

olfactory sensing is becoming widespread as it has the advantage of low cost, good reliability and23
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high portability for in situ and on-line measurements [10,11]. Moreover, this technique has been1

shown to be rapid and simple compared with GC-MS [12-14]. The underlying hypothesis in2

electronic nose sensing for food safety/quality assessment is that the interaction of microbial3

association with the food system affects the type as well as the rate of metabolites produced4

either in the form of gas, solid or liquid. Sensing the gaseous metabolites (mainly volatile organic5

compounds) present in the headspace of a food commodity could provide useful information for6

the determination of the quality of a given food product [15]. The interaction of volatiles on the7

sensing element causes changes in electrical resistance of the sensor, and since sensor kinetics is8

different, the data produced are converted into an odour fingerprint which can be interpreted with9

the use of appropriate mathematical techniques, like multivariate statistical methods or artificial10

neural networks (ANNs). The obtained data are comparable in the sense that different samples11

may be characterised and discriminated based on their volatile production patterns [16,17]. In the12

literature there are several reports that demonstrate the potential of electronic nose in food-13

relevant applications for the classification of vegetable oils [18], quality control of olive oil14

aroma [19], characterisation of wines [20,21], determination of fish freshness [22], quality15

estimation of ground meat [23], grain quality evaluation [15,24-26], detection of microorganisms16

[27-30], detection of boar taint in meat [31], shelf life determination of tomato [32], and quality17

assessment of modified atmosphere packaged poultry meat [33]. However, the application of an18

electronic nose for quality discrimination of fermented table olives is reported here for the first19

time.20

An artificial neural network (ANN) can be referred to as a neurocomputer with parallel21

distributed processors [34]. ANNs have been employed in recent years as an alternative to22

conventional regression models, due to their ability to describe highly complex and non-linear23
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problems in many fields of science. The most common neural network approach is multilayer1

perceptrons (MLPs) [35]. The basic idea behind ANNs lies in the direct exploration of the2

knowledge contained in the input-output patterns by adjusting the parameters of the non-linear3

network topology, as the input-output patterns are repeatedly presented to the network [34].4

When the system is supervised using an appropriate training dataset it can then be used to predict5

or classify different patterns not initially introduced to the network.6

The objective of this study was to evaluate the performance of an electronic nose system to7

differentiate the quality of fermented green table olives based on their volatile fingerprints and8

classify them in three major classes (acceptable, marginal, unacceptable). Classification of the9

samples was based on both multivariate data analysis and artificial neural networks (ANNs)10

algorithms.11

12

2. Materials and methods13

a. Table olive samples14

Twenty six samples of fermented green olives were obtained from a central hyper-market in15

Athens. The amount of each sample was ca. 0.5 kg. The volatile profile was each sample was16

assessed by a sensory panel and classified into three major groups, namely unacceptable (n = 3),17

acceptable (n = 16), and marginal (n = 7). As there was no previous information on the18

application of an electronic nose for table olive quality assessment based on their volatile profiles,19

a bottom-up approach was followed to create a knowledge basis for the product. Initially, the20

potential of electronic nose to discriminate between unacceptable and a typical acceptable21

(reference) sample was investigated. Furthermore, the analysis was extended taking into account22

the unacceptable and marginal samples together with the reference sample. In the final step, all23
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groups of samples were taken together and their volatile profile was recorded and subjected to1

multivariate analysis.2

3

b. Electronic nose data acquisition and analysis4

Electronic nose analysis was performed with a NST 3320 Lab Emission Analyser (Applied5

Sensors, Linköping, Sweden), equipped with a built-in headspace autosampler for 12 samples, a6

detector unit containing 23 different sensors and a built-in software package (NST Senstool) for7

collecting and processing data from the sensors. The instrument was equipped with 12 MOS8

(metal oxide semiconductor) sensors operating at 250-400°C, 10 MOSFET (metal oxide9

semiconductor field effect transistor) sensors operating at 140-170°C, and a humidity sensor for10

the determination of relative humidity at 70°C. The electronic nose operating system employed in11

this study has been described in detail elsewhere [33].12

Olive samples of 2 g were weighed and placed in 25 ml glass vials, sealed with septa and13

screw caps, and incubated at 37°C for 1 h for headspace equilibration above the sample. Samples14

were then randomly placed in the autosampler and headspace gas was pumped over the sensors of15

the electronic nose. The total cycle time per sample was 4 min and 20 s. The baseline phase was16

set to 30 s, the sample phase to 30 s and the recovery phase of the sensors to 240 s including the17

flush time of the gas lines . Every sample was analysed in triplicate.18

19

c. Data analysis20

The data collected were analysed using the XLStat software (version 2006.06, Addinsoft,21

Paris, France), a built-in statistical software package of Excel. Data exploration and interpretation22

was based on multivariate analytical techniques such as principal components analysis (PCA),23
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hierarchical cluster analysis (HCA), and discriminant function analysis (DFA) on the obtained1

sensor responses. Prior to analysis the raw sensor responses were normalised using the following2

equation:3

min

max min

i
norm

X X
X

X X





(1)4

where, Xi and Xnorm are the raw and normalized response of a sensor i, and Xmin, Xmax are the5

minimum and maximum sensor responses of the i sensor, respectively.6

Predictive learning (classification) was performed on the whole dataset (n = 78) of7

unacceptable, acceptable and marginal samples using artificial neural network (ANN) techniques.8

The type chosen in this study was a multilayer perceptron (MLP) based on back propagation. In9

these networks each node receives signals through connections with other nodes or the outside10

world in the case of the input layer. The net input to node j has the form:11


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where xi are the inputs (sensor responses in our case), wij are connection weights associated with13

each input/node and θj is the bias associated with node j. The output from each node is used as an14

input in a nonlinear transfer function:15

 jj IfO  (3)16

In our work the sigmoidal function was selected as a transfer function in both hidden and output17

neurons. The standard backpropagation algorithm for network training is based on the steepest-18

descent gradient approach applied to the minimization of the error function defined as:19

 
2
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where ti represents the desired network output, di is the actual network output, and n is the1

number of samples. The difference between the desired value and the actual network output was2

propagated back through the network to the input level. This training process, known as delta rule,3

is based on the minimization of the error by adjusting the weights given by the following4

equation:5

         1kj kj k j kjw n w n e n x n w n      (5)6

where wkj(n) is the weight adjustment at time n, ek is the negative derivative of the total square7

error with respect to the neuron’s output, xj is the element of the input vector, η is the learning8

rate parameter, and α the momentum term. In order to train and test the developed neural network,9

the entire database (78 samples) was divided into training (66 samples) and test (12 samples)10

dataset. To avoid any bias in database partitioning, table olive samples were allocated into each11

category using a method based on random number generation. The strategy employed for the12

classification of olives is the so-called one-of-many encoding [36]. The output of the network is13

a multidimensional vector with the number of the dimensions equal to the number of the classes14

of table olives to be determined, and each vectorial dimension is assigned to a class. In the15

training file, the class membership of a single data is coded in a numerical format by assigning 116

to the belonging class and 0 to all others, i.e., acceptable olives are coded as (1,0,0), marginal17

samples as (0,1,0), and unacceptable as (0,0,1). In the test file, the membership of an input data is18

assigned to the class with greatest net output. The prediction performance of the network was19

defined as the ratio of number of correctly identified patterns to that of total patterns introduced20

to the network. The MLP network was developed using NeuralWorks Professional II/PLUS21

version 5.50 (NeuralWare, Carnegie, PA).22

23
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3. Results1

Analyses were initially conducted with all samples of unacceptable olives together with the2

reference sample and the headspace of three replicates per treatment was examined using metal3

oxide/ion-based sensor arrays for discrimination. Replication of the sensor array was firstly4

examined and was found to be very consistent (Figure 1), indicating clear differences in volatile5

fingerprints between unacceptable and reference samples. The variation between replicates was6

relatively small and consistent. The potential for discrimination was better in the MOS sensors7

rather than the MOSFET sensors. Four of the sensors (MOSFET 104B, 105B, MOS 115, 116) of8

the electronic nose were excluded due to limited or very high response, when subjected to the9

volatile compounds of green olives. In addition, the responses of the humidity sensor were10

excluded as they did not show any clear differences among the samples.11

Figure 2 depicts a PCA scores plot of the separation between the samples. This shows that12

PC1 and PC2 accounted for almost 91.6% of the variance and resulted in a clear discrimination13

between the volatile patterns of unacceptable samples compared to the reference sample. Cluster14

analysis, using Euclidean distance and Ward’s linkage measure, on the same dataset, using just15

the first two principal components, also produced a similar result (Figure 3). Two major groups16

can be visualised with reference samples (A) being separate from unacceptable ones (HN, PL,17

AV).18

Figure 4 shows a PCA scores plot of the separation between unacceptable, marginal and the19

reference sample. About 97.4% of the total variance of the data was explained by PCA in which20

PC1 and PC2 accounted for 87.1% and 10.3%, respectively. Although a clear differentiation was21

evident between the reference sample and the unacceptable and marginal samples as a whole, no22

clear separation could be obtained between the latter two groups. However, after analysing the23
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same dataset with DFA each group was clearly distinguishable (Figure 5). The two discriminant1

functions accounted for 99.7% of the variance, indicating that the separated result is better with2

DFA (supervised method) than PCA (unsupervised method). It is worth noting that when the3

same data set was analysed with both MOSFET and MOS sensors no clear differentiation could4

be obtained among the groups (data not shown). For this reason, only the responses of the MOS5

sensors were taken into account for further analysis, as sample separation could be better attained6

with these types of sensors (see Figure 1). The data presented in Figure 6 is the whole dataset7

consisting of unacceptable, marginal and acceptable samples. DFA analysis showed good8

discrimination between unacceptable samples and the other two qualitative groups of green9

olives. However, in the case of marginal and acceptable samples there was an area of overlap10

between the two clusters (area of uncertainty), implying that some samples cannot be classified11

as belonging clearly to one class or the other.12

The MLP neural network based on back propagation was used to classify olive samples into13

the three categories from the volatile metabolites profile obtained from the electronic sensor array14

analysis. For neural network development three steps were followed including creating the15

network, training the network, and validating the network. A variety of hidden layers (one or16

two), hidden neurons, learning rates and momenta were tried by developing different networks.17

The selected network architecture included an input layer, two hidden layers of neurons, and an18

output layer. There were 18 neurons in the input layer (one for each sensor apart from the19

initially excluded sensors), 15 neurons in the first hidden layer, 8 neurons in the second hidden20

layer, and 3 neurons in the output layer (Figure 7). The learning rate (n = 0.10) and momentum (α21

= 0.20) parameters were selected to ensure that the convergence of the learning process was22

achieved. The learning process performed until the error covering the entire training dataset23
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converged to a minimum value (RMSE = 0.017), whereas the relative value of RMSE for the test1

dataset was 0.206. Two olive samples were misclassified in the training dataset. Specifically, one2

marginal sample was classified as acceptable, and one unacceptable sample was classified as3

acceptable. In the test dataset, one sample was misclassified, i.e. an unacceptable sample was4

classified as acceptable (Table 1). The prediction performance of the network was fairly high as5

97% and 92% for the training and test dataset, respectively.6

7

4. Discussion8

This study examined the potential of using an array of metal oxide/ion sensor system for9

differentiating the quality of fermented green olives. Results indicated that qualitative volatile10

patterns using electronic nose technology could be successfully employed as a rapid tool for table11

olives discrimination. The volatile fraction of table olives depends on many factors such as12

variety, ripening stage, process conditions, and the microbiological composition of the13

fermentation brines [37]. Several classes of compounds have been identified in the aroma profile14

of table olives, the most important being ethanol, methanol, 2-butanol, acetone, ethyl acetate, and15

acetaldehyde for both green and black olives [9, 38]. Many of these volatile compounds are16

among the end products known to be formed by the initial (e.g. coliforms, yeasts, etc) and/or final17

microbial association e.g. lactic acid bacteria, the major group responsible for olive fermentation18

or any other group (e.g. yeasts, filamentous fungi, clostridia) associated with spoilage of these19

fermented products [2]. It is thus clear that volatile compounds have a decisive role in the20

characterisation of the flavour pattern of a given olive sample. Sensory quality is taken into great21

account by consumers, and is therefore the predominant element of appreciation and choice.22
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Indeed sensory analysis has evolved considerably in recent years thanks to the development1

of statistical analysis techniques which are crucial for data processing. However, although taste2

panels are useful in quality classification tasks they have high running costs, are time consuming,3

and sometimes lead to controversial interpretations. Therefore it would be interesting to employ4

another method for quality discrimination based on instrumental analytical techniques, such as5

the electronic nose. As a first step in the investigation of the method, the volatile patterns of6

samples characterised as unacceptable by a sensory panel were compared with an acceptable7

sample that was considered as a reference. The electronic nose could clearly distinguish between8

the two classes as inferred by principal components analysis (PCA) and cluster analysis (CA)9

(see Figures 2, 3). However, as more samples were introduced in the analysis, PCA, as an10

unsupervised method, could not produce satisfactory discrimination (see Figure 4). For this11

reason, discriminant function analysis (supervised method) was employed producing a clear12

differentiation between unacceptable, marginal and reference sample (see Figure 5). An13

electronic nose is a system created to mimic the function of human nose. However, this analytical14

instrument is more a multi-sensor array technology than a real nose. Therefore, a sensory panel is15

necessary to define the desired product quality which in turn can be used to train the system for16

maximum discrimination [39]. Finally, when all samples were analysed and subjected to17

multivariate statistical interpretation, a certain level of overlapping between the classes of18

marginal and acceptable samples was observed (Figure 6). As discriminant function analysis was19

employed in the differentiation of the samples, this overlapping could be due to misclassification20

of the original samples by the sensory panel.21

The discrimination of the analysed table olive samples has been tackled with a pattern22

recogniser based on an artificial neural network providing nonlinearity in the multivariate23
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classification performance. A feed-forward fully connected multilayer perceptron network has1

been trained with the back-propagation algorithm for this purpose. By introducing nonlinear2

methods like ANNs, it would be possible to model electronic nose data in a better way, as3

multivariate statistical techniques are based on a linear approach, neglecting the fact that gas4

sensor array data may often be nonlinear in nature [35]. The overall performance of the predictive5

recogniser can be appreciated by the confusion matrix obtained for each one of the three sensory6

classes used (see Table 1). One of the three misclassified olive samples lies in the zone of7

uncertainty, as it was originally marginal and classified as acceptable. For the other two points,8

probably a larger training dataset or another neural network classifier (e.g. a radial basis function9

network) could have improved classification performance [26].10

11

5. Conclusion12

The results of this study demonstrated the applicability of an electronic nose as a screening13

tool for quality control of fermented table olives based on their volatile patterns. It is worth14

noting that better description of the quality classes is necessary by an expert sensory panel to15

improve the discriminating performance of the system. Even if a larger number of table olive16

samples is required for better discrimination, the present results demonstrated the possibility of17

using this analytical technique to obtain in a rapid and objective manner information about the18

sensorial properties of table olives.19

20
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Figure Legends1

2

Figure 1. Comparison of the responses of metal oxide sensors to three replicates of unacceptable3

olive samples (solid line) and the acceptable reference olive sample (dotted line).4

5

Figure 2. The principal components (PC) analysis map of data for three replicates of unacceptable6

olive samples and the acceptable reference sample using the metal oxide/ion-based electronic7

nose.8

9

Figure 3. Dendrogram showing the cluster analysis and separation of the acceptable reference10

sample (A) and the unacceptable olive samples (AV, PL, HN). Numbers correspond to the11

replicates for each olive sample.12

13

Figure 4. The principal components (PC) analysis map of data showing the discrimination of14

unacceptable (U), marginal (M) and the acceptable (A) reference sample. Three replicates for15

each sample were used.16

17

Figure 5. Discriminant function analysis (DFA) plot of the differentiation between unacceptable,18

marginal and the acceptable reference sample. Three replicates for each sample were used.19

20

Figure 6. Discriminant function analysis (DFA) plot of the differentiation between unacceptable,21

marginal and acceptable olive samples. Three replicates for each sample were used.22

23

Figure 7. Schematic representation of a four-layered MPL network used as patterns classifier for24

table olives quality identification.25

26

27

28

29
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Table 11

Confusion matrix of the MLP classifier performing the task of discrimination of table olive samples.2

From/To Acceptable Marginal Unacceptable

Acceptable 34 0 0

Marginal 1 17 0Training dataset

Unacceptable 1 0 13

Acceptable 5 0 0

Marginal 3 0 0Test dataset

Unacceptable 1 0 3

3


