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The role of excitations statistic and nonlinearity in energy harvesting from
random impulsive excitations

N. A. Khovanovaa) and I. A. Khovanov
School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom

Design of an efficient energy harvester is now feasible as technology develops and a viable approach to solve this
need is to exploit the concept and application of a nonlinear design. In this letter, we conducted a comparative
analysis of linear and nonlinear piezoelectric energy harvesting from random impulsive excitations modelled by
white Poisson noise. It is shown that the harvester performance depends on both nonlinearity and properties
of ambient energy, and nonlinearity should be optimized for a given type of ambient vibration in order to
achieve efficient harvesting.

PACS numbers: 05.40.-a, 05.10.Ln, 05.45.-a, 84.60.-h, 88.05.-b, 88.05.Bc, 89.20.Kk
Keywords: energy harvesting, piezoelectric, ambient vibration, Poisson noise, pulses, impulsive excitation,
non-Gaussian noise

Energy harvesting is a transformation of an external
(ambient) energy of one type, for example, mechanical
vibration or heat into an electrical form by using differ-
ent transduction mechanisms for subsequent utilization1.
The main target application of harvesting is to provide
power for small scale devices by effective replacement of
the traditional power supply, i.e. battery. Typically, me-
chanical vibrations are sources of ambient energy for such
devices. The primary design of the harvesters is based
on the resonant principle, aiming to a harmonic (sinu-
soidal) form of vibration, when a linear oscillator with a
large quality factor is employed for harvesting energy1.
Generally, harvesting efficiency should grow as 1/ω2 (ω
is frequency of the harmonic vibration) for a typical lin-
ear harvester1. Consequently, an efficiency should reach
its maximum as ω tends to zero. However, for practical
applications the resonant frequency is typically in the
order (or more) of 100 Hz2,3, whereas a wide range of
energy sources4 for example, human motions have low
frequency vibrations (1-10 Hz). In many cases, this en-
ergy has a wide broadband and a stochastic nature4–6.
Thus, the primary design requires modifications in order
to address the spectral band limitations. Recently, in-
troducing a nonlinearity has been suggested to overcome
the limitations7–9. The bistable regime of harvester op-
eration for broadband random excitations in the form of
white Gaussian noise has been discussed8,9.
The use of nonlinear design pose other challenges. It is

important to take into account the features of vibration
with the aim of selecting the best form of nonlinearity.
The question arises whether it is sufficient only to under-
stand the spectral context of the vibration or whether
a detailed description of the vibration is a prerequisite
requirement? These issues are still open and have not
been adequately addressed. In this letter, we employ
a model of a piezoelectric harvesting device7–9 to ana-
lyze the role of a nonlinearity and the importance of a
detailed description of vibration. We selected vibration
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in the form of random impulsive excitations which are
described by two independent parameters (see below).
The form of the impulsive excitations that can be repre-
sented by a sequence of pulses is often observed4–6,10 and
refers to impact excitations10. For the impacts from un-
corellated sources, the impulsive excitations form random
pulse train corresponding to Poisson white noise. These
factors are discussed here. Also, the efficiency of the har-
vester with different types of nonlinearities is compared
for Poisson noise excitations.

A feasibility to create different nonlinearities in piezo-
electric harvesting devices by using additional magnets
has been recently demonstrated. Corresponding models
of devices have been validated and such models have been
used to understand the outcome of the harvesters relat-
ing to harmonic signals7,11,12 and white Gaussian noise9.
The model under consideration here describes a ferro-
magnetic cantilever beam with piezoceramic layers8,11.
It includes two parts: mechanical and electrical forming
the following system

ẍ = −αẋ− dU(x)

dx
+ χz + f(t)

ż = −λz − κẋ
(1)

The mechanical part is described by the variables x and
ẋ and this corresponds to a cantilever beam dynamics.
Coordinate z corresponds to the electrical part and this
is proportional to the voltage arising from the interaction
between piezoceramic layers and beam bending. The ex-
tracted power is defined as:

P = ρ lim
T→∞

1

T

∫ T

0

z2(t)dt, (2)

where T is averaging time, ρ corresponds to the load
conductivity7. For simplicity ρ = 1. The term f(t) cor-
responds to an external mechanical energy source from
the vibration of the beam support. We fix values of the
parameters α = 0.02, χ = 0.05, λ = 0.05, κ = 0.58. The
term dU(x)/dx describes the non-linearity of the system
(1), where U(x) is the magnetoelastic potential formed by
permanent magnets. By changing the magnets locations
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and/or using different numbers of magnets7,11,12 U(x)
can be varied consequently changing the system nonlin-
earity. However, it is unclear as to how the potential
shape and this system nonlinearity influence energy har-
vesting. In order to address this question, let us consider
several types of U(x) with distinct shapes:

UL(x) = x2/2, UB(x) = −x2/4 + x4/2,

UF (x) = x4, UM (x) = x2/2 + x4/2

where indices L, B, F and M correspond to linear,
bistable, flat and monostable potentials, respectively.
Note that UL is realized in the absence of magnets. The
system (1) with linear, bistable and monostable poten-
tials has the same resonant frequency ω0 ≈ 1.0124 for
weak vibration, whereas for the flat potential ω0 = 0.
To compare the performance of (1) for different poten-

tial shapes we introduce an efficiency index in the follow-
ing form

γ = 10 log 10

(
PN

PL

)
, (3)

where PL is the power (2) for the linear case, PN rep-
resents the power (2) for different nonlinear potentials.
The results for γ are given in dB units. For the input
signals as considered below, the output power PL is a
linear function of the input power, Pin, that results in
a constant ratio PL/Pin = C (C = constant). Numeri-
cal simulations of (1) were performed in order to obtain
values of γ. The simulations used the Heun methods
for stochastic differential equations13 with corresponding
modifications for Poisson noise14. After a relaxation pe-
riod Tr = 107, the power P was calculated for a finite
T = 1010. The zero initial conditions x = 0, ẋ = 0 and
z = 0 were used to mimic corresponding experimental
setup9.
The linear potential UL is an optimal shape for a har-

monic signal f(t) = A sin(ω0t), and a nonlinear design
cannot significantly improve the performance12. Indeed,
for weak signal (A is small) the efficiency of the system
(1) with bistable and monostable potentials is close to
the linear case since they are characterized by the same
resonant frequency ω0. The growth of A induces a non-
linear response and the efficiency decreases12. Since the
resonant frequency is zero for the flat potential signif-
icantly poorer efficiency for UF (x) is expected than for
the case of UL(x). However the scenario can change when
a different form of ambient energy is involved.
Let us then consider the signal f(t) in the form of

Poisson white noise15 which represents a sequence of in-
dependent pulses

f(t) =

N∑
i

λδ(t− ti), (4)

where λ is pulse amplitude, ti are independent ran-
dom times of the pulse appearance. Time intervals
τi = ti+1 − ti between two subsequent pulses has expo-
nential distribution, with the parameter Λ and a number
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FIG. 1. The efficiency γ as a function of the input power
Pin = λ2Λ of Poisson noise for bistable, UB(x), (marker ◦),
monostable, UM (x), (marker + ) and flat , UF (x), (marker
�) and UFF (x), (marker ×) potentials.

of pulses, n, for time interval, δt, and obeys the Poisson
distribution

p(n) =
(δtΛ)n exp(−δtΛ)

n!
. (5)

The parameter Λ defines the frequency of the pulse ap-
pearance. Since pulses are independent the resulting
spectrum is white. The input power of Poisson noise is
Pin = λ2Λ and the noise induces a constant bias I = λΛ.
In the limit of 1/I → 0 (while Pin is constant) Poisson
noise can be substituted by Gaussian noise. By varying
the bias I for a fixed Pin the shape of the Poisson distri-
bution (5) changes from symmetrical (close to Gaussian,
when 1/I → 0), to a strongly asymmetrical non-Gaussian
shape (1/I → ∞). The value of 1/I can therefore be con-
sidered as a parameter of the asymmetry of distribution
(5).

Let us now consider γ as a function of the input power,
Pin = λ2Λ for variation in λ and the fixed value of Λ = 1
(Fig. 1)16. The flat potential demonstrates the best per-
formance for weak input power. In this case, the system
(1) performs oscillations near an equilibrium state and
nonlinear potentials can be replaced by corresponding
linear potentials. For flat potential ω0 = 0; this leads
to an efficient transformation of lower frequency compo-
nents of the Poisson noise with 1/ω2 scaling. The re-
sponse of (1) for UB(x) and UM (x) potentials coincides
with the linear case since they are characterized by the
same ω0. The growth of Pin induces larger amplitudes of
oscillations, and the response becomes correspondingly
nonlinear. As a result, the efficiency, γ, decreases for
UM (x) and UF (x) with increase of λ. In the bistable case,
there are noise-induced jumps between states of UB(x)
starting with a given value of λ, leading to enhanced ef-
ficiency. Further increase of λ leads to a decrease in γ
for UB(x), which indicates that γ has an extremum. For
both potentials UF (x) and UB(x) the efficiency is greatly
improved than for the linear case, for a wide range of Pin,
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FIG. 2. The efficiency γ as a function of the inverse bias
1/I for bistable (marker ◦), monostable (marker + ) and flat
(marker �) potentials.

whereas this is not the case for UM (x).
For moderate and strong Pin the bistable potential

shows better performance than UF (x), although the flat
potential shows the best performance for a weak input
signal f(t). For the latter, noise induced oscillations oc-
cur near an equilibrium state where the potential is maxi-
mally flat, i.e. ∂2U/∂x2 = 0. The extension of this maxi-
mally flat region should therefore lead to an improvement
of the performance for higher Pin. This conclusion is val-
idated by the consideration of UFF = x4/4 (marker × in
Fig. 1), for which the efficiency γ is larger than for the
bistable potential in the entire range of Pin.
The influence of the assymetry of noise distribution

has been investigated where the input power is fixed
Pin = λ2Λ = 0.001, and the bias I is varying as shown in
Fig. (2). It is to be noted here that PL changes weakly
with I and is nearly a constant. The efficiency γ is neg-
ative and decreases monotonically with 1/I for UM (x).
In contrast, γ shows a non-monotonic behaviour for both
UF (x) and UB(x) with a maximal efficiency γ in between
the two limits 1/I → 0 and 1/I → ∞. Thus, γ depends
nonlinearly on statistical characteristics of Poisson noise.
Although similar parametric dependences are observed
for the flat and bistable potentials, underlying mecha-
nisms are different. For the flat case, the performance
is maximal when pulses are rare enough to be processed
as a single pulse, having the low-frequency spectral con-
tent. Since the response for UF (x) is larger in the low-
frequency region, harvesting is efficient. More frequent
pulses shift an effective frequency content to the high
frequency region leading to decrease of the power; addi-
tionally the bias I changes the flatness of the potential.
The other limit (1/I → ∞) of rare pulses with a large
amplitude leads to the power decrease as well since the
pulses induce deviations far away from the flat area of
UF (x). In the bistable case, the performance is defined

by a frequency of jumps between the states. For small
values of 1/I, the bias I increases the barrier between
the states and the output power decreases. In the oppo-
site region of large values of 1/I, the probability of jumps
also decreases due to a nonlinear dependence of the jump
probability on I17. As a result, there is a region of 1/I
with a maximal performance.

In conclusion, the in-depth comparison of the linear
and several nonlinear potentials and related analysis as
presented here, show that the efficiency of energy har-
vesting is strongly dependant on the properties of ambi-
ent vibrations. The efficiency of the harvester with the
flat potential changes from an inferior state for a har-
monic signal to the best (if UFF (x) is selected) for the
random impulsive excitation. A good performance can
be observed in the bistable case for harvesting impulsive
excitations. The results (Fig. 2) demonstrate a nontriv-
ial dependence of efficiency of the harvesters on statis-
tical properties of random excitations viz whilst the in-
put power remains constant the output power can change
over a wide range of values depending on the symmetry
of the distribution of the amplitude of the excitations.
This conclusion strongly suggests that in order to design
an efficient harvester, it is vitally important to take into
account a comprehensive description of properties of the
ambient vibrations.
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