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Summary 

The roles of vegetative dormancy and attachment to surfaces in the survival and 

growth of bacteria in potable water systems were investigated. Species present in the 

water were identified following isolation or direct observation of static batch 

enrichment cultures. Using the latter approach, many prosthecate and other stalked 
bacteria were found. Prosthecate bacteria undergo bi- or poly-phasic life cycles 
involving asymmetric division to produce reproductive cells and dormant swarmer 

cells and their presence in tap water supports the theory that vegetative dormancy is 

an important survival mechanism in this environment. A continuous flow model was 

established to analyse the metabolic activity of planktonic and attached bacteria in 

potable water. A physiological dye, 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), 

was shown to stain active cells specifically in batch cultures of a Sphingomonas sp. 

and Caulobacter crescentus. Unsuccessful attempts were made to identify cellular 

proteins of Sphingomonas sp. cells that were specific to the attached or planktonic 

phenotype. 

By comparing the total bacterial counts in potable water with the total viable counts it 

was shown that a large proportion of the microflora was not cultivable on 

heterotrophic media. However, a proportion of these cells became culturable 

following enrichment with peptone. After ceasing the exogenous nutrient addition 

cellular aggregation occurred, presumably reflecting physiological changes in 

response to nutrient depletion. No clear trend in the activity of attached cells during 

biofilm development was detected. However, firmly attached cells were buffered 

against changes in the chemistry of the water. Growth within biofilms and release 

into the water column elevated the concentration of bacteria in the water. Attached 

cells were resistant to 0.3 mg free chlorine 1"1 added for 3 hrs, although this did 

weaken the architecture of the biofilm. Long term biofilms (one year-old) were 

almost devoid of bacteria - an observation that could not be adequately explained. 

xx 



CHAPTER 1 



1 Introduction 

1.1 Introduction to biofilms 

Since the time of Pasteur conclusions on bacterial growth and physiology have been 

drawn from observations made on cells cultured in nutrient-rich laboratory 

monocultures. The importance of this classical approach to bacteriology cannot be 

overstated - the discovery of penicillin alone constitutes one of the major scientific 

breakthroughs of this century. However, it is becoming increasingly apparent that 

bacteria growing in natural environments are phenotypically distinct from those 

cultured in the laboratory and are usually more robust, showing an enhanced ability 

to survive a range of adverse conditions. The MIC of an antimicrobial agent is often 

much lower when determined against a laboratory-cultured population of cells than 

when applied to environmental bacteria. It is therefore essential to study the 

physiology of natural bacterial cells directly in order to predict their responses to 

physical or chemical treatments. 

There are two fundamental differences between routine laboratory culture of bacteria 

and growth of cells in the environment which lead to the observed phenotypic 

differences: (i) the growth rate tends to be far lower in natural environments where 

nutrients are scarce and competition is abundant and (ii) the vast majority of bacteria 

in natural environments are associated with surfaces. Many aspects of the 

physiology and ecology of slow-growing bacteria have been elucidated by the use of 

laboratory chemostat culture techniques (reviewed by Koch, 1997). However, the 

numerous and complex effects of surface attachment on mixed microbial populations 

remain poorly understood despite a recent upsurge of interest in the field. 

1.1.1 Definitions 

There is currently no consensus of opinion on a general definition of a biofilm. 

Hamilton used the term biofilm to define "the discrete aggregation of organisms, 

generally microorganisms, and their metabolic products at an interface" (Hamilton, 



1987). However, it has been argued that aggregates of bacteria dissociated from a 

solid substratum should be included in the definition as they are enclosed within a 

matrix, interact with other cells and enjoy a similar degree of protection from 

antimicrobial agents as do attached bacteria. More recently, Costerton et al. defined 

biofilms as "matrix-enclosed bacterial populations adherent to each other and/or to 

surfaces or interfaces" (Costerton et al., 1995). This does not include the eukaryotic 

organisms present at surfaces in most hydrated environments or tissue culture cells 

attached to the wall of a flask (Palmer & White, 1997). When considering the 

specific case of potable water systems, the definition proposed by Hamilton (above) 

is perhaps the most useful. This includes bacteria at the air-water interface but 

excludes free bacterial aggregates which do not benefit from the elevated 

concentration of nutrients at interfaces (Marshall, 1980) that provides one of the 

major advantages of attachment in systems where nutrients are scarce. 

The term `glycocalyx' was adopted for the polysaccharide components of bacterial 

cells lying distal to the outer membrane of Gram-negative cells or the peptidoglycan 

of Gram-positive bacteria (Costerton et al., 1981). This definition included two 

major types of surface structure: S-layers and capsules, which could be further 

subdivided into rigid, flexible, integral and peripheral forms. Biofilm matrices 

contain macromolecules other than polysaccharides that are derived from bacteria 

and are important for several diverse functions. These include proteins, nucleic acids 

and lipids. Therefore in this thesis the term `glycocalyx' will refer to the entire 

macromolecular matrix of bacterial origin, not just the polysaccharide component of 

it. The abbreviation `EPS' will denote the exopolysaccharides associated with 

bacterial cells and biofilms. 

1.1.2 A generalised biofilm 

Biofilm structure is highly variable and is influenced by, for example, the types of 

microorganisms present, the availability of nutrients, the rate of flow of fluid over the 

surface and other factors (see Section 1.5 for a more detailed discussion). However, 

certain aspects of surface-associated growth are common to most or all biofilms 
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(Fig. 1.1). Biofilms are heterogeneous systems containing many different 

microenvironments. Cells are held within close proximity and interactions between 

cells occur. Biofilms are dynamic, continuously changing in response to 

environmental fluctuations. The advantages of sessile growth are considered in 

Section 1.2. 

Attachment 
" 

Emmomm- Bulk liquid 
job, 410 

Detachment 

Figure 1.1 A generalised biofilm structure, e. g. a cross-section through a pipe. 

Attached cells are held within a matrix of extracellular polymeric substances (EPS). 

The biofilm is dynamic and attachment and detachment occur continuously. Some 

structural and physiological elements of the biofilm are shown: 1. Water channels 

flowing through the structure can aid the flow of metabolites to cells and the removal 

of waste products, 2. Gradients (e. g. nutrients, pH, 02) occur through the matrix 

providing different microenvironments suitable for colonisation by different bacteria, 

3. Interactions between cells facilitate genetic exchange or recycling of metabolites, 4. 

Cells divide to produce microcolonies. 
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1.1.3 Biofilms in potable water distribution systems 

Biofilms were suggested to have a major influence on the microbiological quality of 

tap water as long ago as 1973 (Characklis, 1973). The first direct evidence for the 

presence of biofilms on the inner surfaces of potable water distribution pipes was 

provided by a survey using scanning electron microscopy (SEM) (Ridgway & Olson, 

1981). It has since been shown that the vast majority of microbial growth in 

distribution systems occurs associated with solid surfaces (van der Wende et al., 
1989). The structure of pipeline biofilms is described in Section 1.5.3, the problems 

arising from them are discussed in Section 1.7 and potential remedies for these 

problems are considered in Section 1.8. 

1.2 Advantages of sessile growth 

Bacteria growing rapidly in conventional nutrient-rich laboratory monocultures 

derive few advantages from surface attachment. Nutrients in the liquid are plentiful, 

there is no competition from cells of other species and the optimal temperature and 

pH are usually maintained to maximise the rate and extent of growth. However, 

conditions in natural environments are never so favourable to bacteria and the 

advantages of attachment to surfaces are such that sessile growth predominates over 

planktonic growth in almost every low nutrient environment (Lappin-Scott & 

Costerton, 1989). The major advantages conferred on cells by attachment are: 

(a) cells are brought closer together, increasing the occurrence of genetic exchange 

and enabling recycling of metabolites, which maximises the total energy yield 

from nutrients in the system; 

(b) cells are protected from antimicrobial agents; 

(c) cells are brought into the area where the concentration of nutrients is greatest; 

(d) attachment enables cells to persist in an environment in the absence of growth. 

This is particularly important since periods of inactivity are one of the key 
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bacterial survival mechanisms in nutrient depleted systems. Surface attachment is 

also a fundamental strategy to allow bacterial persistence in eukaryotic hosts. 

1.2.1 Genetic exchange 

The close interactions between biofilm cells results in a high frequency of 

conjugation relative to that of free-living cells (e. g. Angles et al., 1993). It has been 

suggested that natural transformation is most likely to occur environmentally if DNA 

leaked from a lysed bacterial cell is held within a biofilm matrix (Baur et al., 1996). 

Natural transformation has been demonstrated in at least one biofilm system, the 

river epilithon, and there is concern that it may increase the rate of spread of 

undesirable characteristics through natural ecosystems (Williams et al., 1996). It is 

essential to evaluate the rate of transfer of genetic information to indigenous 

populations before releasing genetically modified bacteria into nature. Any role of 
biofilms in bacteriophage-mediated transduction also remains to be elucidated. 

1.2.2 Metabolic interactions 

Many important natural microbial processes cannot be performed by a pure culture, 
but can be carried out by a mixed microbial consortium. These are termed 

community-level processes and include biodegradation, tooth decay, denitrification, 

methanogenesis, biofouling, food spoilage, natural fermentations, microbially 
influenced corrosion and other processes (Caldwell & Costerton, 1996). Within 

biofilms cells of different species can attain the optimal spatial distribution to 

maximise the efficiency of metabolite exchange. For example, the spatial 

arrangement of members of a biofilm community capable of degrading the herbicide 

diclofop methyl was found to be tightly regulated (Wolfaardt et al., 1994b). A looser 

regulation of spatial association occurred between two toluene-degrading bacteria in 

a seven-species microbial biofilm, presumably since either organism could degrade 

the substrate alone but a synergistic interaction increased the efficiency of the process 

(Moller et al., 1998). Therefore, biofilms can increase the metabolic diversity of the 
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component cells and in turn the metabolic interactions can influence the structure of 

the biofilm. 

The spatial distribution of cells can also be affected by chemical (e. g. 02) gradients 

through the biofilm matrix (Ramsing et al., 1993). However, such gradients will 

only form in thick biofilms and may be of little significance in the open architecture 

of potable water biofilms (see Section 1.5.3.2). Recent reviews have examined the 

range of naturally occurring microbial consortia (Paerl & Pinckney, 1996) or 

proposed novel approaches to the analysis of intact communities (Caldwell & 

Costerton, 1996; Molin & Molin, 1997). 

1.2.3 Cell-cell communication 

Intercellular communication is common amongst bacteria. Peptide signals regulate a 

wide range of cellular mechanisms in Gram-positive bacteria, including 

morphogenesis of Myxococcus xanthus, spore formation by Bacillus subtilis, and 

aggregation and conjugation of Enterococcus faecalis (Kaiser & Losick, 1993). 

Signalling between Gram-negative cells is also common, although in this case the 

process is usually mediated by N-acyl hömoserine lactones (AHLs). Processes 

controlled by these signals include bioluminescence of Photobacterium fischen, 

conjugation of Agrobacterium tumefaciens and antibiotic production by Erwinia 

carotovora (reviewed by Salmond et al., 1995). In many cases the signals are 

secreted constitutively at low levels by cells and are effective only when they reach a 

threshold concentration. They therefore act to enable quorum sensing by bacteria 

(Fuqua et al., 1994; Salmond et al., 1995). The cell densities required to produce a 

response by cells are often higher, than the planktonic cell concentrations found in 

natural environments. For example, 1010 Nitrosomonas europaea cells ml-1 were 

required to produce sufficient AHL to stimulate a lux E. coli reporter system 

(Batchelor et al., 1997). Cell densities as high as this occur only in biofilms or cell 

aggregates, which suggests that in general, quorum sensing may be more relevant to 

biofilm cells than to planktonic populations.. 
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Surprisingly few studies of bacterial cell signalling have concentrated on biofilm 

bacteria and the range of biofilm responses known to be controlled by cell-cell 

communication is consequently limited. However, it has been shown that starved 

attached Nitrosomonas europaea cells recover more rapidly than starved planktonic 

cells after nutrient addition, probably due to accumulation of an AHL (Batchelor et 

al., 1997). There is some preliminary evidence that the strength of attachment of a 

Pseudomonas aeruginosa strain is increased by the accumulation of an AHL within 

the biofilm matrix (Heys et al., 1997). McLean et al. (1997) recently demonstrated 

AHL activity in natural aquatic biofilms, but the physiological role of cell-cell 

signalling was not examined. The strongest evidence that cellular communication is 

important during the formation of bacterial biofilms has come from analysis of 

signalling mutants of Pseudomonas aeruginosa. Biofilms produced by mutant cells, 

deficient in one of two known intercellular signalling pathways, were flat, tightly 

packed and more sensitive to removal by detergent than wild-type biofilms (Davies 

et al., 1998). Further work is required to explore the range of communication 

processes that occur within biofilms and their specificity to individual species within 

mixed consortia. 

1.2.4 Protection 

1.2.4.1 General antimicrobial agents 

Biofilm bacteria are relatively resistant to ä range of antimicrobial agents including 

amoebae, white blood cells, bacteriophage, surfactants, biocides and antibiotics, 

compared to their planktonic counterparts (reviewed by Costerton et al., 1987). 

Several explanations have been proposed to account for this and have been reviewed 

by Brown & Gilbert (1993). These authors concluded that growth rate, nutrient 

limitation, exclusion by EPS and the expression of adherence phenotypes each 

contribute to the observed recalcitrance. It should be noted that the obstacle to 

penetration of antimicrobial agents produced by bacterial exopolymers is not simply 

a diffusion barrier (Nichols et al., 1988 and 1989). Instead the EPS can act as an ion- 

exchange or a reaction matrix to neutralise the agent. This is important since potable 
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water biofilms tend to be open structures that could not effectively retard mass 

transport (see Section 1.5.3). 

The role of EPS in protection of bacteria in infection is complicated since cells must 

evade a wide range of host defence mechanisms. The array of functions of one 

exopolysaccharide, alginate, in protection of Pseudomonas aeruginosa in infection 

has been discussed in intricate detail by Govan & Deretic (1996). 

Care must be taken when using plate counts as the sole method of measuring biocide 

efficacy since this technique is hyper-responsive to disinfection compared with other 

estimates of cellular activity (Stewart et al., 1994; Yu & McFeters, 1994). 

1.2.4.2 Free chlorine and monochloramine 

Residual free chlorine or monochloramine concentrations in distribution pipelines are 

insufficient to prevent bacterial growth in the system (Ridgway & Olson, 1981; 

LeChevallier et al., 1987 and 1988a; van der Wende et al., 1989). Vess et al. (1993) 

demonstrated that recalcitrance of a number of bacterial strains commonly found in 

drinking water to a range of germicides increased when the cells attached to solid 

PVC surfaces. Biofilm bacteria are up to 150 to 3000 times more resistant to 

chlorine and monochloramine than planktonic cells (LeChevallier et al., 1988a, b). 

Monochloramine has been shown to be a slightly more effective residual disinfectant 

than free chlorine against biofilm bacteria (LeChevallier et al., 1988b; Yu et al., 

1993). The efficacy of chlorine was reduced to a greater extent than that of 

monochloramine by the presence of an extensive EPS matrix (Samrakindi et al., 

1997). Even in the absence of cells, EPS can retard the progression of chlorine (Xu 

et al., 1996). These observations suggest that being less reactive than chlorine, 

monochloramine can penetrate the biofilm more easily. However, an apparently 

contradictory study showed that (a) possession of an extracellular capsule per se did 

not increase the recalcitrance of Klebsiella pneumoniae cells to either free chlorine or 

monochloramine and (b) sparsely distributed attached cells were hundreds of times 
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more resistant to free chlorine than planktonic cells (LeChevallier et al., 1988a). It 

seems likely that additional mechanisms act independently of EPS production to 

increase the resistance of attached cells to biocides. The authors suggested that the 

reduced exposure of cells to the aqueous medium resulting from firm attachment of 

one side of the cell to a surface may contribute to recalcitrance to biocides. 

Alternatively, phenotypic changes induced by attachment to a surface could produce 

cells that are relatively resistant to antimicrobial agents. 

Enhanced resistance to antimicrobial agents is one of the major advantages that 

biofilm bacteria possess over monodispersed planktonic cells in potable water and 

must be considered when developing strategies for controlling bacterial growth in 

distribution pipelines. 

1.2.5 Survival in low-nutrient systems 

In most natural environments nutrients are scarce and interfaces play two important 

roles in the growth and survival of bacteria: (a) they provide areas of relatively high 

nutrient concentration (Marshall, 1980) and in certain cases biofilm matrices can 
facilitate nutrient storage (Wolfaardt et al., 1995) and (b) they enable maintenance of 

slowly- or non-growing cells in systems with a limited retention time (for example, 

Cryptosporidium parvum oocysts were retained in a potable water biofilm for many 

weeks (Keevil et al., 1995)). The relevance of the latter point is obviously dependant 

on the preponderance of dormant bacteria in nutrient-depleted systems. There is now 

substantial evidence supporting the theory that the vast majority of bacteria in natural 

environments exist in a dormant state but retain the capacity to grow and divide in 

response to favourable environmental changes. 

1.2.5.1 Vegetative dormancy 

Around the start of the last decade the concept was formed that two distinct types of 

bacteria exist: oligotrophs growing in low-nutrient environments and copiotrophs 

which require high concentrations of nutrients for growth (Poindexter, 1981a, b; 
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Kuznetsov et al., 1979). However, the terms `oligotroph' and `copiotroph' were 

poorly defined and were not readily applicable to natural heterogeneous ecosystems 

(Morgan & Dow, 1985). Schut et al. (1997) recently reviewed numerous studies 

relating to oligotrophy in the marine environment and concluded that 'the 

oligotrophic way of life is a transient characteristic'. Rather than attempt to divide 

all natural ecosystems into two vaguely-defined groups and try to identify the 

differences between them, it seems more logical to look for similarities between the 

mechanisms exhibited by all bacteria to survive in a variety of hostile environments. 

For many decades it has been recognised that cells of particular microbial genera 

such as Bacillus or Clostridium can differentiate to produce spores or cysts capable 

of withstanding extreme conditions (Slepecky, 1972). However, it has only recently 

become apparent that most or all vegetative bacteria also undergo major structural 

and physiological changes in response to stress (Table 1.1). Most studies have 

employed a gradual deprivation of nutrients to bring about the stress. Although the 

early stages of starvation are nutrient dependant, cells eventually conform to a 

`general starvation response' (Siegele & Kolter, 1992). A similar response occurs 

when bacteria encounter other stresses, such as prolonged incubation in low 

temperature (Weichart & Kjelleberg, 1996). Therefore, vegetative dormancy appears 

to be a secondary effect following an initial specific response to the stress 

encountered. This explains why expression of a starvation-induced sigma factor, as, 

results in cross-protection against a variety of other stresses, including heat shock, 

oxidative stress and osmotic shock (Loewen & Hengge-Aronis, 1994; Jenkins et al., 

1990; Jenkins et al., 1988; Yildiz & Schoolnik, 1998; Rockabrand et al., 1998). 
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Adaptation to stress Selected references 

Reduction in cell volume Novitsky & Morita, 1976; Morita, 1985 

Decreased DNA content Novitsky & Morita (1977) 

Nucleoid condensation Baker et al., 1983; Swoboda et al., 1982; 

Robertson, 1996 

Strengthening of cell wall Tuomanen et al., 1988; Nystrom & 

Kjelleberg, 1989; Weichart & Kjelleberg, 

1996 

Reduced cell wall permeability Robertson (1996) 

Increased cell surface 
hydrophobicity 

Kjelleberg et al. (1987) 

Low rate of protein and RNA 

synthesis; no DNA synthesis 

Dow et al. (1983) 

' 

Maintained or enhanced adenylate 

energy charge 

Roth et al., 1988; Emala & Weiner, 1983; 

Porter, 1984 

Reduced proton motive force Kaprelyants & Kell (1992) 

Low respiratory activity Novitsky & Morita (1977) 

Reduced number of ribosomes Wada et al. (1990) 

Table 1.1 The general stress response. Limiting cells of a range of bacterial genera 

for essential nutrients or producing a stress, such as cold storage, brings about a 

universal set of adaptations, listed here. The implications of each characteristic of 

the starved or dormant cells listed are discussed in the text. 

Cell volume reduces in response to starvation by means of a series of reductive cell 

divisions without an increase in biomass (Novitsky & Morita, 1978). It has been 

hypothesised that by increasing the number of cells in this way the probability of 

some of them encountering nutrients is increased (Morita, 1986). A reduction in cell 

volume will increase the surface area/volume ratio, facilitating nutrient scavenging 
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and may protect against grazing predators (Morita, 1985). Starvation also induces 

condensation of the nucleoid, presumably to stabilise the chromosome. In E. coli 

two catalases, HPI and HPII, are under control of as and expression of these enzymes 

helps to prevent oxidative DNA damage (Loewen & Hengge-Aronis, 1994). The cell 

wall synthesised under amino acid starvation has a different structure from that 

synthesised during growth which appears to protect starved cells against autolysis 

(Tuomanen et al., 1988; Nystrom & Kjelleberg, 1989). Kjelleberg & Hermansson 

(1984) demonstrated a starvation-induced increase in the hydrophobic character of 

several strains examined. This may aid adhesion to surfaces (see Section 1.4.2.3), 

although the authors did not find a correlation between cell surface hydrophobicity 

and adhesion in that particular study. 

The physiological responses to stress outlined in Table 1.1 function to maintain a low 

level of endogenous metabolism to enable cells to respond to favourable conditions 

(Siegele & Kolter, 1992). Clearly dormancy is a common secondary response to 

starvation and other stresses amongst vegetative bacteria, but the laboratory studies 

described above provide little information on the prevalence of vegetative bacterial 

dormancy in nature. Instead we must turn. to a related area of research which has 

explored two different phenotypes of bacteria in natural environments: small cells 

(ultramicrobacteria) and the viable but non-culturable (VNC) state. 

1.2.5.1.1 Ultramicrobacteria 

Torrella & Morita (1981) used time-lapse phase contrast microscopy to monitor the 

growth of cells from sea water on nutrient-rich agar. They found two types of 

bacteria: zymogenic strains which enlarged and grew rapidly and small cells (<0.3µm 

diameter) which did not enlarge, but grew slowly on the agar. The authors termed 

the latter cells `ultramicrobacteria' and speculated that they may constitute the 

autochthonous flora in marine environments. Very small cells have subsequently 

been found in a number of natural ecosystems (Roszak & Colwell, 1987). 
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From the point of view of assessing vegetative dormancy in nature it is necessary to 

determine whether these small cells represent dormant forms of normal bacteria, 

normal forms of small bacteria or both. Several accounts of resuscitation and 

enlargement of small cells from estuarine waters or soil have been published 

(MacDonell & Hood, 1982; Bakken & Olsen, 1987; Kjelleberg et al., 1987; 

Kaprelyants et al., 1993). However, it has proved far more difficult to find 

ultramicrobacteria that cannot enlarge under any circumstances, since failure to 

observe enlargement may simply reflect failure to provide the optimal conditions for 

growth (Morita, 1988). Recently Sphingomonas sp. strain RB2256 has been isolated 

from the marine environment and shown to maintain a small cell volume (0.03 to 

0.07 µm3) in media containing concentrations of dissolved organic carbon ranging 

from 0.8 to 800 mg 1' (Eguchi et al., 1996). Irrespective of whether obligate 

ultramicrobacteria exist, it is clear that many types of vegetative bacteria occur in 

natural environments as small, dormant cells. 

1.2.5.1.2 Viable but non-culturable (VNC) cells 

The term `viable but non-culturable' was introduced by Colwell et al. (1985) to 

describe cells of certain Gram-negative species (E. coli, Salmonella and Vibrio spp. ) 

that appeared after starvation and could not form colonies on solid media despite 

retaining the capacity to elongate in response to nutrients. There have since been 

numerous reports of the VNC state in Gram-positive and Gram-negative bacteria 

under environmental conditions (reviewed by Oliver, 1993). Unfortunately the 

terminology is confusing. There have been several examples of resuscitation of VNC 

cells (e. g. Oliver et al., 1995; Oliver & Bockian, 1995; Magarinos et al., 1997; Jones 

et al., 1991; Kaprelyants & Kell, 1992) so instead of `non-culturable' it is more 

accurate to use the term `not immediately culturable' (Barer, 1997). Viability has 

been inferred from a variety of different characteristics including the ability of cells 

to elongate (Rollins & Colwell, 1986; Xu et al., 1982; Byrd et al., 1991; Colwell et 

al., 1985; Oliver et al., 1995), retention of antigens (Turpin et al., 1993), ability to 

uptake methionine (Rahman et al., 1994), pathogenicity (Hussong et al., 1987) or the 

presence of intact cells alone (Kaprelyants & Kell, 1992; Magarinos et al., 1997). 
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Kaprelyants et al. (1993) argued that dormancy must be a reversible state so the only 

correct definition of viability is the ability of a cell to divide. 

In view of the obvious similarities between laboratory-induced dormancy and the 

VNC state (which can also be induced by starvation in low-nutrient laboratory media 
(Kaprelyants & Kell, 1992)) it seems logical that the observed loss of culturability is 

merely an extension of a general stress response. The failure of slowly- or non- 

growing bacteria to respond to high levels of nutrients is reminiscent of the 

phenomenon of substrate-activated death, described over thirty years ago (Postgate & 

Hunter, 1963). Recently two possible mechanisms have been proposed to account 
for the lack of immediate culturability of VNC cells on nutrient-rich media: cell 
death from osmotic shock (Koch, 1997) or death from oxidative damage invoked by 

a sudden increase in respiration prior to synthesis of all the necessary metabolic 

enzymes (Bloomfield et al., 1998). However, it is difficult to believe that bacteria 

would not have evolved mechanisms to cope with these problems. It is possible that 

such high nutrient concentrations are simply not the correct conditions to activate 

dormant cells, but confirmation of this hypothesis awaits analysis of the metabolic 

activity of individual VNC cells following addition of nutrients. 

1.2.5.2 Role of the cell division cycle 

From the above review it is clear that dormancy is common amongst vegetative 

bacteria in nature. Dow et al. (1983) proposed a general mechanism by which entry 

into the dormant state may be regulated as a function of the bacterial cell division 

cycle. The basis of this mechanism was that under conditions of stress the bacterial 

cell cycle involves an asymmetric division producing a reproductive mother cell 

specialised for surface attachment and a dormant daughter cell programmed to 

survive in the fluid phase. The daughter remains inactive until it detects a stimulus, 

possibly an increase in the local nutrient concentration or the presence of a surface, 

whereupon it begins an obligate sequence of maturation steps causing it to become a 

reproductively competent mother cell. This life cycle was shown to occur in at least 

three unrelated prosthecate bacteria and was suggested to be common or universal 
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amongst the eubacteria (see below). The original hypothesis of Dow et al. (1983) has 

been adapted here (Fig. 1.2) to emphasise the relationship between dormancy and 

surface attachment. The mother cell is shown growing at an interface where the 

nutrient concentration is highest and the daughter cell is suggested to function to 

disperse the biofilms. Evidence for this life cycle is presented below. 

Swarmer Reproductive 
cell cycle cell cycle 

ASYMMETRIC 
1)1VICI()N 

4 

OBLIGATE 
1)1FFFRF. NTIATI()N 

(\IAI( ! RAIION) 
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o 

Figure 1.2 A proposed generalised life cycle for bacteria in low-nutrient 

environments. 1. As shown, cell type A is a reproductive mother cell, specialised for 

attachment to a surface by possession of a stalk and a holdfast (prosthecate bacteria), 

by being hydrophobic or by some other mechanism (other bacteria). 2. This cell 

divides asymmetrically, producing a dormant daughter cell (B), programmed to exist 

in the aqueous phase by possession of a flagellum (prosthecate bacteria) and/or by 

some active mechanism to cause release from a surface (other bacteria). 3. The 

daughter cell detaches, leaving the mother cell to immediately initiate another round 

of replication (4). 5. The daughter cell remains inactive and motile until it receives a 

stimulus. This may be attachment to a surface or another stimulus, e. g. increased 

nutrient concentration. It then embarks on an obligate sequence of maturation events 

culminating in gaining reproductive competence (6). 
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1.2.5.2.1 Prosthecate bacteria 

Prosthecate bacteria provide excellent models to analyse the cell division cycle since 
they differentiate into distinct morphotypes which can be correlated with 

physiological activity (Whittenbury & Dow, 1977). Dow et al. (1983) reviewed the 
life cycles of three unrelated prosthecate bacteria: Rhodomicrobium vannielii, 
Hyphomicrobium spp. and Caulobacter crescentus. Although the life cycles of R. 

vannielii and Hyphomicrobium spp. are more complex than that of C. crescentus, all 
three organisms were shown to undergo cell cycles similar to that outlined in 

Fig. 1.2, involving asymmetric division. The inactive daughter cell, termed the `shut 

down' or `growth precursor' cell, exhibited many of the characteristics listed in 

Table I. I. In all three cases the daughter cell was motile, whereas the mother cell 

possessed an holdfast and a stalk. 

1.2.5.2.2 Morphologically indistinct bacteria 

Dow et al. (1983) also suggested that vegetative cell cycles may be widespread 

amongst morphologically indistinct bacteria, citing two aspects of the E. cola cell 

cycle as circumstantial evidence: (a) E. coli cells growing with a generation time 

greater than 60 minutes elongate at one pole only and divide asymmetrically 
(Donachie & Begg, 1970; Begg & Donachie, 1977) and (b) when grown with a 

generation time in excess of 3 hours E. coli lysates contained two distinct types of 

nucleoids differing in their sedimentation coefficients. Since then many other traits, 

characteristic of dormant but not active E. coli cells, have been elucidated (Loewen 

& Hengge-Aronis, 1994; Robertson, 1996), further supporting the evidence for the 

involvement of a biphasic life cycle in growth of this organism in nutrient-limiting 

conditions. 

However, the two cell types appear indistinct microscopically so if they differ in their 

potential to attach to surfaces the differences must be at the molecular level. Allison 

et al. (1990b) showed that E. coli cell surface hydrophobicity decreased with growth 

rate and that cells detaching from biofilms in a membrane elution system were 
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significantly more hydrophilic than those remaining. The relationship between cell 

surface hydrophobicity and surface attachment is reviewed in Section 1.4.3; in 

general, there is a positive correlation between hydrophobicity and surface 

attachment. The evidence of Allison et al. (1990b) therefore supports the 

involvement of the cell cycle model described above in the production of dormant 

E. cola cells. 

The prevalence of dormancy and the ubiquity of the general starvation response 

amongst other vegetative morphologically indistinct bacteria supports the hypothesis 

that the cell cycle-dependant -mechanism for bringing about an inactive state is 

homologous throughout the eubacteria. The demonstration that starvation of 
Pseudomonas aeruginosa and Pseudomonas fluorescens resulted in size reduction, 

an increase in the proportion of motile cells and hence an elevated rate of transport to 

surfaces (Mueller, 1996) is in agreement with the suggestion that inactive cells are 

specifically adapted for the dispersal of biofilms. Release of hydrophilic cells of 
Pseudomonas aeruginosa from biofilms was shown to occur and suggested to be a 
dispersal mechanism (Allison et al., 1990a). A role of dormant cells in biofilm 

dispersal in the marine environment had been postulated a decade earlier (Kjelleberg 

et al., 1987). However, these authors had not proposed a link between cell division 

and the production of inactive cells. Exploring the role of the proposed cell-cycle- 

dependant regulation of dormancy and surface attachment in potable water 

distribution systems is the major aim of the work presented here. 

1.3 Methods for analysis of biofilms 

Before discussing the formation and structure of biofilms it seems pertinent to review 

some of the recent technical advances that have had a significant impact on our 

understanding of biofilm systems. This will not be an exhaustive study of the 

relevant methodology, but will. concentrate on the following four areas in which new 

techniques have recently been introduced: (i) modelling biofilms, (ii) bacterial 

identification, (iii) analysis of the physiology of attached cells and (iv) microscopic 

techniques for observation of biofilm structure. 
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1.3.1 Modelling biofilm development 

The published literature contains numerous descriptions Of in vitro systems designed 

to mimic biofilm growth. Each model of a biofilm system must be tailored to the 

individual needs of the experiment. Use of an inappropriate model produces data 

that is difficult to interpret or even unusable. Some of the advantages and drawbacks 

of models employed to assess the sensitivity of biofilms to antimicrobial agents were 

discussed by Brown & Gilbert (1993). To mimic conditions found in potable water 

distribution pipelines the following features should be incorporated into a laboratory 

system: 

(a) there should be a continuous throughput of water; 
(b) the inoculum should contain a mixed microbial population, preferably the 

complete natural potable water microflora; 
(c) the appropriate physical and chemical conditions should be attained; 

(d) a simple non-disruptive method for sampling biofilms should be included. 

Of course, the significance of each of the above conditions is dependant upon the 

objective of the study. For example, a non-disruptive sampling method is crucial to 

the assessment of biofilm structure. Some of the model systems that have been 

employed, together with their advantages and disadvantages, are shown in Table 1.2. 
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Model Advantages Disadvantages Reference 

Flow cell Can observe biofilms Cannot manipulate de Beer et al. 

as they form samples (1994b) 

RotoTorque Mimics Must disrupt biofilm van der Wende et 

hydrodynamics to sample ad. (1989) 

closely 

Modified Simple flow-through Biofilms not uniform Nickel et al. (1985) 

Robbins model through device 

device Can examine different Impossible to get 

materials coupons flush (alters 

Easy to sample local hydrodynamics) 

Coupons Can control inoculum Hydrodynamic Rogers et al. (1994) 

suspended in Easy to sample conditions differ from 

chemostat those in pipes 

Table 1.2 Models of potable water biofilms. See text for a brief description of 

each model. 

Flow cells, such as that used by de Beer et al. (1994b), allow observation of the 

biofilm as it forms. Liquid is continuously flushed through a cell placed under the 

objective lens of a light or confocal scanning laser microscope. By using time-lapse 

photography it is possible to monitor biofilm formation. This technique is excellent 

for analysis of biofilm structure but is not useful for monitoring the physiology of 

individual cells. van der Wende et al. (1989) established a RotoTorque system to 

mimic the physical and chemical conditions in distribution pipelines, particularly 

hydrodynamic conditions and the changes in water quality along a distribution mains. 

Unfortunately sampling of attached cells required biofilm disruption so no data on 

the structure of biofilms or cellular physiology could be obtained. 
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One of the most widely-used biofilm systems has been the modified Robbins device 

(Nickel et al., 1985). This consists of a pipe of rectangular section, into which 

retractable pistons are inserted. Circular discs are attached to the pistons so that they 

lie flush against the wall of the pipe. The pistons can be withdrawn to remove the 

discs. In theory, this model should allow similar hydrodynamic conditions to those 

present in pipelines in situ to be attained. However, it has proved impossible to make 

the biofilm coupons lie flat against the wall of the tube, causing localised 

perturbations to the flow of the water around the discs. When installing a Robbins 

device into a drinking water distribution system in Sweden, Manz et al. (1993) 

adjusted the orientation of the test samples, making no attempt to leave them flush 

against the pipe surface. 

The model employed by Rogers et al. (1994) used a chemostat to seed a second 

vessel containing removable coupons. This enabled the substratum material to be 

changed easily and allowed tight control over the inoculum. However, the 

hydrodynamic conditions in distribution pipes were not reproduced and the 

experiments employed a defined population of organisms rather than the complete 

natural microflora of potable water. 

It is essential to determine the key criteria for a model before setting up an 

experiment and to keep in mind the potential problems of that system when 

interpreting data. 

1.3.2 Bacterial identification 

Information on natural bacterial populations can be extracted without identification 

of the species or even the genera present. For example, a Gram stain index has 

recently been introduced to profile natural aquatic populations (Saida et al., 1998). 

Although this and similar techniques are simple and applicable to many 

environments, the information they yield is limited. Identification of organisms 

cannot be avoided when studying the microbiology of a system in detail. 

Unfortunately, until the latter part of the last decade bacterial identification has relied 
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almost exclusively on isolation. Even with the use of specialised media, such as R2A 

(Reasoner & Geldreich, 1985) for isolating tap water microorganisms, only a small 

proportion of the total number of species present in natural environments can be 

cultivated in the laboratory (Amann et al., 1995). Most culture techniques therefore 

lead to selection for certain organisms. Only by dilution of samples to extinction can 

this bias be eliminated (Schut et al., 1993). 

Rather than try to remove selectional bias, an alternative approach is to isolate 

bacteria then develop specific molecular probes to quantify the isolated organisms in 

the original sample. Antibodies generated for bacterial isolates have been used for 

their in situ detection in aquatic ecosystems (Faude & Höfle, 1997). Antibodies have 

proved particularly useful for following the fate of allochthonous organisms 

introduced into water or soil microcosms (e. g. Turpin et al., 1993; Xu et al., 1982; 

Buswell et al., 1998). 

However, polyclonal antibodies often do not give reproducible data and production 

of monoclonal antibodies is a costly and laborious process. Instead, nucleic acid 

analysis has created a new branch of molecular microbial ecology which has 

developed rapidly over the last ten years. The bacterial 16S rRNA subunit or the 

gene encoding it is becoming the standard target for in situ bacterial identification. 

Oligonucleotide probes for in situ hybridization can be designed on the basis of DNA 

or RNA sequences amplified directly from natural samples, obviating the 

requirement for isolation of bacteria. Alternatively a top-down approach can be 

employed initially using a universal and three domain-specific probes before closing 

in with probes of increasing specificity. ' In situ bacterial identification without 

cultivation has been the subject of several recent reviews (Amann et al., 1995 and 

1997; Head et al., 1998). 

A notable success in identification of the dominant species in potable water using 

16S rRNA probes has recently been reported. A bacterial isolate from a drinking 

water population was phylogenetically characterised in the laboratory and shown to 

be the dominant microorganism in situ (Kalmbach et al., 1997b). rRNA fluorescence 
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in situ hybridization can also be employed to estimate the physiological activity of 
individual cells (see below). 

1.3.3 Metabolic activity of attached bacteria 

Lazarova & Manem (1995) extensively reviewed techniques for estimation of total 
biomass and total bacterial activity in biofilms. However, Biofilms are 
heterogeneous systems and cannot be accurately described using averaged data. 

Several protocols for examining the metabolic activity of individual attached cells 
that were not considered in the above article are discussed below. 

1.3.3.1 Direct viable counts 

The method of Kogure et al. (1978) has provided the basis for direct estimation of 

the number of viable cells without cultivation in many studies (e. g. Kogure et al., 

1979; Byrd et al., 1991; Xu et al., 1982). This procedure involves incubating 

samples in yeast extract and nalidixic acid. Viable cells elongate but cannot 

synthesise DNA in the presence of nalidixic acid and therefore cannot divide. 

Elongated cells can then be enumerated microscopically after staining with a 

fluorochrome. The DVC technique was adapted by Yu et al. (1993) for staining 

immobilised cells. However, it can be difficult to distinguish between elongated and 

non-elongated cells particularly in mixed microbial populations. Nalidixic acid or 

other antibiotics may have different effects against different species and this must be 

carefully considered before using the technique. When used in conjunction with 

other methods, the DVC procedure can provide useful information. 

An interesting modification of the DVC technique is the ̀ probe active count' method 

for enumeration of active cells (Kalmbach et al., 1997a). This involves incubation of 

samples in an appropriate carbon source and. a division-inhibiting antibiotic, followed 

by hybridization with 16S rRNA-targeted fluorescent probes to detect cells 

containing ribosomes. The incubation step was found to increase the percentage of 
hybridized cells from 50% to 80%. 
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1.3.3.2 Respiratory chain activity 

Zimmerman et al. (1978) first reported use of 2-(p-iodophenyl)-3-(p-nitrophenyl)-5- 

phenyl tetrazolium chloride (INT) to measure the electron transfer chain activity of 

bacteria. Reduction of INT produces an insoluble red formazan crystal which can be 

visualized by light microscopy. In complex biofilms the INT-formazan count can be 

artificially elevated by the inclusion of acellular material. Use of another tetrazolium 

compound, 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) to measure redox activity 

was reported by Severin et al. (1985). The insoluble formazan deposit produced by 

cellular reduction of CTC is fluorescent-orange and can be detected in the absence of 

background interference or on opaque surfaces using a fluorescence microscope 

equipped with the appropriate filter sets. CTC was first used for microbiological 

applications by Rodriguez et al. (1992) and has been employed for estimating the 

activity of attached and planktonic cells in numerous other studies (e. g. Yu & 

McFeters, 1994; Schaule et al., 1993; Yamaguchi & Nasu, 1997). The sites of 

bacterial CTC reduction were found to be the primary dehydrogenases in E. cola, 

whereas INT may also be reduced by ubiquinone and possibly cytochromes b555,556 

(Smith & McFeters, 1997). Addition of nutrients prior to staining with INT or CTC 

significantly increases the extent of formazan production (Blenkinsopp & Lock, 

1990; Smith & McFeters, 1996). Comparisons of INT and CTC staining of 

prokaryotic cells suggest that CTC staining is more tightly linked to respiratory chain 

activity (Smith & McFeters, 1996), but that fluorescent CTC-formazan production is 

subject to inhibition by phosphate concentrations above 10 mmol l', pH above 6.5 

and possibly other factors (Smith & McFeters, 1996 and 1997; Walsh et al., 1995; 

Pyle et al., 1995). The inhibition of fluorescence may reflect production of weakly 

fluorescent or diffuse CTC-formazan rather than a decrease in CTC reduction per se 

(Smith & McFeters, 1996 and 1997). Production of extracellular CTC-formazan 

crystals has been observed in laboratory media in the presence or absence of cells 

(Bovill et al., 1994). 

Although the INT reduction method may be useful for single cells on filters or small 

aggregates, CTC is a more powerful tool for opaque or optically dense samples, 
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including complex biofilms (Posch et al., 1997). Since the exact mechanisms of 
bacterial reduction of tetrazolium dyes and inhibition of staining are not yet clear, it 

is best to combine the use of INT or CTC with other methods of measuring microbial 

activity if possible. 

1.3.3.3 Other measures of metabolic activity 

A variety of methods of measuring in situ bacterial activity with fluorescent probes 
have been reviewed (McFeters et al., 1995). A range of dyes have been reported to 

measure membrane potential, including rhodamine 123 (Kaprelyants & Kell, 1992), 

oxonols (Lopez-Amorös et al., 1995) and DiOC6 (Ratinaud & Revidon, 1996; 

Monfort & Baleux, 1996). These may all be potentially useful for analysing the 

metabolic activity of attached cells, although they have not yet been evaluated for 

this purpose. The total RNA content of cells (Back & Kroll, 1991) or the specific 

amount of rRNA (Poulsen et al., 1993) have also been used as in situ reporters of 

cellular activity. However, the total RNA or rRNA content may vary between 

species and this can cause problems when applying RNA determination to measure 

the activity of mixed populations. A novel approach, based on the ability of cells to 

undergo plasmolysis in response to a pulse application of 1.5 M NaCl, was applied to 

distinguish between viable and non-viable cells of Salmonella enteriditis and 

Pseudomonas fluorescens in biofilms (Korber et al., 1996). Unfortunately this 

technique is limited to defined laboratory cultures since not all bacteria undergo 

plasmolysis. At present the best method for analysing elements of the physiological 

state of bacteria in biofilms is a combination of techniques to provide information on 

different aspects of cellular activity (Yu & McFeters, 1994). 

1.3.4 Microscopy techniques 

Microscopy is, of course, the most powerful tool a microbiologist has for studying 

biofilms. Many of the techniques for analysis of prokaryotic envelopes, reviewed by 

Beveridge (1993), are useful for biofilm studies. An important aspect of examination 
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of bacterial attachment to surfaces is the quantification of attached, usually stained, 

cells. Image analysis can greatly reduce the time required for enumeration of cells 

and can provide exact information on cell size and positioning. The introduction of 

confocal scanning laser microscopy (CSLM) into biofilm research (Lawrence et al., 
1991) has provided a new dimension for digital image analysts. Techniques for 2D 

and 3D digital imaging have been discussed by Caldwell et al. (1993). 

A comprehensive review of the most important microscopic techniques for the 

examination of biofilms was published recently (Surman et al., 1996). 

1.4 Initial attachment to surfaces 

Immersion of a solid substratum in a liquid results in the almost instantaneous 

deposition of a conditioning layer. This is formed by the adsorption of organic 

molecules to the surface. Bacterial attachment takes place in several phases 
(Fig. 1.3). Strong adhesive forces mediated by bacterial surface components have 

little effect until cells are within about 1.5 nm of a substratum. The initial phases of 

attachment are therefore approximately described by colloidal chemical theories such 

as the DLVO theory (van Loosdrecht et al., 1990), with the exception that transport 

to the surface may be an active process if the cells are motile and may involve 

bacterial sensory mechanisms such as chemotaxis. Convective or diffusive forces 

can also bring cells close to surfaces. However, diffusion is slow and may be several 

orders of magnitude slower than active transport or convection (van Loosdrecht et 

al., 1990). 
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Figure 1.3 Schematic representation of the steps in the adhesion of bacteria to a 

solid surface. Cells actively move towards the surface or are passively transported by 

convective or diffusive forces. Reversible binding occurs when cells pass through a 

secondary energy minimum. The depth of this layer is dependant on the charge on the 

substratum and the cell surface and the ionic strength of the medium. Irreversible 

binding occurs when cells enter a primary energy minimum. The strength of 

attachment may be increased by cell surface components including EPS, specific 

adhesins and fibrils or by net changes in physicochemical properties of the cell surface 

such as charge or hydrophobicity. 
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Adhesion of cells occurs in two discrete phases: reversible and irreversible binding 

(Marshall et aL, 1971). Reversible binding is dependant on Van der Waals forces, 

which are usually attractive, and electrostatic interactions which tend to be repulsive 

since bacteria and surfaces are usually negatively charged. The range of the 

electrostatic interactions is reduced in media of high ionic strength. The activity of 

reversibly bound bacteria is often not detected in biofilm studies since they are easily 

removed from the surface during preparative procedures. 

Irreversible binding is caused by close-range interactions between the cell and 

substratum including electrostatic forces, hydrophobic interactions and specific 

receptor-ligand binding. Van der Waals forces become less important as other 

stronger interactions occur. It is the irreversible binding step that is most likely to be 

influenced by bacterial cell surface structures and the physicochemical nature of the 

interface. 

Attachment is influenced by three components, i. e. the substratum, the bacterial cell 

surface and the liquid medium (Fletcher & Pringle, 1985). Failure to control each 

component adequately and variations in the techniques employed to measure 

bacterial surface characteristics have led to apparently contradictory conclusions on 

the importance of individual physicochemical properties in microbial attachment 

(Gilbert et al., 1991; Palmer & White, 1997). In natural environments the situation is 

further complicated by fluctuations in physical and chemical properties of the 

aqueous phase, including temperature, pH and electrolyte concentrations, which 

affect adhesive interactions. However, some interesting findings have emerged from 

numerous studies on the mechanisms of bacterial adhesion. 

1.4.1 Electrostatic interactions 

Fletcher & Loeb (1979) found an inverse correlation between the electronegativity of 

different substrata and the extent of attachment of a marine Pseudomonas sp.. 

Feldner et al. (1983) demonstrated that electrostatic interactions acted to inhibit 

binding of mycoplasmas to glass, but that this effect was overcome by changes in 
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cell shape of metabolically active cells which reduced the area over which the 

electrostatic repulsion was effective. No correlation between charge and irreversible 

binding was found for seven marine isolates when electrostatic interaction 

chromatography was used to measure cell surface charge (Kjelleberg & Hermansson, 

1984). However, non-specific non-ionic binding in the chromatography column may 

have invalidated this technique. Comparison of the electrokinetic potential of cells, 

measured by electrophoresis, and measurements of cell surface hydrophobicity 

indicated that surface charge had relatively little influence on attachment of 

hydrophobic cells to polystyrene beads, but that electronegativity was much more 

important for controlling adhesion of hydrophilic cells (van Loosdrecht et al., 

1987a). This observation was corroborated by studies on E. coli and Staphylococcus 

epidermidis (Gilbert et al., 1991). 

According to the DLVO theory, increasing the ionic strength of the medium should 

reduce electrostatic repulsion effects (van Loosdrecht et al., 1990). van Loosdrecht 

et al. (1989) observed increased irreversible adhesion of several species to 

polystyrene beads with increasing ionic strength. However, observations of single 

cells using a three-dimensional tracking microscope showed no dependence of the 

tendency of motile E. coli cells to approach a glass surface or the amount of time 

cells remained reversibly attached on the ionic strength of the medium (Vigeant & 

Ford, 1997). It will be interesting to see if this finding holds true for other bacterial 

species. 

1.4.2 Hydrophobicity 

Several studies have shown a greater tendency of bacteria to adhere to hydrophobic 

surfaces than to hydrophilic materials (e. g. Fletcher & Loeb, 1979; Pringle & 

Fletcher, 1983; Jones et al., 1996). Marshall & Cruickshank (1971) observed that 

discrete areas of hydrophobicity on Flexibacter sp. and Hyphomicrobium sp. cell 

surfaces caused cells to orient perpendicularly to air-water, solid-water and water-oil 

interfaces. 
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Several simple protocols have been developed to assess the hydrophobicity of 
bacterial cell surfaces, based on partitioning between an aqueous and a hydrocarbon 

phase (Rosenberg et al., 1980), hydrophobic interaction chromatography (Smyth et 

al., 1978), measurement of the contact angle. of water on bacterial lawns (Absolom et 

al., 1983) and salt-induced aggregation (van Oss, 1978). The salt aggregation test is 

only semi-quantitative and does not always correlate with other measures of cell 

surface hydrophobicity (Jones et al., 1991). A reasonable agreement was found 

between contact angle measurements and the behaviour of cells partitioning between 

an aqueous and a hydrocarbon phase (van Loosdrecht et al., 1987b). However, 

Mozes & Rouxhet (1987) only obtained a good correlation between five 

hydrophobicity measurements for very hydrophobic or hydrophilic strains. A similar 

disparity was found between microbial adhesion to hexadecane (MATH) and 
hydrophobic interaction chromatography (HIC) (Flint et al., 1997). It is therefore 

important to consider the validity of the technique employed when drawing 

conclusions on bacterial cell surface hydrophobicity. 

A role of cell surface hydrophobicity has been implicated in the adhesion of many 

different microorganisms to solid surfaces, including E. coli (Smyth et al., 1978), 

Staphylococcus epidermidis (Gilbert et al., 1991), Serratia marcescens (Bar-Ness et 

al., 1988), Rhodococcus rhodochrous (Sunairi et al., 1997), benthic cyanobacteria 

(Fattom & Shilo, 1984) and others (van Loosdrecht et al., 1987b). van Loosdrecht et 

al. (1987a) suggested that increased cell hydrophobicity has relatively little effect on 

bacterial adhesion for hydrophilic strains of bacteria. In agreement with this was the 

finding that adhesion of hydrophilic Bacteroides fragilis strains was independent of 

hydrophobicity (Oyston & Handley, 1990). 

Cell surface hydrophobicity is dependant on the physiological activity of cells and 

increases progressively with growth rate in chemostat cultures (Allison et al., 1990a; 

van Loosdrecht et al., 1987a). In the specific case of the substrate being 

hydrophobic, incorporation of the substrate into the bacterial cell wall may directly 

modulate the hydrophobicity of the cell surface (Marchesi et al., 1994). For other 

substrates the link between hydrophobicity and growth rate must be indirect. Any 
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molecule exposed on the outside of a cell may influence the physicochemical nature 

of the surface, but an attractive hypothesis is that the controlled release of microbial 

surface active compounds could direct rapid alterations in cell surface 

hydrophobicity (Neu, 1996). Alternatively, LPS production may control the 

hydrophobicity of Gram-negative cell surfaces since an inverse correlation between 

LPS production and growth rate has been noted (Brown & Gilbert, 1985), which 

would tend to confer hydrophilic characteristics on slowly growing cells. This is an 

interesting area for future research. 

The importance of modulation of cell surface hydrophobicity for dispersal of cells 

from biofilms has already been discussed (Section 1.2.5.2.2). However, it should be 

emphasised that hydrophobic interactions constitute only a proportion of the total 

adhesive forces involved in development of biofilms (Kjelleberg & Hermansson, 

1984). 

1.4.3 Specific adhesins and pili 

The surfaces of many bacteria contain adhesins which participate in specific 

receptor-mediated binding. These may be single protein molecules or filamentous 

structures termed fimbriae or pili (Saunders et al., 1993). The role of specific 

adherence molecules in bacterial attachment to eukaryotic host cells has been 

extensively analysed. Over 50 adhesins or classes of adhesins have been identified in 

the Streptococci alone (Jenkinson & Lamont, 1997). The combination of specific 

adherence molecules expressed on the surface of oral bacteria determines their exact 

location within the human oral cavity (Jenkinson, 1994). Intra- or inter-generic 

coaggregation enables oral bacteria to attach to existing biofilms (Kolenbrander & 

London, 1993; Whittaker et al., 1996). This phenomenon may also be important in 

aquatic environments. Buswell et al. (1997) have shown that lectin-like adhesins 

mediate coaggregation between bacteria isolated from a potable water biofilm model. 

The nature of the adhesins involved remains to be elucidated. 
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Specific adhesins may also contribute to attachment to inanimate surfaces. Removal 

of exposed proteins from the surface of Pseudomonas fluorescens cells reduced 

adhesion to tissue culture plates and petri dishes (Fletcher & Marshall, 1982). The 

application of molecular strategies to identify bacterial surface proteins involved in 

non-specific adherence to surfaces in natural environments will enhance our 

understanding of the molecular mechanisms of biofilm formation in these conditions 
(Baty eta!., 1996). 

1.4.4 S-layers and capsules 

S-layers are two dimensional crystalline arrays which cover the cell surface of 

members of every taxonomic group of walled bacteria and are almost universal 

amongst the Archaea (Sleytr, 1997). Since S-layers provide a rigid and uniform 

matrix covering the cell surface they may enable localization of adhesins or 
hydrophobic groups to specific-areas of the cell envelope. They may also contribute 

to adhesion by masking the net negative charge of the peptidoglycan in bacterial cell 

walls. 

Possession of capsules is also a widespread feature amongst both Gram-negative and 

Gram-positive bacteria. Capsules are composed of essentially the same extracellular 

polymers that form the glycocalyx of mature biofilms (Section 1.5.1.3). It would 

therefore be expected that capsules will increase bacterial adherence to surfaces. 

However, since capsular exopolysaccharides are generally negatively charged and 

hydrophilic, they tend to inhibit adhesion and aggregation (Wrangstadh et al., 1986; 

Bayer & Bayer, 1994). This apparent paradox may be resolved by analysing the 

range over which the exopolysaccharides act. At long range their negative charge 

and hydrophilicity hinders cells approaching surfaces. When cells are already close 

to surfaces exopolysaccharides may bridge the repulsion barrier to anchor them 

(Geesey, 1982). Binding of cations stabilises the EPS matrix formed. 

It appears that bacteria have mechanisms to regulate EPS production in response to 

surface attachment. Exopolymer synthesis was enhanced in a range of bacteria 
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isolated from the subsurface in response to surface attachment (Vandevivere & 

Kirchman, 1993). Using a reporter construct, the temporal regulation of one of the 

key genes in the polysaccharide production pathway of Pseudomonas aeruginosa, 

algD, was monitored following adhesion of cells to silicone rubber (Hoyle et al., 

1993). Production of EPS was transiently up-regulated immediately after 

attachment. Exopolysaccharide production by a different Pseudomonas sp. and a 

diatom, Amphora coffaeformis, was enhanced by attachment to hydrophilic, but not 

hydrophobic surfaces (Becker, 1996). Attachment was strengthened on these 

surfaces by the polysaccharides. The strains studied adhered only weakly to the 

hydrophobic materials, suggesting that strong attachment was necessary to stimulate 

exopolysaccharide production. 

Clearly exopolymers are important in the attachment of bacteria to surfaces. 

However, it is impossible to make general rules about the function of EPS in the 

initial stages of adhesion since the structures and chemical properties of different 

polymers are diverse. It is certain that in-some situations EPS contributes to the 

recalcitrance of biofilms to removal processes. 

1.5 Biofilm structure 

Biofilms can be considered to be combinations of structural elements including 

single cells, microcolonies and a matrix composed primarily of EPS. Individual 

elements, responsible for many of the advantages that cells derive from sessile 

growth (Section 1.2), are discussed in Section 1.5.1. However, a comprehensive 

understanding of the benefits of biofilm growth requires detailed structural 

information on the complex biofilms assembled from these components. Models 

drawn in the 1980s to describe the structure of biofilms depicted a relatively uniform 

architecture, suggested to be common amongst bacterial biofilms from a wide 

diversity of environments (Hamilton, 1987; Costerton et al., 1987; Lappin-Scott & 

Costerton, 1989). The increased use of non-destructive techniques in biofilm 

research over the last decade has led researchers to question the validity of this type 

of model, particularly for describing biofilms in low-nutrient environments. 
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Wimpenny & Colasanti (1997b) have compared the recent observations regarding 

biofilm structure and proposed three broad groups, based on nutrient availability, to 

summarise the range of biofilms found in nature: (i) thin biofilms (around 5 µm) with 

stacks projecting into the milieu (ii) thicker biofilms with mushroom-shaped 

structures, often fused at the top creating voids and channels running through the 

structure and (iii) densely packed biofilms with few pores or channels. These 

categories are not precisely defined but are useful to provide the basis for 

mathematical predictions of biofilm development. 

1.5.1 Common structural elements 

This section is intended to review the constituent elements of biofilms, the way they 

are influenced by surface attachment and the role each component plays in biofilm 

processes. The mechanisms by which complete biofilms are built from these 

components and the factors that influence the final biofilm structure are considered in 

Section 1.5.2. 

1.5.1.1 Single cells 

Individual cells obviously constitute the primary unit of biofilm structure. A number 

of alterations of bacterial phenotype have been reported to occur in response to 

adhesion which may contribute to their success in biofilm systems. The levels of 

30% of the cellular proteins that could be resolved by 2D gel electrophoresis varied 

between biofilm and planktonic cells of the same species (Costerton et al., 1995). 

Differences between the cell wall protein profiles obtained from Enterococcus 

faecalis cells grown in liquid media or attached to surfaces have been reported 

(Gilbert et al., 1997). Dagostino et al. (1991) employed transposon mutagenesis to 

insert a promoterless lacZ construct into the genome of Pseudomonas sp. strain S9. 

ß-galactosidase activity was demonstrated in a number of transformants growing on 

polystyrene microtitre plates, but not in liquid or on agar media. However, in the 

above examples, the function of the surface-induced phenotypic changes was 

unknown. 
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A reduction in the permeability of the Gram-negative cell wall to cephalosporins in 

slowly growing surface-attached cells indicates that modifications in the composition 

of the cell envelope may contribute to the enhanced resistance of biofilm bacteria to 

antimicrobial agents (Brown & Gilbert, 1985). 

The system that has received the most attention, however, has been the biosynthesis 

of alginate in Pseudomonas aeruginosa. The expression of two genes encoding 

enzymes in this biosynthesis pathway, algC and algD, is up-regulated in response to 

attachment of cells to surfaces or surface-associated growth (Davies et al., 1993; 

Hoyle et al., 1993). This leads to increased production of the exopolysaccharide and 

enhanced resistance of cells to a range of stresses (Section 1.5.1.3). Expression of 
the alg gene locus is under the control of a sigma factor, AIgU, which is homologous 

to other sigma factors including the extreme heat shock sigma factor in E. coli, aE 
(DeVries & Ohman, 1994; Martin et al., 1994; Deretic et al., 1994; Govan & Deretic, 

1996). This suggests the existence of fundamental mechanisms in bacteria for 

sensing surface attachment and coupling it to changes in levels of gene expression. 
However, much work is required to identify other elements of this signalling 

pathway and other responses controlled by AIgU. 

1.5.1.2 Microcolonies 

Division of cells within biofilms results in the formation of cell clusters, termed 

microcolonies. These confer a heterogeneous structure on biofilms, particularly 

those that are not densely populated by bacteria. Penetration of antimicrobial agents 

to the centre of microcolonies is limited by reaction with peripheral cells and 

diffusion inhibition by the densely packed clusters (Lappin-Scott et al., 1992). 

Microcolonies may therefore have an important protective function for the central 

cells. However, diffusion of oxygen and nutrients into microcolonies is also limited. 

Using a microprobe to detect local oxygen concentrations, de Beer et al. (1994b) 

demonstrated the presence of anoxic regions in the centre of microcolonies in an 
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otherwise aerobic biofilm. The cells at the centre of the microcolony are therefore 

likely to be physiologically distinct from those at the edges. 

1.5.1.3 The glycocalyx 

In multicellular eukaryotes, cells are held in place by attachment to an extracellular 

matrix. Processes mediated by extracellular matrix components range from the 

migration of cells during tissue morphogenesis and repair to the filtration of 

molecules passing from blood to urine in the kidney glomerulus. In a similar 

manner, the matrix surrounding microbial cells is an integral part of biofilm systems. 
The basic structure of a variety of bacterial glycocalyces has been described by 

Costerton et al. (1992). Functions of glycocalyces include: 

1. Adhesion of cells to surfaces or to preformed biofilms; 

2. Protection; 

3. Positioning of cells within biofilms; 

4. Nutrient trapping. 

The role of exopolymers in initial adhesion (Section 1.4.5) and protection (Section 

1.2.4) has previously been discussed. Protection of cells results from the capacity of 

the glycocalyx to act as a reaction or ion-exchange matrix. However, probably the 

most important function of the glycocalyx is precisely the opposite: to enable the 

flow of nutrients and oxygen around entrapped cells. The hydrated matrix allows 

cells to integrate into the biofilm at a distance from other preattached cells. The 

glycocalyx retards diffusion to a lesser extent than cellular clusters. 

The reduction of diffusion by exopolymers can lead to the establishment of gradients. 

For example, diffusion of oxygen to the base of biofilms around 200 µm thick was 

inhibited even through areas that were not densely populated (de Beer et al., 1994b). 

Gradients of oxygen or nutrients may in turn lead to gradients of cellular activity, 

increasing from the base of the biofilm upwards. Kinniment & Wimpenny (1992) 

demonstrated a small increase in the adenylate energy charge through horizontal 
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sections of Pseudomonas aeruginosa biofilms from the base upwards. However, in 

this study the adenylate measurements were not correlated with the structure of the 

biofilm so it was impossible to determine the proportion of cells in each section that 

were exposed on the surface of the biofilm. CSLM in combination with fluorescent 

probes will provide a more detailed picture of the gradients of cellular activity that 

occur within biofilms. This technique has been employed to evaluate activity 

gradients established by fleroxacin treatment of Pseudomonas fluorescens biofilms 

(Korber et al., 1994). A similar approach, using fluorescence microscopy to analyse 
biofilm sections, was employed to demonstrate gradients of alkaline phosphatase 

expression within biofilms (Huang et al., 1998). 

Glycocalyces can trap nutrients (Wolfaardt et al., 1994a) and metal cations (Lünsdorf 

et al., 1997). Costerton et al. (1992) have suggested that the Gram-negative 

periplasmic space may trap protons and may be two full pH units lower than the 

surrounding milieu. In view of the negative charge on many exopolysaccharides, it is 

tempting to speculate that EPS`may also act to retain protons extruded from cells by 

chemiosmotic pumping. In support of this is the demonstration that metal ion 

binding to exopolysaccharide capsules is reduced by conditions of low pH, 

suggesting that protons can compete with metal cations for binding to negatively 

charged groups in these polymers (Geddie & Sutherland, 1993). 

1.5.1.4 Channels and voids 

Mass transport may be enhanced in some biofilms by interstitial voids running 

through all depths of the matrix. These have been demonstrated using CSLM with or 

without particle image velocimetry using fluorescent latex spheres (de Beer et al., 

1994a, b; Stoodley et al., 1994; Lawrence et al., 1991). Flow of liquid through voids 

and channels may aid distribution of nutrients and removal of waste products. 
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1.5.2 Environmental influences on biofilm structure 

1.5.2.1 Nutrients 

The proposal of Wimpenny & Colasanti (1997b) (see above) that nutrient loading is 

the primary determinant of biofilm structure was supported by a compilation of 

structural data from a range of natural biofilm systems, by observations on the 

morphologies of colonies on solid media containing different nutrient concentrations 

and by predictions made using a cellular automaton model. These authors suggested 

that at very low substrate concentrations, the substrate at the base of the biofilm is 

rapidly used up and competition between cells results in the formation of stacked 

structures. At very high substrate concentrations it is space at the base of the biofilm 

which becomes the limiting factor and biofilms become very densely populated. 
This appears to be an excellent starting point for developing cellular automaton 

models and the resemblance of structures predicted even by very simple models to 

natural biofilms is remarkable. 

It should be noted that substrate diffusion is not always the primary means of nutrient 

mass transfer in biofilms. Convection may be more important than diffusion in many 

biofilms, particularly at high flow velocities (de Beer & Stoodley, 1995) and 

substrate diffusion does not occur in photosynthetic biofilms. However, the mode of 

nutrient distribution will not greatly affect the predictions of cellular automata. 

There are situations in which dynamic changes in the rate of nutrient flow determine 

the positioning of cells. Thus a web-like structure was formed by cells in porous 

sandstone media following pulsed nutrient injections (Paulsen et al., 1997). A more 

complex model would be required to predict the structure of this type of biofilm. 

Many other environmental factors also play a role in the determination of biofilm 

structure. Interactions between cells of different species are clearly important since 

monospecies biofilms are invariably up to an order of magnitude thinner than those 

formed from binary or mixed populations (Murga et al., 1995; Peyton, 1996). In 

natural biofilms numerous intercellular interactions occur (Section 1.2.2) which 

undoubtedly influence the overall structure to some extent. Some observations on 
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other factors that affect biofilm architecture are reviewed below. In most cases the 

data have been obtained from artificial laboratory systems so their possible relevance 
to newly-forming or mature potable water biofilms can only be inferred. 

1.5.2.2 Flow conditions 

van Loosdrecht et al. (1995 and 1997) have suggested that biofilm structure is 

mediated by a combination of substrate concentration gradients at interfaces and 
hydrodynamic shear. Using a biofilm airlift suspension reactor these authors 

showed that at a constant substrate concentration different biofilm architectures could 
be formed by varying the shear rate. It was postulated that protruding structures 

would be removed in high shear conditions. However, increasing shear also 
increases eddy diffusion rates and consequently raises the substrate concentration in 

the biofilm (Wimpenny & Colasanti, 1997a). 

Flow characteristics can influence the ordering of cells on surfaces. Increasing 

laminar flow conditions caused Pseudomonas sp. cells to align in the direction of 

flow. When the flow became turbulent this general order was lost (Rao et al., 1997). 

Stoodley et al. (1998) have observed streamer structures in turbulent flow conditions. 

These dissipate energy by oscillating and are therefore relatively resistant to shear 

stress. The influence of flow conditions on the structure potable water distribution 

system biofilms may be resolved by analysis of in situ biofilms at different points in 

the pipelines. 

1.5.2.3 EPS 

A direct correlation between EPS production and microcolony formation has been 

demonstrated using two mucoid strains isolated from freshwater and a non-mucoid 

derivative of one of them (Allison & Sutherland, 1987). Microcolonies encased in 

EPS were also formed in binary population biofilms of Pseudomonas aeruginosa and 

Klebsiella pneumophila (Stewart et al., 1995). Therefore EPS deposition tends to 

increase structural heterogeneity in biofilms. 
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1.5.2.4 Electric currents and pH 

Electric fields can increase the efficacy of biofilm removal by antibiotics (Costerton 

et al., 1994), although understanding of the mechanism for this action has remained 

elusive. It has recently been demonstrated that oscillating electric currents cause pre- 

existing biofilms to expand and contract. A biofilm developed on platinum wire 

electrodes expanded by approximately 4% when the wire was cathodic, but 

contracted to 74% of the original thickness'when the wire became anodic (Stoodley 

et al., 1997). This effect was reproduced by adjusting the pH of the medium. The 

biofilm thickness was unaffected by raising the pH from pH 7 to pH 10, but reduced 

to 69% of the original thickness at pH 3. A similar effect of pH was noted by van der 

Mei et al. (1994). The diffusion coefficients of cells with structural surface features, 

such as fibrils or fuzzy coats, were increased at pH 2 relative to pH 7 due to collapse 

of the surface features. The collapse of biofilm structures or surface features was 

presumably caused by loss of stabilising electrostatic interactions between charged 

acidic groups in the fibrils, EPS or cell envelopes. 

1.5.2.5 Substratum hydrophobicity 

Biofilms developed by an hydrophobic marine bacterium, SW5, showed markedly 

different morphologies on hydrophobic and hydrophilic substrata (Dalton et al., 

1994). Therefore substratum hydrophobicity may affect biofilm structure but it is 

difficult to determine the net effects in a complex microbial ecosystem containing 

species with a wide variety of cell surface characteristics. 

Other factors including temperature, chlorine concentration, seasonal fluctuations 

and grazing may undoubtedly affect the architecture of biofilms. The recent 

advances in the development of non-destructive microscopic techniques (Section 

1.3.4) will aid empirical assessments of the importance of each of these conditions in 

determining the final biofilm structure. 
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1.5.3 Potable water biofilms 

1.5.3.1 Species present 

Before considering how the above discussion relates to observations made on the 

structure of potable water biofilms it seems pertinent to examine the types of bacteria 

commonly found in drinking water distribution systems. Since isolation procedures 

extract only a small proportion of the species present in natural environments, direct 

observations on bacterial diversity in potable water are discussed. For a 

comprehensive analysis of freshwater bacteria the reader is referred to Holt et al. 
(1994). 

1.5.3.1.1 Routinely isolated bacteria 

Research into the species present in potable water has generally focused on detection 

of indicator organisms and pathogens (reviewed by Baker, 1994). However, it is 

becoming clear that a good understanding of all the bacteria present in potable water 

systems is essential in order to predict the outcome of water treatment procedures. 

Although molecular techniques for the identification of bacteria in situ have 

advanced rapidly in recent years (Section 1.3.2), most of the current knowledge of 

the species present in drinking water originates from studies involving isolation of 

bacteria. Twenty genera of bacteria that have been found in drinking water are listed 

alphabetically in Table 1.3. It is important to note that this table does not reflect the 

in situ abundance of each genus and is biased for three reasons: 

(i) isolation selects for certain organisms; 

(ii) at least two of the five reports cited were initiated to study problematic drinking 

water systems so the number of pathogens and coliforms is over-represented; 

(iii) identification is also selective unless every strain isolated is identified. From 

most of the reports it is not clear what proportion of the isolated strains were 

identified. However, Buswell et al. (1997) identified just four of twenty isolates. 
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Table 1.3 Bacterial genera isolated from potable water systems. 

Bacterial genus Reference Bacterial genus Reference 

Acinetobacter 1,3,4 Escherichia 4 

Actinomycete 3 Flavobacterium 1,3,4 

Aeromonas 3 Klebsiella 4 

Agrobacterium 4 Legionella 3 

Alcaligenes 1,4 Methylobacterium 1,5 

Arthrobacter (1) 4 Micrococcus 1,4,5 

Bacillus 194 Moraxella 4 

Brevundimonas 5 Mycobacterium 2 

Corynebacterium (1) 4 Pseudomonas 1,3,4,5 

Enterobacter 4 Sphingomonas 1,3 

Footnotes 

a1 -Percival et al. (1998). 

2- Schulze-Robbecke et al. (1992). This was a specific analysis of 

mycobacteria in biofilms. 

3- Rogers et al. (1994). This study employed a natural population from the 

sludge at the base of a calorifier implicated in an outbreak of 

Legionnaires' disease to seed a potable water biofilm model. 

4- LeChevallier et al. (1987). A distribution system that had been troubled 

by repeated coliform detection was examined. 

5- Buswell et al. (1997). 

b Generic identification was not performed. 

c Identification did not distinguish between the corynebacteria or arthrobacter 

groups. 
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Strong evidence that our understanding of the total microflora of drinking water is 

still rudimentary is emerging from studies using 16S rRNA sequencing for bacterial 

identification. In a recent investigation, eight strains isolated from potable water on 

R2A medium were phylogenetically characterised by sequencing and analysing the 

genes encoding 16S rRNA. None of these isolates could be placed in established 

species on the basis of sequence homology (Kalmbach et al., 1997b). 

1.5.3.1.2 Stalked and appendaged bacteria 

A few bacteria can be identified without isolation on the basis of cell morphology 

alone. Planctomycetes and prosthecate bacteria account for most of these 

recognisable cell types, although a few strains form characteristic chains or helical 

structures (e. g. Gallionella sp. or Seliberia sp. ). The prosthecate bacteria are 

particularly useful models for cell cycle studies, since morphological cell type 

expression is tightly regulated in the cell cycle and correlates with the physiological 

state of the cell (Section 1.2.5.2.1). 

Morphologically distinct bacteria, including planctomycetes and prosthecate bacteria, 

have often been observed in a variety of habitats including sea water, brackish water, 

fresh water rivers and lakes, soil and sewage (Staley et al., 1992; Hirsch, 1974; 

Moore, 1981). However, observations of these organisms in chlorinated water 

supplies have been relatively rare, presumably since few investigators have searched 

for them. In the first documented study of potable water distribution network 

biofilms, (Ridgway & Olson, 1981) observed Gallionella sp. and 

Prosthecomicrobium sp. attached to the walls of distribution pipes. Another 

presumptive identification of Gallionella sp. in mains water biofilms was made 

recently (Percival et al., 1998). After concentration of potable water by 

centrifugation, Manz et al. (1993) observed organisms resembling Caulobacter, 

Hyphomicrobium and Ancalomicrobium spp.. However, only rod-shaped bacteria 

and a few spirilla were observed in biofilms in this study. Sly et al. (1988) observed 

colonisation of sampling devices by budding hyphal bacteria. 

42 



The lack of information on appendaged bacteria in potable water is surprising in view 

of the fact that these organisms are commonly observed in the rivers and lakes that 

seed drinking water systems. It appears that the inclination to study microorganisms 

that can easily be isolated or are pathogenic has led to gaps in our understanding of 

the overall ecology of potable water. 

1.5.3.2 Structure of potable water biofilms 

At present the best model of the structure of potable water distribution system 

biofilms is that proposed by Keevil et al. (1995). This group applied a novel 

microscopic technique, episcopic differential interference microscopy (EDIC), to 

examine biofilms formed by a natural microbial population in a two-vessel chemostat 

model (Walker & Keevil, 1994). This non-destructive procedure allowed real-time 

observation of biofilms on glass surfaces in flow cells. Stacks protruding from the 

biofilms were clearly apparent as was grazing by protozoa. The structure of the 

biofilm observed is represented diagramatically in Fig. 1.4. Although the 

microscopy technique produced excellent images, it should be stressed that the 

biofilms were developed in a model system. In situ analysis is required to confirm 

that this structure predominates in drinking water pipelines. 
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Figure 1.4 Schematic representation of a cross-section through a potable water 
biofilm (adapted from Keevil et al., 1995). An open architecture exists with a thin 

basal layer and stacks projecting into the water. Protozoa move between these stacks 

and graze on the biofilm. 

Most cells in this structure lie within about 5 µm from the biofilm-water interface and 

are therefore potentially prone to release from the biofilm by active or passive 

processes. These detachment mechanisms are discussed in the following section. 

1.6 Detachment and dispersal 

In order to colonise remote locations bacteria must be able to detach from surfaces 

(Gilbert et al., 1993). Several proposed mechanisms for bringing about this 

detachment are reviewed in Section 1.6.2. The possibility that active detachment is 

linked to the cell cycle has been considered in Section 1.2.5.2 and is part of the central 

theory to be tested in this project. In addition to active release, in certain 

circumstances cells may be detached from surfaces by forces acting on the biofilm. In 

potable water systems this passive release may have a considerable impact on the 

quality of the water, particularly if the cohesive forces in the biofilm are loosened by 

the pulse addition of a disinfectant such as chlorine. 
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1.6.1 Passive detachment 

Passive detachment is generally considered to be the result of hydrodynamic forces 

(Applegate & Bryers, 1991) or abrasion (Gjaltema et al., 1997). In drinking water 

pipelines abrasion is unlikely to occur to a great extent, but grazing by protozoa may 

also contribute to the release of biofilm material. 

In turbulent flow conditions, which may occur in sections of potable water 

distribution pipes, cells are continuously released from the biofilm due to 

hydrodynamic shear (Section 1.5.2.2). Only the cells lying at the surface of the 

biofilm are affected by this process. Random sloughing events may also occur which 

result in the removal of large chunks of the biofilm and can even dislodge the cells 

adjacent to the substratum. Sloughing may occur after the production of bubbles 

within the biofilm, for example by nitrogen formation by denitrifying bacteria or by 

production of gas at the surface of an electrode. Using carbon and oxygen limitation 

to modulate the amount of EPS in Pseudomonas putida biofilms, Applegate & 

Bryers (1991) found that increased amounts of EPS in the biofilm led to reduced 

shear but increased sloughing. Presumably the strong cohesive forces of the EPS 

caused increased frictional resistance leading to catastrophic sloughing events. 

The role of protozoa in potable water systems is only beginning to come under 

scrutiny. Protozoa have been shown to swim between biofilm stacks (Keevil et al., 

1995) and direct evidence for protozoan grazing activity in model distribution system 

has recently been published (Sibille et al., 1998). In theory grazing at the base of a 

stack could result in release of most of the structure into the water column, but the 

contribution of protozoa to passive detachment has not yet been determined. 

1.6.2 Active release 

The molecular basis of de-adhesion has been discussed by Neu (1996). Shedding of 

molecules or structures (i. e. fimbriae) involved in adhesion will cause release of cells 

from surfaces. Neu & Marshall (1991) have demonstrated that cells leave ̀ microbial 
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footprints' after detaching from surfaces and have suggested that analysis of these 
footprints should reveal the important interactions involved in adhesion. 
Alternatively, production of enzymes (Lee et al., 1996) or emulsans (Rosenberg et 

al., 1982) may free cells from EPS or hydrophobic interactions respectively. 

Any of the above mechanisms could in theory be tightly regulated by cell cycle 
events, although this possibility has not yet, been addressed. A direct change in the 
hydrophobicity of the E. coli cell surface has been suggested to account for the 

specific release of daughter cells from membranes (Allison et al., 1990b; Gilbert et 
al., 1993). In prosthecate bacteria, attachment is mediated by the production of a 
holdfast which is developmentally regulated. The genetic basis of this system is 
becoming clear (Kurtz & Smith, 1994) and it will be interesting to see if homologous 

regulatory systems exist in other bacteria. 

1.7 Problems arising from potable water biofilms 

The major concern arising from the presence of distribution pipeline biofilms is their 

potential to act as pathogen reservoirs. Biofilms can also contribute to corrosion and 
blockage of pipes, taste and odour complaints and possibly the presence of 

unacceptable levels of endotoxins in the water. 

1.7.1 Biocorrosion and blockage 

Microbial growth in biofilms can cause the biodegradation of a variety of materials 
including many of the metals routinely used in water mains and household 

installations. Corrosion occurs as a result of anaerobic conversion of protons to H2 at 

a metal surface, often by sulphate reducing bacteria (SRB). The reduction of a 

nearby metal provides the electrons required for this reaction. Sulphides produced 

also react with the metal. Microbially influenced corrosion of metals is therefore a 
direct consequence of biofilm heterogeneity in two planes. Vertical 02 gradients 

allow the maintenance of anaerobes at the metal/biofilm interface and horizontal 

heterogeneity results in the formation of corrosion cells which lead to localised pit 
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formation. Deposition of EPS alone is sufficient to generate a corrosion potential, 
but corrosion is far more extensive in the presence of an appropriate microbial 

consortium (Steele et al., 1994). For a clear and concise description of the 

mechanism of biocorrosion see Lappin-Scott & Costerton (1989) or Geesey (1991). 

Microbially influenced corrosion of pipes carrying potable water has often been 

observed. For example, the presence of a corroding consortium was detected in 

tubercles found on a cast iron distribution pipeline in Columbus, Ohio (Tuovinen & 

Hsu, 1982). A range of anaerobic bacteria were isolated from the tubercle, including 

SRB. Unidentified aerobic heterotrophs were also present, presumably providing the 

anaerobic conditions required for the corroding organisms. Copper pipes in domestic 

water installations are also subject to biofouling. Stainless steel has been suggested 

as a possible alternative material for domestic pipes. In a recent study minimal 

corrosion of stainless steel pipes was found after exposure to a continuous flow of 
drinking water for one year (Percival et al., 1998). However, biofilms containing 

metal ions were present on all the test coupons analysed in this investigation. It was 

assumed that the metal ions originated from the substratum. Microbial activity has 

been implicated in the corrosion of stainless steel in deionized water systems (Jain, 

1995). 

Certain species of bacteria in potable water biofilms are capable of oxidising metals, 

resulting in insoluble deposits on the pipe walls which lead to constriction and 

reduction of the efficiency of water distribution. Thus iron deposition has been 

observed in the presence of Gallionella sp. (Ridgway & Olson, 1981) and 

manganese, iron and calcium was deposited onto surfaces by budding hyphal 

bacteria, presumably Hyphomicrobium or Pedomicrobium sp. (Sly et al., 1988). 

1.7.2 Chlorine assimilation 

The chlorine residual of chlorinated potable water decreases as the water moves away 

from the treatment plant due to (i) the intrinsic instability of free chlorine and (ii) 

assimilation by biofilms. In a large scale study of a drinking water utility in New 
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Jersey, LeChevallier et al. (1987) found that the species diversity in the water and the 

coliform count increased as water flowed further down the line. Assimilable organic 

carbon (AOC) was utilised by bacteria in the mains pipelines. This investigation 

clearly demonstrated that the microbiological quality of water deteriorates as the 

water flows along distribution pipes. Chlorine can also react with metal oxides in 

biofilms so biocorrosion may aid the ability of the corroding consortium to evade the 

chlorine residual (LeChevallier, 1991). 

1.7.3 Harbouring of indicator organisms and pathogens 

The study by LeChevallier et al. (1987) was instigated after a water utility had 

experienced problems from the repeated detection of coliforms in the network. Since 

the coliform concentration was one of the parameters routinely analysed to indicate 

the microbiological quality of the water, the chronic presence of these bacteria in the 

distribution system would mask a true breakdown of treatment processes and was 

therefore unacceptable. However, none df the control measures assessed in the 

study, including maintenance of a free chlorine residual of 1 mg 1'1, flushing or 

pigging the pipes, was effective in removing the coliforms. 

Although the persistent presence of indicator organisms in mains water can be a very 

costly nuisance, it is the maintenance of pathogens in distribution network biofilms 

that is of most concern to the water industry. Many recent studies have demonstrated 

extended survival of bacterial pathogens in biofilms formed by drinking water 

bacteria. A syntrophic interaction enabled a pathogenic E. coli strain unable to 

degrade benzoate to grow within a biofilm of a benzoate-degrading water bacterium 

in a laboratory reactor fed only with benzoate (Szewzyk et al., 1994). Legionella 

pneumophila cells were shown to survive within a drinking water biofilm in the 

absence of host cells (Rogers & Keevil, 1992). The persistence of Campylobacter 

spp. was considerably enhanced in the presence of the autochthonous drinking water 

microflora compared to sterile microcosms (Buswell et al., 1998). The factors 

affecting the survival of allochthonous bacteria in aquatic systems have recently been 

reviewed (Barcina et al., 1997). 
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The survival of non-bacterial pathogens in potable water biofilms is only beginning 

to be studied. Viruses are the etiological agent responsible for more than one-third of 

waterborne disease outbreaks in North America (Cubitt, 1991) or in Europe (Hunter, 

1994), but very few investigators have searched for viruses in biofilms. One 

exception is a recent study where poliovirus-1 was shown to accumulate within 

biofilms in a pilot-scale distribution system (Quignon et al., 1997a, b). This 

increased the viral residence time in the system by roughly three times but did not 

reduce susceptibility of the virus to chlorine. Protozoa can also cause waterborne 

diseases. Of particular concern are Giardia spp. and Cryptosporidium parvum. A 

single outbreak of cryptosporidiosis affected over 400,000 people in Milwaukee, 

USA in 1993 (MacKenzie et al., 1994). It has been shown that C. parvum oocysts 

can survive in biofilms for many weeks in an infectious state, leading to the 

suggestion that sloughing of fragments of the biofilm may be the source of the many 

sporadic cases of unknown origin (Keevil et al., 1995). 

Improved molecular techniques for the in situ detection of pathogens will 

undoubtedly increase the number of findings of waterborne pathogens in distribution 

systems. It is a challenge for the water industry to find new methods for preventing 

unwanted organisms from becoming sequestered in biofilms. 

1.7.4 Taste, odour and colour problems 

Other unwanted organisms that may be harboured within potable water biofilms 

include those species that cause strong tastes or odours. For example, actinomycetes 

are commonly found in drinking water and have been linked to taste and odour 

complaints (Berman, 1973). However, the majority of taste, odour and colour 

problems in tap water probably arise from leaching of metal ions into the water as a 

result of the biodeterioration processes discussed above. 
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1.7.5 Endotoxin release 

One other potential problem arising from the presence of bacteria in distribution 

pipelines is that of endotoxin release into the water. Endotoxins are heat stable LPS- 

protein complexes derived from the outer membrane of Gram-negative bacteria, 

including cyanobacteria. They have been implicated in a variety of human diseases 

including asthma, dermatitis and toxic shock syndrome. At present the most 

effective assay for the detection of endotoxins is the Chromogenic Limulus 

Amoebocyte Lysate Assay (Grabow et al., 1991). Low levels of endotoxins are 

routinely detected in drinking water and are not removed by distillation or 

sterilization with steam or ethylene oxide. This may cause problems when distilled 

water is used for kidney dialysis machines'and intravenously infused nutrients. In 

addition, several cases of gastrointestinal disease have been linked to cyanobacterial 
blooms in drinking water reservoirs (Hunter, 1995). However, the overall health 

implications of endotoxins in drinking water remain unclear. 

The endotoxin concentration is reduced during water treatment, although some 

treatment processes, notably filtration through granular activated carbon, can actually 

increase the amount of endotoxins in the water (Burger et al., 1989). As yet no 

studies have specifically addressed the issue of the contribution made by distribution 

pipeline biofilms to the endotoxin concentration in tap water and the subsequent 

impact on the health of the consumer. 

1.8 Control and manipulation of biofilms. 

It is not realistic to aim for complete and sustained exclusion of bacteria from water 

distribution systems. Removal of bacteria from pipes or installation of new pipes 

presents clean surfaces for colonisation by bacteria in the water column, which in 

turn leads to a defined succession of organisms before a mature biofilm becomes 

established. Therefore in order to minimise the diversity of bacteria released from 

biofilms into drinking water it is more appropriate to try to manipulate existing 

biofilms than to aim to dislodge mature biofilms and build a defined population on 
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the clean surface. Attached cell systems are commonly used in industry to carry out 
bioremediation of polluted soil or wastewater and to treat drinking water. Some of 

these systems are discussed in Section 1.8.2 with a view to targeting potential areas 
for the manipulation of existing distribution pipeline biofilms to carry out beneficial 

processes (Section 1.8.3). However, when unwanted organisms become integrated 

into biofilms removal of at least part of the attached population is essential and it is a 

review of some existing and potential methods for biofilm removal that begins this 

discussion of the control and manipulation of biofilms. 

1.8.1 Removal of attached bacteria 

1.8.1.1 Physical methods 

There are currently two physical methods in use for the removal of attached cells 

from the surfaces of distribution pipes. Flushing involves increasing the rate of flow 

of water dramatically to dislodge bacteria by hydrodynamic shear. This method is 

cheap and can easily be applied to large sections of pipeline. The alternative is 

pigging, whereby swabs are sent through sections of the pipe to mechanically disrupt 

biofilms. This procedure removes up to 95% of the attached cells (LeChevallier et 

al., 1987), but requires opening the mains pipes to insert and remove the swab. This 

can be a very costly and time-consuming process if biofilms are to be removed from 

long sections of pipe. Although flushing and pigging remove large numbers of 

attached cells, the biofilm regrows within around a week with little change to the 

bacterial population (LeChevallier et al., 1987). 

Of the new physical techniques that are becoming available, the use of ultrasound 

carries the most promise for control of distribution system biofilms. Ultrasound 

creates bubbles of high energy that cause biofilm disruption by cavitation. In a 

recent study short bursts (30 sec) of ultrasound at a frequency of 150 kHz proved 

effective for removing biofilms of Proteus mirabilis along 50 cm of the inside of a 

glass pipe, 18 mm in diameter (Mott et al., 1997). Of course the dimensions over 
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which the effects of the ultrasound are transmitted must be increased dramatically for 

this technology to be of use in distribution systems. 

Pulsed laser beams (Sadoudi et al., 1997) and electric currents in combination with 

antibiotics (Costerton et al., 1994; Jass & Lappin-Scott, 1996) have been shown to 

increase the efficiency of elimination of biofilm bacteria, but it is difficult to see how 

these technologies could be applied to distribution biofilms. 

1.8.1.2 Chemical treatments 

Chemical treatments for the inactivation of biofilm bacteria have been considered 

previously (Section 1.2.4). At least two mechanisms have been shown to enhance 
biofilm removal independently of bactericidal effects. 

A combination of two polysaccharide-lysing enzymes, a mutanase and a dextranase, 

caused a 1-2 log drop in the number of adherent cells present in model plaque 

biofilms (Johansen et al., 1997). The use of enzymes for the degradation of the EPS 

material binding cells to surfaces is a particularly attractive approach since enzymes 

have high specificity and could therefore release one unwanted strain without total 

disruption of the biofilm. In view of the open architecture of potable water biofilms 

penetration of highly specific enzymes may not be a major problem. However, 

enzymes are expensive to produce and tend to be less effective at the relatively low 

temperatures of drinking water than at 37°C. 

Since EPS is co-ordinated by metal ions, ion chelation should lead to a loosening of 

the biofilm matrix. Turakhia et al. (1983) demonstrated immediate detachment of 

cells from a biofilm upon chelation of Ca2+ ions with EGTA. Removal was not 

complete, suggesting that additional mechanisms were acting to hold cells to the 

surface. The potential of metal ion chelators to act synergistically with other 

treatments to aid biofilm removal in drinking water systems has not been assessed. 

Depletion of metal ions as part of water treatment may help to prevent the formation 

52 



of stable EPS matrices, although it could lead to increased rates of metal ion leaching 
from the substrata. 

1.8.1.3 Biological control 

It has been suggested that protozoan grazing may be the main factor that determines 

the removal of allochthonous bacteria from aquatic systems (Barcina et al., 1997). 

The rate of grazing is dependant on the strain and metabolic state of the prey. Gram- 

negative bacteria are more rapidly eliminated than Gram-positive cells because they 

are more easily digested (Iriberri et al., 1994). Large, active cells are grazed 

preferentially to small cells (Gonzalez et al., 1993). A recent survey of protozoa in 

distribution systems found a very low 'grazing activity against biofilms and 

undetectable levels of grazing in the planktonic phase (Sibille et al., 1998). 

However, artificially introduced E. coli were more rapidly lost from granular 

activated carbon (GAC)-treated water than from nanofiltered water, presumably 
because nanofiltration removed eukaryotic grazers. Understanding of the 

characteristics of grazing may enable the addition of protozoa to distribution systems 

to aid the specific removal of unwanted bacteria. 

Infection by Bdellovibrio or bacteriophage may contribute to the removal of 

allochthonous bacteria from aquatic systems (Barcina et al., 1997), suggesting 

another possible mechanism for the control of sessile bacteria. However, it should be 

noted that starvation increases the resistance of vegetative bacteria to bacteriophage 

infection (Kokjohn et al., 1991). 

1.8.2 Industrial use of biofilms 

Biofilms are used for a variety of industrial processes, including vinegar production, 

microbial leaching and wastewater treatment (Bryers, 1993). There are several 

advantages of using fixed rather than free cells: (i) fixed cells often have a higher 

productivity, (ii) the products are easily separated from the cells and (iii) the reaction 
is localised and easily controlled. The use of immobilised cells in wastewater 
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treatment has been reviewed annually in Water Environment Research for several 

years and the latest of these reviews (Brower & Barford, 1997) provides an insight 

into the incredible variety of fixed-film bioreactors that have been developed. The 

aim of all these systems is to clean water, but this may be by removal of specific 

organic pollutants such as aromatic or halogenated compounds, nitrate removal or by 

reduction of the total concentration of organic material present. 

Biofilms on sand or GAC are used to reduce the levels of organic carbon in potable 

water prior to distribution. It has been suggested that a sufficient reduction in the 

level of organic carbon could be an effective mechanism for preventing growth in 

distribution pipes. Concentrations of <10 µg 1" assimilable organic carbon (AOC) 

(van der Kooij, 1992) or <150 p. g 1"t biodegradable dissolved organic carbon 
(BDOC) (Servais et al., 1995) have been proposed for the effective control of 

growth, although tests with an experimental distribution system demonstrated that a 
BDOC concentration of 60 µg 1"1 could still support a heterotrophic biomass (Sibille 

et al., 1997). 

1.8.3 Manipulation of distribution system biofilms 

Having considered some of the ways in which biofilms have been exploited in 

industry, I will now propose some potential aims for the manipulation of existing 

biofilms in distribution pipes to carry out reactions that would enhance the quality of 

tap water. 

1. Biofilms in distribution pipes remove DOC from the water. If this removal could 

be enhanced by biofilms close to the distribution plant then growth downstream 

would be limited. Similarly, removal of nitrates and/or phosphates might help to 

control bacterial growth in the distribution system. 

2. Chlorination of water results in the formation of trihalomethanes (THMs) which 

are carcinogenic. Fixed-film bioreactors can remove up to 98% of THMs from 

wastewater (Qaisi & Qasem, 1996). Manipulation of biofilms to enhance THM 
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removal from finished water might allow the use of higher concentrations of chlorine 
for water treatment. In theory, other harmful chemicals (e. g. phenols or toxic metals) 

could also be removed by in situ biofilms. 

3. Exclusion of unwanted organisms from biofilms is essential to prevent 

colonisation of the distribution system. If biofilms could be engineered to exclude 

pathogens and other unwanted organisms this would clearly be of substantial benefit 

to the water industry and of course, to the consumer. 

4. The engineering of consortia incapable of biocorrosion could increase the life 

span of metal pipes. Wolfaaidt & Cloete (1992) have observed that removal of 

sulphate from water limits biocorrosion. Obviously this would need to be carried out 

at the treatment plant or by biofilms on non-metal pipes. 

Before manipulation of distribution pipelines can be performed, it is essential to 

understand the mechanisms that bacteria use to survive and grow in distribution 

systems. This project is directed towards increasing our understanding of these 

mechanisms. 

1.9 The local distribution network 

Studies described here were performed on biofilms developed from tap water at 

Warwick University. This water is treated at Strensham treatment plant. The water 

undergoes flocculation, rapid gravity filtration, filtration through GAC and 

chlorination. Water leaving the plant is adjusted to pH 7.2-7.6, around 0.7 mg free 

chlorine 1" and must contain 0 coliforms 100 ml''. The water is distributed through a 

series of bitumen-coated steel and prestressed concrete pipes before reaching the 

University (Fig. 1.5). There is no storage reservoir between the treatment plant and 

the University, but there is a chlorine booster about halfway along the mains. 
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Figure 1.5 Schematic diagram of the local distribution system supplying 

Warwick University. Water is treated at Strensham Treatment Works and leaves 

the plant containing around 0.7 mg free chlorine 1" and 0 coliforms 100 ml's. It is 

then distributed along three mains pipelines, two of which merge 29.5 km 

downstream from Strensham. A single pipeline draws water from the remaining two 

pipes to supply southern Coventry including Warwick University. Other connections 

drawing water from the mains pipelines are not shown. Near the University a 

succession of smaller pipes distributes water to the Department of Biological 

Sciences where the work in this thesis was performed. 

1.10 Aims 

The overriding aim of this project was to assess the role of bi- or multi-phasic life 

cycles and vegetative dormancy in the survival of heterotrophic bacteria in potable 

water and in partitioning between biofilms and the aqueous phase. Specific targets 

towards this goal included: 

" Identification of bacteria isolated from tap water at Warwick University to obtain 

an indication of some of the genera present. 
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" Analysis of cellular activity through the batch growth cycle of two tap water 
isolates to: 

- look for signs of a bi- or multi-phasic life cycle expressed by a 

morphologically indistinct bacterium by comparison with a prosthecate 
isolate; 

- develop a protocol for in situ analysis of physiological activity. 

" Assessment of the correlation between expression of cell surface characteristics or 

specific proteins and attachment to identify mechanisms by which the metabolic 

state of cells may be linked to surface adhesion. 

" Direct microscopic examination of morphologically distinctive cell types present 

in tap water to assess the diversity of known cell cycle-dependant adaptations for 

survival and growth in low nutrient systems. 

" Development of a laboratory model for biofilm development from potable water 

to estimate: 

- the activity of planktonic cells and their ability to respond to an increase in 

the nutrient concentration in the water; 

- the succession of microorganisms on a solid substratum during biofilm 

accumulation; 

- the activity of cells. in mature biofilms and their ability to respond to 

dissolved organic carbon; 

- the contribution of biofilms to the planktonic population. 

57 



CHAPTER 2 



2 Materials and Methods 

2.1 Bacterial strains 

Caulobacter crescentus CB15 (NCIB) was cultured at 30°C in PYE medium with 

shaking. All other strains studied were isolated from tap water at Warwick 

University. 

2.2 Bacterial identification 

Isolated bacterial strains were identified initially on the basis of colonial and cellular 

morphology, motility, ability to grow anaerobically, Gram stain, oxidase and catalase 

tests with reference to Bergey's Manual of Determinative Bacteriology (Holt et al., 
1994). Where relevant, API20NE strips (Bio Merieux, France) were employed in 

accordance with the manufacturer's instructions. The pattern of reactions was coded 
into a numerical profile and identification made with the computer-based API Profile 

Recognition System. 

2.3 Media 

2.3.1 Tryptone yeast extract glucose (TYG) medium 

Sphingomonas sp. was routinely cultured in TYG containing: 

Tryptone 5g 

Yeast extract 2.5 g 

Glucose 1g 

made up to one litre with distilled water and sterilised by autoclaving at 121T for 15 

min. 
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2.3.2 Peptone yeast extract (PYE) medium 

The following were added (per litre): 

Bacto-peptone 2g 

Yeast extract 1g 

MgSO4.7H20 0.2 g 

Riboflavin 1.0 mg 

The pH was adjusted to 7.0 and the medium was sterilised by autoclaving at 121°C 

for 15 min. After cooling, a final pH of 6.9 was obtained by addition of filter-sterile 

0.1 M phosphate buffer (17.6 g 1'1 Na2HPO4.12H20,8.0 g 1'1 NaH2PO4.2H20) to a 

final concentration of 5% (v/v). Filter-sterile D-glucose was added to give a final 

concentration of 0.2% (w/v). 

2.3.3 R2A broth 

The medium of Reasoner & Geldreich (1985) was employed for subculture of 

microorganisms isolated from tap water. 

2.3.4 Minimal salts media 

2.3.4.1 Carbon limited medium 

The following ingredients were added (per litre): 

Na2HPO4 2.0 g 

KH2PO4 1.0 g 
NH4Cl 1.9 g 

NH4NO3 1.9 g 
Na2SO4 2.0 g 

MgSO4.7H20 0.2 g 
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The pH was adjusted to 7.0 and volumes less than two litres were sterilised by 

autoclaving at 121 °C for 15 min. For larger volumes, filter sterilised phosphates 

were added after cooling to avoid precipitation. Filter-sterile glucose was added 
immediately before use to produce a concentration of 0.1% (w/v). 

2.3.4.2 Nitrogen limited medium 

The following were added (per litre): 

Na2HPO4 2.0 g 
KH2PO4 1.0 g 
NH4C1 0.1 g 
NH4N03 0.1 g 
Na2SO4 2.0 g 
MgSO4.7H20 0.2 g 

This was adjusted to pH 7.0 and autoclaved at 121°C for 15 min. For large volumes 

(>_ 2 1), filter sterilised phosphates were added after cooling to avoid precipitation. 

Filter sterile glucose was added to a final concentration of 0.5% (w/v) immediately 

before use. 

2.3.4.3 Hyphomicrobium basal (HB) medium 

The medium developed by Attwood & Harder (1972) was used. - The following 

ingredients were included (per litre): 
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KNO3 5.0 g 

K2HPO4 1.74 g 

NaH2PO4.2H20 1.38 g 

(NH4)2S04 0.5 g 

MgSO4.7H20 0.2 g 

CaC12.2H2O 0.025 mg 

FeC12.4H2O 3.5 mg 

The pH was adjusted to 7.0 and the solution was sterilised by autoclaving at 121 °C 

for 15 min. To avoid precipitation of calcium and iron salts, the calcium chloride 

and iron (II) chloride were autoclaved separately and added after cooling. 0.05% 

(v/v) Pfennig's trace elements (500 mg EDTA, 200 mg FeSO4i 10 mg ZnSO4,3 mg 

MnC12.4H20,30 mg H3BO3,20 mg CaC12.6H20,1 mg CuC12,2 mg NiC12,3 mg 

Na2MoO4.2H20 per litre of distilled water) were added after cooling. 0.5% (v/v) 

filter-sterile methanol was added immediately before use. 

2.3.5 Firm agar 

Plate count agar (PCA) and R2A (both Oxoid) were used for isolation and routine 

culture and maintenance. Agar plates were produced from minimal salts media or 

PYE by inclusion of 1.5% (w/v) bacto-agar (Difco) before autoclaving. 

2.3.6 Low nutrient sloppy agar 

This medium was employed for the isolation of oligotrophic bacteria from potable 

water. A lower layer containing 0.005% (w/v) bacto-peptone and 1.5% (w/v) bacto- 

agar (Difco) in tap water was poured and allowed to set. The upper sloppy agar 

layer, containing 0.3% (w/v) bacto-agar in tap water, was autoclaved, cooled to 50°C, 

then inoculated with 200 µl of neat tap water or tap water diluted in sterile distilled 

water and poured immediately. 
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2.4 Maintenance of cultures 

To avoid attenuation of isolates, cells from exponential phase cultures were 
harvested, washed and resuspended in sterile saline (0.85% (w/v) NaCl). An equal 

volume of glycerol was added and cultures were stored at -20°C. Cells were streaked 

onto PCA or R2A once a month to limit adaptation to the laboratory environment. 

2.5 Batch culture 

2.5.1 Aerobic 

Liquid cultures were propagated overnight by inoculating 10 ml medium in a 25 ml 

universal bottle with a single colony picked from an agar plate. Batch culture 

experiments were started by adding 5 ml of an overnight culture to 95 ml medium in 

a 250 ml conical flask. The flask was shaken at 220 rpm in a Gallenkamp orbital 

shaker at 30°C. 

2.5.2 Anaerobic 

For anaerobic batch culture, flasks were fitted with subaseals and flushed with sterile 

oxygen-free nitrogen for 2 min before inoculation. 

2.6 Static batch enrichment of tap water 

400 ml of potable water were poured into a sterile 500 ml conical flask. Surfaces for 

colonisation, in the form of glass coverslips, were inserted along the length of several 

pieces of silicone tubing. These were placed vertically in the flask, which was then 

covered with foil and stored in the dark at room temperature for a total of 74 weeks. 
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2.7 Agar plate biofilms 

Biofilms were developed on 45 mm diameter Millipore GS-membranes with pore 

size 0.22 µm by a modification of the method described by BtIhler et al. (1998). To 

generate carbon-limited Sphingomonas sp. biofilms, cells were cultured to the 

exponential phase in carbon-limited minimal salts medium. Total cell counts were 

determined using Ce1lFacts (Microbial Systems Ltd, Coventry) and cultures were 

diluted to 106 cells ml"1 in carbon-limited no glucose medium (carbon limited 

medium without glucose). The filter apparatus was rinsed with 10 ml of carbon- 

limited no glucose medium, 10 ml of the cell suspension were filtered and the 

membrane was rinsed again with the carbon-limited no glucose medium. The filter 

was placed in the centre of a prewarmed carbon-limited agar plate, which was 

incubated at 30°C for up to 60'hrs. To produce nitrogen-limited Sphingomonas sp. 

biofilms, the same protocol was applied except that nitrogen-limited minimal salts 

medium was used throughout in place of the carbon-limited medium. 

Biofilm-grown cells were harvested at 12,36 or 60 hrs by gently scraping the 

membrane with a sterile razor blade and resuspending in 4 ml of sterile saline (0.85% 

(w/v) NaCl). Examination of the filter by scanning electron microscopy before and 

after scraping confirmed that the vast majority of cells had been removed by this 

technique. The bacterial load on the filter was determined by OD600nm, CeilFacts 

analysis and protein assay (Section 2.30). 

2.8 Chemostat culture 

To obtain a continuous culture of Sphingomonas sp., cells were introduced into a 

chemostat in either carbon or,. nitrogen limited minimal salts medium. Use of a 

chemostat allowed control of the specific growth rate by regulation of the rate of 

flow of nutrients through the vessel. The layout of the chemostat is illustrated in 

Figs 2.1 and 2.2. 
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Stirrer 

Waste 

fluid 

Figure 2.1 Chemostat set-up. Sphingomvnas sp. cells were cultured in the 

chemostat vessel. The specific growth rate was controlled by maintaining a constant 

throughput of growth medium. For clarity, other controls, including pH, temperature 

and aeration (see text) are not shown. 
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Figure 2.2 Layout of the top plate of the chemostat. The conditions used are 
described in the text. 

Cells were cultured in a21 continuous culture vessel (LH fermenter). Fresh carbon- 

or nitrogen-limited medium was pumped into the chemostat at a constant rate. Cells 

were aerated at a rate of 250 ml min 1 and stirred at 500-750 rpm. The temperature 

was controlled at 30°C and pH was maintained at 6.8-7.2 by the automated addition 

of 1M sulphuric acid (H2SO4) or 1M potassium hydroxide (KOH). 

2.9 Biofilm development 

Biofilms were developed frommchemostat cultures on glass coverslips held within a 
biofilm development vessel (Fig. 2.3). This was introduced to the chemostat on a 

recirculating loop after steady state growth kinetics had been reached. The glass 

coverslips were removed aseptically at intervals for analysis. 
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Figure 2.3 The biofilm development vessel. Liquid entered the vessel through 

tubing pushed through the rubber bungs at either end. The bungs were held in place 

using metal clamps. Surfaces for microbial attachment (shown here as steel discs. 

although glass coverslips were employed throughout this study) were inserted into 

slits cut in a length of silicone tubing surrounding a central glass rod, which was 

partially inserted into each of the rubber bungs. 

2.10 Total particle counts and size analysis 

Total particle counts and sizes were measured using CellFacts (Microbial Systems 

Ltd, Coventry). This instrument contains an orifice through which electrolyte flows. 

The flow of electrolyte carries an electric current between electrodes on either side of 

the orifice. Samples for analysis are mixed with the electrolyte before it is drawn 

through the orifice. Particles passing through the orifice impede the flow of 

electrical current and the instrument detects each impedance event as a voltage pulse, 

the size of which is directly proportional to the volume of the particle causing it. 
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Samples for analysis were removed from bacterial cultures or from the continuous 
flow model, maintained at room temperature and analysed within 10 min. The data 

collected were analysed using the CellFacts Industrial software (supplied). For each 

sample a profile was obtained which related the particle size, given as equivalent 

spherical diameter (ESD), to the number of particles of that size measured. The 

software also allowed calculation of the total number of particles detected within a 

given size range. The orifice used for these studies allowed detection of particles 

within the size range 0.75 to 9.5 µm ESD. The minimum particle concentration 

required for analysis was around 105 particles ml". 

Each sample was analysed in triplicate. Replicates were always tightly matched and 

standard deviations between the total counts or the counts within specified size 

ranges were usually too small to be clearly visible on graphs. Standard deviations 

were therefore not displayed unless they were large enough to be seen. 

2.11 Total viable count determination 

Total viable counts were determined by spreading 100 µl of an appropriate range of 

serial ten-fold dilutions onto the surface of prewarmed agar plates. Cells from 

monocultures were diluted in phosphate-buffered saline (PBS, pH 7.4) and each 

dilution was spread in triplicate. Caulobacter crescentus CB 15 cells were spread 

onto PYE agar and PCA was used for counting Sphingomonas sp. cells. After 

incubation at 30°C for 48 hrs, colonies were enumerated and the original number of 

colony forming units (CFU) ml" was calculated. 

Triplicate samples from potable water were diluted in sterile distilled water and each 

dilution was spread in duplicate onto prewarmed R2A plates. After incubation at 

30°C for 5 days, colonies were counted and calculations of CFU ml'' were made. 
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2.12 Specific viable counts 

Viable counts of individual species from a mixed microbial population in tap water 

were determined by counting all colonies expressing an identical morphology. Serial 

dilutions were prepared and spread over R2A as described in Section 2.11. Plates 

containing 30-300 colonies in total were selected for manual enumeration of specific 

colony types. For a rough check that identical colony morphologies were not 

produced by different groups of bacteria, wet mounts of cells from several colonies 

of each type were prepared and examined by phase contrast microscopy using a x100 

objective. 

2.13 Spectrophotometric measurements 

A Shimadzu UV-150-02 Double Beam spectrophotometer was used for 

determination of attenuance of light of a specific wavelength. 1 ml of the sample 

was placed in a clear plastic cuvette giving a1 cm light path. The attenuance, in 

relative units, was determined by reference to a sample blank and a second blank was 

used to zero the instrument. For monitoring the kinetics of bacterial batch growth, 

triplicate samples were measured, but the standard deviations between them were not 
displayed on graphs as they were always too low to be visible. 

2.14 CTC staining 

Samples taken from batch culture were divided into 3x1 ml aliquots for staining 

with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC, Park Scientific Ltd). A negative 

control (growth medium alone for fluorimetry; no CTC for microscopy) was also 

included. 0.1 ml of 5 mM CTC was added to each sample and mixed, then samples 

were incubated in the dark for 30 min at 30°C. The concentration and time of 

staining was chosen on the basis of empirical measurements for each species (Section 

4.3). Samples were then analysed fluorimetrically or microscopically, as described 

below. 
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Biofilms on glass coverslips were rinsed with sterile distilled water before staining 

with fluorescent dyes. The coverslips were then immersed in 1 ml of 0.5 mM CTC 

in 10% TYG and incubated in the dark for 30 min. A negative control (no CTC) and 

a positive control (actively growing cells from a laboratory culture) were included 

each time and three coverslips were stained for quantitative analysis. 

2.14.1 Fluorimetry 

Samples were transferred to 3 ml cuvettes and diluted in 2 ml of sterile distilled 

water prior to fluorimetric analysis. The fluorescence of liquid samples was 
determined using a Perkin Elmer LS-5 Luminescence Spectrometer. 3 ml of each 

sample were placed in a clear plastic cuvette, kept dark and analysed within five 

minutes of taking the sample. The instrument was set to zero using a blank (no 

fluorescent dye). For measurement of CTC-formazan fluorescence, the excitation 

wavelength was set to 450 nm ± 10 nm and the emission wavelength to 630 nm ± 

2.5 nm. 

2.14.2 Microscopic quantitation 

After CTC staining, cells in suspension or on coverslips were washed twice with 

sterile saline and counterstained with 4', 6-diamidino-2-phenylindole (DAPI, Sigma), 

as described below. Samples were analysed by epifluorescence microscopy (Section 

2.19) and active and total cell counts were estimated using digital image analysis 

(Section 2.21). 

2.15 DAN staining 

Samples were stained with 0.2 µg ml" DAPI in the dark at room temperature for 

15 min. Cells in suspension were then washed three times in sterile saline (0.85% 

(w/v) NaCl) and resuspended in 1 ml of saline. 10 µl were transferred to a well of 

4 mm diameter on a quantitative microscope slide (ICN) and dried at 37°C in the 

dark. Slides were mounted in a Mowiol solution (Turpin et al., 1993) to reduce 

69 



photofading. A glass coverslip was placed over the Mowiol and the sample was 
analysed by fluorescence microscopy. 

Coverslips were rinsed six times with sterile saline, mounted in Mowiol solution and 
imaged under the fluorescence microscope. 

2.16 Intracellular ATP 

Intracellular ATP concentrations were determined using the ATP Bioluminescence 

Assay Kit HS II (Boehringer Mannheim, Germany) in accordance with the 

manufacturer's instructions. The reagents (dilution buffer and cell lysis reagent) 

were filter sterilised before each use to reduce the background luminescence. For 

high cell densities (i. e. Sphingomonas sp. monocultures), 25 µl of cell lysis reagent 

were added to an equal volume of cells, mixed and incubated for 5 min at room 
temperature. Samples were measured in triplicate and a negative control (growth 

medium without cells) was included. For low cell densities (i. e. potable water), cells 

were concentrated from 200 ml of solution by filtration onto a cellulose nitrate filter 

of pore size 0.2 µm (Sartorius, Germany). Sterile distilled water was also filtered 

each time to provide a negative control. ATP was extracted from the filter by adding 

1 ml of cell lysis reagent and incubating at room temperature for 5 min. In order to 

minimise the relatively large deviations inherent in the measurement of such small 

quantities of ATP, samples were taken in triplicate and each of these was measured 

in triplicate. Means and standard deviations of the three independent samples were 

plotted graphically. For each set of samples a standard curve was produced by serial 

dilutions of the ATP standard included in the kit to allow compensation for slight 

variations in activity of the luciferase enzyme. 

After incubation in cell lysis reagent, 50 µl of samples or standards were transferred 

to a black microtitre plate. This was inserted into a Luminoscan RS luminometer 

(Labsystems, UK). A protocol was set up to automatically inject 50 µ1 of luciferase 

into a well, mix for 1 sec then measure luminescence for 10 secs. The measurement 
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was integrated to produce a final reading in relative light units (rlu). This was 
converted into moles ATP ml" by reference to the standard curve. 

2.17 Cell surface hydrophobicity 

Bacterial adhesion to hexadecane (BATH) was applied to estimate the 
hydrophobicity of the bacterial cell surface. This was an adaptation of the method of 
Rosenberg et al. (1980). Cells were harvested by centrifugation at 2,11 lg for 15 min 
in an MSE Mistral 1000 benchtop centrifuge, washed twice and resuspended in PUM 

buffer (22.2 g K2HPO4.3H20,7.26 g KH2PO4,1.8 g urea and 0.2 g MgSO4.7H20 

dissolved in distilled water and made up to 1 litre), pH 7.1. This suspension was 

adjusted to OD400nm = 1.5 ± 0.1 and 1.2 ml were transferred to a glass test tube. 100 

µl of n-hexadecane (Sigma) were added and the mixture was allowed to stand at 
30°C for 10 min. It was then vortexed vigorously for 2 min and left to stand at room 

temperature for 15 min to allow phase separation. The lower phase was carefully 

removed and placed in a plastic 1 ml cuvette. The OD400nm was determined and the 

% adhesion to hexadecane calculated using the following equation: 

(Original ODaoonm - ODaoonm) X 100 
Adhesion to hexadecane = 

Original OD4oonm 

Six replicates were performed for each analysis and mean values and standard 

deviations were calculated. Student's t-test was used to determine the level of 

significance of differences between the means of different samples. 

2.18 Light microscopy 

Light microscopy was performed using a Leitz Orthoplan microscope fitted with x40 

and x100 objective lenses. Immersion oil was used in conjunction with the x100 

objective lens. Photomicrographs were taken with a Leitz Orthomat camera and 

processed as described in Section 2.20. 
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2.18.1 Wet mounts 

To assess cell morphology and motility, cells were picked from a colony on an agar 

plate using a sterile metal loop and suspended in a drop of water on a microscope 

slide. A glass coverslip was dropped onto the suspension and cells were examined 
by phase contrast under the x40 or x 100 lens. 

2.18.2 Gram stain 

Preston and Morrell's modification of Gram's method (Cruikshank et al., 1975) was 

employed with one modification. Instead of using an iodine-acetone mixture, iodine 

was rinsed from the slide with tap water. An equivolume mixture of acetone and 

ethanol was carefully pipetted over the slide until the colour ceased to run. The slide 

was immediately rinsed thoroughly with tap water prior to carbol-fuschin staining. 

2.18.3 Acid fast stain 

The Ziehl-Neelsen method for acid fast staining (Cruikshank et al., 1975) was used. 

Slight modifications were required for direct acid fast staining of biofilms on 

coverslips. The coverslip was air dried, heat-fixed and placed on a microscope slide. 

This was flooded with carbol-fuschin stain and heated gently for 5 min. The slide 

was washed very gently to avoid displacing the coverslip. After the standard 

decolorizing and washing steps, the coverslip was attached to the slide with 

Sellotape, mounted in immersion oil and examined under the x100 objective lens. 

2.18.4 Congo Red stain 

Exopolysaccharides (EPS) were stained using the protocol of Allison & Sutherland 

(1984) without adaptation. 
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2.19 Epifluorescent microscopy 

A Zeiss Axioskop microscope fitted with Plan-Neofluor x40 and x100 lenses was 

used for epifluorescent microscopy. An HBO 50 mercury short arc lamp provided 

the exciting light and the following filter sets were used: for DAPI stain - excitation 

G365, dichroic mirror FT395 and emission LP420; for CTC stain - excitation 

BP546/12, dichroic mirror FT560 and emission BP575-640. Fluorescence 

micrographs were taken using a Yashica 108 multi program camera and processed as 

described in Section 2.20. 

2.20 Photography 

Photographs were taken using a Pentax K1000 camera. Kodak Gold ISO 100 film 

was used for colour photographs, which were processed by Colab (Coventry). Black 

and white images were taken on TMax 400 Professional film. This was developed 

according to the manufacturer's instructions and printed onto Kodak Kodabrome II 

RC photographic paper. 

2.21 Digital image analysis 

Images were collected using an Hamamatsu C4742 CCD camera attached to the 

Zeiss Axioskop microscope. Image analysis was performed using the Biovision 2.2 

software (Improvision, Coventry). Threshold levels were set subjectively and 

discrete particles were counted by the software. At least ten fields were counted for 

each coverslip or quantitative microscope slide. The area of a field was calibrated 

using a stage graticule. The extent of surface coverage by biofilm bacteria was 

expressed as cells cm'2. Since the wells of the quantitative microscope slides were 

known to be 4 mm diameter, the number of fluorescent particles per ml of the 

original solution could be calculated. 
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2.22 Scanning electron microscopy 

Cells in biofilms were fixed overnight in 2.5% glutaraldehyde at 4°C. They were 
then rinsed twice with distilled water and dehydrated through a series of ethanol 

concentrations by immersion for 5 min in 10%, 25%, 50%, 70%, 90% and finally 

twice in 100% ethanol. Samples were air dried or substituted with amyl acetate by 

immersion for 15 min in a range of amyl acetate: ethanol concentrations (1: 3,1: 1,3: 1 

then neat amyl acetate). After substitution, samples were dried at the critical point of 

carbon dioxide in a Polaron E3000 critical point drier (VG Microtech, Sussex). This 

procedure minimised sample distortion during drying. 

The glass coverslips were mounted onto electron microscope stubs using electrodag 

915 high conductivity paint (Agar Scientific Ltd). A fine layer of gold was deposited 

onto each sample for 120 secs using a BioRad-E5200 sputter-coater. Coated samples 

were observed under vacuum using a JEOL T330A scanning electron microscope 

and photomicrographs were taken on Polaroid 53 or 55 film. 

2.23 Transmission electron microscopy 

Samples were prepared prior to negative staining or heavy metal shadowing as 

follows: a drop of liquid containing bacterial cells was placed on a formvar-coated 

copper EM grid (300 mesh, Agar Scientific Ltd). After 2-15 min, excess fluid was 

removed with blotting paper. Samples were fixed by adding a drop of 2.5% (v/v) 

EM grade glutaraldehyde (Agar Scientific Ltd) and excess fluid was drawn off with 

blotting paper. Grids were washed twice with sterile distilled water and blotted 

carefully to remove the fluid. 

Samples were negatively stained by placing a drop of 1% (w/v) phosphotungstic acid 

on a prepared EM grid and immediately removing excess fluid with blotting paper. 

Alternatively, samples were shadowed with heavy metal ions. Prepared grids were 

placed on a piece of blotting paper in an Edwards E306A vacuum coating unit. A 

piece of gold-palladium wire (Agar Scientific Ltd) about 3 cm in length was wound 
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around a V-shaped filament made of tungsten wire of diameter 1.5 mm (Agar 

Scientific Ltd). This was positioned in the vacuum coating unit to create an angle 
from the wire to the grids of around 45°. The unit was evacuated and grids were 

shadowed according to the manufacturer's instructions. 

Stained or shadowed grids were analysed in a JEOL JEM-100S transmission electron 

microscope at 80 kV. Photomicrographs were taken on Kodak electron microscope 

4489 film, developed and printed as described in Section 2.20. 

2.24 Extraction of DNA from cells 

Crude DNA preparations were made for amplification of the gene encoding the 16S 

subunit of rRNA by polymerase chain reaction (PCR). Cells were scraped from 

colonies on plates using a sterile wooden toothpick and suspended in 50 µ1 of TE 

buffer (50 mM Tris, 10 mM EDTA, pH 8). Alternatively, 1 ml of a liquid culture of 

cells was pelleted by centrifugation (MSE Micro Centaur, 11,600g, 10 min) and 

resuspended in 50 µl TE. Samples were sonicated on ice at an amplitude of 6 µm 

peak to peak for three pulses of 1 min, using a Jencons ultrasonicator fitted with a 

4 mm probe. Cellular debris was removed by centrifugation at 4°C (MSE Micro 

Centaur, 11,600g, 5 min). The supernatant containing DNA was transferred to an 

Eppendorf tube and stored at 4°C. 

2.25 PCR Techniques 

The PCR reaction mix was made up to a final volume of 50 µl with sterile distilled 

water and consisted of the following: chromosomal DNA (10 ng or an approximation 

to this), primer 1 (100 ng), primer 2 (100 ng), dimethylsulphoxide (2.5 µl), 25 mM 

MgC12 (Perkin Elmer Cetus), lOx PCR buffer (Perkin Elmer Cetus, MgC12 free), 

2.5 U Perkin Elmer Cetus Amplitaq and 10 mM each of dATP, dCTP, dGTP and 

dTTP. The chromosomal DNA was added last to prevent contamination of the 

stocks and the mixture was overlaid with DNase free mineral oil (Sigma). 

Amplifications were performed in a Hybaid thermal cycler. The cycle temperatures 
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and times are specified in the relevant section below. The sequences of the primers 

employed in this study are shown in Table 2.1. 

Primer 

name 

Primer sequence Position in E. coli 
16S rRNA gene 

(°C) 

annealing 

PA 5'-AGA GTT TGA TCC TGG CTC AG-3' 8-28 60 

PH 5'-AAG GAG GTG ATC CAG CCG CA-3' 1542-1522 64 

P, 5'-CGC CCG CCG CGC CCC GCG CCC GTC 

CCG CCG CCC CCG CCC GCC TAC GGG 

AGG CAG CAG-3' 

341-357 58 

P2 5'-ATT ACC GCG GCT GCT GG-3' 534-518 56 

Table 2.1 Sequence of primers employed for PCR. P, contains a 40-bp GC-rich 

sequence at its 5' end which is not homologous to the template DNA, but prevents 

separation of the strands in denaturing gradient gel electrophoresis (DGGE) analysis. 

Annealing temperatures were calculated as TA=2(A+T) + 4(G+C). 

2.25.1 PCR between primers PA and PSI 

Primers PA and PH (Edwards et al., 1989) are homologous to the DNA sequence of 

regions surrounding the gene encoding the 16S rRNA subunit. They are universal 

primers and can be used to amplify the same gene from almost all known bacteria. 

The concentration of template DNA was not determined. To ensure that one reaction 

was performed with roughly the correct amount of template DNA, two sets of 

reactions were carried out for each template, one using 1 µl of neat template DNA, 

the other using 1 µl of a 1: 50 dilution of the template. Reaction mixtures were 

heated to 95°C for 5 min, followed by 35 cycles of 1 min at 95°C, 45 secs at 62°C 

and 45 secs at 72°C. The mixtures were maintained at 72°C for a further 5 min to 

maximise the final annealing of the DNA strands. 
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The success of the PCR was judged by analysing 2 µl of the product on a 1% (w/v) 

agarose gel. If a clear band of the correct size (about 1,600 bp) was observed, the 

DNA was purified for sequencing. The mineral oil used to cover the PCR reactions 

was removed by transferring the contents of an Eppendorf onto a piece of Parafilm. 

The resulting drop was rolled across the Parafilm until the oil was clearly separate 

from the aqueous solution. The solution containing the PCR product was transferred 

to a clean Eppendorf. The DNA was purified from proteins and small molecules 

using MicroconTM 3 filters (Amicon inc., USA). The recommendations of the 

manufacturer were followed. Before preparing DNA for sequencing, a2 µl sample 

was run on a 1% (w/v) agarose gel. An estimation of the volume of solution required 

to give a suitable DNA concentration for sequencing was made based on the relative 

brightness of the band. For at least one sample from each isolate, the purity of the 

DNA was checked by denaturing gradient gel electrophoresis (DGGE) after PCR 

amplification between primers P1 and P2. The DNA extraction and PCR was 

repeated 2-3 times for each bacterial isolate to generate enough data to determine a 

reliable consensus sequence. 

2.25.2 PCR between primers P1 and P2 

The primary sequences of primers P, and P2 (Muyzer et al., 1993) are homologous to 

two regions within the gene encoding 16S rRNA that are highly conserved between 

different eubacterial species. P1 contains a 40-nucleotide GC-rich sequence (a GC 

clamp), making it suitable for preparing DNA for DGGE. PCR was performed using 

the following thermal cycles: reaction mixtures were heated to 95°C for 10 min, 

followed by 35 cycles of 1 min at 94 °C, 45 secs at 60°C and 1 min at 72°C. 

Samples were incubated at 72°C for a further 10 min. The success of the PCR was 

assessed by running 2 µl of the product on a 1% (w/v) agarose gel and DNA 

producing a clear band was analysed by DGGE. 
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2.25.3 Labelling reactions for DNA sequencing 

Microcon-purified PCR products were prepared for automated sequencing by primer 

extension using the Perkin Elmer Applied Biosystems ABI PrismTM Dye Terminator 

Cycle Sequencing Ready Reaction Kit. The reaction mixture for each reaction 

contained 4-10 µl of template DNA, 8 µl of Terminator Ready Reaction Mix and 3.2 

pmole of primer PA. This was made up to 20 µl with sterile distilled water. For 

DNA extracted from Gram-positive organisms, 1 µl of dimethyisulphoxide was 

included to aid separation of the DNA strands. The mixture was overlaid with 

mineral oil and mini-Eppendorf tubes were transferred to a Perkin-Elmer DNA 

Thermal Cycler Model 480. Thirty cycles bf 30 secs at 96°C, 15 secs at 50°C and 

4 min at 60°C were performed, followed by storage of the samples at 4°C. The DNA 

was precipitated (see below) prior to automated sequencing. 

2.26 Gel electrophoresis of DNA 

2.26.1 Agarose gel electrophoresis 

Agarose (1% (w/v) final concentration) was melted in TBE (10.8 g Tris base, 5.5 g 

boric acid, 0.93 g EDTA) containing ethidium bromide (0.1 pg ml"). The molten gel 

was poured into a Bio-Rad mini cell with a gel comb. When set, this was submerged 

in lx TBE containing 0.1 µg ml" ethidium bromide. DNA samples were mixed with 

0.2 volumes loading buffer (50% (v/v) glycerol, 0.25% (w/v) bromophenol blue), 

loaded and electrophoresed at 100 V for 1 hr. The size of DNA fragments was 

determined by comparison with 1 kb ladder commercial size markers (BRL). DNA 

was visualised on a UV transilluminator (UVP inc., USA) and photographed using 

Polaroid 665 film. 

2.26.2 DGGE 

A 40% (w/v) polyacrylamide gel containing a gradient from 0-100% denaturant (urea 

and formamide) was poured using the Model 475 Gradient Delivery System (Bio- 
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Rad). The gel was loaded into the tank and heated to 60°C in recirculating 0.5x TAE 

buffer (from dilution of a 50x TAE stock containing 242g Tris base, 57.1 ml glacial 

acetic acid, 100 ml 0.5 M EDTA, pH 8.0). Sample DNA (2 µl) was mixed with an 

equal volume of agarose gel loading buffer and samples were loaded onto the gel. 
Samples were electrophoresed at 150 V for 6 hrs, then the gel was extracted from the 

gel rig and submerged in 0.5x TAE buffer (100 ml) containing 1 µg ml'1 ethidium 
bromide for 5 minutes on a horizontal shaker (Luckham, UK). This solution was 

then removed, replaced with 100 ml distilled water and shaken for 15 minutes. DNA 

was visualised on a UV transilluminator (UVP inc., USA) and photographed using 
Polaroid 665 film. 

2.27 DNA precipitation 

Following the labelling reactions, DNA was precipitated before automated 

sequencing. Mineral oil was removed by rolling the sample over Parafilm and the 

aqueous product was transferred to a clean Eppendorf tube. 20 µl of 2 mM MgC12 

and 55 µl of 95 % ethanol were added, the mixture was vortexed and left to stand at 

room temperature for 30 min. The DNA was pelleted by centrifugation (MSE Micro 

Centaur, 11,600g, 30 min) and the supernatant was discarded. To remove traces of 

supernatant the DNA pellet was incubated at 90°C for 1 min. 

2.28 DNA sequencing 

DNA precipitates were given to L. Ward (Warwick University) for automated DNA 

sequencing using an ABI Prism TM 377 cycle sequencer (Perkin Elmer Applied 

Biosystems). 
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2.29 DNA sequence analysis 

2.29.1 Strains and accession numbers 

Strains and GenBank accession numbers for the DNA sequences used for 

construction of a phylogenetic tree are listed in Table 2.2. 

2.29.2 Generation of consensus sequences 

Sequence data was analysed in the first instance using Lasergene software 
(DNASTAR, London). Sequences were edited in EditSeq and consensus sequences 

were generated using SeqMan. Alignments were made by the Clustal method in 

Megalign. The three closest matching sequences from the GenBank database 

(Benson et al., 1998) were selected along with several unrelated sequences for 

construction of a phylogenetic tree. 

2.29.3 Construction of a phylogenetic tree 

A phylogenetic tree was drawn up using the Neighbour joining method. Distances 

were calculated using the method of Jukes and Cantor (Jukes & Cantor, 1969). 

Calculations were performed using MEGA software (Kumar et al., 1993) running on 

a PC. 
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Species Strain Accession number 
Azospirillum sp. BAL31 U63951 
Bacillus subtilis NCDO 1769 X60646 
Caulobacter subvibrioides CB81 M83797 
Helicobacterpylori 85D08 U00679 
Hyphomicrobium vulgare MC-750 X53182 
Methylobacter capsulatis NCIMB 11128 L20843 
Mycobacterium chelonae ATCC 35752 X82236 
Mycobacteriumfarcinogenes NCTC 10955 Y11581 
Mycobacteriumfortuitum ATCC 14472 X52921 
Mycobacterium nonchromogenicum ATCC 19530 X52928 
Mycobacterium senegalense NCTC 10956 Y11582 
Mycobacterium tuberculosis taxon: 1773 X52917 
Mycobacterium wolinsky ATCC 700010 Y12873 
Neisseria meningitidis NCTC 10025 T X74900 
Planctomyces limnophilus IFO 3507 X62911 
Pseudomonaslluorescens IFAM 1008 U63901 
Pseudomonas sp. - Z79594 

Rhodococcus globerulus DSM43953 X80620 
Rhizomonas sp. BAL11 U63939 
Rhodomicrobium vannielii EY33 M34127 

Staphylococcus aureus ATCC 29740 AF015929 

Streptomyces coelicolor M145 X60514 

Sphingomonas asaccharolytica IFO 15499 T D28517 

Sphingomonas paucimobilis IFO 13935 D13725 

Sphingomonaspruni IFO 15498 D28568 

Sphingomonas yanoikuyae B1 U37524 

Streptococcus pyogenes ATCC 12344 AB002521 

unidentified alpha proteobacterium S23322 D84605 

unidentified gamma proteobacterium - L25718 

unidentified eubacterium LXI AJ001271 

Table 2.2 Strains from which sequences of the gene encoding 16S rRNA were 

derived and GenBank accession numbers. 
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2.30 Isolation of bacterial outer membranes 

Bacterial outer membranes were isolated by detergent solubilization. Cells were 
harvested, washed and resuspended in 10 mM Tris-HC1 pH 8.0. The protein 

concentration was calculated (Section 2.30) and standardised to 200 µg ml". The 

cells were ruptured by five pulses of sonication (15 secs each, at an amplitude of 6 

pm peak to peak using a Jencons ultrasonicator fitted with a4 mm probe) with 
intervals of 1 min to allow cooling. Unbroken cells were removed by centrifugation 

at 1,500g for 20 min at 4°C. The resulting supernatant was centrifuged at 48,400g in 

a JA-20 fixed-angle rotor in a Beckman centrifuge for 60 min at 4°C. The pellet was 

resuspended in 50 µl of distilled water and stored at -20°C. When required, samples 

were thawed and extracted with 400 µl of freshly-made membrane extraction 
detergent (1.67% (w/v) of N-laurylsarcosine and 11.1 mM Tris pH 7.6) at room 

temperature for 20 min. The insoluble outer membranes were pelleted at 48,400g for 

90 min at 20°C. The pellet was resuspended in 50 µl of Laemmli sodium dodecyl 

sulphate (SDS) sample buffer containing: 

Deionised water 3.8 ml 

0.5M Tris-HC1 pH 6.8 1.0 ml 

Glycerol 0.8 ml 

10% (w/v) SDS 1.6 ml 

2-mercaptoethanol 0.4 ml 

1% (w/v) bromophenol blue 0.4 ml. 

2.31 Solubilization of proteins 

To obtain whole cell proteins, bacterial cells cultured in the chemostat or in agar 

plate biofilms were harvested by centrifugation (8,000g for 20 min). Supernatant 

fluids were discarded and cells were washed and resuspended in saline (0.85% (w/v) 

NaCl). The protein concentration was calculated (Section 2.30) and standardised to 

100 µg ml". Cells were pelleted by centrifugation (MSE Micro Centaur, 11,600g, 10 

min) and resuspended in 150 µl of SDS sample buffer for SDS-PAGE or 200 p1 of 
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first dimension sample buffer (Section 2.31.2) for isoelectric focusing. Samples were 

prepared by boiling for 5 min prior to SDS-PAGE or by incubation in Laemmli 

sample buffer for 15 min at room temperature for isoelectric focusing. 

2.32 Protein concentration determination 

Protein concentration was determined by comparison with a bovine serum albumin 

standard using the 690-A Micro Protein Determination kit (Sigma Diagnostics) and 

following the recommendations of the manufacturer. This assay was sensitive above 

150 µg m1' of protein. To maximise the accuracy of the assay a fresh standard curve 

was prepared each time, standards were assayed in duplicate and six replicates of 

each sample were performed. 

2.33 Gel electrophoresis of proteins 

2.33.1 Linear sodium dodecyl sulphate gel electrophoresis (SDS-PAGE) 

A discontinuous system was employed for SDS-PAGE (Laemmli, 1970) in which the 

buffer ions in the gel and the electrolyte solution differed. A polyacrylamide 

stacking gel with low ionic strength and large pores was cast on top of the resolving 

gel to concentrate the protein sample and improve the final resolution of the protein 

separation. The ingredients of the resolving and stacking gels used are listed in Table 

2.3. Linear polyacrylamide slab gels were produced and run using the Mini- 

PROTEAN II system (Bio-Rad). 
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Resolving Gel 12% 7.5% 

Deionised water 3.35 ml 4.85 ml 
1.5 M Tris-HC1 pH 8.8 2.5 ml 2.5 ml 
10% (w/v) SDS 100 µl 100 µl 
Acrylamide-Bis 4 ml 2.5 ml 
10% (w/v) AMPS 50 µl 50 µ1 
TEMED 5 µl 5 µl 
Total monomer 10 mF 10 ml 

Stacking Gel 4% 

Deionised water 6.1 ml 
1.5 M Tris-HC1 pH 8.8 2.5 ml 
10% (w/v) SDS 100 µl 
Acrylamide-Bis 1.33 ml 
10% (w/v) AMPS 50 µl 
TEMED 1041 
Total monomer 10 ml 

Table 2.3 Ingredients for linear SDS-PAGE slab gels. Percentages refer to the 

final acrylamide concentration. 

Acrylamide polymerisation was catalysed using an ammonium persulphate- 
N, N, NI, N'-tetramethylethylenediamine (TEMED) complex. TEMED was included 

to catalyse the formation of free radicals from ammonium persulphate (AMPS), 

which in turn initiated acrylamide polymerisation. AMPS and TEMED were added 

to the gel mixture last to avoid premature polymerisation. The gel chamber was 
filled with the resolving gel mixture using a Pasteur pipette, leaving sufficient space 
for the stacking gel and the formation of sample wells. The gel was overlaid gently 

with n-butanol both to exclude oxygen which inhibits gel polymerisation, and to 
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ensure a flat meniscus. Polymerisation was complete within 30 min, at which time 

the stacking gel solution was prepared. The overlay was removed and the stacking 

gel mixture was used to fill the remaining space in the gel chamber. Immediately, a 
10-well PTFE comb was inserted into the stacking gel mixture and the 

polymerisation of the stacking gel allowed to continue. After polymerisation was 
complete, the comb was removed and the sample wells rinsed with distilled water. 
The gel assembly was transferred to an electrophoresis tank and Laemmli running 
buffer (3 g Tris, 14.4 g glycine and 10 ml 10% (w/v) SDS made up to one litre with 
distilled water) added to the lower reservoir. Any air bubbles settling under the gel 
were removed to ensure a uniform electrical contact between the gel and the running 
buffer. Running buffer was added to the upper reservoir. 

Samples (20 µl) prepared as described previously were added to each lane. 

Molecular weight markers (low molecular weight standards, Pharmacia Biotech) 

were loaded in both end wells. The assembled apparatus was connected to a power 

supply (Bio-Rad 3000/300) with the anode connected to the lower reservoir. 
Electrophoresis was performed at a constant voltage (160 V) until the dye front had 

migrated to about 1 cm from the bottom of the gel (ca 40 min). After 

electrophoresis, gels were carefully removed from the apparatus, fixed and stained 
(Section 2.34). 

2.33.2 Two dimensional O'Farrell gels 

In this gel system proteins were separated by their isoelectric points in the first 

dimension and according to molecular weight in the second dimension to obtain 

maximum resolution of proteins from complex mixtures (O'Farrell, 1975). Since 

ionic detergents alter the charge distribution on proteins, the first dimension was run 
in the absence of SDS. 

Gels were produced using the Mini-PROTEAN II 2-D Cell (Bio-Rad). Ampholytes 

and acrylamide stock solutions were supplied by Bio-Rad. 
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The following solutions were prepared: 

(i) 30% (w/v) acrylamide stock for isoelectric focusing: 

Acrylamide 28.38 g 

Bisacrylamide 1.62 g 

Distilled water to 100 ml 

(ii) 10% (w/v) Triton X-100 stock solution: 

I Og Triton X-100 was diluted to a final volume of 100 ml with distilled water. This 

solution was deionized overnight with 5 gm of AG 501-X8 (Bio-Rad) ion exchange 

resin. 

(iii) First dimension sample buffer: 

9.5 M urea 5.7 g 

2.0% (w/v) Triton X-100 2.0 ml (10 % stock solution) 

5% (v/v) 2-mercaptoethanol 0.5 ml 
1.6% (v/v) Bio-Lyte 5/7 ampholyte 400 µl 

0.4% (v/v) Bio-lyte 3/10 ampholyte 100 µl 

Distilled water to 10 ml 

This solution was warmed to 42°C to dissolve the urea, aliquoted into 0.5 ml 

volumes in Eppendorf tubes and stored at -70°C. 

(iv) First dimension sample overlay buffer cöntaining: 

9M urea 5.41 g 

0.8% (v/v) Bio-Lyte 5/7 ampholyte 200 µl 

0.2% (v/v) Bio-Lyte 3/10 ampholyte 50 µl 

Bromophenol blue 

50 µ1 

500 µl (of a 0.05% (w/v) Bromophenol 

blue stock solution) 

Distilled water to 10 ml 

This was warmed to 42°C to dissolve the urea, aliquoted into 0.5 ml volumes in 

Eppendorf tubes and stored at -70°C. 
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(v) First dimension gel monomer solution: 
9.2 M urea 
4% (w/v) acrylamide 

2% Triton X-100 

1.6% (v/v) Bio-Lyte 5/7 ampholyte 
0.4% (v/v) Bio-Lyte 3/10 ampholyte 
0.01% (w/v) AMPS 

0.1 % TEMED 

Distilled water to 

5.5 g 
1.33 ml (first dimension acrylamide 

stock (Bio-Rad)) 

2 ml (10% (w/v) stock solution) 
400 µl 

100 µl 

10 µ1 (fresh 10% (w/v) stock) 

10 µl 

10 ml 
This produces sufficient volume for one set of tube gels. The solution was warmed 
to dissolve. AMPS and TEMED were added immediately before pouring. 

Gel tubes were washed thoroughly with detergent, rinsed with distilled water then 

ethanol and dried before use. The gel tubes were inserted into a casting tube 
(supplied) and the bottom was covered with several layers of Parafilm. The first 

dimension gel monomer was poured into the tubes to about 3/e of the length of the 

tube. The gel was allowed to polymerise for 1-2 hrs. The Parafilm was carefully 

removed and excess acrylamide wiped from the tubes. Any tubes containing air 
bubbles within the gel were discarded since the presence of bubbles would break the 

electrical circuit and inhibit electrofocusing. 

Tubes were transferred to the tube adapter and each sample reservoir was filled with 
100 mM sodium hydroxide (NaOH). Air bubbles were expelled from the necks of 

the tubes using an Hamilton syringe. The gel tank was filled with 800 ml of 10 mM 

phosphoric acid (H3PO4) and the tube adapter was inserted. Air bubbles under the 

gel tubes were carefully removed with a Pasteur pipette with a bent tip. The upper 

chamber of the tube adapter was filled with 100 mM NaOH. 20 µl of samples (see 

Section 2.29 for sample preparation) were loaded and overlaid with 20-40 µl sample 

overlay buffer. The apparatus was connected to a power supply (Bio-Rad 3000/300) 

and the proteins focused by electrophoresis at 500 V for 10 min and 750 V for 

3.5 hrs. 

87 



While the first dimension was running, 12% (w/v) acrylamide resolving slab gels 

were cast, allowed to set and overlaid with stacking gels (Section 2.33.1). A comb 

was not inserted into the stacking gel. Instead, a gap of about 1 cm was left at the top 

of the gel. The stacking gel was overlaid with n-butanol, which was removed 
immediately before use. Markers for the second dimension were produced by 

diluting 20 µl of prepared LMW markers (Pharmacia Biotech) in 180 µl 1% (w/v) 

agarose and casting in a gel tube. When set, the gel was extracted and cut to lengths 

of 0.6 cm to leave 10 µg of marker proteins in each piece of agarose. After 

electrofocusing, gels were extruded from the tubes onto Parafilm using a water-filled 

syringe or frozen at -20°C for storage. Tube gels were loaded onto the second 
dimension slab gels. A piece of the marker in agarose was placed by the side of the 

tube gel and the space at the top of the gel was filled with Laemmli running buffer. 

The gel was run as described in section 2.33.1. 

2.34 Staining of polyacrylamide gels 

2.34.1 Coomassie blue stain 

Following one dimensional SDS-PAGE, gels were fixed and stained with 0.1 % (w/v) 

Coomassie Blue R-250 in 50% (v/v) methanol, 10% (v/v) acetic acid for a minimum 

of 30 min. The gels were carefully removed from the glass supporting plates and 

placed in a plastic tray containing sufficient protein stain solution to immerse the gel. 

The gels were stained for 30 min at room temperature with gentle agitation. 

Unbound dye was subsequently removed by transferring the stained gel into 

destaining solution (40% (v/v) methanol, 10% (v/v) acetic acid) and gently shaken to 

encourage decolourisation within 30 min. Gels were stored in a final fixative 

solution of 7% (v/v) acetic acid. 
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2.34.2 Silver stain 

Silver staining is approximately 10-20 times more sensitive than Coomassie Blue 

staining, requiring a minimum of 5-10 µg per track. The method of Wray et al. 
(1981) was used to stain proteins that had been subjected to two dimensional gel 

electrophoresis. Gels were soaked in 50% (v/v) methanol for a minimum of 8 hrs 

with three changes. 1.6 g of silver nitrate were dissolved in 8 ml distilled water and 

slowly added, with shaking, to a solution containing 42 ml of 0.36% (w/v) NaOH 

and 2.5 ml of ammonia solution. The volume was made up to 200 ml with distilled 

water and used to stain the gel for 15 min. After two washes in distilled water for 5 

min each, the gel was soaked in developer solution (2.5 ml 1% (w/v) citric acid, 0.4 

ml formaldehyde made up to 500 ml with distilled water) until the bands appeared. 
The reaction was stopped by soaking the gel in a solution containing 10% (v/v) acetic 

acid and 45 % (v/v) methanol. 

2.35 The continuous flow model 

A simple model for biofilm development from the complex natural microflora of 

potable water was designed. The biofilms were developed on glass surfaces held 

within biofilm development vessels (Fig. 2.3). The layout of the model is shown 

schematically in Fig. 2.4. Glass coverslips were washed thoroughly in detergent, 

rinsed in water then ethanol, and dried prior to insertion into the biofilm vessel and 

the entire model was sterilised by autoclaving at 121"C for 15 min before use. Tap 

water was continuously introduced into the first reservoir and a fraction of this was 

pumped at a constant rate (117 ml min 1) through the model. A second reservoir was 

included to allow sampling of the planktonic population and monitoring of the 

response of planktonic cells to exogenous addition of a carbon source. The model 

was kept dark during use. Three sample ports were included to allow sampling of the 

planktonic population (i) before the biofilm vessels, (ii) immediately after the series 

of vessels and (iii) in a separate reservoir after the series of biofilms in which the 

carbon concentration could be amended. A comparison of the planktonic population 

at port 1 with that at port 2 gives an indication of the effect of biofilms on the natural 
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planktonic microflora. Biofilms were analysed after the aseptic removal of glass 

coverslips from the development vessels. 

i sl Overflow 
Reservoir 

Stir Sink 
bar 

Second Magnetic 
Rcscrvoir stirrer 

Figure 2.4 The continuous flow model. Tap water was continuously introduced to 

the first reservoir and a proportion of this was pumped at a defined rate over glass 

coverslips held within each of the five biofilm development vessels (Fig. 2.3). The 

second reservoir was included to monitor the response of planktonic cells to carbon 

addition. Biofilm samples were removed at intervals from the vessels. Water samples 

were taken before the series of biofilms (port 1), after the series of biofilms (port 2) or 

from the second reservoir (port 3). 

During the period of Biofilm development, the ATP, free chlorine and total organic 

carbon (TOC) concentrations, total particle count, total viable count, pH and 

temperature of the tap water were determined weekly. The parameters affected by 

bacterial cells (ATP concentration and particle and viable counts) were measured at 

sample ports 1 and 2. The extent of biofilm development and activity of attached cells 

was assessed by SEM and microscopic counts of CTC and DAPI stained cells. 
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2.36 Measurement of free chlorine 

The free chlorine concentration of tap water was measured using diethyl-p- 

phenylenediamine (DPD) comparator tablets No. 1 (BDH). A glass universal bottle 

was rinsed with the sample or standard to be measured. A DPD comparator tablet 

was crushed in the universal using a strong glass rod. 10 ml of the sample were 

added to the bottle, mixed and 1 ml was transferred to a plastic cuvette. The 

attenuance of light of wavelength 550 nm was measured within I min. A standard 

solution of 0.891 mg 1.1 potassium permanganate, equivalent to 1.0 mg l free 

chlorine, was used to construct a standard curve. A series of dilutions of the standard 

were made to produce concentrations equivalent to 0.2,0.4,0.6,0.8 and 1.0 mg 1" 

free chlorine. A standard curve was produced from the mean values of six 

independent measurements of each dilution. Six replicates of each tap water sample 

were performed and the mean value was calculated. 

2.37 Total organic carbon determination 

Total organic carbon (TOC) was measured in a Beckman 915-B TOC analyser. 

Inorganic carbon was removed by acidification of approximately 10 ml of sample 

with one drop of hydrochloric acid (HC1). Inorganic carbon precipitates were 

removed by bubbling nitrogen gas through the sample for 4 min. Standard curves 

were produced by dilution of a potassium hydrogen phthalate stock solution (2.125 g 

in one litre of distilled water; 1g1.1 TOC) to produce standards of 0,10,20,40,60, 

80 and 100 mg 1" TOC. These were measured in triplicate to produce a fresh 

standard curve each time the analyser was used. Tap water samples were also 

measured in triplicate. From the standard curves, the sensitivity limit of the analyser 

was found to be around 10 mg TOC litre''. 

2.38 Peptone enrichment of planktonic cells 

To monitor the response of planktonic cells to exogenous nutrient addition, a final 

concentration of 0.001% (w/v) bacto-peptone was produced in the second reservoir. 
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The holding volume of this reservoir was 10.1 litres, so a concentration of 0.001% 

(w/v) peptone was produced by the addition 0.101 g of bacto-peptone, dissolved in 

10 ml of tap water and sterilised by autoclaving at 1210C for 15 min. This 

concentration was maintained in reservoir 2 for 24 hrs by the introduction of sterile 
0.1% (w/v) bacto-peptone at a rate of 1.17 ml min"' for 24 hrs using a peristaltic 

pump. The addition was then stopped and the peptone was gradually diluted to 

extinction. 

2.39 Peptone enrichment of attached cells 

To monitor the effect of exogenous peptone addition on the activity of attached cells, 

a final concentration of 0.001% (w/v) bacto-peptone flowing over the biofilms was 

achieved by pumping sterile 0.1% (w/v) peptone into port 1 at a rate of 1.17 ml 

min'. This was maintained for 24 hrs. After cessation of peptone addition to 

biofilms, the peptone was left to be diluted to extinction in tap water. 

2.40 Chlorine addition to attached cells 

Free chlorine was added to attached cells from a sodium hypochlorite solution 

(Fisher Scientific Ltd). The free chlorine concentration, determined empirically, was 

found to be 26.3 g 1.1. To produce a final concentration of 0.3 mg free chlorine litre'1, 

a stock solution containing 30 mg ml-1 was produced by dilution of the sodium 

hypochlorite and introduced into the continuous flow model through sample port 1 at 

a rate of 1.17 ml min" for 3 hrs. 
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CHAPTER 3 



3 Isolation and identification of bacteria found in drinking water 

3.1 Introduction 

Before undertaking a microbiological study of a natural system it is necessary to 

identify the major taxa present. In oligotrophic environments, including potable 

water, bacteria tend to be slow-growing and unable to adapt easily to rapid growth in 

standard laboratory media. Many of the common biochemical tests for identification 

of isolated strains rely on rapid growth and cannot be applied to bacteria that require 

several days to produce a turbid culture. These technical difficulties place practical 

constraints on the number of organisms that can be identified in a study of potable 

water and the level of identification attainable. In one recent study the authors were 

able to identify just four strains from a total of twenty isolated from tap water 

(Buswell et al., 1997). Another limitation of taxonomic surveys of bacteria from 

potable water is caused by the presence of microorganisms that cannot be cultured by 

any known means. Total viable counts (TVCs) often underestimate the total number 

of bacteria quantified microscopically by one or two orders of magnitude (e. g. 

Roszak & Colwell, 1987). This discrepancy is undoubtedly caused in part by 

bacteria that do not produce colonies on agar. 

In situ techniques, discussed in Section 1.3.2, will lead to a more accurate estimation 

of the diversity of microorganisms and frequency of each strain in natural 

ecosystems. However, at present these are limited by the range of molecular probes 

available. 

Isolation is essential to obtain monocultures of strains from the autochthonous 

microflora of potable water for further laboratory studies. For rare or fastidious 

organisms, isolation often requires specialised media and/or an enrichment step. One 

of the major hypotheses underlying this project was that a distinctive bi- or multi- 

phasic life cycle occurs in most, if not all, eubacteria and acts as a mechanism by 

which attachment and release from surfaces can be related to the physiological 

activity of a cell. According to this theory, physiologically distinct cell types would 
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be responsible for performing different functions even in the absence of 

morphological differentiation. Dormant cells would act to disperse biofilms and 

reproductive cells would grow and divide at interfaces. If a marker could be found 

that would distinguish between active and dormant cells in situ then the distribution 

of cell types within drinking water pipes could be monitored. This would enable the 

question of whether multiphasic life cycles do play an important role mediating 
dormancy and biofilm dispersal in low-nutrient systems to be resolved. Since the 

correlations between cell type, activity and attachment to surfaces are most easily 

monitored for prosthecate bacteria, for which cell type can be determined 

microscopically, selective isolation of a prosthecate strain was desired. For 

comparison, a non-prosthecate isolate was also required. 

3.2 Aims 

There were two distinct aims to this section: 
1. To carry out a taxonomic survey of the bacteria present in the tap water at 
Warwick University in as much detail as possible. 
2. To isolate two organisms from the University drinking water for further 

laboratory studies. 

For simplicity the taxonomic study was restricted to identification of those organisms 

that could be cultured on standard laboratory media. No in situ identification 

techniques were employed. 

3.3 Morphology and biochemistry of isolated microorganisms 

A range of techniques were employed to isolate bacteria from the potable water at 

Warwick University. These experimental approaches and the major species isolated 

are described in Table 3.1. 
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Footnotes 

(a) 1- Isolated from the batch model on low nutrient sloppy agar (this was used 

specifically to isolate an appendaged microorganism - Section 3.5.2). 

2- Isolated from the batch model on PCA. 

3- Isolated from the continuous flow model on PCA after enrichment with 
0.00 1% (w/v) bacto-peptone for 24 hrs. 

4- Isolated from the continuous flow model on R2A. 

5- Isolated from the batch model after enrichment with 0.5% (v/v) methanol. 
6- Isolated from the continuous flow model on R2A after enrichment of 

biofilms with 0.001% (w/v) bacto-peptone for 24 hrs. 

(b) rd = smooth-edged round colonies. 
irreg. = irregular shaped colonies. 

ND = not determined. 

Only a few strains selectively enriched by the exposure of planktonic cells to 0.00 1% 

(w/v) bacto-peptone for 24 hrs grew sufficiently rapidly in the laboratory for the 

API20NE test to be applicable. 

3.4 Identification of bacterial isolates by sequencing the gene encoding the 16S 

rRNA subunit 

Strains for which no positive identification was obtained by any of the morphological 

and biochemical (including API20NE) tests, were grouped phylogenetically on the 

basis of partial 16S rDNA sequence data, as outlined below. The approach taken for 

DNA extraction and sequencing of part of the gene encoding the 16S rRNA subunit 

is shown schematically in Fig. 3.1. 
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Cells cultured in R2A broth or on R2A agar 

DNA extracted by sonication 
4, 

Gene encoding 16S rRNA amplified directly using 
primers PA and PH 

4, 

Product cleaned by Amicon filtration 

Region within the gene amplified 
using primers P, and P2 

Products prepared for sequencing by unidirectional PCR Purity checked by DGGE f from primer PA 

DNA precipitated and sent for automated sequencing 

Figure 3.1 Strategy for sequencing the gene encoding 16S rRNA from a variety 

of potable water isolates. Each step is described in detail in the text. Primers PA 

and PH were homologous to regions at the 5' and 3' ends of the gene respectively (for 

details see Section 2.25). Primers P, and P2 were homologous to regions within the 

gene, towards the 5' end. P, contained a GC clamp to produce a product suitable for 

denaturing gradient gel electrophoresis (DGGE). 

Since primers PA and PH are homologous to regions around the 16S rRNA gene of 

almost all known eubacteria, the introduction of a contaminant before the first PCR 

step would lead to amplification of at least two gene products of similar size. These 

would not be separated by linear gel electrophoresis and could lead to inaccurate 

sequence data being obtained. To avoid this DNA was prepared from at least two 

different cultures of each organism. Each culture was checked for purity 

microscopically and by subculture. In addition, purified PCR products were 

analysed by DGGE. This technique separates DNA on the basis of GC content as 

well as size. In theory it is sensitive enough to detect single base pair differences 

between DNA fragments. 
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3.4.1 Amplification of the gene by PCR 

Strains isolated from potable water were cultured in R2A broth or on R2A agar lör 3- 

7 days. Crude total DNA preparations were produced and used as the template for 

PCR between primers PA and P11. A negative control was included in each PCR 

reaction to ensure that the primers were amplifying only the template DNA. To 

confirm the success of the PCR, DNA was separated by electrophoresis through a I1lc 

(w/v) agarose gel. Samples containing the expected 1.6 khp product were purified by 

Microcon centrifugation. Once again, DNA was checked by electrophoresis through 

aI %% (w/v) agarose gel. An example of one of these gels is shown in Fig. 3.2. 

kbp 
123456789 

5.090 
4.072 
3.054 

2.036 
1.636 - 
1.018- 

0.517 - 

Figure 3.2 Analysis of the product of PCR reactions using primers Px and P� on 

a 1% (w/v) agarose gel. Total cellular DNA extracted from a range of bacterial 

isolates was used as a template for the PCR reactions. Products were purified by 

Microcon filtration before analysis. Arrows indicate clear bands and sizes of marker 

hands in khp arc shown. Lanes: I- markers; 2-9 - PCR products from: 2- CFF I, 3- 

CF3,4-CF4,5-CF5,6-CF9,7-CFII, 8-CFI3 and 9-CFI4. 

3.4.2 Analysis of the PCR product by UGGE 

To ensure that no contaminating DNA fragments had been amplified by PCR, 

products were separated by denaturing gradient gel electrophoresis (DGGE). This 
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required a further PCR step to obtain a small (about 200 bp) product from within the 

gene itself. Primer Pi contained a GC clamp, ensuring that the products were 

suitable for DGGE. A positive control, Streptomyces griseiis DNA, was included to 

confirm that the system was working properly. An example of a DGGE gel is shown 

in Fig. 3.3. DNA containing a relatively high concentration of G+C migrates further 

through the gel. Bands from CFI, CF4, CF11, CF14 (all subsequently identified as 

members of the group of high GC Gram positive eubacteria) and the positive control 

migrated further than bands from the other isolates. In each lane only one dsDNA 

band was present, confirming the absence of contaminating PCR products. The faint 

shadowing bands, each at the same distance above the clear dsDNA band, were still 

present because the gel was not run for long enough to resolve cleanly. 
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ssDNA 

dsDNA 

Figure 3.3 Analysis of the products of PCR reactions using primers PA and P� 

by DGGE. PCR products from a range of bacterial isolates were purified by 

Microcon filtration and subjected to a second PCR step, this time using primers P, 

and P. The products were electrophoresed through a 40(h, (w/v) polyacrylamide gel 

containing a gradient from 0-100% cif a denaturant. `ss' indicates the area of the gel 

containing hands resulting from single stranded DNA. `ds' denotes the area cif the gel 

containing hands of double stranded DNA. Lanes: I- Streptomyces griseus (positive 

control), 2-CFI, 3-CF3,4-CF4,5-CF5,6-CF9,7-CF11,8-CF13and9- 

CF 14. 
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3.4.3 Partial gene sequence 

The purified 1.6 kbp PCR products were used as templates for unidirectional PCR 

from primer PA. The reaction mixture contained equimolar amounts of the four 

standard deoxynucleotide bases. Four deoxynucleotide bases, each labelled with a 

different fluorescent moiety, were also included to act as chain terminators, yielding 

a set of DNA fragments of different lengths, each containing one of four fluorescent 

labels. Total DNA was precipitated with ethanol and sent for automated sequencing. 

This process separated the DNA by polyacrylamide gel electrophoresis, then 

employed image analysis to match the DNA fragment size with a particular terminal 

base pair. Consensus sequences were determined from 2-4 sequences obtained for 

each strain. Sequence data starting from around the 5' end of the gene was obtained. 
Sequences were aligned with each other and with others in the GenBank database 

(Benson et al., 1998) (Fig. 3.4). 

3.4.4 Phylogenetic analysis based on the sequence data 

Sequence data from the eight potable water isolates were compared to published data 

from a variety of strains in the GenBank database. An unrooted neighbour joining 

tree was constructed using the Jukes-Cantor method for calculation of phylogenetic 

distances (Fig. 3.5). 
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Figure 3.5 An unrooted neighbour-joining tree based on the DNA sequence 

shown in Fig. 3.4. Strains and culture collection numbers are listed in Table 2.2. 

Distances were calculated by the Jukes-Cantor method. Bar indicates number of 

substitutions per nucleotide position. 

Despite the small number of bases analysed, the tree shows branches similar to those 

obtained from more extensive studies (Woese, 1987). The only major eubacterial 

groups that are mixed together are the a and y subgroups of the Proteobacteria, 

although even here members of the a-4 subclass (Takeuchi et al., 1994) containing 

the genera Sphingomonas and Rhizomonas group together. 

Although no specific names can be ascribed to any of the isolates, it is possible to 

place five of them within individual genera: CF3 = Sphingomonas sp.; CFI, CF4, 

CF11 and CF14 = Mycobacterium sp. Additionally CF5 can be placed within the a 

subgroup of the Proteobacteria and CF3 and CF9 belong to a single species within 

either the a or y subgroup of the Proteobacteria. None of these identifications 

contradicts morphological or biochemical data (Section 3.3). 

It should be noted that several of the isolates group very closely to each other. It is 

not surprising that CF3 and CF9 belong to the same species as these strains differed 

only in production of a red-brown pigment by CF9. The tight grouping of the 

mycobacteria is more interesting. CF1 and CF4 almost certainly belong to the same 

species as they differed only slightly in the morphology of colonies produced on 

R2A medium. However, colonies produced by CF1 I and CF14 were clearly distinct 

from each other as well as from CF1/CF4 (see Table 3.1). It is likely that the four 

isolates represent three distinct species. More biochemical and/or sequence data are 

required to ascertain whether the strains are truly more closely related to each other 

than to any other mycobacteria, as suggested by Fig. 3.5. 
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3.4.5 Mycobacteria in potable water 

The common occurrence of mycobacteria in the Warwick University drinking water 

system is not unexpected, but the growing concern over the health risks associated 

with this group of organisms merits a brief discussion here. Mycobacteria are 

widespread in the environment, existing most commonly in water or watery habitats 

such as surface water, mud, soil and piped water supplies (Collins et al., 1984; 

Grange, 1996). Only a few species are obligate pathogens but many are responsible 

for opportunistic infections. It is generally thought that infections caused by non- 

tuberculous mycobacteria originate from environmental sources, although little is 

known about the mode of transmission. A study of cooling and spray water from 

several dental units demonstrated that patients were exposed to large numbers of 

non-tuberculous mycobacteria during treatment. Swallowing, inhalation or 

inoculation into oral wounds could occur, potentially resulting in colonisation or 

infection (Schulze-Röbbecke et al., 1995). The degree of mycobacterial colonisation 

of tap or bottled waters may act as an index of the hygienic quality for consumption 

by immunocompromised patients (Kubalek & Komenda, 1995; Kubalek & Mysak, 

1996; Papapetropoulou et al., 1997). 

The hydrophobic nature of the mycobacterial cell wall and the fact that, unlike most 

aquatic bacteria, mycobacteria are non-flagellate, suggest that these organisms are 

specialised for adhesion to surfaces. Cells readily attach to surfaces (Schulze- 

Röbbecke et al., 1992 and 1995) and cell division at surfaces can result in 

mycobacterial microcolonies (Schulze-Röbbecke et al., 1992). Enrichment of 

mycobacteria by the presence of solid surfaces is investigated in Chapter 6. 

3.5 Isolation of a prosthecate bacterial species 

A prosthecate bacterial isolate from potable water was desired for laboratory studies 

(see Section 3.1). 

105 



3.5.1 Methanol enrichment 

An Hyphomicrobium sp. or Pedomicrobium sp. was observed after short periods of 

static batch enrichment (Chapter 5). Since hyphomicrobia are virtually unique in 

their ability to utilise methanol and nitrate as the sole carbon and nitrogen sources 

respectively in the absence of oxygen (Moore, 1981), three enrichment flasks were 

set up containing HB medium with 0.5% (v/v) methanol added. Flasks were 
incubated anaerobically at 30°C with shaking for up to 8 weeks. At intervals, 

samples were removed and spread onto HB agar with 0.5% (v/v) methanol. Plates 

were examined after aerobic or anaerobic incubation at 30°C for 4 weeks. Two of 

the enrichment flasks became overgrown with Methylobacterium sp., there was no 
bacterial growth in the other. 

3.5.2 Isolation on low-nutrient sloppy agar 

Prosthecate bacteria are most commonly found in oligotrophic waters. Low-nutrient 

sloppy agar plates were used as a direct attempt to isolate a prosthecate species in 

order to limit substrate accelerated death, growth of heterotrophic organisms and 

exposure to stress from desiccation. As prosthecate organisms were enriched by 

batch storage of tap water (Chapter 5), water taken from the batch enrichment model 

after 20 weeks was added to the top sloppy agar layer before pouring and plates were 

incubated at 30°C or room temperature for 4 weeks. Discrete colonies were selected 

and subcultured in fresh sloppy agar. After another 4 week incubation at 30°C or 

room temperature, colonies were screened for the presence of prosthecate bacteria by 

light microscopy. One of the plates was found to contain a pure culture of a 

prosthecate bacterial species. The isolate was subcultured on low-nutrient sloppy 

agar and stocks were made for storage at -20°C. 

A variety of culture conditions were tested to obtain the maximum growth rate and 

yield. Incubation on peptone agar, containing 0.001% (w/v) bacto-peptone, 1.5% 

(w/v) bacto-agar dissolved in tap water, or PCA at 30°C in high humidity yielded 

small colonies up to 1 mm in diameter after '14 days. Colonies were extremely tough 
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and it was difficult to scrape cells from them. Growth in liquid culture was very 

slow. Turbid cultures were obtained after aerobic or anaerobic incubation of cells in 

10 ml of HB medium containing 0.5% (v/v) methanol or 0.1% (v/v) trimethylamine 

in a glass universal bottle for 8 weeks. 

3.5.3 Characterisation of the prosthecate isolate 

Cells appeared to be pear-shaped under phase contrast optics, usually bearing one or 
two polar prosthecae. Cells stained Gram negative and contained large granules of 

poly-ß-hydroxybutyrate. Prosthecae were extensively branched and colonies on agar 

consisted of tangled cellular matrices. The majority of cells in liquid culture were 

attached to the glass sides of the vessel and for around 3-4 weeks after inoculation 

only a few single cells were observed, some of which were motile. After about 8 

weeks most cells that were not attached to the sides. of the vessel were present in 

aggregates. Division occurred by budding at the tips of the prosthecae and cells were 

classified as Hyphomicrobium sp. or Pedomicrobium sp. on the basis of cell 

morphology. Cells analysed by TEM after negative staining with phosphotungstic 

acid are shown in Fig. 3.6. 
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40 1p 
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1 

Figure 3.6 TFM of an Hiphumicrohiuin or PL'domicruhiInn sp. isolated from 

potable water. This organism was isolated on low-nutrient sloppy agar alter 

enrichment for 20 weeks in the static hatch hiolilm model. Cells were negatively 

stained with phosphotungstic acid. Bar =I pm. 

The slow growth ofthe /J phon icrobium sp. or Pedonºicrohium sp and the difficult 

of separating individual cells frustrated attempts to use it in laboratory studies. Since 

no other prosthecate bacteria were isolated. Caulobacter cresc"enfus ('1315 was 

obtained from the NC 113 culture collection for laboratory work. 

3.6 Conclusions 

A wide range of bacteria, almost exclusively regular rods, were isolated from potable 

water. No coliforms or Aermnofrw. s' spp. were observed, although no specific 

attempts were made to search for these organisms. Most of the isolates grew slowly 

(greater than four days to form medium-sized colonies or turbid liquid cultures) and 
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could not be identified by API20NE tests. Bacteria that could not be identified by 

other means were placed into phylogenetic groups based on partial sequence of the 

gene encoding 16S rRNA. As the database of full and partial 16S rDNA sequences 

grows, this technique is becoming more powerful (Palys et al., 1997). 

Three distinct Mycobacterium spp. were identified, which grouped very closely to 

each other by DNA sequence analysis. The tight grouping may reflect a current 

limitation of the 16S rDNA database or it may show a close relationship between the 

three organisms. However, since the length of DNA sequenced was short and very 

few differences separated any of the mycobacteria analysed, it is impossible to draw 

clear conclusions about the inter-relationships between the species on this evidence 

alone. Further DNA sequencing or identification by other means (Jenkins et al., 

1992) is required to group these isolates into individual species, and without that 

knowledge it is impossible to discern whether any of the isolates are recognised 

opportunistic pathogens. 

An appendaged microorganism was isolated but it could not be used for the planned 

laboratory studies, due to its slow growth rate and tendency to form tightly bound 

`mycelia'. The fact that this organism was only isolated after the application of 

specialised techniques supports the theory that many bacteria are present in the 

system that are not isolated on rich laboratory media. This is further demonstrated 

by the wide range of cellular morphologies observed directly after static batch 

enrichment of tap water (Chapter 5) compared to the predominance of regular rod- 

shaped bacteria isolated on rich media. 
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CHAPTER 4 



4 The physiology of isolated organisms 

4.1 Introduction 

Vegetative dormancy has been shown to occur in a variety of non-sporulating Gram- 

positive and Gram-negative bacteria under nutrient starvation or other stresses in the 

laboratory and in natural environments (Section 1.2.5.1). It has been suggested that 

production of dormant cell types that are physiologically and sometimes 

morphologically distinct from metabolically active cells of the same species is 

regulated through the bacterial cell division cycle. From studies on three unrelated 

prosthecate bacteria it was shown that in each case a life cycle involving an 

asymmetric division played a key role in bringing about two different cell types: an 
inactive motile daughter cell and a reproductive mother cell specialised for 

attachment to solid surfaces such as fixed surfaces, solid inert particles or other cells 
(Whittenbury & Dow, 1977). In a potable water distribution system this type of life 

cycle would allow growth and division of attached cells, while enabling dispersal by 

release of motile daughter cells into the water column. Since prosthecate bacteria are 

present in drinking water, it is clear that life cycles involving an asymmetric division 

step play a role in the production of vegetative dormant cell types and dispersal in 

this system. 

From laboratory studies, there is strong evidence that asymmetric division also 

occurs in the life cycles of many non-prosthecate bacteria (Section 1.2.5.2.2). 

However, the role of bi- or multi-phasic life cycles in the survival, growth and 

dispersal of morphologically indistinct bacteria in natural environments has not been 

investigated. This is the major area to be explored in this thesis. 

The first step is to find a marker to distinguish between dormant and active cell types 

in situ. Cell types can be distinguished on the basis of nucleoid sedimentation 

coefficients (Swoboda et al., 1982; Robertson, 1996), but use of this technique is 

limited to planktonic laboratory monocultures. An attempt to identify a structural 

cell surface marker that could distinguish between active and dormant E. soli K-12 
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cells failed to produce cell type-specific antibodies (Robertson, 1996). An alternative 

approach is to apply physiological markers to differentiate between cell types in situ. 
Many different stains have the capacity to highlight exclusively the active cells in a 

population (Section 1.3.3). Of these, 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) 

has increasingly been employed to stain bacterial cells with an active respiratory 

chain in natural systems since it was first introduced to microbiology in 1992 

(Rodriguez et al., 1992). This tetrazolium salt is reduced by respiratory chain 

enzymes to an insoluble fluorescent formazan product, which can be observed 

microscopically. The mechanism of CTC reduction has not been fully elucidated 
(Section 1.3.3.2). Before applying a technique such as CTC staining to measure the 

metabolic activity of bacteria in complex systems, such as those predominating in the 

natural environment, the methodology must be refined in the laboratory. 

4.2 Aims 

The primary aims of this section were: - 
(a) to develop a technique to distinguish between distinct cell types of the same 

species in situ; 

(b) to analyse changes in cell type associated with surface attachment. 

Three approaches were taken to achieve these objectives: - 
1. The growth of two strains in batch culture was studied to determine the potential 

of a physiological stain (CTC) to distinguish between cell types. The strains selected 

for analysis were Caulobacter crescentus CB 15 which undergoes a well- 

characterised dimorphic life cycle and Sphingomonas sp. (CF13) isolated from 

potable water at Warwick University. 

2. A chemostat model of biofilm development was used to investigate the 

relationship between cell surface hydrophobicity and attachment proclivity. 
3. Differences between cellular proteins of attached and planktonic cells were 

assessed with a view to finding markers that could be used to differentiate between 

cell types in situ. 
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4.3 Batch culture studies 

Two organisms were selected for use in batch culture studies to establish the capacity 

of a physiological stain, CTC, to determine the cellular activity of populations of 

cells and individual members of them. Caulobacter crescentus CB15 was chosen 

because it undergoes a well-defined dimorphic life cycle. Although C. crescentus 

CB 15 was not isolated from Warwick University potable water, Caulobacter species 

are ubiquitous freshwater organisms and at least one member of this group was 

observed directly in static batch tap water enrichments (data not shown). 

The other strain chosen for laboratory studies was a Sphingomonas sp. isolated from 

tap water at Warwick University. Sphingomonas spp. are pathogenic to animals and 

are opportunistic human pathogens. They can degrade copper water pipes and have 

been found associated with a variety of biofilms (White et al., 1996). 

4.3.1 Cell physiology during culture of Sphingomonas sp. 

4.3.1.1 Cell size 

Bacterial cell size is a good indicator of physiological activity, larger cells being 

more active. This is true both in the laboratory where E. cols cells reach the 

minimum unit cell size only at relatively slow growth rates (Donachie, 1984), and in 

many natural environments where ultramicrobacteria abound (Morita, 1985). Cell 

size was monitored through batch culture of Sphingomonas sp. using the CeilFacts 

particle analyser to assess changes in cellular activity through batch growth (Figs 4.1 

and 4.2). 
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Figure 4.1 Sphingomonas sp. batch culture growth curve. The growth of 

Spingornonas sp. in TYG broth was monitored. TVC = total viable counts ml-' on 

PCA; TC = total cell counts ml-' determined using CellFacts. Error bars shown for 

total viable counts represent standard deviations from triplicate samples. This graph 

shows one of a duplicate set of experiments, both of which gave similar profiles. 
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Figure 4.2 Cell size changes through batch culture of Sphingomonas sp. in TYG 

broth. The mean cell size, given as ESD, was determined using CellFacts. Error 

bars are shown where large enough to be visible and indicate the standard deviation of 

triplicate samples. This graph shows one of a duplicate set of experiments, both of 

which gave similar data. 
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The batch growth curve showed the classic lag (0-3 hr as assessed by A600), 

exponential (3-9 hr) and stationary (9 hr onwards) phases (Fig. 4.1). The increase in 

cell size in the early stages of batch culture (Fig. 4.2) reflects a shift-up in response to 

a sudden increase in the nutrient concentration of the medium. However, the double 

cell size peak before mid-exponential phase was unexpected. Other studies in this 

laboratory using CeilFacts particle analysis to monitor the batch growth kinetics of 
Klebsiella pneumoniae and E. cola have shown a single peak of cell size occurring 
before mid-exponential phase and subsequently decaying gradually in these 

organisms (P. Firth and C. S. Dow, unpublished data). The two peaks were 

reproduced in a repeat of the experiment. There are two explanations that could 

account for the double peak: - 
(a) The strain studied may have preferentially utilised one minor carbon source in the 

medium. If this was fully metabolised within 3 hrs of inoculation then the cells may 

have started to reduce in size before adapting to growth on a different substrate. 

(b) Since the lag phase lasted until 3 hrs after inoculation (Fig. 4.1), the decrease in 

cell size between 3 and 5 hrs may have been caused by cell division. Continuation of 

the shift-up response until 7 his after inoculation would then create a second peak. 

It is simple to test whether the decrease in the average cell size was a result of cell 

shrinkage or cell division by plotting the change in the total cell volume expressed as 

equivalent spherical volume (ESV) ml''. Assuming that cell lysis did not occur over 

this period, a decrease in the total bacterial volume would indicate shrinkage of cells. 

However, it is clear that total cell volume increased throughout the early stages of 

batch culture at almost exactly the same rate as the optical density (Fig. 4.3). The 

reduction in cell size must therefore have resulted from cell division and hypothesis 

(a) above is ruled out. 
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Figure 4.3 Changes in the total cell volume through batch culture of 
Sphingomonas sp. in TYG broth. The total cell volume was calculated as the 

product of the total cell number (Fig. 4.1) and the average cell volume. 

There was another small increase in the average cell volume at the end of the hatch 

growth cycle, between 13 and 15 hrs after inoculation (Fig. 4.2). This increase was 

statistically significant (p <0.05) and was reproduced when the experiment was 

repeated. However, it should be noted that the statistical analysis was performed on 

just three samples at each time point and the confidence is therefore questionable. 

Since the cell size increase may have reflected the onset of dormancy in a proportion 

of cells in the population, the batch culture of Sphingomonas sp. was monitored for 

24 hrs to analyse the peak more closely. However, the peak was not then observed 

and was not seen in a further repeat of the experiment (data not shown). It is 

therefore impossible to draw any conclusions on cell size changes in the early 

stationary phase of this strain based on the data obtained, but it would be an 

interesting area to investigate further (e. g. using different media, different strains and 

more frequent sampling). 

4.3.1.2 Intracellular ATP concentration 

The concentration of ATP within bacterial cells reflects their activity. ATP is retained 

in dormant cells (Porter, 1984; Emala & Weiner, 1983; Siegele & Kolter, 1992), but 
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lost immediately when a cell dies (Lazarova & Manem, 1995). Since ATP 

determination is a very sensitive technique which can easily be applied to the analysis 

of potable water, it was desirable to assess the fluctuations of the average intracellular 

ATP concentration of Sphingomonas sp. cells through batch culture (Fig. 4.4), both 

to obtain more information on the cellular activity of Sphingomonas sp. through batch 

culture and to assess the potential of this technique to measure bacterial occurrence 

and/or activity in complex potable water samples. 
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Figure 4.4 Intracellular ATP concentrations through Sphingomonas sp. batch 

culture. Intracellular ATP was measured using a luciferin-luciferase based assay, as 

described in Section 2.16. The ATP concentration of three samples was measured at 

each time point and error bars represent standard deviations from the mean. This 

graph shows one of a duplicate set of experiments, both of which gave similar data. 
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The peaks at 2 hrs and 8 hrs closely resemble the cell size maxima seen in the previous 

experiment (Fig. 4.2). The simplest explanation for this would be that the total 

intracellular ATP concentration was linked to the total volume of cellular material 
during the early stages of batch culture. However, an analysis of the relationship 
between these two parameters shows that this explanation is not valid (Fig 4.5). The 

first peak, two hours after inoculation, may have arisen from a shift-up in the average 
intracellular ATP concentration prior to utilisation of the ATP for cell division. The 

second sharp peak occurred in the middle of the exponential phase of growth, 8 hrs 

after inoculation of the culture, when virtually all the cells in the population would 

have been actively growing and dividing. A third peak of intracellular ATP was 

apparent at the onset of stationary phase, 16 hrs after inoculation. It is interesting to 

note that this was the point at which a transient increase in the cell size had been 

previously been observed (Fig. 4.2). It is likely that the changes in cell size and ATP 

concentration at this point reflected an active cellular response to nutrient depletion, 

involving an increase in the number of dormant cells in the population. 
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Figure 4.5 Relationship between the total intracellular ATP concentration and 

the total volume of cellular material through batch culture of Sphingomonas sp. 

in TYG broth. The total bacterial volume was calculated from CellFacts particle 

analysis data as the product of the mean cell volume and the total particle count 

between 0.75-2.0 gm. 
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The specific intracellular ATP concentration remained roughly constant between 24- 

48 hrs. Therefore in this Sphingomonas sp., as in other bacteria (Roth et al., 1988; 

Emala & Weiner, 1983; Porter, 1984), ATP was maintained in non-growing cells. 
Assuming that most of the planktonic bacterial population in potable water is not 

actively growing and that intracellular ATP concentrations (i. e. amount of ATP per 

unit cell volume) are similar within dormant cells of all bacterial strains in tap water, 

then ATP should be a reasonable indicator of biomass. These assumptions appear to 

hold for most of the limited number of studies performed to date, but it will be 

necessary to analyse the intracellular ATP concentrations of many other tap water 

bacteria before a clear universal link between ATP and bacterial biomass in potable 

water can be confirmed. 

4.3.1.3 Respiratory chain activity 

Of course, the measurements performed above provided an average value of the 

intracellular ATP concentration of a non-synchronous population of cells. In fact, 

the population would have been heterogeneous, containing cells at different stages of 

the division cycle. For some species it is possible to analyse individual cell types 

obtained using a synchronisation method, but analysis of the activity of individual 

Sphingomonas sp. cells required a different approach. The method employed in this 

study involved the use of CTC to stain single cells with an active respiratory chain. 

Optimisation of certain staining parameters was required before applying a 

physiological dye to a species for which it had not previously been tested. For CTC, 

which requires no additional substrate, the most important parameters to be 

considered were the concentration of dye and time of staining. Exponentially 

growing Sphingomonas sp. populations were always incubated in the dark at 30°C 

after CTC addition and the effects of different incubation times and CTC 

concentrations on staining were monitored by fluorimetry (Fig. 4.6). 
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Figure 4.6 Optimisation of CTC staining of Sphingomonas sp. cells. The effects 

of (a) time of incubation of cells in 0.5 mM CTC and (b) CTC concentration using a 

30 minute incubation time were assessed. Cells were incubated at 30°C in the dark 

and the amount of CTC staining was measured as the relative fluorescence emission at 

630 nm after excitation at 450 nm. Control samples (no CTC) were included when 

assessing the effect of incubation time on CTC fluorescence. Error bars represent 

standard deviations from triplicate experiments. 
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Reduction of CTC followed first order kinetics. An incubation time of 30 min, 

resulting in 58% of the maximum fluorescence, was considered to be sufficient for 

batch culture studies. CTC reduction was concentration-dependant up to 1 mM. 

Less fluorescence was produced by staining with 5 mM CTC than with 1 mM CTC. 

This may have been a result of inhibition of respiration by excess CTC or 

alternatively it could have reflected production of extracellular crystals, which were 

then discarded with the supernatant during the washing steps of the experimental 

protocol. The obvious red colour of the supernatant and analysis of samples by 

fluorescence microscopy both supported the latter theory. A distinctly red 

supernatant was also observed when washing cells after staining with 1 mM CTC so 

a concentration of 0.5 mM was chosen for further work to minimise formation of 

extracellular crystals. 

The respiratory chain activity of Sphingomonas sp. cells was monitored through 

batch culture using two different techniques: - 
(a) the total activity of the population was monitored by measuring the total CTC- 

formazan fluorescence and comparing with the total CellFacts particle count 

(Figs 4.7 and 4.8); 

(b) the proportion of cells within the population that possessed an active respiratory 

chain was assessed by determining the number of CTC-formazan crystals observed 

microscopically and comparing this with the total cell count obtained by 

counterstaining with DAPI (Fig. 4.8). 

The total CTC-formazan fluorescence provided a bulk measurement of the activity of 

the population, comparable to measurements of cell size and ATP. The microscopic 

count produced an assessment of the heterogeneity of the population and was a 

technique that could be applied to quantify the active cells in potable water biofilms. 

The total cell count obtained by DAPI staining was consistently lower than the 

CellFacts count. This was a result of loss of cells during staining and preparation of 

slides. It seems fair to assume that there would be no bias towards the loss of either 

active or inactive cells so the CTC: DAPI ratio should not have been affected. 
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The total activity of the population, in terms of the ability to reduce CTC, followed 

similar kinetics to the optical density of the culture, except that no lag was observed 

before the initial increase in fluorescence. Fluorescence of the control (no CTC) 

remained relatively low. 
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Figure 4.7 Total CTC fluorescence through Sphingomonas sp. batch culture. 

Samples were removed at intervals and CTC reducing activity was measured 

fluorimetrically. Error bars represent standard deviations of triplicate samples. A 

control (no CTC) was performed at each time point. One of a duplicate set of 

experiments is shown. Both sets gave similar data. 

The average specific cellular activity, expressed as the total fluorescence per 

CellFacts particle count, increased in a hyperbolic manner until reaching a peak seven 

hours after inoculation of the culture (Fig. 4.8). This showed different kinetics from 

the exponential increase in total cell volume or the double peaks of average cell 

volume and intracellular ATP observed over the same period (Figs 4.2 - 4.5). The 

rapid increase in CTC reduction was produced by a small proportion of the population 

since the CTC: DAPI ratio was relatively low during the first seven hours of batch 

culture (Fig. 4.8). Between 13-15 hrs, there was a slight increase in the activity of the 

population and in the total number of CTC-formazan crystals produced per cell. This 
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corresponds to the point at which the cell size and the intracellular ATP concentration 

increased (Figs 4.2 - 4.5) and is interpreted as part of an active stationary phase 

response to produce dormant cells. The pattern of CTC staining towards the end of 

batch culture was complicated by the production of extracellular CTC-formazan 

crystals (Fig. 4.9). These may have artificially elevated the microscopic CTC counts, 

but would have decreased the fluorimetric yield through loss of crystals in the 

supernatant. 
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Figure 4.8 CTC fluorescence per cell through Sphingomonas sp. batch culture. 

Samples were removed at intervals and CTC reducing activity per cell was measured 

using two different techniques: (a) fluoresence/cell = fluorescence measured by 

fluorometry per total cell no. determined by CellFacts and (b) CTC/DAPI = 

fluorescence/cell calculated as microscopic CTC counts per microscopic DAPI 

counts, both obtained using fluorescence microscopy with the relevant filter set and 

image analysis. This graph shows one of a duplicate set of experiments, both of 

which gave similar data. 

Despite the differences in the kinetics of total CTC reduction, the proportion of cells 

that reduced the dye and other measures of cellular activity (cell size and ATP) over 
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the early stages of batch culture, all measurements showed a peak during the mid-or 

late-exponential phase of growth and a second peak at around 15 hrs. 

For most samples each cell contained a single formazan crystal, usually localised at 

one pole (Fig. 4.9(a and b)). Some abnormally long cells were seen, containing 

formazan crystals at regular intervals. Occasionally extracellular crystals were 

observed. However, some samples were strewn with relatively small extracellular 

crystals in addition to the larger intracellular formazan deposits (Fig. 4.9(c and d)). 

The conditions under which the extracellular crystals were formed were not well 

defined, although they tended to be most abundant towards stationary phase. The 

slight increase in the fluorescence/cell measured individually by CTC and DAPI 

staining (Fig. 4.8) at the end of the batch growth curve (15 hr) was a direct result of 

extracellular crystal formation.. 
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(b) 

Figure 4.9 Fluorescence micrographs of Sphingomonas sp. cells stained with 

CTC and counterstained with DAPI. (a) Cells cultured for 8 hrs in TYG observed 

using the DAPI filter set, (b) the same field under the CTC filter set, (c) cells cultured 
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(U) 

for 15 hrs in TYG observed under the DAPI filter set and (d) the same field under the 

CTC filter set. (a) and (b): most cells contain a single formazan crystal; (c) and (d): 

extensive extracellular formazan deposition is apparent. (a) and (b), bar = 10 dun; (c) 

and (d), bar = 50 . im. 
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There are three possible explanations for the abundance of extracellular formazan 

deposits seen under certain conditions in this study: - 
(a) in certain circumstances the cells can detect the accumulation of a toxic formazan 

deposit and actively secrete it, 

(b) cells sometimes secrete enzymes capable of catalysing CTC reduction outside the 

cell, or 

(c) cells may have lysed (see below). 

Although the extracellular crystals observed were generally smaller than those 

located inside cells, it seems unlikely that they could have escaped the cell without 

lysis of the membrane. Since extensive cell lysis was not seen in samples containing 

large numbers of extracellular crystals, it is presumed that extracellular CTC 

reduction occurred. In a previous investigation, CTC reduction occurred in nutrient- 

rich medium in the absence of cells (Bovill et al., 1994). However, in this study no 

CTC was reduced in TYG broth without cells or in TYG broth containing fixed cells 

(cells and 1% (v/v) glutaraldehyde). Care must be taken to avoid extracellular 

staining when applying CTC in situ since it is difficult to relate the number of 

formazan crystals to the number of actively respiring cells if a single cell is capable 

of producing more than one fluorescent crystal. 

4.3.2 Cell physiology during culture of Caulobacter crescentus CB15 

4.3.2.1 Cell size and morphology 

The life cycle of C. crescentus is well-documented (Cooper, 1991; Fig. 4.10). The 

morphology of the C. crescentus CB 15 cell types is shown in Fig. 4.11. 

126 



Swarmer 
cell cycle 

-(--D 
OBLIGATE 

maturation 

Stimulus 

REPRODUCTIVE 
stalked 

mother cell . 
L' 

cD- 
ASYMMETRIC 

DIVISION 

Reproductive 
cell cycle 

DORMANT 
flagellate (motile) daughter cell 

Figure 4.10 Schematic representation of the life cycle of Caulobacter crescentus. 

The life cycle of this organism is biphasic, involving an asymmetric division step. The 

stalked mother cell produced is capable of undergoing another round of cell division 

immediately. The flagellate daughter cell is dormant. Upon receiving a stimulus it 

embarks on an obligate sequence of maturation events, including shedding of the 

flagellum and production of a stalk. Once mature, this cell begins to divide. 
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Figure 4.11 The life cycle of Caulobacter crescentus C1315. Gold-palladium 

shadowed transmission electron micrographs illustrating the key stages in the lilt 

cycle of C. c"reseentus CB 15. (a) A cell dividing asymmetrically into a stalked mother 

cell (mo) and a flagellate daughter cell (da), (h) a single mother cell possessing a polar 

stalk and (c) a daughter cell with a polar flagellum (arrow). Bar =I µm. 

The kinetics of C. crescentus C1315 hatch culture and cell size fluctuations are shown 

in Figs 4.12 and 4.13. Stationary phase was not reached during the first 30 hrs of 

hatch culture. By the time the second sample was taken, alter 4 hrs, cell division had 

started (Fig. 4.12). Therefore the absence of a second cell size peak in the early phase 

of hatch culture, as was produced by Sphingoinonas sp. (Fig. 4.13; compare with 

Fig. 4.2), was expected. More frequent sampling would he needed to determine 

whether a second peak of cell size occurred, but was not detected, or whether there 

was only one peak at this stage of growth, as seen during the hatch culture of K. 

plºeunºnniue or E. coli (P. Firth and C. S. Dow, unpublished). The discrepancy 

between the size of mother and daughter cells was insufficient to he detected by 

Ce//Facts analysis. However, an increase in cell size was detected upon entry into 

stationary phase, alter 30 hrs. This is similar to the increase in the size of 
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Sphingomonas sp. when approaching stationary phase and may reflect an active 

stationary phase response. 
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Figure 4.12 Growth curve of C. crescentus CB15 in PYE broth. Samples were 

removed at intervals and A6( ), total viable counts (TVC) on PYE agar and total 

CellFacts counts (TC) were measured. Error bars shown for total viable counts 

represent standard deviations from triplicate samples. The graph shows one of a 

duplicate set of experiments, both of which gave similar data. 
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Figure 4.13 Cell size variation through C. crescentus CB15 batch culture. Cell 

size, expressed as ESD, was determined using CellFacts. Standard deviations of 

triplicate cell size analyses are shown, where large enough to be visible. The 

experiment was performed in duplicate, giving similar data each time. The graph uses 

data from one of the two replicates. 
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A closer analysis of the cell size profiles of Sphingomonas sp. and C. crescentus 

CB 15 shows obvious differences between growth of cells of the two species in batch 

conditions (Fig. 4.14). 
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Figure 4.14 Comparison of individual cell size profiles through batch culture of 

Sphingomonas sp. and C. crescentus. Samples were removed periodically and 

analysed using CellFacts. At each time point three profiles were obtained. These 

were averaged and the resulting profiles were normalised to allow for variations in 

total particle counts. Profile labels indicate the number of hours after inoculation of 

batch cultures. (a) Sphingomonas sp. cultured in TYG and (b) C. crescentus CB 15 

cultured in PYE. 
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A shoulder was apparent on most of the Sphingomonas sp. cell size profiles at about 

0.9 µm ESD, but was too small to analyse quantitatively. In chemostat studies 

(Section 4.4) when Sphingomonas sp. cells were cultured at low growth rates, the 

average cell size was around this value, suggesting that the shoulder represented a 

small proportion of the total cell population which remained inactive while the 

majority of cells were dividing. Further work is required to evaluate this hypothesis. 

Enrichment of the small cells by filtration or centrifugation before CellFacts analysis 

might facilitate a quantitative assessment of these cells through batch culture. 

In late lag phase (around 8 hrs) the C. crescentus cell size profile exhibited two 

distinct but overlapping peaks. The peak representing larger particles (1.3-1.8 µm 

ESD) disappeared by mid-exponential phase (about 20 hrs). Particles larger than 

around 1.3 µm could not be attributed to "normal" cells about to divide since the 

smallest cells produced immediately after division must have been at the lower end 

of the bacterial size peak, i. e. around 1 µm ESD. Assuming a constant cell width 

throughout the growth cycle, a doubling in cell length would result in a particle size 

of 1.26 µm ESD. Giant cells and chains of cells were observed under the TEM 

(Fig. 4.15); the large particles could have been either or both, but the reason for the 

formation of these cells and chains was not clear. Three theories were examined: - 

(1) The presence of an inhibitor of cell division in the water was tested by 

comparing growth of cells in PYE prepared with water from two different sources: 

the routinely-used laboratory water, cleaned by reverse osmosis and carbon filtration 

in a Purite unit (Millipore) and Ultrapure water supplied by Fisons, UK. No 

difference in batch growth kinetics or cell size of C. crescentus CB15 was observed. 

(2) The effect of pH on cells was assayed by culturing cells in PYE adjusted to pH 

5.5,5.8,6.1,6.4,6.7,7.0,7.3,7.6,7.9 or 8.2 before autoclaving. Large cells and 

chains of cells were observed microscopically in all samples where conspicuous cell 

growth occurred. 

(3) To ensure that laboratory attenuation of the C. crescentus strain studied had not 

taken place, two other strains were cultured. Chains of cells were formed by 

C. crescentus CBI 5N, a modified form of strain CB 15, and by C. crescentus CB 13, 

indicating that the phenomenon was not unique to C. crescentus CB 15. 

131 



PTC Q(' 

(a) (b) 

Figure 4.15 Giant cell and chain formation by C. crescentus Cß15 cells. Gold- 

palladium shadowed TEMs showing (a) giant cells (gc) and (b) a chain of cells. 

Bar= I µm. 

In a culture of bacterial cells it is not uncommon to see chain formation by a 

proportion of' the population. Indeed, chains of Sphingonnonas sp. cells were 

sometimes observed (e. g. Fig. 4.9). However, it was the large number of unusually 

large particles detected by Ce! lFacts particle size analysis and the clear division of the 

particles into two distinct but overlapping peaks that was surprising and the cause 

remains unclear. 

4.3.2.2 Respiratory chain activity 

Staining of' C. r resc"entus CB 15 was optimised using the same techniques applied to 

. Sphingomonas s p. (Section 4.3. I. 3). The effects of time of incubation oi"cells in CTC 

and concentration of CTC were monitored (Fig. 4.16). 
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Figure 4.16 Optimisation of CTC staining of C. crescentus CB15 cells. The 

effects of (a) time of incubation of cells in 0.5 mM CTC and (b) CTC concentration 

using a 30 minute incubation time were assessed. Cells were incubated at 30°C in the 

dark and the amount of CTC staining was measured as the relative fluorescence 

emission at 630 nm after excitation at 450 nm. Control samples (no CTC) were 

included when assessing effect of incubation time on CTC fluorescence. Error bars 

represent standard deviations from triplicate experiments. 
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The maximum fluorescence was obtained after incubation of cells in CTC for I hr. 

No further increase in the fluorescence yield was observed after staining the cells for 

longer periods, due to inhibition of cellular metabolism by the dye or reduction of all 

the CTC to formazan. A staining time of 30 min, giving 79% of the maximum 

fluorescence, was chosen for staining C. crescentus cells to minimise extracellular 

CTC reduction. A concentration of 0.5 mM CTC resulted in the highest fluorescence 

yield without excessive extracellular fluorescence, therefore this was selected for 

further studies. 

The activity of the C. crescentus CB 15 respiratory chain was assessed through batch 

growth both fluorimetrically (Figs 4.17 and 4.18) and microscopically (Fig. 4.18). 

The average fluorescence per cell was calculated by dividing the fluorescence yield by 

the total cell count determined using CellFacts particle analysis. The proportion of 

cells that were actively respiring at any time was expressed as the total microscopic 

CTC count divided by the total DAPI cell count. 
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Figure 4.17 Total CTC fluorescence through C. crescentus CB15 batch culture. 

Samples were removed at intervals and CTC reducing activity was measured 

fluorometrically. Error bars represent standard deviations of triplicate samples. A 

control (no CTC) was performed at each time point. One of a duplicate set of 

experiments is shown. Both sets gave similar data. 
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Figure 4.18 CTC Fluorescence per cell through batch culture of C. crescentus 

CB15. Samples were removed at intervals and CTC reducing activity per cell was 

measured using two different techniques: (a) fluoresence/cell = fluorescence measured 

by fluorimetry per total cell number determined by CellFacts and (h) CTC/DAPI = 

microscopic CTC counts per microscopic DAPI counts, both obtained using 

fluorescence microscopy with the relevant filter set and image analysis. This graph 

shows one of a duplicate set of experiments, both of which gave similar data. 

The kinetics of CTC reduction by C. crescentus CB 15 were very similar to those of 

Sphingomonas sp. (Fig. 4.8). A rapid increase in the total CTC reduction was 

brought about by only a small proportion of the population. Maximum reducing 

activity occurred in the mid- exponential phase. Stationary phase coincided with an 

increase in the proportion of cells that reduced CTC. However, total CTC 

fluorescence did not increase and the observed effect was a result of production of 

small extracellular formazan crystals in the same manner as those formed by 

Sphingomonas sp. cells (Figs 4.8 and 4.9). The extracellular staining by C. crescentus 

CB 15 cells was more extreme than that produced by Sphingomonas sp. cells and the 

possibility that cell type plays a role cannot be excluded. Examination 
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of CTC staining by synchronous populations of C. crescentus CB 15 is required to 

explore this effect in more detail. 

Since the maximum cellular respiratory chain activity detected using CTC occurred 
during the exponential phase of both Sphingomonas sp. and C. crescentus CB 15, i. e. 

when the maximum growth rate had been reached, CTC was considered to be a 

useful indicator of metabolic activity. It was decided to use this stain to measure the 

activity of cells within complex biofilms, exercising caution to minimise 

extracellular staining. 

4.4 Analysis of planktonic and attached Sphingomonas sp. cells cultured under 

carbon- and nitrogen-limited conditions 

4.4.1 Chemostat culture 

By maintaining a continuous throughput of nutrients in the chemostat it is possible to 

regulate the rate of growth of, a bacterial population. Since the hydrophobicity of 
bacterial cell surfaces alters with changes in growth rate, a chemostat model was 

employed to investigate the relationship between the nutrient limitation, cell surface 

hydrophobicity and the ability of the cells to attach. 

It has been proposed that cell surface hydrophobicity may be modulated through the 

bacterial growth cycle and that production of cells with relatively hydrophilic 

surfaces may lead to detachment from surfaces (Allison et al., 1990a, b). In most 

cases hydrophobic cells are more likely to attach to solid surfaces (Spencely, 1993; 

Fattom & Shilo, 1984; van Loosdrecht et al., 1987a, b; Gilbert et al., 1991), although 

exceptions to this general rule have been reported (Flint et al., 1997). Apart from the 

direct influence of the hydrophobicity of the substratum and the aqueous phase, the 

type of organism and the prevailing environmental conditions (e. g. nutrient 

availability, temperature or the presence of antimicrobial agents) may also affect the 

relationship between bacterial cell surface hydrophobicity and attachment. To assess 

the role of cell surface hydrophobicity in modulating bacterial attachment to potable 
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water distribution pipes, an isolate from the system was cultured in the chemostat 

until steady-state growth was reached. The cell surface hydrophobicity was then 

measured before introducing a biofilm development vessel on a recirculating loop to 

determine the potential of the cells to attach to surfaces. 

Sphingomonas sp. was chosen as the organism for analysis and glass surfaces were 

employed for attachment studies. Glass was selected as the surface for attachment as 

an inert surface amenable to microscopic analysis. The influence of substratum 

material on biofilm accumulation has been analysed in detail (Wolfaardt & Cloete, 

1992; Rogers et al., 1994a, b; Fletcher & Loeb, 1979; Kerr et al., 1997; Hood & 

Winter, 1997) and was not the subject of investigation here. The layout of the 

chemostat model is described in Sections 2.8 and 2.9. 

4.4.1.1 Steady-state carbon- and nitrogen-limited growth 

Sphingomonas sp. cells were cultured under carbon-limited conditions at two 

different growth rates and under nitrogen limitation at a single growth rate. The 

population was monitored daily by Ce1lFacts particle analysis. When no change in 

the profiles had been observed over six consecutive readings the system was taken as 

being in steady-state. The hydrophobicity was measured by bacterial adhesion to 

hexadecane (BATH) and a biofilm development vessel was introduced on a 

recirculating loop. Attachment to surfaces within this vessel was quantified at 

intervals by removing three coverslips, staining them with DAPI and enumerating 

cells by fluorescence microscopy and image analysis. 

The effects of different growth conditions on steady-state particle size profiles and 

cell surface hydrophobicity are shown in Fig. 4.19 and Table 4.1. There was a small, 

but significant difference between the average particle size of cells cultured at the 

two different growth rates in carbon-limited medium and also between the average 

hydrophobicity of these two populations (p'<0.001 in both cases), but the effect was 

more notable when the limiting nutrient was changed to nitrogen. It is possible that 

the carbon-limited cells at the slower growth rate were the minimum unit cell size 
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and that increasing the growth rate five-fold resulted in increased biomass primarily 

through a greater number of cells rather than enlargement of individual cells. Studies 

of cells cultured in the same medium under batch conditions would be necessary to 

confirm this. The smallest cells, growing at a rate of 0.02 hr' were neither the most 

nor the least hydrophobic indicating that growth rate was not the sole determinant of 

cell surface structure. 
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Figure 4.19 Cell size profiles of steady state Sphingomonas sp. chemostat 

cultures under various nutrient limitations. Cells were cultured to steady state in 

the chemostat under nitrogen limitation or carbon limitation at two different growth 

rates, as described in Section 2.8. Samples were removed and analysed by CellFacts. 

The cell size profiles shown are averages of at least six replicates. 
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N ltd, D=0.02 hr4 C ltd, D=0.02 hr' C ltd, D=0.1 hr' 

Total cell no. ml's 1.19E+09 (1.3E+8) 4.74E+08 (8.24E+7) 1.14E+09 (1.55E+8) 

Average ESD (µm) 1.04 (0.016) 0.92 (0.011) 0.96 (0.021) 

%Adherenceto 
hexadecane 

18.7 (2.64) 8.6 (1.85) 3.4 (1.88) 

Table 4.1 Some characteristics of planktonic Sphingomonas sp. cells at different 

steady states in the chemostat. Total cell no. and average cell size were determined 

by CeilFacts analysis. Steady-state growth conditions are expressed as N ltd 

(nitrogen-limited) or C ltd (carbon-limited), followed by the dilution rate. The 

hydrophobicity is expressed as % adherence to hexadecane. Mean values from at 
least six replicates are shown with standard deviations in brackets. 

4.4.1.2 Effect of nutrient limitation on attachment potential 

The initial attachment rate over the first' two hours was greatest for the most 
hydrophobic cells, but the surface rapidly became saturated (Fig. 4.20). The greatest 

extent of attachment after exposure to surfaces for 24 hrs was exhibited by carbon- 
limited cells at a growth rate of 0.1 hr". There was a large degree of error inherent in 

the attachment assay due to the uneven distribution of cells between coverslips and in 

different regions of single coverslip samples. No clear conclusions can be drawn on 

the relationship between cell surface hydrophobicity and the attachment proclivity on 

the basis of this analysis. 
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Figure 4.20 Rate of attachment of Sphingomonas sp. chemostat-cultured cells to 

glass surfaces. The extent of attachment of Sphingomonas sp. cells to glass surfaces 

was measured after introduction of a biofilm development vessel to the chemostat on 

a recirculating loop. Glass coverslips were removed at intervals and attachment was 

measured by DAPI staining and fluorescence microscopy in conjunction with image 

analysis. 

4.4.2 Culture of surface-associated Sphingomonas sp. cells 

There is strong evidence that vegetative dormancy and the ability to attach to surfaces 

are phenotypic characteristics of distinct cell types produced by dimorphic life cycles 

in a wide range of bacteria (Section 1.2.5), but the importance of this life cycle in 

natural systems is unclear. One approach is to search for a specific protein, expressed 

in dormant but not in active cells, or in attached but not in free-living cells. 

Production of specific antibodies to this protein would enable its use as a marker to 

determine whether the attached or planktonic phenotype correlated with a particular 

state of activity or dormancy in situ. Attempts to recover cells for protein analysis 

from the biofilms formed in the continuous culture model were unsuccessful: both 

sides of 36 glass coverslips were scraped, cells were suspended in 100 µl of PBS and 

analysed by SDS-PAGE but no bands were seen on the gel, in contrast to the positive 

control (20 pg of planktonic whole cell proteins). Another model for formation of 
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biofilms was therefore required and the model chosen was an adaptation of that 

developed by Bühler et al. (1998). This enabled the generation of reproducible 
biofilms on filters placed on solid carbon- or nitrogen-limited media. However, it 

should be stressed that the biofilms produced were artificial for many reasons, 
including: - 
(a) the interface was between a solid and the air, rather than a solid and a liquid as in 

pipes; 

(b) biofilms were produced on a cellulose nitrate filter, not a material that would have 

been present in a distribution system; 

(c) the nutrients were supplied from the underside of the biofilm while the oxygen 

entered from the top. Therefore different parts of the biofilm may have been limited 

for different substances at the same time; 

(d) biofilms were formed from a single species at 30°C; again not conditions that 

would be found in a distribution network; 

(e) the filter was inoculated once, not continuously, and cells were forced onto the 

filter rather than actively attaching. 

However, despite all these disadvantages, essentially all of the cells in the biofilm 

would have grown attached to a surface and would therefore have been expected to 

have produced any cell surface molecules specific to the attached phenotype. 

4.4.2.1 Growth kinetics 

The kinetics of bacterial growth in biofilms was measured by scraping the cells from 

the filters, resuspending in PBS and measuring the attenuance of light at 470 nm, the 

total count by CeilFacts and the protein concentration (Fig. 4.21). 
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Figure 4.21 Kinetics of biofilm development by Sphingomonas sp. cells on solid 

media. Biofilms were developed on filters on (a) carbon- or (b) nitrogen-limited 

medium. Total cell counts were determined by CellFacts. Data points represent 

mean values from at least three different biofilms and error bars indicate standard 

deviations. Total counts and protein concentrations were determined in triplicate for 

each biofilm. 
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Growth on nitrogen-limited medium was faster and more extensive than on carbon- 
limited medium. On carbon-limited medium the growth rate slowed after 40 hrs 

indicating that the nutrient limitation was starting to take effect. The biofilms were 
highly reproducible and a single 60 hr biofilm contained sufficient biomass for 

protein analysis. 

4.4.2.2 Biofilm structure 

Biofilms formed on filters in the agar plate model were structurally distinct from 

those formed on glass in the continuous culture model (Fig. 4.22). The former 

consisted of confluent growth, several layers of cells thick, covering most of the 

surface. The biofilms developed on glass contained groups of cells or individual 

cells separated geographically with little 3dimensional structure. EPS was absent 
from both types of biofilm, but this was a consequence of the strain studied rather 

than the conditions under which the biofilms developed. Pseudomonas fluorescens 

biofilms formed on glass coverslips after 24 hrs in the continuous culture model were 

rich in EPS (data not shown). Scanning electron microscopy (SEM) analysis 

confirmed that mechanical disruption of the biofilms cultivated on filters removed 

almost all of the cells (data not shown). 
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Figure 4.22 Structure of Sphingomonas sp. Biofilms. Scanning electron 

micrographs of Spingonwnas sp. hiollims firmed (a) on glass surfaces after 24 hrs in 

the chemostat-linked model and (b) on solid carbon-limited medium after 36 hrs in the 

agar plate model. 

4.4.3 Cellular proteins 

Cellular proteins from Sphingomonas sp. cells cultivated to steady-state in liquid 

carbon- or nitrogen-Iimitcd media or after 60 hrs on the surface of filters placed on 

solid carbon- or nitrogen-limited media, were analysed by polyacrylamide gel 

electrophoresis to look for differential protein expression under the diflcrent growth 

conditions. If a protein could be found that was specifically expressed by attached 

cells then this would provide the basis tör further studies on the function and in situ 

expression cif this molecule. 
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4.4.3.1 One dimensional protein profiles 

4.3.3.1.1 Total proteins 

Cellular proteins were initially separated by one dimensional SDS-PAGE. To 

increase the resolution of the gels high and low molecular weight proteins were 

analysed separately (Figs 4.23 and 4.24). Differences between the density of the 

clearest bands in each lane were quantified by densitometry. Some differences were 

seen between high molecular weight proteins (Fig. 4.25), particularly an 83 kDa 

protein overexpressed in nitrogen-limited planktonic cells, a 55.3 kDa protein 

underexpressed in biofilm cells, a 44.8 kDa protein underexpressed in nitrogen- 

limited biofilm cells and a 37.2 kDa protein overexpressed in nitrogen-limited 

biofilm cells. Few obvious differences were seen in the low molecular weight 

proteins (data not shown), probably because they were too abundant to be resolved 

by this technique. The 43-44 kDa protein underexpressed in nitrogen-limited biofilm 

cells was observed and a 20-21 kDa protein was seen that was overexpressed in the 

same population. 
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Figure 4.23 Analysis of high molecular weight proteins from Sphingomonas sp. 

cells cultured under a range of conditions. Cellular proteins were analysed by 

SDS-PAGE using a 1517c (w/v) polyacrylamide gel. Lane I- molecular weight 

standards, lanes 2-5 - Sphingoinonas sp. cellular proteins after culture as follows: lane 

2- in the chemostat under carbon limitation, lane 3- on carhon-limited agar plates, 

lane 4- in the chernostat under nitrogen limitation and lane 5- on nitrogen-limited 

agar plates. Sizes of the molecular weight standards are indicated in kDa. The 

following hands are highlighted: (a) an 83 kDa protein overexpressed in nitrogen- 

limited planktonic cells, (h) a 55.3 kDa protein underexpressed in hiofilm cells, (c) a 

44.8 kDa protein underexpressed in nitrogen-limited hiolilm cells and (d) a 37.2 kIa 

protein overexpressed in nitrogen-limited hiofilm cells. 
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Figure 4.24 Analysis of low molecular weight proteins from Sphingomonas sp. 

cells cultured under a range of conditions. Cellular proteins were analysed by 

SDS-PAGE using a 7.5% (w/v) polyacrylamide gel. Lane I- molecular weight 

standards, lanes 2-5 - Sphingomonas sp. cellular proteins after culture as fellows: lane 

2- in the chemostat under carbon limitation, lane 3- on carbon-limited agar plates, 

lane 4- in the chemostat under nitrogen limitation and lane 5- on nitrogen-limited 

agar plates. Sizes of the molecular weight standards arc indicated in kDa. The 

Following hands arc highlighted: (a) a 43-44 kDa protein underexpressed in nitrogen- 

limited biolilm cells and (h) a 20-21 kDa protein that was overexpressed in the same 

population. 
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Figure 4.25 Comparison of protein bands from Fig. 4.23. Some of the hands in 

Fig. 4.23 were quantified by densitometry. The relative proportions of each of these 

bands are shown graphically. Legend (numbers in brackets refer to the lane on the 

polyacrylamide gel, Fig. 4.23): cb = carbon-limited biofilm cells (3), cp = carbon- 

limited planktonic cells (2), nb = nitrogen-limited biofilm cells (5), np = nitrogen 

limited planktonic cells (4). 

4.4.3.1.2 Outer membrane proteins 

The majority of proteins influencing attachment would he expected to occur in/on the 

outer membranes of cells. To identify outer membrane proteins involved in 

attachment, outer membranes from cells cultivated under the four different conditions 
(Section 4.4.3) were isolated by ultracentrifugation and proteins were analysed by 

SDS-PAGE (Fig. 4.26). Differences in the relative densities of the clearest hands 

were quantified by densitometry (Fig. 4.27). 
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Figure 4.26 Analysis of high molecular weight outer membrane proteins from 

Sphingomonas sp. cells cultured under a range of conditions. Outer membrane 

proteins were purified and analysed by SDS PAGE using a 15% (w/v) polyacrylamide 

gel. Lane I- molecular weight standards, lanes 2-5 - Sphingomonas sp. cellular 

proteins after culture as fellows: lane 2- in the chemostat under carbon limitation, 

lane 3- on carbon-limited agar plates, lane 4- in the chernostat under nitrogen 

limitation and lane 5- on nitrogen-limited agar plates. Sizes of the molecular weight 

standards are indicated in kDa. A single hand at around 85 kDa, which was 

overexpressed in nitrogen-limited planktonic cells, is highlighted. 
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Figure 4.27 Comparison of protein bands from Fig. 4.26. Some of the bands in 

Fig. 4.26 were quantified by densitometry. The relative proportions of each of these 

bands are shown graphically. Legend (numbers in brackets refer to the lane on the 

polyacrylamide gel, Fig. 4.26): cb = carbon-limited biofilm cells (3), cp = carbon- 

limited planktonic cells (2), nb = nitrogen-limited biofilm cells (5), np = nitrogen 

limited planktonic cells (4). 

The only obvious difference in protein expression was the roughly two-fold increase 

in expression of an 85.5 kDa protein in nitrogen-limited planktonic cells relative to 

cells from other culture conditions. This protein, identified as an 83 kDa molecule 

from whole cell extracts (Fig. 4.25), may have been expressed as part of the nitrogen 

starvation response in Sphingomonas sp. cells. Since the biofilm cell population was 

not homogeneous (cells on the upper surface of the biofilm being relatively starved of 

nutrients and those on the lower surface limited by oxygen) the growth rate would not 

have been uniform and starvation proteins would only have been expressed in a 

proportion of the cells. As there was no indication of nutrient limitation affecting the 

biofilm population after 60 hrs of growth (Fig. 4.21(b)), extensive expression of 
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starvation proteins would not have been expected. No bands specifically 

overexpressed in the outer membranes of biofilm cells were observed. 

4.4.3.2 Two dimensional protein profiles 

A bacterial cell contains in excess of 1000 different proteins, but only around 100 

bands can be identified by one dimensional SDS-PAGE. Isoelectric focusing of 

proteins in one dimension prior to SDS-PAGE in the second dimension enables 

separation of up to several hundred proteins. Total cellular proteins from 

Sphingomonas sp. cells cultured under four different sets of conditions (steady-state 

growth in liquid carbon- or nitrogen-limited media or biofilm cells present after 60 

hrs of growth on the surface of filters placed on solid carbon- or nitrogen-limited 

media) were extracted and analysed by two dimensional PAGE (Fig. 4.28). 
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Figure 4.28 Analysis of proteins extracted from Sphingomonas sp. cells cultured 

under a range of conditions by 2D gel electrophoresis. Proteins were extracted 

from cells cultured under the following range of conditions: (a) at steady-state in the 

chemostat under carbon limitation, (h) after 60 hrs on carbon-limited solid medium (c) 

at steady-state in the chemostat under nitrogen limitation and (d) after 60 hrs on 
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nitrogen-limited solid medium. 10 pg of protein were loaded on each gel and spots 

were visualised by silver staining. Three proteins are indicated which were more 

strongly expressed by one cell type than the others: 1. most strongly expressed by 

carbon-limited biolilm cells, 2. and 3. most strongly expressed by nitrogen-limited 

planktonic cells. Molecular weight standards were run in the second dimension and 

molecular weights in kDa are indicated. 
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Three proteins that were clearly present at different densities on the four gels are 
indicated. Two were most abundant in nitrogen-limited planktonic cells. They both 

ran at around 85 kDa and are therefore candidates for the protein seen overexpressed 
in these cells by one dimensional SDS-PAGE. The third protein, around 55-60 kDa, 

was most abundant in the carbon-limited biofilm cells. It is not clear whether this 

protein was also expressed by the nitrogen-limited biofilm cells as the relevant 

portion of the gel is missing. However, since it was almost absent from the carbon- 

limited planktonic cells, it must have been regulated by surface-associated growth at 

least under carbon-limitation and may provide a useful indicator of a specific cell 

type. 

Differences between spots on the gels were difficult to quantify and no other proteins 

were identified that were obviously more or less abundant in cells grown under one 

or two sets of conditions than the others. 

4.5 Conclusions 

Maximum reduction of the fluorescent redox probe CTC was shown to occur in the 

mid-exponential phase of batch culture of Sphingomonas sp. and C. crescentus CB 15 

cells. This was the point at which other indicators of activity, including cell size and 

the ATP concentration per cell, showed the metabolic activity of cells to be greatest. 

However, under certain ill-defined conditions extracellular formazan crystals were 

observed. The dye was considered to be potentially useful for indicating 

physiological activity in situ provided that caution is taken to avoid extracellular 

staining. It would be useful to analyse CTC reduction by synchronous populations of 

C. crescentus cells to determine whether staining is cell type specific. The dye could 

also be used in conjunction with flow cytometry to split slow-growing E. coil cells 

into populations based on cellular activity. Analysis of proteins from these 

populations may highlight cell type-specific protein expression. 

By culturing Sphingomonas sp. cells in the chemostat it was shown that cell surface 

hydrophobicity and cell size were dependant on growth rate and the limiting nutrient. 
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However, it was not possible to correlate these changes with the ability of cells to 

attach to surfaces. 

Analysis of proteins isolated from Sphingomonas sp. cells cultured under a range of 

conditions showed relatively few differences between the populations of cells. One 

83-86 kDa protein, present in/on the outer membrane of nitrogen-limited planktonic 

cells at a concentration around twice that seen in other cell types, was thought to be 

linked to the nitrogen starvation response. Another protein, around 55-60 kDa, was 

shown by two dimensional PAGE to be expressed in carbon-limited biofilm cells 

with virtually no expression in their planktonic counterparts. The function and 

cellular localisation of this protein is unknown, but it may be involved in surface 

attachment. It would be useful to separate outer membrane proteins from the 

different cell populations by two dimensional PAGE to determine whether this 

protein is present in the outer membrane and whether any other outer membrane 

proteins are specific to any of the cell types. 
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CHAPTER 5 



5 The tap water microflora at interfaces in a static batch 

enrichment system 

5.1 Introduction 

Reliance on direct culture of bacteria can give a misleading view of the range of cell 

types present in oligotrophic waters. For example, Lawrence (1978) demonstrated 

that the morphological diversity of bacteria in lake waters increases dramatically 

after storage of the water in the dark in static batch culture conditions in the absence 

of added nutrients for 3-6 months. The bacteria concentrated at interfaces, since 

these were the areas where the highest nutrient concentrations occurred (Marshall, 

1980). The morphologically diverse species were part of the autochthonous 

microflora but were enriched by the period of static batch culture. Prosthecate 

bacteria are particularly well adapted for growth in low-nutrient environments 

(reviewed by Morgan & Dow, 1986) and the depletion of nutrients resulting from 

storage of the water would have enhanced the potential of these bacteria to compete 

effectively with other types present. In such enrichments the presence of trace 

amounts of volatile organic compounds in the atmosphere may provide an additional 

nutrient source for organisms that can utilise it (Morita, 1985). Since many 

Hyphomicrobium spp. exhibit a preference for growth on C1 compounds such as 

methanol or formate, these may be enriched by trace amounts of volatile organic 

substances dissolved in the water. 

5.2 Aims 

The predominant morphology of bacteria identified by isolation from potable water 

was a regular or flexible rod. Some cocci were isolated but only one appendaged 

microorganism was recovered and then only after the employment of several specific 

isolation procedures (Chapter 3). In order to assess the role played by dimorphic life 

cycles in bacterial survival and growth in potable water it was important to analyse 

the range of morphological cell types present. Direct electron microscopic 
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observation of interfaces after static batch enrichment was considered to be the best 

approach. 

A system was established with the aim of observing the microflora present at 
interfaces after: - 
1. One month to detect the species responsible for initial surface colonisation. 

2. Six months to find the maximum number of morphologically distinct cell types. 

3.18 months to discover whether conversion of dissolved compounds in the water 

had led to an increase in the total available carbon in the system and if so, whether 

this enabled other bacteria to grow and outcompete the appendaged microorganisms. 

5.3 The static batch model 

The static batch enrichment model employed contained glass coverslips, 13 mm in 

diameter, inserted into slits cut in silicone tubing and suspended at different levels in 

a51 Erlenmeyer flask. The flask was partially filled with 41 potable water, the top 

was covered with aluminium foil and it was stored at room temperature in the dark 

for 18 months. Bacteria attached to the coverslips were observed by scanning 

electron microscopy (SEM). Samples of the air-water interface were taken and 

analysed by transmission electron microscopy (TEM). 

5.4 Bacteria attached to surfaces after 3-5 weeks 

A matrix of prosthecate bacteria, either Hyphomicrobium or Pedomicrobium sp. was 

present at the glass surface after 22 days of static batch enrichment (Fig. 5.1(a)) 

indicating that cells had attached and had already started to grow and divide. 

Budding occurred at the tips of prosthecae. Hyphae were not uniform in width and 

many contained integral cellular expansions. Other budding Hyphomicrobium sp. or 

Pedomicrobium sp. cells were observed adjacent to regular rod-shaped cells 

(Fig. 5.1(b)). 
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(h) 

Figure 5.1 SEM analysis of bacteria attached to glass surfaces after 3-5 weeks 

in the static hatch enrichment model. Coverslips were removed from the model 

after (a) 22 days and (h) 37 days. (a) A matrix primarily of Hypphomicrohium sp. or 

Petionficrobium sp. cells. llyphal branching (hh) is indicated. Initiation of hud 

formation has occurred at poles of prosthecae (p). Integral expansions are apparent 

within hyphae (I). (h) Single rod-shaped cells and cells of IIrphomicrohium sp. or 

Pedomicrohium sp.. 
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The presence of extensive networks of Hyphomicrobium sp. or Pedomicrobium sp. 

cells within 22 days after starting the static batch enrichment suggests that a period of 

static batch culture was not required for selection of this strain, but that the glass 
interface itself was needed for matrix development. However, no other 

morphologically distinct cells were observed - all other cell types seen at this stage 

were regular rods. 

5.5 A survey of bacteria present after 20-25 weeks 

5.5.1 Solid-liquid interfaces 

A wide diversity of cellular morphologies was observed at interfaces after 20-25 

weeks. Apart from the Hyphomicrobium or Pedomicrobium sp., the most common 
distinctive morphology observed on the glass surfaces was a helical cell type 

possessing a single polar cellular appendage (Fig. 5.2(a)). This cell morphology, 

which was also seen by TEM in the air-water layer (Fig. 5.3(b)), has not previously 

been reported. The stalk was approximately 0.1 µm in diameter and could not 

therefore be resolved by light microscopy. Only individual cells of this type were 

ever observed so the mode of division could not be ascertained. Attempts to isolate 

the strain using procedures described in Chapter 3 were unsuccessful. It was only 

ever observed after static batch enrichment of potable water and was not seen in the 

continuous flow model (Chapter 6). Possible explanations for this are: - (i) the 

organism only attached to surfaces under static conditions; (ii) it was initially present 

in very low numbers and was selectively enriched by static batch culture or (iii) it 

was present in the continuous flow model but did not express the distinctive 

morphology there. When 0.5 1 of water was held in the dark for 8 weeks in a similar 

static batch system the stalked helical cells were once again commonly observed at 

glass surfaces suggesting that an absolute minimum of 2 cells per litre of potable 

water were present. By diluting the potable water before introducing it to the static 

batch model it would be possible to obtain a quantitative assessment of the initial 

concentration of cells in the water. Other distinctive cell types at the glass surfaces 

included spirilla and cells of Seliberia sp. (not shown). 
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(a) 

(b) 
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(c) 

Figure 5.2 SEM observation of bacteria at solid / liquid interfaces after 20-25 

weeks in the static batch enrichment system. Coverslips were removed from the 

model after (a) 140 days and (b, c) 200 days and prepared immediately 1or SEM 

examination. (a) A stalked helical cell type; (h and c) a mixture of cell types held 

within a matrix of EPS (h) or in the absence cif obvious extracellular polymers (c). 

5.5.2 The air-water interface 

A greater diversity of bacteria was recognised by TEM than by SEM, partly as a 

result of the increased resolving power of the transmission microscope. 

Hvphnººticrobiu, n sp. or Pedornicrobiunt sp., Plcuºctnm ces sp., and the stalked helical 

cell type were seen (Fig. 5.3). Rods encapsulated in EPS and cocci covered with pili 

were also present. 
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Figure 5.3 TEM analysis of bacteria present at the air / water interface after 24 

%%ecks in the static hatch enrichment model. A drop of water was removed from 

the surface of the liquid and placed on a copper grid för 30 mins. Excess liquid was 

then removed and the grid was prepared as detailed in Section 2.2-3. (a-g) Negative 

stained with phosphotungstic acid; (Ii) gold-palladium shadowed. (a) An overview of' 

some of the different morphologies that were present; (h) an helical cell type 
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A 

(g) 

(h) 

possessing a polar prosthecum: (c) a rod-shaped cell (C) encapsulated by FPS (F): 

(d) and (e) P/urrar<onºyce. s sp. cells (P). some with fibrillar tufts (Ii) and others with a 

polar stalk (s): (t) a coccus with many pill covering the cell surface: (g) 

11ihhomicrohium sp. or Peclnmicrohiu, n sp. cells vvith prosthecac emerging from one 

or both poles: (h) a variety of cell types including cells of 1h/phoinicrohirmr sp. or 

I'eclnrnicrohium sp. and a stalked helical cell. (a)-(e) and (g)-(h). har -I pm: (1) 

har=0.1 pm. 
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Many cell types were seen that were only observed after static batch enrichment, yet 

all of these cells must have been present in the original potable water used to seed the 

model. 

5.6 Structure of biofilms after 74 weeks 

The model was maintained for 74 weeks to monitor the effect of prolonged 
incubation on the structure and cellular composition of biofilms present. 

5.6.1 Isolation and identification of bacteria 

In addition to strains routinely isolated directly from tap water, Micrococcus luteus 

was recovered from the static batch model after 74 weeks. Although most commonly 

isolated as a laboratory contaminant, M luteus has previously been isolated from 

potable water (e. g. LeChevallier et al., 1987; Buswell et al., 1997). The static batch 

model was not maintained in a sterile environment so it is unclear whether M luteus 

was initially present or whether airborne cells entered the system later. However, 

since cells of this species require relatively high levels of nutrients for growth, the 

detection of viable M. luteus cells is indicative of an increase in the nutrient 

concentration since the last sample had been taken. The TOC of the bulk water in the 

model was found to be 35.3 ± 1.8 mg I", confirming this conclusion. 

5.6.2 Direct observation of the microorganisms present 

Bacterial hyphae were still abundant when glass surfaces were viewed under phase 

contrast optics. Phase-bright rods and cocci were seen. The cocci were actively 

dividing and were probably M luteus. Therefore, although the nature of the biofilm 

had changed with many more regular rods and cocci actively growing, the initial 

Hyphomicrobium sp. or Pedomicrobium sp. cells were still present. Yeast cells were 

observed but other eukaryotes such as diatoms or amoebae were not. 
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Figure 5.4 Phase contrast micrograph of a 74 week old biofilm produced after 

static batch enrichment. Hyphac produced by Hvphoniicrobiunn sp. or 

Pedomicrobiunl sp. cells are indicated (hy) as are phase-bright cocci of the same 

dimensions as isolated Micrococcus luteus (co). Several other cell types are also 

visible. Bar= 10 µm. 

5.6.3 EPS 

Congo Red stain was employed to assess the extent of EPS production on the glass 

surfaces. Most of the hiofilm stained red, highlighting the presence of' extensive 

matrix material (Fig. 5.5). The EPS matrix was not continuous and even in this 

mature hiofilm there were areas of the coverslip that were not covered by the matrix. 

Cells were usually, but not always, cmhcddcd within the HIS. 
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Figure 5.5 Light micrograph of a 74 week biofilm stained with Congo Red for 

EPS. Areas rich in EPS appear red. Actinomycete-like filaments are apparent, but 

are not always associated with the EPS. Bar = 50 µm. 

5.7 Conclusions 

Although not routinely isolated, cell types bearing distinctive morphologies are 

present in potable water and can be observed at interfaces after static batch 

enrichment for 6 months. The primary reason for the frequent failure to detect these 

organisms in water is undoubtedly the sampling technique employed. Most of the 

appendaged bacteria are adapted to growth in oligotrophic environments and cannot 

be isolated on nutrient-rich media. The growth cycle of prosthecate bacteria, which 

involves a motile cell stage lacking the prosthecum, may also contribute to their 

ability to escape detection. The flagellate daughter cells are not distinctive 

themselves and only the appendaged mother cells can easily be recognised 
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microscopically. However, specific rRNA probes will eventually overcome the 

difficulty of identifying the daughter cells in situ. 

The role of appendaged bacteria in distribution pipe biofilms is unclear. 

Hyphomicrobium spp. can deposit iron or manganese which may lead to constriction 

or blockage of pipes (Sly et al., 1988). The ability of Hyphomicrobium spp. to grow 

on C1 compounds, particularly methanol and methylamine, may be of importance in 

potable water. By removing the methanol produced as a result of bacterial methane 

oxidation, hyphomicrobia can prevent the build-up of methanol to levels that would 

inhibit the methane-oxidising bacteria (Moore, 1981). The frequent isolation of 

Methylobacter sp. further supports the theory that sufficient methanol is present in 

treated potable water for bacterial utilisation. 

The fact that so many types of di- or poly-morphic bacteria can be found in potable 

water demonstrates that life cycles involving an asymmetric division step are 

common in this environment and may be the standard mode of bacterial replication 
in potable water. 
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CHAPTER 6 



6 Application of a laboratory model of potable water distribution 

network biofilms to study biofilm development and stability 

6.1 Introduction 

Drinking water and the related microbial planktonic and sessile bacterial populations 

constitute one of the most extensively studied oligotrophic systems. However, the 

difficulty of sampling and manipulating in situ biofilms in the drinking water 

distribution network necessitates the use of laboratory models. Various models for 

biofilm development have been constructed with a variety of different objectives (see 

Section 1.3.1). To study the role of dimorphic life cycles in potable water biofilms, 

the key requirements for any model are (i) that it must have a continuous throughput 

of potable water and (ii) that physical and chemical conditions must be as close as 

possible to those present in the distribution pipelines. 

Previous investigations of potable water systems, reviewed in Section 1.7, have not 

assessed the preponderance of life cycles involving asymmetric division in this 

environment. In the absence of a specific universal probe for distinct cell types 

produced by asymmetric cellular division, only an analysis of the metabolic activity 

of cells can distinguish between cell types in situ. Many reports have shown that 

vegetative dormancy is common in potable water (e. g. Kalmbach et al., 1997b; 

Morita, 1988; Byrd et al., 1991; Kaprelyants et al., 1993; Roszak & Colwell, 1987), 

although the ratio of active to inactive cells varies with the strain studied (Kalmbach 

et al., 1997b). In order to determine whether dormant cells are produced by 

asymmetric division and whether they are specifically adapted for biofilm dispersal, 

it is necessary to assess the activity of sessile and planktonic cells and the 

relationship between them. If dispersal cells are actively released from biofilms as a 

function of the growth cycle it should be possible to detect a sustained increase in the 

number of planktonic cells as surfaces become colonised. Passive release from 

biofilms (e. g. by sloughing) would result in more random fluctuations in numbers of 
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planktonic bacteria and would elevate the number of particles larger than bacteria in 

the water. 

The question of what triggers the reactivation of dormant cells produced by 

asymmetric division and the initiation of the sequence of events leading to 

maturation and reproduction remains unresolved (see Section 1.2.5.2). Undoubtedly 

the onset of maturation is delayed until the nutrient availability can support growth 

(Morgan & Dow, 1985), but attachment to a surface may also stimulate maturation 

either directly or indirectly by concentration of nutrients at the interface. In potable 

water distribution pipes the limiting nutrient is usually carbon (van der Kooij, 1992), 

but the carbon concentration is unstable. An investigation into the ability of sessile 

and planktonic cells to reactivate in response to a slight elevation in the assimilable 

organic carbon concentration of tap water will increase our understanding of bacterial 

dormancy and dimorphism in this environment. 

Another factor limiting bacterial growth in treated water supplies is the chlorine 

residual. Chlorine affects the structure and composition of biofilms in the early 

stages of formation (van der Wende et al., 1989), but the effect on mature complex 

biofilms has not been characterised. 

6.2 Aims 

The aim of this section of the project was to develop a simple continuous flow model 

to produce complex biofilms similar to those present on the inner surfaces of 

distribution pipes. This model would then be used to study the following aspects of 

the attached and free-living microflora: - 
1. The responses of planktonic cells to a small increase in the concentration of 

dissolved organic carbon in the water. 

2. The rate of biofilm accumulation and the effect of biofilm growth on the quantity 

and activity of planktonic cells. 

3. The responses of mature biofilms to a small increase in the concentration of 

dissolved organic carbon in the water. 

4. The responses of mature biofilms to chlorine. 
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6.3 Development of a continuous flow model 

A model was established to enable regulation of the rate of flow of water over glass 

surfaces held within a series of biofilm development vessels (Fig. 2.3). Glass was 

selected to form the substratum, rather than a material used in the local distribution 

network, because glass is inert and easy to analyse microscopically. The substratum 

material affects the extent and composition of biofilms formed from potable water, 

but this area has been analysed previously (Rogers et al., 1994a, b; Kerr et al., 1997), 

and was beyond the scope of this thesis. The layout of the continuous flow model is 

shown schematically in Fig. 6.1. Three sample ports were included to allow 

sampling of the planktonic population (i) before the biofilm vessels, (ii) immediately 

after the series of vessels and (iii) in a separate reservoir after the series of biofilms in 

which the carbon concentration could be amended. A comparison of the planktonic 

population at port 1 with that at port 2 gives an indication of the effect of biofilms on 

the natural planktonic microflora. The model was kept dark during use. 
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Figure 6.1 The continuous flow model. Tap water was continuously introduced 

into the first reservoir and a proportion of this was pumped at a defined rate over 

glass coverslips held within each of the five biofilm development vessels (Fig. 2.3). 

The second reservoir was included to monitor the response of planktonic cells to 

carbon addition. Biofilm samples were removed at intervals from the vessels. Water 

samples were taken before the series of biofilms (port 1), after the series of biofilms 

(port 2) or from the second reservoir (port 3). 

6.4 Physiology of planktonic cells and their responses to an increase in the 

concentration of bioavailable carbon 

The planktonic microflora of potable water was sampled from reservoir 2 in the 

continuous flow model (Fig. 6.1). Total counts and the particle size distribution were 

monitored on-line. The background intracellular ATP concentration and total viable 

count, determined on PCA, were measured and these parameters were subsequently 

monitored at intervals following addition of an exogenous carbon source (a final 

concentration of 0.001 % (w/v) bacto-peptone) for 24 hrs. The carbon substrate was 

chosen to mimic the range of complex organic molecules that may periodically 
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become available to bacteria in distribution mains water. Note that the retention time 

of tap water in reservoir 2 was 7.9 hrs. As an additional measure of activity, it would 

have been interesting to have determined the proportion of planktonic cells that could 

reduce CTC. This would have enabled comparison with the activity of attached cells. 

6.4.1 Cell number and intracellular ATP concentrations 

The response of planktonic cells to an increase in the level of dissolved organic carbon 

in tap water is shown in Fig. 6.2. 
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Figure 6.2 Responses of planktonic cells to extraneous peptone addition. A final 

concentration of 0.001% bacto-peptone was added to reservoir 2 of the continuous 

flow model at time = 37.3 hrs, as described in Section 2.38. This concentration was 

maintained for 24 hrs as indicated on the graph. The effect of this increase in 

dissolved organic carbon in the water on total viable counts on PCA, total counts 

measured on-line using the CellFacts particle analyser and the total intracellular ATP 

concentration is shown. Each total count data point represents a mean of five 

readings surrounding that point and standard deviations of these five measurements 

are shown. Three independent samples were taken for ATP and total viable count 

(TVC) determinations; data points indicate the means of these replicates and standard 

deviations are shown. 
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The background total particle count, within the bacterial size range of 0.75-2 µm 

equivalent spherical diameter (ESD), was more than ten-fold higher than the total 

viable count before the addition of nutrients. The CeilFacts particle analyser was 

shown to have a sensitivity limit of around 1x105 counts ml" when applied to tap 

water filtered through a membrane of pore diameter 0.2 µm (data not shown). This 

limit was significantly below the background particle count of unfiltered tap water. 

The occurrence of bacteria in tap water that are not culturable on agar is well 

documented and has been termed `the great plate count anomaly' by Staley and 

Konopka (1985). Some of these bacteria may be nonviable, but the majority are 

metabolically active (Byrd et al., 1991; Kalmbach et al., 1997b). The inability of 

these cells to form colonies on standard media may be due to formation of a dormant 

viable but nonculturable (VNC) state or to the presence of species that cannot utilise 

the media employed. It should be noted that the resting ATP concentration per total 

CellFacts cell count was up to three orders of magnitude greater than the intracellular 

ATP concentration of isolated Sphingomonas sp. cells in batch culture (Fig. 6.3; 

compare with Fig. 4.4). It is unlikely that this large discrepancy can be explained by 

the presence of dormant cell -types or cells of other species containing elevated 

intracellular ATP concentrations so some of the particles within the 0.75-2 µm ESD 

size range must have been: - 

(a) dead cells / inert particles, 

(b) highly resistant cells not lysed during the ATP sampling protocol (the cell lysis 

reagents used in the ATP assay reduced the TVC in the sample by more than two 

orders of magnitude (data not shown), but highly resistant VNC cells may have 

avoided lysis), and/or 

(c) small aggregates. 

Addition of peptone resulted in almost a two-fold increase of the total cell count 

within 3 hrs. The total intracellular ATP concentration, the total cell count and the 

TVC increased by about one order of magnitude within 15 hrs. The total cell count 

and total intracellular ATP concentration then stabilised around 15 hrs after starting 

nutrient addition (Fig. 6.2), but the total viable count and the ATP per total cell 

continued to rise for a further 24 hrs (Fig. 6.3). It is not clear why the TVC 
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continued to increase when the total ATP concentration did not, but since a decrease 

in the total ATP concentration was observed in batch cultures of Sphingomonas sp. 

following nutrient depletion (Fig. 4.4), changes in cellular physiology may have 

counterbalanced the increase in viable cell number. 80 hrs after beginning the 

experiment the total viable count appeared to be higher than the total count. This was 

probably due to disruption of cellular aggregates by spread plating but not during 

direct counting using CellFacts. Note that around 15 hrs after starting peptone 

addition an increase in particles larger than single bacterial cells occurred (Section 

6.4.2), presumably cellular aggregates. The sustained rise in the ATP concentration 

per total cell until 80 hrs after the start of the experiment can also be explained by 

cellular aggregation. 

3.5E-16 
Add peptone II Cease addition 

400 

Z 3E-16 

2.5E-16 
E 
c 2E-16 
0 

1.5E-16 

1E-16 

a 5E-17 

0 

0 

350 ö 

0 
300 0ö 

250 v 

20001ö L3 
CD 150 

100 0 

50 

"0 
160 

Figure 6.3 Responses of the total intracellular ATP concentration and 

proportion of planktonic cells that were viable following peptone addition to 

reservoir 2 of the continuous flow model. The data presented in Fig. 6.2 have been 

recalculated to show the average intracellular ATP concentration per particle of size 

0.75-2 µm ESD (ATP/TC) and the proportion of these particles that gave rise to 

colonies on agar (TVC/TC). The TVC/TC value was greater than 100% at one point, 

which can be explained by the dispersal of aggregates by spread plating but not during 

CellFacts analysis (see text). 
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None of the three measures of bacterial occurrence/activity returned to its original 
level, even 100 hrs after ceasing peptone addition. The kinetics of washout of cells 
from the system would be affected by the retention time of water in the system and 
bacterial growth in the reservoir. Two factors could have prevented a return to the 

original cell count in the reservoir: - 
(a) growth in the absence of exogenous nutrients at a rate greater than the retention 

time of water in the vessel (7.9 hrs), and/or 

(b) growth on the glass walls of the vessel. 

From the subsequent experiments on biofilm formation on glass, it seems certain that 

biofilms would have developed on the vessel walls and cell counts would not have 

been expected to have returned to initial values. However, the system was not 

monitored until the cell counts had stopped reducing, so this was not confirmed. 

Therefore, it is clear that the total particle count within the bacterial size range 

exceeds the TVC by 1-2 orders of magnitude in potable water. This may be, in part, 

due to the presence of dead cells or innate particles, but it is likely that VNC cells 

also contribute to the discrepancy. Addition of 0.001% (w/v) bacto-peptone resulted 

in an immediate increase in the number of cells present which continued until a 

concentration of around 2x106 cells were present. At this point a new equilibrium 

was established and cells once again become nutrient-limited. Cells then started to 

aggregate and the total viable count continued to increase. Soon after ending the 

addition of peptone, cells began to be washed out of the reservoir although original 

levels of ATP, TVCs and total counts were not re-attained, even 100 hrs later (equal 

to 12.5 residence times in reservoir 2). 

6.4.2 Particle size distribution 

A closer analysis of the particle size distribution in tap water following peptone 

addition confirms that aggregates of cells started to appear around 15 hrs after the 

onset of peptone addition (Fig. 6.4). Most particles smaller than 2 µm ESD were 

single bacterial cells; larger particles were mainly aggregates of cells. 
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Figure 6.4 Effects of peptone addition to tap water on the particle size 

distribution. Particle count data shown in Fig. 6.1 were analysed in greater detail. 

Particles were grouped into three different size ranges, labelled according to the limits 

of ESDs encompassed and each data point shown represents the mean of the five 

surrounding points. Standard deviations are shown where they were sufficiently large 

to be visible. 

6.4.3 Effects of carbon addition on the species composition of the water 

Analysis of the cell types isolated on PCA after the nutrient addition indicated 

selection for rapidly-growing Proteobacteria had occurred (see Table 3.1). Previous 

investigations have shown that cultivation of cells from drinking water selectively 

enriches members of the alpha and gamma subclasses of Proteobacteria, often 

suppressing bacteria belonging to the beta subclass (e. g. Kalmbach et al., 1997b). 

Selection for bacteria belonging to each of these three subclasses occurred (e. g. 

Sphingomonas sp. from the alpha subclass, Comamonas acidovorans from the beta 

subclass and Pseudomonas fluorescens from the gamma subclass) but the relative 

amounts of each were not quantified. The concentration of other bacteria in the water 

did not increase noticeably. 
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Therefore the planktonic population of the potable water system studied contained 

several strains of bacteria, not usually detected by direct plate counting, that were 

rapidly able to utilise exogenous carbon for growth and division. The fact that these 

cells produced such a large increase in the total cell count within 3 hrs of addition of 

peptone indicates that they must have initially been present in high numbers. The 

failure to detect them directly by cultivation on PCA shows that they were present in 

a viable but nonculturable state. This is consistent with the theory that planktonic 

daughter cells in potable water are inactive, but can be reactivated in response to a 

particular stimulus. Other cells in the system, that did not grow when peptone 

became available, presumably require a different stimulus to initiate maturation. 

6.5 The accumulation of biofilm 

The continuous flow model was employed to monitor the accumulation of biofilm 

and the influence of attached growth on planktonic cell numbers and activity. The 

model was sterilised before use. The quantity and metabolic activity of cells attached 

to glass were determined microscopically after fluorescent staining. Total planktonic 

cells were enumerated using the CeilFacts particle analyser and the TVC by plating 

on solid R2A medium and counting colonies produced after incubation for 5 days at 

30°C. Cellular activity was estimated by measuring the total intracellular ATP 

concentration in the aqueous phase. Staining planktonic cells with CTC would have 

been useful to allow a direct comparison between the activity of attached and 

planktonic cells. A simple protocol for the assessment of the CTC-staining capacity 

of planktonic cells, based on filtration of samples and staining of the filters has been 

developed (Pyle et al., 1995), but this analysis was omitted here. 

6.5.1 Tap water quality 

The physical and chemical stability of the tap water supplying the continuous flow 

was monitored weekly over the course of the experiment (Table 6.1). Chlorine and 

TOC were consistently low throughout. The pH remained stable but the temperature 

increased slightly in the seventh week of the experiment and subsequently remained 
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relatively high. During the time that the continuous flow model was employed for 

the assessment of biofilm formation, the concentration of heterotrophic bacteria in 

the final water leaving Strensham distribution plant, which serves Warwick 

University, was stable and remained below 10 CFU ml" (see Appendix, Fig al). The 

concentration of unicellular eukaryotes in the same water increased sharply at the 

beginning of August 1997, around 8-9 weeks after beginning the laboratory 

(Appendix, Fig. a2). 

Time (days) 0 7 14 21 28 35 42 

pH 7.22 7.76 7.64 7.78 7.58 8.05 7.83 

Temperature (°C) 16.5 17.5 17.5 16.7 16.0 16.8 19.1 

TOC (mg 1.1) <5 <5 <5 <5 <5 <5 <5 
Chlorine (mg 1-1) 0.02 0.03 0.03 0.04 0.04 0.02 0.03 

Time (days) 49 56 63 70 77 84 

pH 7.71 7.54 7.65 7.61 7.73 7.68 

Temperature (°C) 19.4 20.0 19.1 21.1 21.9 20.8 

TOC (mg I-1) <5 N/D N/D N/D N/D N/D 

Chlorine (mg 1-1) 0.01 0.04 0.02 0.02 0.03 0.02 

Table 6.1 Water quality through biofilm development in the continuous flow 

model. Several physical and chemical properties of the tap water serving the 

continuous flow model were measured weekly on the same day that the 

microbiological tests were performed. N/D = not determined. 

6.5.2 Total and active attached cell numbers at glass surfaces 

Glass coverslips removed from the continuous flow model were stained with CTC to 

detect and quantify attached cells possessing an active respiratory chain. 

Counterstaining with DAPI enabled quantification of the total cell count. Three 

coverslips were prepared at each time point and these were analysed under a 

fluorescence microscope. A minimum of 10 fields were randomly selected for 
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enumeration using both DAPI- and CTC-specific filter sets. If the total cell count in 

these 10 fields was below 200 cells then more fields were counted until the figure of 

200 cells was reached. Images were captured using a CCD, relayed to an Apple 

Macintosh computer and quantified by image analysis. Examples of images obtained 

after staining are shown in Figs 6.5 and 6.6. 
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Figure 6.5 Phase contrast and fluorescence micrographs of glass surfaces after 

one week in the continuous flow model. A glass coverslip was removed from the 

model after one week, stained with CTC and DAPI, then examined microscopically. 

(a) Phase contrast image showing a relatively clean surface with only a few cells 

present. The arrows indicate some of the bacterial cells in the image. (b) The same 

field showing blue DAPI-stained cells (arrows). (c) The same field again, this time 

illuminated to highlight CTC-formazan crystals. A single crystal was present 

(arrow). Bar= 10 µm. 
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(c) 1 --i 

Figure 6.6 Phase contrast and fluorescence micrographs of glass surfaces after 

eight weeks in the continuous flow model. A glass coverslip was removed from 

the model after eight weeks, stained with CTC and DAPI, then examined 

microscopically. The same field is shown under phase contrast (a), DAPI (h) and 

CTC (c) illumination. In addition to bacteria, protozoa (p) and pigmented material 

(pm) were observed. Bar = 10 µm. 
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In certain situations both DAPI and CTC appeared to give misleading results. Some 

areas that were covered with a network of actinomycetes did not stain extensively 

using DAPI (Fig. 6.7). Occasionally single cells observed by phase contrast did not 

fluoresce after DAPI staining. From the structures observed by phase contrast it 

seems unlikely that the cells had lysed and lost their DNA. A more probable 

explanation for the observed phenomenon was that some cells were impermeable to 

DAPI stain. To determine the extent of underestimation of the total cell count by 

DAPI, cells in ten microscopic fields of each coverslip removed from the continuous 

flow model over the first 70 days of biofilm accumulation were counted manually 

under phase contrast illumination. DAPI counts of identical fields were determined 

using image analysis. No significant difference was found between the two data sets 

(data not shown) indicating that although care should be taken when quantifying 

bacteria with DAPI, in this case a sufficiently accurate total cell count was obtained. 

Problems were also encountered when employing CTC stain. Extracellular staining 

(see Sections 4.3.1.3 and 4.3.2.2) was sometimes observed (Fig. 6.8). However, the 

majority of formazan crystals observed were intracellular. Negative controls, 

performed by incubating coverslips in 1% (v/v) glutaraldehyde for 15 mins prior to 

CTC staining, were devoid of formazan crystals, indicating that CTC reduction only 

occurred in the presence of metabolically active bacteria. Therefore CTC was 

considered to be a good indicator of bacterial respiratory chain activity. 

184 



.f 

1, fM 

µý 
ý"ý N` 

(a) 

(b) 

1-p. 
1 `: ti 

e 

, '1 

f tf 

4Y 4r 

185 



(c) II 

Figure 6.7 A potential drawback of DAPI stain: phase contrast and 

fluorescence micrographs of glass surfaces after eight weeks in the continuous 

flow model. A glass coverslip was removed from the model after eight weeks, 

stained with CTC and DAPI, then examined microscopically. (a) The primary matrix 

viewed by phase contrast consists of branched rod-shaped bacteria, probably 

belonging to the actinomycete group. (b) The same field viewed using the DAPI- 

specific filter set. The extensive network of rod-shaped cells cannot be seen. (c) 

CTC image of the same field. In addition to CTC-formazan crystals some non- 

crystalline red autofluorescence can be seen. Bar = 10 µm. 
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(c) 

Figure 6.8 A potential drawback of CTC stain: phase contrast and fluorescence 

micrographs of glass surfaces after eight weeks in the continuous flow model. A 

glass coverslip was removed from the continuous flow model after eight weeks, 

stained with CTC, then counterstained with DAPI. One field is shown under (a) 

phase contrast, (b) DAPI-specific fluorescent and (c) CTC-specific fluorescent 

illumination. Several large intracellular CTC crystals are visible (ic) but smaller 

extracellular crystals can also be seen (ec). Bar = 10µm. 
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Attached cell numbers and activities are shown in Fig. 6.9. The proportion of cells 

that were actively respiring was expressed as the ratio of CTC counts to DAPI 

counts. 
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Figure 6.9 Total and active cell counts at glass surfaces during biofilm 

development in the continuous flow model. Counts were determined 

microscopically in conjunction with two fluorescent dyes: CTC which stains actively 

respiring cells red and DAPI which fluoresces blue on binding DNA and therefore 

stains all cells present. The proportion of cells that were actively respiring is indicated 

as the CTC: DAPI ratio. Note that no data were obtained from CTC staining until 21 

days after the start of the experiment. 

The total number of sessile cells increased in an approximately linear manner over the 

ten-week period of Biofilm accumulation. No CTC staining was observed until 21 

days after the start of the experiment. Until this time PBS was used to rinse 

covcrslips prior to staining. Phosphates inhibit CTC staining (Smith & McFeters, 

1996), so after 21 days saline (0.85% w/v NaCl) was used for all rinses. The data 

obtained from using PBS for rinses were discarded. After 21 days there was no clear 

trend in the proportion of cells that were active. A recent study in Berlin using a 

similar approach for developing and staining biofilms demonstrated that nearly 90% 
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of the cells that attached within the first 2 days of biofilm accumulation were 

respirometrically active and this figure dropped to around 30% after 21 days and then 

remained fairly stable (Kalmbach et al., 1997a). Extensive heterogeneity of biofilms 

produced in this study resulted in large errors of both DAPI and CTC counts. The 

observed ratio of CTC counts to DAPI counts is not inconsistent with a stable figure 

of about 30%. 

6.5.3 Biofilm structure 

Changes in the structure of biofilms between 2 and 8 weeks are shown in Figs 6.5(a) 

and 6.6(a). After 2 weeks very few cells were present and surfaces were relatively 

clean. By 8 weeks the biofilms contained large amounts of acellular pigmented 

material, bacterial cells and protozoa. There was a sharp rise in the number of 

unicellular eukaryotes in the water leaving the distribution plant (Appendix, Fig. a2), 

but this did not occur until after the 8 week sample had been taken. Therefore, the 

background concentration of eukaryotes was sufficient to allow incorporation of 

material derived from these organisms into the biofilm. A higher power analysis of 

the surface by SEM showed that some bacterial division at the surface occurred after 

2 weeks (Fig. 6.10(a)) and after 10 weeks microcolonies were present (Fig. 6.10(b)). 

Most of the cells observed by SEM were regular straight or flexible rods, although 

one unusual cell type was found (Fig. 6.10(c)). This was coccoid with multiple 

appendages and may have been a prosthecate bacterium or a spore state. 
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(c) 

Figure 6.10 Scanning electron micrographs (SEMs) showing the structure of 

tap water biofilms developed in the continuous now model. Glass coverslips were 

removed from the model after 14 days (a) and 70 days (h). Most bacteria observed 

were regular rods, ollen in the process of binary fission. Alter 70 days microcokmies 

and acellular biological material were abundant. One unusual coccoid cell type with 

multiple appendages was observed in the hiolilm after 63 days (c), but was not 

identified. 
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6.5.4 Effects of attached growth on the planktonic cell population 

Samples of the planktonic cell population were taken each week from ports 1 and 2 

of the continuous flow model during the course of biofilm accumulation. Only the 

water taken from port 2 had flowed through the series of biofilm development vessels 

so comparison of the samples from each port enabled assessment of the effect of 

biofilm development on the planktonic microflora. Planktonic cells were enumerated 

by CellFacts particle counting and by TVC determination on R2A. Cellular activity 

was assessed by measurement of the total intracellular ATP concentration in the 

aqueous phase. The degree of cellular aggregation was monitored by analysis of 

particle size distribution data obtained using CellFacts and the quantities of each 

distinct colony type formed on R2A were noted to provide an analysis of the effect of 

biofilms on individual strains of bacteria. 

6.5.4.1 Particle counts and size distribution 

A small effect of biofilms on the particle size distribution in tap water was perceived 

(Fig. 6.11), but the differences observed between particle counts at the two sample 

ports were not statistically significant in any of the size ranges analysed (data not 

shown). Particle counts were close to the limit of sensitivity of the analyser (about 

1x105 total counts ml") and the confidence ranges of the data sets were relatively 

large. To improve accuracy of the assay three independent samples were taken from 

each port at each time point and these were analysed in triplicate. Background noise 

was reduced by subtracting the mean particle count of six analyses of tap water 

sterilised by filtration through a membrane of pore diameter 0.2 µm from the particle 

count of each sample. 
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Figure 6.11 Effects of biofilms on the particle size distribution in the aqueous 

phase. Total particle counts and sizes at the two sample ports in the continuous flow 

model were measured weekly during the initial stages of biofilm formation, using 

CellFacts. Particles counts were divided into different size ranges. Each line shows 

fluctuations in counts in one size range (numbers refer to ESD in pm) at one sample 

port during the course of the experiment. The particle count obtained from filtered 

tap water was subtracted from each reading. 

For the first 28 days of running the continuous flow system, particle counts in the 

bacterial size range (0.75-2.0 . im ESD) were slightly higher at port I than port 2. 

This situation gradually reversed and between 56-70 days counts in all size ranges 

were higher at port 2 than port 1. These observations can be explained by the initial 

removal of bacteria from the water by surface attachment gradually being 

counterbalanced by release of cells from biofilms into the water. In addition to release 

of individual cells, sloughing of cellular aggregates accounts for the increased 

numbers of large particles at port 2 between 56-70 days. 

6.5.4.2 Total viable counts and intracellular ATP concentrations 

The presence of surfaces did not appear to affect the total viable counts in tap water 

flowing through the continuous flow model in the first 35 days of the experiment (Fig. 
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6.12). From 35 days onward there was a linear increase in the TVC at port 2, while 

TVCs at port l remained constant. Since the TVC was consistently around ten-fold 

lower than the total particle count, it may not have been sensitive enough to detect 

removal of cells from the planktonic population by attachment to surfaces between the 

two sample ports. However, release of cells from biofilms was detected as a steady 

increase in TVCs at port 2 relative to port l from day 35 onwards. The metabolic 

state of bacterial cells may also have contributed to the measured TVC, i. e. if only 

viable but nonculturable cells attached initially then no reduction in the TVC in the 

early stages of the experiment would be observed. 
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Figure 6.12 Effects of attached cells on the free-living total viable cell 

population. The total viable count on R2A was determined weekly after 

commencing the run of the continuous flow model. TVCs were measured at each of 

the two sample ports. The contribution of attached cells to the planktonic population 

is given as the percent of the overall TVC which occurred at port 2. The area at 

which the TVC at the two sample ports were equal is indicated by a dashed line. Data 

points represent averages of five or six experimental replicates and standard 

deviations are shown. 
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A similar trend was observed when the activity of planktonic bacterial cells was 

assessed by measuring the total intracellular ATP (Fig. 6.13). No trend in the ATP at 

port 2 relative to port I was observed until day 35. From then on it increased steadily 

(with one exception at day 49). 
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Figure 6.13 Effects of biofilm development on the total intracellular ATP 

concentration in the water column. Total intracellular ATP concentrations were 

measured at the two sample ports in the continuous flow model weekly after setting 

up the experiment. The contribution of biofilm cells to the planktonic population is 

expressed as the percent of total ATP present at port 2. The area at which the ATP 

was equal at the two sample ports is indicated by the dashed line. Data points 

represent averages from nine readings and standard deviations are shown. At each 

time point the ATP in sterile distilled water was measured and the reading obtained 

was subtracted from those of the samples. 
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6.5.4.3 Species composition 

Examination of colonies formed on R2A from TVC samples 49 days after 

establishing the continuous flow model indicated an increased diversity of colony 

morphologies at port 2 relative to port 1 (Fig. 6.14). This provided further evidence 

that attachment to surfaces in the continuous flow model was affecting the planktonic 

population. 

To quantify the affect of surfaces on bacterial diversity, colony types were described 

and identified (Table 3.1), and viable counts of each individual type were enumerated 

weekly in addition to the total viable count. The frequency of occurrence of each 

colony type is shown in Table 6.2. Note that after 70 days bacto-peptone was added 

to the model (Section 6.6) and after 84 days chlorine was added (Section 6.7) to 

assess the effects of these substances on biofilms. 
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(a) 

(b) 

Figure 6.14 Species composition in the continuous flow model after 49 days. 

100 µl of tap water from port 1 (a) and port 2 (b) of the continuous flow model were 

spread onto R2A and incubated at 30°C for 5 days. An increase in colony diversity 

at port 2 relative to port I is clear. The most obvious colony types were isolated on 

R2A for identification. They are as follows: CFI (port 2 only) - medium round 

cream colonies with entire edges; CF2 (both ports) - orange colonies; CF3 (both 

ports) - small translucent colonies; CF4 (port 2 only) - relatively large round cream 

colonies, slightly greyer than CF I. 
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The presence of surfaces selectively enriched certain species. This is clearly seen 

when the data obtained from colony types CFI/CF4 (isolated separately but later 

shown to be members of the same species) and CF3 are plotted graphically 

(Fig. 6.15). 
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Figure 6.15 Comparison of the effect of surfaces on the total viable count in the 

water column of two different species. The number of colonies of CFI/CF4 

(Mycobacterium sp. ) and CF3 (unidentified a or y proteobacterium) appearing after 

incubation on R2A for 5 days at 30°C, assessed at the two sample ports of the 

continuous flow model at weekly intervals (see Table 6.2). Port 2 was affected by the 

series of Biofilm vessels; port I was not. 

The R2A medium used did not completely prevent spreading of fungi derived from 

the potable water and several of the replicate plates could not be counted. This was 

only a problem on plates from undiluted tap water and did not affect the TVC. 

However, when counting low numbers of single colony types it was often impossible 

to obtain live or six replicates so standard deviations were not calculated. Even so, it 

is unlikely that the large sustained difference of two orders of magnitude between 

counts of CFl/CF4 at the two sample ports was due to experimental variation. 

Mycobacteria have previously been identified as primary colonisers of clean glass 

slides (Schulze-Röbbecke et al., 1992) and attachment to glass surfaces, attached 
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growth and release of cells back into the water has undoubtedly occurred here, 

resulting in the elevated CF 1 /CF4 count at port 2 relative to port 1. The continued 

rise in numbers of CFl/CF4 CFUs at port 2 between 49-70 days indicates that 

surface growth was sustained over this period. Direct evidence that mycobacteria 

were actively growing and dividing within the biofilms was obtained by staining the 

surfaces with acid-fast stain (Fig. 6.16). 

In contrast, no difference was seen between the numbers of CFUs of CF3 counted at 
the two sample ports. This organism was observed consistently throughout the 

experiment and may have been adapted to colonise mature biofilms or a different 

surface material. 
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Figure 6.16 Light micrographs of biofilms after 70 days in the continuous flow 

model stained by the acid-fast technique. The acid-fast staining procedure 

distinguishes mycohacteria (stained red) from other bacilli (stained blue). Regions of 

the biotilm (a) where mycobacteria were actively growing and (h) where 

mycobacteria were integrated into other biofilm structures, including non-acid-fast 

bacilli, diatoms and pigmented material were seen. All mycobacteria possessed 

capsules, seen here as rings of blue surrounding the cells. Bar = 10 µm. 
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6.6 Responses of attached cells to extraneous carbon addition 

To further characterise the metabolic potential of attached cells, their response to a 

small increase in the carbon concentration of the water was monitored. 0.001% (w/v) 

Bacto-peptone was selected as the added nutrient to mimic pulses of DOC that may 

occur in potable water distribution pipes in response to environmental fluctuations, 

changes in the chlorination regime or other stimuli. The nutrient was added for 24 

hrs via sample port 1 of the continuous flow model. Therefore only the attached cells 

within the biofilm vessels would have been exposed to the peptone and the resultant 

effects on these cells could be monitored directly by analysing the surfaces or 

indirectly as subsequent changes in the composition or activity of the planktonic cells 

sampled from port 2. 

6.6.1 Total and active cell counts at the glass surfaces 

Glass coverslips were removed at intervals following the addition of peptone to 

biofilms in the continuous flow model and stained with CTC and DAPI. Active cells 

that produced formazan crystals and total cells stained by DAPI were enumerated by 

digital image analysis and the proportion of cells that were actively respiring was 

calculated as the CTC: DAPI ratio (Fig. 6.17). 
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Figure 6.17 Responses of attached cells to extraneous peptone addition. 0.001 % 

Bacto-peptone was added to 70-day biofilms in the continuous flow model for 24 hrs 

as indicated. The response of cells in terms of total attached (DAPI) counts and 

active (CTC) cell counts is shown. The proportion of total cells that were active is 

given as the CTC: DAPI ratio. 

The addition of peptone resulted in a transient peak in the proportion of cells at the 

interface that were actively respiring, indicating that a fraction of the cells at the 

surface that were not responsive to CTC directly were still capable of metabolic 

activity after enrichment. After 73 days the proportion of cells possessing an active 

respiratory chain dropped to less than 0.01. This was unexpected, but may have been 

caused by bacteria re-entering a state of dormancy following a rapid drop in the 

nutrient concentration of the water. A longer-term study of the period following 

withdrawal of nutrients would have been required to confirm this. The total number 

of attached cells did not increase in response to carbon, suggesting either that carbon 

did not stimulate growth and division of attached cells or that growth was 

counteracted by release of cells from the surfaces. 

204 



6.6.2 Effects of biofilm cell responses on planktonic cells 

6.6.2.1 Particle counts and size distribution 

The total number of particles and the particle size distribution in the water was 

monitored following peptone addition to identify effects of carbon addition to biofilms 

on release of cells into the flowing water (Fig. 6.18). 
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Figure 6.18 Effects of peptone addition to biofilms on the total particle count 

and size distribution in the aqueous phase. The response of cells in tap water after 

addition of 0.001% (w/v) bacto-peptone to biofilms for 24 hrs was measured using 

Ce/lFacts. Particles were grouped into three different size ranges. The legend for 

each line indicates the range of ESDs in µm. Particle size ranges from each of the 

sample ports in the model are shown to highlight differences caused by release of 

Biofilm cells. 

Total particle counts and counts within each size range were nearly identical at the 

two sample ports of the continuous flow model following carbon addition to the 

biolilms, indicating that (i) exogenous nutrients did not stimulate growth of attached 

cells (since the total number of cells at interfaces did not increase following nutrient 

205 



addition - Section 6.5.4.1) and (ii) addition of carbon actually suppressed the release 

of cells from biofilms. This would suggest that biofilm cells were relatively 

unresponsive to fluctuations in the DOC concentration of the water. However, in this 
instance the CellFacts analyser was operated close to its limit of sensitivity and the 
data obtained from it should therefore be treated with caution. Further evidence of 

the state of planktonic cells released from biofilms was required to support these 

data. 

6.6.2.2 Total viable counts and ATP concentrations 

In contrast to the total particle count, the TVC at port 2 increased transiently relative 

to that at port 1 following addition of peptone to biofilms (Fig. 6.19). This may have 

represented a small increase in the total, number of cells released, below the 

sensitivity limit of Ce1lFacts analysis, or a change in the type of cells released, 

resulting in an increased proportion of culturable cells in the aqueous phase. A closer 

analysis of the species composition of the water was undertaken to help distinguish 

between these two possibilities (Section 6.6.2.3). After cessation of peptone 

addition, the TVC at port 2 relative to port 1 decreased steadily until the point, at day 

77, where release of viable cells from the biofilm was undetectable. At this stage 

cellular activity at surfaces, measured by CTC staining, was also low demonstrating 

that as cells became dormant, release of cells diminished. This suggests that at least 

part of the total cellular detachment was an active process. 
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Figure 6.19 Responses of the total viable planktonic cell population to peptone 

addition to attached cells in the continuous flow model. 0.001% Bacto-peptone 

was added to sessile cells for 24 hrs. TVCs on R2A were then assessed for several 

days. The contribution of biofilms to the planktonic cell count is expressed as the 

percent of the overall TVC that was present at port 2. The point at which TVC at 

port I= TVC at port 2 is indicated by the dashed line. Data points represent means 

of five or six replicate samples, except the encircled point which was obtained from a 

single reading. Error bars show standard deviations from the mean. 

To estimate the cellular activity of the planktonic population following addition of 

peptone to hiofilm cells, the total intracellular ATP concentration was measured 

(Fig. 6.20). 
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Figure 6.20 Total intracellular ATP concentration in the aqueous phase 

following peptone addition to attached cells. The total intracellular ATP 

concentration was monitored at the two sample ports in the continuous flow model 

after the extraneous addition of 0.001 % bacto-peptone to Biofilms for 24 hrs from day 

70 to day 71. Data points represent the mean values from 9 readings and standard 

deviations are indicated. The points at which the ATP concentration is identical at the 

two sample ports are indicated by the dashed line. 

Unfortunately a technical problem prevented determination of the immediate effect of 

nutrient addition to Biofilms on the ATP concentration within planktonic cells. A 

transient reduction in the activity of planktonic cells at port 2 relative to port I was 

observed 24 hrs after cessation of the addition of peptone. At this point the total 

particle count and TVC at port 2 relative to port I were about equal to their values 

immediately before peptone addition so the reduction of the total intracellular ATP 

concentration reflected a drop in the activity of cells rather than a decrease in the 

number of cells per se. This is consistent with entry of cells into a dormant state 

hollowing a decline in the nutrient concentration in the water. After 73 days the 

percentage of the total intracellular ATP that was detected at port 2 stabilised at 

around 70% indicating that biofilms continued to influence the planktonic population 

over this period. 
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6.6.2.3 Species composition 

One organism, Sphingomonas sp. (isolate CF 13), was not identified in water flowing 

over biofilms until after the addition of peptone to the biofilms (see Table 6.2). This 

organism was also isolated after peptone enrichment of the water itself, confirming 

that some species required additional resuscitation prior to plating on PCA or R2A in 

order to detect them. The resuscitation itself was selective and did not affect the 

mycobacteria (strain CFI/CF4) that were established within the biofilm (Fig. 6.21). 

However, the number of CFUs of isolate CF3 in the planktonic phase at sample port 

2 increased temporarily. An explanation for this may be that strong attachment of 

bacteria to surfaces, in this case the mycobacteria, results in recalcitrance to agents 

beneficial to the cells in addition to the well-documented resistance to detrimental 

substances (Brown & Gilbert, 1993). Cells of strain CF3 loosely adhered to the 

substratum or on the outer layer of the biofilm retained the capacity to respond to an 

increased nutrient concentration in the water. Studies of the spatial distribution of 

cells within the biofilm would be required. to test this hypothesis, although further 

information was obtained by measurement of the response of cells to added chlorine 

(Section 6.7). 
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Figure 6.21 Effects of peptone addition to attached cells on the planktonic 

populations of two individual species. The specific viable counts were determined 

by enumeration of distinct colony types after incubation of serial dilutions of tap water 

on R2A for 5 days at 30°C. The water was taken from the two sample ports of the 

continuous flow model at intervals following the addition of 0.001 % bacto-peptone to 

Biofilms between the ports. 

6.7 Responses of biofilm cells to extraneous chlorine addition 

Chlorine is the disinfectant routinely used to treat water supplying Warwick 

University. The chlorine concentration leaving Strensham treatment plant is about 

0.7 mg 1-', but decreases as the water flows away from the treatment works. There is 

a booster about halfway along the network to add chlorine if necessary, so the 

chlorine residual after this point is subject to relatively large variations. However, the 

effects of fluctuations in the chlorine concentration on mature biofilms in the 

distribution system have not been thoroughly investigated. 

To assess the effects of chlorine on mature complex biofilms in the continuous flow 

model extraneous chlorine was added via port 1. A fairly low concentration 
(0.3 mg 1-1) of free chlorine was selected for comparison with other studies. 
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Variations in the background chlorine concentration would not have interfered with 

this addition, since the background chlorine level was consistently low (Table 6.1). 

Previous studies of the efficacy of free chlorine for disinfection have employed 

similar or slightly higher concentrations (up to 1 mg 1", LeChevallier et al., 1988a; 

Mir et al., 1997; Yu & McFeters, 1994), against bacterial monocultures. The aim of 

this study was to determine whether 0.3 mg chlorine 1'1 would affect the activity of 

attached cells in a model potable water biofilm. This concentration was not expected 

to be sufficient to kill all cells within the biofilm. Statistical modelling of a 

distribution system showed that a 1.2 mg l" chlorine residual was required to 

maintain an HPC below 100 CFU ml" (LeChevallier et al., 1987), but bacteria have 

been isolated from environments containing up to 2 mg l free chlorine (Mir et al., 

1997). The elevated chlorine concentration was maintained for 3 hrs. 

6.7.1 Total and active counts at the glass surfaces 

Addition of chlorine had no immediate effect on the total number of bacterial cells 

stained with DAPI at the glass surfaces, although the total attached cell count 
decreased slightly over the following 6 days (Fig. 6.22), presumably due to release of 
individual cells or aggregates. The chlorine may have loosened the extracellular 

matrix in addition to killing cells. However, the proportion of cells at interfaces that 

were metabolically active increased after chlorine addition. This is unlikely to have 

been a response to the chlorine and may have reflected recovery of cells after 

withdrawal of peptone at day 71. 
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Figure 6.22 Responses of attached cells to the extraneous addition of 0.3 mg 1-' 

free chlorine for 3 hrs. Total (DAPI) and active (CTC) cell counts at glass surfaces 

were determined microscopically. The proportion of total cells that were actively 

respiring is represented by the CTC: DAPI ratio. 

6.7.2 Effects of biofilm cell responses on planktonic cells 

6.7.2.1 Particle counts and size distribution 

An increase in the number of large particles (5-9.5 µm ESD) at port 2 relative to 

port I was observed following addition of chlorine to the Biofilms (Fig. 6.23), 

reaching almost a ten-fold difference between the two readings at 91 days. This was 

caused by release of cellular aggregates or acellular material from the biofilm after 

loosening by chlorine treatment. 
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Figure 6.23 Effects of chlorine addition to attached cells on the particle size 

distribution in the water column of the continuous flow model. Total counts and 

particle sizes were measured at intervals following the addition of 0.3 mg 1-' free 

chlorine to bioiilms for 3 hrs. Particles were divided into three size groups: 0.75- 

2.0 µm, 2.0-5.0 µm and 5.0-9.5 tm ESD to distinguish between changes in numbers 

of individual bacterial cells and changes in counts of larger particles. 

6.7.2.2 Total viable counts and intracellular ATP concentrations 

The TVC and the total intracellular ATP concentration in the water both declined at 

port 2 relative to port I in the 6 days following addition of 0.3 mg V' chlorine to the 

Biofilms (Figs 6.24 and 6.25), indicating that the influence of the biofilms on the 

planktonic population had diminished as a result of loss of cells from the Biofilms. 

However, the chlorine did not completely remove the Biofilms and they continued to 

affect the planktonic phase for the duration of the experiment. 
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Figure 6.24 Effects of chlorine addition to sessile cells in the continuous flow 

model on the total viable planktonic cells. TVCs at the two sample ports were 

determined at various times after introducing 0.3 mg 1.1 free chlorine into water 

flowing over the glass coverslips in the model. The percentage of the overall TVC 

present at port 2 indicates the contribution of release of cells from biofilms. The 

dashed line highlights the set of points for which this figure is 50%. Data points 

represent the mean of 5 or 6 replicate samples, except the ringed point which was 

obtained from a single reading. Standard deviations are indicated by the error bars. 
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Figure 6.25 Effects of chlorine addition to attached cells in the continuous flow 

model on the total intracellular ATP concentration in the running water. Free 

chlorine (0.3 mg 1-1) was added to water flowing over the glass coverslips for 3 hrs. 

The total intracellular ATP in the water before (port 1) and after (port 2) the 

coverslips was then monitored. The influence of cells released from biofilms is 

inferred from the percentage of the total intracellular ATP detected at port 2. The set 

of points at which this release is essentially zero is marked by the dashed line. 

6.7.2.3 Species composition 

The concentration of Mycobacterium sp. CFI/CF4 at port 2 decreased relative to that 

at port I following addition of chlorine to the Biofilms (Fig 6.25). The decay kinetics 

(a gradual linear reduction over 6 days) were similar to those observed for other 

parameters including DAPI staining of cells at surfaces, number of large (0.5-0.95 µm 

ESD) particles, TVC and total intracellular ATP concentration, providing further 

evidence that these cells were integrated into the biofilm and were gradually released 

from the biolilm after chlorination. 
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The concentration of strain CF3 also decreased at port 2 relative to port 1 after 

chlorine treatment of the Biofilms, but decay was faster. Two days after chlorination 

there was no net influence of biofilms on the planktonic numbers of CF3 CFUs. This 

may have resulted from a higher intrinsic susceptibility of cells of strain CF3 to 

chlorine, but the explanation given in Section 6.6.2.3, that cells of strain CF3 may be 

loosely adhered to the surface and therefore more responsive to the chemical 

composition of the water than more strongly attached cells, may also apply. 

Add chlorine Cease addition 
1 E+04 

1 E+03 

1 E+01 
---- CF1/CF4, port 1  CF1/CF4, port 2 

---- CF3, port 1" CF3, port 2 
1 E+00 t-+ -+ + 

84 85 86 87 88 89 90 91 

Time (days) 

Figure 6.26 Effects of chlorine addition to sessile cells on the planktonic viable 

cell count of two individual species. The viable count of two different species, 

CFI/CF4 (Mycobacterium sp. ) and CF3 (unidentified (x or y proteobacterium) was 

determined after incubation of tap water from the two sample ports of the continuous 

flow model on R2A for 5 days at 30°C. Release of cells from biofilms is indicated by 

elevated colony counts at port 2 relative to port 1. 

An appendaged cell type was observed by SEM (Fig. 6.27) and by phase contrast 

microscopy after chlorination of the biofilm. This organism had not been observed 

prior to chlorine treatment despite weekly observation of the biofilms by light 

microscopy and SEM. It was morphologically similar to an Hyphomicrobium sp. or 

Pedomicrobium sp., with a prosthecum that was sometimes branched. Reproduction 
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occurred by budding at the pole of the stalk. However, the shape of the cell body 

differed from other Hvphomicrohiurn sp. or Pedrmnicrobiuni sp. cells observed in the 

static hatch enrichment model (Figs 5.1 and 5.3(g)) and the cell bodies became 

charged in the SEM. The cells were metabolically active and staining with CTC 

resulted in large lormazan crystals within the cell body (data not shown). The 

concentration cal' this organism in the tap water must have been quite high since large 

numbers of these distinctive cells were observed at interfaces after chlorine treatment, 

but it had not been seen previously and was not isolated. Prosthecate bacteria 

undergo dimorphic life cycles usually involving an indistinct rod-shaped morphology 

which may have contributed to this strain escaping detection. Release of hioºlilm 

fragments by chlorine treatment presumably enabled the dispersal cells to attach and 

mature into prosthecate mother cells capable of reproduction. 

Figure 6.27 A prosthecate cell type observed by SEM following addition of 

chlorine to the biolilms. A coverslip removed from the continuous flow model 91 

days after starting the run was dehydrated in ethanol, critical point dried and sputter- 

coated with gold hetorc SEM analysis. Note the distinctive shape of the cell body, the 

thickening of the stalk close to the cell body and the charging of these areas under the 

microscope. 
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6.8 Analysis of biofilms formed on glass surfaces after 24 months in the 

continuous flow model 

To determine the extent to which a ten-week biofilm changed over the following 

months, the continuous flow model was set up again and left to run for 24 months 

without interruption. After this time a range of techniques was employed to examine 

the structure of the biofilms. It was intended that the activity of cells within mature 

biofilms and their response to exogenous nutrients and chlorine would be assessed by 

staining coverslips with CTC and DAPI. 

6.8.1 Biofilm structure 

Direct observation of surfaces by phase contrast microscopy showed heterogeneity of 

structure with regions rich in biological material including diatom frustules, 

pigmented matter and other material (Fig. 6.28(a)), which were similar to areas of the 

biofilm observed after 10 weeks (Fig. 6.6(a)). However, the mature biofilm was 

almost completely devoid of bacterial cells. There were regions covered only with a 

layer of non-pigmented material which fluoresced blue after staining with DAPI 

(Fig. 6.28(b and c)), but the fluorescence was short-lived and therefore was not 

caused by staining of DNA. The only area where any bacteria were observed was the 

small region of the coverslip that was held within the silicone tubing in the biofilm 

development vessel. Here hyphomicrobia or pedomicrobia were seen that reduced 

CTC to produce formazan crystals. Other rod-shaped cells were also observed (data 

not shown). 
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Figure 6.28 Phase contrast and fluorescence micrographs showing the structure 

of mature biofilms formed after 18 months in the continuous flow model. (a) 

Phase contrast micrograph showing an area of the biofilm rich in pigmented material. 

Diatoms can be seen (e. g. Cyclotella sp. (C) and Nitszchia sp. (N)), but bacteria are 

not visible. (b) Phase contrast micrograph and (c) fluorescence micrograph of an 

identical field of view after staining with DAPI. Acellular material is visible which 

fluoresced emitting blue light. Unlike DAPI fluorescence after intercalation with 

DNA, the blue coloration was short-lived, lasting only a few seconds. Bar = 50 p. m. 
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A more detailed examination of the surface by SEM confirmed the absence of 
bacteria. Again diatom frustules and acellular biological material were seen 

(Fig. 6.29). 

Figure 6.29 SEM demonstrating the structure of a mature biolilm formed after 

18 months in the continuous now model. A glass covcrslip was removed from the 

model and prepared I1Or SEM analysis. Accllular material and a diatom frustule 

(Nitszehiu sp. ) can he seen, but structures resembling bacterial cells are not apparent. 

6.8.2 E PS 

The hackground material stained only l intly with Congo Red (Fig. 6.30), suggesting 

that it was not made up of extensive bacterial slime material as seen in static hatch 

hiol'ilms (Fig. 5.5). 
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Figure 6.30 Congo Red stain of a mature biofilm developed after 18 months in 

the continuous flow model. A glass coverslip taken from the biofilm model was 

stained with Congo Red to highlight EPS. Pigmented matter now appears brown or 

orange. Diatoms are indicated (C = Cyclotella sp., N= Nitszchia sp. ). Most of the 

acellular material appears only faintly pink, indicating an absence of extensive EPS. 

Bar = 50 µm. 

6.8.3 Response to a challenge with Sphingomonas sp. cells 

The absence of bacteria was unexpected and difficult to explain. Grazing of biotilms 

by protozoa often controls cell numbers but usually an equilibrium is established 

between bacterial growth and protozoan grazing (e. g. Kalmbach ei ul.. 1997a). 
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Natural senescence has been* proposed as a mechanism of controlling biofilm 

development but again this is unlikely to result in complete removal of bacteria from 

interfaces (Palmer & White, 1997). The possibility that an inhibitory substance was 

present at the surface was considered. To test this the biofilm was challenged with a 

monoculture of Sphingomonas sp., originally isolated from potable water. 

One biofilm development vessel was removed from the continuous flow model and 

attached to the continuous culture model (Section 4.4.1) on a recirculating loop. At 

this stage Sphingomonas sp. cells in the chemostat were at a steady state growth rate 

(µ) of 0.1 hr' 1. The rate of attachment was monitored by DAPI staining, fluorescence 

microscopy and image analysis. However, after just 4 hrs several layers of 

Sphingomonas sp. cells had attached and it was difficult to obtain a reliable 

estimation of the number of cells present. After 8 hrs attachment of Sphingomonas 

sp. cells was so extensive that the DAPI stain did not penetrate through to the lower 

layers. Cells attached non-specifically, covering diatoms and other biological 

material in the biofilms (Fig. 6.31). 
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Figure 6.31 SEN1 of a mature biotilm firmed after 18 months in the continuous 

flow model after challenge with a monoculture of Sphingo#nonas sp. cells. 

Extensive attachment ui' bacterial cells has occurred even covering the diatoms 

(Ncn'icula sp., centre and Tabellaria sp., top right hand corner). 

Clearly the mature hiotilm did not inhibit attachment of' a monoculture of' bacterial 

cells. In fact attachment to the mature potable water hiofilm was taster and more 

extensive than to a clean glass surface (Section 4.4.1.2). "l'herelore the biohlm was 

not inhibitory to bacterial attachment. An examination of' in 
, si/u hiofilms on the 

surfaces of' pipes serving Warwick University is required to discover how closely 

biofilms in the continuous flow model resemble those in the distribution mains and to 

provide spatial information on the distribution of bacteria in pipeline hiolilms. A 

study of pipe coupons of a range of sites in North America found bacteria associated 

with all surfaces sampled, although bacterial numbers were often quite low; in one 

case just one CI U cm was detected (LeChevallier et al., 1987). In this study 
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coliform bacteria were only found at discrete sites (tubercles) in the mains. It is 

possible that most colonisation of the continuous flow model had moved from glass 

surfaces to more favourable sites. Bacteria were found on the small areas of glass 
inserted into silicone tubing, but the surfaces of the tubing or the rubber bungs in the 

biofilm development vessels were not analysed. 

6.9 Conclusions 

Most bacterial growth in low nutrient environments, including potable water, is 

associated with interfaces. In a study of a model distribution system, growth of 

planktonic cells in tap water was found to be negligible (van der Wende et al., 1989). 

This is consistent with the theory that the role of most planktonic cells in such 

environments is to disperse the biofilms and locate new attachment sites, rather than 

to increase bacterial numbers in the water. The present study examined the ability of 

planktonic cells to respond to peptone, the rate of colonisation of surfaces, the 

activity of attached bacteria, their contribution to the planktonic phase and their 

response to exogenous carbon and chlorine. The following key observations and 

conclusions were made: - 

" Activity of the planktonic population 

" The total particle count within the bacterial size range in potable water 

exceeded the TVC by at least one order of magnitude. Dead cells or inert 

particles may have accounted for some of this, particularly since the ATP 

concentration per particle was very high compared to the concentration per 

cell in batch cultures. However, cellular aggregates would have been 

underestimated by particle counting compared to TVCs. 

" Taken together with data on the response of planktonic cells to peptone 

and data from other studies showing a high count of total cells in tap water 

relative to TVCs (e. g. Kalmbach et al., 1997a), the Ce1lFacts data strongly 

support the theory that the majority of bacteria in potable water are not 

culturable on a single heterotrophic medium. - 
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" Response of planktonic cells to peptone 

"A proportion of the microflora, primarily pseudomonads and other Gram- 

negative rods, was able to respond rapidly by growth and cell division 

despite not being culturable directly on agar before the enrichment. 

" After the nutrient addition was stopped cells aggregated, presumably to 

obtain protection from the harsh environment. 

" This evidence supports the hypothesis that, in general terms, the free-living 

cells in potable water are dormant but able to respond to stimuli and the 

actively growing cells must protect themselves by attaching to a surface. 

" Kinetics of biofilm accumulation 

" The total number of bacteria at interfaces increased in a linear manner over 

10 weeks. No trend was observed when the activity of attached cells was 

monitored over this period. 

" Almost all of the cells that attached were regular non-appendaged bacilli, 

in direct contrast to the wide diversity of cellular morphologies observed at 

glass surfaces in a static batch culture system (Section 5). It was only after 

treatment of 12 week-old biofilms with chlorine that appendaged cells 

were seen regularly at interfaces in the continuous flow model and then 

only one species was observed. Glass appears to be an inappropriate 

material to support the irreversible attachment of appendaged bacteria in a 

continuously flowing system. Many prosthecate bacteria deposit metals 

and would therefore be expected to adhere more readily to metal substrata. 

" Effects of biofilms on the planktonic population 

" Growth of bacteria in biofilms clearly affected the planktonic cell 

population. This was particularly noticeable between 56-70 days when the 

TVC and the total intracellular ATP concentration in the water was 

elevated immediately after the series of biofilms. 

" Some species were affected more than others and cells of one 

Mycobacterium sp. in particular (CFI/CF4) were shown to have become 

established in early biofilms, grown within them and detached resulting in 
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an increase of almost two orders of magnitude in the free-living 

population. 

" Response of biofilms to peptone 

"A small increase in the proportion of the cells that were metabolically 

active and a small increase in the TVC of the water flowing out of the 

model was observed following peptone addition to biofilms. 

" The response was not uniform and comparison of two species indicated 

that cells of the species that was most firmly associated with biofilms were 

least affected by the carbon addition. This was also true when biofilms 

were treated with chlorine. 

" Response of biofilms to chlorine 

" Boosting the free chlorine concentration to 0.3 mg 1-1 for 3 hrs had little 

immediate effect on the biofilm, but weakened the overall structure. 

Relatively large particles (5-9.5 µm ESD) were released from the biofilm 

for at least 6 days after treatment. 

" No decrease in the activity of the cells at the glass surfaces was detected. 

" Long term potable water biofilms 

" Biofilms developed in the continuous flow model after 10 weeks contained 

many structural elements that were present in mature 1 year-old biofilms 

developed in the same model, including diatoms and large quantities of 

acellular pigmented material. However, the mature biofiims were almost 

completely devoid of bacteria, although they were not inhibitory to 

bacterial attachment. This paradox was difficult to explain and further 

investigations are required to analyse the long-term stability of bacterial 

biofilms in potable water. 
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CHAPTER 7 



7 Conclusions 

In the past the autochthonous microflora of'drinking water was generally considered 

to be harmless and microbiological analyses of drinking water therefore focused 

exclusively on allochthonous microorganisms, in particular pathogens and coliforms, 

that were directly detrimental to the quality and/or safety of the water. Disinfection 

was, and still is, intended to remove these bacteria specifically and their presence in 

finished water is indicative of a breakdown of the treatment process. It is now clear 

that pathogens, coliforms and other unwanted bacteria can survive and grow within 

biofilms on the inner surfaces of distribution pipes, causing deterioration of the 

microbiological quality of the water as it moves away from the treatment plant. 

Growth within bioflms depends upon complex interactions with many indigenous 

drinking water bacteria. Therefore, to understand the microbial ecology of the 

system, it is essential to analyse the total microbial population present. When the 

cellular mechanisms behind biofilm formation, function and dispersal are understood 

it will be possible to predict the effects of manipulating existing biofilms. This in 

turn will enable better control of microbial growth in distribution pipes and perhaps 

the use of biofilms to maintain clean water throughout distribution. 

After isolation it was possible to identify around 15 bacterial genera present in the 

tap water at Warwick University. Isolation was selective even when using R2A, a 

medium designed for the cultivation of heterotrophic bacteria from drinking water. 

After peptone enrichment many pseudomonads and related organisms were isolated 

that were not routinely found by plating directly onto solid agar. Virtually all the 

isolates were regular rod-shaped bacteria or cocci. It was only by employing low- 

nutrient sloppy agar to minimise substrate shock and desiccation that an appendaged 

organism was isolated. Identification of bacteria was often difficult since strains 

grew slowly and rapid identification methods, such as API20NE could not be applied 

to fastidious microorganisms. However, the application of molecular techniques to 

microbial ecology promises to revolutionise bacterial identification. Nucleic acid 

sequencing is a simple and universal method for the identification of isolates and was 

employed here to confirm the generic identification of five strains and to narrow the 
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range of taxa that three other strains could have been assigned to. Since isolation is 

selective it must be avoided when estimating the frequency of strains in situ. 
Molecular methods based on PCR or oligonucleotide hybridization will soon enable 

the abundance of each strain in a complex natural microbial population to be 

determined. 

Although studies on mixed populations are needed to define the inter-species 

interactions that occur within biofilms, investigations using single species are 

invaluable for assessing cellular mechanisms of adhesion and dispersal and for 

developing analytical techniques prior to applying them to complex populations. It 

has been proposed that in natural systems many bacteria, including those that express 

a single morphological form, undergo an asymmetric division resulting in two 

physiologically distinct cell types, a reproductive mother cell and a dormant daughter 

cell which is adapted for survival in the aqueous phase and therefore for biofilm 

dispersal (Dow et al., 1983). In order to analyse vegetative dormancy in drinking 

water bacteria, the activity of a Sphingomonas sp. isolated from tap water was 

assessed through batch growth. Two peaks of activity, measured as cell size or as the 

specific intracellular ATP concentration, occurred before or during mid-exponential 

phase and a further transient increase in activity was observed shortly after the onset 

of stationary phase. It is hypothesised that the initial peak was caused by a shift-up 

of macromolecular and ATP synthesis which was offset by cell division at the end of 

the lag phase. The second peak then may have represented continuation of the shift- 

up before nutrients began to run out. The final peak of activity may have been 

caused by a proportion of the population entering a dormant state with other cells 

gradually dying and degrading ATP. However, a more detailed analysis of substrate 

utilisation kinetics and long-term survival of this strain in the absence of growth is 

required to confirm this hypothesis. 

Since it is difficult to assess cellular activity in heterogeneous populations, similar 

studies were performed using Caulobacter crescentus C1315, an organism that 

undergoes a well-defined dimorphic life cycle. It is possible to synchronise this 

strain to measure the activity of defined populations, although this was not performed 
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in the present study. A single cell size peak was produced early in the exponential 

phase, presumably a result of nutrient shift-up. This was similar to the pattern of cell 

size increases observed through batch growth of E. coil and Klebsiella pneumoniae 

previously obtained in this laboratory. It will be interesting to see if this cell size 

peak correlates with the intracellular ATP concentration through batch growth of 
C. crescentus CD 15 and to use synchronous populations to examine cell size and 

ATP concentration in mother and daughter cells. It was not possible to distinguish 

between mother and daughter cells in batch cultures on the basis of cell size alone. 

To develop a technique for the analysis of dormancy in potable water biofilms, the 

ability of Sphingomonas sp. and C. crescentus CB 15 cells at different stages in batch 

growth to reduce 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was assessed by 

two different procedures: (i) the total CTC reduction was measured fluorimetrically 

and (ii) the total number of cells that reduced CTC was determined microscopically. 

In both strains the two different procedures produced different kinetics. Total CTC 

reduction increased hyperbolically to a peak at mid-exponential phase, but the 

proportion of cells that reduced CTC increased exponentially to a peak around the 

middle of exponential growth. The observed differences may have highlighted the 

heterogeneity of the population, i. e. a few cells rapidly became active, but this 

activity was limited by competition for nutrients. Alternatively, the differences may 

have been an artefact produced by the limitations of each technique. To distinguish 

between these possibilities it will be necessary to refine the experimental protocols. 

Using a dye that produces a soluble tetrazolium salt, such as sodium 3'-[1- 

[(phenylamino)-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzesulphonic 

acid (XTT, Park Scientific Ltd) will improve the fluorimetric assay. The 

microscopic procedure should be carried out in strictly defined medium since 

phosphate, pH and nutrients can affect the staining. 

The role of cell surface hydrophobicity in attachment and release from surfaces was 

assessed using Sphingomonas sp. cultured in a chemostat. Hydrophobicity was 

dependant on the growth rate of the population, with slowly-growing cells tending to 

be most hydrophobic. Hydrophobicity was increased by using nitrogen rather than 
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carbon as the limiting nutrient. However, no changes in the ability of cells to adhere 

to glass surfaces was observed, probably due to the lack of sensitivity of the assay 

employed. Perhaps it would be more useful to look for a correlation between cell 

surface hydrophobicity and the activity of cells, measured as their ability to reduce 

CTC or the intracellular ATP concentration. This would show if changes in cell 

surface hydrophobicity are part of a general mechanism for the detachment of 

dormant cells. If this does prove to be the case then understanding the molecular 

mechanisms that mediate hydrophobicity will enable analysis of the role of the cell 

cycle in vegetative dormancy and biofilm dispersal. 

To assess whether distinct planktonic and biofilm phenotypes are regulated as part of 

the cell cycle of the Sphingomonas sp. isolate, two dimensional gel electrophoresis 

was employed to analyse the proteins produced by cells growing attached to a surface 

or those in liquid culture. Attempts were made to produce the same nutrient 

limitations in the two types of cell culture, although a very artificial biofilm system 

was required to obtain sufficient biomass for protein analysis. Only one or two 

proteins were identified that were differentially expressed by biofilm and planktonic 

cells. Separation may have been improved by use of a larger gel kit. Alternatively, 

restricting the analysis to the outer membrane proteins would have simplified the 

quantification of the levels of expression of each protein. 

The information obtained from studies on Sphingomonas sp. is insufficient to prove 

or disprove the theory that this drinking water isolate employs asymmetric division 

as a mechanism to produce morphologically identical, but physiologically distinct 

cell types when nutrients are scarce. However, in combination with some of the 

work suggested above, data presented here should help to resolve this issue. 

It is clear that many species in potable water undergo bi- or multi-phasic life cycles. 

This was deduced from a simple microscopic analysis of the wide diversity of cell 

types present, many of which are known to be produced from asymmetric division, 

following a period of static batch enrichment. Cell types resembling 

Hyphomicrobium or Pedomicrobium, Planctomyces and Caulobacter spp. were 

231 



observed, as well as a helical appendaged cell type that has not previously been 

reported. The frequency of appendaged bacteria in potable water is often 

underestimated since these organisms are generally difficult to cultivate and only 

exist for part of the life cycle in an easily recognisable appendaged form. However, 

prosthecate bacteria and planctomycetes are likely to play a significant contribution 

to the microbial ecology of potable water since they possess a wide range of 

metabolic capabilities, some of them unique amongst the eubacteria. 

To assess the partitioning of these and other microorganisms between bioflms and 

the aqueous phase in a natural tap water system a continuous flow model was 

developed that allowed sampling of the water before and after a series of glass 

surfaces. The extent of vegetative dormancy in the water column was examined by 

the addition of nutrients (0.001% w/v bacto-peptone) to the water for 24 hrs. A rapid 

increase in the total and viable cell number was detected. Identification of the 

predominant colony types indicated that the increases counts were almost exclusively 

pseudomonads and similar organisms (e. g. Comamonas, Xanthomonas and 

Sphingomonas spp. ) that were not routinely detected on R2A. The response was too 

rapid to have been caused by cryptic growth of a very small number of cells - some 

resuscitation of viable but nonculturable cells must have occurred. This clearly 

demonstrates that a proportion of the planktonic vegetative bacteria in the potable 

water were in a dormant state. Around ten hours after the onset of nutrient addition, 

aggregation of cells was detected by particle size distribution analysis. At this stage 

competition for nutrients may have been starting to take effect. An increase in the 

propensity of cells to attach following nutrient depletion is consistent with a model in 

which planktonic cells grow and divide when nutrients are plentiful, but become 

sticky once the nutrients begin to run out. 

The attachment process was analysed in detail following the establishment of the 

continuous flow model with clean glass surfaces. No trend was observed in the 

activity of adhering cells, although this may have been a result of the failure to 

employ an effective CTC staining protocol until 21 days into the experiment. A 

similar study found that 90% of cells attached to glass after 2 days reduced CTC, but 

232 



that this figure decreased exponentially until around 21 days, when it stabilised at 

about 30% (Kalmbach et al., 1997a). This is not inconsistent with the present study, 

given the high degree of intra- and inter-sample heterogeneity here. The activity of 

planktonic cells was not assessed by CTC staining in either investigation, but it is 

unlikely that 90% of planktonic cells would have reduced the dye. In a previous 

study Schaule et al. (1993) found that between 1-5% of planktonic-cells in drinking 

water could reduce CTC. A similar discrepancy was found between viable counts 

and total counts in this study. Therefore it appears that adhesion is primarily an 

active mechanism, dependant upon cellular activity. A model where dormant 

planktonic cells require a stimulus to initiate maturation and regaining of cellular 

activity and the ability to adhere could explain this observation. 

Kalmbach et al. (1997a) also found that colonisation of a clean surface followed a 
defined succession. This was confirmed here by analysis of the viable cells released 
from biofilms. Mycobacteria, which have previously been shown to be primary 

colonisers of domestic drinking water systems (Schulze-Röbbecke et al., 1992), 

rapidly adhered to glass surfaces and divided. Attached growth caused an increase in 

the number of planktonic cells of this species of 1-2 orders of magnitude. The role of 

succession in biofilm formation should not be overlooked. Countless investigations 

have analysed biofilm formation by single species, but in nature many 

microorganisms may only attach to a developing or mature biofilm. 

After ten weeks the response of attached cells to nutrients (0.001% bacto-peptone, 24 

hrs) or chlorine (0.3 mg ml'', 3 hrs) was monitored. A slight increase in CTC 

staining was observed after the addition of nutrients, but there was no dramatic rise in 

the total number of attached cells. In particular it appeared that the species that were 

most firmly attached were relatively buffered and unresponsive to changes in the 

water chemistry. This may be explained by failure of nutrients or chlorine to 

penetrate the biofilm or by phenotypic 'changes in the cells. This was not 
investigated in this study since it has been the topic of many other experiments. 
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Perhaps the most surprising result from the continuous flow model was the 

observation that after one year biofilms were practically devoid of bacteria. It is 

difficult to propose a reasonable explanation for this. Surfaces were covered in 

biological material ('microbial footprints') and diatoms were abundant. The surfaces 

were not inhibitory to attachment of Sphingomonas sp. - in fact attachment was 

enhanced in the presence of the organic material. Bacteria were present in the areas 

of the glass that were inserted into silicone tubing, but it is not feasible that 

catastrophic sloughing could account for the complete and sustained removal of 

bacteria from the surfaces. It would be interesting to see if this effect is reproducible 

with other substratum materials. The best test would be to analyse the mature 

biofilms present in situ to determine the extent and activity of bacteria present. 
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APPENDIX 



Appendix - The microbiological quality of drinking water leaving 

Strensham treatment works 

Some of the data obtained from routine microbiological analyses at Severn Trent 

Water's Strensham Treatment Plant are presented below, with permission. The 

concentration of E. coli, other coliforms and heterotrophic bacteria in the water 
leaving the plant via the south mains, which serves Warwick University, is 

determined daily. No coliforms or confirmed E. coli 100 ml's were observed at any 

time during 1997. The concentration of heterotrophic bacteria, enumerated after 
incubation on R2A at 37°C for 48 hrs or at 20°C for 72 hrs, is shown graphically in 

Fig. al. The 1997 data on the numbers of unicellular eukaryotes in the water leaving 

Strensham via the south mains, determined microscopically each week, are shown in 

Fig. a2. 

The continuous flow model was started on 3rd June 1997 in order to monitor biofilm 

accumulation (Sections 6.5-6.7). The period over which the continuous flow model 

was running for this purpose is indicated in Figs al and a2. Peptone was added to the 

biofilms on 12`h Aug 1997, chlorine was added on 26th Aug 1997 (Sections 6.6 and 
6.7 respectively) and the experiment was terminated on 2"d Sep 1997. 
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Figure al The concentration of heterotrophic bacteria in the final water 
distributed from Strensham treatment plant along the south mains during 1997. 
The data were provided by Severn Trent Water plc. Heterotrophic plate counts were 
determined by spreading samples onto R2A and incubating at 37°C for 48 hrs or at 
20°C for 72 hrs. The period when the continuous flow model was run at Warwick 

University to monitor biofilm accumulation and responses to peptone and chlorine is 

indicated. 
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Figure a2 The concentration of unicellular eukaryotes in the finished water 

distributed from Strensham treatment plant along the south mains throughout 

1997. The data were provided by Severn Trent Water plc. Unicellular eukaryotes 

were enumerated after microscopic analysis using a haemocytometer. The period 

when the continuous flow model was run at Warwick University to monitor Biofilm 

accumulation and responses to peptone and chlorine is indicated. 

261 

0 rwm in 1I1,. Hl"111111 1n    -"1141"'   nm? n 'F , ..... fin x. 11.1- .. 1 ... ý.. .. ', 

31- 30-Jan 01- 31- 30- 30- 29-Jun 29-Jul 28- 27- 27-Oct 26- 26- 
Dec Mar Mar Apr May Aug Sep Nov Dec 

Date (1997) 


