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Abstract. We present MSAD, a source transformation implementation
of forward mode automatic differentiation for MATLAB. MSAD spe-
cialises and inlines operations from the fmad and derivvec classes of the
MAD package. The operator overloading overheads inherent in MAD
are eliminated while preserving the derivvec class’s optimised deriva-
tive combination operations. Compared to MAD, results from several
test cases demonstrate significant improvement in efficiency across all
problem sizes.

1 Automatic Differentiation in MATLAB

MATLAB is popular for rapid prototyping and numerical computing owing to its
high-level abstraction of matrices and its rich set of function and GUI libraries.
MATLAB’s interpreted nature and high-level language make programming intu-
itive and debugging easy. Optimised BLAS and LAPACK routines for internal
matrix operations facilitate good performance. MATLAB may be extended by
further general purpose and application specific toolbozxes (e.g., for optimisation,
partial differential equations, control, etc.). We believe the robustness and effi-
ciency of many MATLAB toolboxes and user’s applications would benefit from
an effective automatic differentiation (AD) [1] package.

Coleman and Verma’s ADMAT [2] was the first significant MATLAB AD
tool and implemented forward and reverse mode differentiation, with support
for Jacobian compression, via operator overloading. The later ADiMat tool [3]
adopted a hybrid source transformation/operator overloading implementation
of forward mode AD and out-performed ADMAT on several problems. Simul-
taneously the fmad class of MAD [4], an operator overloaded implementation
of forward mode AD, was also shown to outperform ADMAT. MAD’s efficiency
is due to appropriate data-structures and use of high-level matrix operations
within its derivvec class which holds and propagates derivatives. Use of MAT-
LAB’s sparse data-type to hold and propagate sparse derivatives enables run-
time sparsity exploitation — greatly enhancing performance for problems where
sparsity is unknown or difficult to exploit via compression techniques.

Because there is no compilation before execution of operator-overloaded MAT-
LAB code, performance of overloaded implementations of AD suffer due to over-
heads from the interpreter and the type check and dispatch mechanism of over-
loading. Note that MATLAB’s recent just-in-time (JIT) compiler is restricted to
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a subset of MATLARB’s intrinsic classes and so is not applicable to the derivvec
class. Moreover, overloaded operations typically involve substantial logic and
branching dependent on the shape (scalar, vector, matrix, N-D array) or storage
class (complex, sparse) used for derivatives. For example, consider the times
operation of the derivvec class in Fig. 1. Here .derivs refers to the operand’s
derivative matrix, and .shape to the size of the operand. We see that the test
on line 9 checks if operands have equal sizes and those of lines 15 and 17 test
for scalar operands. Similarly, line 10 checks for sparse storage of derivatives.
Such tests incur further run-time overheads. Other generic MATLAB overheads
are described by [8] and their relevance to AD is discussed in [14].

function cdv = times(a,b)
if isa(b,’derivvec’)
cdv = b; mults = a;
else
cdv

a; mults b;
end
ssd = prod(cdv.shape); sm = size(mults); ssm = prod(sm);

mults = mults(:);

if ssd == ssm % line 9
if issparse(cvd.derivs) % line 10
% sparse mode operations omitted for brevity
else
cdv.derivs = mults(:,ones(1,cdv.nderivs)).*cdv.derivs; % line 13
end
elseif ssd == % line 15
cdv.derivs = mults*cdv.derivs; cdv.shape = sm;
elseif ssm == % line 17

cdv.derivs = mults.*cdv.derivs;
end

Fig. 1. derivvec - times operation from MAD

The MSAD (MATLAB Source transformation AD) tool aims to demonstrate
the benefits obtained by combining source transformation with MAD’s efficient
data structures. An initial, hybrid source transformation/operator overloading
approach, similar to that of ADiMat, showed significant speedup compared to
MAD for smaller test cases but asymptotically reached the performance of MAD
as the problem size increased [6]. Section 2 of this paper describes our improved
source transformation approach, which now specialises and inlines all required
derivative operations. The benefits of this approach are demonstrated by the
test cases of Section 3. Conclusions are presented in Section 4.

2 Source Transformation via Specialising and Inlining

MSAD uses ANTLR-based LL(k) scanner, parser and tree parsers [5] to analyse
and source transform MATLAB programs for AD [6]. Program transformation



is carried out via four phases - scanning and parsing for Abstract Syntax Tree
(AST) and symbol table generation, attribute synthesis for activity analysis [7],
size and class propagation, and finally derivative code generation. MSAD’s parser
recognises the complete MATLAB (Release 14) grammar, but differentiation of
code involving branches, loops, structures, cells, nested functions and programs
spanning multiple files is currently not implemented. Despite these restrictions,
by replacing loops with array operations, many tests cases can be differentiated.

The attribute synthesis phase propagates flags that mark a variable’s activ-
ity, class, storage type and derivative storage type. Input programs are prepared
by using directives to indicate the active inputs and optionally sparse storage
for their derivatives. Users may optionally supply size information of input vari-
ables. For example, the directives in Fig. 2 indicate to MSAD that the size
parameters (nx, ny) and the vortex parameter (vornum) are scalars. The direc-
tives also label variable x as an active input and that its derivatives be stored as
a sparse matrix. MSAD emulates MATLAB’s sparse type propagation and size
computation rules for each elementary operation of the source code to deduce
the storage type and size of all variables. If a variable’s size and storage type
cannot be determined, MSAD marks these attributes as unknown. The sizes of
scalar and array constants within a program are automatically propagated.

function fgrad = gdgl2(nx, ny, x, vornum)
%! size(nx) = [1, 1], size(mny) = [1, 1], size(vornum) = [1, 1]
%! active(x), sparseDer(x)

Fig. 2. User directives used with gradient function of MINPACK DGL2 problem

The derivative code is generated in a final pass during which the operations
from MAD’s fmad and derivvec classes are specialised and inlined. Specialisa-
tion uses a variable’s size, class, storage class and activity information to resolve
condition checks and simplify size computations in the fmad and derivvec class
operations. For variables with unknown size and storage attributes, MSAD con-
servatively inlines operations involving size and storage checks.

We illustrate the process of specialisation and inlining by considering the FT-
BROY function of Fig. 3 [11], specifically the subexpression (3-2*x(n)) .*x(n)
of line 8. Line 3 of the program implies n equals the length of the vector x. Al-
though this length can be determined only at run-time, n can safely be deduced
to be a scalar. This further implies x (n) is a scalar, as is 3-2*x(n). MSAD au-
tomatically carries out this size inference during the attribute synthesis phase.
During specialisation, because the operands x(n) and 3-2*x(n), held in vari-
ables tmp_5_and tmp_4_in the generated code of Fig. 4, are inferred to be scalars,
the condition on line 9 from the derivvec-times operation in Fig. 1 is satisfied.
Assuming derivatives are stored in their full form, only lines 8 and 13 from Fig. 1
need to be inserted into the generated code as seen in lines 17 to 20 of Fig. 4.
Comments in Fig. 4, and the later Fig. 5, were added by hand to indicate to the



reader which line computes which expression or expression’s derivatives; D[a]
denotes the derivatives of variable a.

function f = ftbroy(x)
%' active(x)

n = length(x); % line 3
p =7/3; y = zeros(n,1);

i=2:(m-1);

y(1) = abs((3-2*%x(1)) .* x(i) - x(i-1) - x(i+1) + 1).7p; % line 6
y(@) = abs((3-2*%x(n)) .* x(n) - x(n-1) + 1).7p; % line 7
y(1) = abs((3-2*%x(1)) .* x(1) - x(2) + 1).7p; % line 8

j =1:(m/2); z = zeros(length(j),1);
z(j) = abs(x(j) + x(j+n/2)). p;
f =1+ sum(y) + sum(z);

Fig. 3. FTBROY function

tmp-1_ = x(n); % x(n)
tmp_ind_ = reshape((1:numel(x)), size(x));
tmp_ind- = tmp_ind_(n);

dtmp_1_ = dx(tmp_ind (:),:); % D[x(n)]
tmp 2. = 2 .* tmp_1_; % 2xx(n)
tmpmults_ = 2;

d_tmp_2_ = tmpmults_(:,ones(1l,res_tmpl.)).*d_tmp_1_; 7% D[2*x(n)]
tmp_3_ = 3 - tmp_2_; % 3-2*x(n)
d_tmp3_ = -d_tmp_2_; % D[3-2*x(n)]
tmp4_ = tmp_3_; % (3-2*x(n))
d tmp4_ = d_tmp.3_; YA D[(3-2*x(n))]
tmp-5_ = x(n); yA x(n)

tmp_ind_ = reshape((1:numel(x)), size(x));
tmp_ind_ = tmp_ind_(n);

dtmp 5. = dx(tmp_ind_(:),:); % D[x(n)]
tmp_6_ = tmp4_ .* tmp.5_; % (3-2*x(n)) .*x(n)
tmp mults_ = tmp.5_; % line 17

d_tmp_7_ = tmp-mults_(:,ones(l,res_tmpl.)).*d tmp_4_; % x(n).*D[(3-2*x(n))]
tmpmults_ = tmp. 4_;

d_tmp 8_ = tmpmults_(:,ones(1l,res_tmpl.)).*d tmp 5_; % (3-2*x(n)).*D[x(n)]
d_tmp_6_ = d_tmp_7- + d_tmp_8_; % DL(3-2%x(n)) .*x(n)]

Fig. 4. MSAD generated derivative code for the subexpression (3-2*x(n)).*x(n) of
the TBROY function. (Comments added for clarity)

In the subexpression (3-2*x(i)).*x(i) on line 6 in Fig. 3, the size of x(i)
cannot be determined since i is a vector dependent on the value of n. MSAD
therefore conservatively inlines lines 7 to 19 of the derivvec-times operation.
The first product of D[3-2*x(i).*x(i)], analogous to lines 17 and 18 from
Fig. 4, can be seen in Fig. 5.



d_tmp_4= d_tmp_3 yA D[(3-2%x(i))]

tmp mults_ = tmp 5_(:); YA x(1)

tmp_ssa_- = numel (tmp-mults.); A length(x(i))

tmp_ssb_ = numel (tmp_4.); % length((3-2%x(1)))

if tmp_ssa. == tmp_ssb_ % equal sizes
d_tmp_7_ = tmp-mults_(:,ones(l,res_tmpl)) .* d_tmp.4_;

elseif tmp_ssb_ == % (3-2*%x(i)) scalar
d_tmp_7_ = tmp_mults_ * d_tmp_4_;

elseif tmp_ssa. == A x(1i) scalar
d_tmp_7_ = tmpmults_ .* d_tmp_4_;

end

Fig. 5. Additional checks for vector times operation in D[(3-2*x(1i))].*x(i). (Com-
ments added for clarity)

3 Test Results

MSAD computed derivatives were tested for correctness and performance on
several optimisation, BVP and ODE problems [14]. A subset of those tests,
all performed using MATLAB Release 14 on a Linux machine with a 2.8 GHz
Pentium-4 processor and 512 MB of RAM, are presented here.

In Table 1 we compare use of MSAD and MAD’s fmad class to compute
derivatives by repeating the large-scale test cases from MATLAB’s Optimisation
Toolbox [11] performed in [4]. The test cases are: nlsfla— sparse Jacobian from
vector residual; brownf, tbroyf — gradient from objective function; browng,
tbroyg — Hessian from hand-coded gradient. Both automatic differentiation tools
may use Jacobian/Hessian compression (denoted cmp) [1, Chap. 7] or sparse
storage (denoted spr) [1, Chap. 6] where appropriate. The only MSAD user
directives required were those to specify the active input variables and use of
sparse derivative storage. For comparison, we have included MATLAB’s finite-
difference (sfd(nls)) evaluation of the gradient/Jacobian/Hessian and, where
available, hand-coding.

Table 1. Ratio CPU(V f + f)/CPU(f) — Jacobian/gradient (including function) to
function CPU time ratio for given techniques on MATLAB Optimisation Toolbox large-
scale examples. (m,n) gives the number of dependents and independents, 7 the maxi-
mum number of non-zero entries in a row of the Jacobian and p the number of colours
for compression

CPU(Vf + f)/CPU(f) for
Problem Hand- sfd- msad fmad msad fmad (m,n) i p
coded (nls) (cmp) (cmp) (spr) (spr)
nlsfla(Jac) 44 383 6.9 225 19.4 35.1/(1000,1000) 3 3
brownf (grad) 4.6 1064.9 - - 9.3 137 (1,1000) 1000 -
browng(Jac) 5.2 9.5 4.2 84 153 19.6/(1000,1000) 3 3
tbroyf (grad) 3.8 810.7 - 88 159 (1,800) 800
tbroyg(Jac) - 138 33 10.1 15.8 23.5 (800,800) 6 7




Clearly, MSAD yields significant savings compared to fmad in like-for-like
computation of derivatives for these moderate sized problems (n ~ 1000). For
compressed derivative computation we get savings of over 50% using msad (cmp)
and for sparse storage gains of about 30%. Compressed AD (msad (cmp), fmad (cmp))
out-performs compressed finite-differencing (sfd(nls)). For the gradient prob-
lems (brownf, tbroyf) sparse AD (msad (spr), fmad (spr)) is several times faster
than sfd(nls) because the functions brownf and tbroy are partially value sepa-
rable [4] and the sparse derivative computation may utilise intermediate sparsity
whereas finite-differencing cannot. For the browng problem msad(cmp) outper-
forms hand-coding due to the use of complicated expressions in the hand-coding.

Table 2 lists the total optimisation run-times with derivatives supplied using
the methods of Table 1. Source transformed derivatives yield substantial savings
in the total run-time compared to fmad’s overloading approach and run-times
are comparable to those using hand-coded derivatives.

Table 2. Averaged CPU time for optimisation of the large-scale examples from the
MATLAB Optimisation Toolbox with derivatives supplied using given techniques

Optimisation CPU time (s) for

Problem|Hand- sfd- msad fmad msad fmad
coded (nls) (cmp) (cmp) (spr) (spr)
nlsfla | 0.16 0.36 0.17 0.31 0.20 0.35
brownf 0.56 - - - 07 125
browng 0.29 0.56 0.23 041 046 0.64
tbroyf 0.72 - - - 1.29 2.89
tbroyg - 0.76 0.20 0.48 0.55 0.86

The 2-D Ginzburg-Landau unconstrained minimisation problem (GL2) [12,
13] uses an ng xn, mesh with 4 variables per mesh point yielding n = 4n,n, inde-
pendent variables. The objective function is again partially value separable and
the gradient code is supplied. The sparse Hessian is computed as the Jacobian Jg
of the gradient g. Differentiated functions were generated using MSAD for full
and sparse storage of derivatives; the user directives for sparse storage can be seen
in Fig. 2. Table 3 gives the derivative computation ratio CPU(Jg + g)/CPU(g)
for increasing problem size. Using compression, msad (cmp) is nearly 80% more
efficient than fmad (cmp) for small n. With increasing problem size, the floating
point operation cost of the derivative computation of either method increases
relative to its overheads and the relative advantage of source transformation
decreases. However, even for n as large as 65,536 msad (cmp) is nearly twice as
fast as overloading. With sparse derivatives (msad(spr), fmad(spr)) we see a
similar trend but smaller relative improvement due to the common overhead of
manipulating MATLARB’s sparse data structures.

The total optimisation time using MATLAB’s fminunc solver with the differ-
ent Hessian calculation techniques of Table 3 is shown in Table 4. The decrease



Table 3. Ratio CPU(Jg + g)/CPU(g) — Hessian (including gradient) to gradient func-
tion CPU time ratio for the MINPACK 2-D Ginzburg-Landau problem using given
techniques; p gives the number of colours for compression. For all problem sizes, the
maximum number of non-zero entries in a row of the Jacobian is n = 14

CPU(Jg + g)/CPU(g) for problem size n

Method 64 256 1024 4096 16384 65536
msad (cmp) 2472  23.69 21.84 2331 3795 52.16
fmad (cmp) 115.32 105.89 89.57 72.82 72.11 90.47
msad (spr) 28.11  29.18 35.02 52.63 88.97 177.10
fmad(spr) 122.80 113.84 107.73 108.72 126.45 222.81

#colours p | 20 23 25 24 25 25

in overall computation time obtained by using MSAD’s more efficient derivative
computation is seen — but this is not proportional to the decrease in derivative
computation time. This is because for larger problem size the number of Newton
iterations (which require a Hessian recalculation) stays fixed but the number of
conjugate gradient iterations (which do not) increase [15].

Table 4. Optimisation CPU time for the MINPACK Ginzburg-Landau (GL2) problem
using MATLAB’s fminunc with derivatives supplied using given techniques

Problem size n

64 256 1024 4096 16384
Method CPU time (s) for optimisation

msad (cmp) 0.74 0.59 1.34 6.95 29.62
fmad(cmp) | 4.45 2.78 3.79 10.71 38.70
msad(spr) | 1.23 1.14 2.87 13.05 61.93
fmad (spr) 4.79 3.32 541 17.05 73.83
sfd 141 1.29 3.60 19.91 216.30

4 Conclusion

The previous, hybrid source transformation/operator overloading implementa-
tion of MSAD [6] gave reasonable speedup over operator overloading for small
problem sizes. This speedup diminished with increasing problem size. The im-
proved implementation presented here inlines and, where possible specialises,
the remaining overloaded function calls. This eliminates the type check and dis-
patch overhead of overloading, reduces logic and branching, and exposes a larger
section of the augmented code to MATLAB’s JIT acceleration. Section 3’s test
cases clearly demonstrate these benefits. Figure 4’s code indicates the scope for
further performance improvements by eliminating redundant temporaries and
common subexpressions. Preliminary results obtained by implementing such im-
provements by hand on one test case produced a 42% speedup [14] and highlight
the need for such compiler-like optimisations within a MATLAB AD-tool.
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