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Abstract. Despite an extensive research effort for over 60 years, an understanding

of the origins of conductivity in wide band-gap transparent conducting oxide (TCO)

semiconductors remains elusive. While TCOs have already found widespread use in

device applications requiring a transparent contact, there are currently enormous

efforts to (i) increase the conductivity of existing materials, (ii) identify suitable

alternatives, and (iii) attempt to gain semiconductor-engineering levels of control over

their carrier density, essential for the incorporation of TCOs into a new generation of

multifunctional transparent electronic devices. These efforts, however, are dependent

on a microscopic identification of the defects and impurities leading to the high

unintentional carrier densities present in these materials. Here, we review recent

developments towards such an understanding. While oxygen vacancies are commonly

assumed to be the source of the conductivity, there is increasing evidence that this

is not a sufficient mechanism to explain the total measured carrier concentrations.

In fact, many studies suggest that oxygen vacancies are deep, rather than shallow,

donors, and their abundance in as-grown material is also debated. We discuss other

potential contributions to the conductivity in TCOs, including other native defects,

their complexes, and in particular hydrogen impurities. Convincing theoretical and

experimental evidence is presented for the donor nature of hydrogen across a range of

TCO materials, and while its stability and the presence of interstitial and substitutional

species are still somewhat open questions, it is one of the leading contenders for

unintentional conductivity in TCOs. We also review recent work indicating that

the surfaces of TCOs can support very high carrier densities, opposite to the case

of conventional semiconductors. In thin-film materials/devices and, in particular,

nanostructures, the surface can have a large impact on the total conductivity in TCOs.

We discuss models that attempt to explain both the bulk and surface conductivity

based on features of the bulk band structure common across the TCOs, and compare

these materials to other semiconductors. Finally, we briefly consider transparency

in these materials, and its interplay with conductivity. Understanding this interplay,

as well as the microscopic contenders for the conductivity of these materials, will

prove essential to the future design and control of TCO semiconductors, and their

implementation into novel multifunctional devices.
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1. Introduction

Most wide band-gap materials are electrically insulating, while most conducting

materials are opaque to light at visible wavelengths. It is no surprise, therefore, that

an exception to this rule – a class of oxide semiconductors which are rather good

conductors of electricity while simultaneously being transparent in the visible region

of the electromagnetic spectrum – have generated much interest. Despite being known

about for well over half a century [1], there remains substantial controversy over the

origins of conductivity in these materials, making these one of the least understood

classes of semiconductor today.

Termed transparent conducting oxides (TCOs), these materials have already

found enormous practical application in devices requiring a transparent contact.

Typical examples include: low sheet-resistance current-spreading layers in light-emitting

diodes [2,3], to enhance the optical power output; transparent contacts to solar cells [4],

to enable current collection with short carrier diffusion lengths, but still allow light to

reach the active part of the device; transparent contacts to LCD displays [5]; low thermal

emittance (due to the high electrical conductivity) coatings [6], to provide thermal

insulation for windows; and electrochromatic, or smart, windows [7, 8] whose optical

properties can be modulated by charge insertion/extraction through a transparent

contact.

The most common TCO used in such applications is Sn-doped In2O3 (ITO),

where carrier densities exceeding 1021 cm−3 and resistivities below 10−5 Ωcm have been

achieved [7], albeit with substantial variation dependent upon growth technique and

conditions. However, indium is a relatively scarce, and consequently expensive, element,

which is desired not only for TCOs, but also, for example, as an active component in

the rapidly expanding range of InGaN-based optoelectronic, electronic and photovoltaic

devices [9–13]. Consequently, much recent work has been focussed on alternative

materials [14]. These include the pure and impurity-doped binary materials ZnO,

SnO2, CdO, and Ga2O3, and also multi-component oxides such as indium-gallium-zinc-

oxide and cubic spinel compounds such as CdIn2O4 and SnZn2O4. However, efforts to

optimize the properties of TCO materials are frequently hampered by lack of a complete

understanding of the origins of their conductivity. Obtaining such understanding is a

crucial step towards improvement of current materials and development of a new range

of high-performance TCOs for increased functionality and improved device performance.

In this review, we concentrate on the n-type TCOs – p-type TCOs, such as the Cu-based

delafossite materials, are considered in passing only in Section 5.

Beyond this, however, TCO materials offer the potential for much more than

transparent contacts. It is widely accepted that the staggering advancements seen

in the performance of Si-based electronic devices are reaching the limits of what is

practically achievable [15], and that a fundamentally new approach is required: oxide

materials are tipped to play a leading role in such developments [16–21]. TCOs offer

the attractive prospect for the emergence of high-performance transparent electronics,
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offering a wealth of new opportunities in technology and integration [16, 17, 22], such

as completely transparent electronic display screens, or even energy generation from

photovoltaic cells invisibly incorporated into the windows of office buildings.

There is reason to be hopeful that the field of TCOs may evolve from its current

state of the predominance of transparent contacts to exotic and exciting schemes for

transparent electronic devices. Nomura et al. [23] successfully demonstrated the use of

InGaO3(ZnO)5 as the channel layer in an all-oxide transparent field-effect transistor (see

Fig. 1(a-c)). Crucially, they demonstrated that such a device could exhibit high mobility,

stimulating much work on this system [24,25]. A second milestone on the road towards

oxide electronics can be seen as the observation of the integer [26] and, more recently,

fractional [27] quantum Hall effects in ZnO/MgZnO heterostructures by Tsukazaki et

al. (Fig. 1(d-f)). The realisation of the quantum Hall effect, let alone the fractional

quantum Hall effect, is typically restricted to very high-quality semiconductor quantum

wells [28, 29], and its observation in an oxide material is testament to the staggering

advancements in materials synthesis control achieved by Tsukazaki and colleagues. This

is further supported by the mobilities achieved in the heterostructures, the best of

which was in excess of 180000 cm2V−1s−1 (Fig. 1(g)), indicating the potential of oxide-

based devices for high-mobility applications to rival traditional semiconductors. Such

observations are a very encouraging sign towards the development of high-quality oxide-

based device architectures [18, 30].

We also note here another major discovery suggesting potential for oxide-based

materials within electronics: when an interface is formed between the two insulating

oxides, SrTiO3 and LaAlO3, a highly conductive interface is obtained [31]. This

exhibits a number of very attractive properties including high mobility [31], large

magnetoresistance [32], and even superconductivity. [33]. Besides this demonstration

of the multifunctional properties obtainable using oxide materials, such observations

indicate that interface, or in fact surface, properties can be very different from those

of the bulk material, and such effects should not be neglected when considering

conductivity in these, and similar, materials.

In any case, to move towards transparent electronic device schemes, we need to

understand the reasons why TCOs conduct electricity, so that this can be improved,

controlled, and new materials developed with customized properties. There has

recently been substantial progress in this area, with conclusions which differ from the

conventional perspectives. This paper presents a focussed review of these developments.

Initially, native defects are reviewed. Both oxygen vacancies, which are traditionally

attributed as the cause of conductivity in TCOs, as well as other isolated defect centres

and defect complexes are considered. In Section 3, we consider another candidate,

namely hydrogen impurities, that has recently emerged as a leading contender to

contribute significantly to conductivity in TCOs. In Section 4, we review recent

developments on the surface electronic properties of TCOs, and show that these can also

influence the material’s total conductivity, in addition to bulk contributions. Overriding

tendencies linking the properties of defects, impurities and surface states in these
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materials are discussed in Section 5. Finally, the transparency of TCOs, and in particular

its interdependence with conductivity, is discussed in Section 6.

2. Native defects

Hampered for many years by difficulty in achieving high quality material, native defects

have long been thought to be a dominant factor controlling conductivity in TCOs. In

particular, the significant size mismatch between the rather large metal cations and small

oxygen anions in these compounds would näıvely be expected to make oxygen vacancies

particularly important. In fact, with recent advances in growth techniques, particularly

perhaps the advent of novel schemes of molecular beam epitaxy, it has become possible

to grow thin-films of oxide materials, as required for device applications, with rather

high structural quality [34–40]. Notwithstanding this, however, oxygen vacancies have

long been [41], and commonly still are, attributed as the primary cause of conductivity

in TCOs. However, this remains a contentious issue, as discussed below.

Much insight has come from theoretical investigations of defect formation energies

calculated within the framework of density-functional theory (DFT). It should be

remembered, of course, that these calculations are strictly only valid at 0 K. In contrast,

growth of oxide materials occurs at elevated temperatures, and is also not an equilibrium

process, and so the raw formation energies should always be considered within this

context. Furthermore, the well known ‘band-gap problem’ of DFT [42], coupled with

potential errors due to the finite size of supercells used for defect calculations [43, 44],

must be corrected in order to understand the formation-energy calculations on an energy

scale relevant to experiment. Various schemes have been implemented to account for

these issues. Unfortunately, these can lead to rather substantial differences in the

calculated formation energies [45] (see, for example, Fig. 2). Notwithstanding these

caveats, however, such calculations can still provide much useful information.

2.1. Oxygen vacancies

Of all the TCO materials, native defects have been investigated most extensively in

ZnO [46]. For the oxygen vacancy, DFT reveals that the stable charge state moves from

the 2+ donor state to the neutral defect centre as the Fermi level increases (see Fig. 2).

However, despite quantitative differences between different calculation schemes, the

donor level ([0/2+] transition level) is generally found to be rather deep, lying well below

the conduction band minimum (CBM). This is supported by experiment. By monitoring

the optical threshold for ionization of the neutral VO centre, detected using electron

paramagnetic resonance (EPR), Evans et al. [47] estimated the [0/2+] donor level to

lie ∼2.1 eV below the CBM. Furthermore, using optical-detected EPR measurements,

Vlasenko and Watkins [48] found the [+/0] transition level to lie either 0.9 eV or 2.48 eV

above the top of the valence band maximum (VBM). The second of these scenarios is

consistent with theoretical calculations [49] indicating a deep donor level. Analysis of
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positron annihilation spectroscopy measurements also found the oxygen vacancy to be

a deep donor in ZnO, with an ionization energy of approximately 100 meV [50].

There is also debate over whether oxygen vacancies should be expected, from

a theoretical perspective, to occur in significant quantities in as-grown ZnO. The

variations in magnitude of the formation energy for the oxygen vacancy between different

calculations leads to orders-of-magnitude differences in the concentration of these defects

expected from thermodynamic considerations. For example, a high formation energy

of the oxygen vacancy for Fermi levels close to the CBM, as calculated by Janotti and

Van de Walle [49, 51] and Lee et al. [52], would suggest negligible concentrations of

such defects under equilibrium conditions. In contrast, from the much lower formation

energies calculated by Lany and Zunger [53] and Erhart et al. [54], much higher defect

concentrations would be expected, up to ∼ 1020 cm−3 under favourable conditions.

For a further discussion of these variations between different calculation schemes, see

Ref. [45]. The situation is also unclear experimentally. There are several studies which

indicate negligible concentrations of oxygen vacancies in as-grown material, with particle

irradiation needed to introduce such defects [48, 50], while other studies conclude the

presence of oxygen vacancies without the need for particle irradiation [55].

Similar properties of the oxygen vacancy have been found in other TCOs.

Calculations in SnO2, In2O3, and Ga2O3 again reveal that the oxygen vacancy is a

negative-U defect, stable in the 2+ and neutral charge states [53, 56–59]. The [0/2+]

transition levels are again found to be rather deep, although the exact positions are

still under debate. As for ZnO, there is significant variation in the magnitude of the

calculated formation energies, leading some studies to suggest high concentrations of VO

under equilibrium conditions [53], while others again find negligible concentrations [57].

Early experimental studies suggested high concentrations of oxygen vacancies at high

temperature in polycrystalline In2O3 [60,61] and SnO2 [62], although this situation may

not necessarily hold for high-quality single-crystalline material at room temperature.

There is certainly also experimental evidence that native defects introduced into

TCOs can increase the concentration of free carriers in the material. For example,

King et al. [63] performed He-ion irradiation studies of CdO, and found an increase and

then saturation of the (already high) density of conduction electrons. Speaks et al. [64]

reproduced these results for He-ion irradiation, and further showed that irradiation with

more massive Ne-ions caused the Fermi level stabilization to occur at higher energies (see

Fig. 3). This gives fairly direct proof that native defects can contribute to conductivity

in TCOs, although the multiple stabilization levels suggests that this does not occur in

a simple manner. While oxygen vacancies are almost certainly created in the irradiation

process, the formation of other native defects will likely also occur, and so it is difficult

to determine if the observed effect is due to oxygen vacancies, other native defects,

complexes, or indeed a combination. Additionally, it should be noted that irradiation of

ZnO with electrons [50] (much lower displacement damage doses), but also oxygen [65]

was seen to lead to a increase in resistivity. The detailed situation regarding the electrical

behaviour of intentionally-introduced defects across different oxides therefore requires
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further study.

While it is fair to say that this area is still highly controversial, the existing evidence

would seem to suggest that the oxygen vacancy does not contribute to conductivity in

a simple manner in TCOs. There is a potentially convincing counter-argument: the

conductivity in TCOs is often seen to exhibit a pronounced dependence on partial

pressure of oxygen during growth [66, 67]. It would seem logical, therefore, that this

conductivity is related to the presence of oxygen vacancies, as has been assumed for

many years. However, as will be discussed below, there are several scenarios which can

explain this dependence, without requiring isolated oxygen vacancies to be a microscopic

source of shallow donors in TCOs.

2.2. Cation interstitials

Theoretical calculations have also played an important role in the consideration of

other native defects in TCOs. Kılıç and Zunger [56] found that Sn-interstitials were

shallow donors in SnO2, and furthermore had a low formation energy, causing them

to attribute such defects as the probable source of conductivity in this material.

Subsequent theoretical studies [57, 68], however, suggested that the formation energy

for isolated Sn-intersitials is actually very high for n-type material, indicating that

such defect centres would be unlikely to be present in significant quantities in SnO2.

Furthermore, their calculated migration barrier is very low [57], leading to doubts over

the stability of such centres. Interstitial zinc has also been attributed as the cause

of n-type conductivity in ZnO [69]. However, as for SnO2, subsequent theoretical

studies found rather high formation energies and low migration barriers for the cation

interstitial in ZnO, and also other TCO materials [51, 53, 70]. This is also supported

experimentally. For example, Zn was shown to diffuse rapidly in ZnO by secondary ion

mass spectrometry [67]. Furthermore, intersitial zinc species were found by ODEPR

in ZnO following electron irradiation, and shown to become mobile well below room

temperature [71]. Consequently, cation interstitials are unlikely to be a significant source

of room-temperature conductivity in TCOs.

2.3. Cation vacancies

From theoretical calculaions, the other isolated native defect that has comparable

formation energy to either oxygen vacancies or cation interstitials is the single cation

vacancy [51]. In fact, its formation energy decreases with increasing Fermi level,

making these especially important for typical Fermi level positions of n-type TCOs.

However, such defects are acceptors [51, 68], and so cannot contribute to this n-type

conductivity. Rather, these defects may play an important role as compensating centres,

limiting the attainable carrier densities and conductivities of TCOs. Indeed, this defect

been identified as the dominant compensating acceptor in both as-grown and electron-

irradiated n-type ZnO from positron annihilation spectroscopy measurements [50, 72].
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2.4. Defect complexes

Much attention has also been paid to defect complexes, which can substantially change

the formation energetics relative to those of isolated defect centres. For example, Kim

and Park [73] argued that attractive interactions between the oxygen vacancy and zinc

interstitial in ZnO lowered their formation energy and made them significantly more

likely to contribute to n-type conductivity. Tang et al. [74] found a similar effect

in In2O3. Look et al. [75] have argued that a complex of the Zn-interstitial with a

nitrogen impurity on the oxygen site is also a strong candidate for a shallow donor in

ZnO. In SnO2, Godinho et al. [68] found that oxygen vacancies compensated through

tin reduction could be present in significant quantities, and contribute to the n-type

conductivity. More generally, they concluded that isolated defects often relax to give

completely different defect structures, a feature which is neglected in the majority of

calculations of defect formation energies. Combined with difficulties in unambiguous

identification of defect complexes in experiment, it it is clear that much work remains

in order to obtain a detailed picture of defects and their complexes in TCOs, and their

possible role in conductivity.

2.5. Persistent photoconductivity

Although as discussed above, it seems likely that oxygen vacancies are typically

rather deep donors in TCOs, it could still be possible for them to contribute towards

conductivity in these materials. In both ZnO [53, 76] and In2O3 [53], Zunger and

colleagues have proposed that the oxygen vacancy leads to the population of the

conduction band with free carriers via a persistent photoconductivity (PPC) mechanism.

In this model, upon photoexcitation, two electrons are promoted from the deep

non-conductive V 0
O level to a metastable conductive shallow state [77]. An energy

barrier prevents the transition back to the non-conducting ground state, allowing such

photoconductivity to persist, providing a model for the conductivity of TCOs dependent

on oxygen vacancies. There is debate, however, whether the energy barrier to prevent

such a transition back to the ground state is sufficiently large to achieve PPC in practice.

For example, in ZnO, Janotti and Van de Walle [51] find that this barrier would be

sufficient to allow PPC at low temperature, but not at room temperature.

It is apparent that the situation involving native defects and their contribution to

conductivity in TCOs is not entirely clear. There is both experimental and theoretical

evidence that they are important in certain situations, but they seem unlikely to be the

sole mechanism responsible for conductivity in these materials. The common assignment

of oxygen vacancies as the dominant donor defect in TCOs seems to be, at best, an over

simplification. In addition to other native defects, there are several distinct candidates

that appear to have an important role in conductivity, as will be discussed in the

following sections.
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3. Hydrogen in oxides

3.1. Donor nature of hydrogen

Hydrogen is well known to be an important impurity in semiconductors [78]. It is

hard to remove from growth environments, and so may be expected to be present as an

impurity in the majority of materials, where it is normally electrically active. Interstitial

hydrogen is almost universally accepted to be a negative-U defect, stable in the 1+ and

1− charge states but not in the neutral state [79]. Hydrogen, therefore, forms an acceptor

(donor) state when the Fermi level lies above (below) the so-called H[+/−] transition

level, which lies mid-way between the acceptor (H[0/−]) and donor (H[+/0]) levels. In

a conventional semiconductor such as GaAs, this transition level lies approximately in

the middle of the band gap [80]. Consequently, for Fermi levels close to the valence

band (p-type conductivity), hydrogen will act as a compensating donor, whereas for

Fermi levels approaching the conduction band (n-type conductivity), hydrogen will act

as a compensating acceptor. Thus, in conventional semiconductors, hydrogen always

counteracts the prevailing conductivity.

This picture, however, seems inconsistent with work on oxides from as early as the

1950s, where hydrogen diffusion into ZnO was found to increase its conductivity [81].

From DFT calculations, Van de Walle and colleagues [79,82,83] showed that interstitial

hydrogen can indeed act as a donor even in n-type ZnO, finding that the H+ charge

state is stable for all Fermi level positions within the band gap (see Fig. 4(b)). This

finding means that for n-type material, with the Fermi level close to, or even somewhat

above, the CBM, the donor-state is still favourable. Consequently, hydrogen could be

a cause of conductivity in ZnO, rather than playing its usual role as a compensating

defect centre, explaining the measured increase in conductivity observed upon hydrogen

diffusion into ZnO.

Cox et al. [84] performed muon spin rotation and relaxation spectroscopy

(µSR) measurements on ZnO, investigating muonium (Mu = [µ+, e−]) as a light-

isotope analogue of hydrogen. While hydrogen can be difficult to directly assess

spectroscopically, the well-defined creation and decay properties of muons has led to

significant success in the use of µSR as a spectroscopic probe of isolated defect centres

in semiconductors that differ from hydrogen only by a mass factor (mMu/mH ≈ 1/9)

and the associated small difference in zero-point energy [85]. While µSR studies

of conventional semiconductors such as Si [86] or GaAs [87] found charge transition

levels for muonium lying deep within the band gap, as would be expected for the

conventional behaviour of hydrogen in these materials, such measurements [84] provided

the first spectroscopic evidence of the donor-nature of hydrogen in ZnO, summarized

in Fig. 5. At low temperatures, a paramagnetic Mu0 signal is seen to co-exist with

the diamagnetic Mu+ signal (Fig.5(a)), indicating the presence of neutral muonium.

The ionization behaviour of this paramagnetic component with increasing temperature,

coupled with the small effective hyperfine splitting (evident from the small splitting of

the paramagnetic satellite lines in the frequency domain, Fig. 5(b)) gives strong evidence
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for a shallow donor state of muonium. By analogy, a shallow donor state of hydrogen

would also be expected, which was soon-after confirmed by EPR measurements [88].

These works stimulated a flurry of studies on the presence and local bonding environment

of interstitial hydrogen in ZnO [46, 89–98]. In addition, hydrogen has been shown

as a viable intentional n-type dopant [99] and co-dopant with Al [100] and Ga [101]

in ZnO grown by a variety of techniques ranging from sputtering methods [99] to

chemical solution deposition [100]. Free electron densities as high as 6×1020 cm−3 have

been achieved by doping with hydrogen along [99]. This collection of theoretical and

experimental studies potentially provides a new paradigm for the origins of conductivity

in TCOs: hydrogen, a ubiquitous impurity which is likely to be present in virtually all

as-grown material, may be the unintentional dominant donor. However, it is important

to consider if (i) this is specific to ZnO, or is general across the TCOs, (ii) whether it is

stable, particularly at elevated temperatures, and (iii) whether the concentrations of this

impurity species are likely to be high enough to account for the measured conductivities

of TCOs. These issues are addressed in the following sections.

3.2. Universality across TCOs

Several subsequent µSR studies have revealed the shallow donor-nature of muonium in

the TCO materials In2O3 and SnO2 [102], CdO [103], and Ga2O3 [104] (see, for example,

Fig. 6). In all cases, a paramagnetic component is observed at low temperatures, which is

quenched with increasing temperature. The variations in amplitudes are well described

by ionization models with small activation energies indicative of a shallow donor state.

The effective hyperfine splitting of the paramagnetic components are very small (see the

inset to Fig. 6(c)), indicating an extended wavefunction. The shallow-donor radius and

binding energy determined from the µSR studies are in good agreement with simple

estimates within a hydrogenic model [102, 104]. This gives a strong spectroscopic

indication that the shallow-donor state of hydrogen in conducting oxides is not limited

to ZnO, but rather is general across the TCOs. Further experimental studies have

also observed or inferred the donor nature of hydrogen in TCOs. For example, an

increase in measured carrier concentration and additional Moss-Burstein shift of the

optical absorption edge was observed when hydrogen is diffused into CdO [63, 105].

Indeed, CdO films grown by metal-organic chemical vapour deposition, where hydrogen

is present in large quantities in the precursor gas, have high initial carrier densities, which

reduce upon annealing in ultra-high vacuum. This is consistent with a dissociation of

hydrogen, leading to a corresponding reduction in carrier density, with annealing [63].

Annealing nominally undoped SnO2 in a hydrogen atmospheres was shown to lead to

an increase in the conductivity, concurrent with the appearance of an O–H stretch

mode in infrared absorption measurements, confirming the donor nature of interstitial

hydrogen in SnO2 [106]. Meanwhile, hydrogen-doping during growth has been found as

an effective method to produce highly conducting In2O3 films [107]. Indeed, hydrogen-

doped In2O3 has been suggested as a suitable contact for use in Si-based heterojunction
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solar cells [108].

Such experimental observations are also supported by theoretical calculations. Kılıç

and Zunger [109] and Xiong et al. [110] found that hydrogen forms a shallow-donor state

in CdO and SnO2, in addition to ZnO. Singh et al. [57] also found the shallow donor

state to be stable for interstitial hydrogen in SnO2, while Limpijumnong et al. [58] and

Varley et al. [59] found the same to hold for In2O3 and Ga2O3, respectively. These

theoretical studies support the conclusion from the experimental results that interstitial

hydrogen forms as a shallow donor, even in n-type material, across the class of TCOs.

The overriding reasons for this are discussed further in Section 5.

3.3. Stability

The above discussions concentrate on isolated interstitial hydrogen. While these studies

show it to be a shallow donor in TCOs, it is not a priori clear that such species will

be stable at elevated temperatures, for example during growth or even some device

operating temperatures, where the conductivity of TCOs is known to persist. Indeed,

deuterium was observed to diffuse easily in ZnO with an activation energy of only

170 meV [111]. While diffusion of hydrogen into ZnO was seen to lead to an increase

both in electron concentration and an associated local vibrational O–H stretching mode

observed in infrared spectroscopy [90], both were subsequently substantially reduced by

annealing at only 150◦C for 30 mins [96]. Indeed, Jokela and McCluskey [95] showed that

the O-H IR absorbance peak and carrier density of hydrogenated ZnO both decreased

with the same functional form even at room temperature, as shown in Fig. 7, which

they explained via formation of neutral H2 molecules. A similar decrease in the O–H

stretch mode with room-temperature annealing was also observed in SnO2 [106].

While the correlation of such spectroscopic and electrical measurements provide

good evidence that the interstitial state of hydrogen is a donor in ZnO, and can

contribute carriers directly into the conduction band, it also reveals that this species is

unlikely to be sufficiently stable to account for the residual background concentration

of carriers in TCOs at room temperature, let alone their persistence at elevated

temperatures. Wardle et al. [112] investigated the diffusion of hydrogen in ZnO from

DFT calculations, finding low migration barriers, suggesting that interstitial hydrogen is

indeed very mobile in ZnO. However, they suggested that hydrogen could still contribute

to conductivity in ZnO, even at elevated temperatures, if it becomes trapped at other

existing defect centres. This is consistent with spectroscopic observations of multiple

H-related donors in this material [93, 94].

Janotti and Van de Walle [83] showed that substitutional hydrogen on the oxygen

site in ZnO also forms a shallow donor, in a so-called multicentre bond configuration

(see Fig. 4). While the formation energy of this species is very similar to that of isolated

interstitial hydrogen (Fig. 4(b)), it is significantly more thermally stable. Indeed, the

calculated energy required for the conversion HO → Hi +VO was calculated to be 3.8 eV.

Furthermore, substituting for oxygen causes the formation energy of this configuration
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of hydrogen to be intimately linked with the oxygen chemical potential, reconciling

the explanation of hydrogen as a source of conductivity in TCOs with the known

dependence of conductivity on oxygen partial pressure during growth. Signatures of such

a multicentre bond configuration have recently been identified in a combined Raman

scattering, IR absorption, photoluminescence, and photoconductivity study by Lavrov et

al. [97].

Subsequent calculations have revealed that the shallow donor state of substitutional

hydrogen is also stable, and has similar formation energies to the interstitial state,

in other TCOs including SnO2 [57] (4-centre bond) and In2O3 [58] (5-centre bond).

Experimental studies are somewhat less advanced, however, in these other TCOs as

compared to ZnO. While initial experiments on interstitial hydrogen, discussed above,

suggest that the situation in these other TCO materials is similar to that in ZnO,

further experiments should be performed to confirm this, in particular with regard to

the multi-centre bond substitutional species.

3.4. Origin of the bulk n-type conductivity?

From the extensive theoretical and experimental studies discussed above, there seems

little doubt that hydrogen has a strong propensity to form as a shallow donor in TCOs,

and consequently must be considered in any picture of conductivity in these materials.

Substitutional hydrogen, with its greater thermal stability than interstitial hydrogen

and the naturally occurring mechanism for a dependence of conductivity on oxygen

partial pressure during growth, is certainly an attractive candidate for the unintentional

dominant donor leading to conductivity in TCOs. However, the situation in real

materials is unlikely to be this simple. As discussed above, multiple species of hydrogen-

related defects are known to exist, and interstitial hydrogen, potentially trapped at other

native defect centres, may also contribute to the material’s conductivity. The role of

native defects, whether in complexes with hydrogen or as a contribution to conductivity

on their own, can also not be ruled out, and in reality, most materials likely contain

contributions to their total conductivity from a variety of microscopic sources.

It is also worth noting that any theory of conductivity based predominantly around

impurities such as hydrogen can only be valid where such impurities are present in

significant quantities in the as-grown material. While hydrogen is hard to remove from

most growth environments, it is still difficult to assess what the concentration of this

impurity really is. Hydrogen has also been proposed as a source of conductivity in

another novel semiconductor material InN, which is actually similar in many respects to

TCOs (see Section 5). In that material, there is currently intense debate over whether

hydrogen can be seen as the dominant source of conductivity, whether it is present

in sufficient quantities, and whether it remains dominant over native defects over the

whole Fermi level range spanned in existing material [113–122]. Such considerations

may be expected to apply to TCO materials as well, and further investigations in this

area are still required. Material grown using different techniques may fall into regimes
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where different impurities or native defects dominate the conductivity. For example,

the situation may be expected to differ between ultra-high vacuum based techniques

such as molecular-beam epitaxy and solution-based methods of growth. In addition,

as will be discussed in the next section, it is not sufficient to consider only the bulk of

these materials, as the surface, and very possibly the interface, can have pronounced

effects on the total conductivity. What may be said with some certainty, however, is

that hydrogen incorporation should be limited as far as possible if trying to grow high-

quality semiconducting material for use in novel electronic devices, whereas deliberate

doping of TCOs by hydrogen may offer a suitable route to obtaining highly conducting

TCO films for use as transparent contacts.

4. Surface conductivity

Just as at a defect or localized impurity centre, the breaking of translational symmetry

at the surface of a material allows electronic states to exist which differ from those in the

bulk [123–126]. Such surface states have either a donor- or an acceptor-like character,

and so are charged dependent on their occupancy – unoccupied donor surface states

are positively charged, while occupied acceptor surface states are negatively charged.

To reduce energy, the carriers in the near-surface region of the material can rearrange

to screen the surface charge. This leads to macroscopic space-charge regions where the

carrier concentration varies markedly in the near-surface region of a material. This

is important in device applications, where an electrical contact must always be made

to the surface of a material. However, in thin-films of materials, and in particular

in nanostructures, where the surface to bulk ratio can become large, redistribution of

charge at the surface of a material can have a pronounced effect on the total conductivity.

Consequently, we discuss this here in relation to conductivity in TCOs.

At the surface of all (n-type ‡) conventional semiconductors, for example in

Si [127,128] and GaAs [129,130], negatively-charged acceptor-like surface states cause a

pinning of the Fermi level close to the centre of the fundamental band gap. Consequently,

the Fermi level at the surface lies lower relative to the band edges than in the bulk of the

semiconductor – the bands are said to bend upwards relative to the Fermi level. This

leads to a region depleted of carriers near to the surface. It is the net positive charge

of this depletion region that balances the negative surface charge, maintaining charge

neutrality. This was long thought to be the situation at the surface of TCOs [131–133].

However, recent work performed on high-quality, relatively low carrier density, single-

crystalline material has rather suggested the opposite situation is rather the intrinsic

one.

Investigating the (100) surface of nearly non-degenerate bixbyite In2O3 films grown

by MBE, King et al. [134,135] used photoemission spectroscopy to show that the Fermi

‡ For p-type conventional semiconductors, opposite considerations apply, with a positive surface charge

from unoccupied donor-like surface states leading to downward band bending. This again leads to a

depletion of the majority carriers at the surface.
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level at the surface is pinned 3.4 eV above the VBM (see Fig. 8(a)). In contrast, from

IR reflectivity (Fig. 8(b)) and Hall effect measurements, the bulk Fermi level was found

to lie close to the CBM (∼ 2.95 eV above the VBM). This indicates that the Fermi

level is pinned substantially above its bulk value at the surface, indicating a strong

downward band bending (Fig. 8(c)), and consequently a pronounced increase in electron

density approaching the surface of the material (Fig. 8(d)). Such a surface electron

accumulation was found to be remarkably independent of surface orientation or even

bulk polymorph, with a very similar pinning level of the surface Fermi level, and resulting

degree of electron accumulation, at the (001) and (111) surface of bixbyite In2O3, and

the (0001) surface of rhombohedral In2O3 [135]. In the photoemission spectra, finite

spectral intensity can be observed close to the Fermi level in In2O3 (see the magnified

spectrum in Fig. 8(a)). While this has previously been attributed to photoemission

from occupied bulk conduction-band states, the data shown in Fig. 8 is from a sample

which is virtually non-degenerate in the bulk. This indicates that such a peak actually

results from carriers within the surface electron accumulation layer, rather than from

the bulk. Zhang et al. [136] employed energy-dependent photoemission, utilizing the

inherent variation in surface specificity with photon energy to support this conclusion,

providing spectroscopic confirmation of the increased electron density at In2O3 surfaces.

Via extrinsic Sn-doping to increase the bulk carrier concentration, it is possible to

quench the electron accumulation [134, 135]. This provides a mechanism to reconcile

these recent results with earlier studies which suggested a depletion of electrons at the

surface [131–133].

A similar electron accumulation has been observed at the surface of CdO [63],

while in ZnO this phenomenon has long been known at the surface of hydrogenated

material [137]. Its existence at the surfaces of ZnO that has not been deliberately

hydrogenated was still attributed to residual hydrogen contamination [138]. Allen et

al. [139] and Schmidt et al. [140] have recently argued that electron accumulation is

actually intrinsic to ZnO, as in the other TCOs.

The surface of SnO2 can exhibit surface electron depletion or accumulation,

depending on the stoichiometry of the surface and the bulk Fermi level. Similarly

to ZnO, absorption of anion species leads to electron depletion, while cation absorption

leads to accumulation, making SnO2 a good material for gas sensing via corresponding

changes in conductivity. The presence of an electron accumulation layer at the surface of

SnO2 under certain conditions has long been known [141], and recent work suggests that

it may after all be the ‘intrinsic’ state’ of the surface [142] as for the materials discussed

above. While no direct evidence of electron accumulation has been reported for Ga2O3,

thin films of this material have been successfully used as gas sensors with sensitivity

to chemisorption of donor-like species such as H2 and CO [143]. This behaviour was

explained in terms of an electron accumulation layer model of the Ga2O3 surface [144].

The presence of an electron accumulation is also suggested by recent photoemission

data from Ga2O3, where the surface Fermi level can be seen to be approximately 4.5 eV

above valence band maximum, close to the conduction band minimum [145].
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Surface electron accumulation layers are known to have a pronounced effect on the

measured conductivity and its temperature dependence [139,140,146,147], and so such a

surface contribution cannot be ignored when considering conductivity in TCOs. Recent

measurements also indicate that an accumulation of electrons can also be induced at the

surfaces of other, more complex, oxides such as SrTiO3, indicating that this phenomenon

may indeed be rather general across the oxide semiconductors [148, 149].

The strong downward band bending associated with the electron accumulation

creates a confining potential well at the surface of the material. This causes the

conduction band states to become quantized into two-dimensional subbands (the

electron accumulation can be seen as a two-dimensional electron gas (2DEG)). This

two-dimensional electronic structure at the surface of CdO has been observed directly

by angle-resolved photoemission spectroscopy [150,151], as shown in Fig. 9.

Such measurements [150] have recently revealed an unexpectedly large importance

of many-body interactions within the electron accumulation layer, which leads to a

depth-dependent shrinkage of the semiconductor band gap. Consequently, the band

gap at the interface of TCOs with other materials may also be modified from its bulk

value, and this should be investigated for its potential influence on the properties of

these electrical contacts.

Aside from surface conductivity of TCOs, one should also consider a possible

conductivity at the interface with the substrate or with other oxide layers. There

are both intrinsic and extrinsic (defect-related) potential contributions to interface

conductivity. As discussed in the introduction, the interface between ZnO and MgZnO

has been shown to support a high-mobility 2DEG of sufficient quality to exhibit the

integer or even fractional quantum Hall effect [26, 27], while the interface between

two insulating oxides SrTiO3 and LaAlO3 can support a high-mobility 2DEG [31]

wth a number of novel features [32, 33]. Clearly, oxide interfaces offer potential for

the realisation of a variety of novel physical phenomena and conductivities that differ

drastically to those in the bulk of the material. In addition to these “designer”

interface 2DEGs, we note here that, in the similar material InN, dislocations that are

generated at the InN/substrate (or buffer layer) interface have been reported to be

a source of n-type conductivity, causing an unintentional increase in electron density

approaching the interface [120, 152–154]. Given the propensity for donor-like defects

and impurities in TCOs, it seems plausible that a similar effect could occur at a lattice-

mismatched TCO/substrate interface. A preliminary investigation [155] of the film-

thickness dependent electronic properties of In2O3 suggests a similar phenomenon may

indeed occur here. However, detailed investigations of other materials, substrates, and

effects of lattice mismatch, strain, and the precise mobility variations are required to

understand the full nature of the interfaces of this and other TCOs.
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5. Overriding explanation?

Given the tendency for impurities such as hydrogen, several native defects, and also

surface states to all be donors in TCOs, as discussed in the above sections, it may be

questioned what drives this propensity towards n-type, rather than simply compensating

or p-type states. King et al. [63,134] have argued that this can be understood within the

concept of the charge neutrality level (CNL) [156,157]. Such localised impurities, defects,

and surfaces are all examples of broken symmetries – that is, the perfect translational

symmetry of the lattice is lost. Within the CNL model, the charge state of the defect

centre is determined by the donor or acceptor character of the associated virtual gap

state (ViGS). Such ViGS result from evanescent states, associated with the complex

wavevectors allowed in the solution of Schrödinger’s equation in the absence of the

full lattice periodicity, subject to the matching of their wavefunction tails with bulk

states [158, 159]. As these states derive from the bulk electronic bands, they have

predominantly donor (acceptor) character closer to the valence (conduction) band. The

branch point of these states, where they have equal donor- and acceptor-like character,

represents the CNL of the semiconductor. Consequently, there is a tendency for native

defects, hyrdogen, and surface states to all be donor-like if the Fermi level lies below

the CNL, and acceptor-like if the Fermi level is above the CNL (see Fig. 10). While

it should be noted that this is not a microscopic model, it does explain the overriding

tendencies for the electronic properties of materials, and incorporates several widely-

observed phenomena including the effects of particle irradiation on electronic properties

(the amphoteric defect model) [160–162], the reported universality of the H[+/−] charge

transition level of hydrogen between materials [79], and the observations of the similar

electrical characteristics of native defects, hydrogen impurities and surface states in

semiconductors [63], as discussed above for TCOs.

Taken together, the above considerations strongly suggest that the CNL lies

above the CBM in TCOs, so that donor-ViGS remain favourable even for Fermi

levels into the conduction band. Indeed, from direct measurements, measurements of

valence band offsets (allowing band alignment relative to the CNL), and theoretical

calculations [63,135,163–167], the CNL has been found to occur above the CBM across

the TCOs, as summarized in Fig. 11. This provides an overriding explanation of the

donor-like nature of defects, impurities, and surfaces in TCOs, and hence the origins of

their conductivity.

An obvious question, therefore, is what causes the CNL to lie above the CBM in

TCOs. Indeed, as the CNL lies at the branch point of gap states, it seems intuitive that

this should be within the fundamental semiconductor band gap, and this is indeed the

case in conventional semiconductors such as Si and GaAs (see Fig. 11). However, the

gap states result from localized (in real space) defect centres. Thus, they are extended

in k-space, and so their character derives from the complex band structure across the

Brillouin zone, rather than just at the Γ-point. The large size mismatch between the

cation(s) of a TCO and the oxygen anion, and the high electronegativity (and therefore
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low O 2s orbital energy) of the anion, cause the electronic band structure of TCOs to

exhibit a single low-lying CBM at Γ. This is shown for In2O3 in Fig. 12 [170], but can also

be seen in calculations of the electronic structure of the other TCOs [68,171–174]. Such

a band structure means that the Brillouin-zone-averaged band gap, and consequently

also the CNL [175], are situated above the low-lying CBM, rather than within the

fundamental band gap [63, 167]. We also note that the highly dispersive conduction

band, and so relatively small effective mass, is crucial in obtaining sufficiently high

mobilities in these materials to ensure adequate conductivity.

This model provides a simple explanation for the propensity towards high n-type

conductivity of TCOs, in contrast to conventional semiconductors such as Si and GaAs.

As can be seen from Fig. 11, it also suggests that TCOs and the semiconductor InN

should exhibit many similar properties, and this is supported by experiment [12,120,169].

In both cases, the CNL lying above the CBM can be seen as a result of the large

size and electronegativity mismatch between the cation and anion [169]. In contrast,

in materials where the CNL lies close to the VBM, such as in GaSb (Fig. 11), the

opposite properties to those considered here would be expected, explaining GaSb’s

propensity for unintentional p-type conductivity, surface hole accumulation [176], and

the acceptor nature of hydrogen [177]. Consequently, to obtain a p-type TCO, the

CNL must be located much lower within the fundamental band gap, as in CuAlO2

(Fig. 11) [166], where p-type conduction has been realized [178]. Consequently, the

CNL model provides a useful starting point for the understanding and design of TCO

materials (of both polarities). It does not, however, elucidate the exact microscopic

origins of the conductivity, or distinguish between different candidates. As outlined in

the preceding sections of this review, much work still remains to answer these questions

with certainty. We also note that this model may not be directly valid in all cases.

For example, an alternative scheme has been suggested in unconventional TCOs such

as Ca12Al14O33, where a defect band crossing the Fermi level was suggested to be the

source of conductivity in this very wide band gap material [179]. A recent first-principles

investigation by Medvedeva and Hettiarachchi [180] into single- and multi-component

TCOs has also identified a number of microscopic properties, such as the overlap of metal

s-states with oxygen p-states, oxygen coordination, and the doping with transition metal

elements, which could be important to effectively obtain high conductivity material while

maintaining optical transparency.

6. Transparency

Of course, conductivity is only half of what is required for a TCO – transparency

at visible frequencies is equally important. Furthermore, the transparency is not

independent of the conductivity, but rather intricately linked to it. Consequently, in

this section we briefly review the different contributions to optical absorption that must

be considered in these materials, their relation to the conductivity, and outline some

particular features of optical transitions in selected materials.
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The most obvious effect limiting transparency is direct interband optical absorption

between the top valence band and the bottom conduction band. As the carrier

concentration increases, the Fermi level in these degenerate materials shifts to higher

energies above the CBM. Consequently, the onset of optical absorption due to such

interband transitions shifts to higher energies with increasing doping [181,182], as shown

in Fig. 13. In addition to this Moss-Burstein shift, which widens the optical energy gap,

it has been found that many-body interactions lead to a shrinkage of the fundamental

band gap with increasing free-carrier concentration [183]. This has been employed in

the analysis of optical absorption in many TCOs [184–189], and has recently been shown

to have a pronounced depth-dependent effect on the band gap size within their surface

electron accumulation layers [150], as mentioned above. However, the origins of such

band gap narrowing have also recently been questioned [190], with hybridization between

states from the dopant impurity atoms and the host conduction band states rather than

many-body interactions between the free carriers attributed as the cause of the band-

gap shrinkage. While the details of these effects require further investigation, it does

not change the qualitative trend of the increased Moss-Burstein shift with higher carrier

densities in these materials.

A number of distinct optical transitions are also important. Once the conduction

band becomes populated with carriers (that is, the material becomes degenerately

doped), transitions between occupied states of the bottom conduction band and

unoccupied states in higher-lying conduction bands become possible. As shown in

Fig. 13, with increasing carrier concentration, and therefore increasing Fermi level

position above the CBM, the energy for direct transitions between the lower and higher

conduction bands reduces. This has recently been suggested as a potentially important

contribution to the total optical absorption, for example, in In2O3 [170]. Furthermore,

for a degerately-doped semiconductor, a free-carrier absorption process can occur, where

a carrier from below the Fermi level is excited to an empty state above the Fermi level.

The energy scale associated with such absorption is often in the infrared region of the

spectrum, but this can increase towards the visible as the free-carrier concentration, and

hence the plasma frequency, increases. Consequently, maintaining transparency in TCOs

is a competition between increasing the energy of fundamental valence-to-conduction

band transitions (requiring large fundamental band gaps, but also assisted by high

carrier-densities, and so a large Moss-Burstein shift), with limiting the contribution

of inter-conduction-band transitions which could lower the fundamental absorption

edge (requiring lower carrier concentrations), and limiting the optical absorption at

the infrared end of the spectrum due to free-carrier absorption (again requiring lower

carrier concentrations). This must all be balanced with the requirements for relatively

high carrier concentrations, and also high mobilities, to maintain good conductivity.

There are additional features which can help transparency to be maintained in

several TCO materials. For example, in CdO, the fundamental band gap is only

∼ 1 eV. However, this band gap is indirect [191]. Consequently, only phonon-assisted

optical transitions are allowed from the VBM to the CBM, with small associated
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transition matrix elements, and significant optical absorption due to direct interband

transitions does not occur until some 1.2 eV above the fundamental band gap [189].

This enables doped CdO to be rather transparent at visible frequencies, even though

the fundamental band gap would seem to be too low to allow this. In some other

TCOs such as In2O3 [135,170,192], SnO2 [193], SnZn2O4, SnCd2O4, and CdIn2O4 [194]

symmetry dictates that interband transitions between the top valence bands and the

bottom conduction band are either dipole forbidden or have only minimal dipole

matrix elements, as represented for In2O3 in Fig. 14(a). This therefore extends the

range of transparency in these materials over what would be expected considering the

fundamental band gap alone. This presents novel opportunities for tuning the band

edge absorption coefficient by alloying materials where the lowest-energy transitions are

either dipole allowed or forbidden, as for example in ZnO and In2O3, respectively, as

shown in Fig. 14(b) [195]. A detailed discussion of multi-component TCOs is beyond

the scope of this review, and the interested reader should consult the review by Walsh et

al. [196].

7. Conclusions and Outlook

The above discussions have illustrated a number of potential sources of conductivity in

transparent conducting oxides. It seems apparent that conductivity in these materials

is not simply due to oxygen vacancies, as has often been assumed in the past. While

these defects may play some role, an influence of other native defects, defect complexes

and impurities is likely to be important. In particular, perhaps, the hydrogen impurity

appears to be a strong contender for an important microscopic donor in TCOs. There

is convincing theoretical and experimental evidence that interstitial hydrogen is a donor

across the n-type TCOs, in contrast to its behaviour in other semiconductors. While

alone it may not be stable at growth and device-operating temperatures, substitutional

donor hydrogen (essentially a hydrogen impurity localized in an oxygen vacancy) and

trapping of interstitial hydrogen at native defects both seem suitable possibilities to

obtain stable donor hydrogen centres. This serves to illustrate the richness of defect

physics in these materials, and the importance of the interplay between different defects.

In any real material, there will likely be a combination of defects/impurities contributing

to conductivity, and so it may not be appropriate to define any single dominant donor.

Further, the importance of a particular defect centre may vary dependent on, for

example, growth technique or conditions.

Unlike conventional semiconductors, which exhibit a depletion of majority carriers

at the surface, TCOs have been shown to support a build-up of electronic charge

there. This can have a pronounced influence on the total conductivity in thin-film

and nanoscale materials, as well as being important for electrical contacts in devices,

and so the surface properties of these materials should not be neglected. A general

understanding of the strong propensity driving the donor nature of not only bulk defects

and impurities, but also these surface states, comes from universal properties of the bulk
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band structure of TCOs; the characteristic single low-lying conduction band minimum

lies below the so-called charge neutrality level. While not providing a microscopic

explanation of conductivity, it does provide a useful tool to consider TCOs within

the context of other semiconductors. It is also apparent that maintaining the desired

transparency of these materials requires a delicate interplay of the influence of free

carriers on valence to conduction interband, conduction to higher conduction interband,

and intra-conduction band (free-carrier) optical absorption processes, with transition

matrix elements also play a crucial role.

We note here that TCOs are not the only way to make a transparent contact

to a material. Conducting polymers [197–199] can exhibit rather high optical

transparency [200]. Meanwhile, thin-films of carbon nanotubes have been created which

are both conducting and highly transparent [201, 202]. Such alternatives to TCOs may

find application in particular within flexible electronic devices. However, it seems likely

that TCOs will remain a cornerstone of many devices requiring a transparent contact

for the foreseeable future. A full understanding of the origins of conductivity in these

materials will prove essential to design and improve new and existing materials for these

applications. Furthermore, such an understanding is required in order to optimzie the

carrier density in these oxide materials for their use in the emergent field of transparent

electronics. These considerations will also be vital in the control of conductivity in oxide

nanostructures, which are expected to play an increasingly dominant role in future device

applications.
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R 2006 Phys. Rev. B 73 245312

[133] Harvey S P, Mason T O, Gassenbauer Y, Schafranek R and Klein A 2006 J. Phys. D: Appl. Phys.

39 3959–3968

[134] King P D C, Veal T D, Payne D J, Bourlange A, Egdell R G and McConville C F 2008 Phys.

Rev. Lett. 101 116808

[135] King P D C, Veal T D, Fuchs F, Wang C Y, Payne D J, Bourlange A, Zhang H, Bell G R, Cimalla

V, Ambacher O, Egdell R G, Bechstedt F and McConville C F 2009 Phys. Rev. B 79 205211

[136] Zhang K H L, Payne D, Palgrave R G, Lazarov V K, Chen W, Wee A T S, McConville C F, King

P D C, Veal T D, Panaccione G, Lacovig P and Egdell R G 2009 Chem. Mater. 21 4353–4355

[137] Heiland G and Kunstmann P 1969 Surf. Sci. 13 72–84

[138] Coppa B J, Fulton C C, Hartlieb P J, Davis R F, Rodriguez B J, Shields B J and Nemanich R J

2004 J. Appl. Phys. 95 5856–5864

[139] Allen M W, Swartz C H, Myers T H, Veal T D, McConville C F and Durbin S M 2010 Phys.

Rev. B 81 075211

[140] Schmidt O, Kiesel P, Van de Walle C G, Johnson N M, Nause J and Döhler G H 2005 Jpn. J.
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Figure 1. (a) Schematic device structure, (b) optical transmission spectrum,

and (c) output characteristics of an InGaO3(ZnO)5-based transparent field-effect

transistor. (d) Longitudinal resistivity, ρxx, Hall resistivity, ρxy, and differential

Hall resistivity dρxy/dB vs. field B showing the quantum Hall effect measured at

45 mK in ZnO/MgZnO heterostructures, with the schematic device structure shown

in (e). (f) ρxx and ρxy vs B measured at 60 mK showing the fractional quantum

Hall effect in purer heterostructures, with mobility as shown in (g). [(a-c): From

K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300,

1269 (2003). Reprinted with permission from AAAS. (d) and (e): From A. Tsukazaki,

A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, and M. Kawasaki, Science 315, 1388 (2007).

Reprinted with permission from AAAS. (f) and (g): Reprinted by permission from

Macmillan Publishers Ltd: A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno,

D. Maryenko, A. Ohtomo, and M. Kawasaki, Nature Materials 9, 889 (2010), copyright

2010.]
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Figure 2. Formation energies for the oxygen vacancy in ZnO calculated using different

schemes to account for supercell finite-size effects and band gap deficiencies within

DFT. For an explanation of the symbols, see Fig. 1 of Ref. [45]. Reprinted with

permission from S. Lany and A. Zunger, Physical Review B, 78, 235104 (2008).

Copyright 2008 by the American Physical Society.

Figure 3. Evolution of carrier concentration in CdO when irradiated with high-

energy ions, in order to introduce native defects. Reprinted with permission from

D. T. Speaks, M. A. Mayer, K. M. Yu, S. S. Mao, E. E. Haller, and W. Walukiewicz,

Journal of Applied Physics, 107, 113706 (2010). Copyright 2010, American Institute

of Physics.
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Figure 5. (a) Observation of paramagnetic muonium, Mu0 (open circles), diamagnetic

muonium, Mu+ (open squares), and the total muonium amplitude (solid squares)

in ZnO derived from transverse-field µSR measurements. (b) A frequency-domain

maximum entropy transform of the time-domain muon spin rotation signal measured

at 5 K, showing satellites to the central diamagnetic line due to the paramagnetic

component. The dashed line is the expected frequency distribution. Reprinted with

permission from S. F. J. Cox, E. A. Davis, S. P. Cottrell, P. J. C. King, J. S. Lord,

J. M. Gil, H. V. Alberto, R. C. Vilão, J. Piroto Duarte, N. Ayres de Campos,

A. Weidinger, R. L. Lichti, and S. J. C. Irvine, Physical Review Letters, 86, 2601

(2001). Copyright 2001 by the American Physical Society.
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Figure 6. (a) Observation of paramagnetic muonium, Mu0, and diamagnetic

muonium, Mu+, in (a) In2O3, (b) SnO2, and (c) Ga2O3, derived from transverse-

field µSR measurements. A frequency-domain maximum entropy transform of the

Ga2O3 time-domain muon spin rotation signal measured at 10 K, showing small closely

spaced paramagnetic satellites to the central diamagnetic line, is shown inset to (c).

(a,b): Reprinted with permission from P. D. C. King, R. L. Lichti, Y. G. Celebi,

J. M. Gil, R. C. Vilão, H. V. Alberto, J. P. Duarte, D. J. Payne, R. G. Egdell,

I. McKenzie, C. F. McConville, S. F. J. Cox, and T. D. Veal, Physical Review B, 80,

081201(R) (2009). Copyright 2009 by the American Physical Society. (c): Reprinted

with permission from P. D. C. King, I. McKenzie, and T. D. Veal, Applied Physics

Letters, 96 062110 (2010). Copyright 2010, American Institute of Physics.
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Figure 7. Room temperature evolution of the O-H IR absorbance peak area and

carrier concentration in hydrogenated ZnO with time. A bimolecular model is also

shown. Reprinted with permission from S. J. Jokela and M. D. McCluskey, Physical

Review B, 72, 113201 (2005). Copyright 2005 by the American Physical Society.
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Figure 8. Surface electron accumulation in In2O3: (a) valence-band photoemission,

compared to density-functional theory calculations, revealing the Fermi level to be

pinned 3.4 eV above the VBM at the surface; (b) measured (circles) and simulated

(line) IR-reflectivity, revealing a bulk Fermi level very close to the CBM, in agreement

with Hall effect measurements; (c) downward band bending and (d) increase in carrier

concentration in the resulting surface electron accumulation layer. Figure adapted

from Refs. [134, 135].
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measured by ARPES. (d) Schematic representation of the downward band bending

generic to TCO surfaces giving rise to the 2DEG (inset). (e) Angle-integrated valence

band and core-level photoemission. Reprinted with permission from P. D. C. King,
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