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Abstract

M OST flows of practical importance are governed by viscous near-wall phenom-
ena leading to separation and subsequent transition to a turbulent state. This type

of problem currently poses one of the greatest challenges for computational methods
because its characteristics covers a wide range of physicalprocesses that often place
contradictory requirements on the numerics employed.

This thesis seeks to investigate the physics of complex, separated flows pertinent to
aeronautical engineering and to assess the performance of variants of the Implicit
Large-Eddy Simulation approach in predicting this type of problem realistically. For
this purpose, different numerical solution strategies based on high-resolution methods,
distinguished by their order of accuracy, are used in precursor simulations and one
selected approach is applied to a fully three-dimensional wing flow.

In order to isolate the development from laminar to turbulent flow after separation has
occurred, the prototype Taylor-Green Vortex is considered. Here, the behaviour of the
numerical schemes during the linear, non-linear and fully turbulent stages in the flow
evolution is tested for different grid sizes. It is found that the resolution power and
the likelihood of symmetry breaking is increasing with the order of accuracy of the
numerical method. These two properties allow the flow to develop more realistically
on coarse grids if higher order schemes are employed.

In the next step, flow separation from a gently curved surfaceis included. The fun-
damental study of a statistically two-dimensional channelflow with hill-type constric-
tions demonstrates the basic applicability of ILES to problems featuring massive sep-
aration. Without specific wall-treatment, high-resolution methods can improve predic-
tion of the detachment location when compared to classical Large-Eddy Simulations.

Finally, an ILES simulation of three-dimensional flow over aswept wing geometry at
moderate angle of incidence is presented. The results are inexcellent agreement with
experiment in the fully separated and turbulent region and they are more accurate than
a classical hybrid RANS/LES approach, using a grid twice the size, over the majority
of the wing. This outcome will probably settle the dispute that has erupted in the past
over the applicability of ILES to complex, wall-bounded flows.
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Introduction

THIS thesis is concerned with low-speed, separated flows of a turbulent nature.
Flow separation is one of the most heavily studied phenomenain fluid mechanics

because it is a major loss mechanism and thus usually undesirable in many engineering
applications. It is a highly non-linear and inherently unsteady process, most often
leading to zones dominated by turbulent, vortical structures. Therefore, the accurate
representation of turbulence plays an essential role in predicting separated flows and
the main focus of this work is to improve the understanding ofnumerical simulation
techniques for turbulent flows.

The existence of turbulence has been well-established for centuries. Not only since
Leonardo da Vinci’s famous study of water flow1 in 1510 A.D. has this subject at-
tracted a great deal of attention. Its ubiquitous characterand the importance to our
everyday lives led many artists, scientists, researchers or other curious minds to busy
themselves with one of the most forbidding and elusive topics in fluid mechanics. Tur-
bulence is notoriously difficult to measure in a natural environment or in a laboratory
experiment and, despite great efforts, a unified theory has yet to emerge. With the rapid
development of computer power, numerical simulations havegained significance and
are currently used as a tool to shed some light onto the unsolved mysteries of turbu-
lence. Although major improvements have been made in the past decades, adequate
simulations become prohibitively expensive with increasing Reynolds number and will
still be beyond the scope of possibility in the years to come.

This chapter will briefly illustrate the physics behind flow separation from solid walls,
as well as the omnipresent nature and the characteristic features of turbulence. More
details can be found in several excellent textbooks, e.g. Anderson [2], Davidson [21],
Pope [90], Tennekes and Lumley [113], that also inspired theschematic illustrations
presented here. Furthermore, an overview of state-of-the-art numerical techniques will
be given and their particular advantages and disadvantageswill be elucidated.

1 “The water forms whirling eddies, one part following the impetus of the chief current, and the
other following the incidental motion and return flow”, original in The Royal Collection.
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1.1 The Separation Process

Most flows of practical importance belong to the group of wall-bounded flows and can
be divided into internal and external flows. Internal, wall-bounded flows are confined
by one or more outer surfaces, such as a circular pipe or a plane channel, and external
flows are predominantly defined by one or more closed surfacesforming an obstacle
in an open stream, e.g. the flow around aircrafts and ships. The presence of a wall and
the associated boundary-layer have a severe impact on the fluid flow, regardless if it is
of internal or external type.

Viscosity. The flow of a fluid over a solid surface is dominated by viscosity and
the associated friction forces affect both the fluid in the vicinity of the surface and
the surface itself. The surface experiences a tangential force trying to drag it in the
down-stream direction and, vice versa, an equally strong force acts on the fluid trying
to decelerate it. This viscous shear force leads to a zero flowvelocity at the wall.

Pressure Gradient. In most aerodynamic problems in engineering the shape of the
body under consideration is aligned with the free-stream, e.g. a wing or a fuselage.
A close-up view of the surface reveals that it exhibits a convex curvature, hence the
static pressure is no longer constant in the streamwise direction as it rises due to the
conservation of total energy. This situation is sketched inFigure 1.1(a). At location
ℓ1, a typical velocity profile in the boundary layer of a viscous, wall-bounded flow
is shown. As the flow advances in the down-stream direction, it has to overcome an
adverse pressure gradient, i.e.p1 < p2 < p3. Consequently, kinetic energy has to be
transformed into internal energy and the flow near the surface is further retarded. In
addition to this retarding force, the viscous shear continuously slows the fluid down
as it progresses along the surface until, ultimately, the slope of the velocity profile
becomes zero, see locationℓ2. Under the perpetual influence of the adverse pressure
gradient the flow begins to reverse its direction and separates from the surface. This
phenomena is inherently unstable, hence no well-defined point of separation can be
accounted for. It results in a separation area with a down-stream recirculation zone, see
locationℓ3. The separation process largely depends on the character ofthe upstream
boundary layer, i.e. whether it is laminar or turbulent. A turbulent boundary layer
is less likely to separate compared to a laminar boundary layer because the agitated
motion normal to the surface feeds the fluid near the wall withkinetic energy, thus it
can overcome a higher pressure gradient.

Wake Region. Modelling of the separation process is not part of this thesis, how-
ever. The main focus is on predicting the recirculating flow after separation occurred.
Figure 1.1(b) shows experimental evidence for the existence of an unsteady free shear-
layer between the main-stream and the separated boundary layer. The shear-layer rolls
up into Kelvin-Helmholtz-type vortices that transfer momentum between the free-flow
and the recirculation zone. The instability of this unsteady system manifests itself in
the breakdown of the Kelvin-Helmholtz structures. Thus, a highly turbulent wake re-
gion dominated by small-scale dynamics of the developing secondary vortices can be
observed further down-stream.
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(a) Velocity profiles. (b) Separation from a convex surface.

Figure 1.1: Separation induced by an adverse pressure gradient along a curved surface
(Picture (b) from van Dyke [118]).

As mentioned above, the adequate numerical representationof the turbulent wake is of
prime importance to the current research. Not only is this a challenging problem for
any turbulence modelling effort, it is also of great interest in many practical applica-
tions. As illustrated in Figure 1.2, separated wakes are characteristic for aerofoils at
high incidence or the flow around bluff bodies. Bluff body flow is a very vague term
comprising any flow over sharp geometrical discontinuities, e.g. a backward facing
step, an apartment building, a weapons bay, etc. This definition already suggests the
existence of a broad spectrum of applications for numericalsimulation of separated,
turbulent flows. In order to underline the importance of turbulence, more examples are
presented in Section 1.2.
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(a) Aerofoil.

Flow separation Wake

(b) Bluff body.

Figure 1.2: Examples of separated flow.

1.2 The Nature of Turbulence

Almost all flows, natural or man-made, are turbulent and can be observed in our ev-
eryday surroundings. They are not restricted to a specific type of fluid or environment
and can appear in all sizes, extending from the minuscule scales to truly gigantic di-
mensions. Nevertheless, they all have certain unique features in common.

1.2.1 Turbulent Flows in Nature

Nature itself provides probably the most intriguing phenomena that motivate the cur-
rent interest. For instance, the flow of water around obstacles like rocks in a river or
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steps in the riverbed exhibits seemingly random, highly chaotic motions commonly
known as rapids or waterfalls, see Figure 1.3(a). Less obvious, often the more treach-
erous peril, however, lurks beneath the surface. Immenselyvast and powerful under-
water currents can be turbulent, with the Gulf Stream being one of its most prominent
representatives (Figure 1.3(b)).

(a) Rapids in a Welsh river. (b) Gulf Stream separating from the coast
of North Carolina, USA.

(c) Typhoons over the western
Pacific Ocean.

(d) Solar prominence with the Earth
shown for comparison.

Figure 1.3: Turbulence observed in nature (Photographs (b) – (d) from
http://www.nasa.gov).

Another example of meso-scale phenomena can be found in meteorology. Figure 1.3(c)
is an interesting illustration of the formation of tropicalstorms systems. It shows a
photograph of several typhoons spinning over the western Pacific Ocean that were
predicted to hit China and Japan in 2006. One of the most spectacular and at the same
time one of the largest manifestations of turbulence is at the origin of the Northern
Lights. Eruptive prominences extending a distance equivalent to several tens of Earth
diameters from the Sun eject solar mass, see Figure 1.3(d). This mass is transported
by the solar wind, eventually breaches the Earth’s magnetosphere and causes not only
the remarkable displays in the northern night skies, but canalso affect communications
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and navigations systems.

1.2.2 Turbulent Flows in Engineering Applications

Practically all flows of interest to engineers and scientists are turbulent and in many
engineering applications turbulence plays an important role in the planning, design and
manufacturing process.

(a) Trailing wake of a Boeing B-747.

(b) Wake of an automobile.

(c) Undercarriage of a train.

(d) Smoke from a chimney. (e) Spill from an oil-tanker.

Figure 1.4: Turbulence observed in engineering applications (Photograph (a) from
http://www.nasa.gov, Pictures (b) and (c) from Werle [125], Photograph (d) from
http://www.climatechangeinstitute.com, Picture (e) from van Dyke [118]).

For instance, the reduction of aerodynamic drag due to turbulence is a major concern
in the transport industry, be it for the manufacturers of aeroplanes, automobiles, trains
or ships, see Figures 1.4(a) – 1.4(c). The prospect of cutting operational costs and the
foreseeable shortage of natural resources also stimulate the current efforts to improve
the fuel efficiency of engines, a domain where detailed knowledge of turbulent mixing
of the fuel and gases is required. Apart from the economical consideration, an equally
important ecological aspect can be argued for: increasing the efficiency of the current
transport system is inevitably linked to lowering emissions. Thus, it lessens the impact
on the anthroposphere and aids preserving the environment.
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Turbulence has also a strong influence on the dispersion of air contaminants in urban
areas. A source of pollution, for example, is the smoke from achimney as shown in
Figure 1.4(d). Moreover, there are other severely hazardous possible scenarios caused
by the accidental or deliberate release of chemical or biological substances. Envi-
ronmental disasters and life threatening agents are propagated not only by means of
airflow: turbulent transport and turbulent mixing also occurs on the open sea. Photo-
graph 1.4(e) was taken in 1976 when the oil leaking from the grounded tank-shipArgo
Merchantendangered the surrounding marine life. Today, the effective containment
of the consequences of such catastrophes still poses a challenge and a solid grasp of
turbulence can be critical.

The list of examples is not exhaustive and could be extended further, also including
internal turbulent flows such as pipe flows or natural convection in buildings. In fact,
almost any engineering application concerned with fluid flows falls in this category
because turbulence is the rule, not the exception in fluid dynamics.

1.2.3 Characteristics of Turbulence

The range of applications presented in the previous sections seems overwhelming and
exposes one important fact. Turbulence is not coupled with aspecific fluid, but it
is a feature of fluid flow. Its dynamics is independent of the type of fluid and the
characteristics of turbulent flows are not affected by the molecular properties of the
liquid or gas under consideration. Thus, turbulent flow is anaspect of continuum
mechanics, more precisely fluid mechanics, and the common characteristics serve as
criteria for distinguishing between a laminar and a turbulent regime.

Experiment 1

Experiment 2

Time

V
el

oc
ity

Figure 1.5: Two typical velocity histories obtained under identical experimental conditions
(after Davidson [21]).

Randomness. No clear line can be drawn, however, because every turbulent flow
has, in addition to the common characteristics, certain unique characteristics associated
with its initial and boundary conditions. This point is illustrated in Figure 1.5, showing
a typical velocity measurement obtained in an experiment. Although the measurement
can be repeated under seemingly identical conditions, the velocity history does not
match the previous experiment because of minuscule variations during the execution.
Yet, both realisations exhibit a common feature: the time-averaged values of the signals
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acquired are identical. The random character of the unsteady, irregular motion in space
and time is probably the most cited attribute of turbulence.Its randomness is the reason
why much of the research has to rely on statistical methods and no general solution,
e.g. through a deterministic approach, can be found.

Vorticity and Dissipation . In addition to the chaotic motions, organised motions
occur at random locations and different points in time. These well-defined regions of
strong coherent structures are rotational and offer a high level of fluctuating vorticity.
Therefore, vortex dynamics, an inherently three-dimensional phenomenon, plays an
important role in the investigation and prediction of turbulent flows. The large vortices
are continually forming and breaking down into smaller ones, which break down into
yet smaller vortices until they dissipate into heat. This process is depicted in Figure
1.6(a) and the associated energy spectrum is shown in Figure1.6(b). All turbulent flows
are essentially dissipative and transfer energy over a broad range of scales, i.e. from
the large eddies to the small eddies. Hence, the large vortices need a continuous supply
of energy from the surrounding fluid or they will simply decay.
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Heat

(a) Transfer of kinetic energy in physical
space.

Large scales

Small
scalesK

in
et
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en
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gy

Wavenumber

Energy transfer

Heat

(b) Logarithmic scale of the kinetic
energy distribution in spectral space.

Figure 1.6: Schematic representation of the energy transfer from largeto small scales
(after Davidson [21]).

Diffusivity and Mixing . Another aspect is directly related to the agitation induced
by the various scales observed in turbulent flows: the transport of mass, momentum and
energy is greatly enhanced due to convective effects. Consequently, the surrounding
fluid will be entrained and the velocity fluctuations spread in space. This is the basis
of the large mixing capacity and rapid dispersion in turbulent flows.

Determinism. Turbulence is often referred to as the most complex problemre-
maining in classical physics and despite decades of research the prospect of a general
solution still seems distant, if not impossible. The difficulty lies in the interference
of high-level random background motions with the unsteady coherent structures. This
combination leads to inherently non-linear and non-equilibrium phenomena that can-
not be tackled by currently available analytical methods. Hence, a simplified view
of the problem has emerged, decomposing the flow-field into mean velocity and fluc-
tuating velocity. This concept has been proven useful in developing theoretical and
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numerical models, but it should be noted that it is by no meansan exact representation
of reality.

1.2.4 Scales of Turbulence

As discussed above, turbulent flow is characterised by a distribution of coherent vorti-
cal structures of various sizes and the vortex dynamics associated with the respective
scales of the eddies. Assuming turbulence is composed of eddies of different sizes, the
physical behaviour illustrated in Figure 1.6 can be described byRichardson’s hypoth-
esisof an energy cascade, see Richardson [95]. Although the concept of an energy
cascade cannot be formally proven, it is a self-consistent theory that has been verified
by numerous experimental investigations.

Richardson’s Hypothesis. From Richardson’s point of view, the velocity and the
size of the largest eddies present in the flow are comparable to the global scales of
the mean flow. The Reynolds number for the largest scales is therefore comparable
to the global Reynolds number, i.e.Re >> 1, and viscous forces have a negligible
effect. The large eddies are generally anisotropic and their shape is dependent on the
boundary conditions. Since the surrounding fluid constantly feeds energy to the large
scales and no dissipation can take place here because of the high Reynolds number,
the energy must be transferred to a smaller scale. The rate ofenergy transfer and
thus the rate of energy production can be estimated on the grounds of dimensional
arguments. The energy contained in the large scale is of order u2 and the lifespan can
be expected to be of the order of one eddy turnover timeτ = ℓ/u, whereu andℓ are
the characteristic velocity- and length-scale of the eddy,respectively. Consequently,
the rate at which energy is passed on to the smaller scales canbe assumed to be of the
orderu2/τ = u3/ℓ. This energy transfer is often illustrated in physical space as eddy
break-up, where the inherently unstable coherent structures deform and evolve into
eddies of smaller size, see Figure 1.6(a). The smaller eddies pass through the same
process again and the energy is transferred to progressively smaller and smaller scales
— hence the name energy cascade. The cascade is driven purelyby inertial forces until
the Reynolds number becomes sufficiently small for viscous effects to interfere. At a
Reynolds number of order unity, the molecular viscosity takes an active part and the
kinetic energy is dissipated. As the intermediate scales ofthe flow only forward kinetic
energy, dissipation occurs only at the smallest scale at a rate ǫ dictated by the energy
production at the largest scale, i.e.ǫ is independent of the molecular viscosity and is
of orderu3/ℓ.

Kolmogorov’s Hypotheses. In order to obtain a more quantitative picture, the idea
of an energy cascade has been developed further by Kolmogorov [64]. The assump-
tions on the physical behaviour of the eddies made inKolmogorov’s hypotheses2 pro-
vide the framework for assessing the energy transfer rate and the scales involved in
high Reynolds number, turbulent flows.

2“At sufficiently high Reynolds numbers there is a range of high wavenumbers where the turbulence
is statistically in equilibrium and uniquely determined ... this state of equilibrium is universal.”
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Kolmogorov stated that the anisotropy, induced on the largescales by the boundary
conditions, is gradually lost as the energy is transferred to progressively smaller eddies.
The flow eventually becomes locally isotropic for the smallest scales of motion away
from the boundaries and flow singularities; thus the small eddies have a statistically
universal character common to all turbulent flows. The statistics mainly depend on
the energy budget composed of the energy flux from the larger scales and viscous
dissipation. Provided the small scales have a relatively short lifespan compared to the
global time-scale, they are able to adapt quickly to the amount of energy received from
the larger eddies and a dynamically balanced budget can be maintained.

As a consequence, the energy transfer rate is approximatelyequal to the heat dissipa-
tion rateǫ and the viscous dissipation can be determined using the molecular viscosity
ν. These are the two dominant parameters characterising the smallest scales in the flow,
also known as the Kolmogorov scales. Dimensional reasoningleads to the following
estimates for the Kolmogorov length-, velocity- and time-scales

η ∼ (ν3/ǫ)1/4 ,

uη ∼ (νǫ)1/4 ,

τη ∼ (ν/ǫ)1/2 .

The consistency of these relations with Richardson’s Hypothesis can be verified by
forming the Reynolds number based on the Kolmogorov scales.According to Richard-
son dissipation takes place only at the smallest scales, hence Reη has to be of order
unity because the molecular viscosity plays an active part in the physical process in-
volved and the inertial forces no longer prevail.

The Kolmogorov scales can now be related to the largest scales present in the flow by
recalling the scaling law for the viscous dissipation, i.e.ǫ ∼ u3/ℓ, yielding

η/ℓ ∼ Re−3/4 ,

uη/u ∼ Re−1/4 ,

τη/τ ∼ Re−1/2 ,

whereRe is the flow Reynolds number. Since these ratios are always less than 1 for
practical, turbulent flows, the velocity- and time-scales of the smallest eddies are al-
ways small compared to the corresponding scales of the largest eddies, as stated a
priori.

Furthermore, the disparity between the largest and the smallest scales becomes more
and more significant with increasing Reynolds number. As a consequence, there is a
range of length-scales that are both small compared toℓ and large compared toη. In
this range the Reynolds number is sufficiently high that viscous effects can be neglected
and the eddies only transfer energy from the larger to the smaller scales. Therefore, the
statistics in this region are governed by a single parameteronly, the dissipation rateǫ,
and no universal length-, velocity- or time-scales can be formed. It is often convenient,
however, to characterise the intermediate range by defininga length-scale that is much
smaller then theℓ and much larger thanη. This length-scale, commonly known as
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theTaylor micro-scale, describes the mean spatial extent of the velocity gradients and
is not related to any scales where dissipation takes an active part. Analysis of the
energy budget composed of the energy transfer rate from the anisotropic, large scales
and the viscous dissipation rate at the isotropic, small scales confirms that the Taylor
micro-scale is indeed an intermediate length-scale given by

λT/ℓ ∼ Re−1/2 ,

λT/η ∼ Re1/4 .

According to the idea of the energy cascade the energy flux hasto remain constant
over the range of intermediate length-scales because no energy is added by the mean
flow and no energy is lost through viscous dissipation. The energy transfer rate for any
given eddy-size is determined by the ratio of its characteristic velocity squared to its
characteristic length, hence the velocity-scale, as well as the time-scale, decreases for
progressively smaller length-scales.

Energy Spectrum. The distribution of kinetic energy over the scales observed in
turbulent flows is usually described in spectral space. Here, the different length-scales
are represented by their reciprocal value, the wavenumberk, and the velocity field is
decomposed into a Fourier series. The energy contained in a specific length-scale in
Fourier space,E(k), is simply the product of the corresponding velocity,u(k), with its
complex conjugate. For this reason, the spectral analysis gives a clear picture of the
distribution of energy over the whole range of length-scales.

In the kinetic energy spectrum, two main categories can be distinguished: the energy-
containing range comprising the anisotropic large-scales(small wavenumbers) carry-
ing most of the energy and responsible for the energy production process; and the
universal equilibrium range containing the isotropic small-scales (higher wavenum-
bers). More precisely, the equilibrium range is subdividedinto the dissipation range
at the lower end of the scale (highest wavenumbers) where theKolmogorov scales
are located and essentially all of the viscous dissipation occurs; and the inertial sub-
range where neither production or dissipation of energy play an important role and the
motions are dominated by inertial forces.

Figure 1.7 shows a schematic of a typical kinetic energy spectrum for turbulent flows,
note that a logarithmic scaling has been employed. In the energy-containing range,
turbulence accumulates kinetic energy at the very largest scales until the spectrum
peaks at a characteristic length-scale of approximately the integral scaleℓ, a measure
of the longest connection between two correlated velocities at different points in the
flow. After the peak, the energy is then passed on to successively smaller scales by the
cascading process. The shape of the spectrum in the production range is determined
by the energy flux from mean to turbulent flow, i.e. the work of deformation of the
mean motion by the turbulence shear stresses, and the energytransfer from large to
smaller scales, i.e. the dissipation through the turbulentmotion. Thus, the significant
parameters here are the diffusivity of the mean flow, characterised by the strain rateS,
and the dissipation rateǫ. This definition of the energy production at the largest scales
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Figure 1.7: Schematic of a typical turbulent kinetic energy spectrum for turbulent flows
plotted with logarithmic scales.

is not unique, however, because it highly depends on the properties of the mean motion
and the boundary conditions.

This situation does not improve for the smallest eddies. It is known that the dynam-
ics at the highest wavenumbers are governed by the amount of energy received from
the larger scales and viscous dissipation. Since the energytransfer rate is equal to the
dissipation rateǫ, the dominant parameters in the dissipation range areǫ and the kine-
matic viscosityν. Hence, the energy spectrum at the Kolmogorov scales is inescapably
coupled with the characteristics of the fluid.

In between the energy-containing and the dissipation rangelies the inertial subrange.
Here, in agreement with the concept of an energy cascade, thekinetic energy is trans-
ferred to progressively smaller scales. The extent of this range depends on the flow
as it becomes greater or smaller with increasing or decreasing flow Reynolds number,
respectively. However, the single important parameter determining the statistics within
the inertial subrange, the energy flux from large to small scales, is flow independent.
Kolmogorov realised the consequences and used dimensionalarguments to derive an
analytical form for the energy spectrum in the inertial subrange given by

E(k) = Cǫ2/3k−5/3 ,

whereC is a universal constant. This general power-law spectrum postulated by Kol-
mogorov has been confirmed by numerous experimental and numerical investigations
and is considered a cornerstone in the analysis of turbulentflows.

The relations presented here strictly hold only for homogeneous, isotropic and statis-
tically steady flows. However, it has been found that the estimates can still be applied
even if the flow does deviate from its ideal state.
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1.3 Numerical Approaches

Although many experimental and theoretical studies in the past decades have signifi-
cantly increased the current physical understanding, simulations fail to accurately and
reliably predict turbulent flows in many cases. The absence of a closed theory and a
universal turbulence model, which are unlikely to emerge inthe near future, seriously
limits the technological progress of aircraft and car design, turbo-machinery and com-
bustors as well as the prediction of environmental and biological flows. Thus, the mod-
elling techniques and the underlying understanding of the physics of turbulent motion
still have to be improved considerably. In the context of Computational Fluid Dynam-
ics (CFD), there are generally three classic techniques: the Direct Numerical Simu-
lation (DNS), the Reynolds-Averaged Numerical Simulation(RANS) and the Large-
Eddy Simulation (LES). The applicability of these standardnumerical approaches to
separated, turbulent flows, as well as their general advantages and disadvantages, will
be briefly discussed in this section. Additionally, the Implicit Large-Eddy Simulation
(ILES) approach employed in this thesis will be introduced.

1.3.1 Direct Numerical Simulation (DNS)

The DNS approach provides a complete time-dependent solution for turbulent flows.
It is conceptually the simplest of the three and provides superior accuracy because all
scales of motion and time are resolved, given it is free of significant numerical or other
errors. In order to represent all scales numerically, the discretisation of the governing
equations has to be at least as fine as the exact solution. As a result, the step-size of the
discretised problem in time and space must be smaller than the characteristic time and
the characteristic length of the smallest eddies present inthe flow. Additionally, the
duration of the simulation and the size of the computationaldomain are determined by
the characteristic time and the characteristic length of the largest, energy-containing
eddies, which can differ substantially from the size of the time- and space-step. Since
the range of scales observed in turbulent flows increases with progressively higher
Reynolds number, it usually spans over several orders of magnitude — hence the res-
olution criterion limits the applicability of DNS to low Reynolds number, turbulent
flows.

The number of points required for a numerical simulation depends on the spatial res-
olution and the size of the flow field. In case of DNS, every scale has to be resolved,
hence the distance between the sampling points cannot exceed the Kolmogorov scale;
and the computational domain should ideally have an extent of several times the char-
acteristic length of the largest eddies present in the flow. Aconservative estimate for
the number of grid points in one dimension for homogeneous turbulence can there-
fore be deduced from Kolmogorov’s hypotheses, stating thatthe ratio of large to small
length-scale is approximately proportional toRe3/4. Turbulent flows are inherently
three-dimensional, thus the number of grid points requiredfor a for a fully three-
dimensional DNS scales withRe9/4. Additionally, for estimating the total computa-
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tional cost, the duration of the simulation must be taken into account. It should be pro-
portional to the integral time-scale of the flow, but at the same time the step-size is lim-
ited by the need to resolve the short lifespan of the smallesteddies and numerical sta-
bility criteria. Numerical stability strongly depends on the choice of time-advancement
method. For the sake of simplicity, however, the fluid is assumed to be able to move
the distance of one grid spacing per time step without violating the stability constraint.
It can be shown that the above conditions lead to a minimum number of time steps
of the order ofRe3/4. Since the total number of operations required for a simulation
is proportional to the product of number of grid points and number of time-steps, the
total cost of the DNS scales asRe3. This estimate underlines the limitations of DNS
due to a very rapid increases of its computational cost with the Reynolds number .

For wall-bounded flows, the dependence of the simulation cost on the Reynolds num-
ber is even stronger because of the stricter scaling laws in the near-wall region. Moin
and Kim [83] estimated that a DNS of a transport aeroplane cruising at 250m/s at an
altitude of 10, 000 meters would require approximately 1016 grid points to adequately
resolve every length-scale. Based on exclusive access to one of today’s fastest super-
computers capable of 100 teraflops, it would take several decades to compute the flow
for only one second of flight time, which clearly exceeds any acceptable time limit. In
typical practical problems, however, engineers and designers are rather interested in
the effects of turbulence on the properties of the mean flow, not so much the dynamics
of the smallest eddies. Therefore, it is common practice to significantly relax the res-
olution requirements of numerical simulations by resolving only the larger scales and
introducing the effects of the smaller scales by additional models. This approach leads
to the two main techniques that are able to predict turbulentflows at higher Reynolds
number: Reynolds-Averaged Numerical Simulations and Large-Eddy Simulations.

1.3.2 Reynolds-Averaged Numerical Simulation (RANS)

The most common approach to calculate a problem in engineering is the Reynolds-
Averaged Numerical Simulation. Reynolds averaging is based on the idea of decom-
posing the exact solution of the flow into a statistical average and a fluctuating turbulent
component. The averaging procedure cannot be uniquely defined because it depends
on the type of problem, e.g. it could be a time average for a statistically steady flow,
a spatial average for essentially two-dimensional flows, oran ensemble average for a
family of similar flows.

In case of engineering applications, the controlled conditions such as inlet conditions
in internal flows or free-stream conditions in external flowsrarely change in time, thus
time-averaging is preferred. Here, the resolved mean flow can be considered free of
fluctuations and all the unsteadiness is contained in the unresolved turbulent scales that
need to be modelled. Modelling is necessary because the averaging procedure intro-
duces additional unknown terms in the governing equations that cannot be computed
exactly from the mean flow variables. As a result, the averaged equations are always
complemented by additional turbulence models that mimic the effects of the unsteady
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motions. Since RANS requires the least possible amount of resources it gained enor-
mous popularity in steady-state computations where the turbulence is stationary, e.g.
see Leschziner [67], Mallinger and Drikakis [75].

In unsteady flows, a time-scale associated with the organised unsteady motion exists
and must be well separated from the time-scale of turbulent motion. Here, the exact
solution can be seen as the sum of three contributing terms: the time average, the
conditional average of the coherent motion and the random fluctuation due to turbulent
motion. However, very few unsteady flows are guaranteed to exhibit deterministic low-
frequency motions that can, for example, be enforced externally through periodically
changing inflow or free-stream conditions. If applicable, the conditional average in
Unsteady Reynolds-Averaged Numerical Simulations (URANS) is therefore usually
interpreted as a phase-averaged solution and the closure models are formally identical
to the ones in steady-state computations.

The function of turbulence modelling in RANS is to devise approximations for the
unknown correlations between mean flow and fluctuating component, the so-called
Reynolds stresses, in order to close the system. The closurerelations are based on
combinations of known or determinable geometric parameters, flow scales and strains.
However, these quantities are not able to completely represent the complex physical
structures and interactions inherent to turbulent flows; hence it seems unlikely that any
single model will successfully predict all types of turbulent flows with any degree of
certainty. For this reason, numerous turbulence models have been developed over the
past decades, all introducing a number of unknown coefficients. In order to adjust
the models to particular flows, the unknowns are usually determined empirically by
calibration against existing experimental and DNS data.

In recent reviews by Leschziner [67], Mallinger and Drikakis [75], the performance of
several turbulence models, spanning from one- and two-equation linear eddy-viscosity
models to more advanced non-linear eddy-viscosity and Reynolds-stress models, was
discussed. Although the linear eddy-viscosity models often fail to adequately predict
complex flows featuring separation, free shear layers and vortical flows, they are most
commonly employed due to their relatively simple and robustcharacter. More gener-
ally, despite extensive research in the area of turbulence modelling, currently available
methods are still unreliable when applied without careful,problem-specific calibration
prior to the simulation. Therefore, all existing turbulence models should be regarded
as more or less sensible approximations of reality rather than scientific laws. The inca-
pability of RANS to consistently produce successful simulations of turbulent flows is
the reason for a reorientation of the current research focusto a more rigorous approach
that became feasible with the ever-increasing computing power observed over the past
years: Large-Eddy Simulations.
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1.3.3 Large-Eddy Simulation (LES)

The development of Large-Eddy Simulations is motivated by the limited applicability
of DNS and RANS to turbulent flows and it can be regarded as an intermediate be-
tween both approaches with respect to accuracy and computational cost. In contrast
to RANS, classical Large-Eddy Simulations model only the small-scale turbulent mo-
tions whereas the larger turbulent structures are directlyresolved. Since the smaller
structures are only slightly affected by the boundary conditions, they exhibit a more
common character for different types of flows. Thus, the models employed in LES
tend to be more universal and require fewer adjustments to the specific flow compared
to a similar RANS model. On the one hand, the LES strategy provides superior accu-
racy, on the other hand, however, higher precision also comes at a higher computational
cost than RANS.

Similar to the Direct Numerical Simulations, Large-Eddy Simulations provide a fully
three-dimensional, time-dependent solution. As demonstrated previously, the grid re-
quirements for DNS strongly depend on the smallest scales present in the flow, but
most of the turbulent kinetic energy is contained in the larger structures. Therefore,
while computing the large-scale dynamics of the flow directly, LES significantly re-
duces the total computing time by modelling the less energetic, but computationally
demanding, small scales. It is possible now to calculate more complex turbulent flow
scenarios that are forbiddingly expensive for direct simulations without having to take
a drastic accuracy penalty. Ideally, the computational cost of LES is independent of
the Reynolds number, given that the reference length distinguishing the resolved, large
scales from the modelled, small scales lies in the inertial sub-range and that no solid
walls are present.

Formally, in classical LES the governing equations are filtered by convolving all de-
pendent variables with a predefined filter. The filtering operation decomposes the flow
field into the sum of a filtered, resolved component and a residual, subgrid-scale com-
ponent. The spatial and temporal evolution of the filtered component representing the
large scales is fully described by the filtered equations, and the unknown subgrid scale
(SGS) stress tensor arising from the unresolved residual motions needs to be mod-
elled. This system is commonly closed by more or less sophisticated SGS models that
are primarily concerned with reflecting the dissipation of energy cascading down from
the larger scales in a statistical sense.

When deriving the classical LES equations, it was implicitly assumed that differentia-
tion commutes with the convolution, see Fureby and Tabor [38], Ghosal and Moin [41].
However, this is not valid at solid boundaries and for a variable filter kernel. The for-
mer requires reality to be modelled in a finite domain, which introduces commutation
errors in the spatial derivatives. If the finite domain changes in time, additional errors in
the temporal derivatives arise. A variable filter kernel could solve the problems at solid
boundaries by reducing the filter width in order to resolve the small scales. This pro-
cedure violates the above commutation assumption and introduces new errors, which
can be removed by correction terms. Yet, there are no available methods to tackle the



16 Introduction

correction terms and thus previous work, e.g. by Van der Ven [117], Vasilyev et al.
[121], has been aiming at filters that can eliminate these terms.

Furthermore, like in all numerical approaches, errors in classical LES arise from the
approximation of the variables on a finite basis and numerical discretisation. For dis-
cretising the governing equations, the differentiation operators are substituted by nu-
merical approximations, which lead to dissipation and dispersion terms, see truncation
error analysis in Anderson [3]. The dissipation terms are responsible for the numer-
ical diffusion, especially near discontinuities, whereas the dispersion terms produce
oscillations near discontinuities. Drawbacks of conventional LES also arise from SGS
modelling, the possible masking of the SGS terms by the leading order truncation er-
ror and the difficulties in devising SGS models for complex high Reynolds number
wall-bounded flows.

1.3.4 Implicit Large-Eddy Simulation (ILES)

The Implicit Large-Eddy Simulation approach is based on a similar scale selection
than classical LES. Here, however, it is assumed that the numerical discretisation on
a computational grid implicitly separates large and small scales. Thus, no explicit
filtering is necessary and the subgrid scale stress tensor found for classical Large-
Eddy Simulation is absent in ILES. Yet, the unresolved motions need to be accounted
for by the numerical method. This is generally achieved through adaptive, non-linear
regularisation of the solution to the governing conservation laws. More details on
Implicit Large-Eddy Simulation and the basic principles ofthe numerical methods
employed here will be given in Chapter 2.

1.4 Objectives and Outline

This thesis aims at assessing the performance of high-resolution methods in predicting
low-speed, separated turbulent flows in a physically realistic manner even if they are
not fully resolved on the computational mesh. The numericalframework for this study
is provided by the Implicit Large-Eddy Simulation approach.

Separated flows are inherently linked to the transition fromwell-organised flow regions
to highly disorganised unsteady flow regions known as turbulence. From an engineer-
ing point of view, the accurate and efficient prediction of shear layers and jets, vortex
shedding, unsteady wakes and unsteady shock/boundary layer interactions amongst
others is of primary technological importance. Traditionally, experimental work dom-
inated the research in this area because it was the only approach capable of dealing
with the complexity of such flows. However, the tools for quantitative measurements
are limited and until recently most of the analysis was basedon qualitative arguments.
Additionally, theoretical models complemented the experimental results for idealised
flows.
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With the advent of high performance computing facilities and the progress in micro-
processor technology, computational fluid dynamics becamea viable alternative to
experiments. However, despite the rapid advancements madein these areas, CFD is
still far from being able to fully resolve separated turbulent flows to date and this will
not change in the foreseeable future. Thus, the governing equations need to be supple-
mented explicitly or implicitly by numerical models or mechanisms that emulate the
effects of the unresolved scales. Because of the complex physics involved, no universal
model has been found yet and, as with the experimental tools,the numerical tools need
further improvement.

The main aspect of this thesis is to investigate different solution strategies for the gov-
erning equations based on high-resolution methods. This class of numerical schemes
provides built-in subgrid scale models that may offer a better approach than explicit
treatments. The success of high-resolution methods to compute turbulent flows seems
to depend on a delicate balance of truncation errors due to wave-speed-dependent terms
(chiefly responsible for numerical dissipation) in the caseof Godunov-type methods
and hyperbolic part of the flux. In the context of high-fidelity ILES, it is essential to
improve the current understanding of the mechanisms that safeguard the simulation
against catastrophic failure by triggering entropy production when the need arises.

The thesis is organised as follows:

Chapter 2. The concept of high-resolution methods is presented and a rationale for
the Implicit Large-Eddy Simulation approach is given.

Chapter 3. The three-dimensional Navier-Stokes Equations are introduced and the
numerical solution procedure is presented.

Chapter 4. In this chapter, the behaviour of different high-resolution methods is as-
sessed in the context of transition to turbulence for the generic Taylor-Green Vortex.

Chapter 5. The capability of high-resolution methods to predict separation from gen-
tly curved surfaces are discussed in this chapter. The test case considered here is a
channel with hill-type constriction, a classic case for wall-bounded flows.

Chapter 6. Results from a fully three-dimensional simulation featuring leading edge
separation on a swept wing are shown and compared against experimental and avail-
able LES data.

Chapter 7. A summary of the thesis is presented, conclusions are drawn and recom-
mendations for the future work are made.

In addition, details related to the numerical scheme, complementary material to the
results presented and a list of publications to date are included in the appendices.
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C H A P T E R 2

High Resolution Methods and Implicit
Large-Eddy Simulations

I N recent years, the focus in turbulent flow simulations has become the fidelity and
the robustness of the computations. Physically meaningfulresults should be ob-

tained within an adequate accuracy relative to the computational resources utilised. A
further desire is the applicability of the numerical methodto a broad range of prob-
lems. This implies that the method should behave smoothly even if the expected ac-
curacy cannot be met, thus it should still produce reasonable results and not fail catas-
trophically. One way to achieve these goals is the use of high-resolution methods in
Large-Eddy Simulations of turbulent flows.

2.1 A Glimpse into History

A previous study by Drikakis and Durst [26] shows a dependency of the numerical
accuracy not only on the turbulence model employed, but alsoon the discretisation
of the advective terms in the governing equations. In fact, the first awareness of a
coupling between the numerical properties of high-resolution methods and an intrinsic
subgrid turbulence model has been expressed almost two decades ago by Youngs [128]
1 and Boris [9]2. Since then, more evidence that the use of high-resolution methods
in LES offers characteristics that mimic the effects of finite viscosity and appear to
achieve many of the SGS properties has emerged.

Porter et al. [91] have been among the first to utilise this attribute of the numerical
schemes in simulations of compressible isotropic turbulence. The motivation behind
this investigation stems from an astrophysical background: this problem can be seen as
a simplified description of the formation of stars from denseclouds of interstellar gas.
Here, the performance of high-resolution methods has been compared against pseudo-
spectral computations and the flow field has been interpretedin terms of the evolution

1“... the method ... introduces non-linear numerical diffusion into the calculation which plays a
similar role to the subgrid eddy viscosity used in large eddysimulation of turbulent flow.”

2“It is my experience that nonlinear monotone CFD algorithmsreally have a built-in filter, and a
corresponding built-in SGS model.”
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of coherent structures. Additionally, spectral and statistical data has been extracted and
analysed. More information can be found in Porter et al. [92,93].

In a similar fashion, the classical case of incompressible decaying homogeneous turbu-
lence has been studied, e.g. by Margolin et al. [78]. The sameauthors also applied this
approach to geophysical flows. Margolin et al. [77] have shown comparisons between
simulations with and without explicit SGS model for an atmospheric boundary layer.
The results revealed that the numerical method employed is able to adapt itself to the
local conditions — thereby the numerics implicitly ensure that both solutions are in
agreement with benchmark simulations. These studies have been pursued further and
the range of test cases has been extended by Smolarkiewicz and Margolin [106] to the
convective planetary boundary layer over a hill and by Smolarkiewicz and Prusa [107]
to gravity wave induced turbulence.

Early computations by Youngs [129] have demonstrated that this particular family of
schemes is also applicable to the growth of instabilities and turbulent mixing observed
in the Rayleigh-Taylor problem. The Rayleigh-Taylor instability occurs when the in-
terface between two fluids of different density is subject to an increasing pressure in
direction of the lighter fluid. The simulations produce excellent data when compared to
experiments. This result could be confirmed later for the Richtmyer-Meshkov problem,
see Youngs [130]. Here, the instability growth is triggeredby a shock wave passing
through the interface as opposed to the existing pressure gradient in Rayleigh-Taylor.

Further evidence has been compiled by Boris et al. [10]. Thisgroup of researchers
initially focused on the transition from laminar initial conditions to turbulence and the
vortex dynamics observed in free shear flows. Key papers hereare concerned with the
development of mixing layers, Grinstein et al. [50], coherent structures and turbulent
features in free jets, Grinstein and DeVore [47], and chemically reacting flow, Grinstein
and Kailasanath [49]. More recently, wall-bounded problems pertinent to practical
engineering flows have been considered. The results from simulations performed by
Drikakis [25], Fureby and Grinstein [37], Grinstein and Fureby [48] for an open cavity,
plane channel and backward facing step, respectively, havebeen encouraging and the
prospects for the future are promising, albeit these studies have been limited to simple
geometries.

All the above investigations prove the applicability and effectiveness of high-resolution
methods for a broad range of turbulent flow problems. In addition to the overwhelm-
ing computational evidence, rigorous analytical justifications of the similarity between
the effects of this class of numerical schemes and the properties ofexplicit SGS mod-
els have been attempted, e.g. see the works of Drikakis and Rider [27], Fureby and
Grinstein [36], Margolin and Rider [76].

This new insight into the numerical algorithms led to the following question: When
high-resolution methods are employed for solving the governing equations of fluid dy-
namics, are the physical effects of subgrid scale motions in turbulent flows embedded
in the numerical mechanisms involved? As a consequence, theidea to use these meth-
ods as an implicit way to numerically model complex turbulent flows, e.g. flows dom-
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inated by massive separation and vorticity leading to turbulence, flows featuring shock
waves and turbulence, and the mixing of materials, was born.This is an evolving area
of research referred to as Implicit Large-Eddy Simulation (ILES) or Monotonically
Integrated LES (MILES), for a recent review see also Grinstein et al. [51]. The suc-
cess of high-resolution methods to compute such flows that are extremely difficult to
practically obtain stably and accurately in spatially under-resolved conditions seems to
depend on: (i) the discretisation of the governing equations in the framework of a finite
volume algorithm and (ii) the fundamentally non-linear nature of the non-oscillatory
approximations in high-resolution methods which are able to adapt themselves to the
local solution.

In order to establish a better understanding of the physicalrelevance of the discreti-
sation method and the numerical solution approach in ILES tothe effects of the SGS
motions and their modelling, the concepts of finite volumes and high-resolution meth-
ods will be introduced in the following sections.

2.2 The Concept of Finite Volumes

Finite volume methods are a class of discretisation schemesthat have proven highly
successful in approximating the solution of a wide variety of partial differential sys-
tems, especially in the area of fluid mechanics, e.g. see Ferziger and Perić [34], Lomax
et al. [72]. The underlying concept is to divide the domain ofinterest into a finite num-
ber of control volumes and to successively solve the governing equations for each
element. Faces common to two control volumes separate one from the other, thereby
forming seamless connections throughout the domain. In contrast to finite difference
methods, the elements can be of arbitrary shape, polyhedralin three dimensions or
polygonal in two dimensions, thus finite volumes are naturally suited for unstructured
grids and complex geometries.

N
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xi−1/2 xi+1/2

y j−1/2

y j+1/2

Figure 2.1: Control volume in the context of a finite volume algorithm.

Figure 2.1 illustrates a control volume in two dimensions, for the sake of simplicity a



22 High Resolution Methods and Implicit Large-Eddy Simulations

three-dimensional schematic has been omitted. The controlvolume in two dimensions
is bounded by the four grid lines North (yj+1/2), South (yj−1/2), East (xi+1/2) and West
(xi−1/2), or, accordingly, six faces in three dimensions. The variables of interest are
calculated for the computational nodePi, j, located at the centre of the volume, whereas
the computational grid points are stored at the intersections of two bounding lines in
two dimensions, see filled circles in Figure 2.1, or the intersections of three bounding
surfaces in three dimensions.

In fluid dynamics, the governing equations are applied in their conservative, integral
form. This form has several advantages over a non-conservative, differential formula-
tion. For example it allows for discontinuities within the control volumes and facili-
tates the numerical calculation of the variables across shock waves. Since the physical
laws obey the basic principle of conservation, the rate of change of a property inside
the control volume has to be equal to the net flux across the boundary of the element
due to convection or dissipation and the effects of external forces such as pressure or
gravitation. In order to satisfy this condition in a discrete sense, the values at the cen-
tre of the control volume represent the volumetric average of the flow properties in the
element and the fluxes are numerically integrated over the bounding faces. The fluxes
and force effects entering a control volume through one face are theoretically identical
to those leaving the adjacent element — hence the discretisation is conservative by
construction and no further conditioning is necessary.

The numerical evaluation of the fluxes requires an approximation of the variables at
the boundaries of the control volume. This reconstruction step utilises the information
stored at the cell-centred pointsPi, j to generate a piecewise approximation of the flow
properties inside the element. As a result of this approximation, the two fluxes over one
face as calculated by the adjacent volumes are generally notidentical and some strategy
has to be applied to model this discontinuity. A straightforward procedure would be
to simply take the arithmetic average of the two fluxes. However, this idea neglects
the need for numerical dissipation to stabilise the solution and more models would be
required. Another possible approach to this problem is to incorporate the physics of
jump discontinuities into the solution process, e.g. through the use of high-resolution
methods.

2.3 High-Resolution Methods

Modern high-resolution methods emerged from the search fora new family of numer-
ical schemes that meet two seemingly contradictory targets: the desire for a highly
accurate simulation and the preservation of monotonicity,a basic property of the exact
solution. This predicament was summarised by Godunov [42] in his famous theo-
rem“There are no monotone, linear schemes of second or higher order of accuracy”.
While linear higher-order methods provide superior accuracy to first-order methods in
smooth regions of the flow, they produce spurious oscillations near high gradients, see
Figure 2.2. Monotone, first-order methods, on the other hand, avoid spurious oscil-
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lations, but they are too inaccurate for practical simulations. The key to circumvent
Godunov’s theorem can be found in the statement itself. In fact, anon-linearscheme
is able to combine the high accuracy provided by a higher-order method with the non-
oscillatory, monotone character of a first-order method.

Numerical Solution

Exact Solution

Figure 2.2: Spurious oscillations in the numerical solution in the vicinity of high gradients
(after Toro [115]).

Fundamentals. In order to minimise the oscillations in the vicinity of high gra-
dients, modern high-resolution methods employ non-lineardifferencing techniques,
e.g. see Drikakis and Rider [27], Harten [54], Toro [115]. Here, the finite difference
stencil, a function of both space and time, is based upon the behaviour of the local
solution and does not produce uncontrolled oscillations. This is the distinguishing
feature between a high-resolution method and other non-linear methods that are not
considered high-resolution. A non-linear, non-high-resolution method can lead to an
ill-behaved solution when it encounters high gradients andthe result can be unpre-
dictable. High-resolution methods, on the other hand, adaptively select a differencing
operator that ensures a well-behaved solution and produceshigh-fidelity results. In
other words, high-resolution methods provide physically meaningful results in all flow
regions, even in the vicinity of high gradients which, in theabsence of shocks, is usu-
ally an indication of insufficient spatial resolution typical for any LES or RANS simu-
lation of turbulence. Harten [54] formally defined high-resolution methods as schemes
satisfying the following properties:

• Provide at least second order of accuracy in smooth areas of the flow.

• Produce numerical solutions (relatively) free from spurious oscillations.

• In the case of discontinuities, the number of grid points in the transition zone
containing the shock wave is smaller in comparison with thatof first-order mono-
tone methods.

Solution Procedure. The high-resolution methods employed in this thesis are all
based on the pioneering work of Godunov [42]. He was the first to utilise the solution
of the local Riemann problem encountered in the discretisedformulation of the gov-
erning equations. The classical Godunov method is only first-order accurate, but its
physical foundation attracted a great deal of interest. Consequently, the approach was
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developed further in the following decades and higher-order Godunov-type methods
appeared, e.g. see van Leer [120].

Figure 2.3 outlines the basic solution procedure for a Godunov-type, high-resolution
algorithm employed in a finite volume framework. The conceptof finite volumes intro-
duces a piecewise constant discretisation, representing the volumetric averages of the
continuous, “real” problem, see Figure 2.3(a). This would be the initial situation for
the classic first-order Godunov method. However, high-resolution methods include an
interpolation step, depicted in Figure 2.3(b), often referred to as high-order reconstruc-
tion or limiting. The interpolation step essentially leadsto a subgrid distribution for the
discretely sampled data and thus it increases the accuracy of the method. All Godunov-
type methods incorporate non-linear stability constraints for minimising or eliminating
the problem of spurious oscillations, whereas the order of the method varies with the
order of the spatial reconstruction. More specifically, a piecewise linear or quadratic
interpolation generates a second- or third-order method, respectively, while methods of
arbitrary order of accuracy can be obtained by piecewise polynomial reconstructions.
Because high-order interpolation is based on the assumption of smooth flow, it is re-
duced to a first-order piecewise constant reconstruction inareas where this condition
is not met. In fact, a higher-order reconstruction rather decreases than increases the
order of accuracy in the vicinity of high gradients and shocks.

(a) Finite volume discretisation. (b) High-order reconstruction.

(c) Riemann solution. (d) Averaging.

Figure 2.3: Schematic of the basic solution procedure for a Godunov-type, high-resolution
algorithm employed in a finite volume framework (after Drikakis and Rider [27]).

In practice, the reconstructed distribution still contains jump discontinuities at the cell
faces. The left- and right-hand states of the discontinuitycan now be regarded as two
semi-infinite states similar to the initial value problem solved in shock-tube simula-
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tions. Hence, this approach leads to a series of local Riemann problems at the cell
faces, illustrated in Figure 2.3(c). For a perfect gas, the solution at the cell face can
be determined by an elaborate exact Riemann solver. In orderto reduce the computa-
tional cost of the solution and in more general cases, however, approximate Riemann
solvers are usually preferred. In the final step of the procedure, the solution is aver-
aged over the compuational cell in accordance with the concept of finite volumes, see
Figure 2.3(d). This technique is philosophically appealing and owes its success to the
combination of the reconstructed subgrid distribution andthe physical aspects of the
Riemann solver.

Monotonicity Preservation. As mentioned previously, the elimination of signifi-
cant spurious oscillations is a fundamental aspect of high-resolution methods provid-
ing non-linear stability. This is generally achieved by preserving monotonicity in the
numerical solution. A solution is said to be monotonicity preserving if it is monotone
increasing or decreasing for all time if the initial condition is monotone increasing or
decreasing, respectively. As a consequence, monotonicitypreserving methods do not
allow spurious oscillations if the initial conditions are monotone. In a numerical solu-
tion, however, the initial condition is not always monotoneand the criterion does not
address non-monotone solutions. Thus, the design of high-resolution methods some-
times relies on stronger conditions.

Total Variation Diminishing . In order to elucidate the principles of stronger non-
linear stability conditions, it is useful to introduce the concept of total variation. The
mathematical definition of the total variation of a discretised function in space and
time,φ(x, t), at a time instant associated with a time stepn is given by

TV(φn) ≡ TV(φ(t)) =
+∞∑

i=−∞

| φn
i+1 − φ

n
i | .

In order to obtain a finite total variation, the functionφ is assumed to be either 0
or constant as the indexi, indicating the spatial discretisation on a numerical mesh,
approaches infinity.

With the above definition in mind, a scheme is said to be Total Variation Diminishing
(TVD) if the total variation of the solution does not increase in time. Mathematically,
this can be expressed as

TV(φn+1) ≤ TV(φn) ≤ . . . ≤ TV(φ0) ,

whereφ0 is the initial condition att = 0. It should be noted that the TVD constraint is
not limited to non-monotone solutions. A trivial observation follows from considering
a monotone initial condition: If the initial condition is monotone, the total variation
remains constant and the solution is monotone for all time — hence the TVD condition
implies preservation of monotonicity.

A major advantage of the Total Variation Diminishing constraint is that oscillations
cannot grow indefinitely and they have to decrease in magnitude if new oscillations
arise. Thus, the TVD concept imposes an upper bound on the size of the oscillations
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and ensures stability of the scheme. Sometimes the TVD condition can be too weak,
however, because it does not prevent the formation of new spurious oscillations. In this
case, a more restrictive condition has to be applied.

Monotonicity . Figure 2.4 illustrates the strongest stability constraint using a lin-
ear reconstruction. For a monotone scheme, the piecewise profile of the solution is
constrained between the cell average values of the adjacentcells. By considering a
discretised scheme of the form

φn+1
i = H(φn

i−l , φ
n
i−l+1 , . . . , φ

n
i+r) ,

the monotonicity property can be defined mathematically as

∂H
∂φn

j

≥ 0 ∀ n , i − l ≤ j ≤ i + r ,

wherel andr are two non-negative integers andH represents an operator. The impact
of the monotonicity condition on the solution can also be prescribed geometrically by
the following two statements, see Drikakis and Rider [27], Toro [115]:

• No new local extrema may be created, thus spurious oscillations do not appear.

• The value of a local minimum increases, i.e. it is a non-decreasing function, and
the value of a local maximum decreases, i.e. it is a non-increasing function.

(a) Monotone scheme. (b) Non-monotone scheme.

Figure 2.4: Geometric representation of the monotonicity constraint
(after Drikakis and Rider [27]).

In general, numerical methods can be classified according tothe hierarchy of the non-
linear stability conditions they satisfy, see Drikakis andRider [27]. For the constraints
introduced here, the set of monotone schemes,Smon, is included in the set of TVD
schemes,Stvd, and this is in turn contained in the set of monotonicity preserving
schemes,Smpr, yielding

Smon⊆ Stvd ⊆ Smpr .
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2.4 The Riemann Problem

In order to retain the fundamental physical and mathematical character of the govern-
ing equations, high-resolution methods incorporate the exact or approximate solution
to a local Riemann problem. Analytical solutions are available for several systems of
equations and are often used as a reference for assessing theperformance of numerical
methods, e.g. the Euler Equations, scalar conservation laws or any linear system of
equations. If the governing equations are more complex or ifthe computational cost of
the Riemann solver is a concern, however, physical or mathematical approximations
are inevitable. In practice, almost all Riemann solvers areof the approximate type and
produce nearly identical results compared to the exact solution at a fraction of the cost,
see Laney [65], Toro [115].

The Physics. The one-dimensional shock-tube problem consists of two regions of
stationary fluid at different pressures. Initially, they are separated by a diaphragm
which is considered to be removed instantaneously att = 0. Fort > 0, a wave system
comprising three basic types develops: a rarefaction wave or expansion fan, a contact
discontinuity and a shock wave. This physical problem can besolved by considering
the Euler Equations. A generalisation of the shock-tube problem is also called the
Riemann problem. Here, the fluid does not have to be stagnant at t = 0 and one or
two of the wave types can theoretically be non-existent. However, the structure of
the solution remains the same as for the shock tube problem byconsidering vanishing
strengths for the absent waves.
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Figure 2.5: The shock-tube problem for the Euler Equations and corresponding wave
diagram showing the characteristics in thex-t plane (after Laney [65]).
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Figure 2.5 illustrates the shock-tube problem for the EulerEquations and the ideal gas
law. In general, the solution can consist of four constant data states,I to IV, separated
by the three basic wave types. It should be noted here that forthe sake of clarity the
waves in Figure 2.5 are sketched as straight lines which is anapproximation to the non-
linearity observed in reality. The statesI and IV are defined by the initial condition
at t = 0, whereas the statesII and III are sought after. A left-running rarefaction
wave or expansion fan, composed of diverging characteristics moving at a speed given
by the difference of the local velocity and the local speed of soundu(x, t) − a(x, t),
decreases the pressure and the density within its bounds. The boundary on the high-
pressure side, marked by the slopeuI − aI , is called the head, and boundary on the
low-pressure side, marked by the slopeuII − aII , is called the tail. Inside the fan, the
data follows a smooth, non-linear transition from stateI to II , which can be determined
by considering the Riemann invariants under isentropic conditions.

On the other side, a right-running shock wave can be observed. It is a non-linear wave
that increases the pressure, the density, the temperature and the entropy as it passes
through the fluid in stateIV. Here, the shock wave is a jump discontinuity consisting
of the converged characteristics given byu(x, t) + a(x, t). This is a direct result of
satisfying the entropy conditionuIII + aIII > s > uVI + aVI, with s being the shock
speed. The stateIII can be determined from stateIV through the Rankine-Hugoniot
relations.

The region between the expansion and the shock is often referred to as the star region.
In the star region, the data statesII and III are connected through a contact discon-
tinuity travelling with the wave speedu∗. The characteristics in this area run parallel
to each other and neither expansion nor compression can occur. Hence, both the ve-
locity u∗ and the pressurep∗ are constant in the star region, but other flow properties
are subject to a jump at the discontinuity. Furthermore, theRankine-Hugoniot condi-
tions apply across the contact wave like in shocks as well as the Riemann invariants
are constant like in rarefaction waves.

An Analytical Solution . Laney [65] presented an analytical solution in terms ofu, a
andp to the Riemann problem for the Euler Equations and the ideal gas relations. This
case corresponds to the shock-tube problem illustrated in Figure 2.5. For the Riemann
problem, the relations across the rarefaction wave are given by

u (x, t) =
2

γ − 1

(

x
t
+
γ − 1

2
uI + aI

)

,

a (x, t) =
2

γ − 1

(

x
t
+
γ − 1

2
uI + aI

)

−
x
t
,

p (x, t) = pI

(

a(x, t)
aI

)2γ/(γ−1)

.

Additionally, the left and right states are connected through the Riemann invariant
u+ 2a/(γ − 1) = const, yielding

uII +
2aII

γ − 1
= uI +

2aI

γ − 1
.
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In the star region, the velocities and the pressures are constant across the contact wave.
Thus,

uII = uIII = u∗

and
pII = pIII = p∗ .

Finally, the Rankine-Hugoniot conditions across the shockwave result in

a2
III

a2
IV

=
pIII

pIV

γ+1
γ−1 +

pI I I

pIV

γ+1
γ−1

pI I I

pIV
+ 1

,

uIII = uIV +
aIV

γ

pI I I

pIV
− 1

√

γ+1
2γ

(
pI I I

pIV
− 1

)

+ 1
,

s = uIV + aIV

√

γ + 1
2γ

(

pIII

pIV
− 1

)

+ 1 .

Since the statesI and IV are defined by the initial condition att = 0, the only un-
known in solving the above system of equations is the pressure ratiopIII /pIV . It can be
found through a combination of the conditions across the shock-tube relatingpIII /pIV

to pI/pIV , namely

pI

pIV
=

pIII

pIV





1+
γ − 1
2aI





uI − uIV −
aIV

γ

pI I I

pIV
− 1

√

γ+1
2γ

(
pI I I

pIV
− 1

)

+ 1









−2γ/(γ−1)

.

This non-linear implicit equation reveals the basic problem of the exact Riemann solu-
tion. Even though it is a perfectly valid analytical solution, the pressure ratiopIII /pIV

cannot be determined directly — thus a computationally expensive iterative procedure
is necessary in order to calculatepIII /pIV . In theory, the solution can be computed to
any degree of precision required, but the cost increases with the order of accuracy.

Numerical Solutions. The vast majority of the computational time is spent on solv-
ing the Riemann problem. Hence, this part of the numerical code provides a high
potential for reducing the cost of the simulation. Additionally, mathematical or phys-
ical approximations leading to explicit solutions rarely alter the results significantly
when compared against the exact solution. For these two reasons, approximate Rie-
mann solvers have almost entirely replaced exact Riemann solvers in practice. Further
simplifications can be made by taking the self-similar character of the Riemann prob-
lem and non-moving computational grids into account. If thecell face is always at the
same locationx = 0, the wave speeds indicate the sought-after data state along the time
axis in the wave diagram.

Figure 2.6 shows the schematics of wave patterns generally considered in the numerical
solution to the Riemann problem. The left and the right wave can either be a rarefaction
wave or a shock wave, whereas the middle wave is always a contact discontinuity.
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Therefore, the unknown state in the star region can always bedetermined according
to the type of the left and right non-linear wave. In order to encompass all possible
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(a) R – C – S.
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(b) S – C – R.
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(c) R – C – R.
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(d) S – C – S.

Figure 2.6: Possible wave patterns in the numerical solution of the Riemann problem
(R denotes a rarefaction, C denotes a contact and S denotes a shock; after Toro [115]).

scenarios, however, special cases such as supersonic flow orsonic rarefaction waves
are often treated separately. For supersonic flow, all wavesare propagating downstream
with the flow and no information can travel upstream — hence the solution simply
assumes the initial left or right state depending on the flow direction. Otherwise, the
state atx = 0 is given by the continuous solution through the expansion fan in case of
a sonic rarefaction wave.

2.5 The ILES Rationale

As mentioned earlier, high resolution methods can be employed for discretising the ad-
vective fluxes in the framework of Implicit Large-Eddy Simulations of turbulent flows.
This idea is based on the fact that finite volume, high resolution algorithms possess cer-
tain properties akin to the effect of subgrid-scale models used in conventional LES. On
the one hand, they provide a local, non-linear numerical viscosity acting as a dynamic
stabiliser for the solution which is equivalent to a purely dissipative eddy-viscosity
model. On the other hand, they are also able to provide a backscatter mechanism
related to scale-similarity models in classical LES. An analysis of the Modified Equa-
tion (MEA) as introduced by Warming and Hyett [124] has proven extremely useful
in order to demonstrate the mathematical and physical similarities between traditional
subgrid scale models and the built-in properties of finite volume, high resolution for-
mulations. Before considering the modified equation representing the actual equation
as treated by the numerical solver, however, the conventional LES equations and asso-
ciated formal drawbacks will be discussed.

Conventional LES Formulation. A comprehensive account of the mathematical
and the physical constraints in classical LES and approaches to model the subgrid
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scales have been compiled by Fureby and Tabor [38]. They examined the full Navier-
Stokes Equations, but for the purpose of illustration it suffices to consider only the
incompressible Euler Equations given by

∂u
∂t
+ ∇ · (u ⊗ u) +

1
ρ
∇p = 0 ,

whereu, t, ρ and p are the velocity vector, time, density and pressure, respectively.
The velocity field is solenoidal, i.e. it satisfies∇ · u = 0, and the scalar pressure field
is determined by the continuity condition.

In conventional LES, the resolved scales are separated fromthe unresolved scales
through a filtering operation. Thus, any variablef can be decomposed intof = f̄ + f ′,
where f̄ is the grid scale andf ′ is the subgrid scale. The incompressible Euler Equa-
tions solved in classical LES are obtained by convolving thedependent variables with
a spatial filter functionG = G(x,∆) of width∆, leading to the filtered or resolved vari-
ables f̄ = G ∗ f . The filtered form of the Euler Equations above can now be written
as

∂ū
∂t
+ ∇ · (ū ⊗ ū) +

1
ρ̄
∇p̄ = −∇ · T −m ,

whereT is the residual or subgrid scale stress tensor andm is the commutation er-
ror term. It should be noted that an additional truncation error τ arises through the
discretisation of the equations. In general, the error terms are assumed to be small
in comparison to the SGS stress tensor — hence they are often neglected in practice.
However, this assumption is not always true. Ghosal [40] hasshown that the trunca-
tion error originating from the discretisation can indeed be significant. The same holds
for the commutation error, arising from the fact that the differentiation does not com-
mute with the filtering∂ f /∂x , ∂ f̄ /∂x, in the vicinity of walls or in regions with grid
stretching.

The SGS stress tensor in LES is the equivalent of the Reynoldsstress tensor in RANS
and needs to be modelled in order to close the system. It is defined as the difference
between the filtered non-linear term in the original Euler Equations and the non-linear
term in the filtered Euler equations

u ⊗ u , ū ⊗ ū ,

thusT can be written as

T = u ⊗ u − ū ⊗ ū =
(

ū ⊗ ū − ū ⊗ ū
)

+
(

ū ⊗ u′ + u′ ⊗ ū
)

+
(

u′ ⊗ u′
)

= L + C + R .

Here,L , C andR are the Leonard stress, the Cross stress and the subgrid scale Rey-
nolds stress representing interactions between resolved scales, between resolved and
subgrid scales, and between unresolved subgrid scales, respectively. These terms are
subject to the basic requirement of Galilean invariance. Fureby and Tabor [38] have
shown thatT andR are invariant of the frame of reference, but neitherL norC satisfy
this condition independently. The added complexity in individually modelling the dif-
ferent physics represented by the Leonard, Cross and Reynolds terms plus the fact that
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all models are only approximations in the first place defeat any attempt at precision.
For this reason, it is more common to model the effect of the subgrid scale tensor as a
single unit instead.

Explicit Modelling . In the book by Drikakis and Rider [27], several explicit SGS
models for conventional Large-Eddy Simulation have been analysed. The modified
partial differential equation emulating the inviscid, filtered LES equations considered
here is given by

∂U
∂t
+ ∇ · E = −∇ · T ,

whereU is the array of dependent variables,E is the inviscid flux vector andT is the
subgrid scale stress tensor.

Smagorinsky [105] developed the most widely applied model to date. It is an eddy
viscosity model similar to the Boussinesq approximation inRANS that is based on a
subgrid scale dissipation according to Kolmogorov’sk5/3 law for isotropic turbulence.
The form of the SGS eddy viscosity is derived from dimensional arguments balancing
the production of turbulent kinetic energy with the dissipation on a subgrid level. A
one dimensional analysis of the modified equation reveals that Smagorinsky’s model
leads to a SGS stress

T = −C∆2
∣
∣
∣
∣
∣

∂U
∂x

∣
∣
∣
∣
∣

∂U
∂x

,

whereC is a constant and∆ is the cell width. Drikakis and Rider [27] have shown that
the change of global kinetic energy in the system can be calculated by

Ē =

∫

∂U
∂x

T dx′ ,

where the integral is replaced by a sum in a discrete simulation. Inserting the SGS
stress for the Smagorinsky model yields

Ē = −C∆2

∫ ∣
∣
∣
∣
∣

∂U
∂x

∣
∣
∣
∣
∣

3

dx′ ≤ 0 .

Evidently, the global kinetic energy is always decreasing in time — hence the Sma-
gorinsky model is strictly dissipative and mimics the removal of kinetic energy at a
subgrid level. Although this model enjoys a great popularity, it causes problems if
applied to non-homogeneous or non-isotropic flows. For example, it needs to be re-
calibrated for free shear-flows or additional damping functions are required to account
for near-wall effects.

A significant improvement to the standard Smagorinsky modelhas been proposed by
Germano et al. [39]. Here, the model coefficients are evaluated dynamically as the sim-
ulation pogresses. This is accomplished by applying a second, larger filter typically of
width 2∆, for which a hypothetical resolved subgrid stress is calculated. Under the as-
sumption that the unresolved and the “resolved” SGS behave similarly, the coefficients
of the underlying subgrid scale model can now be adjusted dynamically. The resulting
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dynamic Smagorinsky model leads to a SGS stress of the form

T = −C∆4
∣
∣
∣
∣
∣

∂U
∂x

∣
∣
∣
∣
∣

∂3U
∂x3

−→ Ē = −C∆4

∫ ∣
∣
∣
∣
∣

∂U
∂x

∣
∣
∣
∣
∣

∂U
∂x

∂3U
∂x3

dx′ .

The associated change of global kinetic energy can become positive or negative, thus it
also allows for backscatter and improves the predictability of transitional flows. How-
ever, the dynamic model exhibits numerical instabilities in areas of energy production
and a spatial or a temporal averaging procedure is required to cure this problem. A
positive aspect of the averaging is a naturally vanishing subgrid scale viscosity at solid
walls, but on the other hand it defeats the purpose of a locally dynamic formulation.

It should be noted, that the double-filter approach is not limited to the Smagorinsky
model. Bardina et al. [7] proposed an alternative model based on the idea that the
important interactions between grid and subgrid scales occur between the smallest re-
solved eddies and the largest unresolved eddies. This so-called scale-similarity model
produces a subgrid stress given by

T = −C∆2

(

∂U
∂x

)2

−→ Ē = −C∆2

∫ (

∂U
∂x

)3

dx′ .

In theory, Bardina’s model accounts for both outscatter andbackscatter, but in practice
it hardly dissipates any energy and it is numerically unstable. It is therefore necessary
to add a dissipation mechanism in form of, e.g. the Smagorinsky model to correct for
this deficiency. The resulting combination is also called mixed subgrid scale model.

Various other techniques to model the effect of the subgrid scales can be found in text-
books on conventional Large-Eddy Simulation or can be derived by adapting models
found in RANS simulations. However, they will not be discussed here.

Implicit Modelling . The implicit approach to SGS modelling in LES is motivated
by the fact that computational solvers are always affected by both physical as well
as numerical limitations and they should not be regarded separately. It is deemed
more appropriate to consider the combined effects instead. As shown previously, the
numerical error has the same form as the subgrid scale term and it is therefore assumed
to be capable of producing a similar subgrid stress as in the filtered LES equations.
When no explicit filter is applied to the incompressible Euler Equations, the explicit
SGS term and the commutation error term do not appear, yielding

∂ū
∂t
+ ∇ · (ū ⊗ ū) +

1
ρ̄
∇p̄ = −∇ · T −m@

@�
� @

@�
� .

Here, the over-bars denote an average originating from the finite volume formulation
which can be seen as a form of implicit spatial filtering. As mentioned previously,
the discretisation of the above equation leads to the additional truncation error term
−∇ · τ which depends on the discretisation scheme and the solutionprocedure. This
numerical error term conveniently appears in the same divergence form as the subgrid
scale stress tensor — hence it may have a similar effect on the solution.
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High-resolution methods had originally been introduced with the intend to solve the ad-
vective part of the equations as accurately as possible. However, it was found that they
not only provide a superior accuracy to classical linear methods, they are also equipped
with a built-in subgrid scale model. In order to investigatethis approach to SGS mod-
elling analytically, Drikakis and Rider [27], Fureby and Grinstein [37], Margolin and
Rider [76] employed the methodology of modified equation analysis to determine the
leading order truncation errors arising from the combination of control volume differ-
encing and inherently non-linear high-resolution approximations. Additionally, they
compared the truncation error term in implicit LES against the explicit SGS term in
classical Large-Eddy Simulations and identified the similarities.

Drikakis and Rider [27] considered a discrete, one-dimensional equation of the form

Un+1
i = Un

i −
∆t
∆x

[

Ei+1/2 − Ei−1/2
]

,

whereU andE are the array of dependent variables and the inviscid flux vector, re-
spectively. The superscriptn marks the time level, whereas the subscripti denotes the
position in space. After the high-resolution reconstruction step incorporating limits
based on non-linear stability criteria, the fluxes are determined from the left and right
data states by a linearised Godunov-type method according to

Ei+1/2 =
1
2

[

Ei+1/2,R + Ei+1/2,L
]

−
|E′|
2

[

Ui+1/2,R − Ui+1/2,L
]

,

with E′ being the flux Jacobian∂E/∂U. For this general form of the modified equation,
the finite volume discretisation itself naturally producesa truncation term at second
order of accuracy given by

τ = −C1∆
2E′

∂2U
∂x2
−C2∆

2E′′
(

∂U
∂x

)2

,

whereC1 andC2 are two constants depending on the details of the numerical method
and∆ is the cell width. Evidently, the first term in the truncationerror as predicted by
the MEA allows for backscatter while the second term is analogous to the effect of a
scale-similarity subgrid model in conventional LES.

Additional error terms originate from the details of the limiting mechanism during
the reconstruction step. The physical concept behind limiters is the need for entropy
production in under-resolved situations, i.e. near high gradients, in order to eliminate
or control spurious oscillations in the solution. Effectively, limiters can be seen as
a sophisticated trigger for an “artificial viscosity” inherent to the non-linear method.
The character of the numerical scheme is closely related to the form of the truncation
term as analysed by Drikakis and Rider [27] for various limiters. For example, the
MPDATA scheme of Smolarkiewicz and Margolin [106] yields a leading order error
term of

τ = −C∆2|E′|
∣
∣
∣
∣
∣

∂U
∂x

∣
∣
∣
∣
∣

∂U
∂x

,
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which is essentially of the same form as the SGS stress for a standard Smagorinsky
model in classical Large-Eddy Simulations. Furthermore, it has been shown that the
limiter of van Albada et al. [116] and the third-order WENO scheme of Liu et al. [71]
produce an effective stress

τ = −C∆3|E′|
(

∂2U
∂x2

)2 (

∂U
∂x

)−1

,

whereas the fifth-order WENO scheme of Jiang and Shu [62] leads to a truncation error
of the form

τ = −C∆5|E′|
(

∂3U
∂x3

)2 (

∂U
∂x

)−1

.

All of the above methods are strictly dissipative at the leading order regarding the
change of global kinetic energy, with the main difference being the scaling given by
the cell width∆. However, this does not rule out backscatter in higher ordererror terms
or low-order dispersive terms for other high-resolution algorithms. In fact, Fureby and
Grinstein [37] have shown that high-resolution discretisations are indeed able to intro-
duce both dissipative and dispersive terms similar to a mixed SGS model in conven-
tional LES.

In summary, an analysis of the modified equations for classical Large-Eddy Simulation
and ILES implies a remarkable analogy between explicit subgrid scale models and
the leading order truncation terms in Implicit Large-Eddy Simulation — hence the
truncation term can be interpreted as a built-in mechanism representing the effect of
the unresolved scales.
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C H A P T E R 3

Numerical Model

THE numerical framework for this investigation is provided by a three-dimensional,
unsteady, compressible Navier-Stokes solver of the Eulerian type. Although low-

speed flows are near-incompressible, it is deemed more appropriate to develop a reli-
able multi-purpose method that can be applied to a wide rangeof engineering prob-
lems. The framework is based on a block-structured finite volume approach formulated
in a generalised curvilinear coordinate system and severaltechniques for the discreti-
sation in time and space have been considered.

In separated turbulent flows, the flow components fluctuate rapidly and high gradients
are encountered frequently, thus a simple explicit time integration method is preferred.
For the discretisation in space, a central difference scheme is employed for the viscous
terms and a Godunov-type method solves for the advective fluxderivatives. High-
resolution is achieved through the reconstruction step incorporating different variants
of non-linear schemes. Furthermore, the code is fully parallelised following a domain
decomposition approach. In order to provide a complete description of the numerical
technique, all of the above components will be presented in this section. Additionally,
a flowchart illustrating the logic of the solver can be found in Appendix B.

3.1 Governing Equations

The physics of (Newtonian) fluid flow is governed by the Navier-Stokes Equations
(NSE), see Anderson [2]. These equations can be solved by considering the coupled
generalised conservation laws, namely the continuity, momentum and energy equa-
tions

∂ρ

∂t
+ ∇ · (ρu) = 0 , (3.1.1)

∂ρu
∂t
+ ∇ · (ρu ⊗ u) = −∇ · S , (3.1.2)

∂e
∂t
+ ∇ · (eu) = −∇ · (S · u) − ∇ · q , (3.1.3)
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whereu, ρ, e, andq stand for the velocity components, the density, the total energy per
unit volume, and the heat flux, respectively. The stress tensor S represents the effects
of the thermodynamic pressurep and the viscous stresses, yielding

S= pI − λb(∇ · u)I − µ[(∇u) + (∇u)T ] , (3.1.4)

whereI is the identity tensor,µ is the dynamic viscosity coefficient relating the stress to
the rate of strain for a Newtonian fluid andλb is the bulk viscosity coefficient account-
ing for the dilatation of the fluid. The bulk viscosity coefficient is defined according to
the Stokes hypothesis as

λb = −
2
3
µ . (3.1.5)

In a similar manner, the heat flux caused by temperature differences in the flow can be
related to the temperature gradients following Fourier’s heat conduction law

q = −κ∇T , (3.1.6)

whereκ is the thermal conductivity coefficient andT is the temperature.

In order to close the above system, it is complemented by an equation of state. For a
perfect gas with negligible inter-molecular forces, the equation of state is given by

p = ρRT , (3.1.7)

where the gas constant of air is typicallyR = 287.05 Nm/(kg · K). Furthermore, as-
suming the gas is also calorically perfect with constant specific heats, the following
useful relations for the internal energyei, the specific heatscv andcp, and the ratio of
specific heatsγ can be adopted

ei = cvT , cp − cv = R , cv =
R

γ − 1
, cp =

γR
γ − 1

, γ =
cp

cv
, (3.1.8)

with γ typically being equal to 1.4 for air.

The perfect gas relations establish the connection betweenthe Momentum Equation
(3.1.2) and the Energy Equation (3.1.3) through the volumetric energy balance

e=
p

γ − 1
+
ρ

2

(

u2 + v2 + w2
)

. (3.1.9)

Additionally, the physical properties of the fluid can now bedetermined. Sutherland’s
law for the variation of the dynamic viscosity coefficientµ with the air temperatureT
yields

µ = µ0

(

T
T0

)3/2 T0 + 110.4K
T + 110.4K

, (3.1.10)

whereT is in Kelvin and the reference viscosiy isµ0 = 1.7894× 10−5 kg/(m · s) at
the reference temperatureT0 = 288.16 K. The thermal conductivity coefficient κ is
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directly proportional toµ according to molecular theory. For a calorically perfect gas,
this leads to the relation

κ =
cvγµ

Pr
, (3.1.11)

wherePr is a dimensionless parameter known as the Prandtl number. Ina temperature
range of approximately 200K to 1000K, the Prandtl number is usually assumed to be
constant and equal to 0.72.

3.1.1 Dimensionless Form

In Computational Fluid Dynamics, it is common to employ the Navier-Stokes Equa-
tions (3.1.1) to (3.1.3) in their dimensionless form. Here,the variables are re-scaled in
order to reduce the the risk of numerically ill-conditionedflow states and to ensure the
solution is generally well-behaved. An additional advantage is the decreasing number
of parameters characterising the flow. A large set of physical and geometrical fac-
tors can be grouped into a relatively small set of dimensionless quantities that reveal
similarites between seemingly different flow scenarios — hence the dimensionless for-
mulation reduces the number of input parameters and it facilitates the comparison with
experimental data.

The non-dimensionalisation is achived by relating all physical and geometrical quan-
tities to characteristic reference values for the density (ρc), velocity (uc), dynamic vis-
cosity (µc) and length (lc). This leads to the following dimensionless variables

t∗ =
t

lc/uc
, x∗ =

x
lc
, y∗ =

y
lc
, z∗ =

z
lc
,

ρ∗ =
ρ

ρc
, u∗ =

u
uc
, v∗ =

v
uc
, w∗ =

w
uc
, (3.1.12)

e∗ =
e

ρcu2
c

, p∗ =
p

ρcu2
c

, µ∗ =
µ

µc
.

In order to obtain a dimensionless heat flux for the energy conservation an additional
characteristic valueTc for the temperature is needed. With Equations (3.1.6) and
(3.1.11), the heat flux in the non-dimensional form of Equation (3.1.3) can now be
written as

q∗ = −
cvγ

Re Pr
Tc

u2
c

∇T∗ , (3.1.13)

whereReis the Reynolds number given by

Re=
ρcuclc
µc

. (3.1.14)

The reference velocityuc and the reference TemperatureTc are chosen to satisfy

cvρ∞Tc = e∞ = ρ∞u2
c , (3.1.15)
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where the subscript∞ refers to the properties of the free-stream. For a perfect gas, this
leads to the following definitions foruc andTc

uc = a∞

√

1+ γ

2(γ − 1)Ma2
∞

γ(γ − 1)
, (3.1.16)

Tc =
a2
∞

cv

1+ γ

2(γ − 1)Ma2
∞

γ(γ − 1)
, (3.1.17)

wherea∞ =
√

γp∞/ρ∞ is the speed of sound andMa∞ = u∞/a∞ is the Mach number.
Equation (3.1.13) can now be simplified to

q∗ = −
γ

Re Pr
∇T∗ . (3.1.18)

For the reference valuelc any length representing the characteristic dimensions of the
problem at hand can be selected and the reference density is equal to the free-stream
densityρc = ρ∞. Finally, the characteristic viscosityµc is chosen in order to ensure
consistency between the numerical Reynolds number and the experimental Reynolds
number

µc =
uc

u∞
µ∞ . (3.1.19)

Inserting the above relations into the Navier-Stokes Equations (3.1.1) to (3.1.3) yields
their dimensionless form

∂ρ∗

∂t∗
+ ∇ · (ρu∗) = 0 , (3.1.20)

∂ρ∗u∗

∂t∗
+ ∇ · (ρ∗u∗ ⊗ u∗) = −∇ · S∗ , (3.1.21)

∂e∗

∂t∗
+ ∇ · (e∗u∗) = −∇ · (S∗ · u∗) − ∇ · q∗ , (3.1.22)

whereS∗ is the nondimensional stress tensor given by

S∗ = p∗I +
2

3Re
(∇ · u∗)I −

1
Re

[(∇u∗) + (∇u∗)T ] . (3.1.23)

Here, the nabla operator∇ denotes the gradients and vector derivatives with respect to
the dimensionless coordinatesx∗, y∗ andz∗. For simplicity, the superscript∗ is omitted
in the following sections.

3.1.2 Matrix Form

In order to simplify and organise the logic in a computational method, Equations
(3.1.20) to (3.1.22) can be written in conservative, Cartesian matrix form, yielding
a single equation representing the entire system of governing equations

∂U
∂t
+
∂E
∂x
+
∂F
∂y
+
∂G
∂z
=
∂L
∂x
+
∂M
∂y
+
∂N
∂z

, (3.1.24)
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whereU is the array of the conservative variables;E,F,G are the inviscid andL ,M ,N
are the viscous flux vectors associated with the Cartesianx-, y- andz-direction, respec-
tively,

U =





ρ

ρu
ρv
ρw
e





, E =





ρu
ρu2 + p
ρvu
ρwu

(e+ p)u





, F =





ρv
ρuv

ρv2 + p
ρwv

(e+ p)v





, G =





ρw
ρuw
ρvw

ρw2 + p
(e+ p)w





,

L =
1

Re





0
τxx

τxy

τxz

uτxx + vτxy + wτxz−
γ

Prqx





, M =
1

Re





0
τyx

τyy

τyz

uτyx + vτyy + wτyz−
γ

Prqy





,

N =
1
Re





0
τzx

τzy

τzz

uτzx+ vτzy+ wτzz−
γ

Prqz





.

In Equation (3.1.24), the heat flux has been split into the three spatial components
denoted byqx,y,z andτi j stands for the viscous stress in thej-direction exerted on a
plane normal to thei-axis. For example, on a face perpendicular to thex-direction,τxx

is a normal stress, whereasτxy andτxz are tangential or shear stresses, further details
can be found in Appendix C.

3.1.3 Generalised Curvilinear Coordinates

Most problems in engineering cannot be represented adequately in Cartesian coordi-
nate systems but require arbitrary, body-fitted grids that naturally allow for curved ge-
ometries. It is therefore necessary to convert the Cartesian matrix form to a generalised
curvilinear coordinate system given byξ = ξ(x, y, z, t), η = η(x, y, z, t), ζ = ζ(x, y, z, t)
andτ = t, e.g. see the book of Drikakis and Rider [27]. This is achieved by multiplying
Equation (3.1.24) with the Jacobian determinant of the transformation from Cartesian
(x, y, z) to curvilinear (ξ, η, ζ) coordinates

J =
∣
∣
∣
∣
∣

∂(x, y, z)
∂(ξ, η, ζ)

∣
∣
∣
∣
∣
= xξ

(

yηzζ − yζzη
)

+ yξ
(

zηxζ − zζxη
)

+ zξ
(

xηyζ − xζyη
)

(3.1.25)
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and substituting the partial derivatives for non-moving grids

∂

∂x
=

(

∂

∂ξ

)

∂ξ

∂x
+

(

∂

∂η

)

∂η

∂x
+

(

∂

∂ζ

)

∂ζ

∂x
,

∂

∂y
=

(

∂

∂ξ

)

∂ξ

∂y
+

(

∂

∂η

)

∂η

∂y
+

(

∂

∂ζ

)

∂ζ

∂y
,

∂

∂z
=

(

∂

∂ξ

)

∂ξ

∂z
+

(

∂

∂η

)

∂η

∂z
+

(

∂

∂ζ

)

∂ζ

∂z
,

∂

∂t
=

∂

∂τ
.

(3.1.26)

The compressible Navier-Stokes Equations in curvilinear coordinates now take the
form

J
∂U
∂τ
+ J

∂E
∂ξ
ξx + J

∂E
∂η
ηx + J

∂E
∂ζ
ζx + . . . = J

∂L
∂ξ
ξx + J

∂L
∂η
ηx + J

∂L
∂ζ
ζx + . . . ,

where the subscripts indicate the partial derivatives withrespect to the spatial dimen-
sions.

Further simplification of this expression can be obtained byusing the relation (in 1D)

J
∂E
∂ξ
ξx =

∂(JEξx)
∂ξ

− E
∂

∂ξ
(Jξx) (3.1.27)

and its equivalent for the other flux derivatives, yielding

∂Ũ
∂t
+
∂Ẽ
∂ξ
+
∂F̃
∂η
+
∂G̃
∂ζ
=
∂L̃
∂ξ
+
∂M̃
∂η
+
∂Ñ
∂ζ

, (3.1.28)

with

Ũ = JU

Ẽ = J(Eξx + Fξy +Gξz) ,

F̃ = J(Eηx + Fηy +Gζz) ,

G̃ = J(Eζx + Fζy +Gζz) ,

L̃ = J(Lξx +Mξy + Nξz) ,

M̃ = J(Lηx +Mηy + Nηz) ,

Ñ = J(Lζx +Mζy + Nζz) ,

(3.1.29)

This system of equations applies to the transformed body-fitted grid, i.e. a uniform
and rectangular computational grid. Hence, the numerical treatment for solving the
equations in Cartesian matrix form and generalised curvilinear matrix form is identical.
Please note that details on the metric relations for the coordinate transformation can be
found in Appendix D. Furthermore, the superscript˜ is omitted for the remainder of
this chapter for simplicity.
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3.2 Time Integration

For both steady and unsteady flows the time-dependent Navier-Stokes Equations can
be considered. The solution is found by a time-marching algorithm that progressively
determines the dependent variables in steps of time. In caseof steady flow a constant
state is approached asymptotically during the course of thesimulation, whereas for
unsteady flows the inherently transient solution is predicted.

In this thesis, explicit Runge Kutta time integration methods are chosen for their sim-
plicity and their ability to temporally resolve the rapidlyfluctuating velocity compo-
nents encountered in unsteady separated flows. This approach constructs the solution
as a linear combination of multiple stages where the number of stages is determined
by the desired accuracy of the algorithm, see Drikakis and Rider [27]. Before applying
a Runge Kutta method to Equation (3.1.28), however, the timederivative is isolated

∂U
∂t
= −

∂E
∂ξ
−
∂F
∂η
−
∂G
∂ζ
+
∂L
∂ξ
+
∂M
∂η
+
∂N
∂ζ
= f (U, t) , (3.2.1)

thus it can be considered a function of the dependent variablesU and timet only.

3.2.1 First-Order Runge Kutta

A simple numerical approximation of the time derivative in Equation (3.2.1) is given
by the single stage algorithm

Un+1 − Un

∆t
= f (Un, tn) , (3.2.2)

with ∆t being the time step,Un+1 = U(t + ∆t) andUn = U(t). This is also called the
forward Euler method and it is first-order accurate in time. If higher order algorithms
are required multiple stages need to be computed.

3.2.2 Second-Order Runge Kutta

A straightforward modification of the forward Euler method leads to a second-order
accurate two-step procedure defined by

U1 − Un

∆t
=

1
2

f (Un, tn) ,

Un+1 − Un

∆t
= f (U1, tn+1/2) .

(3.2.3)

There are several variants of Runge Kutta schemes that lead to the same order of ac-
curacy and yield equivalent results if combined with a linear spatial differencing. Yet,
for non-linear spatial differencing, formulations adhering to the more restrictive TVD
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constraint may produce improved results at the cost of impaired stability properties.
It should be noted here, however, that the TVD condition cannot be formally satisfied
for non-linear equations and the expected effect can only be confirmed by numerical
experiments. In the book of Drikakis and Rider [27], an example for a second-order
accurate TVD Runge Kutta algorithm known as Heun’s method ispresented as

U1 − Un

∆t
= f (Un, tn) ,

Un+1 − Un

∆t
=

1
2

[

f (Un, tn) + f (U1, tn+1/2)
]

.

(3.2.4)

3.2.3 Third-Order Runge Kutta

The standard third-order accurate Runge Kutta method consists of the following stages

U1 − Un

∆t
=

1
3

f (Un, tn) ,

U2 − Un

∆t
=

2
3

f (U1, tn+1/3) ,

Un+1 − Un

∆t
=

1
4

[

f (Un, tn) + 3 f (U2, tn+2/3)
]

.

(3.2.5)

Similar to the two-stage algorithms, a third-order accurate TVD Runge Kutta can be
formulated

U1 − Un

∆t
= f (Un, tn) ,

U2 − Un

∆t
=

1
4

[

f (Un, tn) + f (U1, tn+1/3)
]

,

Un+1 − Un

∆t
=

1
6

[

f (Un, tn) + 4 f (U2, tn+2/3) + f (U1, tn+1/3)
]

.

(3.2.6)

Additionally, time integration schemes can be designed with extended stability proper-
ties in mind, leading to the alternative three-stage, third-order accurate algorithm given
by

U1 − Un

∆t
=

1
2

f (Un, tn) ,

U2 − Un

∆t
=

1
2

f (U1, tn+1/3) ,

Un+1 − 2
3U2 − 1

3Un

∆t
=

1
3

[

f (U2, tn+2/3) + f (U1, tn+1/3)
]

.

(3.2.7)

Higher than third-order methods can be constructed, but therelative improvement of
the solution cannot justify the additional computational cost in most cases. Thus, they
will not be discussed here.
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3.2.4 CFL Condition

For time-dependent flows, time marching in all computational cells has to be per-
formed with the same global time step∆t, which, for a given Courant-Friedrichs-Lewy
(CFL) number, is defined as

∆t = min



J
CFL

max
(

|λ
ξ

0|, |λ
ξ
+|, |λ

ξ
−|, |λ

η

0|, |λ
η
+|, |λ

η
−|, |λ

ζ

0|, |λ
ζ
+|, |λ

ζ
−|
)



 , (3.2.8)

whereJ denotes the Jacobian determinant andλ are the eigenvalues associated with
the advective fluxesE, F, G, respectively.

For the forward Euler method from Equation (3.2.2), the theoretical value ofCFL ≤ 1
leads to a stable integration in time. This condition simplystates that the length of the
time step is equal or less than it takes for the fastest acoustic wave to travel from one
grid point to the next. However, this condition is necessarybut not sufficient to ensure
stability of the algorithm. Time marching methods satisfying a CFL condition may
still lead to instabilities in the sense of permitting largeerrors or they may simply blow
up. In practice, this behaviour is commonly cured by lowering the CFL number until a
stable solution is obtained.

This applies to all of the above Runge Kutta schemes. A characteristic of this cate-
gory of time integration methods, however, is that the stability region is growing with
increasing number of steps. Here, the third-order extended-stability scheme given in
Equation (3.2.7) has the largest theoretical CFL limit among the methods presented in
this thesis.

3.3 Spatial Discretisation

The spatial derivatives at the centre of the control volume (i, j, k) are discretised using
the inter-cell flux values across the faces defined by the subscripts (i ± 1/2, j, k), (i, j ±
1/2, k) and (i, j, k± 1/2), see Figure 3.1.

Thus, the semi-discretised form of Equation (3.2.1) can be written as

∂U
∂t
= −

Ei+1/2, j,k − Ei−1/2, j,k

∆ξ
−

Fi, j+1/2,k − Fi, j−1/2,k

∆η
−

Gi, j,k+1/2 −Gi, j,k−1/2

∆ζ

+
L i+1/2, j,k − L i−1/2, j,k

∆ξ
+

M i, j+1/2,k −M i, j−1/2,k

∆η
+

Ni, j,k+1/2 − Ni, j,k−1/2

∆ζ
,

(3.3.1)

where each term on the right-hand side can be solved independently due to the dimen-
sional splitting and the complete system is integrated in time after all the discretised
fluxes are added up.

In case of the linear viscous fluxesL , M and N, the solution is simply given by a
central difference scheme, whereas for the non-linear advective fluxesE, F andG a
high-resolution Godunov-type method is developed in the following sections.
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(i + 1/2, j, k)(i − 1/2, j, k)

(i, j + 1/2, k)

(i, j − 1/2, k)

(i, j, k+ 1/2)

(i, j, k− 1/2)

(i, j, k)

ξ

η

ζ

Figure 3.1: Three-dimensional notation for a finite volume cell with thecentre at (i, j, k).

3.4 Characteristics-Based Scheme

The characteristics-based method employed for solving theadvective part of the gov-
erning equations is a linearised Riemann solver. It is considered a high-resolution
Godunov-type method when combined with a high-order reconstruction scheme for
computing the left and right initial states of the Riemann problem. This method was
firstly presented by Eberle [32] for the compressible Euler Equations and later extended
by Drikakis [24], Drikakis et al. [28].

In order to present a new derivation of the characteristics-based scheme after Shapiro
[101], it is sufficient to consider the one-dimensional inviscid counterpart of Equation
(3.1.28) given by

∂U
∂t
+
∂E
∂ξ
= 0 . (3.4.1)

The solution to this one-dimensional Riemann problem is then used to calculate the
sought-after inter-cell fluxE and the remaining advective fluxesF andG can be deter-
mined accordingly.

3.4.1 Method of Characteristics

For the method of characteristics, e.g. see the book of Laney[65], the Partial Differen-
tial Equation (3.4.1) is written as

∂U
∂t
+ A

∂U
∂ξ
= 0 , (3.4.2)

whereA = ∂E/∂U is the flux Jacobian. In order to simplify the Riemann problem,
Equation (3.4.2) is linearised, i.e.A is assumed to be approximately constant from one
time level to the next.
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Both sides of the linearised equation are now multiplied byQ−1 and the second term
on the left-hand side is extended withQ, yielding

Q−1∂U
∂t
+Q−1AQQ−1∂U

∂ξ
= 0 , (3.4.3)

whereQ andQ−1 are the matrices whose columns are the right characteristicvectors
and whose rows are the left characteristic vectors, respectively. The characteristic vec-
tors are also known as eigenvectors. With the definition of the characteristic variables
V being

∂V = Q−1∂U (3.4.4)

and substituting
Q−1AQ = Λ , (3.4.5)

Equation (3.4.3) takes the characteristic form

∂V
∂t
+ Λ

∂V
∂ξ
= 0 , (3.4.6)

whereΛ is the matrix whose diagonal elements are the characteristic values or eigen-
values. Thus, the Riemann problem for a linear system of five equations has been
decomposed into five Riemann problems for a linear advectionequation.

The characteristic variablesV are also called signals, or the information carried by
a wave travelling at a speed determined by the correspondingcharacteristic valueλ.
Analogous to Section 2.4, the wavefront or characteristic is given bydξ/dt = λ in the
t-ξ diagram. This situation is illustrated in Figure 3.2(a) fora single wave emanating
from the cell facesi ± 1/2 at the current time leveln. Most importantly, it can be
shown that the values ofV are constant in time along the corresponding characteristics
— hence they are sometimes referred to as the Riemann invariants and they can be
used to calculate the state at the next time level.

������������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�t

n+ 1

n

ξ

i − 1/2 i + 1/2

(a) Departure-based characteristics.
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(b) Destination-based characteristics.

Figure 3.2: Possible arrangements of the cell interfaces and a single wavefront for the method
of characteristics.

Since the Riemann solution is self-similar, it is sufficient to determine the flow state
at the leveln + 1 in order to integrate the fluxes at the cell faces in time. If the char-
acteristics start at the current time leveln, shown in Figure 3.2(a), an interpolation
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procedure is necessary to determine the values at the cell interface for the sought-after
time stepn+ 1. Therefore, it is often more convenient to consider the case where the
arrival points atn+ 1 coincide with the cell interface as depicted in Figure 3.2(b). For
the destination-based characteristics, the flow state at the next time level is fully deter-
mined because the initial states of individual characteristics at leveln can be calculated
through, e.g. an upwind scheme.

Upwind methods are based on the idea that information propagates at different speeds
along the characteristics with different orientation. Therefore, upwind methods incor-
porate a sense for the direction of the incoming signal by taking the knowledge about
the structure of the solution given by the eigenvalues into account. Numerically, this is
expressed as

U = (0.5+ ψ)UL + (0.5− ψ)UR , (3.4.7)

where the upwinding coefficientψ is defined as

ψ = 0.5
λL + λR

|λL| + |λR| + ǫ
. (3.4.8)

The parameterǫ averts division by zero andUL,R, λL,R are the left and right flow states
and eigenvalues at the cell face, respectively.

3.4.2 Eigenvalues of the System

As seen in the previous section, the eigenvalues of the system play a crucial role in
calculating the inter-cell flux values. In order to determine the eigenvalues, Equation
(3.4.1) is employed in its primitive form. This formulationbased on the primitive
variablesW = (ρ, u, v,w, p)T is often preferred for the sake of simplicity. Thus, the
eigenvalues for the system of equations given by

∂W
∂t
+ C

∂W
∂ξ
= 0 , (3.4.9)

with

C =





u⊥ ρξx ρξy ρξz 0
0 u⊥ 0 0 1

ρ
ξx

0 0 u⊥ 0 1
ρ
ξy

0 0 0 u⊥ 1
ρ
ξz

0 ρa2ξx ρa2ξy ρa2ξz u⊥





(3.4.10)

and

u⊥ = ξxu+ ξyv+ ξzw , (3.4.11)

a2 =
γp
ρ

(3.4.12)



3.4 Characteristics-Based Scheme 49

can be calculated by solving

|C − λI | =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u⊥ − λ ρξx ρξy ρξz 0
0 u⊥ − λ 0 0 1

ρ
ξx

0 0 u⊥ − λ 0 1
ρ
ξy

0 0 0 u⊥ − λ 1
ρ
ξz

0 ρa2ξx ρa2ξy ρa2ξz u⊥ − λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 . (3.4.13)

for λ. This leads to one triple eigenvalue denoted by the subscript 0 and two single
eigenvalues marked by the subscripts+ and−

λ0 = u⊥ , (3.4.14)

λ± = u⊥ ± a
√

ξ2
x + ξ

2
y + ξ

2
z . (3.4.15)

The efficiency of the numerical algorithm can be improved by dividing Equation (3.4.9)

with the cell face area
√

ξ2
x + ξ

2
y + ξ

2
z, yielding

∂W

∂t
+ C

∂W
∂ξ
= 0 , (3.4.16)

with

C =





u⊥ ρx ρy ρz 0
0 u⊥ 0 0 1

ρ
x

0 0 u⊥ 0 1
ρ
y

0 0 0 u⊥ 1
ρ
z

0 ρa2x ρa2y ρa2z u⊥





(3.4.17)

and

(

x, y, z
)T
=

(

ξx, ξy, ξz

)T

√

ξ2
x + ξ

2
y + ξ

2
z

, (3.4.18)

u⊥ = xu+ yv+ zw , (3.4.19)

t = t
√

ξ2
x + ξ

2
y + ξ

2
z , (3.4.20)

1 = x2
+ y2
+ z2

. (3.4.21)

Now, the eigenvalues take the form

λ0 = u⊥ , (3.4.22)

λ± = u⊥ ± a . (3.4.23)
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3.4.3 Characteristic Decomposition

In order to determine the Riemann invariantsV associated with the characteristics
travelling at a speed defined by the eigenvaluesλ0 andλ±, the system (3.4.16) is diag-
onalised analogously to Equation (3.4.3). Here, the matrixof the right eigenvectors is
given by

Q =





0 0 1 1
a2

1
a2

− z
x −

y
x 0 x

ρa2 −
x
ρa2

0 1 0 y
ρa2 −

y
ρa2

1 0 0 z
ρa2 −

z
ρa2

0 0 0 1 1





, (3.4.24)

where first three columns are the eigenvectors associated with λ0 and the last two
columns correspond toλ±.

The Riemann invariants are calculated using the inverse of the eigenvector matrix

Q−1 =





0 −xz −yz 1− z2 0
0 −xy 1− y2

−yz 0
1 0 0 0 − 1

a2

0 1
2ρax 1

2ρay 1
2ρaz 1

2
0 −1

2ρax −1
2ρay −1

2ρaz 1
2





. (3.4.25)

Thus, the relation∂V = Q−1∂W yields

∂V =





−xzdu− yzdv+
(

1− z2
)

dw

−xydu+
(

1− y2
)

dv− yzdw

dρ − dp
a

1
2 (dp+ ρa (xdu+ ydv+ zdw))
1
2 (dp− ρa (xdu+ ydv+ zdw))





, (3.4.26)

which, after applying some linear algebra to the first two rows associated withλ0, takes
the simplified form

∂V =





xdw− zdu
xdv− ydu
dρ − dp

a
1
2 (dp+ ρa (xdu+ ydv+ zdw))
1
2 (dp− ρa (xdu+ ydv+ zdw))





. (3.4.27)

For solving the original system (3.4.2), however, the conservative invariants need to
be recovered. If(l,m, n)T

0,+,− represent the conservative variables(ρu, ρv, ρw)T
0,+,− along

the characteristics associated with (0,+,−), then the Riemann invariants can be written
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as

∂V =





xdn0−wdρ0

ρ
− zdl0−udρ0

ρ

xdm0−vdρ0

ρ
− ydl0−udρ0

ρ

dρ0 − P0
γ−1

a
1
2

(

P+ (γ − 1) + ρa
(

xdl+−udρ+
ρ
+ ydm+−vdρ+

ρ
+ zdn+−wdρ+

ρ

))

1
2

(

P− (γ − 1) − ρa
(

xdl−−udρ−
ρ
+ ydm−−vdρ−

ρ
+ zdn−−wdρ−

ρ

))





, (3.4.28)

where the differentials of the primitive variables have been substitutedaccording to the
chain rule of differentiation





dρ
du
dv
dw
dp





0,+,−

=





dρ
dl−udρ

ρ
dm−vdρ

ρ
dn−wdρ

ρ

P (γ − 1)





0,+,−

(3.4.29)

andP0,+,− = de0,+,− − udl0,+,− − vdm0,+,− − wdn0,+,− +
u2+v2+w2

2 dρ0,+,− .

Remember that the Riemann invariants are constant along thecharacteristics (∂V = 0)
and the differentials can be discretised as the difference between the known initial
states (ρ, l,m, n, e)T

0,+,− at the origin of the characteristics and the sought-after state
(

ρ, l,m, n, e
)T

at the destination of the characteristics





dρ
dl
dm
dn
de





0,+,−

≈





∆ρ

∆l
∆m
∆n
∆e





0,+,−

=





ρ

l
m
n
e





−





ρ

l
m
n
e





0,+,−

. (3.4.30)

Let U =
(

ρ, l,m, n, e
)T

, q2 = u2 + v2 + w2 and γ̂ = γ − 1. After setting the Equation
(3.4.28) equal to zero and some more algebra the following linear system is derived

BU = D , (3.4.31)

with

B =





zu− xw −z 0 x 0
uy− vx −y x 0 0
a
γ̂
−

q2

2 u v w −1

γ̂
q2

2 − au⊥ ax− γ̂u ay− γ̂v az− γ̂w γ̂

γ̂
q2

2 + au⊥ −(ax+ γ̂u) −(ay+ γ̂v) −(az+ γ̂w) γ̂





(3.4.32)
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and

D =





(zu− xw) ρ0 − zl0 + xn0

(uy− vx) ρ0 − yl0 + xm0
(

a
γ−1 −

q2

2

)

ρ0 + ul0 + vm0 + wn0 − e0

ρ+
(

γ̂
q2

2 − au⊥
)

+ l+ (ax− γ̂u) +m+ (ay− γ̂v) + n+ (az− γ̂w) + γ̂e+

ρ−
(

γ̂
q2

2 + au⊥
)

− l− (ax+ γ̂u) −m− (ay+ γ̂v) − n− (az+ γ̂w) + γ̂e−





(3.4.33)

The system (3.4.31) can now be solved for the unknown vectorU, yielding

U =





ρ

l
m
n
e





=





ρ

ρu
ρv
ρw
e





=





ρ0 + R+ + R−
(ρu)0 + (u+ ax) R+ + (u− ax) R−
(ρv)0 + (v+ ay) R+ + (v− ay) R−

(ρw)0 + (w+ az) R+ + (w− az) R−
e0 + (H + au⊥) R+ + (H − au⊥) R+





, (3.4.34)

where

R+ =
1

2a2
((ρ0 − ρ+)

(

au⊥ − γ̂
q2

2

)

+ (l0 − l+) (γ̂u− ax) +

(n0 − n+) (γ̂v− ay) + (m0 −m+) (γ̂w− az) − (e0 − e+) γ̂ ,

R− =
1

2a2
((ρ0 − ρ−)

(

au⊥ + γ̂
q2

2

)

+ (l0 − l−) (γ̂u+ ax) +

(n0 − n−) (γ̂v+ ay) + (m0 −m−) (γ̂w+ az) − (e0 − e−) γ̂

and the total enthalpyH is given by

H =
a2

γ − 1
+ 0.5q2 .

The velocitiesu, v,w and the speed of sounda are the average values of their left and
right states. Finally, the advective fluxE at the cell face as required for solving equation
(3.4.1) can be calculated using the characteristics-basedvariablesU, i.e.

E = E
(

U
)

. (3.4.35)

3.5 High-Resolution Algorithms

High-resolution of the numerical solver is achieved by extrapolating the variables as
linear, quadratic or higher-order functions in a cell, whereas first-order algorithms fol-
low a piecewise constant approach. This is the general basisof the non-linear mecha-
nism that distinguishes modern methods from classical linear schemes. Additionally,
high-resolution methods are able to adapt to the behaviour of the local solution instead
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of treating every part of the solution the same — hence they also exhibit a sensitivity
to the state of the flow.

Two classes of reconstruction methods are presented in thissection: different vari-
ants of theMonotonic Upwind Scheme for Scalar Conservation Laws(MUSCL) as
originally introduced by van Leer [119] and aWeighted Essentially Non-Oscillatory
(WENO) scheme following the ideas of Liu et al. [71].

3.5.1 MUSCL Schemes

For the family of MUSCL schemes, the left and right states of the conservative vari-
ablesU at the cell interface (i + 1/2) are computed according to Toro [115] as

UL,i+1/2 =Ui +
1
4

[

(1− k) φ (rL) (Ui − Ui−1) + (1+ k)φ

(

1
rL

)

(Ui+1 − Ui)

]

,

UR,i+1/2 =Ui+1 −
1
4

[

(1− k) φ (rR) (Ui+2 − Ui+1) + (1+ k)φ

(

1
rR

)

(Ui+1 − Ui)

]

,

(3.5.1)

wherek is a free parameter in the interval [−1, 1] andφ is a limiter function based on
the slopes of the conserved variables within, for the second- and third-order accurate
schemes, the four-point stencil given by the cell averaged values at positions (i − 1),
(i), (i + 1) and (i + 2). Fork = −1 or k = 0 the MUSCL extrapolation in Equations
(3.5.1) is essentially a full upwind scheme or a central difference scheme, respectively,
and third-order of accuracy can be obtained fork = 1/3 if the limiter is not entirely
symmetric. It should be noted that the second-order limiters considered here do not
satisfy this criteria, thus their order of accuracy cannot be increased.

Second-order limiters. All second- and third-order accurate limiter functions use
the following definitions of the left and the right ratio of the slopes

rL =
Ui+1 − Ui

Ui − Ui−1
,

rR =
Ui+1 − Ui

Ui+2 − Ui+1
.

(3.5.2)

The most popular second-order limiter functions can be found in several textbooks,
e.g. Laney [65], LeVeque [68], Toro [115]. Although they arenot employed in this
thesis, they are given here for the sake of completeness

φMM =






0 if r ≤ 0

r if r > 0
, (3.5.3)

φVL =






0 if r ≤ 0
2r

1+r if r > 0
, (3.5.4)

φVA =






0 if r ≤ 0
r(1+r)
1+r2 if r > 0

, (3.5.5)
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whereMM, VL andVA stand for the MinMod, Van Leer and Van Albada limiter, re-
spectively. All of the above satisfy the monotonicity constraint and reduce to a piece-
wise linear method near local extrema.

Third-order limiter . In a similar fashion to the second-order limiters, Zóltakand
Drikakis [132] developed an extension to the Van Albada function which is referred to
by the subscriptM3

φM3 =






0 if r ≤ 0

1−
(

1+ 2Nr
1+r2

) (

1− 2r
1+r2

)N
if r > 0

. (3.5.6)

This formulation of the third-order limiter includes a “steepening” parameterN that
improves the resolution of discontinuities. For general use N is set equal to 2.

Fifth-order limiter . Kim and Kim [63] presented a fifth-order accurate MUSCL
scheme using a six-point stencil as opposed to the classicalfour-point stencil employed
previously. Here, the slope ratios are defined as

rL,i =
Ui+1 − Ui

Ui − Ui−1
,

rR,i =
Ui − Ui−1

Ui+1 − Ui
,

(3.5.7)

andφ is calculated by

φ∗L,M5 =
−2/rL,i−1 + 11+ 24rL,i − 3rL,irL,i+1

30
,

φ∗R,M5 =
−2/rR,i+2 + 11+ 24rR,i+1 − 3rR,i+1rR,i

30
.

(3.5.8)

Subsequently, this function is limited in order to maintainmonotonicity and the fifth-
order limiter can now be written in compact form as

φL/R,M5 = max(0,min(2, 2rL/R,i, φ
∗
L/R,M5)) . (3.5.9)

3.5.2 WENO Schemes

WENO schemes are an extension of theEssentially Non-Oscillatory(ENO) concept
originally proposed by Harten et al. [55], Shu and Osher [102]. ENO has been devel-
oped with the idea of a higher-order interpolation method inmind. Since high-degree
polynomials are prone to oscillations even if the underlying data is smooth a method
for controlling these oscillations has to be found. Insteadof employing limiter func-
tions like MUSCL schemes, ENO chooses the smoothest of many possible stencils to
avoid disastrous overshoots or undershoots — hence it does not formally satisfy the
non-linear stability criteria.

WENO methods are primarily based on the work of Balsara and Shu [6], Jiang and
Shu [62], Liu et al. [71]. They combine all possible stencilsrather than choosing
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only a single one, where a convexly weighted average is produced according to the
smoothness of the candidates. The averaging reduces the sensitivity to small changes
in the samples and it also reduces the effects of the truncation errors. Thus, WENO
schemes ideally reach an order of accuracy calculated by 2s−1 with sbeing the number
of sample points. ENO methods, on the other hand, generally achieve lower orders of
accuracy because they discard most of the points.

The WENO method employed in this thesis uses a stencil of five cells to either side
of the interface, yielding a ninth order accurate scheme in one dimension. In order to
illustrate the basic principle, however, only a third-order WENO reconstruction derived
from a linear interpolation withs = 2 is presented here. For the reconstruction within
a cell i, two stencilsS0,1 comprising the cell-averaged values of two samples each are
considered

S0 =(xi−1, xi) ,

S1 =(xi , xi+1) .
(3.5.10)

A standard linear interpolation using the stencils 0 and 1 leads to the following poly-
nomials

p0(x) =Ui +
Ui − Ui−1

∆x
(x− xi) ,

p1(x) =Ui +
Ui+1 − Ui

∆x
(x− xi) ,

(3.5.11)

where the right interface value ati − 1/2 and the left interface value ati + 1/2 are
obtained for x equal toxi−1/2 andxi+1/2, respectively.

Subsequently, calculation of the weighted averageP of the above polynomials yields
the reconstructed variables at the cell facesUR,i−1/2 andUL,i+1/2. The convex combina-
tion is defined by

P(x) =
a0

a0 + a1
p0(x) +

a1

a0 + a1
p1(x) , (3.5.12)

with

a0 =
C0

(ǫ + IS0)2
,

a1 =
C1

(ǫ + IS1)2
.

(3.5.13)

Here,ǫ is a small positive number which is introduced to avoid a division by zero in a
perfectly smooth flow andC0,1 are the optimal weights. Furthermore, the smoothness
indicators are given by

IS0 =(Ui − Ui−1)
2 ,

IS1 =(Ui+1 − Ui)
2 .

(3.5.14)

The derivation of a higher-order method follows the same concept. However, the com-
plexity of the equations is rising with an increasing order of accuracy, for more details
see Balsara and Shu [6], Drikakis and Rider [27], Jiang and Shu [62].
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3.6 Domain Decomposition

The simulation of separated and turbulent three-dimensional flows requires a large set
of data and leads to a high computational cost. In order to solve the problems in
a smaller time scale, the load needs to be distributed over a set number of processes.
Therefore, the global computational grid is split up into several sub-grids, which are as-
signed to separate processes1. The governing equations can now be applied in parallel
as several smaller,“local” problems — thus solving the global problem in an acceptable
time.

PROCESS 1

PROCESS 3

PROCESS 2

PROCESS 4

GLOBAL DATA GRID

LOCAL DATA GRID

DECOMPOSITION

Figure 3.3: Decomposition of a two-dimensional global data domain overfour processes.

The degree of domain decomposition depends on the number of processes available,
see Minty et al. [81]. Figure 3.3 illustrates the decomposition of a two-dimensional
global grid into four equally-sized data blocks which can betreated independently by
four separate processes. The global data is split up into four sections and distributed
among several processes, allowing problems that are otherwise memory bound to be
calculated. Decomposing the domain as evenly as possible for a given number of
processes available in each spatial direction is done automatically by a pre-processor.
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OVERLAP WITH PROCESS 3

OVERLAP WITH PROCESS 4

BOUNDARY CELLS FOR THE PROCESS 1:

OVERLAP WITH PROCESS 2

PROCESS 3 PROCESS 4

PROCESS 1 PROCESS 2
EXTERNAL BOUNDARY CONDITIONS

Figure 3.4: Update of local boundary cells for process 1.

At each iteration, each process requires data from its neighbours in order to calculate

1 In practice, each topological entity (“process”) is assigned to an individual, physical central pro-
cessing unit (“processor”) in order to increase the performance of the simulation. In this case, the terms
“process” and “processor” are interchangeable.
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the state of the local data grid. This information exchange has been implemented ac-
cording to the MPI-1 standard, e.g. see MacDonald et al. [74], Pacheco [87], thus
ensuring portability of the code to different computing architectures and operating sys-
tems. All processes copy the overlapping data from the localgrid into buffer arrays and
send it to the corresponding adjacent processes. Then they receive the buffer arrays
sent by the neighbouring processes, unscramble the data andstore it in the appropri-
ate boundary cells. Swapping the boundaries involves point-to-point communication
between all adjoining processes and is implemented in a similar manner to an exter-
nal boundary condition. A schematic of the boundary cell update for process 1 of the
above example is shown in Figure 3.4.

3.7 Summary

In this chapter, the numerical methods employed in this thesis to solve the non-dimen-
sional, compressible Navier-Stokes Equations have been presented. For the integration
in time, several options comprising second- and third-order accurate, TVD and non-
TVD, explicit Runge Kutta schemes are given in Section 3.2. In combination with
various variants of high-resolution, Godunov-type methods used for solving the ad-
vective fluxes (Sections 3.4 and 3.5) this allows for a rigorous investigation of different
temporal and spatial discretisation techniques in the context of ILES for separated and
turbulent flows. Furthermore, the solution procedure for the viscous fluxes has been
explained briefly and the basic principles of parallel computing have been illustrated.
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C H A P T E R 4

Taylor-Green Vortex

I N simulations of separated flows, special care has to be takento capture the tran-
sitional regime leading to a turbulent flow state as accurately as possible. In order

to assess the capabilities of different numerical methods, it is preferable to isolate the
problem by simplifying the conditions. Here, the vortex system introduced by Taylor
and Green [109] is considered for evaluating the behaviour of the methods presented
in Chapter 3 during various stages in the development of the flow.

4.1 Introduction

A grand challenge for modern methods in Computational FluidDynamics is the mod-
elling and simulation of the time evolution of fully non-linear turbulent flow in and
around realistic engineering applications. Moreover, forseparated flows it is often
necessary to capture several different stages in the development of a turbulent flow
field. Here, it should be noted that the linear, non-linear and fully turbulent stages
often place contradictory requirements on the numerical methods used. For example,
in a fully developed turbulent flow it is desirable that the numerical method provides
some kind of damping to replace the action of subgrid stresses on the resolved motions.
However, in the early linear and non-linear stages it is important that the perturbations
are allowed to grow without excessive damping from the numerical method.

For such flows, it is unlikely that a deterministic predictive framework based on CFD
will emerge in the foreseeable future. A reason for this is the inherent difficulty in
modelling and validating all the relevant physical sub-processes, and acquiring all the
necessary and relevant initial and boundary conditions. Thus, the modelling challenge
is to develop computational methods that will still give accurate and reliable results for
at least the large energy-containing scales of motion, evenif the simulation is severly
under-resolved, i.e. not all dynamic eddy scales are explicitly incorporated.

In the classical picture of turbulence, the kinetic energy is transferred from large to
successively smaller scales until it is transformed into internal energy, what would be
the dissipation into heat. Whereas the dynamics are assumedto be essentially inviscid
at the large scales, the dissipation mechanism is governed by the action of molecular



60 Taylor-Green Vortex

viscosity. In the absence of molecular viscosity, for example in idealistic inviscid
simulations, the loss of kinetic energy can be used to assessthe numerical dissipation
inherent to the numerical scheme employed. The same holds for the transitional stage.

It is commonly accepted that the physical processes in transition and in fully developed
turbulence are governed by the interaction of vortices. Here, a crucial mechanism de-
scribed by vortex dynamics is vortex stretching. In order toinvestigate the straining
and consequent extension of vortex lines, a complete solution of the three-dimensional
governing equations is necessary — in a two-dimensional representation only vortex
pairing or tearing can be observed, but the stretching mechanism is implicitly elim-
inated because the vortex lines are perpendicular to the domain. Therefore, a three-
dimensional initial condition for a general investigationof the transition to turbulence
has to provide a simple but well-defined description of the large scales and also some
properties of statistically uniform isotropic turbulence. The simplest fundamental case
that has been used as a prototype for vortex stretching and the consequent production
of small-scale eddies is probably the vortex system introduced by Taylor and Green
[109].

The dynamics of the inviscid and the viscous Taylor-Green Vortex have been discussed
in detail in the 1980’s by Brachet et al. [12] and later in the 1990’s by the same au-
thor, see Brachet [11]. The pseudo-spectral DNS employed conserves the mass, the
momentum and the energy discretely for the finite number of terms in the Fourier se-
ries expansion. Furthermore, these methods are strictly non-dissipative — hence they
are often used to produce benchmark results for finite volumeor finite difference so-
lutions. In the absence of molecular viscosity, however, the pseudo-spectral method
becomes inaccurate and even unstable during the course of the simulation. The rea-
son for this behaviour is the undamped growth of an inviscid instability mechanism
originating from a vortex sheet which is formed by the centrifugal forces acting on
the Taylor-Green Vortex. As the vortex core twists about thevertical axis and the
sheet becomes increasingly unstable the high modes can no longer be represented ac-
curately by the underlying trigonometric polynomial. Therefore, the available data for
the inviscid Taylor-Green Vortex is limited to very early times only and clues about the
later behaviour of the flow have to be deduced from the viscousresults and by logical
reasoning. It should be noted, however, that the aim of this investigation is not the ac-
curate reproduction of the idealistic inviscid case. In fact, the purpose of this study is to
assess the performance of different high-resolution algorithms and the effects of their
intrinsic numerical dissipation during the laminar, transitional and turbulent stage.

The above studies also include data for the viscous Taylor-Green Vortex at Reynolds
numbers ranging from 100 to 5000. It has been found that for the highest Reynolds
numbers the flow undergoes two stages. At early times, i.e. upto a non-dimensional
time between 3 and 4, well-organised structures are formed and the flow remains es-
sentially inviscid. Here, the kinetic energy spectrum behaves like a power law with
the wavenumberk and the spectral exponent is of the order of -4. Thek−4 spectrum
suggests that the early flow development may be governed by quasi-two-dimensional
dynamics. At later times, the effect of viscosity can no longer be neglected and highly
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distorted, dissipative structures develop. When the dissipation rate reaches its maxi-
mum the kinetic energy follows a power law spectrum closer tothe characteristic -5/3
law for turbulence immortalised by Kolmogorov. The flow structures as well as the
dissipation rate eventually decay to zero afterwards due tothe lack of an external en-
ergy source. The estimates reported by Brachet et al. [12] and Brachet [11] for the
time at which the dissipation peak occurs are fairly consistent for the higher Reynolds
numbers, see Figure 4.1. The almost indistinguishable results for the highest Reynolds
numbers of 3000 and 5000 lead to the hypothesis that they may be close to a viscos-
ity independent limit. Thus, the evolution of the kinetic energy and its dissipation
provides a useful quantitative measure for the developmentof both the viscous and
inviscid Taylor-Green Vortex. In the inviscid limit, the kinetic energy can only be
dissipated by viscous effects introduced through the explicit or implicit subgrid-scale
model of the numerical method — otherwise it should be conserved.
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Figure 4.1: Development of the volumetrically averaged kinetic energydissipation for
different Reynolds numbers obtained by the DNS of Brachet [11], Brachet et al. [12].

Various ILES approaches, conventional LES and spectral methods have been used re-
cently to investigate the effects of viscosity on the dynamics of the Taylor-Green Vor-
tex. Details on the impact of both molecular viscosity in theNavier-Stokes Equations
and numerical viscosity provided by the discrete approximation of the solution to the
Euler Equations can be found in the works of, e.g. Bensow et al. [8], Drikakis et al.
[30], Hickel et al. [57], Shu et al. [103]. The evolution of the kinetic energy and the
closely related enstrophy production in time has been central to all of the above studies.

The results obtained by a diversity of numerical methods on agrid comprising 1283

computational cells have also been compiled by Drikakis et al. [29], see Figure 4.2.
The ILES methods employed to solve the inviscid problem presented here are distin-
guished through various limiting algorithms. They incorporate a fourth- and second-
order accurate Flux Corrected Transport scheme, respectively labelled as FCT4 and
FCT2; a third-order accurate Lagrange Remap method, labelled as LR3; and the third-
order accurate Characteristics-Based high-resolution method presented in Chapter 3,
labelled as CB3. Furthermore, a second-order accurate conventional LES using the
mixed subgrid-scale model of Bardina et al. [7], labelled asMIXMOD2; and the DNS
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results of Brachet [11] are plotted for comparison. In general, all the methods shown in
Figure 4.2 seem to predict the global dynamics of the Taylor-Green Vortex reasonably
well, but differences are apparent during the increasing stage and in the composition
of the dissipation peak.
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Figure 4.2: Development of volumetrically averaged kinetic energy dissipation as obtained
by a range of numerical methods on a grid comprising 1283 cells, see Drikakis et al. [29] for

details.

As has been pointed out by Shu et al. [103], however, these integral measures have to
be evaluated carefully. They may be misleading if not considered in combination with
other parameters characterising the flow. Therefore, the performance of different nu-
merical methods for discretising the Euler equations in time and space are thoroughly
assessed in the following sections using various statistical quantities prescribing the
development of the Taylor-Green Vortex.

4.2 Numerical Framework

The prototype configuration considered here for the assessment of various numerical
schemes for predicting the fundamental dynamical mechanisms controlling the tran-
sitional behaviour from laminar to turbulent flow is given bythe Taylor-Green Vor-
tex. The three-dimensional, incompressible vortex field evolves from an initial, two-
dimensional velocity field defined by

u0 = U sin(kx) cos(ky) cos(kz) , (4.2.1)

v0 = −U cos(kx) sin(ky) cos(kz) , (4.2.2)

w0 = 0 , (4.2.3)

and the condition for the velocity components is complemented by the corresponding
solution of the pressure Poisson Equation

p0 = p∞ +
ρ0U2

16

(

2+ cos (2kz)
) (

cos (2kx) + cos (2ky)
)

. (4.2.4)
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As proposed by Brachet et al. [12], a single-mode initial field with k = 1 has been
selected. In order to obtain consistent energy conditions for the compressible flow
solver employed in this investigation the total energy is calculated as

e0 =
p0

γ − 1
+

1
2
ρ0(u

2
0 + v2

0 + w2
0) . (4.2.5)

Furthermore, the remaining free parameters have been chosen according to Drikakis
et al. [30] for an ideal gas at near incompressible conditions characterised by a Mach
number ofMa = 0.29, yielding

U = 100
m
s
, γ = 1.4 , ρ0 = 1.178

kg
m3

, p∞ = 105 N
m2

. (4.2.6)

The resulting Taylor-Green Vortex att = 0 is visualised for a cubic domain of length 2π
in all three dimensions in Figure 4.3 by using iso-energy surfaces. This specific config-

Figure 4.3: Initial condition for the Taylor-Green Vortex visualised by iso-energy surfaces.

uration allows for triply-periodic conditions at the domain boundaries. The evolution
of the flow field could also be simulated in a reduced domain by taking advantage of
the symmetry planes atx = π, y = π andz= π or additional symmetries listed by Bra-
chet et al. [12]. However, enforcing symmetry conditions atthe boundaries contradicts
the aim of fully assessing a numerical method because it explicitly prevents symmetry
breaking, a characteristic of discretisation schemes.

The cubic domain has been discretised on a block-structured, Cartesian mesh with
evenly distributed points, see Figure 4.4. In order to studythe effect of grid reso-
lution, three different mesh sizes comprising 643, 1283 and 2563 computational cells
are considered here. In addition to the grid refinement, the resolving power of three
different high-resolution algorithms has been investigated incombination with the
characteristics-based Riemann solver of Eberle [32]. The extrapolation methods em-
ployed are the third-order MUSCL scheme developed by Zóltak and Drikakis [132]
(referred to as M3), the fifth-order MUSCL scheme presented by Kim and Kim [63]
(referred to as M5) and the ninth-order WENO scheme following the ideas of Balsara
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X
Y

Z

Figure 4.4: A typical block-structured grid employed in the simulations of the Taylor-Green
Vortex.

and Shu [6] (referred to as W9). More details on the specific methods for the spatial
discretisation of the governing equations can be found in Sections 3.4 and 3.5.

Attention has also been paid to the time-integration scheme. Although this area has
attracted less interest in previous studies, it cannot be assumed in general that the
flow evolution is not affected by the choice of the time-integration method. Therefore,
the results obtained on a computational grid comprising 643 cells using the second-
order scheme from Equation (3.2.3), the second-order TVD scheme given in Equation
(3.2.4), the third-order TVD scheme in Equation (3.2.6) andthe third-order extended
stability scheme from Equation (3.2.7) are compared in Section 4.5. The methods
for integrating the governing equations in time will be referred to as RK2, RK2TVD,
RK3TVD and RK3HI, respectively, in the remainder of this chapter. Furthermore,
all data has been non-dimensionalised with the domain length and the initial velocity
magnitudeU. Technical details for the simulations performed on a HP DL140 G5
server with 3.0GHz Intel Woodcrest 5160 Xeon processors canbe found in Tables 4.1
and 4.2. The CFL numbers presented in Table 4.1 are the maximafor which stable
simulations could be obtained and the duration of the simulations given in CPU hours
in Table 4.2 are specific to the computer cluster used.

643 1283 2563

M3 M5 W9 M3 M5 W9 M3 M5 W9

RK2 0.2 0.2 0.4 — — — — — —
RK2TVD 0.2 0.2 0.4 — — — — — —
RK3TVD 0.4 0.4 0.6 — — — — — —
RK3HI 0.8 0.8 0.6 0.6 0.8 0.4 0.6 0.8 0.4

Table 4.1: Maximum possible CFL numbers for the simulations performedwith
Taylor-Green initial conditions.
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643 1283 2563

M3 M5 W9 M3 M5 W9 M3 M5 W9

Proc. 8 8 8 64 64 64 64 64 64
CFL 0.8 0.8 0.6 0.6 0.8 0.4 0.6 0.8 0.4
Steps 3280 3312 4485 8832 6692 13520 17947 13762 27673
CPUh 4.93 5.29 12.52 134 113 333 1161 1017 3944

Table 4.2: Numerical details for the Taylor-Green simulations using the third-order extended
stability time-integration method (RK3HI).

4.3 Flow Topology

The dynamics of the Taylor-Green Vortex are discussed here qualitatively on the ba-
sis of the results obtained by the combination of ninth-order WENO (W9) scheme,
third-order extended stability Runge Kutta (RK3HI) methodand a computational grid
consisting of 643 computational cells. For this purpose, the structure of theflow has
been visualised in Figure 4.5 with instantaneous contour surfaces of constant Q-values.
The Q-criterion as defined by Jeong and Hussain [61] is the second invariant of the ve-
locity gradient tensor and can be written as

Q =
1
2

(||Ω||2 − ||S||2) , (4.3.1)

where the shear strain rate and vorticity magnitude are given by

||S||2 = tr(SST) , ||Ω||2 = tr(ΩΩT) , (4.3.2)

andS, Ω are the symmetric and anti-symmetric components of the velocity gradient
tensor, respectively. Additionally, the colour contours of total vorticity are shown in
Figure 4.6 on plane cuts at the periodic boundaries of the cubic domain. Here, the
colour maps are identical for all pictures and the total vorticity is defined as

|ω| = |∇ × u| . (4.3.3)

The initial Taylor-Green Vortex featuring symmetry for allπ-planes in the three dimen-
sions is visualised in Figures 4.5(a) and 4.6(a). As has beendescribed by Brachet et al.
[12], the vorticity vanishes at the intersections of the symmetry planes and it reaches
a maximum in the centre of the largest structures obtained bythe Q-criterion. The
initial, two-dimensional flow quickly becomes three-dimensional due to the action of
a pressure gradient during the very early stage of the simulation.

As the flow develops, the initial vortices are driven towardsthe symmetry planes by
centrifugal forces. The impermeability constraint pushesthem along the faces until
they encounter the opposing flow imposed by the symmetry. Consequently, the fluid
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rushes back inwards. The result of this motion is the formation of vortex sheets, clearly
visible in Figures 4.5(b) and 4.6(b), that have also been reported by Bensow et al.
[8], Brachet et al. [12]. This is approximately the time where the flow starts to become
under-resolved on the given grid and the kinetic energy dissipation increases.

The kinetic energy continues to decrease rapidly while the closed vortex sheets undergo
an instability mechanism and tear open, shown in Figures 4.5(c) and 4.6(c). This stage
in the flow development is also associated with the generation of large patches of high
vorticity. Thus, a strong increase in total vorticity can beobserved which peaks with
the complete breakdown of the vortex sheets.

After the sheets have fully disintegrated, the evolution ofthe Taylor-Green flow is
governed by the dynamics of the interaction between vortices. Elongated, small-scale
tubes of strong vorticity appear due to vortex stretching and are subject to tearing
and reconnection. However, the flow is still organised and dominated by the initial
symmetries, see Figures 4.5(d) and 4.6(d).

At the late stage of the simulation, e.g. Figures 4.5(e) and 4.6(e), the symmetry can
no longer be preserved. The result of several tearing and reconnection cycles is that
the flow has lost all memory of the initial condition and is nowfully disorganised. The
characteristic, worm-like vortices simply fade away at very late times, as indicated by
the low structural density in Figure 4.5(f) and the weak vorticity in Figure 4.6(f). This
behaviour is extremely similar to decaying turbulent flows.

The qualitative observations made here are not unique to thespecific simulation de-
scribed above. The development of the Taylor-Green Vortex and the dynamics in-
volved are similar for all numerical methods employed here.Yet, there are quantitative
differences which will be identified in the following sections.



4.3 Flow Topology 67

(a) T=0.0 (b) T=4.0

(c) T=8.0 (d) T=20.0

(e) T=30.0 (f) T=60.0

Figure 4.5: Instantaneous flow visualisations using iso-surfaces of the Q-criterion obtained
by the combination of ninth-order WENO (W9) and third-orderRunge Kutta (RK3HI)

method on a 643 grid.
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(a) T=0.0 (b) T=4.0

(c) T=8.0 (d) T=20.0

(e) T=30.0 (f) T=60.0

Figure 4.6: Instantaneous flow visualisations using vorticity contours obtained by the
combination of ninth-order WENO (W9) and third-order RungeKutta (RK3HI) method on a

643 grid.
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4.4 Flow Diagnostics

In order to quantify the dynamics encoutered during the time-evolution of the Taylor-
Green Vortex, the following quantities have been calculated. Although some of the
parameters are borrowed from the classical theory of turbulence assuming homogene-
ity and isotropy, which does not always strictly apply to theTaylor-Green Vortex, they
can be treated as indicators characterising the flow.

Kinetic Energy. The kinetic energy can be used to measure the loss of conservation
due to the discrete approximation made in solving the governing equations numeri-
cally. The mean kinetic energyKE considered here is computed as

KE =
1
2

〈

|u|2
〉

, (4.4.1)

where<> denotes the volumetric average of the square of the velocityvector. Ideally,
the kinetic energy should be constant during the course of the simulations because
there is no physical dissipation in the Euler equations. Of course, this assumption only
holds for a conservative numerical scheme and if the flow can be fully resolved on the
given grid. Therefore, a deviation from the initial value can be used as an indicator for
the onset of the under-resolved stage in the simulation.

Kinetic Energy Decay Rate. For homogeneous and isotropic turbulence, Kol-
mogorov [64] has shown that the time-evolution of kinetic energy should obey the
power law given by the following expression that can be foundin, for example, the
book of Hinze [58],

KE ∝ (t − t0)
−P . (4.4.2)

Here,t0 marks the onset of kinetic energy decay andP is a constant that has been the-
oretically evaluated by Kolmogorov [64] to be equal to 10/7. However, slightly lower
values ofP between 1.2 and 1.3 have been reported from wind tunnel measurements
of grid-generated turbulence, e.g. see Comte-Bellot and Corrsin [18], Mohammed and
LaRue [82], Skrbek and Stalp [104]. Furthermore, Skrbek andStalp [104] have shown
that the kinetic energy follows a power law withP = 2 if the largest energy-containing
scales have reached a saturated state where their length is comparable to the size of the
domain and they cannot grow any further.

Kinetic Energy Dissipation. Another useful quantity to consider is the slope of the
mean kinetic energy development in time. This parameter, also known as the mean
kinetic energy dissipation−dKE/dt, can be used to quantify the loss of kinetic en-
ergy during the course of the simulation. The peak in kineticenergy dissipation also
coincides with the beginning of the flow stage governed by thedynamic interaction
between the vortex tubes.

Enstrophy. Closely related to the kinetic energy dissipation is the growth of enstro-
phy. The mean enstrophy is measured in time as the square of vorticity

< ω2 >=< |∇ × u|2 > . (4.4.3)
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The physical interpretation of the production of enstrophyduring the early stage of the
simulations is the stretching of the initial Taylor-Green vortex, whereas the subsequent
decrease is caused by viscous damping. As the enstrophy should grow to infinity in
the absence of viscosity, it is a criterion for the effective viscosity and the resolving
power of a numerical method. According to Shu et al. [103], the resolving power of
a numerical scheme is a measure of its ability to represent the flow physics accurately
on a finite number of grid cells.

Effective Viscosity. The effective viscosity for incompressible flow can be approx-
imated by assuming that the loss of mean kinetic energy is equal to the mean of the
viscous dissipation. On the one hand, the mean viscous dissipation is determined by
the mean-square of the strain-rate. On the other hand, for high Reynolds number flows,
the mean-square strain-rate yields about the same value as the enstrophy, see deriva-
tion in the book of Tennekes and Lumley [113]. Thus, the effective viscosityνe f f as
experienced by the fluid during the course of the simulation can be calculated from the
following simple expression

−
dKE

dt
= νe f f < ω

2 > . (4.4.4)

Kinetic Energy Spectrum. In order to obtain deeper insight into the distribution
of kinetic energy among the length scales present in the flow,the three-dimensional
energy spectrumE(k) is employed, wherek is the wavenumber. Details on the cal-
culation of the energy spectrum can be found in the book of Hinze [58]. Through
intelligent arguments based on dimensional reasoning, Kolmogorov [64] found that
the kinetic energy spectrum for homogeneous and isotropic turbulence is proportional
to k−5/3 in the inertial subrange. This power law is widely used to prove the existence
of a fully developed, turbulent flow. Regarding the Taylor-Green Vortex, Brachet et al.
[12] found it in relatively good agreement with the energy spectrum obtained near the
dissipation peak, whereas slightly lower values than−5/3 have been reported during
the very early stages.

Integral Length-Scale. From the kinetic energy spectrum, the integral length-scale
ℓ can be calculated as

ℓ =
π

2
〈

|u|2
〉

∫ kmax

0

E(k)
k

dk . (4.4.5)

The integral scale is a measure of the largest distance between two points in space
where the different velocities are correlated. Hence, it is a characteristic length for the
largest energy-containing eddies.

Taylor Microscale. Another standard length-scale in turbulence is the Taylormi-
croscale. Assuming isotropic flow, it can be averaged over all three spatial dimensions,
yielding

λ =
1
3

(λx + λy + λz) , (4.4.6)
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where the individual components are given by

λ(x,y,z) =

√

< (u, v,w)2
rms >

< ∂(u, v,w)/∂(x, y, z) >
. (4.4.7)

The Taylor microscale marks the transition from the inertial subrange to the dissipation
range, i.e. eddies of size less thanλ begin to be affected by viscous dissipation.

Velocity Structure Functions. Finally, velocity structure functions will be used
here to gain insight into the dynamics of the Taylor-Green flow. These functions are
also known as the higher-order velocity-derivative moments and they are written in
their spatially averaged form as

Sn =
1
3

(Sx,n + Sy,n + Sz,n) , (4.4.8)

with the uni-directional terms being defined as

S(x,y,z),n = (−1)n

〈(

∂(u, v,w)/∂(x, y, z)
)n〉

〈(

∂(u, v,w)/∂(x, y, z)
)2〉n/2

, (4.4.9)

andn being the order of the function. Two common measures are the skewness and the
flatness which are obtained forn = 3 andn = 4, respectively. The velocity-derivative
skewness is connected to vortex stretching and the energy transfer between different
scales, whereas the velocity-derivative flatness is a measure for the probability of devi-
ations from the mean value. Thus, the skewness is an indicator for the mean dissipation
in the flow and the flatness hints at the intermittent character of the velocity fluctua-
tions. Generally, both absolute values increase with progressively higher Reynolds
numbers. The typical data obtained in experimental measurements and numerical sim-
ulations of isotropic turbulence has been compiled by Sreenivasan and Antonia [108].
Here, the values listed range from -0.3 to -0.7 for the skewness and 3 to 40 for the flat-
ness with a Reynolds numbers based on the Taylor microscale between 4 and 40000.

4.5 Effect of Temporal Discretisaton

The results presented here have been compiled in order to clarify the importance of the
choice of method for integrating the governing equations intime. For this purpose, all
possible combinations of the three high-resolution schemes M3, M5 and W9 and the
four different second- and third-order accurate time-stepping methods RK2, RK2TVD,
RK3TVD and RK3HI have been investigated, see also Table 4.1.The results obtained
on a grid comprising 643 computational cells are compared against each other in terms
of several integral quantities already presented in Section 4.4. Here, possible differ-
ences regarding the flow dynamics during the course of the simulation are of prime
interest. The characteristics of the individual spatial discretisation methods employed,
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however, will be discussed in Section 4.6. Their main purpose in this part is to test
for possible inconsistencies with respect to combinationsof discretisation methods in
time and space.

Figure 4.7 shows the time-development of the integral kinetic energy and energy dis-
sipation for all simulations. At the end of the very early, laminar stage marked by the
formation of the vortex sheets, the kinetic energy starts decaying and reaches its max-
imum dissipation rate near the value predicted by the DNS of Brachet et al. [12]. It
should be noted, that the highly under-resolved simulations are not expected to match
the DNS data exactly. However, they seem to represent the physics involved within
acceptable accuracy for early and medium times, i.e. the increasing loss of kinetic en-
ergy due to vortex sheet break-up and the subsequent rapid reduction of the dissipation
rate during the organised flow stage. Yet, as the flow becomes more disorganised for
T & 20, the numerics predict an artificial increase in dissipation. Up to this point, all
time-integration methods give virtually identical results, regardless of their order of
accuracy or the details of the stability constraints satisfied.
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Figure 4.7: Development of the volumetrically averaged kinetic energyand energy
dissipation obtained by different spatial and temporal discretisation techniques on a 643 grid.

A more clear picture of this unphysical behaviour can be obtained by also consider-
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ing the length scales presented in Figure 4.8. Initially, the integral length scales are
reduced due to the disintegration of the vortex sheets. As can be expected during the
subsequent stage characterised by a self-similar energy decay, the largest scales are
growing until they are affected by the size of the domain. The saturated state of the in-
tegral scales seems to coincide with the onset of disorganised flow. A similar effect can
be observed for the Taylor microscale. The elongated vorticity-carrying tubes feature
sharp velocity gradients. In under-resolved simulations,the sharp fronts are diffused by
the numerics and the surrounding fluid is seemingly entrained. Since there is no clear
separation between the large and the small scales due to insufficient spatial resolution,
the Taylor microscales are also affected by the presence of the symmetry conditions
and the vortices are re-connecting. This mechanism is akin at the backscatter observed
in two-dimensional turbulence. Thus, the energy dissipation is slowed down to a rate
below a physically adequate value and the Taylor microscales have grown in size. Now,
the kinetic energy can be dissipated again at a higher rate — hence the artificial hump
in the development of the energy dissipation. Although the impact of this numerical
artifact can be reduced by using a very high-order scheme forthe spatial discretisa-
tion, such as W9, the higher order methods become more and more prone to produce
dissimilar results for different time-integration schemes.
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Figure 4.8: Development of the Taylor microscale and the integral length scale obtained by
different spatial and temporal discretisation techniques on a 643 grid.

The above conclusion regarding the effect of the time-integration method is also re-
flected in the evolution of the structure functions, see Figure 4.9. The results obtained
by M3 feature large-amplitude fluctuations that are virtually identical throughout the
course of the simulations. Neither the skewness nor the flatness converge to a near-
constant value as would be expected for a fully developed turbulent flow. For M5, the
third-order Runge Kutta methods with extended stability region (RK3HI) gives slightly
different results compared to the other methods. However, the differences occur only
after the unphysical hump in the development of the energy dissipation has appeared.
Variations with the choice of time-integration scheme can also be observed for W9.
The magnitude of the variations is particularly pronouncedduring the transition to a
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highly disorganised state. Here, the third-order TVD RungeKutta method seems to
differ from the other three schemes. Yet, both the skewness and the flatness converge
to similar values for all time-integration methods regardless of their time-history.

In summary, it has been found that the numerical integrationin time has only a minor
effect on the results obtained by the three different high-resolution algorithms. No
method seems to offer a significant advantage over the others regarding the quality of
the solution. However, because the third-order Runge Kuttamethod with extended
stability region (RK3HI) generally allows for the highest CFL numbers, it was chosen
for all simulations using finer grids .
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(c) Skewness predicted by M5

TIME

F
LA

T
N

E
S

S

0 10 20 30 40 50 603

4

5

6

7

8

9

10

11

12

RK2
RK2TVD
RK3TVD
RK3HI

(d) Flatness predicted by M5
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(e) Skewness predicted by W9
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Figure 4.9: Development of the velocity structure functions obtained by different spatial and
temporal discretisation techniques on a 643 grid.
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4.6 Effect of Spatial Discretisaton

In order to assess the impact of the spatial discretisation on the results, simulations with
the third- and fifth-order MUSCL schemes (M3 and M5), as well as the ninth-order
WENO (W9) reconstruction method have been performed. Here,three stages of grid
refinement featuring 643, 1283 and 2563 computational cells have been considered.
Furthermore, all results compared in this section have beenobtained with the third-
order accurate, extended stability Runge Kutta algorithm (RK3HI) for the integration
in time.

The evolution of kinetic energy and energy dissipation for all methods and all grids
investigated is shown in Figure 4.10. Note that the kinetic energy is presented here in
logarithmic scales to illustrate the existence of a power law for the decay rate. Aver-
aged values for the decay exponent as determined by curve-fitting in a time interval
betweenT0 = 11 andT = 60 are given in Table 4.3. The slope of the exponential
decay on the 643 grid seems to be within the range of values expected for homoge-
neous turbulence. However, this data is misleading becauseof the unphysical hump
already discussed in the previous section. In the absence ofvortex pairing, a steeper
slope should be expected. This is the case indeed if the grid resolution is increased.
Both M5 and W9 reach a grid-converged slope with aP of approximately 1.88 and
2.02, respectively, whereas M3 seems to approach a similar value only on the finest
grid. This value is in close agreement with the prediction ofSkrbek and Stalp [104]
for turbulent flow where the largest scales are bounded by thesize of the domain.

643 1283 2563

M3 M5 W9 M3 M5 W9 M3 M5 W9

Decay exponentP 1.31 1.36 1.48 1.83 1.88 2.03 2.00 1.88 2.02
Onset of decay 1.89 3.13 3.81 3.63 4.26 4.68 4.51 5.02 5.48

Table 4.3: Power law exponent for the decay rate of kinetic energy and the time marking the
onset of energy decay.

Additionally, the time marking the onset of the energy decayhas been documented in
Table 4.3. In general, M3 loses kinetic energy before M5 and,in turn, the dissipation
for M5 starts in advance of W9. This behaviour is particularly pronounced for the
coarsest grid and it is diminishing with increasing grid resolution. Since the onset of
decay represents the point at which the simulation becomes under-resolved, it is a good
indicator for the resolving power of the numerical method — the longer the kinetic
energy is conserved, the better the method for this specific case. As a consequence of
the relatively large difference regarding the onset of kinetic energy dissipation onthe
coarsest grid, the dissipation peak predicted by M3 also appears prior to the peaks of
the higher order methods, see Figure 4.10(b). However, thisbehaviour is less evident
when the grid resolution is increased and a peak-time ofT ≈ 9 is in good agreement
with the DNS of Brachet [11], Brachet et al. [12].
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Moreover, additional effects of grid refinement can be observed. The hump apparent
for the 643 grid at times nearT ≈ 30 is absent for both finer grids. Yet, another decrease
in energy dissipation associated with an increasing integral length scale becomes more
noticeable for the 1283 grid nearT ≈ 16. The strength of this second hump that has
also been reported by Grinstein [46] cannot be associated conclusively with the grid
resolution as it is less evident for both the coarsest and thefinest grid. However, flow
visualisations have revealed that the particular combination of the WENO method and
the 1283 grid favours the formation of strong vortex rings which are centred around the
four initial rotation axes. The presence of these strong vortex rings is the reason for a
pronounced deceleration of the energy dissipation rate andit also delays the growth of
the integral length scales.

Furthermore, the production of vorticity has been monitored in terms of enstrophy. In
combination with the energy dissipation, this data can be used to estimate the effective
viscosity during the course of the simulations. Figure 4.11details the development
of the integral enstrophy and the corresponding effective viscosity provided by the
three different methods on all computational grids employed. As expected, the humps
marking a decrease in kinetic energy dissipation are reflected in the values for the
effective viscosity, which is most obvious for the 643 grid. The numerical viscosity
is generally decreasing on the finer grids — hence more enstrophy is produced. Most
remarkably, there are large variations in magnitude for theresults obtained by the three
numerical methods. W9 seems to produce an effective viscosity that is very similar to
M3, but on a grid coarser by a factor of two in each spatial dimension. This observation
is consistent for all levels of grid refinement. Thus, it is anindication that W9 features
a resolving power twice as high as M3. M5 lies in between the two.

Similar conclusions can be drawn from the averaged Taylor microscales and the aver-
aged integral length scales depicted in Figure 4.12. Through increasing the grid resolu-
tion or the order of the spatial discretisation method, boththe integral length scale and
the Taylor microscale can be reduced. Whereas the largest energy-containing scales
seem to reach a converged state for the 2563 grid, the small scales continue to decrease
as could be expected in an inviscid flow problem. Again, W9 requires only half the
resolution in each dimension compared to M3 in order to produce a similar Taylor
microscale.

A closer look at the spatially separated microscales, shownin Figure 4.13, partly re-
veals another qualitative difference between the flows predicted by the three different
methods. Here, onlyλx andλz are presented becauseλx andλy are nearly identical
as a consequence of the initial condition. The flow obtained by M3 and M5 is highly
anisotropic on the coarsest grid, but W9 reaches a more isotropic state during the late
stage of the simulation. On the next level of grid refinement,the evolution of the small
scales for M5 shifts closer to the one predicted by W9, especially if λz is considered.
For the finest grid, the flow given by M5 has also reached an isotropic state and the
Taylor microscales follow the shape of W9 more closely in alldimensions. M3 seems
to follow this trend at the higher grid resolutions.

This behaviour may be explained by the particularities of the Taylor-Green conditions.



78 Taylor-Green Vortex

By design, the initial condition enforces symmetries at plane cuts through the domain
at multiples ofπ in all directions. As has been shown in Section 4.3, W9 cannot
preserve the symmetries in the flow at late times. In order to compare the performance
of the two MUSCL schemes, the vorticity contours atT = 60 as predicted by M3
and M5 are displayed in Figure 4.14 for all grid resolutions.Clearly, the symmetries
are still preserved by both methods for the coarsest grid. The results obtained on
the medium grid show slight asymmetries for M5, but not for M3. In the fine-grid
simulations, the symmetries are no longer preserved by M5 and M3 starts to develop
small deviations. This development is not surprising because the numerical algorithms
become more sensitive to small disturbances with increasing order of accuracy and
grid resolution. In addition, W9 does not satisfy any stability criteria as opposed to
the MUSCL schemes. The breakdown could probably be delayed if W9 is used in
conjunction with a TVD method for the integration in time, but it certainly could not be
prevented completely. For the Taylor-Green Vortex, symmetry-breaking is the essential
mechanism that provides more isotropic and homogeneous flowconditions similar to
fully developed turbulence. Thus, together with the resolving power, it is one of the
main attributes for characterising the numerical methods.

With isotropy and homogeneity in mind, the seemingly erratic development of the ve-
locity structure functions obtained with M3 for the coarsest grid is not so startling any
more. As can be seen in Figure 4.15, the magnitude of the fluctuations is linked to the
character of the flow. Higher-order moments are very sensitive to local changes of ve-
locity gradients, hence they can be misleading if the flow is highly intermittent. With
increasing grid resolution, the Taylor-Green Vortex leadsto more isotropic, homoge-
neous conditions and the velocity structure fluctuations are diminishing, especially for
the two MUSCL schemes. The skewness and the flatness seem to approach values of
approximately -0.4 and between 4 to 5, respectively, if the flow is isotropic. This is
slightly below what would be expected for fully developed turbulence.

Finally, the most common technique for characterising the flow topology has been
applied to the development of the Taylor-Green Vortex. Figure 4.16 shows the kinetic
energy spectra at different times as obtained by the three high-resolution methods on
the three different grids. At early timesT = 4, before the vortex sheets disintegrate,
all combinations produce ak−4 spectrum as has been predicted by the DNS of Brachet
et al. [12] and is typical for an essentially two-dimensional flow. Near the dissipation
peak, the same authors have reported ak−5/3 spectrum. Comparing the spectra in Figure
4.16(b), it can be seen that all methods are able to predict this slope more or less
accurately with increasing grid resolution. In general, W9approachesk−5/3 faster than
M5 and, in turn, M5 is in better agreement than M3. As the simulations progresses,
the kinetic energy follows an almost self-similar decay. However, a slight flattening of
the spectra due to a transfer of energy to the smaller scales can be observed during the
organised flow regime atT = 20. At very late times,T = 60, the highly disorganised
flow seems to result in a spectral decay slightly lower thank−5/3 for M5 and W9,
whereas the slope is steeper for M3.

As has been expected, an increase in grid resolution leads toa longer inertial range and
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generally better statistics if compared to a fully developed turbulent flow. It should be
noted that although the dynamics predicted by the three high-resolution methods can
differ during the evolution of the Taylor-Green Vortex, this is not reflected in substantial
slope changes of the energy spectra at lower wave-numbers.
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(c) Kinetic energy (1283)
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(d) Kinetic energy dissipation (1283)
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(e) Kinetic energy (2563)
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(f) Kinetic energy dissipation (2563)

Figure 4.10: Development of the volumetrically averaged kinetic energyand kinetic energy
dissipation rate obtained by different spatial discretisation techniques on a 643, 1283 and 2563

grid.
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(b) Effective viscosity (643)
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(c) Enstrophy (1283)
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(d) Effective viscosity (1283)
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(e) Enstrophy (2563)
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(f) Effective viscosity (2563)

Figure 4.11: Development of the volumetrically averaged enstrophy and the effective
viscosity obtained by different spatial discretisation techniques on a 643 ,1283 and 2563 grid.
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(a) Averaged Taylor microscale (643)
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(b) Averaged integral length scale (643)
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(c) Averaged Taylor microscale (1283)
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(d) Averaged integral length scale (1283)
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(e) Averaged Taylor microscale (2563)
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(f) Averaged integral length scale (2563)

Figure 4.12: Development of the Taylor microscale and the integral length scale obtained by
different spatial discretisation techniques on a 643, 1283 and 2563 grid.
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(a) Taylor microscale in x (643)
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(b) Taylor microscale in z (643)
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(c) Taylor microscale in x (1283)
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(d) Taylor microscale in z (1283)

TIME

λ X

0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 M3
M5
W9

(e) Taylor microscale in x (2563)
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Figure 4.13: Development of the Taylor microscale in x- and z-direction obtained by different
spatial discretisation techniques on a 643, 1283 and 2563 grid.
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Figure 4.14: Instantaneous flow visualisations using vorticity contours obtained by the
third-order (M3) and the fifth-order MUSCL (M5) scheme on a 643, 1283 and 2563 grid.
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(a) Skewness (643)
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(b) Flatness (643)
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(c) Skewness (1283)
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(d) Flatness (1283)
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(e) Skewness (2563)
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Figure 4.15: Development of the velocity structure functions obtained by different spatial
discretisation techniques on a 643, 1283 and 2563 grid.
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Figure 4.16: Kinetic energy spectra obtained by different spatial discretisation techniques on
a 643, 1283 and 2563 grid.
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4.7 Summary

In this chapter, various stages in the laminar to turbulent flow development have been
investigated for the time-dependent Taylor-Green Vortex.This prototype flow is proba-
bly the simplest model for the vortex dynamics encountered during the transition from
well-organised to highly disorganised coherent structures. Here, the performance of
different spatial and temporal discretisation methods has beenassessed.

It has been found that the choice of time-integration methodplays only a minor role
regarding the statistical quality of the predicted flow field. However, it may have an
effect on the dynamics if the method for the spatial discretisation is prone to produce
numerical instabilities.

An extensive analysis of various parameters characterising the evolution of the flow
have been presented for a third-order MUSCL, a fifth-order MUSCL and a ninth-order
WENO method and different grid sizes. The conservation of kinetic energy is pro-
longed in time when increasing the order of accuracy. This leads to the conclusion
that the resolving power of a numerical model can be increased by using a higher or-
der method. In fact, this is also supported by the less dissipative character of higher
order methods if compared to lower order methods on identical grids. Likewise, the
schemes produce less dissipation and more enstrophy on finergrids. This behaviour
is not surprising because higher velocity gradients can be supported by increasing the
grid resolution or the order of the reconstruction method. At the same time, however,
the reconstruction methods become more sensitive to small disturbances.

Although the inviscid instability mechanism responsible for the disintegration of the
vortex sheets is captured accurately by all schemes, the later evolution of the flow
governed by vortex dynamics can exhibit substantial differences for the same grid
resolution. This is mainly attributed to numerical instabilities that cause the initial
symmetries to break. Symmetry-breaking is the property that allows the flow to de-
velop into a more homogeneous and isotropic state which would be a characteristic of
fully-developed turbulence. Hence, a certain level of numerical instability can be of ad-
vantage during the transitional stage. It is not clear, however, if an idealistic prototype
flow should become more realistic by introducing numerical artifacts.
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C H A P T E R 5

Hill Flow

I N this chapter a systematic numerical investigation of different high-resolution meth-
ods in the context of Implicit Large-Eddy Simulation of massively separated flows

including a local grid refinement study is presented. The three high-resolution algo-
rithms assessed here are a third-order accurate MUSCL scheme, a fifth-order accurate
MUSCL scheme and a ninth-order accurate WENO method. For a fundamental study
of separation from gently curved surfaces the geometrically simple, statistically two-
dimensional test case given by a channel with hill-type curvature on the lower wall
has been considered and the results are compared against solutions from classical LES
simulations.

5.1 Introduction

Many flows of practical importance are governed by viscous near-wall phenomena that
have a major influence on the flow properties. Among those, separated flow currently
poses one of the greatest challenges for numerical simulations because its characteris-
tics covers a wide range of physical processes. Separation of the boundary layer near
curved surfaces is a more common problem than it might seem. It is not confined to
external flows only, e.g. flow around moving vehicles, it alsooccurs in internal flows
such as the blades in turbo-machinery and divergent channels, nozzles or pipes.

The basic physical mechanisms leading to separation are relatively well understood and
have been presented in several textbooks on boundary layer theory, e.g. see Schlicht-
ing [98]. It has been found that the separation phenomenon isintimately linked to
the pressure distribution in the boundary layer. Generally, it is assumed that the pres-
sure does not change in the direction normal to the surface and the external pressure
is impressed on the boundary layer. If the flow follows a convex curvature, the ex-
ternal pressure in the essentially inviscid region outsidethe boundary layer has to rise
according to Bernoulli’s theorem — hence the flow experiences an adverse pressure
gradient inside the boundary as it progresses further downstream. At the same time,
the fluid is retarded near the wall due to the friction forces.The combination of the
two effects causes the boundary layer to separate because the remaining kinetic energy
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in the immediate vicinity of the solid surface is too small toovercome the pressure
increase.

In general, the flow is said to be separated if the velocity in the immediate neighbour-
hood of a solid surface becomes reversed. Further away from the wall, however, the
velocity has to take the values of the free-stream and thus the velocity profile exhibits
a point of inflection that marks the existence of a shear layer. Inflection points are im-
portant for the development of the flow after separation has occurred because they are
inviscidly unstable. As a consequence, the shear layer undergoes a breakdown similar
to the one presented for the Taylor-Green Vortex in Section 4. Usually, this leads to
strong growth of the separation zone and a highly turbulent wake region dominated by
the dynamics of the generated eddies.

To date, no theoretical models have been developed that can deal with the complexity
of this type of flow. The boundary-layer equations, a simplification of the Navier-
Stokes equations, are only valid up to the point of separation. Downstream of this
point, however, the separation zone thickens quickly and the approximations made in
the boundary layer equations are no longer valid. And even ifthey could be applied,
the turbulent fluctuations render the solutions impossibleto obtain without resorting to
further approximations.

Therefore, fundamental investigations of separated flows have to rely on experimen-
tal or well-established computational reference data for relatively simple geometries.
Here, the quasi two-dimensional wavy terrain is a popular choice because the waves
representing the curved solid surface can be prescribed analytically. Furthermore, the
resulting flow field can be treated as statistically two-dimensional. Several experimen-
tal studies have been conducted under these conditions, e.g. Almeida et al. [1], Buckles
et al. [16], Hudson et al. [59]. However, they often suffer from limitations imposed by
the equipment, uncertainties regarding the influence of inflow conditions or possible
contaminations of the flow field by three-dimensional effects arising from the finite
physical scale of the experiment.

Ideally, Direct Numerical Simulations could be used to overcome these difficulties.
Yet, the demanding resolution requirements for DNS to adequately represent the vis-
cous sublayer near the wall and the long integration times needed in order to obtain
reliable statistics for the complex flow pattern have to be faced. Piomelli [89] esti-
mated that the grid size for DNS approximately scales withRe2.6. Thus, DNS data is
only available for relatively low Reynolds numbers of order102 to 103, see DeAngelis
et al. [22], Maas and Schumann [73]. For wall-resolved Large-Eddy Simulations this
situation does not improve much and the grid size required isapproximately propor-
tional toRe2.4, see Piomelli [89]. Hence, as the simulations of Armenio andPiomelli
[4], Henn and Sykes [56] are limited by the same arguments, the Reynolds numbers
could only be increased marginally due to the lack of computing power available at the
time.

More recently, Fröhlich et al. [35] have produced reference data for a channel with
hill-type constrictions from highly-resolved LES. The twosimulations presented em-
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ployed the dynamic Smagorinsky model of Germano et al. [39] and the wall-adapted
local eddy viscosity model of Ducros et al. [31], respectively. Here, the Reynolds
number of order 104 is approaching a level more adequate for problems of engineering
interest. The flow conditions and the geometry have been chosen on the basis of the
results obtained in the experiments of Almeida et al. [1], but they have been modified
in order to accommodate the needs of a highly-resolved LES. The main reason that
makes this case an ideal testbed is the simplicity of the geometry and boundary condi-
tions, especially the challenging task of generating appropriate inlet conditions can be
circumvented, see Veloudis et al. [122]. Therefore, it has attracted a great deal of inter-
est and produced a wealth of data obtained by LES and RANS the current simulations
can be compared against.

The Reynolds Averaged Numerical Simulations performed by Jang et al. [60], Wang
et al. [123] have proven that RANS is not capable of simulating this type of flow
problem correctly. This is not surprising since the spatialand temporal fluctuations
in the wake region and regarding the position of the separation line, which cannot be
adequately represented by the statistical closure strategies, are essential to the devel-
opment of the flow. More worryingly, however, the RANS simulations lack any degree
of certainty because the turbulence closures behave inconsistently and no conclusions
can be drawn.

Various approaches to wall modelling and subgrid-scale modelling have been inves-
tigated in the coarse grid LES of Temmerman et al. [112] for the identical geometry.
Although the predictions obtained with standard no-slip conditions at the surface could
be improved, it has been found that the wall models require grid points well within the
viscous sublayer in order to produce reliable results. Furthermore, Breuer et al. [15]
argued that many standard wall models have no sound physicalbasis for predicting
complex, separated flows. For example, two of the approachesused by by Temmer-
man et al. [112], i.e. the classical log-law first formulatedby Schumann [99] and the
model proposed by Werner and Wengle [126], are designed for time-averaged velocity
profiles in attached flows without pressure gradients. Thereare several other models,
usually based on the boundary layer equations, e.g. Balarasand Benocci [5], that can
cope with the existence of pressure gradients. However, as noted earlier, the boundary
layer equations do not apply to regions of separated flow.

Evidently, a solution to the problem of flow separation underthe influence of an ad-
verse pressure gradient has yet to emerge. The encouraging results obtained by high-
resolution methods in under-resolved Large-Eddy simulations of turbulent, wall-free
flows have stirred the hope that this might also transfer to the separated flow regime.
Thus, the stringent grid requirements could be relaxed if the separation line can be rea-
sonably well predicted. For this reason, several high-resolution algorithms have been
employed in numerical simulations of the channel flow with hill-type constrictions and
the results are benchmarked against the highly-resolved LES of Fröhlich et al. [35].
Furthermore, the following sections will also include datafrom the LES published by
Temmerman et al. [112] for comparison.
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5.2 Numerical Framework

For the systematic numerical investigation of the behaviour of different high-resolution
methods employed in Large-Eddy Simulations of separated flows in a channel with
hill-type constrictions three different grids have been used. The computational domain
representing the constricted channel extends 9h, 4.5h and between 2h and 3.035h in x-,
y- and z-direction, also referred to as streamwise, cross-stream and vertical direction,
respectively. Here,h is the height of the hill-type shape at the lower wall as used in
the experiment of Almeida et al. [1]. The two-dimensional hill geometry can be found
in the ERCOFTAC test matrix available online at ERCOFTAC [33] It is defined by a
spline through the points measured in the experiment given by the coordinates

(x1, z1) = ( 0.0, 28.0) , (x2, z2) = ( 9.0, 27.0) ,

(x3, z3) = (14.0, 24.0) , (x4, z4) = (20.0, 19.0) ,

(x5, z5) = (30.0, 11.0) , (x6, z6) = (40.0, 4.0) ,

(x7, z7) = (54.0, 0.0) .

(5.2.1)

The hill height determined by the spline can now be approximated by the following
third order polynomials

for x1 ≤ x < x2 :

h(x) = min(28.00 , 28.00+ 6.78 · 10−3x2 − 2.12 · 10−3x3) ,

for x2 ≤ x < x3 :

h(x) = 25.07+ 9.75 · 10−1x− 1.02 · 10−1x2 + 1.63 · 10−3x3 ,

for x3 ≤ x < x4 :

h(x) = 25.79+ 8.21 · 10−1x− 9.06 · 10−2x2 + 1.63 · 10−3x3 ,

for x4 ≤ x < x5 :

h(x) = 40.46− 1.38 · 10−0x+ 1.95 · 10−2x2 − 2.07 · 10−4x3 ,

for x5 ≤ x < x6 :

h(x) = 17.92+ 8.74 · 10−1x− 5.57 · 10−2x2 + 6.28 · 10−4x3 ,

for x6 ≤ x < x7 :

h(x) = max(0.0 , 56.39− 2.01 · 10−0x+ 1.64 · 10−2x2 + 2.67 · 10−5x3) .

(5.2.2)

All of the above values are given in millimetres, leading to amaximum hill height of
h = 28mm. For the simulations and the results presented in the following sections,
however, all data has been non-dimensionalised with the bulk velocity at the hill crest
and the height of the constriction.

A simple H-H-type grid topology as depicted in Figure 5.1(a)has been chosen for
this case. Here, only every fourth grid point in a typical block-decompositioned com-
putational mesh for parallel simulations is shown. No-slipboundary conditions have
been applied at the top and the bottom wall of the channel, while periodicity has been
assumed in the streamwise and cross-stream directions.
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Figure 5.1: The computational H-H-type grid topology and the three different grids employed
in the simulations of the hill flow.

Three different grid resolutions have been investigated here: (i) a highly under-resolved
grid, referred to as “coarse”, comprising approximately 0.65× 106 fairly uniformly
distributed points; (ii) a modified version of the coarse grid with an identical number
of points, referred to as “modified”, featuring a finer clustering near the top and the
bottom wall of the channel; (iii) a moderately finer grid consisting of 1.03×106 points,
referred to as “medium”, where the refinement mainly affects the distribution around
the hill crest and a slightly better resolution near the bottom wall is achieved, see
Figures 5.1(b) to 5.1(d). More details regarding the two-dimensional distribution of
grid nodes in all three grids employed here are presented in Figure 5.2. The coarse
and the medium grids are basically identical to the ones usedin the wall-modelled
LES of Temmerman et al. [112] and all grids are by courtesy of the same author.
The characteristic parameters for all three grids including z+ values at the bottom
wall, which are not sensitive to the choice of numerical discretisation method, are
given in Table 5.1. Additionally, the same parameters for the highly-resolved reference
simulation of Fröhlich et al. [35] are included.

For all simulations the Reynolds number based on the hill height and the bulk velocity
at the hill crest is equal to 10, 595. The Mach number ofMa = 0.2 has been chosen
for near-incompressible conditions. In order to ensure a consistent mass flow in the
channel configuration it is necessary to augment the standard Navier-Stokes equations
with a forcing term. This modification is required because a classic pressure-driven
channel flow would violate the boundary conditions for the test case considered here,
namely the periodicity in x-direction. In the absence of a pressure drop, the forcing
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Figure 5.2: Grid node distributions at characteristic locations for the three grids employed.

term acts as a driver for the flow and ensures a constant mass flow rate. Here, the
external force has been determined in a similar fashion as outlined in the plane channel
simulations of Lenormand et al. [66], more details can be found in Appendix E.

The integration in time has been performed exclusively by the third-order extended
stability Runge Kutta scheme given in Equation (3.2.7) and several high-resolution
methods have been considered in combination with the characteristics-based Riemann
solver of Eberle [32]. This investigation includes the third-order MUSCL scheme pre-
sented by Zóltak and Drikakis [132], the fifth-order MUSCL scheme developed by
Kim and Kim [63] and the ninth-order WENO scheme following the ideas of Balsara
and Shu [6]. These methods are referred to as M3, M5 and W9, respectively, in the
following sections. All simulations have been performed onIBM eServer326m nodes
with 2.2GHz AMD 275 processors. Here, no information regarding the computing
time can be presented because of hardware issues. In general, however, the size of the
time step had to be reduced by a factor of approximately 2 for both M5 and W9 when
compared to M3 to obtain stable solutions.
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Grid Nx × Ny × Nz Size ∆x/h ∆y/h ∆z/h z+min z+max

Coarse 112× 91× 64 0.65× 106 0.08 0.049 0.032 ≈ 7 ≈ 14
Modified 112× 91× 64 0.65× 106 0.08 0.049 0.0047 ≈ 1 ≈ 3
Medium 176× 91× 64 1.03× 106 0.04 0.049 0.02 ≈ 4 ≈ 9

Reference 196× 186× 128 4.67× 106 0.032 0.024 0.0033 ≈ 0.5 ≈ 1

Table 5.1: Characteristic parameters for the three grids employed here and for the
highly-resolved reference LES of Fröhlich et al. [35].

5.3 Flow Topology

In order to provide an overview of the different flow regimes encountered in the peri-
odic hill flow, the topological features have been visualised according the Q-criterion
proposed by Jeong and Hussain [61], for a definition of Q see also Section 4.3. An
instantaneous snapshot of the resulting vortical structures is shown in Figure 5.3. It
should be noted that, in this case, a single snapshot is not representative for the evolu-
tion of the flow at all times. However, the chosen time instantis characteristic for the
general behaviour observed.

Figure 5.3: Flow features in the channel visualised by time- and space-averaged streamlines
and instantaneous vortical structures defined by the Q-criterion of Jeong and Hussain [61].

In addition to the coherent vortices, colour contours of theaveraged streamwise veloc-
ity and the associated streamlines are illustrated in Figure 5.3. The averaging has been
performed over the cross-stream direction and over a time period of approximately 50
flow through times of the fully developed, unsteady state. Ithas been found that this
relatively long time-window is necessary to gain good statistical data presented in the
following sections.

The averaged streamlines, although partially obscured by the vortical structures, reveal
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the existence of a closed recirculation area in the lee of thehill. This separation bubble
originates at the convex curvature of the wall, a short distance downstream of the hill
crest, and it ends after the flow has passed the region of concave curvature at the foot of
the hill, i.e. in the trough between the constrictions. A highly unsteady shear layer that
is emanating from the separation line marks the transitional region between recircula-
tion and core flow. After the turbulent shear layer has reattached, a strongly agitated
boundary layer is formed that subsequently experiences a slight recovery before it ap-
proaches the hill. As has been pointed out by Castro and Epik [17], the boundary layer
downstream of a separation bubble is not of standard form because the influence of the
shear layer goes well beyond the line of reattachment. At thewindward slope, the flow
is quickly accelerated and thus the boundary layer becomes thinner. The acceleration
is clearly indicated by the colour contours of the streamwise velocity. As this partic-
ular case generates its own inlet conditions due to the periodicity in x-direction, the
incoming boundary layer is also very thin and contains a certain level of turbulence.
Consequently, both the line of separation and reattachmentexhibit significant fluctua-
tions around their averaged positions. This behaviour has been observed as well by Na
and Moin [85] for the detachment and subsequent attachment of a turbulent boundary
layer.

In the separated flow region, a Kelvin-Helmholtz-type roll up of the shear layer lead-
ing to the generation of span-wise vortices can be observed.The unsteadiness of the
separation line enhances the irregular character of the vortex formation in space and
time. As a result, the flow field in the lee of the constriction is highly intermittent
and it exhibits the highest levels of turbulence, especially within the shear layer. The
vortices are subject to secondary instabilities as they progress in x-direction and even-
tually impinge on the bottom wall of the channel. Since the reattachment location is
fluctuating, the vortices are either drawn back into the separation bubble or they are
convected downstream. Hence, information is allowed to travel back to the crest of
the hill at irregular intervals. This feedback mechanism adds to the unsteadiness of the
flow detachment and the unpredictability of the shear layer roll-up.

Downstream of the reattachment, the coherent structures near the bottom wall are pre-
dominantly aligned with the flow. The reason for this is a slight vertical inclination
of the structures. One end of the vortices is exposed to a faster flow regime than the
other end and thus the principal axis gets aligned with the main flow direction. As
the flow evolves, the velocity gradient normal to the wall leads to an elongation of the
structures and vortex stretching becomes more pronounced as the flow is accelerated
along the windward side of the hill. Additionally, the strong acceleration can lead to
overshoots at the hill crest and subsequent contamination of the core flow by areas of
high vorticity.

The instantaneous flow field discussed here underlines the complex character of the
separated hill flow. Several features and the physics associated with them will be
revisited during the interpretation of the results in the following sections.
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5.4 The Separation Bubble

The most evident phenomenon in the averaged flow field for the hill geometry is the
separation bubble. In order to compare the results of different simulations the point
of separation, marking the beginning of the bubble, and the reattachment location,
defining the end of the bubble, have been deduced from the averaged, two-dimensional
flow field. This is commonly achieved by identifying the minima in the z+ distribution
along the wall, where z+ is the distance of the centre of the first grid cell above the
wall measured in wall units. According to Pope [90], z+ is calculated as

z+ =
uτ∆n
ν

with uτ =

√

τw

ρ
(5.4.1)

being the friction velocity andτw is the wall shear-stress given by

τw = ρν
d < u‖ >

dn

∣
∣
∣
∣
WALL

. (5.4.2)

Here,∆n is the wall-normal distance of the cell centre and< u‖ > is the averaged
velocity component parallel to the wall, its gradient is calculated with respect to the
wall-normal direction.

The resulting normalised wall distance along the bottom wall of the modified grid is
shown in Figure 5.4 for the three different high-resolution methods. The plot also
includes the corresponding data from the fine grid referenceLES of Fröhlich et al.
[35]. Although variations regarding the wall distance as well as the position and the
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Figure 5.4: Average of the normalised distance between the bottom wall and the centres of
the adjacent cells for the three different methods and the modified grid. The corresponding

data from the fine-grid reference LES of Fröhlich et al. [35]has also been included.

length of the separation bubble can be observed, all distributions appear to follow a
similar shape — hence the underlying physics is similar in all cases. Most remarkably,
the high-resolution methods predict a small separation zone at the foot of the windward
slope of the hill, i.e.x/h ≈ 7.2, which is not noticeable in the reference LES. Fröhlich



98 Hill Flow

Coarse Medium Modified
Method xsep/h xatt/h xsep/h xatt/h xsep/h xatt/h

M3 0.98 2.89 0.55 3.62 0.32 5.06
M5 1.06 2.57 0.63 3.00 0.24 4.35
W9 0.74 2.33 0.47 3.40 0.24 3.77

LL3 0.53 2.98 0.34 4.32 - -
WW 0.46 4.00 0.32 4.56 - -

NS 1.12 2.17 0.38 3.45 - -
Reference xsep/h=0.22 xatt/h=4.72

Table 5.2: Averaged locations of separation and re-attachment obtained by M3, M5 and W9
on the coarse, the medium and the modified grid. The publisheddata from Temmerman et al.

[112] has also been included for comparison.

et al. [35] have pointed out, however, that the flow in this region is indeed at the brink
of separation in the highly-resolved LES. In the wall-modelled LES of Temmerman
et al. [112], as well as for the coarse and the medium grid, no reversed flow can be
seen at the foot of the windward slope of the hill. For the modified grid, the separation
is barely visible for W9, whereas M3 predicts a boundary layer lift-off well in advance
of the slope. Consequently, the destabilising effect of the concave curvature appears to
be become less pronounced with increasing order of the method. This already hints at
a different character of the upstream boundary layer.

All separation and reattachment points obtained with M3, M5and W9 for the coarse,
the medium and the modified grid are listed in Table 5.2. Additionally, the data pub-
lished by Temmerman et al. [112] has been included for comparison. The results in
rows labelled “LL3”, “WW” and “NS” are from the classical, wall-modelled LES us-
ing the WALE subgrid-scale model proposed by Ducros et al. [31] on grids identical to
the coarse and the medium mesh. LL3 and WW refer to simulations with a three-layer
logarithmic wall model and the wall approximation of Wernerand Wengle [126], re-
spectively, whereas NS refers to a simulation with no-slip boundary conditions, i.e. no
wall model, at the top and the bottom wall of the channel.

From the data presented here, it is already clear that all simulations using high-resolution
methods outperform the classical LES without a wall model for the highly under-
resolved, coarse grid. Applying the log-law model improvesthe classical LES result
regarding the prediction of the separation point. However,the effect on the reattach-
ment is only minor because it is not valid for separated flows.Strictly speaking, nei-
ther is the WW model, but it still yields the best result for the coarse grid. This can
mainly be attributed to the specific implementation in cell-integrated form that leads
to a higher wall shear-stress and thus favours separation. Temmerman et al. [112] has
also shown a declining dependence of the results on the near-wall approximation for
the medium grid. This effect is reflected in the relatively close proximity of the sep-
aration and reattachment predicted by LL3 and WW. The local grid refinement also
enhances the performance of the classical LES with no-slip condition, although the
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separation bubble remains too short.

Among the high-resolution methods, W9 gives the best resultfor all grids regarding
the location of the separation. Yet, it highly under-predicts the length of the separation
bubble. On the other hand, the bubble length obtained by M3 isclosest to the reference
length from the simulations of Fröhlich et al. [35] on all grids. Most remarkably, the
drastic improvement of the results for the medium grid as seen in all classical LES is
not reproduced. As expected, however, a grid refinement in the wall normal direction
has the desired effect and both detachment and reattachment are in better agreement
with the reference LES. It should be noted that, for a correctinterpretation of the re-
sults, the different behaviour of M3, M5 and W9 has to be assessed in combination
with other parameters presented in the following sections.The position of the separa-
tion bubble alone is not very meaningful because it is strongly influenced by several
factors, e.g. the grid resolution near the separation pointand in the shear layer and
above all the characteristics of the incoming boundary layer.

5.5 Length Scales

The scales of the coherent structures as predicted by the third-order MUSCL (M3), the
fifth-order MUSCL (M5) and the ninth-order WENO (W9) scheme can be compared
visually by applying the Q-criterion of Jeong and Hussain [61] to an instantaneous
realisation of the fully developed flow field. It has been found that more and finer
structures are resolved by all methods with increasing gridresolution, but the relative
difference between them appear to be similar irrespective of thegrid size. Therefore,
only the flow fields obtained on the modified grid have been visualised in Figure 5.5
by using the same levels of Q for all methods.

In accordance with the results presented in Chapter 4, M5 is able to resolve smaller
scales than M3 on identical grids and, in turn, W9 provides a higher resolution power
than M5. However, the basic character of the structures doesnot seem to change. In
the free shear layer emanating from the separation line nearthe crest of the hill, the
preferred axis of orientation is in cross-stream directionfor all methods because of
the Kelvin-Helmholtz type instability. It should be noted that this behaviour is largely
obscured by the vortices in the upper portion of the channel in case of W9. When the
shear layer develops further downstream, the vortices break into smaller scales more
rapidly with increasing order of the method. As a result, theturbulence mixing is
enhanced and more unsteady activity in the core region and the recirculation zone can
be observed for M5 and, most significantly, for W9. This is also the main reason for
the premature reattachment of the flow predicted by M5 and in particular W9. For all
methods, predominantly elongated structures aligned in streamwise direction can be
observed in the trough of the channel after the shear layer has disintegrated and in the
core flow over the whole domain.

The coherent structures in the flow field can also be characterised by exploiting the sta-
tistical information obtained from the two-point correlations of the fluctuating velocity
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components. Here, the correlations between pairs of pointswith identical streamwise
and vertical coordinates are averaged in time and in space. For the spatial average,
equidistant points in cross-stream direction are considered. The auto-correlation func-
tion in one-dimensional form is defined by

Rδδ(dy) =
< δ δ(dy) >

√

< δ δ > < δ(dy) δ(dy) >
, (5.5.1)

whereδ stands for the three fluctuating velocity componentsu′, v′, w′; <> are the
averages in time and in space; anddy indicates the distance separating the point pair.

Figure 5.6 shows the fluctuating velocity correlations in the boundary layer of the re-
circulation zone at (x/h , z/h) = (1.93, 0.03) and in the free shear layer at location
(x/h , z/h) = (2.02, 0.79). Since the results reveal similar features for all gridsonly
the correlations obtained on the modified mesh are presentedhere. In the boundary
layer, the correlation function of the streamwise component Ru′u′ merely converges to
a value close to zero for M3, whereas they vanish completely for both M5 and W9,
see Figure 5.6(a). This behaviour indicates less coherent behaviour of the streamwise
velocity fluctuations predicted by the two higher-order methods which is most likely
also the reason for the earlier separation from the hill surface in case of M5 and W9.
Moreover, differences can be noticed regarding the shape of the correlations functions.
M3 predicts the smoothest shape. W9, on the other hand, decays faster initially and the
curvature seems to change at a correlation length of approximately half a hill height.
M5 lies in between the two and the change in decay rate seems tobe shifted slightly to-
wards a larger separation distance when compared with W9. This is indicative for more
abrupt local changes in the simulations using W9 which can beobserved in general for
all components and all positions investigated.

The presence of the wall can be noticed when comparing the smallest, uncorrelated
lengths for the cross-stream componentRv′v′ and the vertical componentRw′w′ pre-
sented in Figures 5.6(c) and 5.6(e). At this location, the cross-stream components are
less impaired by the wall blockage than the vertical components — hence the uncorre-
lated length scales are smaller and the level of coherence isgenerally lower forRv′v′ . In
the free shear layer, however, the velocity fluctuations have a more isotropic character
than in the boundary layer, as can be seen in Figures 5.6(b) to5.6(f). Furthermore, the
differences between the high-resolution methods become more pronounced away from
the wall.
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(a) Third-order MUSCL method (M3)

(b) Fifth-order MUSCL method (M5)

(c) Ninth-order WENO method (W9)

Figure 5.5: Vortical structures in the instantaneous flow field as obtained by three different
high-resolution methods on the modified grid visualised by the Q-criterion of Jeong and

Hussain [61].
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Figure 5.6: Fluctuating velocity correlations in the boundary layer ofthe recirculation zone
and in the shear layer obtained by different high-resolution methods on the modified grid.
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5.6 Comparison with Classical Wall-Resolved LES

In order to assess the performance of the three high-resolution methods employed
quantitatively, the results have been compared against thehighly resolved classical
LES of Fröhlich et al. [35]. It should be noted that only the boundary layer at the bot-
tom wall of the channel was fully resolved in the reference case. Along the top wall, the
approximations proposed by Werner and Wengle [126] had beenapplied. In this sec-
tion, the profiles of the mean streamwise velocity, the normal and the shear stress are
investigated. All quantities have been averaged over approximately 50 flow through
times in time and across the span-wise extent of the domain inspace. Furthermore,
the turbulent stresses have been calculated according to the standard Reynolds decom-
position of the flow field into mean and fluctuating components. The data has been
extracted for the coarse, the medium and the modified grid at four characteristic loca-
tions along the streamwise direction which are representative of different behaviours
of the flow field.

5.6.1 Incoming Flow

The profiles as obtained by M3, M5 and W9 shortly after the crest of the hill at a
streamwise location ofx/h = 0.05 are shown in Figure 5.7. The results for the three
grids employed in this study are compared one at a time against the reference data
from the fully wall-resolved reference LES. As a result of the turbulent reattachment
and the subsequent strong acceleration along the windward slope of the hill, the flow
at this position features a thin, but excited boundary layernear the hill surface. As
suggested by Fröhlich et al. [35], however, the sharp peak observed for the normal
stress in the bottom boundary layer is mainly due to the influence of the fluctuating
separation line and not a characteristic of the incoming flow. The boundary layer at the
upper wall on the other hand is relatively thick and more gentle. For the coarse grid,
Figure 5.7(a), all high-resolution methods largely over-predict the velocity maximum
near the hill and under-predict the second peak near the top wall. Since this specific
configuration generates its own inlet conditions, the effects of all phenomena are able
to propagate through the whole flow field and thus influence each other. Therefore,
this behaviour will be explained in the following paragraphs. The shear stress shown
in Figure 5.7(b) is nearly zero for all methods and the maximum normal stresses in
the boundary layer are approximately one order of magnitudetoo low which can be
attributed to the delayed separation at the lee side of the hill. In general, both Reynolds
stresses are almost uniformly distributed across the channel and the level of turbulence
is very low.

Although the resolution near the wall is increased only marginally for the medium
grid, approximately 3 points in the boundary layer as opposed to about 2 points for
the coarse grid at this position, a drastic improvement in the results can be seen. This
already indicates substantial differences in the oncoming flow field. The characteristic
shape of the velocity profile featuring two narrow maxima near the top and the bottom



104 Hill Flow

wall is approached, albeit the effect in Figure 5.7(c) is only faint. Additionally, the
peak velocity is much closer to the fully resolved LES with W9yielding the best result,
followed by M3 and then M5. Again, this is associated with thecharacteristics of the
upstream flow. The shear stress in Figure 5.7(d) exhibits a similar shape and magnitude
as the reference solution where W9 follows it almost exactly, except in the boundary
layer. Here, the peak is less pronounced. The same holds for the maximum normal
stress. W9 predicts about half the amount of normal stress inthe boundary layer as
observed in the reference LES and it is further decreasing for the lower order schemes.
Furthermore, the shape of the normal stress appears more flatfor all high-resolution
methods when compared with the classical LES in the lower half of the channel and
the level of turbulence is generally lower.

The results for the modified grid featuring a higher clustering of grid points near the
walls are presented in Figures 5.7(e) and 5.7(f). For this particular mesh, approxi-
mately 11 points lie within the boundary layer at the hill surface and the z+ distribution
along the bottom wall indicates nearly resolved conditionsthroughout the domain, see
Figure 5.4. The averaged velocity profiles from the reference LES and the simulations
performed here are virtually identical near the surface of the hill. The local minimum
near the half-height of the channel at this position is slightly more pronounced for all
high-resolution methods. Minor differences can also be observed at the top wall where
the reference solution yields a very thick boundary layer asopposed to a much thinner
boundary layer predicted by the current simulations. This can mainly be attributed
to the fact that the grid employed in the reference LES was relatively coarse in this
area and a wall function had been used. Additionally, the wall treatment introduces an
unrealistic kink in the velocity profile which appears at alllocations along the chan-
nel. Fröhlich et al. [35] reported that the near-wall approximation at the top surface
is not relevant to the solution in the rest of the flow field. However, this claim will be
revisited for the reattached flow region.

In Figure 5.7(f), a significant improvement can also be observed for the Reynolds
stresses on the modified grid. The shape and magnitude of the shear stresses as pre-
dicted in all simulations are in very good agreement with thereference solution. Al-
though the minimum shear stress in the bottom boundary layeris slightly less distinct,
the peak normal stresses at the same location are very close to the reference. Both
are strongly related to the movement of the separation line.With increasing grid res-
olution in the wall normal direction, the high-resolution methods are able to tap their
full potential. This is indicated clearly by the upstream shift of the averaged separation
points. Small disturbances start to develop normal to the wall and are propagated along
the surface even though the grid resolution in the streamwise direction is fairly coarse.
Because the higher order methods are more sensitive to smallfluctuations, they predict
a separation prior to M3. This is reflected by the peak normal stresses shown in Figure
5.7(f). Here, W9 results in the strongest maximum, followedby M5 and then M3. It
should be noted that the averaged points of separation are identical for W9 and M5, but
the influence of the fluctuations on the stress profiles are probably stronger for W9 due
to its higher order of accuracy. Further away from the hill surface, less turbulence is
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predicted by all high-resolution methods when compared against the LES of Fröhlich
et al. [35] in the lower half of the channel, but increased levels of normal stress are
observed for M5 and especially M3 in the upper half.

5.6.2 Separated Flow

The maximum turbulent intensities are reached after separation has occurred. Here,
several phenomena are interacting with each other: the two boundary layers at the top
and the bottom wall of the channel; the recirculation zone which can be seen as a shear
layer; the highly unsteady free shear layer emanating from the separation line and the
core flow can be distinguished at the streamwise locationx/h = 2. Averaged velocity
and stress profiles for this position are shown in Figure 5.8.

A substantial difference between the velocity profiles from the reference LES and the
current simulations on the coarse grid is illustrated in Figure 5.8(a). The size of the
separation bubble is heavily under-predicted by all high-resolution methods due to
the delayed separation and the subsequent early reattachment. Hence, the separation
region covers only approximately half a hill-height in the wall normal direction and
the reversed flow is less developed. Since the same mass flow rate has to be achieved
in all simulations, the core velocity is under-predicted accordingly when compared
to the reference solution. This is the main reason for the relatively uniform velocity
distribution above the hill crest in Figure 5.7(a). Surprisingly, however, the stress
magnitudes shown in Figure 5.8(b) are of approximately the same order. Differences
between the high-resolution methods can be observed regarding the location of the
shear layer, marked by the peak stresses, and the shape of theprofiles. M5 yields the
lowest shear layer as late separation favours this behaviour. Although M3 separates
downstream of W9, the position of the shear layer is slightlyhigher which is associated
with the early reattachment of W9. Additionally, the peak normal stresses and the
spreading of the shear layer appear to be dominated by the separation location. For the
coarse grid, higher normal stresses are observed for delayed separation and the width
of the shear layer grows with the distance from its origin.

Figures 5.8(c) and 5.8(d) present the results for the mediumgrid at the same stream-
wise location. In accordance with the above, early separation and late reattachment
lead to a better prediction of the separation bubble height.Thus, all methods approach
the reference velocity profile in Figure 5.8(c), albeit the reversed flow in the lower por-
tion of the channel is still slightly under-predicted. Regarding the Reynolds stresses,
more turbulence can be supported due to the grid refinement and consequently higher
levels of shear stress and normal stress are observed, both exceeding the predictions of
Fröhlich et al. [35] in the trough where the turbulence is produced. This behaviour is
worrying because it indicates that the solution is not grid converged. Large variations
of the peak stresses have also been observed by Temmerman et al. [112] who asso-
ciated them with the differences regarding the separation point. Yet, this conclusion
was not consistent since different turbulence intensities had been found in simulations
with similar separation points. Hence, the effect of grid clustering in the free shear
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layer cannot be disregarded. However, no information aboutthe grid resolution in this
region is available for the reference LES of Fröhlich et al.[35]. It should be noted that
the peak stresses for the medium grid are less dependent on the exact location of de-
tachment and reattachment at this position because the freeshear layer had more time
to develop and it is still well ahead of the impingement at thebottom wall.

For the modified grid, the velocity profiles in Figure 5.8(e) follow the reference so-
lution more closely, with minor differences in the boundary layers at the top and the
bottom wall. Additionally, all high-resolution methods predict a smoother transition
between the free shear layer and the core flow. M5 appears to predict a stronger re-
circulation than W9 although separating at identical locations. This leads to later reat-
tachment of the separation bubble. A strong dependence of the upper boundary layer
on the grid resolution and the core flow can be observed. As expected, the boundary
layer becomes thinner for higher velocities in the core of the channel. The classical
LES, despite predicting slightly stronger velocities, results in a considerably thicker
boundary layer than the high-resolution methods. This can mainly be attributed to the
combined effect of the relatively coarse grid and the wall approximations employed in
the reference solution. Good agreement for the stresses is revealed in Figure 5.8(f). In
the upper portion of the channel, both the shear and the normal stress are very close
to the reference profile. Again, a slight discrepancy does exist near the boundary layer
at the top wall due to the inadequate treatment in the classical LES. In the recircula-
tion region, more turbulent energy is produced by M3, M5 and W9 when compared
to the results of Fröhlich et al. [35]. Here, all high-resolution methods yield similar
Reynolds stresses. Minor differences, however, appear in the shear layer where the
maximum intensities occur. The behaviour of the stresses, especially near the peaks, is
influenced by a number of parameters, e.g. the location of separation and reattachment
or the specifics of the numerical method, but no consistent pattern seems to emerge in
the massively separated flow region.

5.6.3 Reattached Flow

The next position along the channel that has been investigated is the post-reattachment
region atx/h = 6, see Figure 5.9. Here, the flow is recovering to a state more typical for
a plane channel geometry. Not surprising, the results obtained by the high-resolution
methods on the coarse grid exhibit large discrepancies to the reference solution as the
time history of the flows differ substantially. The constriction felt by the flow, i.e.
the combination of the hill geometry and the separation bubble, is much smaller for
the former. Hence, the velocity profiles predicted in the current simulations, shown in
Figure 5.9(a), are already closer to the state of equilibrium. Most remarkably, however,
is the qualitative difference of the normal stress profile obtained by W9 when compared
to the lower order methods. The pronounced maximum in Figure5.9(b) indicates
more transport of turbulence initially generated in the free shear layer. This effect is
intensified on the coarse grid because W9 also yields the strongest fluctuations further
upstream.
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The velocity profiles obtained on the medium grid, see Figure5.9(c), are in better
agreement with the reference solution than for the coarse grid as could be expected.
In general, earlier reattachment leads to higher velocities in the trough at the same
streamwise locations. This is the case indeed for all methods if applied on the modified
grid, but does not hold for combinations of W9 and the medium or the coarse grid.
Here, W9 reattaches prior to M3 and exhibits smaller velocities in the lower portion
of the channel. The Reynolds stresses obtained on the mediumgrid are displayed in
Figure 5.9(d). Apart from the normal stresses in the vicinity of the top wall, they are
relatively close to the reference profiles. Especially the shear stresses are in very good
agreement over the whole height of the channel. At about the height or the hill crest,
the distinctive peak due to turbulence transport can be observed for all methods. It is
most pronounced for W9, however, which leads to higher levels of turbulence in the
lower half of the attached flow field throughout the channel.

The results for the modified grid are presented in Figures 5.9(e) and 5.9(f). Regarding
the averaged streamwise velocities, they are approaching the reference profiles in the
main flow field. Near the bottom wall, however, the velocity isover-predicted because
of the earlier reattachment. Consequently, the transitionbetween the flow in the core
of the channel and the trough is smoother. The boundary layerat the top wall thickens
similar to the prediction from the classical LES of Fröhlich et al. [35] due to the decel-
eration of the core flow. However, major differences can be observed for the normal
stresses along the top wall, see Figure 5.9(f). The normal stress seems to vanish in
the reference solution, whereas all current simulations predict considerable turbulent
activity. According to the fully wall-resolved simulations from Breuer [14], the normal
stress should reach a minimum of approximately 0.015 in the vicinity of the top wall
and then increase again as the solid surface is approached. Thus, all high-resolution
methods appear to reproduce the correct behaviour. In general, the level of turbulence
across the channel also reflects the location of the reattachment point because they are
relatively close on the medium grid. The reattachment is delayed for the lower order
methods and thus the turbulent intensity at the current location is higher for M3 than
M5, and, in turn, M5 than W9. All methods lead to virtually identical results as the
reference LES regarding the shear stress.

5.6.4 Accelerated Flow

The flow in the channel is subject to strong acceleration as itpasses over the windward
side of the hill. This region is represented by the averaged velocity and stress profiles
at x/h = 8. It should be noted the slope of the geometry has not been accounted
for during the extraction of the data presented in Figure 5.10. Hence, in accordance
with the reference solution of Fröhlich et al. [35], the components do not represent the
normal and the tangential directions at the surface.

As the flow recovers and a more uniform state is achieved, the velocity profiles as
predicted by the high-resolution methods are nearly indistinguishable irrespective of
the grid employed. The data confirms the observations made prior to this position and
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no new insight can be gained. For the coarse grid, the velocity profiles are less full
because of the severely under-predicted size of the separation bubble. This behaviour
can be improved gradually with increasing the grid resolution near the walls as shown
for the medium grid in Figure 5.10(c) and for the modified gridin Figure 5.10(e).
Additionally, the boundary layers at the top and the bottom wall become thinner as the
flow is accelerated in the streamwise direction. In the vicinity of the hill surface, the
velocity is decreased due to the positive pressure gradientacting on the flow field.

Although less pronounced, the Reynolds stresses presentedin Figures 5.10(b) to 5.10(d)
bear similar features to the ones already discussed for the reattached flow atx/h = 6.
Interestingly, even at this location the wall approximations made in the reference LES
still have a significant effect on the boundary layer profile and the normal stresses near
the top wall. Attention should be paid to the shear stresses at the hill surface since
they appear to reverse sign. However, this is only an artifact of the misalignment be-
tween the hill slope and the velocity components which also has to be considered when
interpreting the velocity profiles at this specific location.
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Figure 5.7: Comparison of the averaged streamwise velocity and Reynolds stresses near the
hill crest atx/h = 0.05 as obtained by different high-resolution methods on the coarse, the

medium and the modified grid with the reference LES of Fröhlich et al. [35].
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Figure 5.8: Comparison of the averaged streamwise velocity and Reynolds stresses across the
recirculation zone atx/h = 2 as obtained by different high-resolution methods on the coarse,

the medium and the modified grid with the reference LES of Fröhlich et al. [35].
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Figure 5.9: Comparison of the averaged streamwise velocity and Reynolds stresses after
reattachment atx/h = 6 as obtained by different high-resolution methods on the coarse, the

medium and the modified grid with the reference LES of Fröhlich et al. [35].
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Figure 5.10: Comparison of the averaged streamwise velocity and Reynolds stresses above
the windward slope atx/h = 8 as obtained by different high-resolution methods on the coarse,

the medium and the modified grid with the reference LES of Fröhlich et al. [35].
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5.7 Comparison with Classical Under-Resolved LES

It has been found that a fine grid resolution normal to the solid surfaces is essential for
accurately predicting the flow features in the constricted channel using high-resolution
methods. However, the performance can also be assessed withregard to classical LES
for highly under-resolved conditions. Temmerman et al. [112] have investigated this
scenario and tested several wall approximations in conjunction with the massively sep-
arated hill flow.

From Section 5.4, it is already known that the prediction of the separation point and the
location of reattachment can be improved by using high-resolution methods. However,
if this also transfers to the rest of the flow field and to what extent wall functions affect
the statistical data still needs to be clarified. Therefore,the averaged streamwise veloc-
ity and the Reynolds stress profiles as obtained by M3, M5 and W9 on the coarse grid
are compared against the available data from the wall-modelled LES of Temmerman
et al. [112] which has been produced on an identical grid, seeFigure 5.11. In accor-
dance with Section 5.4, the profiles referred to as “LL3”, “WW” and “NS” are the
results from classical LES using the WALE subgrid-scale model of Ducros et al. [31]
in combination with a three-layer logarithmic wall model, the wall function proposed
by Werner and Wengle [126] and no wall approximation, i.e. no-slip condition, respec-
tively. Additionally, the reference data from Fröhlich etal. [35] has been included for
comparison.

Figures 5.11(a) and 5.11(b) show the averaged velocity profiles in the separation region
at x/h = 2 and after reattachment occurred atx/h = 6. Although the point of separa-
tion is further upstream than for the classical LES with no-slip condition, the velocity
profiles as obtained by the high-resolution methods are veryclose to the classical LES
without wall-treatment at both locations. Applying a logarithmic model near the wall
does not improve the situation significantly in the recirculation zone or the reattached
region. On the other hand, WW appears to be much closer to the reference solution,
especially after reattachment. However, this is not due to the power-law assumption
made in the model of Werner and Wengle [126]. As has been pointed out by Temmer-
man et al. [112], the difference can mainly be attributed to the specific implementation
of the approximation which results in earlier detachment ofthe flow from the hill sur-
face.

For the normal stresses in the recirculation zone presentedin Figure 5.11(c), a strong
relationship between separation location and both position and strength of the free
shear layer can be observed for the classical LES. The same applies to the shear stresses
shown in Figure 5.11(e). This is not the case for the high-resolution methods. However,
this behaviour can be expected because all classical LES simulations used essentially
the same numerical method and the wall model does not affect the shear layer. The
peak stresses predicted by the high-resolution methods generally appear to be in better
agreement with the reference solution than the classical LES with no-slip condition.
Yet, it should be noted that concerns have been raised regarding the grid-converged
representation of the shear layer. After reattachment, seeFigure 5.11(d), all normal
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stress profiles obtained without wall approximations seriously under-predict the level
of turbulence. With wall functions, the normal stress in theattached boundary layer is
more accurately represented. Here, the log-law assumptionseems to give better results
than the power-law. Away from the wall, however, the reattachment location and the
strength of the shear layer appear to be the two factors dominating the shape and the
peak of the normal stress. This also holds for the shear stresses presented in Figure
5.11(f).

In general, the semi-empirical wall models used in the classical LES of Temmerman
et al. [112] only affect the point of separation in under-resolved conditions. However,
the effectiveness depends strongly on the size of the wall adjacentcells. In order to
yield an improvement in the attached flow region, the first grid point has to be in the
viscous sublayer as has been pointed out by Breuer et al. [15]. Additionally, their in-
fluence declines with higher clustering near the solid surface. No direct improvement
could be observed in the massively separated flow region in the lee of the hill which
could be expected because they are not designed for this condition. A better prediction
of the flow detachment can also be achieved by using high-resolution methods. How-
ever, the subsequent development of the free shear layer andthe point of reattachment
are more sensitive to the specifics of the numerical method than the location of the
separation point.
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(f) Shear stress atx/h = 6

Figure 5.11: Comparison of the averaged streamwise velocity and Reynolds stresses across
the recirculation zone atx/h = 2 and after reattachment atx/h = 6 as obtained by different

high-resolution methods with the classical LES of Temmerman et al. [112] on identical grids.
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5.8 Summary

The performance of three high-resolution methods has been assessed with respect to
the massively separated flow in the lee of a hill geometry. Thecomplex flow field
encountered in this test case comprises various regions where different requirements
have to be met. Near the crest of the hill, the accurate prediction of the thin bound-
ary layer detachment from the gently curved surface is paramount to the downstream
development of the flow field. After separation has occurred,the highly unsteady free
shear layer emanating from the hill challenges the turbulence modelling capabilities of
the numerical method. The reattachment location at the bottom wall of the channel is
strongly influenced by the representation of the free shear layer. Reattachment itself,
on the other hand, is an unsteady process and the coherent structures originating in the
shear layer alternate between being propagated downstreamor being swept back into
the recirculation bubble. Thus, a feedback loop is generated that adds to the fluctuation
of the separation line. In the post-reattachment region, the recovery process towards a
plane channel flow has to be captured. Here, the boundary layer in the trough causes
additional difficulties because it is of non-standard form and it undergoes several evo-
lution steps before it reaches the next hill crest. Initially, it is very thick and highly
turbulent. As it approaches the windward side of the following hill, it is accelerated
and undergoes a less pronounced separated state at the bottom of the slope. During the
acceleration stage, it becomes thinner and thus it poses even more stringent require-
ments regarding the grid resolution.

All of the above phenomena are intimately connected to each other because the hill
flow generates its own inlet condition through the periodicity constraint in streamwise
direction. Therefore, it is almost impossible to isolate the effects of the numerical
method on individual regions. However, it can certainly be claimed that the higher
order methods yield an improvement in predicting the averaged separation point even
if the boundary layer is under-resolved. It has also been found that a clustering of grid
points in the wall normal direction is more beneficial than a streamwise clustering. This
can be explained by the reduced influence of wall blockage on the fluid movement near
the surface. Since the higher order methods are more sensitive to small disturbances,
they are able to propagate along the wall and increase the likelihood of separation.

In the free shear layer, the increased sensitivity of the higher order methods M5 and
W9 leads to a more rapid breakdown of the layer when compared to M3. Consequently,
the predicted separation length becomes shorter with increasing order of the method.
This is also associated with more turbulence mixing and the formation of small scale
structures whose size depends on the resolution power of thenumerical scheme. No
conclusive prediction can be made for the post-reattachment region, however, because
the history of the flow strongly influences the results obtained here.
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Swept Wing

I N this chapter, the Implicit Large-Eddy Simulation approach based on the third-
order accurate MUSCL reconstruction method is applied to the investigation of the

highly complex flow around a fully three-dimensional swept wing geometry combin-
ing the importance of transition, free shear layers, detached and attached regions. As
this case has been designed to test and challenge numerical methods, qualitative and
quantitative data from experiments and hybrid RANS/LES simulations are available
for comparison. No attempt to incorporate a wall-approximation has been made in the
current simulation. Instead, the boundary layer is nearly resolved over the majority of
the wing.

6.1 Introduction

One of the greatest challenges for current Large-Eddy Simulations is the application
to flow problems of practical engineering interest. In an aeronautical context, curved
three-dimensional geometries such as swept and delta wingsare among the most dif-
ficult scenarios encountered because they are prone to separation. Swept and delta
wings can be found in all modern aircrafts travelling at transonic or supersonic speeds.
However, it is not only cruise conditions that are of aerodynamical interest. Most of
these vehicles also fly a considerable amount of time at subsonic speeds and moderate
to high angles of attack, e.g. takeoff and landing or air combat. In fact, as has been
pointed out by Cummings et al. [19], the non-linear effects associated with separa-
tion at these flow conditions are more interesting from the modeller’s point of view
and much more difficult to simulate accurately. Computational challenges include the
prediction of transition leading to turbulence and separation, control of numerical vis-
cosity, and generation of adequate grids.

Although sharp-edged delta wings ignore the curvature of the leading edge, the large-
scale flow structures are similar to those observed in three-dimensional swept wings.
A brief summary of the flow around delta wings at high angles ofincidence is given
in the book of Anderson [2]. It is shown that a pair of leading edge vortices arises
from the pressure difference between the top and bottom surface of the wing. The flow
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tries to curl around the swept leading edge from the bottom (pressure side) to the top
(suction side) and eventually separates. A free shear layeremanates from the leading
edge and a span-wise pressure gradient forces the shear layer to roll up, yielding a
closed leading edge vortex (LEV).

On closer examination, however, the flow structure is far more complex. For slender
wings in particular, the LEV induces outflow of the attached fluid on the suction side of
the wing which encounters an adverse pressure gradient towards the leading edge. The
result is a secondary separation zone underneath the LEV featuring smaller, counter-
rotating vortices, displacing the LEV farther inboard and above the surface. Secondary
separation strongly depends on the character of the boundary layer. A laminar bound-
ary layer favours separation, whereas separation occurs later and the secondary vortices
are smaller for turbulent boundary layers.

As the sweep and angle of attack are modified, the vortex structure, interaction and
near-surface phenomena change dramatically as has been shown by Gursul [52] and
Gursul et al. [53]. For non-slender delta wings at low anglesof incidence, LEVs em-
anate from the apex of the wing only and flow separation at the leading edge may
occur even at low Reynolds numbers, e.g. see Ol and Gharib [86], Taylor and Gur-
sul [110], Taylor et al. [111] and Yavuz et al. [127]. Separation strongly depends
on the shape of the leading edge and the flow conditions. With increasing angle of
incidence, the LEV becomes unstable and eventually breaks down. For wings with
lower sweep angle, breakdown occurs at lower angles of attack compared to wings
with higher sweep. Two distinctive types of vortex breakdown have been reported by
Delery [23], Gordnier [43] and Payne et al. [88]: the bubble breakdown characterised
by a stagnation point, at the head of the breakdown region, and rapid diffusion; and the
spiral breakdown marked by deceleration of the vortex core and large scale turbulence.
Furthermore, other phenomena like vortex shedding at very high angles of attack or
the Kelvin-Helmholtz roll up of the free shear layer have been studied experimentally
by Rediniotis et al. [94] and Riley and Lowson [96], respectively.

Computational studies of separated swept wing flows have traditionally been focused
on sharp-edged delta geometries because the detachment process is greatly simplified.
Various combinations of slender and non-slender delta wings at different angles of at-
tack between 5◦ and 30◦ have been investigated for Reynolds numbers ranging from
the order 104 to 106, e.g. see the RANS, LES, and hybrid simulations performed by
Brandsma et al. [13], Gordnier [43], Gordnier and Visbal [44, 45], Rizzetta [97]. When
transition and separation from curved wing surfaces is a prime concern, on the other
hand, all previous studies have been limited to quasi-infinite aerofoil sections. For ex-
ample, Mellen et al. [80] have summarised the findings from the European LESFOIL
project on Large-Eddy Simulations around an Aerospatiale A-aerofoil near stall condi-
tions at an angle of incidence of 13.3◦. It has been shown that near-wall resolution is of
paramount importance for accurately predicting this type of flow. This impression has
been confirmed by the ILES simulation of Morgan and Visbal [84] and the local 2D/3D
coupling approach for LES employed to the identical configuration by Dahlström and
Davidson [20], Mary and Sagaut [79] . These investigations have been conducted at
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high Reynolds numbers of order 106. In order to obtain a fully resolved solution of a
similar flow field, however, the Reynolds number has to be decreased by one order or
magnitude because of the current hardware limitations, e.g. see the direct numerical
simulation for a NACA 0012 aerofoil performed by Shan et al. [100].

Although a great deal of attention has been paid to complex separated flow structures
for wings at relatively high angles of incidence, in particular, a theoretical or compu-
tational model for predicting the flow behaviour with any degree of certainty has not
emerged yet. In fact, no attempt at combining realistic conditions for the flow detach-
ment with a leading edge sweep has been made to date. This investigation is thus con-
cerned with a fully three-dimensional swept wing geometry featuring separation from
a smoothly curved leading edge. Here, the resulting flow fieldis highly complex, non-
linear and characterised by transition zones, leading edgeand possible trailing edge
separation, vortical flow, turbulence, secondary separated zones and reattachment.

6.2 Numerical Framework

The twisted swept wing geometry considered in this investigation was specifically de-
signed within the framework of the MSTTAR (Modelling and Simulation of Turbu-
lence and Transition in Aerospace) initiative for the validation of CFD codes. The
wind tunnel model used in the experimental campaign of Zhangand Turner [131],
conducted at Manchester University, features a leading edge sweep angle of 40◦, a
trailing edge sweep angle of 10.56◦ and an effective angle of attack of 1.23◦. The root
chord length is 0.303mand the span is 0.65mwith a taper ratio of 0.3.

In order to capture the leading edge curvature as accuratelyas possible and to achieve
an efficient distribution of grid cells around the wing a C-O-type topology has been
chosen. After preliminary computations on a very coarse grid consisting of approxi-
mately 3.5M cells and spanning a large computational domainthe clustering near the
wing surface has been modified and the extent of the domain hasbeen significantly
reduced. The results presented here have been obtained on a grid comprising a total
of 12.5M cells in a computational domain of 6c, 6.14c and 5c (c is the root chord
length) in x-, y- and z-direction, respectively. During themesh generation using the
commercial software GRIDGEN, the structured grid has been split into eight blocks of
approximately 95× 130× 127 cells in streamwise-, span-wise- and normal-direction
each, see Figure 6.1(a), and the grid quality has been improved by applying an el-
liptic smoothing algorithm. Subsequently, the no-slip condition on the wing surface,
extrapolated outlet condition in the wake region and far-field conditions have been de-
fined in a pre-processing step. In addition, the mesh has beendecomposed for the
high-performance simulation.

The characteristic parameters specifying the grid clustering near and on the surface of
the swept wing as illustrated in Figures 6.1(b) and 6.1(c) are detailed in Table 6.1, for
a definition of the corresponding edges see Figure 6.2. Here,the geometric growth
rate does not exceed 1.05 in any direction and the resulting z+ values obtained under
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(a) 3D view of the computational grid (b) 2D slice at the root of the wing
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(c) Surface grid (every second point)

Figure 6.1: C-O-type grid topology comprising 12.5M cells in a computational domain
extending 6c, 6.14c and 5c (c is the root chord length) in x-, y- and z-directions, respectively

(every third grid point shown here unless stated otherwise).

conditions similar to the experiment of Zhang and Turner [131] range from 1 in areas
of separated flow over 3 in reattachment regions to 5 at the leading edge. Although
this indicates a wall-resolved situation over the majorityof the wing, the flow field is
still far from being fully resolved on the computational mesh even in the areas near the
wing tips where the clustering is particularly fine. In orderto quantify the degree of
under-resolution, the Kolmogorov length scale has been approximated for the current
flow conditions to be 5× 10−5c, based on the relations given for isotropic turbulence
and a very conservative estimate for the integral length scale of 0.5c. Thornber et al.
[114] have shown that the numerical method employed here requires about 10 grid
cells for the representation of the highest wavenumbers in order to accurately describe
decaying homogeneous turbulence in a statistical sense. With the data from Table 6.1,
this roughly yields a 5-million-fold under-resolved flow field near the tips of the swept
wing.

The simulation for the MSTTAR wing at a total angle of attack of 9◦ has been carried
out at a Reynolds number of approximately 210, 000, based on free-stream velocity and
root chord length, and a near incompressible Mach number of 0.3. These conditions
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Figure 6.2: Edges employed for the grid clustering in the mirror-symmetric computational
domain as specified in Table 6.1. All other edges feature an equidistant distribution of nodes.

Edge Nodes Distribution ∆BEG/c ∆END/c

1 128 geometric progression — 5.0× 10−4

2 96 general 3.3× 10−3 3.3× 10−3

3 128 geometric progression 5.0× 10−4 —
4 96 monotonic rational quadratic spline3.3× 10−3 3.8× 10−2

5 131 general 3.0× 10−2 1.0× 10−3

6 96 monotonic rational quadratic spline — 1.0× 10−3

7 128 geometric progression — 1.0× 10−3

8 96 general 1.0× 10−3 1.0× 10−3

9 128 geometric progression 1.0× 10−3 —
10 131 general 1.0× 10−3 3.0× 10−2

Table 6.1: Characteristic parameters specifying the point clustering in the immediate vicinity
of the three-dimensional wing surface. A definition of the corresponding edges can be found
in Figure 6.2, where the beginning and end of the edges are marked by� and•, respectively.

have been chosen according to the experiments conducted by Zhang and Turner [131]
at Manchester University. Since the computational cost of the near-wall resolved LES
is immense and the resources are limited, the third-order Runge Kutta time-integration
method from Equation (3.2.7) and the third-order MUSCL extrapolation in space pro-
posed by Zóltak and Drikakis [132] have been chosen for their superior stability char-
acteristics when compared to the performance of other schemes in wall-bounded flows.
Although higher order methods may lead to general improvements of the results, this
is not self-evident in the near-wall region. The third-order MUSCL scheme there-
fore seems to be a good compromise between the accuracy and computational cost
of the simulation. Furthermore, the characteristics-based Riemann solver of Eberle
[32] has been employed. All results presented in the following sections have been
non-dimensionalised with the free-stream velocity and theroot chord length. In order
to obtain converged statistical averages, it was sufficient to consider a time-window
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equivalent to two flow-through cycles. Although the length of the time-window is not
formally correlated to the extend of the computational domain, this information is pre-
sented here to put it into perspective. The total runtime including the flow development
from an initial condition based on the coarse grid solution was 60,000 CPUh on IBM
eServer p5 575 nodes with POWER5 1.5Ghz processors.

6.3 Flow Topology

The general topology of the flow around the swept wing geometry is illustrated in
Figure 6.3 by instantaneous streamlines, slices of iso-vorticity contours and pressure
coefficient distribution on the suction side of the wing. Similar to sharp-edged delta
wings, the shear-layer emanating from the leading edges rolls up into a distinctive lead-
ing edge vortex system which grows and becomes less stable asit progresses towards
the trailing edge. After about 50% of the root chord the LEVs start bending inboard
and lift off the wing surface at an increasing rate. The main vortex coresare associ-
ated with the large regions of vorticity still visible near the trailing edge. However, as
they are less coherent than near the leading edge and are influenced by the fully turbu-
lent flow near the wing tips, they exhibit strong fluctuationsand are not symmetrical
anymore.

X Y

Z

Figure 6.3: Instantaneous streamlines, slices of iso-vorticity contours and pressure coefficient
distribution on the suction side of the wing.

The effect of the leading edge vortex system can also be felt on the wing surface as
revealed by the pressure coefficient profiles taken at different locations along the half-
wing spans, see Figure 6.4. A suction peak due to strong flow acceleration can be
observed at the leading edge for all stations. As the LEV is close to the surface inboard
of 50%s a second peak appears near the vortex core and the lift is enhanced. Because
the vortex moves away from the wing surface its influence decreases further outboard
and only a flat pressure profile remains on the suction side.
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Figure 6.4: Colour contours of the pressure coefficient on the top surface and corresponding
distributions on the suction and pressure side of the wing atdifferent span-wise locations.

A comparison between time-averaged streamlines just abovethe wing surface obtained
by the current simulation and the experimental oil-film visualisation of Zhang and
Turner [131] is shown in Figure 6.5. The computational results in the right-hand half
of the picture also include contours of the pressure coefficient on the suction side of
the wing. Several common flow features, marked by dashed lines for the experimental
data, can be observed in both parts of the picture. First, thereattachment of the leading
edge vortex (VR) is well-defined in the computations inboardof approximately 30%s,
but it starts to diffuse and bend towards the trailing edge as the LEV becomes lessco-
herent. Close to the wing root, the reattachment line exhibits a similar angle for both
the experiment and the simulation. However, the deviation from a straight line on the
right-hand side appears to begin prior to the one observed onthe left-hand side. This
indicates premature non-linear spreading of the leading edge vortex in the simulation
and leads to a larger extent near the trailing edge. Moreover, the two saddles SA1
and SA2 identify the existence of a secondary vortical region induced by the primary
vortex along the leading edge which can also be observed in the experiment of Zhang
and Turner [131], albeit this behaviour is less clear in the oil-film visualisation. The
secondary vortical zone does collapse, however, as the influence of the main vortex
decreases towards the wing tip due to the breakdown of its core. Although the stream-
lines are not following the core of the leading edge vortex, as they are close to the wing
surface, breakdown is clearly indicated by the stagnation point (SP) between 50%sand
60%s. This phenomenon is associated with the interaction between the relatively sta-
ble LEV coming from the inboard section and the fully turbulent flow present closer
to the wing tip — hence it is not to be mistaken with the naturalbreakdown observed
in, for example, delta wing flows. It should also be noted thata stagnation point is not
visible in the experiment and thus the LEV might be still be intact. Yet another feature
of the flow is apparent closer to the wing tip. In the fully turbulent region, the effect
of the LEV drives the fluid towards the wing tip where it meets the opposing outer
flow between 80%s and 90%s. Thus, the characteristic saddle (SA) observed in both
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experiment and simulation is formed.
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Figure 6.5: Time-averaged streamlines just above the wing surface and contours of pressure
coefficient as predicted by the current simulation (right). Surface oil-film visualisation from

experiment on the suction side of the wing (left).

In general, the numerically predicted streamline pattern is found to be in good agree-
ment with the oil-film visualisation from the experiments ofZhang and Turner [131].
However, the skin friction lines inboard of the main vortex in the experimental picture
are aligned in free-stream direction suggesting a simple dead-air region, whereas the
simulation predicts a weakly detached region of fluid revolving around a focal point
(FP). Furthermore, an incipiently separated zone near the trailing edge (TES) not exis-
tent in the experiment can be seen in the computation. This observation is not exclusive
to the current results. Li and Leschziner [69] have reporteda similar flow behaviour in
their hybrid RANS/LES simulation of the same case.

The same authors could also confirm the LEV breakdown mechanism mentioned previ-
ously occurring at locations beyond 50% half-span. In orderto illustrate the structural
composition of the leading edge vortex as it progresses across the wing, colour con-
tours of the Q-criterion as proposed by Jeong and Hussain [61] are shown in Figure
6.6. The two-dimensional slices are taken at constant span-wise positions ranging from
30%s to 90%s. A strong and coherent LEV close to the wing surface can be identified
near the root at 30%s and the clearance between the vortex core and the wing surface
increases further outboard, i.e. at 50%s. Additionally, the secondary vortical region
is clearly visible for the first two locations. At 70% half-span, the LEV has become
unstable and structural integrity can no longer be observed. Closer to the wing tip,
see Figure 6.6(d), the shear layer emanating from the leading edge undergoes a roll-
up similar to a Kelvin-Helmholtz mechanism and the resulting flow is akin at vortex
shedding.
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(a) Q-criterion at 30% half-span. (b) Q-criterion at 50% half-span.

(c) Q-criterion at 70% half-span. (d) Q-criterion at 90% half-span.

Figure 6.6: Contours of the Q-criterion as proposed by Jeong and Hussain[61] obtained in
the current simulation at different locations along the span of the wing.

6.4 Velocity Profiles

A quantitative comparison between the flow field in the experiment of Zhang and
Turner [131], the results obtained with the current ILES approach using high-resolution
methods and the classical hybrid RANS/LES simulation of Li and Leschziner [69] on
a large grid comprising 23.6M nodes has been performed. The time-averaged veloc-
ity and Reynolds stress profiles as a function of the distancefrom the wing have been
calculated from the experimental data sets measured nearlynormal to the surface at
several positions along the half-span and the local chord bythree-dimensional Laser
Doppler Anemometry (LDA). This data was made available by Zhang and Turner
[131], but has not been published at the time of writing. Details on the exact loca-
tions of the flow measurements and a full set of profiles can be found in Appendix
F. Furthermore, it should be noted that the velocities and corresponding Reynolds
stresses presented here have not been decomposed into tangential and normal direc-
tions to the wall, they rather represent the streamwise (u),span-wise (v) and azimuthal
(w) portions.
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Figure 6.7 shows the time-averaged velocity components fordifferent locations along
the local chord at 30% half-span. Near the leading edge, see Figure 6.7(a), all stream-
wise velocity profiles are in good agreement with minor differences regarding the posi-
tion and magnitude of the peak. The current simulation usinghigh-resolution methods,
however, deviates from the experiment and the classical hybrid RANS/LES near the
surface at 10% local chord. This behaviour is associated with the size and strength of
the secondary vortical region. The span-wise component in Figure 6.7(b) features the
characteristic cross-flow profile observed in swept wing aerodynamics. Close to the
wing surface, the negative pressure gradient leads to an outflow towards the wing tip,
whereas away from the surface the fluid tries to fill the gap opened by the higher dis-
placement near the wing root and thus inflow occurs. Here, themagnitude of both min-
imum and maximum velocity are slightly under-predicted by ILES, but over-predicted
by the hybrid simulation. Regarding the azimuthal component, Figure 6.7(c), the gen-
eral shape of the profile dictated by the existence of the secondary vorticity and the
position of the free shear layer is well captured in the current ILES simulation. How-
ever, the near-wall vortical region could not be predicted by the hybrid RANS/LES
approach at this location and thus the simulation of Li and Leschziner [69] produces
an entirely different result.

At 30% half-span and 50% local chord, see Figures 6.7(d) to 6.7(f), the profiles ex-
tracted from the experiment, the ILES and the hybrid RANS/LES simulations exhibit
a fairly similar shape for all three velocity components. The current simulation pre-
dicts a slightly thinner boundary layer and a stronger cross-flow component near the
surface than observed in the experiment and the classical RANS/LES. On the other
hand, the hybrid approach under-predicts the magnitude of the azimuthal portion of
the flow in Figure 6.7(f). It should be noted that this specificlocation is just upstream
of the inboard separated zone. Hence, the influence of the detached flow on the velocity
profiles here is only marginal. However, this situation doeschange when approaching
the trailing edge as shown in Figures 6.7(g) to 6.7(i). Both simulations predict incipi-
ent flow separation at 90% local chord which is reflected clearly in the profiles of the
streamwise and the azimuthal velocity. As the experimentaloil-film visualisation does
not suggest any detachment in this area, differences regarding the velocity profiles are
expected. Yet, the cross-flow component predicted by ILES follows the experimental
data surprisingly close which is most likely a coincidence.

The averaged velocity profiles for the mid-wing section at 50% half-span are presented
in Figure 6.8. The secondary vortical region has developed considerably when com-
pared to the inboard position, and the effect on the streamwise velocity component at
10% local chord is clearly visible in the experiment as well as both simulations, see
Figure 6.8(a). The< u> profiles near the leading edge compare well, with ILES pre-
dicting a small over-shoot near the surface, indicating stronger vorticity. The hybrid
RANS/LES yields a peak velocity further from the wing than the experiment or the
current simulation. The span-wise and the azimuthal velocity in Figures 6.8(b) and
6.8(b) obtained by both simulations are slightly over-predicted near the wall and they
tend to peak at a lower magnitude away from the wing with respect to the experiment.
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Most remarkably is the stronger displacement of fluid as reflected by a relatively high
level of<w> velocity in case of the ILES simulation.

The agreement is poor at the half-chord position in Figure 6.8. The velocity profiles
are strongly affected by the premature non-linear growth of the leading edgevortex ob-
served in the current simulation which manifests itself in large discrepancies between
the ILES prediction and the experiment. The streamwise and the azimuthal velocities
are decelerated in the vicinity of the wing, Figures 6.8(d) and 6.8(f), and the cross-
stream component is amplified by the rotation of the large vortex, Figure 6.8(e). The
classical RANS/LES, on the other hand, is closer to the experimental data. However,
the kink in the< u> profile measured in the experiment representing the influence of
the leading edge vortex is not reproduced adequately. This suggests that the extent of
the LEV in the streamwise direction is under-predicted in the hybrid RANS/LES, as
has been confirmed by Li and Leschziner [70]. The same observations can be made for
the location close to the trailing edge at 90% local chord, albeit the effect is diminished.

Further outboard, the experimental skin friction lines have revealed a non-linear spread-
ing of the leading edge vortex similar to the current simulation. In this region of en-
hanced interaction with the fully separated flow regime towards the wing tip the accu-
racy of the ILES prediction appears to recover, see Figure 6.9. Near the leading edge,
at 10% local chord, the streamwise velocity is already reversed and thus a thickening
of the boundary can be observed in Figure 6.9(a). This effect is captured in the current
simulation using high-resolution methods, whereas the hybrid RANS/LES approach
fails. Consequently, both span-wise and azimuthal velocity profiles do not match the
experimental data at this location and all components obtained by ILES are more ac-
curate. Although the flow is not detached at positions closerto the trailing edge, it
appears that the current results approach the experimentalvelocity profiles in Figures
6.9(d) to 6.9(f), but predictions with the classical RANS/LES are still hindered by the
erroneous flow development near the leading edge. Despite being somewhat underes-
timated in terms of magnitude, the span-wise and, in particular, the streamwise flow
component at 50% local chord from the ILES simulation follows the shape of the ex-
perimental profile closely. Only weak azimuthal motion can be observed, hence minor
differences regarding the< w > velocity in Figure 6.9(f) are deemed less important.
At 90%s, i.e. Figures 6.9(g) to 6.9(i), the profiles exhibit a similar behaviour, except
that the experimental span-wise velocity and the corresponding component obtained
by ILES are in better agreement than at 50% local chord. Yet, this is not the case for
<w> near the wing surface.

The observations discussed previously for the span-wise location at 70%s become
more pronounced in the fully separated and turbulent regionclose to the wing tip at
90% half-span as shown in Figure 6.10. It should be noted thatthe improvements are
partly due to the finer grid clustering in this area, but the flow is certainly still highly
under-resolved on the given computational mesh. On the one hand, the profiles of
all velocity components as predicted by the current simulation are nearly identical to
the experimental data at most chord-wise positions. Admittedly, small discrepancies
regarding the inboard motion and the peak azimuthal velocity can be detected near
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the leading edge at 10%s, see Figures 6.10(b) and 6.10(c), respectively. On the other
hand, however, the classical RANS/LES approach completely suppresses separation
because the RANS near-wall approximation cannot treat the massive flow detachment
adequately. Thus, the results obtained in the hybrid RANS/LES simulation largely
disagree with the experiment in the fully turbulent region.
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Figure 6.7: Comparison between averaged velocity profiles from the experiments of Zhang
and Turner [131], the results obtained with ILES and the hybrid RANS/LES of Li and

Leschziner [69] for different locations along the local chord at 30% half-span.



130 Swept Wing

<u> / u∞

d
/c

0 0.5 10

0.05

0.1

0.15

EXPERIMENT
ILES (M3)
HYBRID RANS/LES

(a) Averaged u at 10%c.

<v> / u∞

d
/c

-0.5 0 0.50

0.05

0.1

0.15

EXPERIMENT
ILES (M3)
HYBRID RANS/LES

(b) Averaged v at 10%c.

<w> / u∞

d
/c

-0.2 0 0.20

0.05

0.1

0.15

EXPERIMENT
ILES (M3)
HYBRID RANS/LES

(c) Averaged w at 10%c.

<u> / u∞

d
/c

0 0.5 10

0.05

0.1

0.15

EXPERIMENT
ILES (M3)
HYBRID RANS/LES

(d) Averaged u at 50%c.

<v> / u∞

d
/c

-0.5 0 0.50

0.05

0.1

0.15

EXPERIMENT
ILES (M3)
HYBRID RANS/LES

(e) Averaged v at 50%c.

<w> / u∞

d
/c

-0.2 0 0.20

0.05

0.1

0.15

EXPERIMENT
ILES (M3)
HYBRID RANS/LES

(f) Averaged w at 50%c.

<u> / u∞

d
/c

0 0.5 10

0.05

0.1

0.15

EXPERIMENT
ILES (M3)
HYBRID RANS/LES

(g) Averaged u at 90%c.

<v> / u∞

d
/c

-0.5 0 0.50

0.05

0.1

0.15

EXPERIMENT
ILES (M3)
HYBRID RANS/LES

(h) Averaged v at 90%c.

<w> / u∞

d
/c

-0.2 0 0.20

0.05

0.1

0.15

EXPERIMENT
ILES (M3)
HYBRID RANS/LES

(i) Averaged w at 90%c.

Figure 6.8: Comparison between averaged velocity profiles from the experiments of Zhang
and Turner [131], the results obtained with ILES and the hybrid RANS/LES of Li and

Leschziner [69] for different locations along the local chord at 50% half-span.
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Figure 6.9: Comparison between averaged velocity profiles from the experiments of Zhang
and Turner [131], the results obtained with ILES and the hybrid RANS/LES of Li and

Leschziner [69] for different locations along the local chord at 70% half-span.
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Figure 6.10: Comparison between averaged velocity profiles from the experiments of Zhang
and Turner [131], the results obtained with ILES and the hybrid RANS/LES of Li and

Leschziner [69] for different locations along the local chord at 90% half-span.
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6.5 Turbulent Energy Profiles

More insight into the flow structure can be gained by examining the turbulence levels at
the characteristic positions discussed in the previous section. Here, the time-averaged
total turbulent energy in normalised form defined by

<k>
u2
∞

=
0.5

(

<u′u′> + <v′v′> + <w′w′>
)

u2
∞

(6.5.1)

is investigated. A more detailed picture presents itself when considering the individual
Reynolds stress components at all locations measured in theexperiment as given in
Appendix F. However, it has been found that the information provided by the total
turbulent energy at selected positions is sufficient to characterise the flow field.

Figure 6.11 shows the turbulent energy profiles from the experiments of Zhang and
Turner [131], the results obtained in the current ILES usinghigh-resolution methods
and the hybrid RANS/LES of Li and Leschziner [69] for different locations along the
local chord at 30% and 50% half-span. It can be noticed that the flow is essentially lam-
inar at the inboard section, i.e. 30%s, over most of the chord, see Figures 6.11(c) and
6.11(e). Only the shear layer emanating from the leading edge produces a significant
level of turbulence as observed in the experiment and the hybrid RANS/LES simula-
tion at 10% local chord, Figure 6.11(a). Here, the hybrid RANS/LES overestimates the
peak by about forty percent. ILES, on the other hand, strongly under-predicts the peak
energy because the relatively thin layer cannot be represented adequately on the given
grid with only four cells across the shear layer. Most notably, a second peak associated
with the secondary vortical region can be detected closer tothe wing surface in the
profile predicted by the ILES approach which, in line with theprevious observations,
does not appear in the experimental or the classical RANS/LES data.

At the mid-span position 50%s, shown in Figures 6.11(b) to 6.11(f), a similar scenario
is presented near the leading edge. The turbulence level in the ILES simulation is still
too low when compared with experiment. However, the effect of the secondary vortical
region is now clearly visible in all three profiles in Figure 6.11(b). A less favourable
impression is left by the hybrid RANS/LES at this location. It seems that the existence
of the secondary vortical zone influences the shear layer andalters its character —
hence the peak energy is suddenly underestimated by a factorof approximately five.
As can be seen at the mid-chord position, Figure 6.11(d), thebehaviour of the free
shear layer has serious consequences for the downstream development of the flow. In
the current simulation using high-resolution methods, theonset of LEV roll-up can be
detected just after 50%c and thus the shear layer is still intact at this location which
is reflected by the peak turbulent energy away from the wing. Aresult of the delayed
leading edge vortex formation is an increased growth rate due to the diminished influ-
ence of the wall, leading to a seemingly premature non-linear spreading of the vortex.
Two additional peaks, albeit smaller, can be observed in theprofile from the ILES
simulation. Close to the solid surface, the strong cross-flow component, caused by
the large extent of the leading edge vortex, also yields an increase in turbulent energy.
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Furthermore, the influence of the LEV can be felt between the wing and the shear
layer as implied by the second peak in Figure 6.11(d). Both the profiles obtained in
the experiment and the hybrid RANS simulation suggest the presence of a developed
leading edge vortex at 50%c and the level of turbulence decreases towards the trailing
edge. Here, at 90%c, the full profile predicted by ILES indicates a stronger influence of
the LEV when compared with the experiment and the classical RANS/LES in Figure
6.11(f).

Consistent with the previous comment on grid resolution in the shear layer, a slightly
thicker shear layer leads to stronger velocity fluctuationsas observed in the current
simulation near the leading edge for the 70% half-span section, see Figure 6.12(a).
However, the peak turbulent energy is still under-predicted by the ILES approach and
the clearance between wing surface and the shear layer appears to low. Although
the reversed flow situation close to the leading edge is not captured by the hybrid
RANS/LES, the maximum turbulent energy recovers to a value closerto the experi-
ment. It should be noted that the profile obtained by the classical RANS/LES does
not start from zero at the wall which is clearly unphysical and raises doubts about the
reliability of the data. At the 70% half-span station, the main vortex core has turned
towards the trailing edge and undergone a breakup mechanism. Therefore, the shear
layer does not roll up. In fact, it still affects the turbulent energy profiles at 50% local
chord as indicated by the peaks in both the experimental and ILES observed in Fig-
ure 6.12(c), but not the hybrid RANS/LES results. However, the current simulation
over-predicts the cross-flow fluctuations near the wing surface already observed at the
half-chord position for 50%s. Close to the trailing edge, the level of turbulence dimin-
ishes for the classical RANS/LES, whereas it increases in the ILES simulation due to
enhanced mixing caused by the large predicted vortex.

A similar picture to 70% half-span presents itself for the sections at 90%s in Figures
6.12(b) to 6.12(f). Here, the position of the free shear layer emanating from the lead-
ing edge is in better agreement with the experiment than at the inboard station, but the
peak magnitude is underestimated again. Moreover, the turbulent energy profiles ob-
tained in the current simulation using high-resolution methods match the shape of the
experimental results closely further downstream and they are virtually identical in the
vicinity of the trailing edge. As anticipated, however, thehybrid RANS/LES approach
fails to predict the flow in this fully turbulent region dominated by massive separation.
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Figure 6.11: Comparison between averaged turbulent energy profiles fromthe experiments of
Zhang and Turner [131], the results obtained with ILES and the hybrid RANS/LES of Li and

Leschziner [69] for different locations along the local chord at 30% and 50% half-span.
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Figure 6.12: Comparison between averaged turbulent energy profiles fromthe experiments of
Zhang and Turner [131], the results obtained with ILES and the hybrid RANS/LES of Li and

Leschziner [69] for different locations along the local chord at 70% and 90% half-span.
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6.6 Summary

The numerical approach of Implicit Large-Eddy Simulation using high-resolution meth-
ods has been applied to the external flow around a swept wing geometry of practical
aeronautical interest. This highly complex problem combines large-scale separation
with substantial regions of attached flow where the realistic representation of near-wall
effects are of paramount importance.

The free-stream approaching the inclined wing is quickly accelerated and detaches
from the leading edge to form a free shear layer that subsequently rolls up into the char-
acteristic leading edge vortex also observed in sharp-edged delta wing flows. Inboard
of the vortex reattachment line, the conditions are essentially laminar, and beneath the
LEV the flow is prone to produce secondary vorticity. As it develops in the span-wise
direction, the main vortex bends towards the trailing edge and becomes more unsta-
ble. This leads to a mechanism akin to breakdown, where the vortex loses some of its
coherence, and the interaction with the fully separated, turbulent flow region near the
wing tip, favoured by the specifics of the twisted geometry, gains importance.

The conditions for the MSTTAR swept wing have been chosen to allow nearly wall-
resolved simulations that can be assessed using the experimental LDA data and oil-
film visualisations of the skin friction lines on the solid surface provided by Zhang and
Turner [131]. Furthermore, the classical RANS/LES using a RANS-type approxima-
tion in the near-wall region performed by Li and Leschziner [69] are included in the
comparison of flow and turbulence characteristics.

It has been found that both simulations predict an area of mildly reversed flow near the
wing root and leading edge vortex breakdown beyond approximately 50% half-span
whereas the experiment suggests an inboard dead-air regionand vortex breakdown
cannot be clearly identified. In other respects, the large-scale flow features are reason-
ably well represented by the two numerical approaches. Here, the hybrid RANS/LES
appears to be more accurate than ILES in areas of attached flowbut fails completely in
the fully turbulent region closer to the wing tip because thenear-wall approximation is
not adequate for massively separated flow.

It should be highlighted that the computational grids employed in the two simulations
differ substantially. For the hybrid approach, 23.6M nodes havebeen distributed using
a H-H-type topology of similar extent to the C-O-type mesh presented for the current
simulation which has only half the number of nodes. Furthermore, they are distin-
guished by the specific requirements in the vicinity of the wing surface. In the ILES
simulation, the near-wall region is nearly resolved with z+ ranging from 1 to 5 whereas
the node clustering in hybrid RANS/LES grid yields characteristic values between 20
and 40. Therefore, the near-wall phenomena are captured more accurately in the cur-
rent simulation but the quality of the prediction in the freeshear layer deteriorates.
This has a severe impact on the development of the leading edge vortex as exemplified
for the section at 50% half-span. However, when the LEV is notpresent and the flow is
fully turbulent, i.e closer to the wing tip, the influence of the shear layer is diminished
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and the statistical data obtained by ILES is in very good agreement with the exper-
iment. In general, this investigation has demonstrated that high-resolution methods
can be applied to complex, separated flows without any modification if the near-wall
phenomena are nearly resolved on the computational grid employed.
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Conclusions and Outlook

The work in this thesis covered a range of issues pertinent tothe numerical prediction
of low-speed separated flows using high-resolution methodsin the context of Implicit
Large-Eddy Simulations. The main findings and lessons learnt will be presented in the
following section. Moreover, future steps for gaining deeper insight into this complex
topic are suggested that will, hopefully, aid the quest for high-fidelity simulations of
reasonable computational cost in realistic engineering applications.

7.1 Conclusions

In simulations of massively separated flows, it is necessaryto capture various stages
in the development of the flow field after separation has occurred. Here, the behaviour
of a third-order MUSCL, a fifth-order MUSCL and a ninth-orderWENO algorithm
have been assessed in combination with several Runge Kutta time-integration methods
for predicting the evolution of the Taylor-Green Vortex. The Taylor-Green Vortex is
probably the simplest model yielding an isolated representation of the linear, non-linear
and fully turbulent development of an inviscid instabilitymechanism similar to the one
observed in the characteristic free shear layer appearing in separated flows.

It has been demonstrated that the errors due to the specifics of the time-integration
method can be neglected in comparison with the effects of spatial accuracy on the re-
sults. The inviscid instability mechanism is captured by all high-resolution methods
and the onset of the stage dominated by vortex dynamics is in good agreement with
available DNS data and other simulations. However, observations made on different
grid sizes revealed that in general the computations using alower order method become
under-resolved prior to the ones with a higher order scheme.Thus, the resolving power
of the numerical method is increasing with its order of accuracy. This conclusion is
also supported by the fact that the higher order methods produce less numerical dissi-
pation when compared to lower order methods on identical grids. On the other hand,
it should be noted that higher order methods are more sensitive to small perturbations
in the flow and thus they have to be applied with care. In case ofthe Taylor Green
Vortex, the associated breaking of the symmetric initial condition leads to a more re-
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alistic evolution of the flow field on coarser grids, but this might not hold for practical
problems of engineering interest. Furthermore, a detailedcomparison of the compu-
tational cost for the three high-resolution methods has shown that the savings due to
the increased resolving power, i.e. reduction of grid nodes, outweighs the effect of an
increasing complexity of the numerical scheme, i.e. more floating point operations, for
the Taylor-Green Vortex. Hence, higher order methods are more efficient than lower
order methods in wall-free, turbulent flows.

The next test case that has been considered in this thesis addressed the fundamental
separation process in wall-bounded flows. Here, a statistically two-dimensional chan-
nel flow with hill-type constrictions has been employed to investigate the performance
of the three high-resolution algorithms mentioned previously with respect to detach-
ment from a gently curved surface in grid under-resolved conditions. The hill flow es-
sentially combines the importance of near-wall phenomena leading to separation with
the subsequent development of the free shear layer in a relatively simple geometry.

A comparison with classical, wall under-resolved LES uncovered that high-resolution
algorithms can yield a more accurate prediction of the separation location than standard
methods when both are applied in conjunction with no-slip conditions at the surface
and the grid is very coarse. Different effects of local grid refinement on the results
as obtained in the current simulations and the classical, second-order accurate LES
have been observed. The prediction with standard LES and no-slip conditions im-
proves considerably when the nodes are clustered in streamwise direction, whereas the
high-resolution methods appear to prefer a predominantly wall-normal refinement. Be-
cause the higher order schemes are more sensitive to small disturbances they are also
more likely to predict flow detachment prior to lower order methods on identical grids.
Classical wall-modelled LES consistently outperforms theILES methods regarding the
separation location when taking wall-resolved classical LES as a reference. However,
wall functions are also sensitive to the placement of the wall-adjacent grid nodes and
still require them to lie within the viscous sublayer. In thefree shear layer, higher or-
der methods lead to seemingly premature breakdown, reflected by shorter separation
bubbles, and the turbulence mixing with the core flow is increased compared to lower
order methods and the reference LES. However, the quality ofthe reference solution
in this particular region obtained by classical wall-resolved LES may be questionable.
Thus, no clear conclusion can be drawn here for the behaviourof the different ILES
techniques. The same holds for the reattachment location and post-reattachment zone
because the flow development is highly dependent on its upstream history.

Finally, the third-order accurate MUSCL scheme has been employed in a nearly wall-
resolved ILES simulation of the flow around a fully three-dimensional swept wing
geometry. This case has been specifically designed to test numerical methods in an
applied flow problem of practical aeronautical interest. The challenge here includes
the prediction of transition leading to turbulence and separation, adaptive control of
numerical viscosity, and generation of suitable grids. In order to assess the fidelity of
the current simulation, experimental data and the results obtained by a classical hybrid
RANS/LES simulation have been used as reference.
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It has been found that the high-resolution method is able to capture the large-scale flow
features such as roll-up of the free shear layer into a leading edge vortex and a fully
separated, turbulent region in the vicinity of the wing tip.On closer examination, the
coarseness of the current grid in the free shear layer leads to a delay of the leading edge
vortex roll-up and associated increased vortex growth in the ILES simulation when
compared with the hybrid RANS/LES approach and, in particular, with the experiment.
Thus, the boundary layer profiles obtained by ILES and experiment differ in regions
dominated by the structure of the leading edge vortex. In themassively separated
and turbulent zone near the wing tip, however, the characterof the boundary layer
gains importance and the statistics gathered from the current simulation using a high-
resolution method are virtually identical to experimentalresults, whereas the near-
wall approximation employed in the hybrid RANS/LES computation fails completely.
The particular strength of ILES is highlighted by the fact that the hybrid RANS/LES
computation employed nearly twice as many grid nodes than the current simulation
using a high-resolution method. On the other hand, both simulations predict an area of
weakly reversed flow close the root of the wing which disagrees with the experiment.

In the past, Implicit Large-Eddy Simulations have been usedto simulate a broad vari-
ety of complex flows, e.g. flows that are dominated by vorticity leading to turbulence,
flows featuring shock waves and turbulence, and the mixing ofmaterials. However,
many classical test cases for these methods are not bounded by walls or feature geo-
metrically well-defined separation lines, e.g. decaying isotropic turbulence, free jets
and cavity flows. This gave cause to fervid discussions in theCFD community about
the applicability of the ILES approach to complex, wall-bounded flows of practical
engineering interest. With the work in this thesis, it has been clearly demonstrated that
Implicit Large Eddy Simulations using high-resolution methods are indeed capable of
realistically predicting just this type of flow without the need for any adjustment.

7.2 Future Work

In retrospect, several lessons have been learnt and more work needs to be done, pri-
marily in order to control the computational cost of wall-bounded, turbulent flow sim-
ulations featuring separation from smooth surfaces. The use of higher order methods
allows for significant reduction of grid nodes in the fully turbulent regime. In the near-
wall region, however, they tap their full potential only if the boundary layer is nearly
resolved in wall-normal direction and the grid savings in the tangential direction are
scant. Therefore, the main focus in the future should be the development of a reliable
wall-modelling strategy that covers both attached and detached flow conditions.

Regarding the development of free shear layers, more fundamental studies are neces-
sary to determine the exact requirements of different numerical methods for producing
realistic results. It has been shown that the break up and subsequent turbulent mix-
ing strongly depends on the order of the scheme employed and the grid resolution
available. A similar effect can be expected for the roll-up of the leading edge vortex
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observed in the swept wing flow. Here, grid convergence studies and comparisons
with experimental data for relatively simple geometries are desirable. In the context of
internal flows, an investigation of flow over a backward facing step could offer valu-
able insight and, with respect to external flows, an in-depthstudy of sharp-edged delta
wings may be proposed.
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B. J. Geurts, and O. Métais, editors,Direct and Large-Eddy Simulation VI, Er-
coftac, pages 159–166. Springer Netherlands, 2006.

[30] D. Drikakis, C. Fureby, F. F. Grinstein, and D. Youngs. Simulation of transition
and turbulence decay in the Taylor-Green vortex.Journal of Turbulence, 8(20):
1–12, 2007.

[31] F. Ducros, F. Nicoud, and T. Poinsot. Wall-adapting local eddy-viscosity model
for simulations in complex geometries. In M. J. Baines, editor,Numerical Meth-
ods for Fluid Dynamics VI, pages 293–299. Oxford University Computing Lab-
oratory, 1998.

[32] A. Eberle. Characteristic flux averaging approach to the solution of Euler’s
equations. Computational fluid dynamics, VKI Lecture Series, 1987.

[33] ERCOFTAC. Periodic flow over a 2-D hill. online, 2002. URL
http://www.ercoftac.nl/workshop10/case9.2/geom9.2.html.
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A P P E N D I X A

Notation

In this thesis, the following notation exemplified for two vectorsa = [a1, a2, a3]T and
b = [b1, b2, b3]T has been used. The dot product of two vectors is given by

a · b = a1b1 + a2b2 + a3b3 ,

the cross product of two vectors is defined as

a× b =

∣
∣
∣
∣
∣
∣
∣
∣

i j k
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,

the tensor product of two vectors is written as

a⊗ b =


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,

the gradient (nabla) operator yields

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
,

the gadient of a scalar is defined as

∇a = i
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the gadient of a vector is given by
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the divergence of a vector is written as
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and the divergence of a tensor yields

∇ · A =
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Flowchart

Figure B.1: Flowchart of the solver for unsteady problems including explicit multi-stage
Runge-Kutta time integration schemes.
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Viscous Stresses

The individual components of the viscous stress tensor in non-dimensional form as
used in Chapter 3 can be written as follows
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.

Please note that the Reynolds number has been included here as opposed to the notation
in Equation (3.1.24).
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Discretisation

For the sake of completeness, the metric relations and theirdiscretisation as used in
Chapter 3, also found in the book of Drikakis and Rider [27], are presented here. In a
three-dimensional context, the metrics for the coordinatetransformation is given by

ξx =
yηzζ − yζzη

J
, ξy =

−xηzζ + xζzη
J

, ξz =
xηyζ − xζyη

J
,

ηx =
−yξzζ + yζzξ

J
, ηy =

xξzζ − xζzξ
J

, ηz =
−xξyζ + xζyξ

J
,

ζx =
yξzη − yηzξ

J
, ζy =

−xξzη + xηzξ
J

, ζz =
xξyη − xηyξ

J
and the derivatives across a cell face, e.g. defined by the subscript (i −1/2, j, k), can be
discretised as

xη|i−1/2, j,k = 0.5(xi, j+1,k + xi, j+1,k+1 − xi, j,k − xi, j,k+1) ,

yη|i−1/2, j,k = 0.5(yi, j+1,k + yi, j+1,k+1 − yi, j,k − yi, j,k+1) ,

zη|i−1/2, j,k = 0.5(zi, j+1,k + zi, j+1,k+1 − zi, j,k − zi, j,k+1) ,

xξ|i−1/2, j,k = 0.125(xi+1, j,k + xi+1, j+1,k + xi+1, j+1,k+1 + xi+1, j,k

−xi−1, j,k − xi−1, j+1,k+1 − xi−1, j+1,k+1 − xi−1, j,k+1) ,

yξ|i−1/2, j,k = 0.125(yi+1, j,k + yi+1, j+1,k + yi+1, j+1,k+1 + yi+1, j,k

−yi−1, j,k − yi−1, j+1,k+1 − yi−1, j+1,k+1 − yi−1, j,k+1) ,

zξ|i−1/2, j,k = 0.125(zi+1, j,k + zi+1, j+1,k + zi+1, j+1,k+1 + zi+1, j,k

−zi−1, j,k − zi−1, j+1,k+1 − zi−1, j+1,k+1 − zi−1, j,k+1) ,

xζ |i−1/2, j,k = 0.5(xi, j+1,k + xi, j+1,k+1 − xi, j,k − xi, j,k+1) ,

yζ |i−1/2, j,k = 0.5(yi, j+1,k + yi, j+1,k+1 − yi, j,k − yi, j,k+1) ,

zζ |i−1/2, j,k = 0.5(zi, j+1,k + zi, j+1,k+1 − zi, j,k − zi, j,k+1) .

Furthermore, the inter-cell velocity derivatives at the same face can be calculated as

uξ|i−1/2, j,k = ui+1, j,k − ui, j,k ,

vξ|i−1/2, j,k = vi+1, j,k − vi, j,k ,

wξ|i−1/2, j,k = wi+1, j,k − wi, j,k ,



D-2 Discretisation

uη|i−1/2, j,k = 0.25(ui, j+1,k + ui−1, j+1,k − ui, j−1,k − ui−1, j−1,k) ,

vη|i−1/2, j,k = 0.25(vi, j+1,k + vi−1, j+1,k − vi, j−1,k − vi−1, j−1,k) ,

wη|i−1/2, j,k = 0.25(wi, j+1,k + wi−1, j+1,k − wi, j−1,k − wi−1, j−1,k) ,

uζ |i−1/2, j,k = 0.25(ui, j,k+1 + ui−1, j,k+1 − ui, j,k−1 − ui−1, j,k−1) ,

vζ |i−1/2, j,k = 0.25(vi, j,k+1 + vi−1, j,k+1 − vi, j,k−1 − vi−1, j,k−1) ,

wζ |i−1/2, j,k = 0.25(wi, j,k+1 + wi−1, j,k+1 − wi, j,k−1 − wi−1, j,k−1) .



A P P E N D I X E

Forcing Term

For the hill flow geometry, the standard form of the Navier-Stokes equations is ex-
tended by an external forcing termf as has been proposed by Lenormand et al. [66].
This modification is necessary because pressure-driven channel flow violates the bound-
ary conditions for the test case considered here, namely periodicity in x- direction. In
the absence of a pressure drop, the forcing term acts as a driver for the flow and en-
sures a constant mass flow rate. Thus, the augmented Navier-Stokes equations can be
written as

∂ρ

∂t
+ ∇ · (ρu) = 0 ,

∂ρu
∂t
+ ∇ · (ρuu) = −∇ · P− f · x̂ ,

∂e
∂t
+ ∇ · (eu) = −∇ · (P · u) − ∇ · q − f · u · x̂ ,

whereu, ρ, e, andq stand for the velocity components, density, total energy per unit
volume, and heat flux, respectively, andx̂ is the unit basis vector in x-direction.

The forcing term is constant in space and its magnitude can beadjusted dynamically
to obtain the required mass flow rate. For this purpose, the mass flowQ can be esti-
mated by considering the momentum equation for the streamwise velocity component
in dimensionless form as given by

∂ρu
∂t
+
∂ρu2

∂x
+
∂ρuv
∂y
+
∂ρuw
∂z
= −

∂p
∂x
+

1
Re

∂τxx

∂x
+

1
Re

∂τyx

∂y
+

1
Re

∂τzx

∂z
− f

Now, the individual terms as applied in the finite volume context can be simplified by
taking the specific boundary conditions for the hill flow intoaccount

∫ ∫ ∫

∂ρu
∂t

dxdydz= Lx
∂Q
∂t

,

∫ ∫ ∫

∂ρu2

∂x
dxdydz=

∫ ∫

ρu2
∣
∣
∣
∣

xR

xL

dydz
periodicity
−−−−−−−→ 0 ,

∫ ∫ ∫

∂ρuv
∂y

dxdydz=
∫ ∫

ρuv
∣
∣
∣
∣

yR

yL

dxdz
periodicity
−−−−−−−→ 0 ,



E-2 Forcing Term

∫ ∫ ∫

∂ρuw
∂z

dxdydz=
∫ ∫

ρuw
∣
∣
∣
∣

zR

zL

dxdy
no−slip
−−−−−→ 0 ,

−

∫ ∫ ∫

∂p
∂x

dxdydz= −
∫ ∫

p
∣
∣
∣
∣

xR

xL

dydz
periodicity
−−−−−−−→ 0 ,

∫ ∫ ∫

∂τxx

∂x
dxdydz=

∫ ∫

τxx

∣
∣
∣
∣

xR

xL

dydz
periodicity
−−−−−−−→ 0 ,

∫ ∫ ∫
∂τyx

∂y
dxdydz=

∫ ∫

τyx

∣
∣
∣
∣

yR

yL

dxdz
periodicity
−−−−−−−→ 0 ,

∫ ∫ ∫

∂τzx

∂z
dxdydz=

∫ ∫ ∫

∂2u
∂z2

dxdydz+
∫ ∫ ∫

∂2w
∂x∂z

dxdydz

=

∫ ∫

∂u
∂z

∣
∣
∣
∣

zR

zL

dxdy+
∫ ∫

∂w
∂z

∣
∣
∣
∣

xR

xL

dydz
︸               ︷︷               ︸

periodicity
−−−−−−−→0

=

∫ ∫

∂u
∂z

∣
∣
∣
∣

zR

zL

dxdy,

−

∫ ∫ ∫

f dxdydz= −LxLyLz · f .

Combining the terms again gives the estimate for the mass flowrate

∂Q
∂t
= −LyLz · f +

1
LxRe

∫ ∫

∂u
∂z

∣
∣
∣
∣

zR

zL

dxdy,

whereLx, Ly andLz mark the extent of the domain in streamwise, cross-stream and ver-
tical direction, respectively. All assumptions made previously are strictly valid only if
the governing equations are given in Cartesian form and the curvature at the bottom
wall of the hill is neglected, otherwise the pressure term does not drop out. The error
introduced by this simplification, however, is relatively small as is demonstrated later.
The numerical evaluation of the above equation is performedin the transformed co-
ordinate system in order to include the effect of the hill-type constriction on the term
representing the shear stress contribution. Yet, for the sake of simplicity, the numerical
procedure is outlined here in Cartesian form.

In the next step, the mass flow rate is replaced by its discretecounterpart, yielding

Qn+1 = Qn − ∆t LyLz · f +
∆t

LxRe

∫ ∫

∂u
∂z

∣
∣
∣
∣

zR

zL

dxdy,

wheren marks the current time level and∆t is the size of the discrete time-step. Fi-
nally, the sought after expression for the forcing term at the following time instance is
obtained by a predictor-corrector rule

f n+1 = f n +
1

LyLz

(

β1(Q
n+1 − Q) + β2(Q

n − Q)
)

,

with β1 = 2, β2 = −0.2 as proposed by Lenormand et al. [66] andQ being the target
mass flow. It has been found numerically that the error of thisapproach lies within 1%
of the ideal value in case of the hill flow.



A P P E N D I X F

Profiles for the Swept Wing

The velocity and turbulent energy profiles presented in Chapter 6 have been obtained at
locations according to the the experimental data provided by Zhang and Turner [131].
Here, a full set of comparisons including velocity and Reynolds stress components
between the ILES simulation using high resolution methods and the experiment is
provided in the following figures.

The base-points of the profiles on the wing surface are prescribed in terms of half-
spans and local chordc positions as sketched in Figure F.1. In this context, the local
chord is defined as the coordinate along the surface of the wing and the trajectory of
the measurement in the two-dimensional cut parallel to the wing root is given by its
inclination with respect to the vertical direction.

10%c

30%c

50%c

70%c

90%c

10%s 30%s 50%s 70%s 90%s

Figure F.1: Sketch of the profile base-points on the wing surface.

30%s 40%s 50%s 60%s 70%s 80%s 90%s

10%c -3.1230 -9.0013∗ -9.0013∗ -8.9999∗ -8.9999∗ -1.0785 -0.6679
30%c -7.6306 -8.9999∗ -9.0013∗ -8.9999∗ -9.0013∗ -5.4307 -4.9042
50%c -7.0443 -8.9999∗ -9.0013∗ -8.9999∗ -9.0013∗ -8.5867 -7.9587
70%c -9.0013∗ -9.0013∗ -8.9904∗ -9.0013∗ -8.9919∗ -8.2950 -8.9621
90%c -9.0013∗ -9.0013∗ -9.0013∗ -8.9999∗ -8.9999∗ -8.2254 -8.8946

Table F.1: Angles between the measurement trajectories and the vertical direction. The
profiles are taken normal to the wing surface unless marked byan asterisk (∗=trajectories

normal to the root chord of the wing).



F-2 Profiles for the Swept Wing
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Figure F.2: Comparison between averaged velocity profiles from the experiments of Zhang
and Turner [131], the results obtained with ILES and the hybrid RANS/LES of Li and

Leschziner [69] for different locations along the local chord at 30% half-span.
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Figure F.3: Comparison between averaged velocity profiles from the experiments of Zhang
and Turner [131] and the results obtained with ILES for different locations along the local

chord at 40% half-span.
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Figure F.4: Comparison between averaged velocity profiles from the experiments of Zhang
and Turner [131], the results obtained with ILES and the hybrid RANS/LES of Li and

Leschziner [69] for different locations along the local chord at 50% half-span.
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Figure F.5: Comparison between averaged velocity profiles from the experiments of Zhang
and Turner [131] and the results obtained with ILES for different locations along the local

chord at 60% half-span.
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Figure F.6: Comparison between averaged velocity profiles from the experiments of Zhang
and Turner [131], the results obtained with ILES and the hybrid RANS/LES of Li and

Leschziner [69] for different locations along the local chord at 70% half-span.
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Figure F.7: Comparison between averaged velocity profiles from the experiments of Zhang
and Turner [131] and the results obtained with ILES for different locations along the local

chord at 80% half-span.
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Figure F.8: Comparison between averaged velocity profiles from the experiments of Zhang
and Turner [131], the results obtained with ILES and the hybrid RANS/LES of Li and

Leschziner [69] for different locations along the local chord at 90% half-span.
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Figure F.9: Comparison between averaged stress profiles from the experiments of Zhang and
Turner [131] and the results obtained with ILES for different locations along the local chord at

30% half-span.
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Figure F.10: Comparison between averaged stress profiles from the experiments of Zhang
and Turner [131] and the results obtained with ILES for different locations along the local

chord at 40% half-span.
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Figure F.11: Comparison between averaged stress profiles from the experiments of Zhang
and Turner [131] and the results obtained with ILES for different locations along the local

chord at 50% half-span.
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(o) Av. stresses at 90%c.

Figure F.12: Comparison between averaged stress profiles from the experiments of Zhang
and Turner [131] and the results obtained with ILES for different locations along the local

chord at 60% half-span.
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(o) Av. stresses at 90%c.

Figure F.13: Comparison between averaged stress profiles from the experiments of Zhang
and Turner [131] and the results obtained with ILES for different locations along the local

chord at 70% half-span.
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(o) Av. stresses at 90%c.

Figure F.14: Comparison between averaged stress profiles from the experiments of Zhang
and Turner [131] and the results obtained with ILES for different locations along the local

chord at 80% half-span.
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Figure F.15: Comparison between averaged stress profiles from the experiments of Zhang
and Turner [131] and the results obtained with ILES for different locations along the local

chord at 90% half-span.
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