
 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap 

 

This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  

To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 

Author(s):  Aron F. Westendorf, Lenka Zerzankova, Luca Salassa, 
Peter J. Sadler, Viktor Brabec and Patrick J. Bednarski 
Article Title: Influence of pyridine versus piperidine ligands on the 
chemical, DNA binding and cytotoxic properties of light activated 
trans,trans,trans-[Pt(N3)2(OH)2(NH3)(L)] 
Year of publication: 2011 
Link to published article: 
http://dx.doi.org/10.1016/j.jinorgbio.2011.01.003 
Publisher statement:  None 

 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/1384204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap


 

 

1 

Influence of pyridine versus piperidine ligands on the chemical, DNA 

binding and cytotoxic properties of light activated trans, trans, trans-

[Pt(N3)2(OH)2(NH3)(L)] 

 

Aron F. Westendorf,
a
 Lenka Zerzankova,

b
 Luca Salassa,

c
 Peter J. Sadler

c
, Victor Brabec,

b 

Patrick J. Bednarski
a*

 

a
 Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University 

of Greifswald, Greifswald, Germany 

b
 Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 

135, CZ-61265 Brno, Czech Republic. 

c
 Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, 

UK. 

 

* Corresponding author: Tel: ++49 3834 864883; Fax: ++49 3834 864802; email: 

bednarsk@uni-greifswald.de; address: Institute of Pharmacy, Friedrich-Ludwig-Jahn-Straße 

17, 17487 Greifswald, Germany 

 

 

 

Part of this work was presented at Eurobic10 from June 22-26, 2010 in Thessaloniki, Greece. 

mailto:bednarsk@uni-greifswald.de


 

 

2 

Abstract 

The photocytotoxicity and photobiochemical properties of the new complex trans, trans, 

trans-[Pt(N3)2(OH)2(NH3)(piperidine)] (5) are compared with its analogue containing the less 

basic and less lipophilic ligand pyridine (4). The log P (n-octanol/water) values were of -1.16 

and -1.84 for the piperidine and pyridine complexes, respectively, confirmed that piperidine 

increases the hydrophobicity of the complex. DFT and TDDFT calculations indicate that 5 

has accessible singlet and triplet states which can promote ligand dissociation when populated 

by both UVA and visible white light. When activated by UVA or white light, both compounds 

showed similar cytotoxic potencies in various human cancer cell lines although their 

selectivity was different. The time needed to reach similar antiproliferative activity was 

noticeably decreased by introducing the piperidine ligand. Neither compound showed cross-

resistance in three oxoplatin-resistant cell lines. Furthermore, both compounds showed similar 

anticlonogenic activity when activated by UVA radiation. Interactions of the light-activated 

complexes with DNA showed similar kinetics and levels of DNA platination and similar 

levels of DNA interstrand cross-linking (ca. 5 %). Also the ability to unwind double stranded 

DNA where comparable for the piperidine analogue (24°, respectively), while the piperidine 

complex showed higher potency in changing the conformation of DNA, as measured in an 

ethidium bromide binding assay. These results indicate that the nature of the heterocyclic 

nitrogen ligand can have subtle influences on both the phototoxicity and photobiochemistry of 

this class of photochemotherapeutic agents.  

 

Keywords 
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1. Introduction 

Pt
IV

 diazides have been attracting attention for their potential use as photoactivatable 

drugs in cancer chemotherapy. [1, 2] Such photoactivatable Pt complexes could increase the 

therapeutic effect at the site of the tumour while avoiding systemic toxicity typical of 

traditional Pt anticancer drugs. Towards this end, a number of both cis- and trans-diazide Pt
IV

 

complexes have been synthesized and tested for light-dependent cytotoxicity. Two examples, 

cis,trans,cis-[Pt(N3)2(OH)2(NH3)2], 1, and cis,trans,cis-[Pt(N3)2(OH)2(en)], 2 (Figure 1A),  

have been shown to kill cancer cells in a light-dependent fashion by a mechanism distinctly 

different from that of cisplatin. [3] Structure activity relationships show that all-trans Pt
IV

 

diazides are also active; in fact we have found that compounds 3 and 4 are even more potent 

than their cis,trans,cis isomers when activated by light. [3, 4] Furthermore, when ammine or 

alkyl amine ligands are replaced by pyridine, a 10-fold increase in cytotoxicity is observed 

when the complexes are irradiated with UVA light. [5] This effect could be related to the 

decrease in basicity of the coordinating pyridine compared to an ammine or a primary amine 

ligand. However, introduction of a methyl group at the 2- or 3- position of the pyridine ligand 

leads to a strong decrease in cytotoxicity while a methyl group in the 4- position has little 

effect on activity. [5] Thus, steric effects also appear to play a role in the light activation of 

these photolabile Pt complexes.  

To understand better the influence of ligand basicity, lipophilicity and steric effects on 

the biological activity of this class of trans,trans,trans-[Pt(N3)2(OH)2(NH3)(L)] complexes, 

we have prepared compound 5, a piperidine analogue of trans,trans,trans-

[Pt(N3)2(OH)2(NH3)(pyridine)] (4). Piperidine is more basic and lipophilic than pyridine but 

has a comparable steric bulk to pyridine, with a calculated total area of 156 and 127 Å
2
 and a 

calculated molecular volume of 135 and 109 Å
3
 for piperidine and pyridine, respectively. A 

detailed comparison between the photocytotoxic and photobiochemical properties of 
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complexes 4 and 5 was therefore made to provide insight into structure-activity relationships 

in this class of anticancer complexes. 

Figure 1 

Binding of Pt to DNA is commonly associated with the anticancer activity of cisplatin 

and related analogues. [6, 7] Thus, in addition studying the cytotoxic effects on cancer cell 

lines we have also characterized the interactions between DNA and the photoactivated Pt
IV

 

diazides in order to investigate similarities and differences in binding that might explain some 

of the biological effects of these compounds. 

 

2. Materials and methods 

 

Caution! Although no problems were encountered during this work, heavy metal azides 

are known to be shock-sensitive detonators, therefore it is essential that any platinum 

azide compound is handled with care. 

2.1. Chemicals and cell lines 

Cisplatin was from Chempur (Karlsruhe, Germany). Oxoplatin was a gift of the 

RIEMSER Arzneimittel AG, Germany. Compounds 3 and 4 were synthesized as previously 

described. [3, 4] Stock solutions of cisplatin and oxoplatin were prepared in DMF (Sigma) 

and stored at -20 °C. All culture reagents were obtained from Sigma-Aldrich. 

To investigate the phototoxic potency of the compounds, six different human cancer 

cell lines were used: 5637 (bladder), Kyse-70 (esophageal), SISO (cervix adenocarcinoma), 

DAN-G (pancreatic), A-427 (lung) and HL-60 (acute myeloid leukemia). All cell lines were 
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obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ, 

Braunschweig, Germany). A mycoplasma screen was done by using the Hoechst staining 

method and all cell lines where found to be free of mycoplasms. The oxoplatin resistant cell 

lines 5637-OXO, SISO-OXO and Kyse-70-OXO were established by weekly exposures to 

oxoplatin over several months and were resistant to both oxoplatin and cisplatin.  

 

2.2. Light Source 

Luzchem Expo panels (Luzchem Reasearch Inc., Ontario, Canada) were used for 

irradiation. The two Expo panels were accommodated with five fluorescent lamps each, 8 W 

per lamp. UVB radiation was cut off by a filter. The light source was positioned 25 cm away 

from the samples giving an intensity of 0.12 mW/cm
2
. Cool white fluorescent mercury tubes, 

8 W, where used for irradiation with white light (intensity of 0.65 mW/cm
2
). The above 

described set up was used in all cell experiments. All other experiments were irradiated using 

the LZC-4V illuminator (photoreactor) (Lutzchem, Canada) with temperature controller and 

UVA tubes (2 mW/cm
2
; λmax = 365 nm). 

 

2.3. Preparation of 5 

Compound 5 was prepared in a three step synthesis: 

2.3.1.  trans-[PtCl2(NH3)(pip)] 

Piperidine (2.5 mmol, 248 µl) was added to a 4 ml cisplatin (0.200 g, 0.67 mmol) 

suspension in water. After stirring at 75 °C for 120 min, the colorless solution was cooled to 

room temperature and reduced to dryness. HCl (2 M, 4 ml) was added to the resulting white 

solid and stirred at 70 °C for 4 days. The solution was cooled on ice before filtering off the 
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yellow precipitate, washed with ice cold water, ethanol and diethyl ether and dried under 

vacuum. Yield: 87% (202.7 mg) of a yellow powder. 

2.3.2.  trans,trans-[Pt(N3)2(NH3)(pip)] 

Trans-[PtCl2(NH3)(pip)] (0.4 mmol, 150 mg) was suspended in 50 ml H2O. After 

adding AgNO3 (0.8 mmol, 68 mg) the solution was stirred at 60 °C for 24 h in the dark. 

Forming removal of AgCl on a sintered funnel, NaN3 (0.8 mmol, 52 mg) was added to the 

solution. After stirring over-night the volume was reduced to ca. 2 – 4 ml and stored at 4 °C 

for 24 h. The yellow precipitate was filtered off, washed (ice cold water, ethanol, diethyl 

ether) and dried under vacuum. Yield: 80% (122 mg) of a light brown powder. 

2.3.3.  trans,trans,trans-[Pt(N3)2(OH)2(NH3)(pip)] (5) 

To a solution of trans,trans-[Pt(N3)2(NH3)(pip)] (0.315 mmol, 120 mg) in 300 ml 

water, H2O2 (30%, 1.9 mmol, 0.195 µl) was added and stirred in the dark overnight. The 

volume was reduced to ca. 25 ml and filtered off. The volume was then reduced and dry 

acetone was added to precipitate the final product, which was collected by filtration and 

washed with ice cold water, ethanol and diethyl ether. Yield: 76 mg (58%) of a bright yellow 

powder. 

IR-Spectra were recorded with a Nicolet IR-200 Ft-IR from Thermo Scientific. The 

IR-band at 3509 cm
-1

 is assigned to N-H and O-H stretching vibrations. N-H bending 

vibration is present at 1660 cm
-1 

(m) 1598 cm
-1

(w) and 1258 cm
-1

 (m). The azide ligand is 

assigned the band at 2030 cm
-1

. The C-H stretching vibration gives a band at 2949 cm
-1

 (s), C-

H bending at 1448 cm
-1

, and the band at 1078 cm
-1

 is due to C-N stretching vibrations. A band 

at 544 cm
-1

 is assigned to a Pt-N vibration. 
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195
Pt NMR spectra for D2O solutions were recorded on a Bruker 400 NMR (86MHz) 

and were externally referenced to potassium hexachloroplatinate. A chemical shift of 919 ppm 

was found for trans, trans, trans-[Pt(N3)2(OH)2(NH3)(pip)], which agrees with published 
195

Pt 

NMR data for other Pt
IV

 compounds. [8, 9] 

 The identity and purity of compound 5 was further confirmed by LC/MS (Shimadzu 

High Perfomance Liquid Chromatograph/Mass Spectrometer). Calculated m/z for 

[C5H15N8O2Pt]
-
 ([M-H

-
) 414.0971; found 414.0965. HPLC of 5 gave a purity of 97%. 

 The UV-Vis-spectra (Figure 1B), recorded with a Hitachi U-2810 spectrophotometer 

in H2O showed a maximum at λ = 287.5 nm with ε = 15,355 M
-1

cm
-1

. A shoulder was 

observed at 350 nm and a maximum with a weak intensity was found at ca. 420 nm (ε = 115 

M
-1

cm
-1

). 

 

2.4. Measurement of log P 

To determine the partition coefficient (P) the shake flask method was used. Water and 

n-octanol were pre-saturated with n-octanol and water, respectively. Compounds were first 

dissolved in water. Three different ratios of octanol/water were used (e.g. 1:1; 1:2 and 2:1). 

Mixing was done by vortexing for 30 min at room temperature to establish the partition 

equilibrium. To separate the phases, centrifugation was done at 3,000 g for 5 min. The 

platinum concentrations in both phases were determined by flameless atomic absorption 

spectroscopy (FAAS) with a UNICAM 989 QZ spectrometer.  
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2.5. Theoretical calculations 

All calculations were performed with the Gaussian 03 (G03) program [10] employing the 

DFT method, the PBE1PBE [11]
 
functionals. The LanL2DZ basis set [12] and effective core 

potential were used for the Pt atom and the 6-31G**+ basis set [13] was used for all other 

atoms. Geometry optimizations of 5 in the ground state (S0) and lowest-lying triplet state (T1) 

were performed in the gas phase and the nature of all stationary points was confirmed by 

normal mode analysis. For the T1 geometries the UKS method with the unrestricted 

PBE1PBE functional was employed. The conductor-like polarizable continuum model 

method (CPCM) [14] with water as solvent was used to calculate the electronic structure and 

the excited states of 5 in solution. Thirty-two singlet and eight triplet excited states with the 

corresponding oscillator strengths were determined with a Time-dependent Density 

Functional Theory (TDDFT) calculation. [15, 16] The computational results are summarized 

in the Supporting Information.  

 

2.6. Cell growth inhibition with the crystal violet method 

Cells were grown in medium containing 90% RPMI 1640 medium and 10% FCS, 

supplemented with penicillin G (30 mg/l) / streptomycin (40 mg/l) and kept at 37 °C in 

humidified atmosphere of 5% carbon dioxide/air. 

In testing for antiproliferative activity, cells were seeded out in 96-well microtiter 

plates in 100 µl medium at a density of 1000 cells/well. The plates were returned to the 

incubator for 24 h. On the day of testing, the stock solutions of cisplatin (20 mM in DMF) 

were serially diluted two fold in DMF to the desired concentration range, giving a series of 

five dilutions. Compounds 3, 4, and 5 were dissolved in water followed by sterile filtration 

immediately. Stock solutions and the dilutions were directly diluted 500-fold into medium. 
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From the working dilutions, 100 µl aliquots were added to each well. When DMF was the 

solvent, a maximum concentration of 0.1% (v/v) DMF was present.  

Compounds 3, 4, and 5 were preincubated with the cells for 1 h, followed by 

irradiation with white light or UVA λmax = 366 nm for up to 30 min. Lower wavelength UV 

radiation was blocked by a filter for both lamps. Luzchem Expo panels (Luzchem Reasearch 

Inc., Ontario, Canada) were used for irradiation. The light sources were mounted inside on the 

roof of the incubator and positioned 25 cm away from the microtiter plates. The plates were 

incubated for an additional 6 h at 37 °C, then the medium was carefully aspirated off and 

replaced with 200 µl fresh medium. Ninety hours later the culture medium was discarded and 

replaced for 25 min with a 1% glutaraldehyde in PBS solution to fix the cells. The fixing 

buffer was removed and replaced with PBS. Staining was done with a 0.02% solution of 

crystal violet in water. The dye was added to each well and discarded after 30 min of staining, 

followed by 15 min washing in fresh water. The cell-bound dye was redissolved in 70% (v/v) 

ethanol/water and the optical density was measured at λ = 570 nm with an Anthos 2010 plate 

reader (Anthos, Salzburg, Austria). The IC50 values were calculated by a linear least-squares 

regression of the T/Ccorr values versus the logarithm of the added compound concentration 

and extrapolating to the T/Ccorr values of 50 %. [17] This assay was used for all adherent cell 

lines. 

 

2.7. Cell growth inhibition with MTT method 

The MTT assay was used for determining cytotoxicity in the suspension of cancer cell 

line HL-60. Cells were seeded out in 96-well microtiter plates in 50µl medium at a density of 

10,000 cells/well. Dilutions of the compounds in cell culture medium were added directly to 

the cultures after seeding. Pretreatment was for 1 h, irradiation with UVA was for 30 min, 
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followed by a 6 h exposure to the photolyse products. After this time the cells were 

centrifuged at 500 g for 5 min and the cell pellet was resuspended in fresh medium. The cells 

were allowed to grow an additional 42 h before the MTT assay was performed. For the MTT 

assay, 20 µl of a 2.5 mg/ml 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) aqueous solution was added per well and left in contact with the cells in the incubator 

for 4 h. Prior to measuring the optical density at λ = 570 nm, 100 µl of a 0.04 N hydrochloric 

acid in 2-propanol solution was added to dissolve the crystalline formazane. 

 

2.8. Determination of oxoplatin cross-resistance 

The IC50 values of 4 and 5 were determined in three different oxoplatin-resistant 

human cancer cell lines. The three resistant cell lines were developed in our lab from the wild-

type cell lines. The resistance factor (RF) was calculated as follows:  

 

50 oxoplatin resistant

50 wildtype

( )

( )

IC
RF

IC
         (2) 

 

IC50-oxoplatin resistant represents the IC50 value for the oxoplatin resistant cell line and IC50-wildtype 

stands for the IC50 value for the wild-type line. The IC50 values were determined as described 

above by the crystal violet assay. Resistance is said to occur when the RF value is greater than 

1.5. For comparison, cisplatin and oxoplatin were used.  
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2.9. Clonogenic Assay  

The human cervix adenocarcinoma cell line SISO was used for the in vitro clonogenic 

assay. Cells were seeded in culture flasks and incubated for 24 h. Working solutions of 

cisplatin (in DMF), 4 and 5 (in water) were diluted 1000-fold into the culture medium at five 

serial dilutions. After a preincubation time of 1 h, compounds 4, 5 and control were irradiated 

for 30 min with UVA λmax = 366 nm. Medium was removed after 6 h and cells were washed 

twice with PBS before reseeding the cells in six well plates. The culture plates were stored in 

the dark in an incubator for 10 days. Staining was done with a methylene blue solution (1% in 

water/methanol 1:1) added for 30 min. After washing out excess dye, the plates were allowed 

to air dry before manually counting colonies containing 50 or more cells. The plating 

efficiency (PE) was calculated by: 

 

number of colonies formed
100%

number of cells seeded
PE        (3) 

 

The plating efficiency is defined as the ratio of the number of colonies to the number 

of cells seeded. The surviving fraction (SF), expressed in the terms of PE, is the number of 

colonies that form after treatment relative to the number of cells seeded. 

 

number of colonies formed after treatment

number of cells seeded
SF

PE
      (4) 
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The IC50 values were calculated by a linear least-squares regression of the SF values 

versus the logarithm of the added compound concentration and extrapolating to the SF values 

of 50 %. [18] 

 

2.10. Intracellular accumulation of 4 and 5 in the cancer cell line 5637 and comparison 

to cisplatin 

Cells were grown in 25 cm
2
 cell culture flasks at 37 °C in a 5% carbon dioxide/air 

atmosphere to a density of 2 million cells. The cisplatin stock solution was diluted directly 

into fresh culture medium to a concentration of 50 µM. Solutions of 4 and 5 were freshly 

prepared in water. After sterile filtration, the stock solutions were directly diluted in fresh 

culture medium to 50 µM. The flasks were incubated at 37 °C in the dark. After 1 h, the flasks 

containing 4 and 5 were irradiated for 30 min with UVA λmax = 366 nm. Samples of cisplatin 

were not irradiated. Controls without irradiation were also performed. After irradiation the 

flasks were kept in the dark for defined periods of time. For each time point, a flask was 

removed, the medium was discarded and the cells were washed with ice cold PBS. Cells 

where trypsinated and suspended in fresh PBS. A 0.5 ml aliquot was used to determine the 

cell number with a Coulter Counter Z2 instrument (Beckman-Coulter, Miami, USA). The 

suspension was centrifuged at 5,000 g for 5 min at -20 °C. The supernatant was discarded and 

the pellet washed again with ice cold PBS. After a second centrifugation the pellets were 

frozen at -20 °C until further analysis.  

Immediately after thawing the cells were resuspended in a simulated intestinal fluid 

USP solution and incubated for 15 min at 37 °C to digest the cells. To assure complete 

destruction of the cells, samples were placed in a sonic bath for another 15 min at 37 °C. 

Intracellular platinum concentrations were analyzed by flameless atomic absorption 
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spectroscopy (AAS) as previously described. [19] The results were expressed in terms of 

ng platinum/1 million cells. 

 

2.11. Polarographic measurement of Pt 

Square wave voltammetry was performed with an EG&G Princeton Applied Research 

Model 384B Polarographic Analyzer. A three-electrode system was used, comprising an 

EG&G PARC Model 303A static mercury drop electrode (medium size) and a Ag/AgCl 

(saturated KC1) reference electrode. All potentials are quoted vs. this reference electrode. 

Parameters for the square-wave voltammetry operation were as follows: -0.5 V initial 

potential, -1 V final potential, , 4 mVs
-1

 scan increment, 1 cm
2
 electrode area, 50 mV pulse 

hight, 100 Hz frequency. The electrolyte solution consisted of 1 part 0.08% formaldehyde in 

1.5 M H2SO4, 1 part 0.008% hydrazine in 1.5 M H2SO4, 2 parts water. 

Solutions of double-helical calf thymus DNA were incubated with 4, 5 or cisplatin at 

the ri value 0.1 in 10mM NaClO4 at 37 ºC (ri is defined as the molar ratio of free platinum 

complex to nucleotides at the onset of incubation with DNA). Immediately after mixing, the 

solutions containing 4 or 5 were irradiated with UV light for 30 min and then placed in the 

dark at 37 ºC. Cisplatin- containing solutions were kept in the dark for the whole incubation 

period. At various time intervals, an aliquot of the reaction mixture was withdrawn and 

assayed by SW-voltammetry for platinum non-bound to DNA.  

 

2.12. Ethidium bromide fluorescence studies with DNA 

In all studies, calf thymus DNA (0.04 mg/ml) was incubated with the platinum 

complex in 10 mM NaClO4 at 37 °C for 24 h. For cisplatin and [PtCl(dien)]Cl, the 

incubations were carried out in the dark. For 4 and 5, samples were irradiated with UVA in 

the presence of DNA for 30 min and then placed in the dark. After 24 h an ethidium bromide 
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(EtBr) solution (containing 0.052 mg/ml EtBr and 0.52M NaCl in water) was added to the 

DNA incubations; the final concentration of EtBr was 0.04 mg/ml, which corresponded to the 

saturation of all intercalation sites of EtBr in DNA at a concentration of 0.01 mg/ml. After 30 

min in the dark at room temperature, fluorescence was measured with a Varian Cary Eclipse 

fluorescence spectrophotometer, equipped with a 0.5 cm quartz cell, with an excitation 

wavelength λ = 546 nm and an emission λ =595 nm. 

 

2.13. Unwinding of negatively supercoiled DNA 

Unwinding of closed circular supercoiled pUC19 plasmid DNA (2,686 bp) was 

analyzed by an agarose gel mobility shift assay. [4] The unwinding angle Φ, induced per one 

molecule bound to DNA was calculated by determining the platinum:base ratio at which the 

complete transformation of the supercoiled to relaxed form of the plasmid was attained. An 

aliquot of the sample was subjected to electrophoresis on a 1% native agarose gel running at 

room temperature in the dark with TAE (Tris–aceate/EDTA) buffer. The voltage was set to 25 

V. The gel was stained with EtBr and analysed by photography by using a transilluminator. 

The mean unwinding angle was calculated by equation 1: 

 

 
b

18

r (c)
           (5) 

 

where σ is the superhelical density and rb(c) is the value of rb (rb is defined as the number of 

molecules of the platinum complex bound per nucleotide residue) at which the supercoiled 

and nicked forms co-migrate. Higher rb values above the point of comigratrion cause an 

increase of migration as positive supercoils are induced. 
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2.14, DNA Interstrand cross-linking 

The levels of interstrand cross-linking by 4, 5 and cisplatin in linear DNA were 

measured with pUC19 plasmid (2,686 bp). Linearization was realized by EcoRI (EcoRI cuts 

once within the pUC19 plasmid). The linear DNA was 3'-end-labeled by means of Klenow 

fragment of DNA polymerase I in the presence of [α-
32

P]dATP and subsequently incubated 

with platinum complexes. Samples of 4 and 5 were irradiated with the labeled and linearized 

DNA for 30 min with UVA light immediately after mixing. After irradiation the samples were 

stored together with cisplatin in the dark at 37 °C. The rb values ranged for 5 from 0.00003 to 

0.002, for 4 from 0.00005 to 0.001 in 0.01 M NaClO4. To each sample of 10 µl, 1µl of 1 mM 

NaOH and 2 µl of a solution containing 1 mM EDTA, 6.6% sucrose and 0.04% bromophenol 

blue were added. Samples were analyzed for interstrand cross-links by agarose gel 

electrophoresis under denaturing conditions (alkaline 1% agarose gel). The intensities of the 

resulting bands corresponding to single strands, and interstrand cross-linked duplex DNA 

were quantified by means of a Phosphor Imager (Fuji BAS 2500 system, AIDA software). 

The Poisson distribution from the fraction of non-cross-linked DNA in combination with the 

rb values and the fragment size was used to calculate the percentage of interstrand cross links 

(the amount of interstrand CLs per one molecule of the platinum complex bound to DNA), 

see equation 2. 

 

b

ln /100
% 100%

r 5372

ss
IEC         (6) 

 

The number of nucleotide residues in the plasmid pUC19 is 5,372. The fraction of 

DNA molecules corresponding to the non-cross-linked DNA is symbolized with ss, the ration 

of platinum compound to DNA is given by rb. [20, 21] 
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2.15. Statistical analysis 

All cell experiments were independently repeated at least three times. The IC50 values 

along with the respective standard deviations were calculated with the software EXCEL (V 

Microsoft®).  

 

3. Results 

3.1. Synthesis of trans, trans, trans-[Pt(N3)2(OH)2(NH3)(pip)] 

 The synthesis of 5 was carried out by a method analogous to that used to synthesize 4. 

[3] The new complex was characterized by LC-MS/MS, UV-Vis (Figure 1B), IR and 
195

Pt-

NMR. Because heavy metal azido complexes in general can undergo temperature-sensitive 

detonation, melting point determination and elemental analysis were not preformed. The 

analytical data are consistent with the structure of 5. 

 

3.2. Log P determinations 

  The log P value plays an important role in ADME studies (Absorption, Distribution, 

Metabolism and Excretion) and drug discovery. [22] The traditional shake flask method was 

used to measure the partition coefficient (P) between n-octanol and water.  

The log P value of -2.21 ± 0.08 we obtained for cisplatin is within the range reported 

in the literature; i.e., -2.19 and -2.53. [23-26] This value was constant irrespective of whether 

chloride (100 mM) was present or not. Complexes 4 and 5 are expected to be inert and very 

stable in water. The log P for the trans diammine complexe 3 was found to be -2.51 ± 0.14 

and is thus even more hydrophilic than cisplatin. For 4 and 5 the log P are -1.84 ± 0.06 and -

1.16 ± 0.03, respectively. These results are consistent with the order of the log P values of the 

respective amine ligands: pyridine (0.65) < piperidine (0.84) [27, 28], but the relative 
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difference is greater for the Pt complexes than would be expected from the amine ligands 

alone.  

 

 

3.3. Theoretical calculations 

Thirty-two singlet excited state transitions were calculated by TDDFT to assign the 

experimental bands in the UV-Vis spectrum of complex 5. [29] A good agreement between 

experimental and theoretical spectra was found, although a small blue shift (ca. 20 nm) is 

present in the calculated spectrum (Figure 1B). The absorption at  = 278 nm and the 

shoulder at 350 nm in the experimental data are correctly described by the calculations, as 

well as the low intensity absorption band at ca. 420 nm. The main band in the UV region is 

composed by ligand-to-metal charge transfer (LMCT) transitions with N3
–
, OH

–
 → Pt 

character. The shoulder has a major inter-ligand (IL) nature, while the lower energy 

transitions have a mixed LMCT/IL character. All the described transitions have dissociative 

nature towards the coordinated ligands since they have dominant contributions from the 

strongly σ*-antibonding LUMO and LUMO+1 orbitals. [30] 

Calculation of the lowest-lying triplet geometry can be highly informative [31-33] 

about the photochemistry of metal complexes. Such a state is generally populated in d
6
-metal 

complexes upon excitation and subsequent intersystem-crossing. [5] 

As already observed for other Pt
IV

-azides derivatives, the lowest-lying geometry of 5 

is highly distorted (see supporting information). [30] In fact, the two Pt–N3 bond distances are 

elongated by 0.29 Å and 0.42 Å compared to the ground state geometry, possibly indicating 

that release of azide ligands can occur via triplet formation. 

Interestingly, in the triplet geometry the Pt center displays a significantly lower 

positive charge with respect to the ground state. Such behavior is consistent with the reduction 

from Pt
IV

 to Pt
II
 observed for Pt

IV
-azido complexes. 
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3.4. Influence of light on the cytotoxicity of Pt
IV

-diazides 

The human bladder cancer cell line 5637 was used to study the time-dependent effects 

of irradiation with UVA of 3, 4 and 5 on cells. A microtiter assay based on cell staining with 

crystal violet was used for these studies with adherent cell lines. [34] The MTT assay was 

used for the suspension cell line HL-60. Cell growth was not influenced by the UV 

irradiation. In the dark, all three Pt
IV

-diazide compounds show only weak cytotoxicity. 

(Figure 2A) Irradiation with light of λmax = 366 nm by means of UVA lamps mounted in the 

ceiling of the cell incubator (UVB light was cut off by a filter) caused an increase of the 

cytotoxic potential. Complex 3 was less active than 4 and the piperidine analog 5, while the 

latter two complexes show comparable cytotoxic potential. (Figure 2B) The increased 

potency of trans complexes compared to their cis isomers has been reported earlier. [5] In the 

following experiments 3 was not investigated further due to the comparatively low activity. 

 

Figure 2 

 

 To determine the cytotoxic selectivity of 4 and 5, their IC50 values were determined in 

six different human cancer cell lines.(Table 1) The values for 4 range from 30 µM in a human 

bladder cancer cell line 5637 to 68 µM in a pancreas carcinoma cell line DAN-G. In case of 5, 

the IC50 values range from 20 µM in the acute myeloid leukemia cell line HL-60 to 80 µM in 

the esophageal cell carcinoma line Kyse 70. Thus, 5 shows a 4-fold difference in selectivity 

while 4 only a 2-fold difference between the six cell lines, indicating more selective 

cytotoxicity of the piperidine complex 5. Table 1 also shows that compared to cisplatin, the 

potency of the light-activiated PtIV complexes is 10-20 fold less under identical test 

conditions (i.e., 30 min irradiation, then 6 h exposure to drug followed by 90 h cell growth 
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without drug). However, cisplatin showed the same potency in both the light as in the dark, 

while 4 and 5 are only active when irradiated for 30 min.  

 Table 1 

In studies designed to measure the optimal duration of irradiation, it was found that 

compound 5 is more rapidly activated than 4; i.e., only a 10 min irradiation with UVA is 

required to activate 5 to the same antiproliferative activity as a 30 min irradiation of 4. 

(Figure 3) This effect was noticeable with both UVA and white light. Thus the introduction 

of the piperidine ligand leads to a compound that is more efficiently activated by light.  

Figure 3 

 The use of UVA radiation in a therapeutic context is less desirable than longer 

wavelength light due to the low penetration of UVA into tissue. [35, 36] In order to reach 

deeper laying tumor tissues, light with longer wavelength is required. Thus, the activation of 4 

and 5 was studied with white fluorescent light. Table 1 shows that the IC50 values are up to 

2.5-fold higher in some cell lines when irradiated with white light compared to the UVA. 

Thus, white fluorescence light can also be used to activate both 4 and 5, and the cytotoxic 

potency is only marginally decreased.  

 Treatment with anticancer drugs, e.g. cisplatin and oxoplatin (cis,trans,cis-

[Pt(N3)2(OH)2(NH3)2]), often leads to acquired resistance. However, photoactivatable trans-

Pt
IV

 diazides might be expected to act by a different mechanism than traditional Pt
II
 

complexes. Thus, we investigated whether the new Pt-based drugs can overcome acquired 

resistance to oxoplatin, a cisplatin Pt
IV

 prodrug, [37] in three oxoplatin resistant cell lines 

(SISO, KYSE70, 5637). In these cell lines cisplatin is cross resistant to oxoplatin (2- to 3.4-

fold resistant). This is consistent with the hypothesis of oxoplatin being a prodrug of cisplatin. 

On the other hand, 4 and 5 did not show any cross resistance to oxoplatin. (Table 1) 
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3.5. Clonogenic assay in the human cervix adenocarcinoma cancer cell line SISO 

 The clonogenic assay is an in vitro cell survival assay based on the ability of a single 

cell to grow into a colony and is used to determine cell reproductive death after treatment with 

cytotoxic agents or ionizing radiation. It represents a more appropriate method than a simple 

antiproliferative assay to predict antitumor activity. [18, 38] With the SISO human cervix 

cancer cell line, which grows in well defined colonies, compound 4 is ca. 10-fold more potent 

in the clonogenic assay compared to the antiproliferation assay (IC50 values of 4.94 ± 2.76 and 

43.4 ± 23.7 µM, respectively). Compound 5 shows comparable results and is ca. eight fold 

more potent in the clonogenic than in the antiproliferative assay (values of 5.31 ± 2.84 and 

41.8 ± 3.75 µM, respectively). As expected, cisplatin shows potent anticlonogenic activity 

with an IC50 value of 0.20 ± 0.02 µM. Thus, photoactivated compounds 4 and 5 are ca. 25-

fold less potent in this assay compared to cisplatin but have antitumor potential and have little 

toxicity in the dark, in contrast to cisplatin. 

 

3.6. Cellular uptake rates of Pt by 5637 human bladder cancer cells treated with 4, 5 

and cisplatin. 

Cellular uptake of Pt was studied by FAAS for compounds 4 and 5 in comparison to 

cisplatin. Cells treated with either Pt
IV

 compound in the dark accumulated only very small 

amounts of platinum over 8 h while cells exposed to the same concentrations of cisplatin 

show a continuous uptake of Pt. (Figure 4) When the Pt
IV

 compounds are activated by UVA 

radiation (λmax = 366 nm) for 30 min (indicated by an arrow in Figure 4), rapid uptake of Pt 

takes place. Cells were irradiated for 30 min as in the antiproliferative activity studies. The 

highest level of Pt (40 ng platinum/1 million cells) is reached after ca. 4 h for 4 and after 

about 6 h for 5, respectively. After this time point, a plateau is reached and the cells 
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accumulate no more platinum. Cells treated with cisplatin show no sign of a plateau after 8 h 

while accumulating roughly the same levels of Pt compared to the light activated Pt
IV

 

compounds. 

Figure 4 

 

3.7. Irreversible DNA binding of Pt 

Much evidence exists to implicate the binding of cisplatin to DNA as at least one 

mechanism of anticancer activity. Previous work has shown that 4 can also bind irreversibly 

to calf thymus DNA when activated by light. [3] Thus, we investigated the effect of the 

piperidine ligand in comparison to pyridine ligand on the kinetics of binding of UVA 

activated Pt diazides to calf thymus DNA. Polarography was used to measure the binding of 

platinum to calf thymus DNA as described elsewhere. [39] 

The half-life for cisplatin binding to DNA was found to be 180 min at 37 °C and 24 h; 

a maximum level of DNA platination of 89% was reached after 24 h (Figure 5A). On the 

other hand, no irreversible binding of either 4 or 5 to DNA was observed when incubations 

where done in the dark. Interestingly, UVA activated 4 and 5 (i.e., irradiation of complexes 

for 30 min with light  = 366 nm) both bind much faster to calf thymus DNA than cisplatin 

(Figure 5 B and C); for the UVA-activatable platinum complexes the half-life of binding is 

less than 5 min. After 25 min a plateau is reached for both complexes, with final levels of 

platination being very similar for the two compounds; i.e., 86 and 78% for 4 and 5, 

respectively. 

 

Figure 5 
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It has been reported that extracellular concentrations of chloride (e.g. 100 mM) can 

protect DNA from platination by cisplatin. [40] Likewise, we found that when 100 mM 

chloride was present in the solutions of DNA, very little platination took place with UVA-

activated 4 and 5.  Due to the high chloride concentration, the equilibrium between chlorido 

and aqua Pt
II
 species is shifted towards the less reactive chlorido species. When cisplatin 

enters the cell the chloride concentration drops to 4 – 20 mM and the equilibrium shifts to 

aqua species that bind irreversibly to DNA. Because the same inhibitory effect of chloride 

was observed with 4 and 5, it would appear that UVA-activation also leads to the formation of 

reactive aqua species that can bind irreversibly to DNA.  

 

3.8. Characterization of DNA adducts by ethidium bromide fluorescence. 

The fluorescent dye ethidium bromide (EtBr) can be used to distinguish between 

perturbations induced in DNA by monofunctional and bifunctional adducts of platinum 

compounds. [41] Binding of EtBr to DNA by intercalation is blocked in a stoichiometric 

manner by formation of the bifunctional adducts of a series of platinum complexes including 

cisplatin and transplatin, which results in a loss of fluorescence intensity. [41, 42] On the 

other hand, modification of DNA by monofunctional platinum complexes such as 

[PtCl(dien)]Cl (having only one leaving ligand) only results in a slight decrease of EtBr 

fluorescence intensity as compared with nonplatinated DNA-EtBr complex. 

Double-helical DNA was first modified with nonirradiated cisplatin, [PtCl(dien)]Cl 

and light activated complexes 4 and 5 (for 24 h). The levels of the modification corresponded 

to the values of rb in the range between 0 – 0.1. Modification of DNA by all platinum 

complexes resulted in a decrease of EtBr fluorescence (Figure 6). In accordance with the 

results published earlier [41-43], monofunctional [PtCl(dien)]Cl only decreased the 

fluorescence to a small extent. On the other hand, the decrease induced by the DNA adducts 

of bifunctional cisplatin, and UVA-activated complexes 4 and 5 was considerably more 
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pronounced. This result suggests that upon irradiation 4 and 5 forms DNA adducts which 

cannot be grouped, from the viewpoint of their capability to inhibit EtBr fluorescence, with 

those formed by ”classical” monofunctional platinum(II) complexes. The fact that the 

decrease of EtBr fluorescence induced by the adducts of UVA activated 4 and 5 was even 

noticeably more pronounced than that induced by the adducts of cisplatin (Figure 6) deserves 

further discussion. We suggest that the piperidine or pyridine ligand in all or in a significant 

fraction of adducts of irradiated 4 and 5 (mono- and/or bifunctional) might be well positioned 

to interact with the duplex. The extent of the observed decrease in EtBr fluorescence indicates 

that the disturbance of the DNA helical structure by UVA activated 4 and 5 is not only an 

effect of covalent platinum binding but has to be explained with an additional, perhaps 

intercalative binding mode. The idea that the piperidine or pyridine ligand in the DNA 

adducts of UVA activated 4 and 5 interacts with the duplex is further corroborated by the 

results of DNA unwinding experiments (see the section DNA unwinding). 

Figure 6 

 

3.9. DNA unwinding 

 Electrophoresis in native agarose gel is used to determine the unwinding induced in 

negatively supercoiled pUC19 plasmid by monitoring the degree of supercoiling. [44] A 

compound that unwinds the DNA duplex reduces the number of supercoils in closed circular 

DNA so that their number decreases. This decrease upon binding of unwinding agents causes 

a decrease in the rate of migration through agarose gel, which makes it possible to observe 

and quantify the unwinding.  

 Figure 7 shows electrophoresis gels from experiments in which variable amounts of 

cisplatin and UVA activated 4 or 5 have been bound to a mixture of relaxed and negatively 

supercoiled pUC19 DNA. The unwinding angle is given by Φ = -18 σ/rb(c), where σ is the 

superhelical density and rb(c) is the value of rb at which the supercoiled and relaxed forms 
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comigrate.[44] Under the present experimental conditions, σ was calculated to be -0.040 on 

the basis of data for cisplatin, for which the rb(c) was determined in this study based on the 

value σ = 13°. [44, 45] For UVA activated 4 and 5, rb(c) was 0.03 (Error! Reference source 

not found.B, C, lanes 0.03). The unwinding angle for UVA-activated 4 and 5 calculated in 

this way was 24  1°, respectively. This unwinding angle is considerably greater than that 

found for cisplatin. It is reasonable to suggest that the large additional contribution to 

unwinding is associated with intercalation of the piperidine or pyridine ligands. Thus, the 

large unwinding angle produced by light activated 4 and 5 is good evidence that the pyridine 

or piperidine ligand substantially interacts with duplex DNA upon coordiative binding of 

platinum. In other words, the unwinding angles observed for irradiated 4 and 5 are consistent 

with DNA binding that involves a combined intercalation/coordination mode similar to that 

observed for some cationic platinum(II) complexes that carry ethidium [44] or quinoline [46] 

as a nonleaving group (ethidium and quinoline are well known DNA intercalators which 

extensively unwind DNA).  

Figure 7 

The DNA unwinding of the monofunctional, cationic complexes 

cis-[Pt(NH3)2Cl(N3/N8-ethidium)]
+
 was shown to be 19° and 15° for the N8 and N3 linkage 

isomers, respectively. In contrast, the unwinding by trans-[Pt(NH3)2Cl(N8-ethidium)]
+
 was 

only 8°.[44] Complexes containing intercalators, such as cis-[Pt(NH3)2Cl(N3/N8-ethidium)]
+
 

[44], cis-[Pt(NH3)2Cl(N9-9-aminoacridine)]
+
 and cis-[Pt(NH3)2Cl(chloroquine)]

2+
 [47], form 

adducts on DNA that produce a situation analogous to monofunctional adducts of irradiated 4 

and 5, i. e., a binding mode compatible with both covalent guanine-N7 binding and 

intercalation/stacking of the planar ligand cis to the binding site. Coordination of 

trans-[Pt(NH3)2Cl(N8-ethidium)]
+
 to DNA positions the ethidium ligand trans to the covalent 

binding site and directed away from the double helix. In such a binding mode there is very 
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little contribution from ethidium intercalation to the duplex unwinding. These results and our 

findings are in accordance with the view that the intercalating moiety needs to be cis to the Pt-

N7 bond in order to effectively interact with the DNA base stack. The analogy between the 

above-mentioned cationic cis-complexes and irradiated 4 and 5 based on geometric 

considerations suggests that also monofunctional DNA adducts of the latter compounds may 

significantly contribute to the unwinding of supercoiled DNA. 

 

3.10. DNA interstrand cross-linking.  

 The results of previous work indicate that bifunctional platinum compounds form on 

DNA various types of intrastrand and interstrand cross-links. We also determined in the 

present work interstrand cross-linking frequency of irradiated 4 and 5 observed for the 

platination of natural, high-molecular mass DNA. In these experiments pUC19 plasmid 

(2,686 bp) was used, which was modified by UVA activated 4 or 5 after it had been linearized 

by EcoRI (EcoRI cuts only once within pUC19 plasmid). The sample was analyzed for the 

interstrand cross-links by agarose gel electrophoresis under denaturing conditions. In gel 

electrophoresis experiments under denaturing conditions, 3'-end labeled strands of linearized 

pUC19 plasmid containing no interstrand cross-links migrates as a 2,686-base single strand 

(ss), whereas the interstrand cross-linked strands (ICL) migrate more slowly as a higher 

molecular mass species. The bands corresponding to more slowly migrating interstrand-cross-

linked fragments were clearly noticed if UVA activated 4 or 5 was used to modify DNA 

fragment at rb as low as 1 x 10
-3

 (Figure 8). For comparative purposes, the bands 

corresponding to the modification by cisplatin at rb = 0.001 under identical conditions are also 

shown (Figure 8, lane CDDP). The intensity of the more slowly migrating band increased 

with the growing level of the modification by 4 or 5 with a concomitant decrease in the 

intensity of the band corresponding to the non-cross-linked single strand. The radioactivity 
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associated with the individual bands in each lane was measured to obtain estimates of the 

fraction of non-cross-linked and cross-linked DNA. The frequency of interstrand cross-links 

{the amount of interstrand cross-links per one molecule of 4 or 5 bound to DNA} was 

calculated using the Poisson distribution in combination with the rb values and the fragment 

size. [48] The results indicate that light activated 4 and 5 show a similar interstrand cross-

linking efficiency (6%) as cisplatin. [20]  

Figure 8 

4. Discussion 

To study the chemical and biological effects of a piperidine versus a pyridine ligand in 

trans-diazido Pt
IV

 complexes, trans,trans,trans-[Pt(N3)2(OH)2(NH3)(piperidine)] (5) was 

prepared. The negative octanol/water log P values determined for both 4 and 5 show the 

compounds to be overall hydrophilic, but 5 is noticeably less hydrophilic than 4. This 

difference might be expected to affect the biological properties of the compound (e.g., uptake 

and distribution in cells). 

 Both compounds have only weak antiproliferative activity in the dark but are 

selectively activated by either UVA or visible light to potent phototoxins. The UV-Vis 

spectrum of 5 shows a weak absorption at  = 420 nm, which corresponds to the HOMO → 

LUMO and HOMO–1 → LUMO transitions in the calculated electronic spectra. The singlet 

states accessible through UVA and visible light excitation have all dissociative nature and so 

has the lowest-lying triplet state. This is related to the contribution of the σ*-antibonding 

LUMO and LUMO+1 to all transitions. The population of such orbitals is likely to cause 

ligand dissociation processes.  

When activated by either UVA or white light, 4 and 5 show comparable 

antiproliferative activities across six cancer cell lines, indicating a relatively non-specific 

mechanism of action. In oxoplatin resistant cell lines, neither 4 nor 5 showed cross-resistance 

to oxoplatin (a pro-drug for cisplatin). This may be indicative of a different mechanism of 
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action for the trans-diazido complexes compared to cisplatin. So far no in vivo antitumor data 

for these complexes exist, but the positive results of the clonogenic assay indicate that this 

class of compounds may well have antitumor activity.  

Compared to cisplatin, 4 and 5 had a 10-20 fold lower potency to inhibit cell growth 

when the cells are incubated 6 h with the platinum complexes following light activation. 

While this is a drastic reduction in activity compared to cisplatin, the clinically used analog of 

cisplatin, carboplatin, also shows 10-fold greater IC50 values compare to cisplatin in our cell 

lines. [34] However, carboplatin shows reduced side-effects compared to cisplatin, making it 

a useful therapy for cancer. Thus, not the absolute potency is critical for anticancer activity 

but rather width of the therapeutic index, and light activated platinum complexes would be 

expected to have a wider therapeutic index than platinum complexes that are not selectively 

activated. 

One possible advantage of 5 over 4 could be that the former requires less irradiation to 

reach the same level of antiproliferative activity as the latter. This may be due to the lower 

hydrophilicity of 5 compared to 4, which might allow it to cross cell membranes more rapidly. 

However, Pt uptake studies showed that neither 4 nor 5 are taken up to any appreciable 

amount by cells in the dark. When both are UVA-activated, the rate of uptake of platinum by 

5637 cells is similar for 4 and 5. This indicates that the photolysis products are selectively 

taken accumulated by cells while the starting complexes are not. Cisplatin, in contrast, is 

taken up by cells in the dark to roughly the same levels as light-activated 4 and 5 after 6 h, but 

shows no signs of plateauing after this time as 4 and 5 did. Likewise, cisplatin showed no 

difference between antiproliferative potency in the dark or with UVA irraditation. 

 Like cisplatin both compounds are able to bind irreversibly to DNA after they are 

photoactivated. This finding suggests that DNA could be one of the targets for the cytotoxic 

activity, but does not rule out others. UVA irradiation of either 4 or 5 brings about a very 

rapid platination calf thymus DNA compared to cisplatin; i.e., cisplatin has a half-life of 
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binding of ca. 180 min, while for 4 and 5 the half-life of binding is less than 5 min. A fast 

binding mechanism was also described previously for 4 [3], suggesting a novel mechanism of 

binding Pt to DNA. Nevertheless, the addition of chloride to the DNA solutions prevented 

binding of Pt to DNA, providing evidence that, like cisplatin, Pt-aqua species are 

intermediates in the pathway to DNA platination. Moreover, both 4 and 5 showed a similar 

interstrand-cross-linking efficiency (ca. 5%) compared to cisplatin (ca. 6%), suggesting that 

the main interactions with DNA are either monofunctional adducts or intrastrand crosslinks. 

Interstrand crosslinks would be expected to displace ethidium bromide from its intercalation 

sites in B-DNA and indeed this is observed with both 4 and 5. The intrastrand crosslinks 

caused by cisplatin are known to result in the unwinding of super coiled, double stranded 

DNA, and indeed this was also observed to an even greater extent with both 4 and 5. Thus, the 

evidence on interactions with DNA strongly suggests that intrastrand crosslinks are important 

binding modes for both 4 and 5.  

 Nevertheless, the data for three oxoplatin resistant cell lines show no cross-resistance 

with 4 and 5, which is inconsistent with the Pt species arising from photolysis acting in a 

similar way to cisplatin. Alternative mechanisms of cytotoxicity could involve the release of 

highly reactive azide radicals, which could bring about lipid peroxidation of cell membranes, 

nitrenes or involve attack on proteins. Further data are needed to verify this idea. 

 In conclusion, by substituting the pyridine ligand with piperidine a photoactivatable 

Pt
IV

 diazide was obtained that is less hydrophilic and has a more rapid rate of light activation 

to cytotoxic species. However, in all other cellular and biochemical aspects (e.g., cellular 

uptake, kinetics of DNA platination, DNA crosslinks, DNA unwinding, ect.) the behavior of 

the piperidine complex is similar to that of the pyridine analogue. Thus, the steric bulk of the 

ligand, not the base strength, appears more important for activity of this new class of 

photoactivatable anticancer agents. 
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