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A review of computational form-finding methods for fabric structures   

Abstract 

Form-finding is a process that determines the surface configuration of a fabric 

structure under pre-stress.  This process can be carried out using a variety of 

numerical methods, of which the most common are: (i) transient stiffness, (ii) force 

density, and (iii) dynamic relaxation.  This paper describes the three methods, 

discusses their advantages and limitations, and provides insights into their 

applicability as numerical tools for the design of fabric structures.  Further, it 

describes various approaches to surface discretisation, and discusses consequences of 

using ‘mesh control’ and elastic effects in the design of form-found surfaces.  A brief 

discussion of the general recommendations given in the European Design Guide for 

tensile surfaces structures concludes the paper.  
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1. Introduction 

The design of a fabric structure differs from that used in conventional structural 

design in that it has to determine the shape of the canopy under prestress. The 

resulting surface geometry must satisfy the condition of static equilibrium and have as 

uniform stress distribution as possible.  For these highly flexible structures, the 

process required to define their initial surface geometry is known as form-finding.  As 

a concept, form-finding is not generally understood, except by specialists working in 

the area.  Even then, the conviction that “I can build whatever shape I like” does arise 

occasionally.  This problem stems from the fact that architects and engineers are used 

to dealing with structures of ‘known’ shape, i.e., rigid-type forms shaped at the outset 

by aesthetic and functional considerations.  It is, therefore, difficult to come to terms 

with the fact that fabric structures are different; they adopt unique configurations 

under loading; configurations that, quite literally, have to be found.   

Prior to 1970, form-finding of tension membrane structures was carried out using 

small-scale, physical models made of fabric or soap-film1. It was the design of the 

Munich Olympic complex in 1972 that marked the departure from the exclusive use 

of physical models in favour of computational form-finding and load analysis.  

Currently, the three most commonly used computational form-finding methods, which 

have been implemented in commercial software, are known as: 

(i) transient stiffness  

(ii) force density 

(iii) dynamic relaxation. 

In all cases, regardless of the approach/method used, the process involves iterative 

computation aimed at producing a shape that is in static equilibrium.   
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Before discussing each of the methods in turn, it is worth noting that surface 

discretisation, i.e., the representation of the continuum by a system of inter-connected 

elements, is an important underlying factor influencing theoretical formulations and 

implementations of form-finding methods, as well as the accuracy of the solution.  

The simplest surface discretisation is achieved using a mesh of line, or cable elements 

as shown in Fig. 1.  In this case, the methodology adopted does not differ from that of 

the analysis of a tensioned cable net.  This type of surface discretisation is used in 

each of the methods listed above, in order to explain their distinguishing features in a 

consistent and clear manner.   

 

2. Transient stiffness method 

The transient stiffness method2,3 is based on small displacement theory that assumes 

linear dependence of deflections upon forces applied to the structure. The surface, 

discretised using line elements, forms a two-way system of cables intersecting at the 

nodes (Fig. 1).  

x 
y 

z 

 

Fig. 1. Surface discretisation by line, or cable elements 
 

The form-finding process starts with an assumed (guessed) surface configuration, 

{X}, between known boundaries, and an imposed tension field given by the initial 

pre-tension forces, Tm.   Resolving Tm into global x, y, and z directions at the nodes 
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and summing up the contribution from each member sharing the same node, gives the 

resultant internal force vector, { }P~ .  

As the system is unlikely to be in equilibrium, the resultant internal force { } { }0≠P~ ; it 

represents an out-of-balance, or residual force vector, { } { }PR ~= . Therefore, if {δ} is 

the vector of nodal displacements corresponding to the residual force vector,{R}, and 

[K} is the global stiffness matrix, then it is possible to write: 

[ ]{ } { }RK =δ           (1) 

and determine the required displacements as: 

{ } [ ] { }RKδ 1−=           (2) 

However, there is a problem with the direct use of the above equation. Unless the 

initially guessed surface configuration is very close to the equilibrated, form-found 

surface, the residual force vector {R} is likely to be large, and, therefore, the 

calculated vector of nodal displacements {δ} is also large.  This invalidates the 

assumption of small displacements used in formulating [K].  Consequently, eqn.(2) 

can only be satisfied through an iterative process of calculating incremental residual 

forces and displacements, as explained below.  

With k denoting the kth iterative step, the current geometry of the structure is denoted 

by {X}k, and the stiffness matrix calculated on the basis of this geometry is [K]k.  At 

k=0, the residual force vector { }kR  can be calculated by resolving the internal forces at 

the nodes.  In order to preserve the assumption of linear behaviour, a small proportion 

of this residual force vector, denoted as { }kR∆  needs to be applied to find an 

increment in nodal displacement vector, { }δ∆ .  Thus, at the next iterative step:  

{ } [ ] { }kkk RKδ ∆=∆ −
+

1
1           (3) 

and a new geometry is:  



EACM-D-08-00023  W. J. Lewis,   Computational form- finding… 

 6 

{ } { } { } 11 ++ ∆+= kkk δXX          (4) 

The new geometry is used to calculate a new (updated) stiffness matrix, [ ] 1+kK .  At 

this point, a new residual force vector, { } 1+kR  is found by resolving the forces again 

and a small proportion of it, { } 1+kR∆  is applied to find the next increment in the 

displacement vector, { } 2+∆ kδ  and the new (updated) geometry { } 2+kX .  

 
The resulting iterative process of calculations continues until the residuals are reduced 

to (almost) zero, i.e. until the static equilibrium is reached.  Experience is needed in 

selecting an appropriate value of{ }kR∆ .  Its magnitude should be small enough to 

ensure that the assumption of small displacements holds, and, at the same time, large 

enough the give a reasonable rate of convergence.  

 

The numerical procedure presented above is known as the 'transient stiffness method.’  

Accordingly, the stiffness matrix [ ] kK  is referred to as a transient stiffness matrix, or 

instantaneous stiffness matrix.  Although the numerical procedure is formulated in 

terms of the stiffness matrix changing with each iteration, it has been found that the 

convergence of the numerical solution is improved by keeping the stiffness matrix 

constant for a small number of consecutive steps. 

 

2.1 Stiffness matrix 

In form-finding, since we are not dealing with an actual material surface, elastic 

properties of the fabric can be ignored (see 2.1.1).  Instead, a stiffness resulting from 

prestress, giving a change in the nodal forces consequent to a change in surface 

geometry, is used.  This dependence is given by the geometric stiffness, [KG].  

Associated with it are the ‘geometric’ forces, as explained by the following example. 
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Figure 2 shows a member 1-2 displaced from state ‘k’ to state k+1’. It can be seen that 

the incremental nodal displacement vector, { }jδ∆ , may be replaced by a sum of 

vectors parallel and perpendicular (orthogonal) to the member in state k.   

z  
 
 

o 

 
 

x  
 
 

o 
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1' 
y  
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Detail 
'A' 

error in Tm 

2' 
P G 

Tm 

Tm 

Tm 

2 

 

Fig. 2. Geometric forces in transient stiffness formulation 
 

Hence 

 
{ } { } { }orth,jpar,jj δδδ ∆+∆=∆   j =1, 2       (5) 
 
The magnitude of the parallel vector { }par,jδ∆  is: 
 
{ } { } { }jT

par,j δcδ ∆=∆          (6) 
 
where { }c  is the vector of direction cosines (Fig. 3), corresponding to the iterative 

state 'k' .  

The components of vector { }par,jδ∆  in global co-ordinates are: 

{ } { }{ } { }.δccδ j
T

par,j ∆=∆         (7) 
 
Now, the displacement vector orthogonal to the member is:  
 
{ } { } { }{ } { } [ ] { }{ }[ ]{ }.δccIδccδδ j

T
j

T
jorth,j ∆−=∆−∆=∆ 3     (8) 
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Fig. 3. Geometric illustration of direction cosines 
 

 
It can be seen from Fig. 2 that for small angles of rotation, the difference between the 

orthogonal vectors of displacements at each end of the element can be taken as a 

measure of rotation, denoted by δ .  Hence, 

{ } { } { } [ ] { }{ }[ ] { } { }{ }12312 δδccIδδδ T
orth,orth, ∆−∆−=∆−∆=     (9) 

The element carries the initial tension force, Tm. Provided the rotations are small, it 

can be assumed that the components of force Tm parallel to the element in state k+1 

do not differ significantly from Tm. Hence the only 'new' components of forces are 

perpendicular ones.  As the direction cosines enter the stiffness matrix formulation, 

and the calculation of stiffness lags one iteration behind, (eqn. (3)), these force 

components are perpendicular to the direction of the element in state k, not k+1. As a 

result, a degree of error is built into the formulation. The perpendicular force 

components of Tm are the 'geometric’ forces, { }GP , illustrated in Fig. 2.  

For the system of nodal forces to be in equilibrium, the moment about end '1' 

generated by the initial tension force Tm on the lever arm δ  must be balanced by the 

moment due to the geometric force { }GP  acting on the lever arm Lm.  Thus, in scalar 

form, 
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δK
L
δTP G

m
m

G == ,            (10) 

where  
m

mG

L
TK = , given as the ratio of pre-stress force to the current length of member, 

is known as the geometric stiffness.  

Substituting for δ  from eqn. (9) and using matrix notation, the geometric forces at 

each end of the element are: 

{ } { }
{ }

{ }{ }( ) { }{ }( )
{ }{ }( ) { }{ }( ) { }

{ },δK

δ
ccIccI

ccIccI
L
T

δ

δ
L
T

P

j
G

jTT

TT

m

m

m

mG

=

∆












−−−

−−−
=











−

=
33

33

    (11) 

The geometric stiffness defined in the above equation expresses a change in the nodal 

force components due to the presence of pre-stress when there is a change in the 

geometry of the structure during computation.   

 

2.2 Evaluation of the method 

2.2.1  The inclusion of elastic effects.  

In some formulations 2,3,4,5 both the elastic and geometric effects are included in form-

finding calculations.  Such an approach is not, in principle, necessary, as form-finding 

calculations can apply to any type of material.  Although the inclusion of the elastic 

stiffness matrix has the advantage of increasing of the overall stiffness, which helps to 

keep the increments of displacements { }jδ∆  small, at the same time, it introduces 

significant complications, such as: 

• a need for control/monitoring of the values of the tension forces, which would 

vary significantly during the iterations, according to the elastic straining produced. 
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If not monitored, this situation could lead to a form-found configuration in which 

safe loads are exceeded  

• a necessity for adjustments of the unstrained cable lengths, in order maintain the 

required tension levels (and prevent the problem stated above) 

• a necessity for additional iterations, in order to restore static equilibrium after the 

adjustments to unstrained lengths of cables. 

2.2.2 Accuracy 

The transient stiffness method is critically dependent on the assumption of small 

displacements and rotations.  Otherwise, large changes of geometry, which are 

common in the initial stages of computational form-finding, would result in the nodal 

forces and nodal displacements not being related to each other correctly.  Potentially, 

this could lead to either a lack of convergence of the solution, or a wrong solution.   

The transient stiffness matrix requires numerous matrix manipulations, even for small 

systems.  For large systems, if matrix inversion is used, the solution may be prone to 

divergence, or yield useless results, due to computational round-off errors, 

exacerbated by ill-conditioning. A matrix is said to be ill-conditioned, if it contains 

coefficients that are orders of magnitude greater (or smaller) than other coefficients.  

The problems likely to arise in arithmetic operations on of ill-conditioned matrices 

include 'swamping' the effects of small terms, or 'loss of significance' in the case of 

small differences between large numbers containing too few figures to maintain 

accuracy 6.  

To mitigate round-off, techniques such as scaling of the stiffness matrix6,7 are 

recommended, but they add to the computational effort.  It is well-known 7, 8 that if 

the size of the matrix is n x n, then the total number of arithmetic operations required 

for matrix inversion (and hence the computing time) is proportional to n3.   
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3. Force density 

The force density method 9,10 was developed simultaneously with the transient 

stiffness to facilitate the design of the Munich Olympic roofs.  The method uses a 

surface discretised as a system of branches. A simple branch of just four cables is 

shown in Fig. 4.  Nodes 2 to 5 represent boundary points with known co-ordinates, 

expressed in the global xo, yo and zo  system.   

x o 

z o 

y o 

T 1 

2 

5 4 

3 

1 
T 2 

T 3 T 4 

 

Fig. 4. A branch of elements 
 

The equations of equilibrium of forces at node 1 are obtained by resolving the tension 

forces T1 - T4 into the global components, and summing up their respective 

contributions at the common node.  Hence: 

( ) ( ) ( ) ( ) 0o
4

o
1

o
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32
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−
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( ) ( ) ( ) ( ) 0o

4

o
1

o
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3

o
1

o
43
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o
1

o
32

1

o
1

o
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−
+
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( ) ( ) ( ) ( ) 0o

4

o
1

o
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3

o
1

o
43

2

o
1

o
32

1

o
1

o
21 ==

−
+

−
+

−
+

−
x

P~
L

xxT
L

xxT
L

xxT
L

xxT  

 

In the above system of equations, the member lengths Lm,  (m = 1,...4) are non-linear 

functions of the co-ordinates of points (nodes) that define the members. Both are 
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unknown. By introducing constant values of tension coefficients, or force densities, 

qm, defined as a ratio of member force to member length, viz., ,
m

m
m L

T
q = the system 

of equations becomes linear, viz., 

( ) ( ) ( ) ( ) 0o
1

o
54

o
1

o
43

o
1

o
32

o
1

o
21 =−+−+−+− xxqxxqxxqxxq  

 
( ) ( ) ( ) ( ) 0o

1
o
54

o
1

o
43

o
1

o
32

o
1

o
21 =−+−+−+− yyqyyqyyqyyq    (13) 

 
( ) ( ) ( ) ( ) 0o

1
o
54

o
1

o
43

o
1

o
32

o
1

o
21 =−+−+−+− zzqzzqzzqzzq  

 

With the qm values known, the co-ordinates of node 1 can now be found, as:  

4321

o
54

o
43

o
32

o
21o

1 qqqq
xqxqxqxqx

+++
+++

=       (14) 

and similarly for the y1
o, and z1

o  directions. 

 
 
3.1  Matrix formulation  
 
In a general case, for a member m  with end nodes  j and n, the length components 

Lmx, Lmy, and Lmz  of the vector { }mL   can be expressed using connectivity matrix [C] 

and their nodal co-ordinates as in: 

[ ] [ ]{ }XC
x

x
xxL

n

j
njmx =













−=−=
o

o
oo 11  

[ ] [ ]{ }YC
y

y
yyL

n

j
njmy =













−=−=
o

o
oo 11       (15) 

[ ] [ ]{ }ZC
z

z
zzL

n

j
njmz =













−=−=
o

o
oo 11  

 
In the case of the structure shown in Fig. 4, the projected lengths of members 1 to 4 in 

the x- direction can be expressed as: 
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where [C] is the connectivity matrix.  In order to prevent the matrix becoming sparse, 

and to facilitate computations, the following convention has been found helpful:  

number the internal nodes first, and the boundary ones last.  

Extending to y and z directions, the general form is 
 
{ } [ ]{ }XCLmx =  
 
{ } [ ]{ }YCLmy =         (17) 
 
{ } [ ]{ }ZCLmz =  
 
The x, y and z components of internal forces in cable members, given by, mxP~ , 

myP~ , mzP~ , respectively can be expressed as a product of force densities, qm, and 

projected member lengths, which, in matrix notation, are: 

[ ] [ ]{ }mxmx LQP~ =  
 
[ ] [ ]{ }mymy LQP~ =  ,       (18) 
 
[ ] [ ]{ }mzmz LQP~ =  
 
 
where  [Q] is the diagonal matrix of force densities, 
 

 
[ ]


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[C] {X} 
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At each node of the structure, the sum of the x, y and z components of the internal 

forces mP~  in members connecting to the given node must balance the external load 

vector {P} applied to these nodes.  Hence: 

 

oxmx PP~ =∑  

 

oymy PP~ =∑          (20) 

 

ozmz PP~ =∑  

 
Substituting for mxP~ , myP~ , mzP~  from eqns. (18) and (17), and noting that the summation 

in eqn. (20) can be  carried out by pre-multiplying the internal force components mxP~ , 

myP~ , and mzP~  by [C]T, leads to the matrix form : 

 
[ ] [ ][ ]{ } { }ox

T PXCQC =  

 
[ ] [ ][ ]{ } { }oy

T PYCQC =        (21) 

 
[ ] [ ][ ]{ } { }oz

T PZCQC =         

 
 
Applying this result to the five-node, four-member structure shown in Fig. 4, gives, 

for the x direction:  
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In the above system of equations, o1x
P  is zero and the remaining forces are equal to 

the x-components of the reactions at the boundaries (nodes 2-5). Hence: 
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The equilibrium equations in the remaining y and z directions can be expanded in the 

similar manner.  

From eqn. (23) the x-co-ordinate of node 1 is:  
 

4321

o
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o
43

o
32

o
21o

1 qqqq
xqxqxqxqx

+++
+++

=  , 

 
(confirming the earlier result),  and the remaining external force components are given 

as: 

( ) o2
o
1

o
21 x

Pxxq =− ;   ( ) o3
o
1

o
32 x

Pxxq =− ;   ( ) o4
o
1

o
43 x

Pxxq =− ;   ( ) o5
o
1

o
54 x

Pxxq =−     (24) 

 

3.2 Evaluation of the method   
 
With boundary configurations known or assumed, the only other factor controlling the 

shape of the structure is the value of force densities.  This, theoretically, provides an 

opportunity for generating an infinite number of network configurations. However, 

such configurations may compromise the uniformity of the tension field i.e., they may 

carry unacceptably high range of tension forces.  It is clear that a constant value of 

force density will not, in general, produce constant tensions, unless the calculated 

lengths of the elements happen to be constant.  From the practical point of view, the 

results should produce a network with, ‘more or less’, equal forces in them, so that 

none of the elements would get over-stressed when imposed loads are applied (at the 
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load analysis stage). It has been found that a value of force density quoted as 

producing reasonable results is 1 for all inner cables, and a value inversely 

proportional to the cable length for boundary cables, when such cables have irregular 

lengths 11,12.   

In general, the system of linear equations given by the force density approach cannot 

be solved directly, because of the size of the matrix.  The limitations of the force 

density method were realised quite early, and this has led to further developments, to 

include additional constraints, such as the preservation of rectangular, or equidistant 

meshes11.  More recent additions include the facility to model minimal surface forms 

by preserving a constant tension field13.  In such cases, the formulation becomes a 

non-linear force density method and requires additional iterative procedures to satisfy 

the required condition.  Some researchers14 advocate the use of surface minimisation 

through least squares fit to arrive at a minimal surface solution. In the opinion of the 

author, surface minimisation is not a robust criterion for convergence of the 

solution15; it would require a very fine mesh of elements and the sum of their area 

would be subject of a cumulative round off error.  

 
 
4. Dynamic relaxation method 
 
Unlike the previous two methods, dynamic relaxation does not rely on the global 

stiffness matrix formulation for the solution of the system of non-linear equilibrium 

equations. The algorithm uses a ‘lumped mass’ model, in which the mass of a 

discretised continuum is assumed to be concentrated (lumped) at the nodes of the 

surface.  In the iterative scheme, the out-of-balance forces are relaxed, at each node in 

turn, until they are close to zero.  The solution follows a process in which static 

equilibrium of the system is achieved by simulating a pseudo-dynamic process in 
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time’.  In essence, under the influence of loading (out-of-balance internal forces), a 

system of lumped masses oscillates about the equilibrium position and eventually 

comes to rest under the influence of damping.  In its original form, the method makes 

use of viscous damping, as described in the following section. 

 

4.1 Dynamic relaxation method with viscous damping 
 
The method is based on the equation of motion, which, for a discretised system is 

given by:  

 
[ ] jijijijiji CMKP δδδ  ++∑=       (25) 

 
where 
 
subscript ji refers to the jth node in the ith direction in a discretised system, 
 
Pji is the vector of external loads, 
 
[ ] jiK∑ δ  is the vector of internal loads, (with K representing nodal stiffness and δ 

displacements and the summation applying to the connected nodes only),  

jiji ,δδ  , are the vectors of nodal accelerations and velocities, respectively, 
 
C is the coefficient of viscous damping 
 
Mji is the mass lumped to the nodes . 
 
 
Introducing the nodal residual forces, Rji as the difference between the external and 

internal force vectors, gives   

[ ] jijiji δKPR ∑−=         (26) 
 
The above equation applies to the load analysis, which follows the form finding stage 

and which includes elastic straining components in the formulated stiffness matrix, 

[K].  In form-finding, it is preferable not include elastic effects and since there is no 
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external load acting on the inner nodes of the structure (whose configuration we are 

trying to find), the residual forces are simply equal to the internal force vector, jiP~ . 

Hence, 

 
jiji P~R =          (27) 

 

jiP~ is found from the resolution of the internal forces, Tm, at the nodes of the 
structure.  
 
Also, from eqn. (26) 
 

jijijiji RCM =+ δδ  .        (28) 
 
Equation (28) states that the motion of a system is produced by the out-of-balance 

forces.  The condition of static equilibrium requires these forces to come to zero. 

Equation (28) is approximated by centred finite differences in which the acceleration 

term is represented by the variation of velocities over the time interval, ∆t, and the 

velocity term as an average over the same interval. Thus, with k denoting the time 

interval at which variables are calculated, the residual forces at time increment k∆t are 

given by:  
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which gives the recurrence equation for velocities: 
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The velocities are then used to predict displacements at time  k+1: 
 

t
k

ji
k
ji

k
ji ∆δδδ 2

1
1 ++ +=  .        (31) 
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The iterative process of arriving at static equilibrium consists of a repetitive use of 

eqns. (30) and (31) until the residual forces are close to zero.   

 
4.1.1 Stability and convergence of the iterative solution 
 
The criterion for assured convergence 15,16,17, is given by 
 

K
Mt 2Δ max =

 (32) 

The time increment  ∆t=1 is both convenient and the one that satisfies the limit for 

stability of the numerical solution.   Thus, for  ∆t=1, the mass at any node should be 

set to comply with eqn.(32), viz., 

 

22
Δ 2

jiji
ji

KKt
M ==         (33) 

 
 
 
4.1.2 Critical viscous damping coefficient 
 
In an un-damped mode, the structure will oscillate about its position of equilibrium.  

If N denotes the number of iterations required to complete one cycle of oscillations in 

a fundamental mode, then the viscous damping coefficient, known as critical 

damping, can be found from15: 

C=4πmf ,         (34) 
 
where f =1/N∆t, is the fundamental frequency of oscillations.  
 
In order to obtain N, an additional computer run is necessary, with C set to zero.  The 

resulting un-damped oscillations of the structure are then used to calculate the value 

of the critical viscous damping coefficient from eqn. (34).   
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Critical damping, which is based on the lowest natural frequency of the system, gives 

the fastest convergence.  If the damping coefficient is below this value, (the structure 

is said to be ‘under-damped’) the solution may overshoot the static equilibrium of the 

system, before settling down to convergence.  This situation is preferred to the case of 

an ‘over-damped’ solution, in which the convergence may proceed at a very slow 

pace.   

 
The requirement for a two-stage solution procedure is rather inconvenient. For this 

reason, the method has been superseded by the dynamic relaxation technique with 

kinetic damping.  

 
4.2 Dynamic Relaxation method with kinetic damping 
 
4.2.1 General 

When the technique of kinetic damping is employed, the viscous damping coefficient 

is taken as zero and the system of oscillating masses is brought to rest by following a 

process of stopping the iterations whenever a peak in kinetic energy of the entire 

system is detected. The computation is then re-started from the current configuration, 

but with zero initial velocity15, 16. This process relies on the observation that, in simple 

harmonic motion, maximum kinetic energy is achieved in a configuration that 

corresponds to a minimum potential energy.  A simple illustration of that is a motion 

of a pendulum, which, once set in motion, eventually comes to rest in its position of 

minimum potential energy. In the dynamic relaxation algorithm, the movement of the 

structure is mapped by the successive iterations.  The pendulum analogy shows that 

stopping that movement (iterations) at the points of maximum kinetic energy is 

equivalent to achieving a stable equilibrium position.  However, because the 

frequency of the oscillations of individual nodes varies, it is not possible to achieve 
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true overall equilibrium of the structure after the first kinetic energy peak.  During the 

next iterations, the velocities and the displacements accumulate, but in increments 

decreasing in magnitude, as the residual forces become smaller with each iterative 

step. This results in the peaks of kinetic energy gradually becoming less pronounced, 

and eventually the whole system settling down to static equilibrium.  The formulation 

of the dynamic relaxation algorithm with kinetic damping is described below. 

 
With the viscous damping coefficient equal to zero, and the time increment ∆t=1, 

equation (30) in centred finite difference form6, is: 











−=

−+
2
1

2
1 k

ji

k

jiji
k
ji MR δδ  .       (35) 

 
Implementing the numerical stability criterion given by eqn. (33) gives 
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Consequently, the recurrence equations for velocities and displacements are: 
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and 
 

12
1

1 ⋅+=
++ k

ji
k
ji

k
ji δδδ  .        (37) 

 
As can be seen form the above, the method makes use of the nodal stiffness, Kji.  The 

stiffness needed here is the geometric stiffness, lumped at the nodes, viz., 

∑= G
m

G
ji KK  

where G
mK  is the geometric stiffness of elements ‘m’ connecting to a given node, 

defined in eqn (10).   
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4.2.2 Iterative process 
 
Equations (27), (36) and (37) form an iterative loop of the dynamic relaxation 

algorithm with kinetic damping.  At kinetic energy peak, velocities are set to zero and 

the whole system is re-started from the current configuration. It can be deduced that 

kinetic energy peak has occurred when the latest value of the kinetic energy is noted 

to be smaller than that in the previous iteration.  With the iterative process punctuated 

by discrete time intervals, ∆t, the precise location of the point at which a maximum 

value of kinetic energy has occurred is not known, but can be estimated.  It is 

important to do so, in order to correct the displacements, as these would have been 

calculated after a kinetic energy peak has occurred.  The point of maximum kinetic 

energy can be found by assuming that the trace of the kinetic energy curve represents 

a quadratic variation with the number of iterations.  If the time at which the kinetic 

energy peak has occurred is denoted by tmax, and KE1, KE2, and KE3, denote three 

sequential energy levels at some point during iterations in which KE3 < KE2, it can be 

shown that15  

123

312max

2
34

KEKEKE
KEKEKE

t
+−
−−

−= ,       (38) 

 
and the corrected displacements at tmax  are: 
 

ji

k
ji)k(

ji
)k(

ji
corr)k(

ji K
R

δ)β(δδ
2

1 2
1

11 −+−=
−+−+   ,    (39) 

where 
 

123

23

2 KEKEKE
KEKEβ
+−

−
= .       (40) 

 
When kinetic energy peak is detected, the displacements are calculated according to 

eqn.(39), but otherwise, eqn. (37) is used.  
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4.3 Evaluation of the method 
 
The main advantage of the method is the small number of arithmetic operations that 

need to be carried out at any one time, since the computations are concerned with one 

node in turn, rather than all nodes simultaneously.  Such an approach minimises 

computational round-off errors, and contributes to stability and accuracy of the 

numerical solution. It has been shown15,18 that the method is more efficient than the 

transient stiffness solution. 

 
Experience has shown15,16 that the numerical stability criterion for the dynamic 

relaxation method is robust, provided the largest direct stiffness of the connecting 

elements is used to ensure as small as possible size of the iterative step.  The criterion 

is based on the assumption of constant mass and stiffness.  A derivation of a stability 

criterion based on variable lumped mass and stiffness would be an advantage, and this 

subject merits further study.  The method is stable and capable of providing solutions 

to highly non-linear problems, even if the criteria of constant mass and stiffness are 

not met. However, to ensure fast convergence and stability of iterations, it is 

recommended that the difference in nodal stiffness throughout the structure is kept 

small.  This can be achieved by an appropriate surface discretisation, involving the 

same, or similar, number of elements connecting to each node of the structure.  

 
4.4 Surface discretisation and accuracy of modelling 
 
4.4.1 Line elements 
 
Surface discretisation by means of line elements is equivalent to replacing the surface 

by a cable net.  Such a net, when used to model stable minimal surfaces (soap-films) 

has all its elements in constant tension and the elements following geodesic paths15.  

For relatively shallow surfaces, the results are reasonably accurate, but for surfaces 
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with more pronounced curvatures, the cables have a tendency to cluster in the areas of 

high curvature and become sparse elsewhere.   This phenomenon is illustrated in Fig. 

5, which shows a saddle shaped surface modelled with cable elements of constant 

tension.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Line element representation of a saddle-shaped surface modelled by constant 
tension cables 

 

There are 15 cables in each direction and the boundary of the structure projects as a 

circle of 6 unit’s radius. The aspect ratio of height to radius is 0.528 for case (a) and 

0.846 for cases (b) and (c). It can be seen that with the rising aspect ratio, the cables 

start to cluster in the area of high curvature (case (b)).  Improvements in the final 

surface definition can be made by carefully selecting the location of the end points, so 

that after form-finding the cables slip into their equilibrium position while 

maintaining a reasonably uniform spacing. This is illustrated in case (c). 

 
 

  
 

 
 

c) 

a) b) 
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4.4.2 Triangular elements  
 
The most common type of surface element used in conjunction with dynamic 

relaxation method is a triangular, or triple-force element, shown in Fig. 6.  

 

 

 

 

 

 

 

 

Fig. 6. Triangular, ‘triple-force’ element 
 

The formula:   
i

is
i

L
T

α
σ
tan2

=     

represents a transformation of the element surface stress into a discrete set of forces, 

Ti, acting in the sides of the element.  Depending on the value of the enclosed angle α, 

the element side forces can be either positive, or negative. They are resolved into x, y 

and z components at the nodes and included directly in the calculation of residual 

forces within the dynamic relaxation algorithm.  However, caution is needed, as cases 

of ill-conditioning can arise: when the angle α tends to zero, the forces tend to 

infinity.  The problem can be resolved by a sensible discretisation of the surface that 

ensures ‘healthy’ aspect ratios of the triangles and imposing a limit on α.   
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4.4.3 Alternative methods of surface discretisation 
 
Alternative types of surface discretisations have been proposed for use with novel, 

non-finite element approaches 19,20.  The first one19, which applies to constant tension 

membranes, makes use of a triangular mesh of points. The resultant forces at the 

vertices of the triangle are calculated directly from the surface tension, without the 

need for construction of equivalent plane stress finite elements.  These forces are 

independent of the shape of the triangular mesh.   The other type of surface 

discretisation20,  which also applies to constant tension membranes,  but can be 

adapted to  more general cases, makes use of  the Laplace-young equation and cubic 

spline fitting to give a full, piecewise, analytical description of the surface. This 

approach represents a significant development in surface discretisation, as it produces 

smooth surfaces with known curvatures that can be used readily to calculate geodesic 

curves. Geodesics, combined with the knowledge of surface curvatures, facilitate the 

development of cutting patterns.   Also, the spline solution is much closer to the actual 

surface than a polyhedral surface of elements of the same mesh size21 . 

 
4.4.4 Mesh control  
 
It is possible to find a shape of a tensioned surface by constraining the x, y 

movements of the nodes of the initial mesh during form-finding and ensuring 

equilibrium in z-direction only16.  This approach was thought to assist with the 

generation of smooth mesh lines at the end of form-finding so that they could be used 

for patterning.  The idea, however, is fundamentally flawed, because the mesh lines 

intended to represent seam lines at the patterning stage should correspond to ‘strings’ 

of constant tension, lying on the surface and following geodesics15.  These strings 

need to be in full static equilibrium.  Figure 7 illustrates the problem.  
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Fig. 7. (a) Elevation of the form-found surface,  (b) plan view of the surface obtained 
with mesh control,  (c) plan view of the fully equilibrated surface. 

(a) 

(b) 

(c) 
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The chosen example is a membrane, which resembles a part of a canopy for the Tête 

Defence Cube in Paris. The membrane is discretised using triangular elements, as 

shown.   The plan area of the membrane is 5 m by 7 m. The boundaries along the 

shorter, x- dimension are fully fixed, while the two boundaries along the y dimension 

are fixed only in the x and y directions.  The central boundary, which is circular on 

plan, has a height of 0.9 m.  The membrane has a constant value of prestress, equal to 

5 kN/m. The value of the residual force used as a stopping criterion for the iterations 

was 0.01 kN (a value lower than that showed no significant change in the solution). 

  
The results from form-finding (Fig. 7 (a), (b, and (c) show that mesh control produces 

the same elevation profile as the unconstrained mesh method. However, the 

differences lie in the plan views, from which it can be seen that large displacements 

would have taken place, if the x-y movements of the nodes were not suppressed. The 

surface obtained using mesh control is not in full static equilibrium, as shown by the 

results given in Table 1.  They illustrate that very large residual forces still exist in the 

x and y directions (several orders of magnitude higher than the prescribed maximum 

residual force of 0.01 kN) particularly at the nodes along the lines 2-6 and 9-10.  

 
 These findings are consistent with the report22 describing form-finding and patterning 

of a Papal canopy in Phoenix Park, Dublin.  The canopy resembled the membrane 

shape analysed here, but possessed only one axis of symmetry.  Mesh control was 

applied during form-finding to preserve the radial lines as seam lines in the cutting 

pattern of the membrane. This led to a very uneven stress distribution in the surface, 

manifesting itself in wrinkling around the neck of the structure, which required a 

geometric re-adjustment.   
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5. Closing remarks 
 
The paper describes three most commonly used computational form-finding methods, 

which have been implemented in commercial software world wide.    

The transient stiffness method exploits load-displacement relationship, which is 

assumed to be linear throughout. For this to be true, the incremental displacements 

have to be very small.  In the case of an ill-conditioned stiffness matrix, steps need to 

be taken to remedy the situation, in order to obtain an accurate solution.    

The force density method, in its original formulation, is just a tool for generating 

equilibrated shapes of structures that have the feature of a non-uniform tension field. 

Additional iterations are required to satisfy the condition of constant tension, as 

observed in ideal tension structures, such as soap-films.  The use of soap-film analogy 

in form-finding of fabric structures is strongly recommended15, as it leads to optimal 

solutions in the form of minimal surface membranes, with a uniform tension field 

under a permanent load condition, i.e., the pre-tension.  This view is reflected in the 

general recommendation given in the European Design Guide for Tensile Surface 

Structures23.  To start, section 8.2 of the Guide contains a somewhat indefinite 

statement saying that any form-finding method is acceptable, provided it ensures 

that… “the resulting surface shape is capable of withstanding the applied loading, 

while satisfying the constraints imposed by the architectural specification”…  While 

this appears to give priority to architectural requirements, the statements that follow 

acknowledge the advantages of using the soap-film analogy.  These include: (i) a 

reduced likelihood of on/off slackening of the fabric under buffeting wind loads, with, 

consequently, less fatigue of the yarns and their constituent fibres, and (ii) a smaller 

deformation of the surface due to a change in the warp/weft stress ratio, which is 

likely to prevent local wrinkling.  The Guide also acknowledges the fact that 
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differentially stressed fabric will creep, over a period of time, towards a form that has 

a uniform stress distribution.  

In the UK, the preferred form-finding method is dynamic relaxation24.  It is viewed as 

extremely efficient, robust and accurate.  Further, it has an attractive physical 

interpretation, which aids a good understanding of the solution process.   

Acknowledgement. The author wishes to thank her research fellow, J.S. Brew, for 

supplying Figure 5.  
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