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Abstract. Ultrasonic testing using contacting transducers such as quartz or PZT is well
established. However, standard measurement techniques used require physical contact of the
sample and ultrasonic transducer and some sort of couplant between the two. With this
configuration there is a possibility of damaging the sample, transducer or bond during testing,
thermal cycling, or removal of the transducer. We present results taken using recent advances
in non-contact methods of ultrasound generation and detection using electromagnetic acoustic
transducers (EMATs), which offer some significant benefits over contact ultrasonic techniques.
Circumventing the need for couplant removes the possibility of contaminating the system, which
is an issue for some material property measurements, and allows easier measurements over a
wider range of temperatures. An automated data analysis system has been developed which
allows the velocity of sound in the sample, and hence the elastic constants, to be determined to
a high accuracy. This technique is illustrated using measurements of the alloy Gd64Sc36.

1. Introduction
Materials testing using contact transducers for generation and detection of ultrasonic waves is
well used in areas ranging from medical physics, to non-destructive testing (NDT), through to
fundamental physics experiments [1, 2, 3, 4, 5, 6]. Many of the future improvements in ultrasonic
measurements are likely to be through developments in non-contact methods of generation and
detection, as these offer significant benefits over contact ultrasonic techniques [2].

Standard ultrasonic measurements of single crystals use contact transducers, such as quartz
or LiNbO3, which require contact with the sample and couplant for transmission of the waves [6].
Repeated thermal cycling can affect this couplant, causing damage, dramatically reducing the
coupling efficiency of the transducer to the sample, and ultimately leading to a complete loss of
signal. Recent developments in NDT [2] have ensured that electromagnetic acoustic transducers
(EMATs) are now a practical alternative to contact techniques.

Figure 1(b) shows two EMAT designs used for non-contact ultrasonic measurements, with
lift-offs from the sample possible of up to several mm. The first is a typical EMAT used for
NDT, which consists of a coil and a permanent magnet, with a current pulsed through the
coil for generation of ultrasound [2]. These operate on electrically conducting samples (via the
Lorentz force mechanism) and/or certain magnetic samples (via magnetoelastic mechanisms).
For the Lorentz force mechanism the electrons in the mirror current in the sample experience a
force and in turn ‘drag’ the atoms, with each current pulse generating an ultrasound pulse [2]. In
magnetic materials, ultrasound is induced by the varying magnetic field from the current pulse.



Through careful consideration of the coil and magnet configuration various ultrasonic waves
can be generated [7]. Detection is via a similar mechanism [2]. During measurements of the
properties of a crystal the effects of temperature and magnetic field may be investigated [8, 9, 10].
In this case, the magnetic field for these experiments can be used as part of the EMAT in the
place of the permanent magnet.

Figure 1. (a) shows a typical ultrasound signal from a single crystal, showing ultrasonic echoes
with separation ∆t. (b) shows EMATs developed for NDT (left) and single crystal measurements
(right, after [8]).

EMATs have been used for some recent measurements of single crystals [8, 9, 11]; however,
practically there are still significant issues. EMATs are, by their very nature, sensitive to
electrical noise, and their signal to noise ratio when compared with standard techniques can be
poor if the environment is electrically noisy. Filtering and lock-in techniques can be used to
remove some of this noise, but must be used carefully to ensure that none of the information
included within the signals is lost. However, the advantage of the no couplant requirement still
makes EMATs an attractive prospect. The efficiency of non-contact ultrasound generation is
significantly lower than that obtained when using piezoelectric transducers, and the signal to
noise ratio can be an issue even without electrical noise. However, EMATs are highly sensitive
to magnetic phase transitions; the exact generation mechanism is dependent on the magnetic
state of the material, and hence the generation and/or detection efficiency will show a change
at a magnetic phase change.

It is well known that the velocity of ultrasound propagation in a material is related to its
elastic properties [3]. For a single crystal the velocity of sound is dependent on the type of
sound wave and the direction of propagation. For example, in a hexagonal crystal such as
Gd, for propagation of sound along the c-axis two elastic constants can be measured from the
velocities v of longitudinal and shear waves; C33 = ρv2long and C44 = ρv2shear , where ρ is the
density of the material [3]. The elastic constants will change as the properties of the sample
change [3].

Elastic constant measurements require accurate determination of the velocity [4, 5]. Typical
measurements are set up as shown in the inset of Figure 1; a sample has an ultrasonic transducer
fixed to it and reflections from the opposite face are detected, with a typical echo pulse train
shown (the peaks in the figure show the envelope of the MHz-frequency oscillation of the
transducer). The time between echoes, ∆t, needs to be measured, with the velocity given
by

∆t =
2L

v
+

ϕ

2π
· 1
f

(1)

where L is the sample thickness, f is the frequency of the ultrasonic signals (typically in the
MHz range) and ϕ is the phase change on reflection. This phase correction is typically small [4].



It is difficult to define a suitable measurement point for each echo. In the 1960s pulse echo
overlap (PEO) was developed to measure the time between echoes [5]. In this method, two
pulses are generated and the time between them altered such that the echoes overlap, giving
a phase velocity accuracy of 2 parts in 104, but requiring significant input from an operator.
Recently, a digital equivalent using cross correlation has been developed [4], giving an accuracy
of 1 part in 107.

2. Automating the velocity measurement
The availability of faster processors has meant that automation of data analysis, through
recording all the ultrasonic echoes and digital signal analysis on a PC, is now possible. We
have built real-time data acquisition and analysis routines using LabVIEW [12].

Ultrasonic echoes measured using EMATs are often noise dominated, and this adds to the
problems of identifying the start time of an echo for measurement of ∆t. Simply measuring the
maximum amplitude point in each echo could lead to the wrong part of the echo being chosen
due to the presence of noise, and hence automation is difficult. Cross correlation, however,
enables a clearer measurement of the time between echoes [4]. We have implemented a routine
using the cross-correlation VI in LabVIEW; the first measured echo is windowed and scanned
across the series of echoes by varying an offset time. The maxima in the cross correlated signal
therefore correspond to the offset times whereby the first and later echoes are in best agreement,
and this gives the transit time within the material. At present, this method does not take into
account phase changes on each reflection of the signals; these are assumed to be negligible and
will be investigated later. However, initial results show this to be a suitable technique for velocity
measurements. The LabVIEW routine for data analysis also measures echo amplitudes for the
first few echoes, and an amplitude for the noise level between echoes. These are used to measure
the signal attenuation, and to measure the signal to noise for the first echo, which gives a good
measure of the EMAT efficiency.

3. Measurements of Gd64Sc36 using contact and non-contact ultrasonic techniques
Gd-rich alloys show a competition between ferromagnetic order (from Gd) and other magnetic
phases from the alloy materials, such as Sc, which shows helical magnetic ordering [14]. Gd64Sc36
has been shown to be a simple helimagnet from the Néel point down to the lowest temperatures,
with the turn angle locked in place by 30 K [13]. The single crystal sample used for these
experiments was grown at the Centre for Materials Science, University of Birmingham, UK, and
used for the work presented in [14]. It has dimensions of approximately 4 mm. This material was
chosen as the proof of concept sample test, as measurements had previously been made using
standard manual PEO techniques and quartz transducers, with results available for comparison.

Measurements were taken using a Matec 6600 pulse generator system, capable of generating
narrowband signals between 1 and 350 MHz given suitable transducers. Temperature control
and magnetic field were provided by an Oxford Instruments superconducting magnet and
cryostat system, in combination with a heater fitted to the experimental probe. Data collection
was through a Tektronix oscilloscope with 350 MHz bandwidth communicating with a PC
running LabVIEW. Contact measurements used an X-cut quartz transducer, generating 15 MHz
longitudinal waves with waves propagating along the c-axis and the magnetic field also applied
along this axis. This was used in pulse-echo mode to both generate and detect ultrasonic signals.
Non-contact measurements used several different designs of EMATs, either to just detect signals
(with the quartz transducer used for generation) or to both generate and detect ultrasound. The
coil designs investigated included a simple spiral (pancake) coil, and several designs of differential
coil [15]. The latter design uses a pair of coils and was intended to reduce noise by providing a
reference signal away from the sample. The reference coil was kept as close to the original site
as possible to experience the same magnetic field.



Ultrasonic signals were recorded over a range of temperatures and analysed using cross-
correlation methods [4], giving a measure of C33. Figure 2(a) shows C33 as a function of magnetic
field normalised to 1 for no applied field, measured using the differential coil EMAT to both
generate and detect ultrasound, at a temperature of 90 K. Two main features can be seen; C33

shows a very clear dip at around 1.6 T, corresponding to the change from a fan to a ferromagnetic
phase [14]. A smaller feature, showing as a change in gradient, is also present at around 0.6 T; this
corresponds to the change from distorted helix to fan phase, and is clearer when the applied field
is along the a-axis. Despite the noise problems inherent in an EMAT measurement, application
of suitable frequency filtering and the use of cross-correlation techniques have allowed analysis
of the data.

Figure 2. (a) Measurement of C33 using a differential coil for generation and detection, at a
temperature of 90 K. (b) Attenuation (black) and EMAT efficiency (red) measurements.

The attenuation of the signal can also be measured, and is shown as the black trace in
Figure 2(b). There is clearly a marked change in the signal attenuation around both phase
transitions. With EMAT measurements a further measure of changes in the sample is possible
through measuring the efficiency of generation and detection. As the exact generation and
detection methods rely on the magnetic state of the material, it is to be expected that a change
in this state will lead to a significant difference in the signal amplitudes being generated. For
this measurement the efficiency is shown in red (right axis). In the region of phase changes the
generation efficiency peaks, and it is clear that the fan phase is optimal for generation of signals.
This will be investigated in more depth in a later publication.

Figure 3. (a) C33 measurement using a quartz transducer to generate and either quartz (black),
a single EMAT coil (red) or a differential coil (green) to detect ultrasound. (b) shows a phase
diagram created using each set of data (after [14]).



Finally, we compare the results from several measurements using quartz transducers and/or
EMATs with either a single coil for EMAT detection or a differential coil setup. Figure 3(a)
shows normalised C33 values from each of these detection transducers for generation using quartz,
measured for zero applied magnetic field and over a temperature range from room temperature
down to 10 K. As can be seen, the results all show a similar trend, with a slight discrepancy in
temperature possibly due to an observed degradation of the temperature sensor calibration.

Figure 3(b) shows the summary of results from each experiment on a phase diagram, with
the quartz measurements used as a reference and shown as dashed lines. Points correspond to
C33 measurements performed using different EMAT coils (for generation and detection) over a
range of temperatures and magnetic fields. Red squares also show initial analysis of the EMAT
efficiency. Again, very good agreement is shown between all methods.

4. Conclusions and future work
We have presented results from initial measurements using contact transducers, and using two
different styles of EMAT coils for detection and generation of ultrasound. Results were compared
for measurements of Gd64Sc36, and showed good agreement between the measurements. Results
were analysed using a LabVIEW-based cross-correlation technique, which is a good step towards
improving the problems caused by electrical noise in EMAT measurements.

Further improvement of the noise through the use of improved differential coils is anticipated.
Also, other frequency-based techniques may be more appropriate for this echo measurement.
Previous cross-correlation techniques have looked at the time difference between a reflection
from a buffer rod and the first echo from a sample, and hence have fewer issues with phase
changes on reflections. The fast Fourier transform of a string of echoes (as shown in Figure 1)
gives a convolution of the frequency of the echo itself and the repeat pattern of the echoes [16],
and is showing promise for analysing these measurements. We hope to extend these methods to
further materials.
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