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Optimal oral drug dosing via application of the

Contraction Mapping Theorem

Neil D. Evansa

aSchool of Engineering, University of Warwick, Coventry, CV4 7AL, UK

Abstract

The problem of determining an oral dose, or schedule of oral doses, that gives
rise to an arbitrary area-under-curve or to points on the time-series for a vari-
able of interest in a drug kinetics model is considered. These two measures
are considered as surrogates for the particular drug response to the dose. The
approach taken is to formulate the problem as a fixed point one to which a
version of the Contraction Mapping Theorem can be applied. The results,
illustrated for a model for the anti-cancer agent topotecan, demonstrate the
applicability of the approach.

Keywords: Optimization problems, Biomedical control, Biomedical
systems, Control applications, Control algorithms

1. Introduction1

One of the benefits of a drug kinetics model is that it permits the pre-2

diction of the effect of a given dose on the kinetics of the drug, such as3

its absorption, distribution, metabolism and elimination. Typically one, or4

some combination, of the model variables corresponds to pharmacological5

activity and this might be linked to the drug dynamics, in terms of the ef-6

fect of the drug. Perhaps the simplest kinetic model is a one-compartment7

(variable) model describing the plasma concentration of drug with linear8

elimination, which gives rise to a decaying exponential time course following9

a bolus injection of drug. Properties of the time course, such as half-life or10

area-under-curve, might be indicators or predictors of the efficacy of the drug11

dose.12
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For example, Evans et al. [1] propose a model for the in vitro uptake13

kinetics of the anti-cancer agent topotecan (TPT). TPT, a water-soluble14

semi-synthetic derivative of camptothecin [2], is a reversible poison of the15

nuclear enzyme topoisomerase I [3], which is an enzyme used to alleviate16

torsional stresses during DNA replication [4]. The drug exists in two forms,17

a pharmacologically active parent lactone form (TPT-L), and an inactive18

hydroxy acid form (TPT-H). The model proposed in [1] describes the kinetics19

of the two forms of TPT from input into the medium to delivery to the20

DNA target, which is represented by a variable in the model corresponding21

to TPT-L bound to nuclear DNA. The area under the concentration-time22

curve (AUC) for this variable is used as a surrogate for the ‘hit-on-target’,23

that is, the effectiveness of the drug dose. More recently, Chappell et al.24

[5] coupled the kinetic model with a cell cycle dynamics model in which the25

concentration-time curve is used directly to consider effectiveness of the drug26

dose. In this case it is the full time series profile of TPT-L bound to DNA27

that is important in determining the effect of the drug.28

In this paper the problem of determining an optimal oral dose, or oral dos-29

ing schedule, for a drug kinetics model is considered. Optimality is regarded30

with respect to either hit-on-target as represented by the AUC for a partic-31

ular times-series, or to achieving pre-defined points on a given time-series.32

The approach taken is to reformulate the problem in such a way as to make33

the solution the fixed point of a suitable contraction mapping. The approach34

taken is based on that taken by Evans and Pritchard [6] for containing the35

outbreak of rabies in a previously naive population.36

The earliest use of fixed point methods in a control context was by Her-37

mes [7] for finite-dimensional systems. Davison and Kunze [8] describe the38

application of fixed point methods to finite-dimensional time-varying sys-39

tems, and this approach has been extended to infinite-dimensional systems40

by Magnusson and Pritchard [9]. Carmichael and Quinn [10] provide an early41

review of the use of fixed point methods in nonlinear control and observation.42

The following version of the Contraction Mapping Theorem from [11] is43

used in this paper:44

Theorem 1. Suppose that ' : W −→ W is a mapping between Banach45

spaces that satisfies46

∥'x− 'y∥ ≤ k∥x− y∥, 0 ≤ k < 1
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(k a constant), for x, y ∈ D, a subset of W . If both the ball47

S =

{

w ∈ W : ∥w − w1∥ ≤ k

1− k
∥w1 − w0∥

}

and w0 lie in D, then the iterative process wi+1 = 'wi converges to a unique48

fixed-point in D.49

2. Arbitrary area-under-curve50

Consider the problem of choosing a drug dose d for a general drug kinetic51

model of the following form:52

ż(t) = f(z(t)), z(0) = z0 + Bd (1)

y(t) = Cz(t) (2)

such that a particular area-under-curve (AUC) value is obtained for the de-53

sired time course y(t). Thus the problem is to choose d such that yT =54

∫ T

0
y(t) dt = yd, for some target value, yd.55

Suppose that an initial guess is made for the dose, d = d̂, which gives rise56

to the following AUC value:57

ŷT =

∫ T

0

Cẑ(t) dt

where ẑ(t) is the solution of the initial value problem58

˙̂z(t) = f(ẑ(t)), ẑ(0) = z0 + Bd̂.

Since this is unlikely to yield the desired value consider perturbations from59

this solution; that is, set x(t) = z(t)− ẑ(t) and u = d− d̂ in Equation (1) to60

yield the following:61

ẋ(t) = f(x(t) + ẑ(t))− f(ẑ(t)) = A(t)x(t) +N(t, x(t)), x(0) = Bu

where A(t) is the Jacobian matrix of f (with respect to z) evaluated at ẑ(t).62

With respect to this perturbed system the output of interest becomes:63

yT = C

∫ T

0

(x(t) + ẑ(t)) dt = C

∫ T

0

x(t) dt+ ŷT .
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Neglecting (for now) the nonlinearity, the problem corresponds to choosing64

u such that:65

C

∫ T

0

�(s, 0)Bu ds = mTu = yd − ŷT where mT = C

∫ T

0

�(s, 0)B ds

and �(⋅, ⋅) is the state-transition matrix for the time-varying linear system.66

Since mT is a number then the unique solution (for the linear system) is67

given by:68

u∗ = (yd − ŷT ) /mT .

Now considering the full nonlinear system this suggests choosing u such that:69

C

∫ T

0

x(t) dt = C

∫ T

0

[

�(t, 0)Bu+

∫ t

0

�(t, s)N(s, x(s))ds

]

dt

= yd − ŷT ,

giving70

mTu = yd − ŷT − C

∫ T

0

∫ t

0

�(t, s)N(s, x(s)) ds dt

and so the choice for the dose is given by71

u∗ =
1

mT

[

yd − ŷT − C

∫ T

0

∫ t

0

�(t, s)N(s, x(s)) ds dt

]

. (3)

This, however, gives an implicit relationship between u∗ and the solution x
(which requires u∗). To overcome this problem a fixed-point is sought of the
following operator:

(Ψx) (t) =

∫ t

0

�(t, s)N(s, x(s)) ds

+m−1
T �(t, 0)B

[

yd − ŷT − C

∫ T

0

∫ t

0

�(t, s)N(s, x(s)) ds dt

]

. (4)

If x is a fixed point of this operator, Ψ, then the AUC for the dose d̂+ u∗ is72

then given by:73

yT = C

∫ T

0

x(t) dt+ ŷT = C

∫ T

0

(Ψx) (t) dt+ ŷT = yd.

Thus the desired AUC is achieved for the dose d̂+ u∗, provided there exists74

a fixed point of the operator Ψ defined in (4).75
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Theorem 2. Suppose that the following are satisfied:76

1. N(⋅, x(⋅)) ∈ Ls(0, T ;ℝn) whenever x(⋅) ∈ Lr(0, T ;ℝn) where r, s ≥ 177

are real numbers;78

2. N : [0, T ] × ℝ
n −→ ℝ

n is Lipschitz on the ball B(a) of radius a about79

the origin in Lr(0, T ;ℝn):80

∥N(⋅, z1(⋅))−N(⋅, z2(⋅))∥s ≤ ℎ(∥z1∥, ∥z2∥)∥z1 − z2∥r
for zi ∈ B(a) and ℎ : ℝ+ × ℝ

+ → ℝ
+ is continuous, symmetric and81

ℎ(0, 0) = 0;82

3. Let a ≤ a be such that83

∥�∥
[

T∥�∥ ∥B∥ ∥C∥
∣mT ∣

+ 1

]

T̃K = K̃ < 1

where K = sup0≤w,v≤a ℎ(w, v) and T̃ = T (1+
1

r
− 1

s
).84

If the AUC corresponding to the initial dose, ŷT , is close to the target value85

in the sense that86

∥yd − ŷT∥ ≤
a∣mT ∣

(

1− K̃
)

∥�∥T 1/r∥B∥ (5)

then the operator Ψ in Equation (4) has a unique fixed point.87

Proof. To see that Ψ is a contraction on the ball B(a) note that:

∥Ψx1 −Ψx2∥r ≤ T̃∥�∥K∥x1 − x2∥r + T T̃ ∣mT ∣−1 ∥�∥2∥B∥ ∥C∥K∥x1 − x2∥r

= ∥�∥
[

T∥�∥ ∥B∥ ∥C∥
∣mT ∣

+ 1

]

T̃K∥x1 − x2∥r.

Let x0 = 0, x1 = Ψx0 = m−1
T �(⋅, 0)B [yd − ŷT ] and S be the ball88

S =

{

x ∈ Lr(0, T ;ℝn) : ∥x− x1∥ ≤ K̃

1− K̃
∥x1∥r

}

.

S is contained within the ball B(a) provided89

[

1 +
K̃

1− K̃

]

∥m−1
T �(⋅, 0)B [yd − ŷT ] ∥r ≤ a

which is guaranteed by Equation (5). Applying Theorem 1 proves the re-90

quired result.91
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A natural extension to the problem considered in this section is to consider92

multiple doses. However, since it is possible to achieve any desired AUC for93

a single dose it seems natural to consider the problem of achieving different94

AUC values on different time intervals. This problem reduces to repeated95

application of the single dose problem above.96

3. Reference time-series97

Now consider the problem, for (1)–(2), of choosing a dose, or sequence of98

doses, such that particular points on the times series curve for y are achieved.99

Therefore, let Yd =
(

yr(t1) yr(t2) . . . yr(tm)
)T

denote a vector of points100

on a desired time-series curve yr. The control problem is to achieve these101

points for a suitable dose d, or doses di.102

Consider the problem with l doses at regular intervals of T starting at103

t = 0:104

żi(t) = f(zi(t)), zi(0) = zi−1(T ) + Bdi (6)

yi(t) = Czi(t) (7)

Yi =
(

yi(t1i) . . . yi(tmi
)
)T

(8)

where z1(0) = z0 + Bd1 and i = 1, . . . , l.105

Proceeding in a similar manner as in the previous section, let d̂i denote106

initial guesses for the doses, which give rise to output time series of the form:107

ŷi(t) = Cẑi(t) and Ŷi =
(

ŷi(t1i) ŷi(t2i) . . . ŷi(tmi
)
)T

where ẑi(t) is the solution of the initial value problem given by (6)–(7) with108

d̂i replacing di. Again, let xi(t) = zi(t)− ẑi(t) and ui = di − d̂i in (6)–(8) to109

yield the following:110

ẋi(t) = Ai(t)xi(t) +Ni(t, xi(t)), xi(0) = xi−1(T ) + Bui

where Ai(t) is the Jacobian matrix of f evaluated at ẑi(t) and x0(T ) = 0.111

With respect to this perturbed system the output becomes112

yi(t) = Cxi(t) + ŷi(t)

and so the aim is to choose the ui such that113

Cxi(tki) = yr(�i + tki)− ŷi(tki) ki = 1i, . . . ,mi
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for i = 1, . . . , l where �i = (i− 1)T . Neglecting (for now) the nonlinearities,114

this corresponds to choosing u = (u1, . . . , ul)
T such that:115

Mu =

⎛

⎜

⎜

⎜

⎝

M11 0 . . . 0
M21 M22 . . . 0
...

...
...

Ml1 Ml2 . . . Mll

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

u1

u2

. . .
ul

⎞

⎟

⎟

⎠

= Yd − Ŷ

where116

Mij =

⎛

⎜

⎝

C�i(t1i , 0)�i−1(T, 0) . . . �j(T, 0)B
...

C�i(tmi
, 0)�i−1(T, 0) . . . �j(T, 0)B

⎞

⎟

⎠

since (in the linear case)117

Cxi(tki) = C�i(tki , 0) (xi−1(T ) + Bui) .

The matrix M ∈ ℝ
m×l is unlikely to be invertible and so the least squares118

solution is chosen:119

u∗ = M †
(

Yd − Ŷ
)

,

where M † is the pseudo-inverse of M . Now considering the full nonlinear
system, let

Nix(tki) = C

∫ tki

0

�i(tki , s)Ni(s, xi(s)) ds

+ C�i(tki , 0)

∫ T

0

�i−1(T, s)Ni−1(s, xi−1(s)) ds+ ⋅ ⋅ ⋅

+ C�i(tki , 0) . . . �2(T, 0)

∫ T

0

�1(T, s)N1(s, x1(s))ds

and120

Nx = (N1x(t11), . . . ,N1x(tN1
), . . . ,Nlx(t1l), . . . ,Nlx(tNl

))T .

Then the linear approach suggests choosing u such that:121

u∗ = M †
(

Yd − Ŷ −N (x)
)

,
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but, as in the last section this leads to an implicit equation for x (the solution
on [0, � ], � = l×T , obtained by piecing together the xi). Again, to overcome
this a fixed-point is sought of the following operator, Ψ:

(Ψx) (�i + t) = �i(t, 0)
[

xi−1(T ) + BM †
i

[

Yd − Ŷ −Nx
]]

+

∫ t

0

�i(t, s)N(s, xi(s)) ds (9)

where M †
i is the ith row of M †.122

If a fixed-point of Ψ exists then the output corresponding to the fixed123

point is given by:124

Y = MM †
(

Yd − Ŷ −N (x)
)

+N (x) + Ŷ

= MM †Yd +
(

I −MM †
)

(

Ŷ +N (x)
)

.

Hence the difference between the achieved profile and the target profile is125

given by:126

Y − Yd =
(

I −MM †
)

(

Ŷ − Yd +N (x)
)

,

where the right-hand side is the orthogonal projection onto (ranM)⊥. Thus127

it is seen that the reference profile is matched on the range of M .128

To illustrate the application of the fixed point theorem to the problem129

of obtaining given points on a reference time-series, the single-dose case is130

considered first by the following theorem:131

Theorem 3. Suppose that the following are satisfied:132

1. N(⋅, x(⋅)) ∈ Ls(0, T ;ℝn) whenever x(⋅) ∈ Lr(0, T ;ℝn) where r, s ≥ 1133

are real numbers;134

2. N : [0, T ] × ℝ
n −→ ℝ

n is Lipschitz on the ball B(a) of radius a about135

the origin in Lr(0, T ;ℝn):136

∥N(⋅, z1(⋅))−N(⋅, z2(⋅))∥s ≤ ℎ(∥z1∥, ∥z2∥)∥z1 − z2∥r

for zi ∈ B(a) and ℎ : ℝ+ × ℝ
+ → ℝ

+ is continuous, symmetric and137

ℎ(0, 0) = 0;138
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3. Let a ≤ a be such that139

[√
m ∥M †∥ ∥�1∥ ∥B∥ ∥C∥+ 1

]

∥�1∥T̃K = K̃ < 1

where K = sup0≤w,v≤a ℎ(w, v) and T̃ = T (1+
1

r
− 1

s
).140

If the target profile, Yd, is close to that corresponding to the initial dose, Ŷ ,141

in the sense that142

∥Yd − Ŷ ∥ ≤
a
(

1− K̃
)

T 1/r∥�1∥ ∥B∥ ∥M †∥ (10)

then the operator Ψ in (9) (single-dose case) has a unique fixed point.143

Proof. To see that Ψ is a contraction on the ball B(a) note that:144

∥Ψw −Ψv∥r ≤ T̃∥�1∥K∥w − v∥r
+

√
mT̃∥M †∥∥�1∥2∥B∥ ∥C∥K∥w − v∥r

=
(√

m ∥M †∥ ∥�1∥ ∥B∥ ∥C∥
+ 1

)

∥�1∥T̃K∥w − v∥r

Let x0 = 0, x1 = Ψx0 = �1(⋅, 0)BM †
[

Yd − ŶT

]

and S be the ball145

S =

{

x ∈ Lr(0, T ;ℝn) : ∥x− x1∥ ≤ K̃

1− K̃
∥x1∥r

}

.

S is contained within the ball B(a) provided146

[

1 +
K̃

1− K̃

]

∥�1(⋅, 0)BM †
[

Yd − ŶT

]

∥r ≤ a

which is guaranteed by (10). Applying Theorem 1 proves the required result.147

148

For the full multiple-dosing case the following result is obtained:149

Theorem 4. Suppose that the following are satisfied:150

1. N(⋅, x(⋅)) ∈ Ls(0, � ;ℝn) whenever x(⋅) ∈ Lr(0, � ;ℝn), r, s ≥ 1 are real151

numbers;152
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2. N : [0, � ] × ℝ
n −→ ℝ

n is Lipschitz on the ball B(a) of radius a about153

the origin in Lr(0, � ;ℝn):154

∥N(⋅, z1(⋅))−N(⋅, z2(⋅))∥s ≤ ℎ(∥z1∥, ∥z2∥)∥z1 − z2∥r

for zi ∈ Ba and ℎ : ℝ+ × ℝ
+ → ℝ

+ is continuous, symmetric and155

ℎ(0, 0) = 0.156

There exists an a ≤ a and a K̃ such that if the target profile, Yd, is close to157

that corresponding to the initial dose, Ŷ , in the sense that158

∥Yd − Ŷ ∥ ≤
a
(

1− K̃
)

� 1/r∥�∥ ∥B∥ ∥M †∥ (11)

then the operator Ψ in (9) has a unique fixed point.159

Proof. First note that on the ball B(a):160

∥Ψw −Ψv∥r ≤ (k1 + k2K) ∥w − v∥r

for suitable constants k1 and k2, where K = sup0≤w,v≤a ℎ(w, v). Therefore,161

choosing a ≤ a such that162

k1 + k2K = K̃ < 1

it is seen that Ψ is a contraction on B(a).163

Let w = 0, v = Ψw so that164

v(�i + t) = �i(t, 0)BM †
i

[

Yd − Ŷ
]

and S be the ball165

S =

{

x ∈ Lr(0, � ;ℝn) : ∥x− v∥ ≤ K̃

1− K̃
∥v∥r

}

.

S is contained within the ball B(a) provided (11) is satisfied. Applying166

Theorem 1 proves the required result.167
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4. Example168

To illustrate the theory of the previous two sections the results are applied169

to a model for the in vitro kinetics of the anti-cancer agent topotecan [1].170

The model describes the distribution and activity of the drug when added to171

a medium containing human cancer cells (data from the MCF-7 breast cancer172

cell line was used by Evans et al. [1] in estimating the model parameters).173

The concentration of pharmacologically active drug is denoted by L while174

the corresponding concentration for the inactive form is denoted by H. A175

schematic of the model is shown in Figure 1.176

To allow for mixing in the physical medium (as seen in the experimental177

data) it is divided into two pools: the medium pool (denoted by a subscript178

m), which represents the majority of the physical medium and is the pool into179

which the drug is added; and an extracellular pool (denoted by a subscript180

e), which represents the part of the physical medium in which the cells are181

located. Therefore active drug enters the system via the medium pool (where182

reversible hydrolysis to the inactive form takes place) and can then mix with183

the extracellular pool (with reversible first order rate processes). Reversible184

hydrolysis also occurs in the extracellular pool.185

From the extracellular pool active drug diffuses across the cell membrane186

into the cytoplasm (denoted by a subscript c) and this process is first order187

in both directions. Reversible hydrolysis of the active form of the drug also188

occurs in the cytoplasm. Only active drug in the cytoplasm is assumed to189

enter the nucleus (denoted by a subscript n), where it binds to the target.190

The concentration of active drug bound to DNA, represented in the model191

by Ln, can therefore be related to the effect of the drug. Evans et al. [1] used192

the AUC for Ln over the first hour following administration as a surrogate193

for drug effect. More recently, Chappell et al. [5] directly coupled the kinetic194

model, using Ln, to a cell cycle model in order to model the effect of a dose195

on the cell cycle.196
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The model equations are as follows:

L̇m = −(kom + kmi)Lm + kcmHm + kmov0Le

Ḣm = komLm − (kcm + kmi)Hm + kmov0He

L̇e =
kmi

v0
Lm − (kmo + kom + ki)Le + kcmHe +

ke
v1
Lc

Ḣe =
kmi

v0
Hm + komLe − (kcm + kmo)He

L̇c = kiv1Le − (ke + koc)Lc + kccHc + kdlv2Ln − kb(BT − Ln)Lc

Ḣc = kocLc − kccHc + kdℎv2Ln

L̇n =
kb
v2
(BT − Ln)Lc − (kdl + kdℎ)Ln

where v0 = Ve/Vm is the ratio of the volumes of the extracellular pool (Ve) and197

medium pool (Vm), v1 = Ve/Vc is the ratio of the volumes of the extracellular198

pool and cytoplasm (Vc), and v2 = Vn/Vc is the ratio of the volumes of the199

nucleus (Vn) and cytoplasm. The corresponding initial conditions for the200

model are:201

Lm(0) = (1 + v0)d, Hm(0) = Le(0) = He(0) = Lc(0) = Hc(0) = Ln(0) = 0.

The problem is to choose the dose d.202

4.1. AUC: Single dose203

The first problem considered is to achieve an AUC for Ln, over a one204

hour exposure, of 43.2 mol⋅s/m3 (12 �M⋅h), which is expected to require a205

dose greater than 10 mmol/m3 (�M) [1]. Using the approach of Section 2 the206

known initial condition z0 in (1) is the zero vector, since no drug is present207

prior to the start of the experiment; the matrix defining the structure of the208

input dose, B, is given by209

B =
(

(v0 + 1) 0 0 0 0 0 0
)T

.

Once an initial estimate, d̂, is made for the dose and the perturbed system210

about the resulting trajectory, ẑ(⋅), obtained, the proof of Theorem 2 provides211

a constructive means for determining the fixed-point of Ψ defined in (4). Once212

this fixed-point has been determined then (3) is used to determine u∗ and213

the required dose is d̂+ u∗.214
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For initial estimates for the dose, d̂, up to 40 mmol/m3 (�M) the required215

dose can be found, using this approach, to be 10.53 mmol/m3 (�M), which216

gives a peak concentration of bound drug (Ln) of 13.55 mmol/m3 (�M).217

A plot of the resulting nuclear bound drug is shown in Figure 2. For initial218

estimates less than that required for the prescribed AUC, the approach results219

in the required dose. As the initial estimate for the dose exceeds that required220

convergence becomes an issue since the value ofmT decays exponentially with221

the estimate used. In particular, the weighted error for the initial estimate,222

∥yd− ŷT∥/mT , grows in a parabolic fashion ensuring that (5) no longer holds223

(see Figure 3).224

4.2. AUC: Multiple doses225

Suppose that it is necessary, in the previous problem, to limit the peak226

concentration of bound drug (Ln) or to limit the administered dose d at any227

instant. A straightforward way to do this is to split the dose into N multiple228

doses, di, given at equal time points, ti = (i − 1)T/N , throughout the full229

dosing period T (where T = 1 h in this example). The approach taken230

in the previous section can then be applied on each of the dosing intervals231

([ti, ti+1) for i = 1, . . . , N) as a single dose AUC problem. The problem of232

determining doses to give a certain AUC across the whole of the time interval233

[0, T ] then becomes N separate single-dose problems such that the total sum234

is the required AUC.235

For N = 2 two doses are applied, one at t = 0 and the other at t = 30 min-236

utes, and the problem is split into two single-dose AUC problems correspond-237

ing to these doses. The second single-dose AUC problem, on the last 30 min-238

utes of exposure, uses the final state of the first problem (i.e., at 30 minutes)239

as the known initial condition. It therefore only remains to split the target240

AUC into the sum of two values that are to be achieved on the two dosing241

intervals. The limiting factor in dividing the AUC is the value for the first242

interval, since prior to the first dose no drug is present in the system and so243

the target concentration, Ln, has to build up. However, if the value chosen244

is too small the dose required for the second interval might be too high. If245

the aim of the dosing strategy is to achieve a total AUC of 43.2 mol⋅s/m3
246

(12 �M⋅h), but limit Ln to less than 13 mmol/m3 (�M) then the AUC can be247

split into 20.34 mol⋅s/m3 (5.65�M⋅h) and 22.86 mol⋅s/m3 (6.35�M⋅h). The248

first of these values is chosen to be the maximum possible while limiting249

the peak bound concentration to less than 13 mmol/m3 (�M). The neces-250

sary doses for these two single-dose AUC problems are 9.95 mmol/m3 (�M)251
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and 1.17 mmol/m3 (�M), respectively. On the two time intervals the peak252

concentrations of bound drug are 12.91 mmol/m3 (�M) and 13.01 mmol/m3
253

(�M), respectively. A plot of the resulting nuclear bound drug is shown in254

Figure 2 where the profile is seen to give a lower peak than the single dose255

case and maintains a more constant level.256

Extending to four doses given at 0, 15, 30, and 45 minutes, the AUC257

can be split into 8.46, 11.52, 11.52, and 11.7 mol⋅s/m3 (2.35, 3.2, 3.2, and258

3.25 �M⋅h). With more doses there is greater flexibility in splitting the259

required AUC, though the value than can be achieved on the first interval260

is limited since no drug is present before administration. The values that261

the target AUC are divided into are chosen to flatten the time-series plot of262

bound nuclear (target) drug. The corresponding doses are 9.29, 1.05, 0.55,263

and 0.79 mmol/m3 (�M), and the peak concentrations of bound drug are264

12.17, 12.98, 12.91, and 13.11 mmol/m3 (�M). A plot of the resulting nuclear265

bound drug is shown in Figure 2 where the profile is seen to maintain a much266

more constant level than the single or double dose cases.267

It should be noted that this method does not exploit the fact that at the268

end of any given dosing period there is drug stored within the compartments269

and that the amount of drug present is dependent on all of the previous doses.270

Although an approach based on that taken with the time-series problem in271

Section 3 would exploit this dependence, it would not utilise the fact that272

on any given dosing period there exists a dose that gives the required AUC273

exactly.274

From Figure 2 it is seen that a potentially limiting factor is the initial275

rise in drug bound to the target. This initial rise is dependent on the size276

of the first dose, which then affects subsequent doses. For example, notice277

that in the case of four equally spaced doses the bound concentration does278

not approach the constant level until the second dose, whereas for the single279

and double dose cases this happens for the first dose, though there is corre-280

sponding over-shoot of the average level. The effect of these issues is that the281

first dose might be constrained by a maximum target level (in this example282

bound active drug), which then limits the initial slope and hence the AUC283

that can be achieved on the first dosing interval. Subsequent dosing inter-284

vals are then limited in turn as a result. To overcome these points the AUC285

problem can be reformulated in terms of achieving a particular time-series,286

such as a constant level, that has the required AUC.287
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4.3. Time-series: Reconstruction of dose288

To illustrate the theory of Section 3 a theoretical example is considered289

first in which a time-series corresponding to a particular dosing regime is290

used to try to find the original dosing schedule. More precisely, the following291

sequence of doses is applied every 15 minutes for a total duration of one hour:292

2, 5, 2, and 1 mmol/m3 (�M). The time series is sampled at times 5, 10, 15,293

20, 25, 30, 40, and 50 minutes after the first dose.294

Starting with an initial guess of 1, 0, 0, and 0 mmol/m3 (�M) the method295

finds the original dosing scheme. Similarly, if the scheme were grossly over-296

estimated, say with an initial guess of 10, 10, 10, and 10 mmol/m3 (�M),297

the method finds the original dosing scheme. The desired sample points are298

plotted in Figure 4 together with the time series for the nuclear bound drug,299

Ln. Unsurprisingly, there is good correspondence between the time-series300

profile and the target one.301

4.4. Time-series: Modifying existing series302

The target profile from the previous section is modified by reducing all303

points to 10% of their previous values and the method run again. This sce-304

nario represents the case where the profile of an existing dosing scheme needs305

to be reduced. The dosing scheme in this case is given by 0.20, 0.45, 0.16, and306

0.08 mmol/m3 (�M). The resulting profile for bound active drug is plotted307

in Figure 5, together with the target points. There is good correspondence308

between the time series for the dosing scheme and the target.309

Conversely, the target profile from the previous section is doubled and310

the method run again. In this case the dosing scheme returned is given by311

4.09, 11.50, 5.30, and 2.55 mmol/m3 (�M). The resulting profile for bound312

active drug is plotted in Figure 6, together with the target points. Again,313

there is good correspondence between the time series for the dosing scheme314

and the target.315

It was seen in Section 3 that the method for finding the required dose316

is guaranteed to achieve the required profile on the range of the matrix317

M , provided the profile corresponding to the initial estimate for the dose318

is close enough to the target. The aim in modifying the series arising from a319

given dose is to minimise the orthogonal projection of the target profile onto320

(ranM)⊥ and therefore enabling a good correspondence between actual and321

target series to be achieved.322
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4.5. Time-series: Constant profile323

While considering the problem of obtaining a given AUC from multiple324

doses it was found that the problem could be reformulated in terms of repro-325

ducing a constant, or piecewise constant, time-series. First the problem of326

achieving a target dose consisting of a constant 10 mmol/m3 (�M) with four327

doses 15 minutes apart is considered. The dosing scheme obtained is 7.67,328

0.08, 0.54, and 0.33 mmol/m3 (�M) and the resulting time series for bound329

nuclear active drug is shown in Figure 7. As was noted for the multiple-dose330

AUC problem the initial slope of the bound drug curve is determined by331

the initial dose, which is influenced for the time-series problem by the first332

target point, yr(t1). This example highlights a limitation of the method for333

finding the doses in that the doses should be constrained to be non-negative.334

If the first time point is too close to zero the resulting first dose results in335

large over-shoot before the second dose is delivered and so a negative value is336

obtained for the second dose. By choosing a sampling of every 10 minutes up337

to 30 minutes, and then every 5 minutes avoids this problem, but this is not338

ideal. From Figure 7 it is seen that there is good correspondence between339

the achieved profile and the target one.340

Considering the graph of the bound drug time series in Figure 7 the ap-341

proximate AUC for the last 50 minutes is 30 mol⋅s/m3 (8.33 �M⋅h). The AUC342

for the first 10 minutes is between 3 mol⋅s/m3 (0.83 �M⋅h) and 6 mol⋅s/m3
343

(1.67 �M⋅h), giving a total AUC of between 33 mol⋅s/m3 (9.17 �M⋅h) and344

36 mol⋅s/m3 (10 �M⋅h). Modifying the target dose to a constant 12.5 mmol/m3
345

(�M) (with four doses 15 minutes apart is considered) yields a dosing scheme346

of 9.87, 0.13, 0.70, and 0.42 mmol/m3 (�M) and the resulting time series for347

bound nuclear active drug is shown in Figure 8. For this dosing scheme the348

approximate AUC is between 41.25 mol⋅s/m3 (11.5 �M⋅h) and 45 mol⋅s/m3
349

(12.5 �M⋅h). The concentration of bound active drug is limited to a max-350

imum value of 12.85 mmol/m3 (�M). Compared with the dosing schedule351

to achieve an AUC of 43.2 mol⋅s/m3 (12 �M⋅h) it is seen that the dose has352

been successfully limited to below 13 mmol/m3 (�M) and yet the target353

AUC has been approximately achieved; the actual AUC for this example is354

42.77 mol⋅s/m3 (11.88 �M⋅h).355

5. Conclusions356

A fixed point approach has been employed to determine dosing schemes357

that determine arbitrary area-under-curve for desired model species, or to358
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determine schemes that give rise to particular time series points for the de-359

sired model species. The approach is a model based one and so applicability360

is dependent on the validation of the proposed model.361

Applying the approach for arbitrarily setting the area-under-curve mul-362

tiple times can give greater flexibility in avoiding large peak values or pro-363

hibitively large doses. However, a draw-back of this computationally easier364

approach is that dependence between doses in a scheme is ignored.365

The approach to reproduce time series data works well in the case of366

reconstructing an unknown dose, or modifying an existing profile. For an367

arbitrary profile the approach does not guarantee to determine a dose that368

produces it. Indeed, such a profile may be outside the range of feasible369

profiles.370
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Figure 1: Schematic of the mathematical model developed by Evans et al. [1] to investigate
the uptake kinetics of TPT in a culture medium containing human breast cells (MCF-7
cell line) in suspension.
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Figure 2: Plots of bound active drug, Ln(t), against time with total area-under-curve of
43.2 mol⋅s/m3 (12 �M⋅h). Plots correspond to single, double and quadruple doses.
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Figure 3: Plot of weighted initial error, E = ∥yd − ŷT ∥/mT , against initial dose estimate,

d̂, for the single-dose AUC problem.
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Figure 4: Plot of bound active drug, Ln(t), against time with target time series points
(square boxes) when reconstructing an unknown dosing scheme.
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Figure 5: Plot of bound active drug, Ln(t), against time with target time series points
(square boxes) when previous target is reduced to 10% of its original value.
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Figure 6: Plot of bound active drug, Ln(t), against time with target time series points
(square boxes) when target from Figure 4 is double its original level.
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Figure 7: Plot of bound active drug, Ln(t), against time with a constant (10 �M) target
time series points (square boxes).
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Figure 8: Plot of bound active drug, Ln(t), against time with a constant target (12.5 �M)
time series points (square boxes).
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