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Abstract

OST flows of practical importance are governed by viscous-wedl phenom-

ena leading to separation and subsequent transition tbal¢umt state. This type
of problem currently poses one of the greatest challengesoimputational methods
because its characteristics covers a wide range of phywioaésses that often place
contradictory requirements on the numerics employed.

This thesis seeks to investigate the physics of complexaraggd flows pertinent to
aeronautical engineering and to assess the performancariahts of the Implicit

Large-Eddy Simulation approach in predicting this type aflgpem realistically. For

this purpose, dierent numerical solution strategies based on high-rasalatethods,

distinguished by their order of accuracy, are used in pessrusimulations and one
selected approach is applied to a fully three-dimensioriad)\flow.

In order to isolate the development from laminar to turbtuftaw after separation has
occurred, the prototype Taylor-Green Vortex is consideksgte, the behaviour of the
numerical schemes during the linear, non-linear and fuitipulent stages in the flow
evolution is tested for dierent grid sizes. It is found that the resolution power and
the likelihood of symmetry breaking is increasing with threler of accuracy of the
numerical method. These two properties allow the flow to bgvenore realistically
on coarse grids if higher order schemes are employed.

In the next step, flow separation from a gently curved surfadgecluded. The fun-
damental study of a statistically two-dimensional charfiiogl with hill-type constric-
tions demonstrates the basic applicability of ILES to peofs featuring massive sep-
aration. Without specific wall-treatment, high-resolatrmethods can improve predic-
tion of the detachment location when compared to classiaajé-Eddy Simulations.

Finally, an ILES simulation of three-dimensional flow ovesv@ept wing geometry at
moderate angle of incidence is presented. The results aec@ilent agreement with
experiment in the fully separated and turbulent region &eg ire more accurate than
a classical hybrid RAN&ES approach, using a grid twice the size, over the majority
of the wing. This outcome will probably settle the disputatthas erupted in the past
over the applicability of ILES to complex, wall-bounded flow
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CHAPTER 1

Introduction

HIS thesis is concerned with low-speed, separated flows aftaulent nature.

Flow separation is one of the most heavily studied phenonmefiaid mechanics
because it is a major loss mechanism and thus usually uatésin many engineering
applications. It is a highly non-linear and inherently wasty process, most often
leading to zones dominated by turbulent, vortical strieturTherefore, the accurate
representation of turbulence plays an essential role idigieg separated flows and
the main focus of this work is to improve the understandinguherical simulation
techniques for turbulent flows.

The existence of turbulence has been well-establishedefiotudes. Not only since
Leonardo da Vinci's famous study of water flown 1510 A.D. has this subject at-
tracted a great deal of attention. Its ubiquitous charaamer the importance to our
everyday lives led many artists, scientists, researcheosher curious minds to busy
themselves with one of the most forbidding and elusive ®pidluid mechanics. Tur-
bulence is notoriously dicult to measure in a natural environment or in a laboratory
experiment and, despite greditats, a unified theory has yet to emerge. With the rapid
development of computer power, numerical simulations lgareed significance and
are currently used as a tool to shed some light onto the uedahysteries of turbu-
lence. Although major improvements have been made in thedegsdes, adequate
simulations become prohibitively expensive with incraggReynolds number and will
still be beyond the scope of possibility in the years to come.

This chapter will briefly illustrate the physics behind floapsiration from solid walls,
as well as the omnipresent nature and the characteristigrésaof turbulence. More
details can be found in several excellent textbooks, e.glefson [2], Davidson [21],
Pope [90], Tennekes and Lumley [113], that also inspiredsttieematic illustrations
presented here. Furthermore, an overview of state-o&theumerical techniques will
be given and their particular advantages and disadvantatié® elucidated.

1 “The water forms whirling eddies, one part following the ietps of the chief current, and the
other following the incidental motion and return flowdriginal in The Royal Collection.



2 Introduction

1.1 The Separation Process

Most flows of practical importance belong to the group of viimunded flows and can
be divided into internal and external flows. Internal, wadunded flows are confined
by one or more outer surfaces, such as a circular pipe or & plaannel, and external
flows are predominantly defined by one or more closed surflresng an obstacle
in an open stream, e.g. the flow around aircrafts and ships piiésence of a wall and
the associated boundary-layer have a severe impact on ithédy, regardless if it is
of internal or external type.

Viscosity.  The flow of a fluid over a solid surface is dominated by vistyoand
the associated friction forcedfact both the fluid in the vicinity of the surface and
the surface itself. The surface experiences a tangenties fioying to drag it in the
down-stream direction and, vice versa, an equally strongefacts on the fluid trying
to decelerate it. This viscous shear force leads to a zerovidocity at the wall.

Pressure Gradient In most aerodynamic problems in engineering the shapeeof th
body under consideration is aligned with the free-streamn, a wing or a fuselage.
A close-up view of the surface reveals that it exhibits a esxnsurvature, hence the
static pressure is no longer constant in the streamwisetitireas it rises due to the
conservation of total energy. This situation is sketcheBigure 1.1(a). At location
{1, a typical velocity profile in the boundary layer of a viscpuall-bounded flow

is shown. As the flow advances in the down-stream directidmas to overcome an
adverse pressure gradient, i@. < p, < ps. Consequently, kinetic energy has to be
transformed into internal energy and the flow near the sarfadurther retarded. In
addition to this retarding force, the viscous shear comtirsly slows the fluid down
as it progresses along the surface until, ultimately, topeslof the velocity profile
becomes zero, see locatién Under the perpetual influence of the adverse pressure
gradient the flow begins to reverse its direction and sepaifabm the surface. This
phenomena is inherently unstable, hence no well-defineut pbiseparation can be
accounted for. It results in a separation area with a doweast recirculation zone, see
location¢s;. The separation process largely depends on the charadiee apstream
boundary layer, i.e. whether it is laminar or turbulent. Abulent boundary layer

is less likely to separate compared to a laminar boundamr lagcause the agitated
motion normal to the surface feeds the fluid near the wall Witietic energy, thus it
can overcome a higher pressure gradient.

Wake Region  Modelling of the separation process is not part of thisig)dswow-
ever. The main focus is on predicting the recirculating flétgraseparation occurred.
Figure 1.1(b) shows experimental evidence for the exigt@han unsteady free shear-
layer between the main-stream and the separated boungary Tdne shear-layer rolls
up into Kelvin-Helmholtz-type vortices that transfer mamwem between the free-flow
and the recirculation zone. The instability of this unsieagstem manifests itself in
the breakdown of the Kelvin-Helmholtz structures. Thusighly turbulent wake re-
gion dominated by small-scale dynamics of the developicgrsgary vortices can be
observed further down-stream.
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Figure 1.1: Separation induced by an adverse pressure gradient alangedcsurface
(Picture (b) from van Dyke [118]).

As mentioned above, the adequate numerical representdtiba turbulent wake is of
prime importance to the current research. Not only is thiballenging problem for
any turbulence modellingfkort, it is also of great interest in many practical applica-
tions. As illustrated in Figure 1.2, separated wakes areacheristic for aerofoils at
high incidence or the flow around Iffibodies. Bldf body flow is a very vague term
comprising any flow over sharp geometrical discontinujteeg. a backward facing
step, an apartment building, a weapons bay, etc. This defiraiready suggests the
existence of a broad spectrum of applications for numesiraulation of separated,
turbulent flows. In order to underline the importance of teince, more examples are

presented in Section 1.2.
Flow separation Wake

Flow separation -
K\ Wake X
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(a) Aerofoil. (b) Bluff body.
Figure 1.2: Examples of separated flow.

1.2 The Nature of Turbulence

Almost all flows, natural or man-made, are turbulent and caoliiserved in our ev-
eryday surroundings. They are not restricted to a specibie of fluid or environment
and can appear in all sizes, extending from the minusculesta truly gigantic di-

mensions. Nevertheless, they all have certain uniqueriesatn common.

1.2.1 Turbulent Flows in Nature

Nature itself provides probably the most intriguing pheeoia that motivate the cur-
rent interest. For instance, the flow of water around obssaltke rocks in a river or
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steps in the riverbed exhibits seemingly random, highlyoticamotions commonly

known as rapids or waterfalls, see Figure 1.3(a). Less olsyioften the more treach-
erous peril, however, lurks beneath the surface. Immensalyand powerful under-
water currents can be turbulent, with the Gulf Stream bemgaf its most prominent
representatives (Figure 1.3(b)).

(b) Gulf Stream separating from the coast
of North Carolina, USA.

Earth shown
for size comparison

# . ) $ NG _
(c) Typhoons over the western (d) Solar prominence with the Earth
Pacific Ocean. shown for comparison.

Figure 1.3: Turbulence observed in nature (Photographs (b) — (d) from
http://www.nasa.gov).

Another example of meso-scale phenomena can be found iro&igy. Figure 1.3(c)
is an interesting illustration of the formation of tropicbrms systems. It shows a
photograph of several typhoons spinning over the westedifi®cean that were
predicted to hit China and Japan in 2006. One of the mostapdetr and at the same
time one of the largest manifestations of turbulence is atagin of the Northern
Lights. Eruptive prominences extending a distance egemtdb several tens of Earth
diameters from the Sun eject solar mass, see Figure 1.3(d3.nfass is transported
by the solar wind, eventually breaches the Earth’s magpbtys and causes not only
the remarkable displays in the northern night skies, buatsmdfect communications
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and navigations systems.

1.2.2 Turbulent Flows in Engineering Applications

Practically all flows of interest to engineers and sciestése turbulent and in many
engineering applications turbulence plays an importdetinthe planning, design and
manufacturing process.

(b) Wake of an automobile.

(a) Trailing wake of a Boeing B-747. (c) Undercarriage of a train.

-

(d) Smoke from a chimney. (e) Spill from an oil-tanker.

Figure 1.4: Turbulence observed in engineering applications (Phafaig(a) from
http://www.nasa.gov, Pictures (b) and (c) from Werle [125], Photograph (d) from
http://www.climatechangeinstitute.com, Picture (e) from van Dyke [118]).

For instance, the reduction of aerodynamic drag due to kemnice is a major concern
in the transport industry, be it for the manufacturers obpkmes, automobiles, trains
or ships, see Figures 1.4(a) — 1.4(c). The prospect of gutjprerational costs and the
foreseeable shortage of natural resources also stimbkteutrrent &orts to improve
the fuel dficiency of engines, a domain where detailed knowledge ofitarth mixing
of the fuel and gases is required. Apart from the econommasicleration, an equally
important ecological aspect can be argued for: increasiagfficiency of the current
transport system is inevitably linked to lowering emissiofhus, it lessens the impact
on the anthroposphere and aids preserving the environment.
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Turbulence has also a strong influence on the dispersiom agbataminants in urban
areas. A source of pollution, for example, is the smoke frochianney as shown in
Figure 1.4(d). Moreover, there are other severely hazargossible scenarios caused
by the accidental or deliberate release of chemical or iodd substances. Envi-
ronmental disasters and life threatening agents are pabgagot only by means of
airflow: turbulent transport and turbulent mixing also ascan the open sea. Photo-
graph 1.4(e) was taken in 1976 when the oil leaking from tioeigded tank-shigrgo
Merchantendangered the surrounding marine life. Today, tfiecéive containment
of the consequences of such catastrophes still poses @mpaland a solid grasp of
turbulence can be critical.

The list of examples is not exhaustive and could be extendetdr, also including
internal turbulent flows such as pipe flows or natural conwadn buildings. In fact,
almost any engineering application concerned with fluid $idalls in this category
because turbulence is the rule, not the exception in fluichdyos.

1.2.3 Characteristics of Turbulence

The range of applications presented in the previous sectieams overwhelming and
exposes one important fact. Turbulence is not coupled wispexific fluid, but it

is a feature of fluid flow. Its dynamics is independent of theetyf fluid and the
characteristics of turbulent flows are ndtexted by the molecular properties of the
liquid or gas under consideration. Thus, turbulent flow isaapect of continuum
mechanics, more precisely fluid mechanics, and the commaracteristics serve as
criteria for distinguishing between a laminar and a turbutegime.

\ Experiment 1

il
v \/\/Experlment 2

Time

Velocity

Figure 1.5: Two typical velocity histories obtained under identicapesmental conditions
(after Davidson [21]).

Randomness No clear line can be drawn, however, because every turbfiten
has, in addition to the common characteristics, certaiquacharacteristics associated
with its initial and boundary conditions. This point is #imated in Figure 1.5, showing
a typical velocity measurement obtained in an experimelthoigh the measurement
can be repeated under seemingly identical conditions, ¢hacity history does not
match the previous experiment because of minuscule vamgtiuring the execution.
Yet, both realisations exhibit a common feature: the timexaged values of the signals
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acquired are identical. The random character of the ungteeeular motion in space
and time is probably the most cited attribute of turbuleritssrandomness is the reason
why much of the research has to rely on statistical methodshangeneral solution,
e.g. through a deterministic approach, can be found.

Vorticity and Dissipation.  In addition to the chaotic motions, organised motions
occur at random locations andi@irent points in time. These well-defined regions of
strong coherent structures are rotational afidra high level of fluctuating vorticity.
Therefore, vortex dynamics, an inherently three-dimemaiphenomenon, plays an
important role in the investigation and prediction of tuenit flows. The large vortices
are continually forming and breaking down into smaller gnesich break down into
yet smaller vortices until they dissipate into heat. Thisgass is depicted in Figure
1.6(a) and the associated energy spectrum is shown in Bigidbg. All turbulent flows
are essentially dissipative and transfer energy over adoraage of scales, i.e. from
the large eddies to the small eddies. Hence, the large gsntieed a continuous supply
of energy from the surrounding fluid or they will simply decay

s Large scale
g >
2 2>
S Z
5 O OO ¢
L
S P g
c £
w X
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") | -
— Wavenumber v
Heat Heat =]
(a) Transfer of kinetic energy in physical (b) Logarithmic scale of the kinetic
space. energy distribution in spectral space.

Figure 1.6: Schematic representation of the energy transfer from kargenall scales
(after Davidson [21]).

Diffusivity and Mixing.  Another aspect is directly related to the agitation induce
by the various scales observed in turbulent flows: the t@mgpmass, momentum and

energy is greatly enhanced due to convectiffeats. Consequently, the surrounding
fluid will be entrained and the velocity fluctuations spreadgpace. This is the basis

of the large mixing capacity and rapid dispersion in turbtifeows.

Determinism.  Turbulence is often referred to as the most complex probkem
maining in classical physics and despite decades of rds#aeqrospect of a general
solution still seems distant, if not impossible. Thdidulty lies in the interference
of high-level random background motions with the unsteaatyecent structures. This
combination leads to inherently non-linear and non-ehuiim phenomena that can-
not be tackled by currently available analytical methodené€, a simplified view
of the problem has emerged, decomposing the flow-field intamvelocity and fluc-
tuating velocity. This concept has been proven useful iretging theoretical and
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numerical models, but it should be noted that it is by no meansxact representation
of reality.

1.2.4 Scales of Turbulence

As discussed above, turbulent flow is characterised by &lalisbn of coherent vorti-
cal structures of various sizes and the vortex dynamicscaded with the respective
scales of the eddies. Assuming turbulence is composed @®dtidiferent sizes, the
physical behaviour illustrated in Figure 1.6 can be desdribyRichardson’s hypoth-
esisof an energy cascade, see Richardson [95]. Although theepbraf an energy
cascade cannot be formally proven, it is a self-consisterury that has been verified
by numerous experimental investigations.

Richardson’s Hypothesis  From Richardson’s point of view, the velocity and the
size of the largest eddies present in the flow are comparalieet global scales of
the mean flow. The Reynolds number for the largest scalesigfttre comparable
to the global Reynolds number, i.&ke >> 1, and viscous forces have a negligible
effect. The large eddies are generally anisotropic and thapesis dependent on the
boundary conditions. Since the surrounding fluid consyaeetds energy to the large
scales and no dissipation can take place here because afth&éaynolds number,
the energy must be transferred to a smaller scale. The ra¢@mefy transfer and
thus the rate of energy production can be estimated on thengsoof dimensional
arguments. The energy contained in the large scale is of afdend the lifespan can
be expected to be of the order of one eddy turnover tirsef/u, whereu and¢ are
the characteristic velocity- and length-scale of the edesgpectively. Consequently,
the rate at which energy is passed on to the smaller scaldsecassumed to be of the
orderu?/r = u3/¢. This energy transfer is often illustrated in physical spas eddy
break-up, where the inherently unstable coherent strestdeform and evolve into
eddies of smaller size, see Figure 1.6(a). The smaller squiss through the same
process again and the energy is transferred to progregsivelller and smaller scales
— hence the name energy cascade. The cascade is drivenipyregrtial forces until
the Reynolds number becomedtatiently small for viscous féects to interfere. At a
Reynolds number of order unity, the molecular viscosityetalin active part and the
kinetic energy is dissipated. As the intermediate scalésaofiow only forward kinetic
energy, dissipation occurs only at the smallest scale aea dictated by the energy
production at the largest scale, i€is independent of the molecular viscosity and is
of orderu®/¢.

Kolmogorov’s Hypotheses In order to obtain a more quantitative picture, the idea
of an energy cascade has been developed further by Kolmo{@th The assump-
tions on the physical behaviour of the eddies madédmogorov’s hypotheségro-
vide the framework for assessing the energy transfer radettaa scales involved in
high Reynolds number, turbulent flows.

24At sufficiently high Reynolds numbers there is a range of high wawdaus where the turbulence
is statistically in equilibrium and uniquely determinedthis state of equilibrium is universal.”
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Kolmogorov stated that the anisotropy, induced on the laggdes by the boundary
conditions, is gradually lost as the energy is transfemmgadgressively smaller eddies.
The flow eventually becomes locally isotropic for the snsdllgcales of motion away
from the boundaries and flow singularities; thus the smaliesihave a statistically
universal character common to all turbulent flows. The stiag8 mainly depend on

the energy budget composed of the energy flux from the largges and viscous

dissipation. Provided the small scales have a relativatytdiiespan compared to the
global time-scale, they are able to adapt quickly to the arhotienergy received from

the larger eddies and a dynamically balanced budget can im¢aimaed.

As a consequence, the energy transfer rate is approximeqeiyl to the heat dissipa-
tion ratee and the viscous dissipation can be determined using thecaaleviscosity
v. These are the two dominant parameters characterisingiiiéest scales in the flow,
also known as the Kolmogorov scales. Dimensional reasdeads to the following
estimates for the Kolmogorov length-, velocity- and tincadss

n ~ (Ple,
Uy (ve)¥* |
T, ~ (v/e)Y? .

¢

The consistency of these relations with Richardson’s Hygsis can be verified by
forming the Reynolds number based on the Kolmogorov scAlesording to Richard-

son dissipation takes place only at the smallest scalegeti®g) has to be of order
unity because the molecular viscosity plays an active patthié physical process in-
volved and the inertial forces no longer prevail.

The Kolmogorov scales can now be related to the largestspadsent in the flow by
recalling the scaling law for the viscous dissipation, é&e. u3/¢, yielding

n/t ~ Re¥*,
u,/u ~ Re'*,
T, /T ~ Rel? |

whereReis the flow Reynolds number. Since these ratios are alwagsies 1 for
practical, turbulent flows, the velocity- and time-scaléshe smallest eddies are al-
ways small compared to the corresponding scales of thedteglklies, as stated a
priori.

Furthermore, the disparity between the largest and thelsshalcales becomes more
and more significant with increasing Reynolds number. Asresequence, there is a
range of length-scales that are both small comparedatad large compared tp In
this range the Reynolds number igistiently high that viscousfeects can be neglected
and the eddies only transfer energy from the larger to thélenseales. Therefore, the
statistics in this region are governed by a single paranoetigt the dissipation rate,
and no universal length-, velocity- or time-scales can lpeéal. It is often convenient,
however, to characterise the intermediate range by defalaggth-scale that is much
smaller then th& and much larger than. This length-scale, commonly known as
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the Taylor micro-scaledescribes the mean spatial extent of the velocity grasliemd
is not related to any scales where dissipation takes aneaptivt. Analysis of the
energy budget composed of the energy transfer rate fromnilseteopic, large scales
and the viscous dissipation rate at the isotropic, smalesazonfirms that the Taylor
micro-scale is indeed an intermediate length-scale giyen b

Ar/t ~ Re'?,
Ar/n ~ Re’™ .

According to the idea of the energy cascade the energy fluxdhemmain constant
over the range of intermediate length-scales because mgyeiseadded by the mean
flow and no energy is lost through viscous dissipation. Thegntransfer rate for any
given eddy-size is determined by the ratio of its charastierivelocity squared to its
characteristic length, hence the velocity-scale, as veaha time-scale, decreases for
progressively smaller length-scales.

Energy Spectrum  The distribution of kinetic energy over the scales obsgiive
turbulent flows is usually described in spectral space. Hbeedtterent length-scales
are represented by their reciprocal value, the wavenutbend the velocity field is
decomposed into a Fourier series. The energy containedpedafi length-scale in
Fourier spaceiz(k), is simply the product of the corresponding velocitfk), with its
complex conjugate. For this reason, the spectral analyss @ clear picture of the
distribution of energy over the whole range of length-seale

In the kinetic energy spectrum, two main categories can &tnduished: the energy-
containing range comprising the anisotropic large-sc@esall wavenumbers) carry-
ing most of the energy and responsible for the energy praatugirocess; and the
universal equilibrium range containing the isotropic drsahles (higher wavenum-
bers). More precisely, the equilibrium range is subdivided the dissipation range
at the lower end of the scale (highest wavenumbers) wher&almogorov scales
are located and essentially all of the viscous dissipatmurs; and the inertial sub-
range where neither production or dissipation of energy ataimportant role and the
motions are dominated by inertial forces.

Figure 1.7 shows a schematic of a typical kinetic energytspecfor turbulent flows,
note that a logarithmic scaling has been employed. In theggrentaining range,
turbulence accumulates kinetic energy at the very largeses until the spectrum
peaks at a characteristic length-scale of approximateyrttegral scalé, a measure
of the longest connection between two correlated velacaiediferent points in the
flow. After the peak, the energy is then passed on to sucedgsimaller scales by the
cascading process. The shape of the spectrum in the produeinge is determined
by the energy flux from mean to turbulent flow, i.e. the work efatmation of the
mean motion by the turbulence shear stresses, and the emangjer from large to
smaller scales, i.e. the dissipation through the turbutestion. Thus, the significant
parameters here are thedfdsivity of the mean flow, characterised by the strain &te
and the dissipation rate This definition of the energy production at the largestesal



1.2 The Nature of Turbulence 11

Energy- ) o
 containing ~ Inertial sub-  Dissipation
range range . range
S ; H
@
c
i
2 i E
S| /fkSe | Exk ! fkre
x ;
ye 1ar /n

Wavenumber (k)

Figure 1.7: Schematic of a typical turbulent kinetic energy spectruntdidoulent flows
plotted with logarithmic scales.

is not unique, however, because it highly depends on theeptiep of the mean motion
and the boundary conditions.

This situation does not improve for the smallest eddiess krniown that the dynam-
ics at the highest wavenumbers are governed by the amouneadyereceived from
the larger scales and viscous dissipation. Since the emengsfer rate is equal to the
dissipation rate, the dominant parameters in the dissipation range arel the kine-
matic viscosityv. Hence, the energy spectrum at the Kolmogorov scales isapably
coupled with the characteristics of the fluid.

In between the energy-containing and the dissipation réingehe inertial subrange.
Here, in agreement with the concept of an energy cascadkiri&c energy is trans-

ferred to progressively smaller scales. The extent of tnge depends on the flow
as it becomes greater or smaller with increasing or decrgdlsiw Reynolds number,

respectively. However, the single important parametegrd@hing the statistics within

the inertial subrange, the energy flux from large to smalles;as flow independent.

Kolmogorov realised the consequences and used dimensignahents to derive an
analytical form for the energy spectrum in the inertial sulge given by

E(K) = Ce23k 53,

whereC is a universal constant. This general power-law spectrustutated by Kol-
mogorov has been confirmed by numerous experimental andriaanievestigations
and is considered a cornerstone in the analysis of turbtitamns.

The relations presented here strictly hold only for homegers, isotropic and statis-
tically steady flows. However, it has been found that thenestiés can still be applied
even if the flow does deviate from its ideal state.
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1.3 Numerical Approaches

Although many experimental and theoretical studies in th& decades have signifi-
cantly increased the current physical understanding, latiouas fail to accurately and
reliably predict turbulent flows in many cases. The absem@atosed theory and a
universal turbulence model, which are unlikely to emergth@near future, seriously
limits the technological progress of aircraft and car desigrbo-machinery and com-
bustors as well as the prediction of environmental and biokd flows. Thus, the mod-
elling technigues and the underlying understanding of thysigs of turbulent motion
still have to be improved considerably. In the context of @oatational Fluid Dynam-
ics (CFD), there are generally three classic techniques:Dihbect Numerical Simu-
lation (DNS), the Reynolds-Averaged Numerical SimulatfBANS) and the Large-
Eddy Simulation (LES). The applicability of these standauwierical approaches to
separated, turbulent flows, as well as their general adgastand disadvantages, will
be briefly discussed in this section. Additionally, the IraplLarge-Eddy Simulation
(ILES) approach employed in this thesis will be introduced.

1.3.1 Direct Numerical Simulation (DNS)

The DNS approach provides a complete time-dependent goltdr turbulent flows.
It is conceptually the simplest of the three and providegesopaccuracy because all
scales of motion and time are resolved, given it is free afificant numerical or other
errors. In order to represent all scales numerically, tiserdtisation of the governing
equations has to be at least as fine as the exact solution.essilg, the step-size of the
discretised problem in time and space must be smaller tleachifwracteristic time and
the characteristic length of the smallest eddies presetiteirilow. Additionally, the
duration of the simulation and the size of the computatidioahain are determined by
the characteristic time and the characteristic length efléingest, energy-containing
eddies, which can éter substantially from the size of the time- and space-stemeS
the range of scales observed in turbulent flows increasds prdgressively higher
Reynolds number, it usually spans over several orders ohinafe — hence the res-
olution criterion limits the applicability of DNS to low Replds number, turbulent
flows.

The number of points required for a numerical simulationeste}s on the spatial res-
olution and the size of the flow field. In case of DNS, everyatels to be resolved,
hence the distance between the sampling points cannoteioe&olmogorov scale;

and the computational domain should ideally have an extesg\eeral times the char-
acteristic length of the largest eddies present in the floweoAservative estimate for
the number of grid points in one dimension for homogeneotsutance can there-
fore be deduced from Kolmogorov’s hypotheses, statingttteatatio of large to small

length-scale is approximately proportional R&*. Turbulent flows are inherently
three-dimensional, thus the number of grid points requfaeda for a fully three-

dimensional DNS scales witRe’4. Additionally, for estimating the total computa-
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tional cost, the duration of the simulation must be takea aucount. It should be pro-
portional to the integral time-scale of the flow, but at theaedime the step-size is lim-
ited by the need to resolve the short lifespan of the smadlgdies and numerical sta-
bility criteria. Numerical stability strongly depends dretchoice of time-advancement
method. For the sake of simplicity, however, the fluid is assd to be able to move
the distance of one grid spacing per time step without viradgthe stability constraint.
It can be shown that the above conditions lead to a minimumbeuraf time steps
of the order ofRe¥4. Since the total number of operations required for a siranat
is proportional to the product of number of grid points andniber of time-steps, the
total cost of the DNS scales &. This estimate underlines the limitations of DNS
due to a very rapid increases of its computational cost wigiReynolds number .

For wall-bounded flows, the dependence of the simulatioh@oshe Reynolds num-
ber is even stronger because of the stricter scaling lawseimeéar-wall region. Moin
and Kim [83] estimated that a DNS of a transport aeroplansiogiat 250n/s at an
altitude of 10000 meters would require approximately*4@rid points to adequately
resolve every length-scale. Based on exclusive accesstofdonday’s fastest super-
computers capable of 100 teraflops, it would take severadiecto compute the flow
for only one second of flight time, which clearly exceeds atgeatable time limit. In
typical practical problems, however, engineers and desgyare rather interested in
the dfects of turbulence on the properties of the mean flow, not schrthe dynamics
of the smallest eddies. Therefore, it is common practicegioifsccantly relax the res-
olution requirements of numerical simulations by resajvimly the larger scales and
introducing the &ects of the smaller scales by additional models. This agprteads
to the two main techniques that are able to predict turbidlews at higher Reynolds
number: Reynolds-Averaged Numerical Simulations and é-&ddy Simulations.

1.3.2 Reynolds-Averaged Numerical Simulation (RANS)

The most common approach to calculate a problem in engineésithe Reynolds-
Averaged Numerical Simulation. Reynolds averaging is thasethe idea of decom-
posing the exact solution of the flow into a statistical agerand a fluctuating turbulent
component. The averaging procedure cannot be uniquelyediefiacause it depends
on the type of problem, e.g. it could be a time average for sttally steady flow,

a spatial average for essentially two-dimensional flowsgroensemble average for a
family of similar flows.

In case of engineering applications, the controlled camalét such as inlet conditions
in internal flows or free-stream conditions in external floarely change in time, thus
time-averaging is preferred. Here, the resolved mean flowbeaconsidered free of
fluctuations and all the unsteadiness is contained in thessohred turbulent scales that
need to be modelled. Modelling is necessary because thagimgrprocedure intro-

duces additional unknown terms in the governing equatibasdannot be computed
exactly from the mean flow variables. As a result, the avetagpiations are always
complemented by additional turbulence models that minectfects of the unsteady
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motions. Since RANS requires the least possible amountsofurees it gained enor-
mous popularity in steady-state computations where tHautence is stationary, e.g.
see Leschziner [67], Mallinger and Drikakis [75].

In unsteady flows, a time-scale associated with the orgdniasteady motion exists
and must be well separated from the time-scale of turbulexitom. Here, the exact
solution can be seen as the sum of three contributing terhestime average, the
conditional average of the coherent motion and the randactutddion due to turbulent
motion. However, very few unsteady flows are guaranteedhibéxdeterministic low-
frequency motions that can, for example, be enforced ealigrthrough periodically
changing inflow or free-stream conditions. If applicablee tonditional average in
Unsteady Reynolds-Averaged Numerical Simulations (URANSherefore usually
interpreted as a phase-averaged solution and the closutelsrare formally identical
to the ones in steady-state computations.

The function of turbulence modelling in RANS is to devise @pimations for the
unknown correlations between mean flow and fluctuating corapt the so-called
Reynolds stresses, in order to close the system. The closiatoons are based on
combinations of known or determinable geometric paramsetienv scales and strains.
However, these quantities are not able to completely reptebte complex physical
structures and interactions inherent to turbulent flowarkeét seems unlikely that any
single model will successfully predict all types of turtntiéows with any degree of
certainty. For this reason, numerous turbulence models haen developed over the
past decades, all introducing a number of unknownffaments. In order to adjust
the models to particular flows, the unknowns are usuallyrdeteed empirically by
calibration against existing experimental and DNS data.

In recent reviews by Leschziner [67], Mallinger and Drilaki5], the performance of
several turbulence models, spanning from one- and twotEguanear eddy-viscosity
models to more advanced non-linear eddy-viscosity and &dgrstress models, was
discussed. Although the linear eddy-viscosity modelsrofédd to adequately predict
complex flows featuring separation, free shear layers articabflows, they are most
commonly employed due to their relatively simple and rolalstracter. More gener-
ally, despite extensive research in the area of turbuleromeiting, currently available
methods are still unreliable when applied without cargtbblem-specific calibration
prior to the simulation. Therefore, all existing turbulenoodels should be regarded
as more or less sensible approximations of reality rattear sitcientific laws. The inca-
pability of RANS to consistently produce successful sirtiales of turbulent flows is
the reason for a reorientation of the current research flucasnore rigorous approach
that became feasible with the ever-increasing computingepobserved over the past
years: Large-Eddy Simulations.
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1.3.3 Large-Eddy Simulation (LES)

The development of Large-Eddy Simulations is motivatedhgylimited applicability

of DNS and RANS to turbulent flows and it can be regarded as @nnediate be-
tween both approaches with respect to accuracy and congnahtost. In contrast
to RANS, classical Large-Eddy Simulations model only thelscale turbulent mo-
tions whereas the larger turbulent structures are direetdplved. Since the smaller
structures are only slightlyfiected by the boundary conditions, they exhibit a more
common character for flerent types of flows. Thus, the models employed in LES
tend to be more universal and require fewer adjustmentseteghcific flow compared
to a similar RANS model. On the one hand, the LES strategyigesvsuperior accu-
racy, on the other hand, however, higher precision also s@te&higher computational
cost than RANS.

Similar to the Direct Numerical Simulations, Large-Eddyn8lations provide a fully
three-dimensional, time-dependent solution. As dematedrpreviously, the grid re-
quirements for DNS strongly depend on the smallest scalesept in the flow, but
most of the turbulent kinetic energy is contained in thedargfructures. Therefore,
while computing the large-scale dynamics of the flow digedtES significantly re-
duces the total computing time by modelling the less enexgetit computationally
demanding, small scales. It is possible now to calculateemmomplex turbulent flow
scenarios that are forbiddingly expensive for direct satiahs without having to take
a drastic accuracy penalty. Ideally, the computational 0b&ES is independent of
the Reynolds number, given that the reference length disishing the resolved, large
scales from the modelled, small scales lies in the inertibtreinge and that no solid
walls are present.

Formally, in classical LES the governing equations arerétieby convolving all de-
pendent variables with a predefined filter. The filtering aien decomposes the flow
field into the sum of a filtered, resolved component and a vesjdubgrid-scale com-
ponent. The spatial and temporal evolution of the filteremgonent representing the
large scales is fully described by the filtered equationd,tha unknown subgrid scale
(SGS) stress tensor arising from the unresolved residuéibnoneeds to be mod-
elled. This system is commonly closed by more or less sdapated SGS models that
are primarily concerned with reflecting the dissipationoéigy cascading down from
the larger scales in a statistical sense.

When deriving the classical LES equations, it was implcitsumed that ffierentia-
tion commutes with the convolution, see Fureby and Tabdt {38osal and Moin [41].
However, this is not valid at solid boundaries and for a \@edilter kernel. The for-
mer requires reality to be modelled in a finite domain, whidinaduces commutation
errors in the spatial derivatives. If the finite domain chesg time, additional errors in
the temporal derivatives arise. A variable filter kernelldaolve the problems at solid
boundaries by reducing the filter width in order to resolve small scales. This pro-
cedure violates the above commutation assumption anddintes new errors, which
can be removed by correction terms. Yet, there are no alailabthods to tackle the
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correction terms and thus previous work, e.g. by Van der 47|, Vasilyev et al.
[121], has been aiming at filters that can eliminate thesager

Furthermore, like in all numerical approaches, errors @ssical LES arise from the
approximation of the variables on a finite basis and numkdisaretisation. For dis-
cretising the governing equations, théfeientiation operators are substituted by nu-
merical approximations, which lead to dissipation and elisjpn terms, see truncation
error analysis in Anderson [3]. The dissipation terms aspoesible for the numer-
ical diffusion, especially near discontinuities, whereas the dsgpe terms produce
oscillations near discontinuities. Drawbacks of convamdi LES also arise from SGS
modelling, the possible masking of the SGS terms by the ihepdider truncation er-
ror and the diiculties in devising SGS models for complex high Reynolds neim
wall-bounded flows.

1.3.4 Implicit Large-Eddy Simulation (ILES)

The Implicit Large-Eddy Simulation approach is based onnailar scale selection

than classical LES. Here, however, it is assumed that theerioat discretisation on

a computational grid implicitly separates large and smadlless. Thus, no explicit

filtering is necessary and the subgrid scale stress tensodféor classical Large-

Eddy Simulation is absent in ILES. Yet, the unresolved mwineed to be accounted
for by the numerical method. This is generally achievedugloadaptive, non-linear
regularisation of the solution to the governing conseorataws. More details on

Implicit Large-Eddy Simulation and the basic principlestbé numerical methods
employed here will be given in Chapter 2.

1.4 Objectives and Outline

This thesis aims at assessing the performance of highetgsomethods in predicting
low-speed, separated turbulent flows in a physically realmanner even if they are
not fully resolved on the computational mesh. The numefreahework for this study
is provided by the Implicit Large-Eddy Simulation approach

Separated flows are inherently linked to the transition fregfi-organised flow regions
to highly disorganised unsteady flow regions known as terceé. From an engineer-
ing point of view, the accurate andheient prediction of shear layers and jets, vortex
shedding, unsteady wakes and unsteady shocindary layer interactions amongst
others is of primary technological importance. Traditibnaxperimental work dom-
inated the research in this area because it was the only agpaapable of dealing
with the complexity of such flows. However, the tools for gtitative measurements
are limited and until recently most of the analysis was basedualitative arguments.
Additionally, theoretical models complemented the experital results for idealised
flows.
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With the advent of high performance computing facilitiesl @ine progress in micro-
processor technology, computational fluid dynamics becam@&ble alternative to
experiments. However, despite the rapid advancements matese areas, CFD is
still far from being able to fully resolve separated turlmilBows to date and this will
not change in the foreseeable future. Thus, the governingtems need to be supple-
mented explicitly or implicitly by numerical models or meatisms that emulate the
effects of the unresolved scales. Because of the complex ghigsadved, no universal
model has been found yet and, as with the experimental th@sumerical tools need
further improvement.

The main aspect of this thesis is to investigatéedent solution strategies for the gov-
erning equations based on high-resolution methods. Tassaf numerical schemes
provides built-in subgrid scale models that majeo a better approach than explicit
treatments. The success of high-resolution methods to etaniprbulent flows seems
to depend on a delicate balance of truncation errors dueve-speed-dependent terms
(chiefly responsible for numerical dissipation) in the cab&odunov-type methods
and hyperbolic part of the flux. In the context of high-fideliLES, it is essential to
improve the current understanding of the mechanisms tlaggard the simulation
against catastrophic failure by triggering entropy prdgtucwhen the need arises.

The thesis is organised as follows:

Chapter 2. The concept of high-resolution methods is presented antianae for
the Implicit Large-Eddy Simulation approach is given.

Chapter 3. The three-dimensional Navier-Stokes Equations are intted and the
numerical solution procedure is presented.

Chapter 4. In this chapter, the behaviour offtBrent high-resolution methods is as-
sessed in the context of transition to turbulence for theegeaylor-Green Vortex.

Chapter 5. The capability of high-resolution methods to predict sapian from gen-
tly curved surfaces are discussed in this chapter. The &s& considered here is a
channel with hill-type constriction, a classic case forlvirdunded flows.

Chapter 6. Results from a fully three-dimensional simulation featgrleading edge
separation on a swept wing are shown and compared agairatgntal and avail-
able LES data.

Chapter 7. A summary of the thesis is presented, conclusions are dra@ymexom-
mendations for the future work are made.

In addition, details related to the numerical scheme, cemphtary material to the
results presented and a list of publications to date areded in the appendices.
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Introduction




CHAPTER 2

High Resolution Methods and Implicit
Large-Eddy Simulations

N recent years, the focus in turbulent flow simulations haobee the fidelity and

the robustness of the computations. Physically meaninmggults should be ob-
tained within an adequate accuracy relative to the comipuattresources utilised. A
further desire is the applicability of the numerical methoda broad range of prob-
lems. This implies that the method should behave smoothdn éthe expected ac-
curacy cannot be met, thus it should still produce reaseasiults and not fail catas-
trophically. One way to achieve these goals is the use of-tegblution methods in
Large-Eddy Simulations of turbulent flows.

2.1 A Glimpse into History

A previous study by Drikakis and Durst [26] shows a depengdeiahe numerical
accuracy not only on the turbulence model employed, but atsthe discretisation
of the advective terms in the governing equations. In fdet, first awareness of a
coupling between the numerical properties of high-resmtunethods and an intrinsic
subgrid turbulence model has been expressed almost twdeeago by Youngs [128]
1 and Boris [9]2. Since then, more evidence that the use of high-resolutieiioads
in LES ofers characteristics that mimic th&exts of finite viscosity and appear to
achieve many of the SGS properties has emerged.

Porter et al. [91] have been among the first to utilise thigbatte of the numerical
schemes in simulations of compressible isotropic turlzdehe motivation behind
this investigation stems from an astrophysical backgrotimd problem can be seen as
a simplified description of the formation of stars from deaeids of interstellar gas.
Here, the performance of high-resolution methods has be@pared against pseudo-
spectral computations and the flow field has been interpieteams of the evolution

1« .. the method ... introduces non-linear numericaffdsion into the calculation which plays a
similar role to the subgrid eddy viscosity used in large eslgyulation of turbulent flow”

24|t is my experience that nonlinear monotone CFD algorithreally have a built-in filter, and a
corresponding built-in SGS model”
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of coherent structures. Additionally, spectral and stiaaédata has been extracted and
analysed. More information can be found in Porter et al. §&2,

In a similar fashion, the classical case of incompressieéaging homogeneous turbu-
lence has been studied, e.g. by Margolin et al. [78]. The sautieors also applied this
approach to geophysical flows. Margolin et al. [77] have shoamparisons between
simulations with and without explicit SGS model for an atplosric boundary layer.
The results revealed that the numerical method employelésta adapt itself to the
local conditions — thereby the numerics implicitly ensunattboth solutions are in
agreement with benchmark simulations. These studies lesm fursued further and
the range of test cases has been extended by Smolarkiewdddangolin [106] to the
convective planetary boundary layer over a hill and by Snkasvicz and Prusa [107]
to gravity wave induced turbulence.

Early computations by Youngs [129] have demonstrated thatparticular family of
schemes is also applicable to the growth of instabilitiestanbulent mixing observed

in the Rayleigh-Taylor problem. The Rayleigh-Taylor irsliéy occurs when the in-
terface between two fluids of fierent density is subject to an increasing pressure in
direction of the lighter fluid. The simulations produce dier@ data when compared to
experiments. This result could be confirmed later for thdRnyer-Meshkov problem,
see Youngs [130]. Here, the instability growth is triggebgda shock wave passing
through the interface as opposed to the existing pressadkegt in Rayleigh-Taylor.

Further evidence has been compiled by Boris et al. [10]. ghisip of researchers
initially focused on the transition from laminar initial mditions to turbulence and the
vortex dynamics observed in free shear flows. Key papersarereoncerned with the
development of mixing layers, Grinstein et al. [50], comérgtructures and turbulent
features in free jets, Grinstein and DeVore [47], and chatlyiceacting flow, Grinstein
and Kailasanath [49]. More recently, wall-bounded proldgmertinent to practical
engineering flows have been considered. The results fromlaiions performed by
Drikakis [25], Fureby and Grinstein [37], Grinstein and €loy [48] for an open cavity,
plane channel and backward facing step, respectively, besa encouraging and the
prospects for the future are promising, albeit these ssutkee been limited to simple
geometries.

All the above investigations prove the applicability afigzetiveness of high-resolution
methods for a broad range of turbulent flow problems. In a&ldiio the overwhelm-
ing computational evidence, rigorous analytical justifmas of the similarity between
the dfects of this class of numerical schemes and the propertiespitit SGS mod-
els have been attempted, e.g. see the works of Drikakis asher 27], Fureby and
Grinstein [36], Margolin and Rider [76].

This new insight into the numerical algorithms led to thddwaing question: When
high-resolution methods are employed for solving the goveyequations of fluid dy-
namics, are the physicaffects of subgrid scale motions in turbulent flows embedded
in the numerical mechanisms involved? As a consequencejehdo use these meth-
ods as an implicit way to numerically model complex turbtifows, e.g. flows dom-
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inated by massive separation and vorticity leading to tieree, flows featuring shock
waves and turbulence, and the mixing of materials, was bidnis is an evolving area
of research referred to as Implicit Large-Eddy SimulatittES) or Monotonically
Integrated LES (MILES), for a recent review see also Grinsé¢ al. [51]. The suc-
cess of high-resolution methods to compute such flows tleagxdremely diicult to
practically obtain stably and accurately in spatially uaasolved conditions seems to
depend on: (i) the discretisation of the governing equatiothe framework of a finite
volume algorithm and (ii) the fundamentally non-linearuratof the non-oscillatory
approximations in high-resolution methods which are abladapt themselves to the
local solution.

In order to establish a better understanding of the physa&avance of the discreti-
sation method and the numerical solution approach in ILEéddfects of the SGS
motions and their modelling, the concepts of finite volumas laigh-resolution meth-
ods will be introduced in the following sections.

2.2 The Concept of Finite Volumes

Finite volume methods are a class of discretisation schéha¢have proven highly
successful in approximating the solution of a wide varietyartial differential sys-
tems, especially in the area of fluid mechanics, e.g. seégeeiand Peri€ [34], Lomax
et al. [72]. The underlying concept is to divide the domaimtérest into a finite num-
ber of control volumes and to successively solve the gomgrequations for each
element. Faces common to two control volumes separate onetfre other, thereby
forming seamless connections throughout the domain. ltr&sinto finite diference
methods, the elements can be of arbitrary shape, polyhedthltee dimensions or
polygonal in two dimensions, thus finite volumes are natyalited for unstructured
grids and complex geometries.

Yij+1/2 N
W oft E
Y2l ol
" S "
Xi-1/2 Xi+1/2

Figure 2.1: Control volume in the context of a finite volume algorithm.

Figure 2.1 illustrates a control volume in two dimensioms,the sake of simplicity a
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three-dimensional schematic has been omitted. The corthaine in two dimensions

is bounded by the four grid lines Nortlg;(1,2), South §;_1,2), East &.1,2) and West
(Xi-1/2), or, accordingly, six faces in three dimensions. The ‘s of interest are
calculated for the computational noBg;, located at the centre of the volume, whereas
the computational grid points are stored at the intersestad two bounding lines in
two dimensions, see filled circles in Figure 2.1, or the sretions of three bounding
surfaces in three dimensions.

In fluid dynamics, the governing equations are applied itir th@nservative, integral
form. This form has several advantages over a hon-conserydifferential formula-
tion. For example it allows for discontinuities within thertrol volumes and facili-
tates the numerical calculation of the variables acrosskstvaves. Since the physical
laws obey the basic principle of conservation, the rate ahge of a property inside
the control volume has to be equal to the net flux across thedaoy of the element
due to convection or dissipation and theeets of external forces such as pressure or
gravitation. In order to satisfy this condition in a disereense, the values at the cen-
tre of the control volume represent the volumetric averddbeoflow properties in the
element and the fluxes are numerically integrated over thadiag faces. The fluxes
and force &ects entering a control volume through one face are theatBtidentical

to those leaving the adjacent element — hence the disdietisia conservative by
construction and no further conditioning is necessatry.

The numerical evaluation of the fluxes requires an appraotkanaf the variables at
the boundaries of the control volume. This reconstructtep stilises the information
stored at the cell-centred poirfeg; to generate a piecewise approximation of the flow
properties inside the element. As a result of this approtionathe two fluxes over one
face as calculated by the adjacent volumes are generaligerttical and some strategy
has to be applied to model this discontinuity. A straightfard procedure would be
to simply take the arithmetic average of the two fluxes. Havethis idea neglects
the need for numerical dissipation to stabilise the sofuéind more models would be
required. Another possible approach to this problem is tornporate the physics of
jump discontinuities into the solution process, e.g. tigiothe use of high-resolution
methods.

2.3 High-Resolution Methods

Modern high-resolution methods emerged from the search faw family of numer-
ical schemes that meet two seemingly contradictory targéts desire for a highly
accurate simulation and the preservation of monotoniaibgsic property of the exact
solution. This predicament was summarised by Godunov [@3ji$ famous theo-
rem*“There are no monotone, linear schemes of second or higheerasf accuracy’
While linear higher-order methods provide superior accyita first-order methods in
smooth regions of the flow, they produce spurious osciltatizear high gradients, see
Figure 2.2. Monotone, first-order methods, on the other hawdid spurious oscil-
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lations, but they are too inaccurate for practical simolai The key to circumvent
Godunov’s theorem can be found in the statement itself. d tnon-linearscheme

is able to combine the high accuracy provided by a higheeramethod with the non-
oscillatory, monotone character of a first-order method.

/2 Numerical Solution

Exact Solution

‘s

Figure 2.2: Spurious oscillations in the numerical solution in the ritsi of high gradients
(after Toro [115]).

Fundamentals In order to minimise the oscillations in the vicinity of higyra-
dients, modern high-resolution methods employ non-lirdéierencing techniques,
e.g. see Drikakis and Rider [27], Harten [54], Toro [115].ré{ehe finite diference
stencil, a function of both space and time, is based upon ¢éhewbour of the local
solution and does not produce uncontrolled oscillationis Ts the distinguishing
feature between a high-resolution method and other naatimethods that are not
considered high-resolution. A non-linear, non-high-teBon method can lead to an
ill-behaved solution when it encounters high gradients tedresult can be unpre-
dictable. High-resolution methods, on the other hand, tklp select a dierencing
operator that ensures a well-behaved solution and prochigesfidelity results. In
other words, high-resolution methods provide physicalgamingful results in all flow
regions, even in the vicinity of high gradients which, in Hiesence of shocks, is usu-
ally an indication of insfficient spatial resolution typical for any LES or RANS simu-
lation of turbulence. Harten [54] formally defined high-okgion methods as schemes
satisfying the following properties:

e Provide at least second order of accuracy in smooth area doiv.
e Produce numerical solutions (relatively) free from spusioscillations.

¢ In the case of discontinuities, the number of grid pointshie transition zone
containing the shock wave is smaller in comparison with¢&tst-order mono-
tone methods.

Solution Procedure  The high-resolution methods employed in this thesis dre al
based on the pioneering work of Godunov [42]. He was the firstitise the solution

of the local Riemann problem encountered in the discrefisedulation of the gov-
erning equations. The classical Godunov method is only-dirdér accurate, but its
physical foundation attracted a great deal of interest.s€quently, the approach was
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developed further in the following decades and higher+o@ledunov-type methods
appeared, e.g. see van Leer [120].

Figure 2.3 outlines the basic solution procedure for a Godtgpe, high-resolution
algorithm employed in a finite volume framework. The cona#pinite volumes intro-
duces a piecewise constant discretisation, represefiiegngalumetric averages of the
continuous, “real” problem, see Figure 2.3(a). This wouddthe initial situation for
the classic first-order Godunov method. However, highitggm methods include an
interpolation step, depicted in Figure 2.3(b), often nefdito as high-order reconstruc-
tion or limiting. The interpolation step essentially leaols subgrid distribution for the
discretely sampled data and thus it increases the accuf#foy method. All Godunov-
type methods incorporate non-linear stability constsafiot minimising or eliminating
the problem of spurious oscillations, whereas the ordenefmethod varies with the
order of the spatial reconstruction. More specifically, @cpivise linear or quadratic
interpolation generates a second- or third-order mettesghactively, while methods of
arbitrary order of accuracy can be obtained by piecewisgnoohial reconstructions.
Because high-order interpolation is based on the assumgtiemooth flow, it is re-
duced to a first-order piecewise constant reconstructi@eas where this condition
is not met. In fact, a higher-order reconstruction ratheregses than increases the
order of accuracy in the vicinity of high gradients and shsck

(a) Finite volume discretisation. (b) High-order reconstruction.
" \; ~ | I
(c) Riemann solution. (d) Averaging.

Figure 2.3: Schematic of the basic solution procedure for a Godunog;thigh-resolution
algorithm employed in a finite volume framework (after Dklsaand Rider [27]).

In practice, the reconstructed distribution still consgjinmp discontinuities at the cell
faces. The left- and right-hand states of the discontintaty now be regarded as two
semi-infinite states similar to the initial value problemved in shock-tube simula-



2.3 High-Resolution Methods 25

tions. Hence, this approach leads to a series of local Rierpavblems at the cell
faces, illustrated in Figure 2.3(c). For a perfect gas, thlat®n at the cell face can
be determined by an elaborate exact Riemann solver. In todeduce the computa-
tional cost of the solution and in more general cases, hawapperoximate Riemann
solvers are usually preferred. In the final step of the promedhe solution is aver-
aged over the compuational cell in accordance with the qurafdinite volumes, see
Figure 2.3(d). This technique is philosophically appepimd owes its success to the
combination of the reconstructed subgrid distribution #r&physical aspects of the
Riemann solver.

Monotonicity Preservation.  As mentioned previously, the elimination of signifi-
cant spurious oscillations is a fundamental aspect of héglelution methods provid-

ing non-linear stability. This is generally achieved bygae/ing monotonicity in the

numerical solution. A solution is said to be monotoniciteserving if it is monotone

increasing or decreasing for all time if the initial conditiis monotone increasing or
decreasing, respectively. As a consequence, monotopieerving methods do not
allow spurious oscillations if the initial conditions arenotone. In a numerical solu-
tion, however, the initial condition is not always monotarel the criterion does not
address non-monotone solutions. Thus, the design of gblution methods some-
times relies on stronger conditions.

Total Variation Diminishing .  In order to elucidate the principles of stronger non-
linear stability conditions, it is useful to introduce thencept of total variation. The
mathematical definition of the total variation of a disset function in space and
time, ¢(x, t), at a time instant associated with a time stap given by

TV(#") = TV(6(1) = D, 1601~ o1

|=—00

In order to obtain a finite total variation, the functignis assumed to be either O
or constant as the indax indicating the spatial discretisation on a numerical mesh
approaches infinity.

With the above definition in mind, a scheme is said to be Totaidtion Diminishing
(TVD) if the total variation of the solution does not increas time. Mathematically,
this can be expressed as

TV(e™) < TV(¢") < ... < TV(¢9),

whereg? is the initial condition at = 0. It should be noted that the TVD constraint is
not limited to non-monotone solutions. A trivial obsereatifollows from considering
a monotone initial condition: If the initial condition is motone, the total variation
remains constant and the solution is monotone for all timeerek the TVD condition
implies preservation of monotonicity.

A major advantage of the Total Variation Diminishing coasit is that oscillations
cannot grow indefinitely and they have to decrease in magaitlnew oscillations
arise. Thus, the TVD concept imposes an upper bound on thesithe oscillations
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and ensures stability of the scheme. Sometimes the TVD tiondian be too weak,
however, because it does not prevent the formation of newamuoscillations. In this
case, a more restrictive condition has to be applied.

Monotonicity.  Figure 2.4 illustrates the strongest stability constrasing a lin-

ear reconstruction. For a monotone scheme, the piecewidiepof the solution is
constrained between the cell average values of the adjaediat By considering a
discretised scheme of the form

"= HOL L Al )
the monotonicity property can be defined mathematically as

oH . .
873’;20 YV n,i—-I<j<i+r,

wherel andr are two non-negative integers aHdrepresents an operator. The impact
of the monotonicity condition on the solution can also bespribed geometrically by
the following two statements, see Drikakis and Rider [26},01[115]:

¢ No new local extrema may be created, thus spurious osoifiatio not appeatr.

e The value of a local minimum increases, i.e. itis a non-desirgy function, and
the value of a local maximum decreases, i.e. it is a non-asing function.

/./ /./

P

(a) Monotone scheme. (b) Non-monotone scheme.
Figure 2.4: Geometric representation of the monotonicity constraint
(after Drikakis and Rider [27]).

In general, numerical methods can be classified accorditigetbierarchy of the non-
linear stability conditions they satisfy, see Drikakis dider [27]. For the constraints
introduced here, the set of monotone schents,, is included in the set of TVD
schemesSyq4, and this is in turn contained in the set of monotonicity premsg
schemesSn,, yielding

Smon - Stvd c Smpr .



2.4 The Riemann Problem 27

2.4 The Riemann Problem

In order to retain the fundamental physical and mathenlati@acter of the govern-
ing equations, high-resolution methods incorporate tteeiear approximate solution
to a local Riemann problem. Analytical solutions are aaéddor several systems of
equations and are often used as a reference for assesspeyfihenance of numerical
methods, e.g. the Euler Equations, scalar conservatios ¢tavany linear system of
equations. If the governing equations are more complextbeitomputational cost of
the Riemann solver is a concern, however, physical or madtieah approximations
are inevitable. In practice, almost all Riemann solverss@tbe approximate type and
produce nearly identical results compared to the exactisalat a fraction of the cost,
see Laney [65], Toro [115].

The Physics  The one-dimensional shock-tube problem consists of twmns of
stationary fluid at dferent pressures. Initially, they are separated by a digphra
which is considered to be removed instantaneousty=a®. Fort > 0, a wave system
comprising three basic types develops: a rarefaction waegmansion fan, a contact
discontinuity and a shock wave. This physical problem casddeed by considering
the Euler Equations. A generalisation of the shock-tubdlera is also called the
Riemann problem. Here, the fluid does not have to be stagnant & and one or
two of the wave types can theoretically be non-existent. &lex, the structure of
the solution remains the same as for the shock tube problernrsidering vanishing
strengths for the absent waves.
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Figure 2.5: The shock-tube problem for the Euler Equations and corretipg wave
diagram showing the characteristics in theplane (after Laney [65]).
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Figure 2.5 illustrates the shock-tube problem for the EHbpations and the ideal gas
law. In general, the solution can consist of four constatd deates| to 1V, separated
by the three basic wave types. It should be noted here thaihéosake of clarity the
waves in Figure 2.5 are sketched as straight lines whichapproximation to the non-
linearity observed in reality. The statesandIV are defined by the initial condition
att = 0, whereas the statés andIll are sought after. A left-running rarefaction
wave or expansion fan, composed of diverging charactesistioving at a speed given
by the diference of the local velocity and the local speed of soufxdt) — a(x, t),
decreases the pressure and the density within its boundsbdimdary on the high-
pressure side, marked by the slage- a,, is called the head, and boundary on the
low-pressure side, marked by the slape- @, is called the tail. Inside the fan, the
data follows a smooth, non-linear transition from statl | , which can be determined
by considering the Riemann invariants under isentropiditmms.

On the other side, a right-running shock wave can be obsehvisca non-linear wave
that increases the pressure, the density, the temperatdrtha entropy as it passes
through the fluid in statév. Here, the shock wave is a jump discontinuity consisting
of the converged characteristics given lx, t) + a(x,t). This is a direct result of
satisfying the entropy condition,, + a; > S > Uy, + ay;, wWith s being the shock
speed. The statdl can be determined from stalteé through the Rankine-Hugoniot
relations.

The region between the expansion and the shock is ofterredfer as the star region.

In the star region, the data statésandlll are connected through a contact discon-
tinuity travelling with the wave speedt. The characteristics in this area run parallel
to each other and neither expansion nor compression cam. ddeance, both the ve-
locity u* and the pressurp* are constant in the star region, but other flow properties
are subject to a jump at the discontinuity. Furthermore Rhekine-Hugoniot condi-
tions apply across the contact wave like in shocks as welhadRiemann invariants
are constant like in rarefaction waves.

An Analytical Solution. Laney [65] presented an analytical solution in terms, af
andp to the Riemann problem for the Euler Equations and the idesatgjations. This
case corresponds to the shock-tube problem illustratedyur& 2.5. For the Riemann
problem, the relations across the rarefaction wave arendgiye

2 (x y-1
u(x,t) = y—l(YJr 5 u|+a|),
2 (x y-1 X
t) = Z _Z
a(xt) y—l(t+ > u|+a|) T
a(X, t) 2y/(y-1)
p(xt) = pl( 3 ) :

Additionally, the left and right states are connected thiothe Riemann invariant
u+ 2a/(y — 1) = const yielding

u +—2a|| =u +_2a|
1] ’)/—1_ | ’)/—1



2.4 The Riemann Problem 29

In the star region, the velocities and the pressures are@amrecross the contact wave.
Thus,
Up =uy =u

and
P =pu=p.

Finally, the Rankine-Hugoniot conditions across the sheake result in

2 y¢1 . pu
Ay P 1Ty

2 - y+1 piy ’
a r+1pm

i Piv Y71 piv +1

Pur 1
iy v

Uy = Uy +— ,

Vs (1)

7’+1(p||| )
S = Uv+tayvy—|—-1|+1.
v IV\/ 2y \pwv

Since the states and 1V are defined by the initial condition &t= 0, the only un-
known in solving the above system of equations is the pregstiop,;, /pyv. It can be
found through a combination of the conditions across thelsitabe relatingp,;, / piv
to p;/pv, hamely

o q -2y/(y-1)
-1 S0 —
pp—lz% l+y—2a U|—U|V—a|—v Pv
1% 1Y | Y +1 (p
VE (B - 1)+

This non-linear implicit equation reveals the basic prabtd the exact Riemann solu-
tion. Even though it is a perfectly valid analytical solutjahe pressure ratip;;, / piv
cannot be determined directly — thus a computationally g iterative procedure
is necessary in order to calculgtg, /pv. In theory, the solution can be computed to
any degree of precision required, but the cost increaséstiatorder of accuracy.

Numerical Solutions  The vast majority of the computational time is spent onsolv
ing the Riemann problem. Hence, this part of the numericdegarovides a high
potential for reducing the cost of the simulation. Additilyg, mathematical or phys-
ical approximations leading to explicit solutions rarelteathe results significantly
when compared against the exact solution. For these twomsaapproximate Rie-
mann solvers have almost entirely replaced exact Riemdwxarson practice. Further
simplifications can be made by taking the self-similar cbemaof the Riemann prob-
lem and non-moving computational grids into account. If¢akface is always at the
same locationx = 0, the wave speeds indicate the sought-after data statg thletime
axis in the wave diagram.

Figure 2.6 shows the schematics of wave patterns geneaaiidered in the numerical
solution to the Riemann problem. The left and the right wareeither be a rarefaction
wave or a shock wave, whereas the middle wave is always aatagitcontinuity.
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Therefore, the unknown state in the star region can alwaydebermined according
to the type of the left and right non-linear wave. In order be@mpass all possible

(c) R—C—R. (d)S—C-S.

Figure 2.6: Possible wave patterns in the numerical solution of the Riemproblem
(R denotes a rarefaction, C denotes a contact and S dendtesla after Toro [115]).

scenarios, however, special cases such as supersonic flewwigrrarefaction waves
are often treated separately. For supersonic flow, all waneegropagating downstream
with the flow and no information can travel upstream — hen@dblution simply
assumes the initial left or right state depending on the floection. Otherwise, the
state atx = 0 is given by the continuous solution through the expansaonri case of
a sonic rarefaction wave.

2.5 The ILES Rationale

As mentioned earlier, high resolution methods can be engpléyr discretising the ad-
vective fluxes in the framework of Implicit Large-Eddy Simatibns of turbulent flows.
This idea is based on the fact that finite volume, high regmiwlgorithms possess cer-
tain properties akin to theffect of subgrid-scale models used in conventional LES. On
the one hand, they provide a local, non-linear numericaloggy acting as a dynamic
stabiliser for the solution which is equivalent to a purelgsipative eddy-viscosity
model. On the other hand, they are also able to provide a battks mechanism
related to scale-similarity models in classical LES. Anlgsia of the Modified Equa-
tion (MEA) as introduced by Warming and Hyett [124] has prmextremely useful
in order to demonstrate the mathematical and physical aiitids between traditional
subgrid scale models and the built-in properties of finiteiwee, high resolution for-
mulations. Before considering the modified equation représg the actual equation
as treated by the numerical solver, however, the conveaitldiS equations and asso-
ciated formal drawbacks will be discussed.

Conventional LES Formulation. A comprehensive account of the mathematical
and the physical constraints in classical LES and appreatthenodel the subgrid
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scales have been compiled by Fureby and Tabor [38]. Theyieranthe full Navier-
Stokes Equations, but for the purpose of illustration iffisas to consider only the
incompressible Euler Equations given by

du

1
+V-(ueu)+-Vp=0,
ot 0

whereu, t, p and p are the velocity vector, time, density and pressure, resghc
The velocity field is solenoidal, i.e. it satisfi¥s u = 0, and the scalar pressure field
is determined by the continuity condition.

In conventional LES, the resolved scales are separated tnenunresolved scales
through a filtering operation. Thus, any variatblean be decomposed info= f + f,
wheref is the grid scale and’ is the subgrid scale. The incompressible Euler Equa-
tions solved in classical LES are obtained by convolvingdéeendent variables with

a spatial filter functiors = G(x, A) of width A, leading to the filtered or resolved vari-
ablesf = G « f. The filtered form of the Euler Equations above can now betevrit
as

a—u+V-(lT®G)+}_V|5: -V-T-m,

ot e

whereT is the residual or subgrid scale stress tensorrand the commutation er-
ror term. It should be noted that an additional truncatiaorer arises through the
discretisation of the equations. In general, the error $eane assumed to be small
in comparison to the SGS stress tensor — hence they are adtgaated in practice.
However, this assumption is not always true. Ghosal [40]dm@svn that the trunca-
tion error originating from the discretisation can indeedcskgnificant. The same holds
for the commutation error, arising from the fact that thedtentiation does not com-
mute with the filteringd f /dx # df /dx, in the vicinity of walls or in regions with grid
stretching.

The SGS stress tensor in LES is the equivalent of the Reystielss tensor in RANS
and needs to be modelled in order to close the system. It isatkés the dierence
between the filtered non-linear term in the original Euleu&tpns and the non-linear
term in the filtered Euler equations

URU#URU,

thusT can be written as

T:W—J®J:(m—J®6)+(J®u’+u’®ﬁ)+(u’®u'):L+C+R.

Here,L, C andR are the Leonard stress, the Cross stress and the subgedReal
nolds stress representing interactions between resobatdss between resolved and
subgrid scales, and between unresolved subgrid scalgegctesly. These terms are
subject to the basic requirement of Galilean invarianceelbyiand Tabor [38] have
shown thafl andR are invariant of the frame of reference, but neitheror C satisfy
this condition independently. The added complexity inwndlially modelling the dif-
ferent physics represented by the Leonard, Cross and Rs/teyns plus the fact that
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all models are only approximations in the first place defegtattempt at precision.
For this reason, it is more common to model tiffieet of the subgrid scale tensor as a
single unit instead.

Explicit Modelling. In the book by Drikakis and Rider [27], several explicit SGS
models for conventional Large-Eddy Simulation have beealysed. The modified
partial diferential equation emulating the inviscid, filtered LES dopres considered

here is given by

@+V-E:—V-T,
ot

whereU is the array of dependent variabl&sis the inviscid flux vector and is the
subgrid scale stress tensor.

Smagorinsky [105] developed the most widely applied modeldte. It is an eddy
viscosity model similar to the Boussinesq approximatioR&NS that is based on a
subgrid scale dissipation according to Kolmogord¥’s law for isotropic turbulence.
The form of the SGS eddy viscosity is derived from dimensianguments balancing
the production of turbulent kinetic energy with the dissiga on a subgrid level. A
one dimensional analysis of the modified equation revealsSmagorinsky’s model

leads to a SGS stress
ouU @

ox| ox”’

whereC is a constant and is the cell width. Drikakis and Rider [27] have shown that
the change of global kinetic energy in the system can be leazliby

~ ou
S—IETd)(,

T = —CA?

where the integral is replaced by a sum in a discrete sinmmatinserting the SGS
stress for the Smagorinsky model yields

— oU
& =-CA? ‘—
f oX

Evidently, the global kinetic energy is always decreasimgjme — hence the Sma-
gorinsky model is strictly dissipative and mimics the remloef kinetic energy at a

subgrid level. Although this model enjoys a great popwaiitcauses problems if

applied to non-homogeneous or non-isotropic flows. For ganit needs to be re-

calibrated for free shear-flows or additional damping fion are required to account
for near-wall éfects.

3
dx <0.

A significant improvement to the standard Smagorinsky mbdslbeen proposed by
Germano et al. [39]. Here, the model dogents are evaluated dynamically as the sim-
ulation pogresses. This is accomplished by applying a skdarger filter typically of
width 2A, for which a hypothetical resolved subgrid stress is cakaa. Under the as-
sumption that the unresolved and the “resolved” SGS behatady, the codficients

of the underlying subgrid scale model can now be adjustedmyeally. The resulting
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dynamic Smagorinsky model leads to a SGS stress of the form

oPU — oU| oU 63U
- — —_CA? ’
ox3 — & = f ax| ox c’)x3

T = —CA* oy

The associated change of global kinetic energy can becosigvemr negative, thus it
also allows for backscatter and improves the predictgolitransitional flows. How-
ever, the dynamic model exhibits numerical instabilitireaieas of energy production
and a spatial or a temporal averaging procedure is requiredre this problem. A
positive aspect of the averaging is a naturally vanishifgyed scale viscosity at solid
walls, but on the other hand it defeats the purpose of a ppdgthamic formulation.

It should be noted, that the double-filter approach is noitéichto the Smagorinsky
model. Bardina et al. [7] proposed an alternative model dasethe idea that the
important interactions between grid and subgrid scalesrdoetween the smallest re-
solved eddies and the largest unresolved eddies. Thislkealsaale-similarity model
produces a subgrid stress given by

3
T= —CAZ(GU) — &= —CAZI(@) dx .
OX OX

In theory, Bardina’s model accounts for both outscattert@aukscatter, but in practice
it hardly dissipates any energy and it is numerically uristalb is therefore necessary
to add a dissipation mechanism in form of, e.g. the Smagkyingdel to correct for
this deficiency. The resulting combination is also callededisubgrid scale model.

Various other techniques to model théeet of the subgrid scales can be found in text-
books on conventional Large-Eddy Simulation or can be édrlvy adapting models
found in RANS simulations. However, they will not be discedéere.

Implicit Modelling .  The implicit approach to SGS modelling in LES is motivated
by the fact that computational solvers are alwaffeaded by both physical as well
as numerical limitations and they should not be regardedraggly. It is deemed
more appropriate to consider the combiné@es instead. As shown previously, the
numerical error has the same form as the subgrid scale tedmt igrtherefore assumed
to be capable of producing a similar subgrid stress as in tieeefil LES equations.
When no explicit filter is applied to the incompressible Elguations, the explicit
SGS term and the commutation error term do not appear, geldi

2—?+V-(J®G)+%V5:—%—>r<.

Here, the over-bars denote an average originating from nitte frolume formulation
which can be seen as a form of implicit spatial filtering. Asnti@ned previously,
the discretisation of the above equation leads to the adbdititruncation error term
-V - which depends on the discretisation scheme and the solptamedure. This
numerical error term conveniently appears in the same givere form as the subgrid
scale stress tensor — hence it may have a simffaceon the solution.
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High-resolution methods had originally been introducetthhe intend to solve the ad-
vective part of the equations as accurately as possible eMemyit was found that they
not only provide a superior accuracy to classical lineahmoes, they are also equipped
with a built-in subgrid scale model. In order to investigdtis approach to SGS mod-
elling analytically, Drikakis and Rider [27], Fureby andiatein [37], Margolin and
Rider [76] employed the methodology of modified equationysis to determine the
leading order truncation errors arising from the comborabf control volume dter-
encing and inherently non-linear high-resolution appmations. Additionally, they
compared the truncation error term in implicit LES agaimg éxplicit SGS term in
classical Large-Eddy Simulations and identified the sintiés.

Drikakis and Rider [27] considered a discrete, one-dinmradiequation of the form

At
Uin+l = Uin T Ax [Eivy2 — Eicyj2] s
whereU andE are the array of dependent variables and the inviscid flutovere-
spectively. The superscriptmarks the time level, whereas the subscriggenotes the
position in space. After the high-resolution reconstuttstep incorporating limits
based on non-linear stability criteria, the fluxes are deiteed from the left and right
data states by a linearised Godunov-type method according t
1 |E’|
Ei+l/2 = é [Ei+1/2,R + Ei+1/2,L] - 2 [Ui+1/2,R - Ui+1/2,L] )

with E” being the flux Jacobia#E/oU. For this general form of the modified equation,
the finite volume discretisation itself naturally produ@etuncation term at second
order of accuracy given by

2
r=-cEll ¢ AZE”(

oU\?
ox? ’

15)4

whereC; andC, are two constants depending on the details of the numerietiiod
andA is the cell width. Evidently, the first term in the truncatiemor as predicted by
the MEA allows for backscatter while the second term is ag@als to the ffect of a
scale-similarity subgrid model in conventional LES.

Additional error terms originate from the details of the iimg mechanism during
the reconstruction step. The physical concept behindémiis the need for entropy
production in under-resolved situations, i.e. near higidgmts, in order to eliminate
or control spurious oscillations in the solution fiéctively, limiters can be seen as
a sophisticated trigger for an “artificial viscosity” inlegrt to the non-linear method.
The character of the numerical scheme is closely relateldetdarm of the truncation
term as analysed by Drikakis and Rider [27] for various lerst For example, the
MPDATA scheme of Smolarkiewicz and Margolin [106] yieldseadling order error
term of

_ _CA2E| 'GU 8U
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which is essentially of the same form as the SGS stress faralatd Smagorinsky
model in classical Large-Eddy Simulations. Furthermarbas been shown that the
limiter of van Albada et al. [116] and the third-order WENheme of Liu et al. [71]
produce an fective stress

QU (oU\
= CAE||— | [—
T cal |(6x2) (ax) ’

whereas the fifth-order WENO scheme of Jiang and Shu [62%I&sal truncation error

of the form , .
APU\ (U
_ 5| 22 s

- CA|E|(6X3)(6X) |

All of the above methods are strictly dissipative at the legdrder regarding the
change of global kinetic energy, with the mairffdience being the scaling given by
the cell widthA. However, this does not rule out backscatter in higher ceder terms
or low-order dispersive terms for other high-resolutiogoaithms. In fact, Fureby and
Grinstein [37] have shown that high-resolution discreiise are indeed able to intro-
duce both dissipative and dispersive terms similar to a th&&S model in conven-
tional LES.

In summary, an analysis of the modified equations for clatk&rge-Eddy Simulation
and ILES implies a remarkable analogy between explicit gdbgcale models and
the leading order truncation terms in Implicit Large-Eddyn&lation — hence the
truncation term can be interpreted as a built-in mechanegmesenting thefgect of
the unresolved scales.
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CHAPTER 3

Numerical Model

HE numerical framework for this investigation is providgddthree-dimensional,

unsteady, compressible Navier-Stokes solver of the Eaxiayipe. Although low-
speed flows are near-incompressible, it is deemed more japgie@to develop a reli-
able multi-purpose method that can be applied to a wide rahgagineering prob-
lems. The framework is based on a block-structured finitarma approach formulated
in a generalised curvilinear coordinate system and setechhiques for the discreti-
sation in time and space have been considered.

In separated turbulent flows, the flow components fluctuatieliyaand high gradients
are encountered frequently, thus a simple explicit timegration method is preferred.
For the discretisation in space, a centrdlletience scheme is employed for the viscous
terms and a Godunov-type method solves for the advectivedéuivatives. High-
resolution is achieved through the reconstruction steprparating diferent variants

of non-linear schemes. Furthermore, the code is fully peiséd following a domain
decomposition approach. In order to provide a completergdsm of the numerical
technique, all of the above components will be presentekigsiection. Additionally,

a flowchart illustrating the logic of the solver can be foundi\ppendix B.

3.1 Governing Equations

The physics of (Newtonian) fluid flow is governed by the NaxB¢éokes Equations
(NSE), see Anderson [2]. These equations can be solved lsidaying the coupled
generalised conservation laws, namely the continuity, er@tom and energy equa-
tions

Pivu = 0, (3.1.1)
‘%‘Hv-(pu@u) - _v.s, (3.1.2)
a—e+V-(eu) = -V-(S-u-V-q, (3.1.3)

ot
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whereu, p, €, andq stand for the velocity components, the density, the totaignper
unit volume, and the heat flux, respectively. The stresoteBsepresents thefkects
of the thermodynamic pressupeand the viscous stresses, yielding

S=pl = (V- u)l —u[(Vu) + (Vu)'], (3.1.4)

wherel is the identity tensoy is the dynamic viscosity céicient relating the stress to
the rate of strain for a Newtonian fluid aigis the bulk viscosity ca@icient account-
ing for the dilatation of the fluid. The bulk viscosity d@eient is defined according to

the Stokes hypothesis as

2
Ao =—3u. (3.1.5)

In a similar manner, the heat flux caused by temperatuferdnces in the flow can be
related to the temperature gradients following Fouriegaticonduction law

q=—«VT, (3.1.6)

wherex is the thermal conductivity cdiécient andT is the temperature.

In order to close the above system, it is complemented by aatien of state. For a
perfect gas with negligible inter-molecular forces, thaapn of state is given by

p=pRT, (3.1.7)

where the gas constant of air is typicaRy= 287.05 Nny (kg - K). Furthermore, as-
suming the gas is also calorically perfect with constantsigeheats, the following
useful relations for the internal energy the specific heats, andc,, and the ratio of
specific heaty can be adopted

e=6T, ¢G-G&=R, GG=—x, C=-"—, y=—, 3.18
p 1 O Y=3 (3.1.8)

with y typically being equal to 4 for air.

The perfect gas relations establish the connection bettveeMomentum Equation
(3.1.2) and the Energy Equation (3.1.3) through the voluimenhergy balance

_ P Py 2

e_’yTl-i_E(u +V2+VV2). (319)

Additionally, the physical properties of the fluid can nowdstermined. Sutherland’s

law for the variation of the dynamic viscosity ddeientu with the air temperatur@

yields

T\** To + 1104K
) 0o~ (3.1.10)

“:“O(T_o T+1104K °

whereT is in Kelvin and the reference viscosiyig = 1.7894x 10°kg/(m - s) at
the reference temperatuiig = 28816 K. The thermal conductivity cdigcient « is
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directly proportional tqu according to molecular theory. For a calorically perfect,ga
this leads to the relation

Cy
= 2F 1.11
k=5 3 )

wherePr is a dimensionless parameter known as the Prandtl numbatelmperature
range of approximately 200K to 1000K, the Prandtl numbessisally assumed to be
constant and equal toT®.

3.1.1 Dimensionless Form

In Computational Fluid Dynamics, it is common to employ thaviér-Stokes Equa-
tions (3.1.1) to (3.1.3) in their dimensionless form. Hehe, variables are re-scaled in
order to reduce the the risk of numerically ill-conditiorfemv states and to ensure the
solution is generally well-behaved. An additional advgete the decreasing number
of parameters characterising the flow. A large set of physind geometrical fac-
tors can be grouped into a relatively small set of dimensiemljuantities that reveal
similarites between seeminglyftérent flow scenarios — hence the dimensionless for-
mulation reduces the number of input parameters and iiti@eis the comparison with
experimental data.

The non-dimensionalisation is achived by relating all ptgisand geometrical quan-
tities to characteristic reference values for the dengity, {elocity (u.), dynamic vis-
cosity (uc) and lengthl(). This leads to the following dimensionless variables

t X y z
t* = . )(k =, yK =, Z* =T,
le/Uc lc lc le
u \Y W
p* — ﬁ , u* = —, = —, V\,k = —, (3112)
Pc Uc Uc Ue
. e . p s _ M
€ = 2 p = 2 ° /’t =—.
pCuc pCuC ,UC

In order to obtain a dimensionless heat flux for the energgenmtion an additional
characteristic valud, for the temperature is needed. With Equations (3.1.6) and
(3.1.11), the heat flux in the non-dimensional form of Equat{3.1.3) can now be

written as
« _ Cvy TcV «

q = Re Pru_g , (3.1.13)

whereReis the Reynolds number given by
Re= £elele (3.1.14)

Hc

The reference velocity, and the reference TemperatUigare chosen to satisfy

CuPoo Te = B = poli?, (3.1.15)
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where the subscripb refers to the properties of the free-stream. For a perfegtthes
leads to the following definitions far, and T,

1+ 2(y— 1)Ma2
U = \/ 20y~ DMas, - (3.1.16)
yiy-1)
a2 1+ 3(y - )Ma2
T - & , 3.1.17
¢ o yly-1) ( )

wherea,, = 1/YP/p IS the speed of sound aMda,., = u../a., is the Mach number.
Equation (3.1.13) can now be simplified to

Ed 7 3k
=— VT*. 3.1.18
d Re Pr ( )

For the reference valug any length representing the characteristic dimensioniseof t
problem at hand can be selected and the reference densguas te the free-stream
densityp. = p.. Finally, the characteristic viscosity is chosen in order to ensure
consistency between the numerical Reynolds number andkpieimental Reynolds
number u

Ue = u—c,uo0 . (3.1.19)
Inserting the above relations into the Navier-Stokes Hqnat(3.1.1) to (3.1.3) yields
their dimensionless form

a *

af* +V-(ou?) = 0, (3.1.20)
agt:‘ LV (U eu) = -V S, (3.1.21)

a*

ai+V-(e*u*) — V(S -V, (3.1.22)

whereS' is the nondimensional stress tensor given by
5 2 * 1 * \ T
S =pl+ 3Re(v u)l Re[(Vu )+ (Vu’)'] . (3.1.23)

Here, the nabla operat®rdenotes the gradients and vector derivatives with respect t
the dimensionless coordinates y* andz*. For simplicity, the superscriptis omitted
in the following sections.

3.1.2 Matrix Form

In order to simplify and organise the logic in a computatiomethod, Equations
(3.1.20) to (3.1.22) can be written in conservative, Catesnatrix form, yielding
a single equation representing the entire system of gavgeguations

o oE oF 0G dL oM ON

A EE 3.1.24
ot "ox "oy oz ox oy oz (3.1.24)
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whereU is the array of the conservative variablesF, G are the inviscid and, M, N
are the viscous flux vectors associated with the Cartesjan andz-direction, respec-
tively,

Y pu PV PW
pu pu + p puv pUW
U=| pv |, E= ovu |, F=| pV¥*+p |, G= ovw |,
PW pWU PWV PW2 + P
e (e+ pu (e+ pv (e+ p)w
0 0
T T
1 XX 1 yX
L=— T , M= — T ,
Re Y Re W
Txz Tyz
uTxx + VTxy + \NTXZ - %qx uTy)( + VTyy + WTyZ - %qy
0
1 Tzx
N = R_e sz
Tzz

Y
UTZX + Vsz + WTZZ - ﬁqz

In Equation (3.1.24), the heat flux has been split into thedrspatial components
denoted bygy,, and;; stands for the viscous stress in theirection exerted on a
plane normal to the-axis. For example, on a face perpendicular toxuirection,

is a normal stress, whereag andr,, are tangential or shear stresses, further details
can be found in Appendix C.

3.1.3 Generalised Curvilinear Coordinates

Most problems in engineering cannot be represented addyguatCartesian coordi-
nate systems but require arbitrary, body-fitted grids tiaatrally allow for curved ge-
ometries. It is therefore necessary to convert the Cartesatrix form to a generalised
curvilinear coordinate system given by= &(x,y,z 1), n = n(x, Y,z 1), = (XY, 2Z1)
andr =t, e.g. see the book of Drikakis and Rider [27]. This is achidwemultiplying
Equation (3.1.24) with the Jacobian determinant of thesficamation from Cartesian
(XY, 2) to curvilinear €, n, ) coordinates

a(x.y,2)
= ool ™% (Yoze = ¥ezo) + Ve (2% = 20%) + % (%Y = X)) (3.1.25)
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and substituting the partial derivatives for non-moviniglgr

0 _(9)o% (0\on (8o
ax  \o& ax " an)ox " \oc)ax’

o0 _(9\o (8\on (8)\&

ay  \o¢ ay an)ay \oclay’ (3.1.26)
9 _(2\% (3\on (0}

0z \o¢)oz \on)oz \oc) oz’

o 9

ot or’

The compressible Navier-Stokes Equations in curvilineardinates now take the
form
oU 6E c’)L oL
J—+ +J =J—=&+] +J ,
a7 ffx n77x {gx agfx annx é,gx
where the subscripts indicate the partial derivatives wadpect to the spatial dimen-
sions.

Further simplification of this expression can be obtainedsing the relation (in 1D)

OE . _ 9(JE&))
ag fx A&

and its equivalent for the other flux derivatives, yielding

0
- Ea—f(ng) (3.1.27)

U aE aF aG oL a|\7| oN

Ftaetatar et o (3.1.28)

with

Il
o

U

J(Enx + Fny + GZ)

JEL+FL +GEL) (3.1.29)
J(Léx+ MEy +N&)

J(Lnx+ Mny +Nny)

JL&+ MG +NG) ,

This system of equations applies to the transformed botbdfigrid, i.e. a uniform
and rectangular computational grid. Hence, the numerrealinent for solving the
equations in Cartesian matrix form and generalised caedr matrix form is identical.
Please note that details on the metric relations for thedinate transformation can be

found in Appendix D. Furthermore, the superscfijg omitted for the remainder of
this chapter for simplicity.

212t O M C
1l
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3.2 Time Integration

For both steady and unsteady flows the time-dependent N&tages Equations can
be considered. The solution is found by a time-marchingrélyo that progressively
determines the dependent variables in steps of time. Inafasteady flow a constant
state is approached asymptotically during the course otitmelation, whereas for
unsteady flows the inherently transient solution is predict

In this thesis, explicit Runge Kutta time integration metb@re chosen for their sim-
plicity and their ability to temporally resolve the rapidiyctuating velocity compo-
nents encountered in unsteady separated flows. This appcoastructs the solution
as a linear combination of multiple stages where the numbstages is determined
by the desired accuracy of the algorithm, see Drikakis an@RR7]. Before applying
a Runge Kutta method to Equation (3.1.28), however, the tierevative is isolated

oU GE OF 9G oL oM oN
o _ oG oL M N _ iy, 3.2.1
ot~ a9 an oz Taetan Tar - U (3.2.1)

thus it can be considered a function of the dependent vasaband timet only.

3.2.1 First-Order Runge Kutta

A simple numerical approximation of the time derivative iguation (3.2.1) is given

by the single stage algorithm
Un+1 —yn
— = f(u,t" 2.2
= fUn), (32.2)

with At being the time sted)™! = U(t + At) andU" = U(t). This is also called the
forward Euler method and it is first-order accurate in tinfeigher order algorithms
are required multiple stages need to be computed.

3.2.2 Second-Order Runge Kutta

A straightforward modification of the forward Euler meth@adls to a second-order
accurate two-step procedure defined by

1_n
U AtU — %f(un’tn) ,
UM _ . (3.2.3)
S ULt
At

There are several variants of Runge Kutta schemes that dethe tsame order of ac-
curacy and yield equivalent results if combined with a lingzatial diferencing. Yet,
for non-linear spatial dierencing, formulations adhering to the more restrictivedTV
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constraint may produce improved results at the cost of irepastability properties.
It should be noted here, however, that the TVD condition oabe formally satisfied
for non-linear equations and the expectéi@e can only be confirmed by numerical
experiments. In the book of Drikakis and Rider [27], an exbaipr a second-order
accurate TVD Runge Kutta algorithm known as Heun’s methquiesented as

Ul_un
= fUn),
Un+l_Un 1 n ¢n 1 ¢n+1/2 (3'2.4)
T:E[f(u,t)+f(u,t )| -

3.2.3 Third-Order Runge Kutta

The standard third-order accurate Runge Kutta method st the following stages

1 n
- 1
U AtU — :_))f(un’tn),
uz-u" 2
= =~ f(UL tM3) | (3.2.5)
At 3
Un+1 —yn

1
= [fUN )+ 3f(UR )]

Similar to the two-stage algorithms, a third-order acafB¥D Runge Kutta can be
formulated

1_qqn
: AtU = f(UL1Y),
2 n
- 1
Y AtU = 2 [fUL) + FUL )] (3.2.6)
n+l _ pn
% = %[f(un’ tn) + 4f(U2, tn+2/3) + f(Ul, tn+1/3)] )

Additionally, time integration schemes can be designet extended stability proper-
ties in mind, leading to the alternative three-stage, tbinder accurate algorithm given

by

ut-ur 1
— _f n tl’l
At 2 (UL,
uz-ur 1
= Zf(UL M3y | 3.2.7
A > ( ) ( )
Un+l _ gu2 _ gun 1
3 3 _ = 2 ¢n+2/3 1 +n+1/3
X _B[f(U,t )+ fULE™3)]

Higher than third-order methods can be constructed, butdlagive improvement of
the solution cannot justify the additional computatior@dtan most cases. Thus, they
will not be discussed here.
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3.2.4 CFL Condition

For time-dependent flows, time marching in all computatiaredls has to be per-
formed with the same global time stap, which, for a given Courant-Friedrichs-Lewy
(CFL) number, is defined as

. CFL
At =min|J TRV T aea—e— ey el I (3.2.8)
max(| Ay, [A5], |21, [Ad], |41, 1A, 4G, 1A%, [AZ )

whereJ denotes the Jacobian determinant anate the eigenvalues associated with
the advective fluxeg, F, G, respectively.

For the forward Euler method from Equation (3.2.2), the thgcal value oCFL < 1
leads to a stable integration in time. This condition singibtes that the length of the
time step is equal or less than it takes for the fastest aiconatve to travel from one
grid point to the next. However, this condition is necesdarnynot sificient to ensure
stability of the algorithm. Time marching methods satisfyia CFL condition may
still lead to instabilities in the sense of permitting laggeors or they may simply blow
up. In practice, this behaviour is commonly cured by lowgtime CFL number until a
stable solution is obtained.

This applies to all of the above Runge Kutta schemes. A clexiatic of this cate-
gory of time integration methods, however, is that the $itglvegion is growing with
increasing number of steps. Here, the third-order extestiuility scheme given in
Equation (3.2.7) has the largest theoretical CFL limit agithe methods presented in
this thesis.

3.3 Spatial Discretisation

The spatial derivatives at the centre of the control volumgK) are discretised using
the inter-cell flux values across the faces defined by thecsihs ( + 1/2, j,K), (i, j +
1/2,k) and {, j,k+ 1/2), see Figure 3.1.

Thus, the semi-discretised form of Equation (3.2.1) can btem as
U _ Eiapjk=Eapik  Fiaek=Fijaezk - Gijkaez = Gijk-12
at AéE An AL

N Liv1/2jk — Licy2jk N Mi j+1/2x — Mij—1/2k N Nijk+1/2 = Nijr-1/2
A& An Al ’

(3.3.1)

where each term on the right-hand side can be solved indepépdiue to the dimen-
sional splitting and the complete system is integratedntetafter all the discretised
fluxes are added up.

In case of the linear viscous fluxés M andN, the solution is simply given by a
central diference scheme, whereas for the non-linear advective flaxésandG a
high-resolution Godunov-type method is developed in ttieviong sections.
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G, i, k+1/2)
X (Q,j+1/2.K
(i-1/2 K (v x| (i +1/2, k)
\< o ></
PX
L, - 1/2,K)
{ ” X— |
i f/ (|,J,k—1/2)

Figure 3.1: Three-dimensional notation for a finite volume cell with tentre ati(, j, k).
3.4 Characteristics-Based Scheme

The characteristics-based method employed for solvingdivective part of the gov-

erning equations is a linearised Riemann solver. It is awmred a high-resolution

Godunov-type method when combined with a high-order retlcocson scheme for

computing the left and right initial states of the Riemanakpem. This method was

firstly presented by Eberle [32] for the compressible Eubprdtions and later extended
by Drikakis [24], Drikakis et al. [28].

In order to present a new derivation of the characterisi@sed scheme after Shapiro
[101], it is suficient to consider the one-dimensional inviscid counteérpBEquation
(3.1.28) given by

oU oE

a0
The solution to this one-dimensional Riemann problem is tiiged to calculate the
sought-after inter-cell flu and the remaining advective fluxesandG can be deter-
mined accordingly.

(3.4.1)

3.4.1 Method of Characteristics

For the method of characteristics, e.g. see the book of LEtdythe Partial Diferen-
tial Equation (3.4.1) is written as

@ + A@ =
ot o0&
whereA = 9E/JU is the flux Jacobian. In order to simplify the Riemann prohlem

Equation (3.4.2) is linearised, i.A.is assumed to be approximately constant from one
time level to the next.

0, (3.4.2)
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Both sides of the linearised equation are now multiplieddy and the second term
on the left-hand side is extended wi@) yielding

10U
Q” 1 +Q7AQQ T — e (3.4.3)
whereQ andQ! are the matrices whose columns are the right charactevistiors
and whose rows are the left characteristic vectors, relséctThe characteristic vec-
tors are also known as eigenvectors. With the definition efctharacteristic variables
V being

oV = QU (3.4.4)
and substituting
Q'AQ =A, (3.4.5)
Equation (3.4.3) takes the characteristic form
ov ov
i Aa_g 0, (3.4.6)

whereA is the matrix whose diagonal elements are the charactevisliies or eigen-
values. Thus, the Riemann problem for a linear system of fiueagons has been
decomposed into five Riemann problems for a linear adveetipration.

The characteristic variablég are also called signals, or the information carried by
a wave travelling at a speed determined by the corresporafiatacteristic valua.
Analogous to Section 2.4, the wavefront or characteristgiven byd¢/dt = A in the

t-¢ diagram. This situation is illustrated in Figure 3.2(a) &osingle wave emanating
from the cell faces + 1/2 at the current time leval. Most importantly, it can be
shown that the values &f are constant in time along the corresponding characesisti
— hence they are sometimes referred to as the Riemann intaaad they can be
used to calculate the state at the next time level.

t t
\ \

i—1/2 i+1/2
n+1 n+1 / /

i—1/2 i+1/2

(a) Departure-based characteristicé. (b) Destination-based characteristiégs.

Figure 3.2: Possible arrangements of the cell interfaces and a singlefmat for the method
of characteristics.

Since the Riemann solution is self-similar, it isitient to determine the flow state
at the leveln + 1 in order to integrate the fluxes at the cell faces in timehdf ¢har-
acteristics start at the current time levelshown in Figure 3.2(a), an interpolation
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procedure is necessary to determine the values at the teflaoe for the sought-after
time stepn + 1. Therefore, it is often more convenient to consider the edsere the
arrival points ah + 1 coincide with the cell interface as depicted in Figure [3)2For
the destination-based characteristics, the flow stateeatakt time level is fully deter-
mined because the initial states of individual charadiessit leveln can be calculated
through, e.g. an upwind scheme.

Upwind methods are based on the idea that information petpagt dierent speeds
along the characteristics withfterent orientation. Therefore, upwind methods incor-
porate a sense for the direction of the incoming signal bintathe knowledge about
the structure of the solution given by the eigenvalues intmant. Numerically, this is
expressed as

U=(05+y)U_+(05-y)Ur, (3.4.7)
where the upwinding cdicienty is defined as
AL+ AR
=05—M—. 3.4.8
e T e (3:48)

The paramete¢ averts division by zero and, g, 1, r are the left and right flow states
and eigenvalues at the cell face, respectively.

3.4.2 Eigenvalues of the System

As seen in the previous section, the eigenvalues of therayglay a crucial role in
calculating the inter-cell flux values. In order to deterenthe eigenvalues, Equation
(3.4.1) is employed in its primitive form. This formulatiddased on the primitive
variablesW = (p,u,v,w, p)' is often preferred for the sake of simplicity. Thus, the
eigenvalues for the system of equations given by

oW ow
9N e o, 3.4.9
ot " or (3.4.9)
with
u,  péx Py 43 0
0 u 0 0 2¢4
c=|0 0 U, 0 4 (3.4.10)
0 0 0 u 14
0 pa®y Pazfy paé; ug
and
U, = SU+EV+EW, (3.4.11)
2 = 1P (3.4.12)

Jol
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can be calculated by solving

u. -4 péx  péy péz 0
0 u-4 0 0 2
IC-all=| O 0 u-a4 0 ¢ |=0. (3.4.13)
0 0 0 u-1 12
0 paléy pazfy palé;, U, -2

for A. This leads to one triple eigenvalue denoted by the sulisgérgmd two single
eigenvalues marked by the subscriptand—

Ao = Ui, (3.4.14)
A = U +a,[e2+E2+¢2. (3.4.15)

The dficiency of the numerical algorithm can be improved by divigguation (3.4.9)

with the cell face areq [¢2 + & + &2, yielding

oW oW
C —

—+C—=0, 3.4.16
ot 0 ( )
with B B _ _
u px py pz O
0O uw 0 0 :X
c=[{0 0 T 0 iy (3.4.17)
0O O 0 u %2
0 pa’x pa’y pa’z U,
and
.
Ex &y, &
(x%.2) = M (3.4.18)
JE+E+E
U, = Xu+yv+2zw, (3.4.19)
t = t,/§§+§§+§§, (3.4.20)
1 = ¥+VP+72. (3.4.21)
Now, the eigenvalues take the form
o = U, (3.4.22)

Al = U +a. (3.4.23)
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3.4.3 Characteristic Decomposition

In order to determine the Riemann invariaMsassociated with the characteristics
travelling at a speed defined by the eigenvalugandA., the system (3.4.16) is diag-
onalised analogously to Equation (3.4.3). Here, the matfrike right eigenvectors is
given by

0 0 1% %
Q= 0 1 op—gz —pﬁ , (3.4.24)
1 0 0 % -4
pa pa
O 0 0 1 1

where first three columns are the eigenvectors associatiddAywiand the last two
columns correspond ta..

The Riemann invariants are calculated using the inverdeeo¢igenvector matrix

Qt= 0 o -1]. (3.4.25)

OO Pr oo

Thus, the relatiod®V = Q~19W yields

—xzdu-yzdv+ (1 - 22) dw
—xydu+ (1 - y? dv—yzdw
oV = do — %P , (3.4.26)
a
% (dp+ pa(Xdu+ ydv+ zdw)
5 (dp - pa(xdu+ ydv+zdw)
which, after applying some linear algebra to the first twos@associated with,, takes
the simplified form

Xdw - zdu

oV = do - L . (3.4.27)
1 (dp+ pa(Xdu+ ydv+ zdw)

g (dp-pa(Xdu+ ydv+ zdw)
For solving the original system (3.4.2), however, the coregese invariants need to
be recovered. Ifl, m, n)g’t_ represent the conservative variahles, pv, pw)gm_ along
the characteristics associated with40-), then the Riemann invariants can be written
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as
T(drb—;/\/dpo _ 2d|o—;dpo
T(dnb;VQOO _ ydb—;dpo
oV = dpo — PoZ* , (3.4.28)
% (P+ ()/ _ 1) + pa(T(d|+_puq0+ + ydrm;vom + zdm—pWQm ))
:_2L (P_ (’)’ _ 1) _ pa(y(dl_—pudo_ + ydm_;vdo_ + zdn_—pwdo_ ))

where the dierentials of the primitive variables have been substitatabrding to the
chain rule of diferentiation

d
gﬁ dl—upolo
dv B I =7 (3.4.29)
aw| | o -

P
ap Jo.- (Py-1) ).

andPy, _ = dey,_ —udl,_ —vdmy, _—wdn, _+ g5,

Remember that the Riemann invariants are constant alorghtracteristicsaV = 0)
and the diferentials can be discretised as th&etence between the known initial
states 4,1, m,n, e)g’t_ at the origin of the characteristics and the sought-aftatest

- T o o
(p.1. M., €) at the destination of the characteristics

do Ap p P

dl Al I I

dm ~| Am =l m|—-| m ) (3.4.30)
dn An n n

de 0,+,— Ae 0,+,— é e 0,+,—

LetU = (p.I.m7, é)T, o = ¥+ V2 + w2 andy = y — 1. After setting the Equation
(3.4.28) equal to zero and some more algebra the followiregli system is derived

BU=D, (3.4.31)
with
ZU— Xw -Z 0 X 0
uy — VX -y X 0 0
2
B= %2 -5 u v w -1 (3.4.32)
)“/%—aUL ax—yu ay — yv aZ-yw y
¥y ral, —(@ax+yu) —@y+p) —(@z+w) ¥
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and
(Zu—XW) po — Zly + Xy
(uzy — VX) po — Ylo + Xmy
D (y%l - %)po+ulo+vrrb+wno—eo (3.4.33)

~ 2 — ~ — ~ — ~ ~
pr (3 —al,) + |, (aX - Ju) + m, (a5 — V) + n, (az— W) + e,

~ 2 — — ~ — ~ — ~ ~
w_(y% + al L)—I_(ax+yu)—rrL(ay+yv)—n_ (az+ yw) + ye_

The system (3.4.31) can now be solved for the unknown végtgielding

? 0 po+R +R
I pu (pu)g+ U+ ax) R, + (u—-ax) R
U=|m|=| pv |=| (oV)o+(V+ay)R, +(v-ay)R |, (3.4.34)
n OW (W) + W+ a2 R, + (W—az2) R
e [ eg+(H+au)R, +(H-au,)R,
where
1 P NERY _
R. 2_8‘2((P0_P+) auJ__’)/E +(0_ +)()/U—aX)+
(No—n)(yv—ay) + (m-m)(yw-a2) - (e -e,) ¥,
R = — b+ 7]+ (o= 1) Gu+ ax
= ﬁ((ﬂo—P—)(aUL+75)+(o— -) (yu+ax) +

(n—n)(Gv+ay) +(mp—m) (Gw+az) — (e —e.) ¥

and the total enthalpi is given by

2
H=

0.5¢7 .
y-1" q
The velocitiesu, v, w and the speed of souradare the average values of their left and
right states. Finally, the advective fléxat the cell face as required for solving equation
(3.4.1) can be calculated using the characteristics-bzemtablesy, i.e.

E=EU). (3.4.35)

3.5 High-Resolution Algorithms

High-resolution of the numerical solver is achieved by amptiating the variables as
linear, quadratic or higher-order functions in a cell, vdae first-order algorithms fol-
low a piecewise constant approach. This is the general batie non-linear mecha-
nism that distinguishes modern methods from classicaatisehemes. Additionally,
high-resolution methods are able to adapt to the behavidhedocal solution instead
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of treating every part of the solution the same — hence th&y exhibit a sensitivity
to the state of the flow.

Two classes of reconstruction methods are presented irsdiatson: diferent vari-
ants of theMonotonic Upwind Scheme for Scalar Conservation LéMESCL) as
originally introduced by van Leer [119] and\aeighted Essentially Non-Oscillatory
(WENO) scheme following the ideas of Liu et al. [71].

3.5.1 MUSCL Schemes

For the family of MUSCL schemes, the left and right stateshef ¢conservative vari-
ablesU at the cell interfacei (+ 1/2) are computed according to Toro [115] as

1
Uiz =Ui  + 2

(1=K ¢ () (U= Ur) + (L + k)¢(%) Uyt - ui)] |

(100 ) Ui = Ui) + A48 ) U - U)

R

(3.5.1)

1
UR,i+1/2 :Ui+1 - Z

wherek is a free parameter in the intervall, 1] and¢ is a limiter function based on
the slopes of the conserved variables within, for the secand third-order accurate
schemes, the four-point stencil given by the cell averageddes at positiond 1),
(), (i+1)and { + 2). Fork = -1 ork = 0 the MUSCL extrapolation in Equations
(3.5.1) is essentially a full upwind scheme or a centriedénce scheme, respectively,
and third-order of accuracy can be obtainedkot 1/3 if the limiter is not entirely
symmetric. It should be noted that the second-order limitemsidered here do not
satisfy this criteria, thus their order of accuracy canririzcreased.

Second-order limiters  All second- and third-order accurate limiter functiong us
the following definitions of the left and the right ratio oftlslopes

) _Uii - Ui
U -U’
3.5.2
o= Uir — Ui (3:5.2)
Ui+2 - Ui+l '

The most popular second-order limiter functions can be downseveral textbooks,
e.g. Laney [65], LeVeque [68], Toro [115]. Although they arat employed in this
thesis, they are given here for the sake of completeness

0 ifr<oO
Pmm :{ . ; (3.5.3)
r ifr>0
0 ifr<O
= -, 354
4l {% ifr>0 (3.5.4)

0 ifr<O
- =T 355
o {—T;? if r >0 (3:59)
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whereMM, VL andV A stand for the MinMod, Van Leer and Van Albada limiter, re-
spectively. All of the above satisfy the monotonicity caasit and reduce to a piece-
wise linear method near local extrema.

Third-order limiter .  In a similar fashion to the second-order limiters, Zo6lgadd
Drikakis [132] developed an extension to the Van Albada fiemcwhich is referred to
by the subscripm3

0 ifr<0
dms = { 2Nr)( or )N (3.5.6)

1—(1+m e ifr>0

This formulation of the third-order limiter includes a “sfgening” parameteN that
improves the resolution of discontinuities. For generalMss set equal to 2.

Fifth-order limiter .  Kim and Kim [63] presented a fifth-order accurate MUSCL
scheme using a six-point stencil as opposed to the clagsigapoint stencil employed
previously. Here, the slope ratios are defined as

Ui - U
VT
' - 3.5.7
o =i~ Ui (33.7)
R U -U
andg¢ is calculated by
o =2+ 104 24r - 3rilLia
Plws = 30 ’ 3.5.8
" _—2/rRi+2 +11+ 24rRi+1 - 3rRi+1rRi ( o )
¢R,M5 - 30 .

Subsequently, this function is limited in order to maintaionotonicity and the fifth-
order limiter can now be written in compact form as

¢L/R,M5 = ma>(0, min(2, 2r|_/Ri, ¢T_/R,M5)) . (359)

3.5.2 WENO Schemes

WENO schemes are an extension of Egsentially Non-OscillatoryENO) concept
originally proposed by Harten et al. [55], Shu and Osher [LENO has been devel-
oped with the idea of a higher-order interpolation methonhind. Since high-degree
polynomials are prone to oscillations even if the undedyitata is smooth a method
for controlling these oscillations has to be found. Instedmploying limiter func-
tions like MUSCL schemes, ENO chooses the smoothest of massilde stencils to
avoid disastrous overshoots or undershoots — hence it dueemmally satisfy the
non-linear stability criteria.

WENO methods are primarily based on the work of Balsara and[6} Jiang and
Shu [62], Liu et al. [71]. They combine all possible stencésher than choosing
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only a single one, where a convexly weighted average is mediaccording to the
smoothness of the candidates. The averaging reduces thié\snto small changes
in the samples and it also reduces tliees of the truncation errors. Thus, WENO
schemes ideally reach an order of accuracy calculatedby @ith sbeing the number
of sample points. ENO methods, on the other hand, generciigee lower orders of
accuracy because they discard most of the points.

The WENO method employed in this thesis uses a stencil of s to either side

of the interface, yielding a ninth order accurate schemengdimension. In order to
illustrate the basic principle, however, only a third-ardé=NO reconstruction derived
from a linear interpolation witls = 2 is presented here. For the reconstruction within
a celli, two stencilsSy; comprising the cell-averaged values of two samples each are
considered

So =(Xi-1, %) ,
S1 =(X, Xix1) -

A standard linear interpolation using the stencils 0 andatiseto the following poly-
nomials

(3.5.10)

Ui — Ui
Po(X) =U; + ———— (x=x) .
Ui — U

AX
where the right interface value at- 1/2 and the left interface value at+ 1/2 are
obtained for x equal t@;_;, andx;,1,2, respectively.

(3.5.11)

p(X) =Ui + (x=x) ,

Subsequently, calculation of the weighted averBgd the above polynomials yields
the reconstructed variables at the cell fadas 1, andU, j,1,2. The convex combina-
tion is defined by

_ % a
P(x) = P al|00(x) tara p1(X) , (3.5.12)
with
Co
q = )

(€ + 1S0)2
G (3.5.13)

! _(E + ISl)z

Here,e is a small positive number which is introduced to avoid asion by zero in a
perfectly smooth flow an@,; are the optimal weights. Furthermore, the smoothness
indicators are given by

1So =(U; — Ui_1)?,

(3.5.14)

1Sy =(Uis1 — U)?.
The derivation of a higher-order method follows the sameceph However, the com-
plexity of the equations is rising with an increasing ordieaacuracy, for more details
see Balsara and Shu [6], Drikakis and Rider [27], Jiang and[&2.
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3.6 Domain Decomposition

The simulation of separated and turbulent three-dimeasitows requires a large set
of data and leads to a high computational cost. In order teesthle problems in

a smaller time scale, the load needs to be distributed ovet musnber of processes.
Therefore, the global computational grid is split up inteesal sub-grids, which are as-
signed to separate processeEhe governing equations can now be applied in parallel
as several smaller,“local” problems — thus solving the glgvoblem in an acceptable
time.

.-~ PROCESS 1 ™“~._ .-~ PROCESS 2 ™~

—— DECOMPOSITION

O GLOBAL DATA GRID el I e . L

7 LOCAL DATA GRID

Figure 3.3: Decomposition of a two-dimensional global data domain éver processes.

The degree of domain decomposition depends on the numbeooégses available,
see Minty et al. [81]. Figure 3.3 illustrates the decomposibf a two-dimensional
global grid into four equally-sized data blocks which cartteated independently by
four separate processes. The global data is split up intosections and distributed
among several processes, allowing problems that are ogememory bound to be
calculated. Decomposing the domain as evenly as possibla gpven number of
processes available in each spatial direction is done aittoatly by a pre-processor.

BOUNDARY CELLS FOR THE PROCESS 1:
] EXTERNAL BOUNDARY CONDITIONS
OVERLAP WITH PROCESS 2
OVERLAP WITH PROCESS 3

OVERLAP WITH PROCESS 4

NEN

Figure 3.4: Update of local boundary cells for process 1.

At each iteration, each process requires data from its beigis in order to calculate

L In practice, each topological entity (“process”) is assigghto an individual, physical central pro-
cessing unit (“processor”) in order to increase the perf@ante of the simulation. In this case, the terms
“process” and “processor” are interchangeable.
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the state of the local data grid. This information exchange tbeen implemented ac-
cording to the MPI-1 standard, e.g. see MacDonald et al., [Pdtheco [87], thus
ensuring portability of the code toftierent computing architectures and operating sys-
tems. All processes copy the overlapping data from the [gredinto buter arrays and
send it to the corresponding adjacent processes. Then ¢oewe the bfier arrays
sent by the neighbouring processes, unscramble the datst@mdit in the appropri-
ate boundary cells. Swapping the boundaries involves fioipbint communication
between all adjoining processes and is implemented in dagimianner to an exter-
nal boundary condition. A schematic of the boundary cellaipdor process 1 of the
above example is shown in Figure 3.4.

3.7 Summary

In this chapter, the numerical methods employed in thisisiesolve the non-dimen-
sional, compressible Navier-Stokes Equations have besepted. For the integration
in time, several options comprising second- and third-oeeurate, TVD and non-
TVD, explicit Runge Kutta schemes are given in Section 3r2.cdmbination with
various variants of high-resolution, Godunov-type methaded for solving the ad-
vective fluxes (Sections 3.4 and 3.5) this allows for a rigermvestigation of dierent
temporal and spatial discretisation techniques in theesamtf ILES for separated and
turbulent flows. Furthermore, the solution procedure ferfscous fluxes has been
explained briefly and the basic principles of parallel cotimmuhave been illustrated.
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CHAPTER 4

Taylor-Green Vortex

N simulations of separated flows, special care has to be takeapture the tran-
sitional regime leading to a turbulent flow state as accly@® possible. In order
to assess the capabilities offérent numerical methods, it is preferable to isolate the
problem by simplifying the conditions. Here, the vortexteys introduced by Taylor
and Green [109] is considered for evaluating the behavibtllemethods presented
in Chapter 3 during various stages in the development of te fl

4.1 Introduction

A grand challenge for modern methods in Computational Aydamics is the mod-
elling and simulation of the time evolution of fully non-&ar turbulent flow in and
around realistic engineering applications. Moreover, deparated flows it is often
necessary to capture severaffelient stages in the development of a turbulent flow
field. Here, it should be noted that the linear, non-linead anly turbulent stages
often place contradictory requirements on the numericahous used. For example,
in a fully developed turbulent flow it is desirable that themarical method provides
some kind of damping to replace the action of subgrid steessé¢he resolved motions.
However, in the early linear and non-linear stages it is irtgod that the perturbations
are allowed to grow without excessive damping from the nucaémethod.

For such flows, it is unlikely that a deterministic predietivamework based on CFD
will emerge in the foreseeable future. A reason for this &ittherent dficulty in
modelling and validating all the relevant physical subgasses, and acquiring all the
necessary and relevant initial and boundary conditionssTtihe modelling challenge
is to develop computational methods that will still give a@te and reliable results for
at least the large energy-containing scales of motion, éuée simulation is severly
under-resolved, i.e. not all dynamic eddy scales are @glincorporated.

In the classical picture of turbulence, the kinetic enegyransferred from large to
successively smaller scales until it is transformed interimal energy, what would be
the dissipation into heat. Whereas the dynamics are asstoniedessentially inviscid
at the large scales, the dissipation mechanism is goveméukebaction of molecular



60 Taylor-Green Vortex

viscosity. In the absence of molecular viscosity, for exbip idealistic inviscid
simulations, the loss of kinetic energy can be used to asksessimerical dissipation
inherent to the numerical scheme employed. The same haltlsefdransitional stage.

Itis commonly accepted that the physical processes initramsind in fully developed
turbulence are governed by the interaction of vortices.eHarcrucial mechanism de-
scribed by vortex dynamics is vortex stretching. In ordeint@stigate the straining
and consequent extension of vortex lines, a complete solofithe three-dimensional
governing equations is necessary — in a two-dimensionaésemtation only vortex
pairing or tearing can be observed, but the stretching nmesimais implicitly elim-
inated because the vortex lines are perpendicular to thaithonTherefore, a three-
dimensional initial condition for a general investigatithe transition to turbulence
has to provide a simple but well-defined description of tlgdascales and also some
properties of statistically uniform isotropic turbulendde simplest fundamental case
that has been used as a prototype for vortex stretching ancbtiisequent production
of small-scale eddies is probably the vortex system intteduoy Taylor and Green
[109].

The dynamics of the inviscid and the viscous Taylor-Greemevohave been discussed
in detail in the 1980’s by Brachet et al. [12] and later in tf89Q’s by the same au-
thor, see Brachet [11]. The pseudo-spectral DNS employadetues the mass, the
momentum and the energy discretely for the finite numberrofigen the Fourier se-
ries expansion. Furthermore, these methods are strictiydigsipative — hence they
are often used to produce benchmark results for finite volanfaite difference so-
lutions. In the absence of molecular viscosity, howeves, gheudo-spectral method
becomes inaccurate and even unstable during the course sfrtlulation. The rea-
son for this behaviour is the undamped growth of an invisogtability mechanism
originating from a vortex sheet which is formed by the cdéugral forces acting on
the Taylor-Green Vortex. As the vortex core twists about\h#ical axis and the
sheet becomes increasingly unstable the high modes camgerlbe represented ac-
curately by the underlying trigopnometric polynomial. Téfare, the available data for
the inviscid Taylor-Green Vortex is limited to very earlynges only and clues about the
later behaviour of the flow have to be deduced from the viscesisits and by logical
reasoning. It should be noted, however, that the aim of tiviegtigation is not the ac-
curate reproduction of the idealistic inviscid case. Iri,fite purpose of this study is to
assess the performance offdrent high-resolution algorithms and thigéeets of their
intrinsic numerical dissipation during the laminar, tridiosal and turbulent stage.

The above studies also include data for the viscous Taytee\Vortex at Reynolds
numbers ranging from 100 to 5000. It has been found that ®highest Reynolds
numbers the flow undergoes two stages. At early times, i.¢o0 @pnon-dimensional
time between 3 and 4, well-organised structures are formddlae flow remains es-
sentially inviscid. Here, the kinetic energy spectrum lveisdike a power law with
the wavenumbek and the spectral exponent is of the order of -4. Ktfespectrum
suggests that the early flow development may be governed &si-uo-dimensional
dynamics. At later times, thefect of viscosity can no longer be neglected and highly
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distorted, dissipative structures develop. When the jggigin rate reaches its maxi-
mum the kinetic energy follows a power law spectrum closehé&characteristic /3
law for turbulence immortalised by Kolmogorov. The flow stiwres as well as the
dissipation rate eventually decay to zero afterwards dubkedack of an external en-
ergy source. The estimates reported by Brachet et al. [1®]Bxachet [11] for the
time at which the dissipation peak occurs are fairly coesistor the higher Reynolds
numbers, see Figure 4.1. The almost indistinguishablédtsefeu the highest Reynolds
numbers of 3000 and 5000 lead to the hypothesis that they malobe to a viscos-
ity independent limit. Thus, the evolution of the kineticeegly and its dissipation
provides a useful quantitative measure for the developraghbth the viscous and
inviscid Taylor-Green Vortex. In the inviscid limit, theretic energy can only be
dissipated by viscoudtects introduced through the explicit or implicit subgrichke
model of the numerical method — otherwise it should be coreskr
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Figure 4.1: Development of the volumetrically averaged kinetic enatpgipation for
different Reynolds numbers obtained by the DNS of Brachet [IrEgHRt et al. [12].

Various ILES approaches, conventional LES and spectratoaisthave been used re-
cently to investigate thefiects of viscosity on the dynamics of the Taylor-Green Vor-
tex. Details on the impact of both molecular viscosity in Mevier-Stokes Equations
and numerical viscosity provided by the discrete approimneof the solution to the
Euler Equations can be found in the works of, e.g. Bensow.d8hlIDrikakis et al.
[30], Hickel et al. [57], Shu et al. [103]. The evolution ofetkinetic energy and the
closely related enstrophy production in time has been aktatall of the above studies.

The results obtained by a diversity of numerical methods gnicicomprising 128
computational cells have also been compiled by Drikakid.g8], see Figure 4.2.
The ILES methods employed to solve the inviscid problememe=sd here are distin-
guished through various limiting algorithms. They incaigde a fourth- and second-
order accurate Flux Corrected Transport scheme, respctabelled as FCT4 and
FCT2; a third-order accurate Lagrange Remap method, &aba$f LR3; and the third-
order accurate Characteristics-Based high-resolutiainodepresented in Chapter 3,
labelled as CB3. Furthermore, a second-order accurateentonal LES using the
mixed subgrid-scale model of Bardina et al. [7], labelled/aXMOD2; and the DNS
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results of Brachet [11] are plotted for comparison. In gaheil the methods shown in
Figure 4.2 seem to predict the global dynamics of the Ta§laren Vortex reasonably
well, but differences are apparent during the increasing stage and imnthgosition
of the dissipation peak.

““““““

—=s—— |LES, FCT4
——— [LES, LR3
—=e&—— |ILES, CB3
—--—=-—- |LES, FCT2
LES, MIXMOD2
DNS, RE=5000

TIME

Figure 4.2: Development of volumetrically averaged kinetic energigiation as obtained
by a range of numerical methods on a grid comprising®X28ls, see Drikakis et al. [29] for
details.

As has been pointed out by Shu et al. [103], however, thesgraltmeasures have to
be evaluated carefully. They may be misleading if not cagrgid in combination with
other parameters characterising the flow. Therefore, tHenpeance of diferent nu-
merical methods for discretising the Euler equations iretand space are thoroughly
assessed in the following sections using various stadistjgantities prescribing the
development of the Taylor-Green Vortex.

4.2 Numerical Framework

The prototype configuration considered here for the asssa#sof various numerical
schemes for predicting the fundamental dynamical mechenontrolling the tran-
sitional behaviour from laminar to turbulent flow is given the Taylor-Green Vor-
tex. The three-dimensional, incompressible vortex fieldhes from an initial, two-
dimensional velocity field defined by

U = Usinkx) cosky)cosk2) , (4.2.1)
Vo = -U coskx) sinky)cosk?) , (4.2.2)
we = O, (4.2.3)

and the condition for the velocity components is complemeily the corresponding
solution of the pressure Poisson Equation

Po = Po + 2 ‘iléz (2+ cos (X2)) ( cos (&) + cos (y)) . (4.2.4)
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As proposed by Brachet et al. [12], a single-mode initialdfigith k = 1 has been
selected. In order to obtain consistent energy conditiongife compressible flow
solver employed in this investigation the total energy iswated as

o 1
& = . _01 + Epo(ug + V3 + W) . (4.2.5)

Furthermore, the remaining free parameters have been tlaaserding to Drikakis
et al. [30] for an ideal gas at near incompressible conditicimaracterised by a Mach
number ofMa = 0.29, yielding

m kg N
U =100—, =14, =1178—=, p.=10—. 4.2.6

The resulting Taylor-Green Vortex & 0 is visualised for a cubic domain of length 2
in all three dimensions in Figure 4.3 by using iso-energfes@s. This specific config-

Figure 4.3: Initial condition for the Taylor-Green Vortex visualise§l Iso-energy surfaces.

uration allows for triply-periodic conditions at the domdioundaries. The evolution
of the flow field could also be simulated in a reduced domairakiny advantage of
the symmetry planes at= r, y = 7 andz = n or additional symmetries listed by Bra-
chet et al. [12]. However, enforcing symmetry conditionthatboundaries contradicts
the aim of fully assessing a numerical method because itaithplprevents symmetry
breaking, a characteristic of discretisation schemes.

The cubic domain has been discretised on a block-struct@adesian mesh with
evenly distributed points, see Figure 4.4. In order to sty efect of grid reso-
lution, three diferent mesh sizes comprising®%4.28 and 256 computational cells
are considered here. In addition to the grid refinement, éselving power of three
different high-resolution algorithms has been investigatedombination with the
characteristics-based Riemann solver of Eberle [32]. M@polation methods em-
ployed are the third-order MUSCL scheme developed by R&tad Drikakis [132]

(referred to as M3), the fifth-order MUSCL scheme presentedim and Kim [63]

(referred to as M5) and the ninth-order WENO scheme follgvitre ideas of Balsara
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Figure 4.4: A typical block-structured grid employed in the simulasaof the Taylor-Green
\ortex.

and Shu [6] (referred to as W9). More details on the specifithods for the spatial
discretisation of the governing equations can be found ati&@es 3.4 and 3.5.

Attention has also been paid to the time-integration schefdthough this area has
attracted less interest in previous studies, it cannot kamasd in general that the
flow evolution is not &ected by the choice of the time-integration method. Theegfo
the results obtained on a computational grid comprisinyad@dls using the second-
order scheme from Equation (3.2.3), the second-order T\H2rse given in Equation
(3.2.4), the third-order TVD scheme in Equation (3.2.6) #relthird-order extended
stability scheme from Equation (3.2.7) are compared ini&ect.5. The methods
for integrating the governing equations in time will be redéel to as RK2, RK2TVD,
RK3TVD and RK3HI, respectively, in the remainder of this pteaa. Furthermore,
all data has been non-dimensionalised with the domain tesugd the initial velocity
magnitudeU. Technical details for the simulations performed on a HP M.G5
server with 3.0GHz Intel Woodcrest 5160 Xeon processordedound in Tables 4.1
and 4.2. The CFL numbers presented in Table 4.1 are the mdwinvehich stable
simulations could be obtained and the duration of the sitrmra given in CPU hours
in Table 4.2 are specific to the computer cluster used.

64° 128 256
M3 M5 W9 M3 M5 W9 | M3 M5 W9
RK2 02 02 04 — — —|— — —

RK2TVvWD |02 02 04 — — — | — — —
RK3TVD | 04 04 06| — — —|— — —
RK3HI 08 08 06|06 08 04/ 06 08 04

Table 4.1: Maximum possible CFL numbers for the simulations performit
Taylor-Green initial conditions.
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64° 128 256
M3 M5 W9 | M3 M5 W9 M3 M5 W9

Proc. 8 8 8 64 64 64 64 64 64
CFL 08 0.8 06| 06 0.8 04| 0.6 0.8 0.4
Steps | 3280 3312 4483 8832 6692 1352017947 13762 27673
CPUh| 493 529 1252 134 113 333 | 1161 1017 3944

Table 4.2: Numerical details for the Taylor-Green simulations usimg third-order extended
stability time-integration method (RK3HI).

4.3 Flow Topology

The dynamics of the Taylor-Green Vortex are discussed headétgtively on the ba-
sis of the results obtained by the combination of ninth-oMENO (W9) scheme,
third-order extended stability Runge Kutta (RK3HI) mettaodl a computational grid
consisting of 634 computational cells. For this purpose, the structure offlthe has
been visualised in Figure 4.5 with instantaneous contadiases of constant Q-values.
The Q-criterion as defined by Jeong and Hussain [61] is thenskioivariant of the ve-
locity gradient tensor and can be written as

1
Q= §(||ﬂ||2 - 1s1?, (4.3.1)
where the shear strain rate and vorticity magnitude arendiye
ISP =1tr(SS). [l = tr(Q"), (4.3.2)

andS, Q are the symmetric and anti-symmetric components of thecitglgradient
tensor, respectively. Additionally, the colour contoufdaial vorticity are shown in
Figure 4.6 on plane cuts at the periodic boundaries of thecaldmain. Here, the
colour maps are identical for all pictures and the totaliedytis defined as

| =V xul. (4.3.3)

The initial Taylor-Green Vortex featuring symmetry for alplanes in the three dimen-
sions is visualised in Figures 4.5(a) and 4.6(a). As has tescribed by Brachet et al.
[12], the vorticity vanishes at the intersections of the sygtry planes and it reaches
a maximum in the centre of the largest structures obtaineth&yQ-criterion. The
initial, two-dimensional flow quickly becomes three-dirsemal due to the action of
a pressure gradient during the very early stage of the stionla

As the flow develops, the initial vortices are driven towatttls symmetry planes by
centrifugal forces. The impermeability constraint pustiesn along the faces until
they encounter the opposing flow imposed by the symmetry.s€qurently, the fluid
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rushes back inwards. The result of this motion is the foramadif vortex sheets, clearly
visible in Figures 4.5(b) and 4.6(b), that have also beewnrted by Bensow et al.

[8], Brachet et al. [12]. This is approximately the time wééne flow starts to become
under-resolved on the given grid and the kinetic energyighsi®n increases.

The kinetic energy continues to decrease rapidly while linged vortex sheets undergo
an instability mechanism and tear open, shown in Figurggyand 4.6(c). This stage
in the flow development is also associated with the generatitarge patches of high
vorticity. Thus, a strong increase in total vorticity candizserved which peaks with
the complete breakdown of the vortex sheets.

After the sheets have fully disintegrated, the evolutiorthed Taylor-Green flow is

governed by the dynamics of the interaction between vatiEdongated, small-scale
tubes of strong vorticity appear due to vortex stretchind are subject to tearing
and reconnection. However, the flow is still organised anchidated by the initial

symmetries, see Figures 4.5(d) and 4.6(d).

At the late stage of the simulation, e.g. Figures 4.5(e) af¢e) the symmetry can
no longer be preserved. The result of several tearing arahnection cycles is that
the flow has lost all memory of the initial condition and is nfully disorganised. The
characteristic, worm-like vortices simply fade away atMate times, as indicated by
the low structural density in Figure 4.5(f) and the weak it in Figure 4.6(f). This
behaviour is extremely similar to decaying turbulent flows.

The qualitative observations made here are not unique teghkeific simulation de-
scribed above. The development of the Taylor-Green Vortek the dynamics in-
volved are similar for all numerical methods employed h&gg, there are quantitative
differences which will be identified in the following sections.
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(a) T=0.0 (b) T=4.0

(e) T=30.0 (f) T=60.0

Figure 4.5: Instantaneous flow visualisations using iso-surfacesef}fcriterion obtained
by the combination of ninth-order WENO (W9) and third-oréRemge Kutta (RK3HI)
method on a 63grid.
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() T=8.0 (d) T=20.0

(e) T=30.0 (f) T=60.0

Figure 4.6: Instantaneous flow visualisations using vorticity consoointained by the
combination of ninth-order WENO (W9) and third-order Rugéta (RK3HI) method on a
643 grid.
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4.4 Flow Diagnostics

In order to quantify the dynamics encoutered during the #awaution of the Taylor-
Green \ortex, the following quantities have been calcalatalthough some of the
parameters are borrowed from the classical theory of tertmd assuming homogene-
ity and isotropy, which does not always strictly apply to Taglor-Green Vortex, they
can be treated as indicators characterising the flow.

Kinetic Energy. The kinetic energy can be used to measure the loss of catigarv
due to the discrete approximation made in solving the gomgraquations numeri-
cally. The mean kinetic enerdyE considered here is computed as

KE:%Qmﬁ, (4.4.1)

where<> denotes the volumetric average of the square of the velgeittor. Ideally,
the kinetic energy should be constant during the course efiimulations because
there is no physical dissipation in the Euler equations.ddfse, this assumption only
holds for a conservative numerical scheme and if the flow esfulty resolved on the
given grid. Therefore, a deviation from the initial valuendse used as an indicator for
the onset of the under-resolved stage in the simulation.

Kinetic Energy Decay Rate For homogeneous and isotropic turbulence, Kol-
mogorov [64] has shown that the time-evolution of kinetiemyy should obey the
power law given by the following expression that can be foimdor example, the
book of Hinze [58],

KE o (t—to)™” . (4.4.2)

Here,t, marks the onset of kinetic energy decay &hi$ a constant that has been the-
oretically evaluated by Kolmogorov [64] to be equal tg7L0However, slightly lower
values ofP between 1.2 and 1.3 have been reported from wind tunnel merasuats
of grid-generated turbulence, e.g. see Comte-Bellot amts@d 18], Mohammed and
LaRue [82], Skrbek and Stalp [104]. Furthermore, SkrbekStadp [104] have shown
that the kinetic energy follows a power law with= 2 if the largest energy-containing
scales have reached a saturated state where their lengthpacable to the size of the
domain and they cannot grow any further.

Kinetic Energy Dissipation.  Another useful quantity to consider is the slope of the
mean kinetic energy development in time. This parameteg mhown as the mean
kinetic energy dissipatiordKE/dt, can be used to quantify the loss of kinetic en-
ergy during the course of the simulation. The peak in kinetiergy dissipation also
coincides with the beginning of the flow stage governed bydyramic interaction
between the vortex tubes.

Enstrophy. Closely related to the kinetic energy dissipation is thegh of enstro-
phy. The mean enstrophy is measured in time as the squaretiityo

<w*>=<|VxUuP> . (4.4.3)
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The physical interpretation of the production of enstroghging the early stage of the
simulations is the stretching of the initial Taylor-Greantex, whereas the subsequent
decrease is caused by viscous damping. As the enstrophjdsiraw to infinity in
the absence of viscosity, it is a criterion for thi@eetive viscosity and the resolving
power of a numerical method. According to Shu et al. [1033, tbsolving power of
a numerical scheme is a measure of its ability to represerftdtv physics accurately
on a finite number of grid cells.

Effective Viscosity  The dfective viscosity for incompressible flow can be approx-
imated by assuming that the loss of mean kinetic energy ialeéquhe mean of the
viscous dissipation. On the one hand, the mean viscougédigsn is determined by
the mean-square of the strain-rate. On the other hand,dgorReynolds number flows,
the mean-square strain-rate yields about the same valine a&nstrophy, see deriva-
tion in the book of Tennekes and Lumley [113]. Thus, tffeaive viscosityess as
experienced by the fluid during the course of the simulatamhme calculated from the
following simple expression

dKE
——gp = Yerr < W’ > . (4.4.4)

Kinetic Energy Spectrum.  In order to obtain deeper insight into the distribution
of kinetic energy among the length scales present in the tlosvthree-dimensional
energy spectrunik(k) is employed, wheré is the wavenumber. Details on the cal-
culation of the energy spectrum can be found in the book ok&lif8]. Through
intelligent arguments based on dimensional reasoningmigbrov [64] found that
the kinetic energy spectrum for homogeneous and isotrapititence is proportional
to k> in the inertial subrange. This power law is widely used tovprthe existence
of a fully developed, turbulent flow. Regarding the Taylaie€én Vortex, Brachet et al.
[12] found it in relatively good agreement with the energg&pum obtained near the
dissipation peak, whereas slightly lower values th&n3 have been reported during
the very early stages.

Integral Length-Scale  From the kinetic energy spectrum, the integral lengthesca
¢ can be calculated as

~ P kmax@
= —2<|U|2> jo\ K dk. (4.4.5)

The integral scale is a measure of the largest distance betiveo points in space
where the dferent velocities are correlated. Hence, it is a charatielength for the
largest energy-containing eddies.

Taylor Microscale.  Another standard length-scale in turbulence is the Tayler
croscale. Assuming isotropic flow, it can be averaged ovéhiae spatial dimensions,
yielding

1
/l = 5(/1)( + /ly + /lz) 9 (4.4.6)
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where the individual components are given by

< (u7 V’ W)I?ms >
. _ _ 4.4.7
(xy.2 \/< (U, v, w)/9(X,Y, 2) > ( )

The Taylor microscale marks the transition from the inésiidbrange to the dissipation
range, i.e. eddies of size less thahegin to be ffected by viscous dissipation.

Velocity Structure Functions.  Finally, velocity structure functions will be used
here to gain insight into the dynamics of the Taylor-Greew fldhese functions are
also known as the higher-order velocity-derivative moreeatd they are written in
their spatially averaged form as

1
Sn = :_)’(SXJ'] + Sy’n + SZ,I']) ) (4.4.8)
with the uni-directional terms being defined as

<(6(u, v, W)/(X, Y, z))n>
<(6(u, Vv, W)/(X,Y, z))2>n/2 ’

andn being the order of the function. Two common measures arekthersess and the
flatness which are obtained far= 3 andn = 4, respectively. The velocity-derivative
skewness is connected to vortex stretching and the eneaggfér between tierent
scales, whereas the velocity-derivative flatness is a me#&suthe probability of devi-
ations from the mean value. Thus, the skewness is an indicatine mean dissipation
in the flow and the flatness hints at the intermittent charaaft¢he velocity fluctua-
tions. Generally, both absolute values increase with gsxjvely higher Reynolds
numbers. The typical data obtained in experimental measemes and numerical sim-
ulations of isotropic turbulence has been compiled by Svaean and Antonia [108].
Here, the values listed range from -0.3 to -0.7 for the skes@d 3 to 40 for the flat-
ness with a Reynolds numbers based on the Taylor microseddebn 4 and 40000.

Sxyan = (-1)° (4.4.9)

4.5 Hfect of Temporal Discretisaton

The results presented here have been compiled in ordenity ¢kee importance of the
choice of method for integrating the governing equatiortine. For this purpose, all
possible combinations of the three high-resolution sclsekt@ M5 and W9 and the
four different second- and third-order accurate time-steppingodstRK2, RK2TVD,
RK3TVD and RK3HI have been investigated, see also Table¥hé.results obtained
on a grid comprising 64computational cells are compared against each other irsterm
of several integral quantities already presented in Seetid. Here, possible fier-
ences regarding the flow dynamics during the course of thalatian are of prime
interest. The characteristics of the individual spatiatdetisation methods employed,
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however, will be discussed in Section 4.6. Their main puegosthis part is to test
for possible inconsistencies with respect to combinatafrdiscretisation methods in
time and space.

Figure 4.7 shows the time-development of the integral kiretergy and energy dis-
sipation for all simulations. At the end of the very earlyniaar stage marked by the
formation of the vortex sheets, the kinetic energy startagieg and reaches its max-
imum dissipation rate near the value predicted by the DNSratBet et al. [12]. It
should be noted, that the highly under-resolved simulatame not expected to match
the DNS data exactly. However, they seem to represent theigghinvolved within
acceptable accuracy for early and medium times, i.e. thre@sing loss of kinetic en-
ergy due to vortex sheet break-up and the subsequent rahidtien of the dissipation
rate during the organised flow stage. Yet, as the flow beconoes disorganised for
T > 20, the numerics predict an artificial increase in dissgratiUp to this point, all
time-integration methods give virtually identical resultegardless of their order of
accuracy or the details of the stability constraints satisfi
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(c) Kinetic energy dissiptation (d) Kinetic energy dissiptation close-up

Figure 4.7: Development of the volumetrically averaged kinetic eneagygl energy
dissipation obtained by fierent spatial and temporal discretisation techniques o giéd.

A more clear picture of this unphysical behaviour can be iabthby also consider-
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ing the length scales presented in Figure 4.8. Initiallg, ititegral length scales are
reduced due to the disintegration of the vortex sheets. Adeaexpected during the
subsequent stage characterised by a self-similar enexpydihe largest scales are
growing until they are fiected by the size of the domain. The saturated state of the in-
tegral scales seems to coincide with the onset of disorgdfiisw. A similar éfect can

be observed for the Taylor microscale. The elongated voyrtarrying tubes feature
sharp velocity gradients. In under-resolved simulatitmssharp fronts are filused by
the numerics and the surrounding fluid is seemingly entchisénce there is no clear
separation between the large and the small scales due ft@icresut spatial resolution,
the Taylor microscales are als@ected by the presence of the symmetry conditions
and the vortices are re-connecting. This mechanism is akiredbackscatter observed
in two-dimensional turbulence. Thus, the energy dissipais slowed down to a rate
below a physically adequate value and the Taylor microsdege grown in size. Now,
the kinetic energy can be dissipated again at a higher ratereehthe artificial hump

in the development of the energy dissipation. Although thpact of this numerical
artifact can be reduced by using a very high-order schemé#spatial discretisa-
tion, such as W9, the higher order methods become more anel pnane to produce
dissimilar results for dferent time-integration schemes.
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Figure 4.8: Development of the Taylor microscale and the integral lersgiale obtained by
different spatial and temporal discretisation techniques &t gréd.

The above conclusion regarding th€eet of the time-integration method is also re-
flected in the evolution of the structure functions, see Fegu9. The results obtained
by M3 feature large-amplitude fluctuations that are vitualentical throughout the
course of the simulations. Neither the skewness nor theeflatoonverge to a near-
constant value as would be expected for a fully developdzutent flow. For M5, the
third-order Runge Kutta methods with extended stabiligyar (RK3HI) gives slightly
different results compared to the other methods. However, ffexatices occur only
after the unphysical hump in the development of the energsigition has appeared.
Variations with the choice of time-integration scheme cko &e observed for W9.
The magnitude of the variations is particularly pronoundeadng the transition to a
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highly disorganised state. Here, the third-order TVD RuKgé&a method seems to
differ from the other three schemes. Yet, both the skewness ariththess converge
to similar values for all time-integration methods regasdl of their time-history.

In summary, it has been found that the numerical integratiagime has only a minor
effect on the results obtained by the thre&eatent high-resolution algorithms. No
method seems tofier a significant advantage over the others regarding thetyoél
the solution. However, because the third-order Runge Kmttghod with extended
stability region (RK3HI) generally allows for the highesEIChumbers, it was chosen
for all simulations using finer grids .
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Figure 4.9: Development of the velocity structure functions obtaingdiliferent spatial and
temporal discretisation techniques on & §4d.
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4.6 Hffect of Spatial Discretisaton

In order to assess the impact of the spatial discretisafidheresults, simulations with
the third- and fifth-order MUSCL schemes (M3 and M5), as wesltlze ninth-order
WENO (W9) reconstruction method have been performed. Heree stages of grid
refinement featuring 64 128 and 256 computational cells have been considered.
Furthermore, all results compared in this section have loé¢@ined with the third-
order accurate, extended stability Runge Kutta algoritRi3H]I) for the integration

in time.

The evolution of kinetic energy and energy dissipation fbnmeethods and all grids
investigated is shown in Figure 4.10. Note that the kinatiergy is presented here in
logarithmic scales to illustrate the existence of a powerflar the decay rate. Aver-
aged values for the decay exponent as determined by cutinerHilh a time interval
betweenT, = 11 andT = 60 are given in Table 4.3. The slope of the exponential
decay on the 64grid seems to be within the range of values expected for hemog
neous turbulence. However, this data is misleading becafuge unphysical hump
already discussed in the previous section. In the abseneertelx pairing, a steeper
slope should be expected. This is the case indeed if the ggmlution is increased.
Both M5 and W9 reach a grid-converged slope wit#® af approximately 1.88 and
2.02, respectively, whereas M3 seems to approach a sinalaeonly on the finest
grid. This value is in close agreement with the predictiorbkfbek and Stalp [104]
for turbulent flow where the largest scales are bounded bygi#ieeof the domain.

64° 128 256
M3 M5 W9 | M3 M5 W9 | M3 M5 W9

Decay exponer® | 1.31 1.36 1.48 1.83 1.88 2.03 2.00 1.88 2.02
Onset of decay 1.89 3.13 3.813.63 4.26 4.68 451 5.02 5.48

Table 4.3: Power law exponent for the decay rate of kinetic energy aedithe marking the
onset of energy decay.

Additionally, the time marking the onset of the energy delsag been documented in
Table 4.3. In general, M3 loses kinetic energy before M5 amtlyrn, the dissipation
for M5 starts in advance of W9. This behaviour is particylgstonounced for the
coarsest grid and it is diminishing with increasing gridolason. Since the onset of
decay represents the point at which the simulation becomaertresolved, itis a good
indicator for the resolving power of the numerical method ke tonger the kinetic
energy is conserved, the better the method for this speeaifie.cAs a consequence of
the relatively large dierence regarding the onset of kinetic energy dissipatiothen
coarsest grid, the dissipation peak predicted by M3 alseaspprior to the peaks of
the higher order methods, see Figure 4.10(b). Howeverbthsviour is less evident
when the grid resolution is increased and a peak-time ef 9 is in good agreement
with the DNS of Brachet [11], Brachet et al. [12].
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Moreover, additional #ects of grid refinement can be observed. The hump apparent
for the 64 grid at times neaf ~ 30 is absent for both finer grids. Yet, another decrease
in energy dissipation associated with an increasing iatdgngth scale becomes more
noticeable for the 128grid nearT ~ 16. The strength of this second hump that has
also been reported by Grinstein [46] cannot be associatedwusively with the grid
resolution as it is less evident for both the coarsest an€iribst grid. However, flow
visualisations have revealed that the particular comlmnatf the WENO method and
the 128 grid favours the formation of strong vortex rings which agatred around the
four initial rotation axes. The presence of these strongexatings is the reason for a
pronounced deceleration of the energy dissipation ratetahsb delays the growth of
the integral length scales.

Furthermore, the production of vorticity has been moniareterms of enstrophy. In
combination with the energy dissipation, this data can leel s estimate thefiective
viscosity during the course of the simulations. Figure 4#fails the development
of the integral enstrophy and the correspondiffigaive viscosity provided by the
three diferent methods on all computational grids employed. As eepethe humps
marking a decrease in kinetic energy dissipation are reflect the values for the
effective viscosity, which is most obvious for the36grid. The numerical viscosity
is generally decreasing on the finer grids — hence more @istris produced. Most
remarkably, there are large variations in magnitude foréiselts obtained by the three
numerical methods. W9 seems to produce f@ctive viscosity that is very similar to
M3, but on a grid coarser by a factor of two in each spatial disien. This observation
is consistent for all levels of grid refinement. Thus, it iS@dication that W9 features
a resolving power twice as high as M3. M5 lies in between the tw

Similar conclusions can be drawn from the averaged Taylorascales and the aver-
aged integral length scales depicted in Figure 4.12. Thraugreasing the grid resolu-
tion or the order of the spatial discretisation method, béhintegral length scale and
the Taylor microscale can be reduced. Whereas the largesfyenontaining scales
seem to reach a converged state for the’2fi#l, the small scales continue to decrease
as could be expected in an inviscid flow problem. Again, Wnexg only half the
resolution in each dimension compared to M3 in order to pceda similar Taylor
microscale.

A closer look at the spatially separated microscales, shaviAigure 4.13, partly re-
veals another qualitative fierence between the flows predicted by the thréeint
methods. Here, only, and 4, are presented becausg and A, are nearly identical
as a consequence of the initial condition. The flow obtaine¥B and M5 is highly
anisotropic on the coarsest grid, but W9 reaches a morefsotstate during the late
stage of the simulation. On the next level of grid refinem#rd,evolution of the small
scales for M5 shifts closer to the one predicted by W9, esflgaf A, is considered.
For the finest grid, the flow given by M5 has also reached amapat state and the
Taylor microscales follow the shape of W9 more closely irdathensions. M3 seems
to follow this trend at the higher grid resolutions.

This behaviour may be explained by the particularities effaylor-Green conditions.
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By design, the initial condition enforces symmetries atplauts through the domain
at multiples ofr in all directions. As has been shown in Section 4.3, W9 cannot
preserve the symmetries in the flow at late times. In ordeotopare the performance
of the two MUSCL schemes, the vorticity contoursTat= 60 as predicted by M3
and M5 are displayed in Figure 4.14 for all grid resolutio@¢early, the symmetries
are still preserved by both methods for the coarsest gride rEsults obtained on
the medium grid show slight asymmetries for M5, but not for.M8 the fine-grid
simulations, the symmetries are no longer preserved by MS® starts to develop
small deviations. This development is not surprising beedabe numerical algorithms
become more sensitive to small disturbances with incrgasider of accuracy and
grid resolution. In addition, W9 does not satisfy any siapitriteria as opposed to
the MUSCL schemes. The breakdown could probably be deldy@®iis used in
conjunction with a TVD method for the integration in timet icertainly could not be
prevented completely. For the Taylor-Green Vortex, synmyabteaking is the essential
mechanism that provides more isotropic and homogeneouscoditions similar to
fully developed turbulence. Thus, together with the reisgh\power, it is one of the
main attributes for characterising the numerical methods.

With isotropy and homogeneity in mind, the seemingly ecrdgvelopment of the ve-
locity structure functions obtained with M3 for the coatsgrsd is not so startling any
more. As can be seen in Figure 4.15, the magnitude of the 8tiots is linked to the
character of the flow. Higher-order moments are very semditi local changes of ve-
locity gradients, hence they can be misleading if the flowighly intermittent. With
increasing grid resolution, the Taylor-Green Vortex leamore isotropic, homoge-
neous conditions and the velocity structure fluctuatioesdaminishing, especially for
the two MUSCL schemes. The skewness and the flatness seemprt@aelp values of
approximately -0.4 and between 4 to 5, respectively, if thevfls isotropic. This is
slightly below what would be expected for fully developethbulence.

Finally, the most common technique for characterising thes flopology has been
applied to the development of the Taylor-Green Vortex. Fégtil6 shows the kinetic
energy spectra at fierent times as obtained by the three high-resolution mstbad
the three dierent grids. At early time3$ = 4, before the vortex sheets disintegrate,
all combinations produceka” spectrum as has been predicted by the DNS of Brachet
et al. [12] and is typical for an essentially two-dimensidi@v. Near the dissipation
peak, the same authors have reportktP@ spectrum. Comparing the spectra in Figure
4.16(b), it can be seen that all methods are able to pred&tstope more or less
accurately with increasing grid resolution. In general, Sp@roachek=>' faster than
M5 and, in turn, M5 is in better agreement than M3. As the sanohs progresses,
the kinetic energy follows an almost self-similar decaywduwer, a slight flattening of
the spectra due to a transfer of energy to the smaller scatebecobserved during the
organised flow regime &t = 20. At very late timesT = 60, the highly disorganised
flow seems to result in a spectral decay slightly lower tka??® for M5 and W9,
whereas the slope is steeper for M3.

As has been expected, an increase in grid resolution lead®tmer inertial range and
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generally better statistics if compared to a fully devetbpebulent flow. It should be
noted that although the dynamics predicted by the threet@gblution methods can
differ during the evolution of the Taylor-Green Vortex, thisas reflected in substantial
slope changes of the energy spectra at lower wave-numbers.



80 Taylor-Green Vortex

0.014fF - M3|

0.012F

0.01F

0.008 F

DK/DT

7 0.006 |

KINETIC ENERGY

0.004 |

0.002 i
TvE 20 40 60 Ob
(a) Kinetic energy (69 (b) Kinetic energy dissipation (6%

0.014 F

0.012F
0.01F

0.008F

DK /DT

»0.006

KINETIC ENERGY

0.004 F

0.002 F

P I B [
20 40 60 0
TIME

(c) Kinetic energy (128 (d) Kinetic energy dissipation (138

0.014F

0.012F

0.01F

0.008 F

DK/DT

7 0.006 |

KINETIC ENERGY

0.004 |

0.002F

P IR N | [
20 40 60 [ S

TIME 10 20 30 40

(e) Kinetic energy (259 () Kinetic energy dissipation (25§

Figure 4.10: Development of the volumetrically averaged kinetic eneagg kinetic energy
dissipation rate obtained byfEirent spatial discretisation techniques on % 628 and 256
grid.



4.6 Hfect of Spatial Discretisaton 81

1800 p=r—r———————————r——————r] 0.0001 ey

F ——s—— M3 (] F
E H 9E-05 F
1600F ——o— M5} i
1400:_ ——— WO9[{ 8E-05 ;

1200f . TE05E
g ] Z 6E-05F

(%] F
O 5E-05F
o E

-
o
o
o
T
1

ENSTROPHY
©
S
S
T
1

wn E
S 4E-05F

[o]

o

o
T
1

3E-05F

N

o

o
T
1

; 2E-05F
200f

1E-05f

0 10 20 30 40
TIME

(a) Enstrophy (62)

1800 ————T T —T————T1—————]

1600 F —— Mm3f
F —e—— MSE
1400 F = W9l

1200F E

-
o
o
o
T
1

ENSTROPHY
©
S
S
T
1

[o

o

o
T
1

R PRSI T i =
0 10 20 30 40
TIME

(c) Enstrophy (128

1800

1600 F

1400 E—

1200;

ENSTROPHY
1)
o
o
T

ol R PRI BRI Pl P IR i o
0 10 20 30 40 10 20 30 40 50 60
TIME TIME

(e) Enstrophy (259 (f) Effective viscosity (259

Figure 4.11: Development of the volumetrically averaged enstrophy aeddtective
viscosity obtained by dierent spatial discretisation techniques on 4,628 and 2586 grid.



82 Taylor-Green Vortex

INTEGRAL LENGTH

Fl—s=— M3 E
0.02H—*— M5 E
Fl—— W9 1

P S S T T O’uul"Hl‘u‘luuluuluulu‘:
30 40 50 60 0 10 20 30 40 50 60

TIME TIME

(a) Averaged Taylor microscale (§4  (b) Averaged integral length scale @4

T
=
o
z
w
-
-
<
5
w 0.06 E
~ o
P4 o
T 0.04F E
F[—s—— M3
0.02H—e— M5
] Fl—— W9 1
Owwwwlwwwwlwwwwlwwwwlwwwwlwwwwlwf O’ il | IR BRI EETETEE EEETE R
0 10 20 30 40 50 60 0 10 20 30 40 50 60
TIME TIME

(c) Averaged Taylor microscale (198 (d) Averaged integral length scale (£28

0.16H . V3
oaaf T MS E

———a— W9

0.12F E
3 1
0.1F E

0.08F E

0.06 E

A
INTEGRAL LENGTH

0.04F 3

0.02F e

AT T BT T
30 40 50 60

TIME

AT T B [6) S e —
30 40 50 60 0 10 20

TIME

S T T
00 10 20

(e) Averaged Taylor microscale (2%6 (f) Averaged integral length scale (236

Figure 4.12: Development of the Taylor microscale and the integral lersgile obtained by
different spatial discretisation techniques on % 828 and 2586 grid.



4.6 Hfect of Spatial Discretisaton

83

F—=—— ™3

H=—— wo

0 10 20 30 40 50 60
TIME

O:\\\\lww\\l\\\\l\\\\l\\\\l\\\\l\\:
0 10 20 30 40 50 60

TIME

(c) Taylor microscale in x (128

0.16%

0.14F

0.12F
0.1F
x F
~0.08F

0.06 F

0.04F

0.02F

o:\\\\lww\\l\\\\l\\\\l\\\\l\\\\l\\:
0 10 20 30 40 50 60

TIME

(e) Taylor microscale in x (25%

——— M3_;
—eo—— M5|]
———a—— WO

10

20

—=—— M3[]
—eo—— M5|]
———a— WO

0.16 f‘ "
0.14f
0.12 f

0.1 f

N b
< 0.08

0.06

0.04

0.02

——=—— M3[]
——eo—— M5|]
———— wol]

(f) Taylor microscale in z (259

Figure 4.13: Development of the Taylor microscale in x- and z-directidaamed by diferent
spatial discretisation techniques on & 6428 and 256 grid.



84 Taylor-Green Vortex

(@) M3 at T=60.0 (64)

(c) M3 at T=60.0 (128) (d) M5 at T=60.0 (128)

(e) M3 at T=60.0 (256) (f) M5 at T=60.0 (256)

Figure 4.14: Instantaneous flow visualisations using vorticity consonibtained by the
third-order (M3) and the fifth-order MUSCL (M5) scheme on &,6&28 and 256 grid.
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4.7 Summary

In this chapter, various stages in the laminar to turbulemt tlevelopment have been
investigated for the time-dependent Taylor-Green Voriéxs prototype flow is proba-
bly the simplest model for the vortex dynamics encountergthd the transition from
well-organised to highly disorganised coherent structutdere, the performance of
different spatial and temporal discretisation methods hasdsesassed.

It has been found that the choice of time-integration metblagis only a minor role
regarding the statistical quality of the predicted flow fieldowever, it may have an
effect on the dynamics if the method for the spatial discratinas prone to produce
numerical instabilities.

An extensive analysis of various parameters charactgrisie evolution of the flow
have been presented for a third-order MUSCL, a fifth-orderS@U and a ninth-order
WENO method and dierent grid sizes. The conservation of kinetic energy is pro-
longed in time when increasing the order of accuracy. Thasldeto the conclusion
that the resolving power of a numerical model can be incelagausing a higher or-
der method. In fact, this is also supported by the less ditisg character of higher
order methods if compared to lower order methods on iddrgicds. Likewise, the
schemes produce less dissipation and more enstrophy orgfider This behaviour
is not surprising because higher velocity gradients caruppated by increasing the
grid resolution or the order of the reconstruction methotth& same time, however,
the reconstruction methods become more sensitive to sisalrdances.

Although the inviscid instability mechanism responsilie the disintegration of the
vortex sheets is captured accurately by all schemes, the déablution of the flow

governed by vortex dynamics can exhibit substantifiedences for the same grid
resolution. This is mainly attributed to numerical instdigis that cause the initial
symmetries to break. Symmetry-breaking is the property alaws the flow to de-

velop into a more homogeneous and isotropic state whichduoeila characteristic of
fully-developed turbulence. Hence, a certain level of ndoaginstability can be of ad-

vantage during the transitional stage. It is not clear, Manef an idealistic prototype
flow should become more realistic by introducing numerictafets.
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CHAPTER 5

Hill Flow

N this chapter a systematic numerical investigation fiedent high-resolution meth-

ods in the context of Implicit Large-Eddy Simulation of mias$y separated flows
including a local grid refinement study is presented. Thedhrigh-resolution algo-
rithms assessed here are a third-order accurate MUSCL sglaefifth-order accurate
MUSCL scheme and a ninth-order accurate WENO method. Fandafuental study
of separation from gently curved surfaces the geometyicathple, statistically two-
dimensional test case given by a channel with hill-type atuxe on the lower wall
has been considered and the results are compared agaunigirs®from classical LES
simulations.

5.1 Introduction

Many flows of practical importance are governed by viscoas-we&ll phenomena that
have a major influence on the flow properties. Among thosaraggd flow currently
poses one of the greatest challenges for numerical simmokbecause its characteris-
tics covers a wide range of physical processes. Separdtibie doundary layer near
curved surfaces is a more common problem than it might seeim.nbt confined to
external flows only, e.g. flow around moving vehicles, it absours in internal flows
such as the blades in turbo-machinery and divergent chammetzles or pipes.

The basic physical mechanisms leading to separation até/edly well understood and
have been presented in several textbooks on boundary lageryt e.g. see Schlicht-
ing [98]. It has been found that the separation phenomenantimately linked to
the pressure distribution in the boundary layer. Generilig assumed that the pres-
sure does not change in the direction normal to the surfagdhenexternal pressure
is impressed on the boundary layer. If the flow follows a canvervature, the ex-
ternal pressure in the essentially inviscid region outtiigeboundary layer has to rise
according to Bernoulli's theorem — hence the flow experierme adverse pressure
gradient inside the boundary as it progresses further dioeara. At the same time,
the fluid is retarded near the wall due to the friction forcése combination of the
two effects causes the boundary layer to separate because thairepkamnetic energy
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in the immediate vicinity of the solid surface is too smallawercome the pressure
increase.

In general, the flow is said to be separated if the velocithaitnmediate neighbour-
hood of a solid surface becomes reversed. Further away fierwall, however, the
velocity has to take the values of the free-stream and theugelocity profile exhibits
a point of inflection that marks the existence of a shear ldp#lection points are im-
portant for the development of the flow after separation ltasiwed because they are
inviscidly unstable. As a consequence, the shear layerrgads a breakdown similar
to the one presented for the Taylor-Green Vortex in Sectiotlgually, this leads to
strong growth of the separation zone and a highly turbuletewegion dominated by
the dynamics of the generated eddies.

To date, no theoretical models have been developed thatezdmvith the complexity

of this type of flow. The boundary-layer equations, a simgdifion of the Navier-

Stokes equations, are only valid up to the point of separatibownstream of this

point, however, the separation zone thickens quickly aedaffproximations made in
the boundary layer equations are no longer valid. And evémely could be applied,
the turbulent fluctuations render the solutions imposddbtebtain without resorting to
further approximations.

Therefore, fundamental investigations of separated floave Ito rely on experimen-
tal or well-established computational reference datadtatively simple geometries.
Here, the quasi two-dimensional wavy terrain is a populaicghbecause the waves
representing the curved solid surface can be prescribdytamady. Furthermore, the
resulting flow field can be treated as statistically two-digienal. Several experimen-
tal studies have been conducted under these condition®\lengida et al. [1], Buckles
et al. [16], Hudson et al. [59]. However, they ofterften from limitations imposed by
the equipment, uncertainties regarding the influence odwnfionditions or possible
contaminations of the flow field by three-dimensionfikets arising from the finite
physical scale of the experiment.

Ideally, Direct Numerical Simulations could be used to ceene these diculties.
Yet, the demanding resolution requirements for DNS to adesdy represent the vis-
cous sublayer near the wall and the long integration timesi@@ in order to obtain
reliable statistics for the complex flow pattern have to bmeda Piomelli [89] esti-
mated that the grid size for DNS approximately scales Righ. Thus, DNS data is
only available for relatively low Reynolds numbers of ordéf to 10°, see DeAngelis
et al. [22], Maas and Schumann [73]. For wall-resolved L&tgdy Simulations this
situation does not improve much and the grid size requiregpgoximately propor-
tional toRe*4, see Piomelli [89]. Hence, as the simulations of Armenio Riunelli
[4], Henn and Sykes [56] are limited by the same argumenésRieynolds numbers
could only be increased marginally due to the lack of cormgupiower available at the
time.

More recently, Frohlich et al. [35] have produced refeeedata for a channel with
hill-type constrictions from highly-resolved LES. The twonulations presented em-
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ployed the dynamic Smagorinsky model of Germano et al. [8d]the wall-adapted

local eddy viscosity model of Ducros et al. [31], respedyiveHere, the Reynolds
number of order 19is approaching a level more adequate for problems of engimee
interest. The flow conditions and the geometry have beenethos the basis of the
results obtained in the experiments of Almeida et al. [1},they have been modified
in order to accommodate the needs of a highly-resolved LIEBS.Main reason that
makes this case an ideal testbed is the simplicity of the g&grand boundary condi-
tions, especially the challenging task of generating apate inlet conditions can be
circumvented, see Veloudis et al. [122]. Therefore, it haaeted a great deal of inter-
est and produced a wealth of data obtained by LES and RANSuthent simulations

can be compared against.

The Reynolds Averaged Numerical Simulations performeddmg.kt al. [60], Wang
et al. [123] have proven that RANS is not capable of simugatims type of flow
problem correctly. This is not surprising since the spaial temporal fluctuations
in the wake region and regarding the position of the separdine, which cannot be
adequately represented by the statistical closure stestegre essential to the devel-
opment of the flow. More worryingly, however, the RANS sintidas lack any degree
of certainty because the turbulence closures behave irstendy and no conclusions
can be drawn.

Various approaches to wall modelling and subgrid-scaleetting have been inves-
tigated in the coarse grid LES of Temmerman et al. [112] ferittentical geometry.
Although the predictions obtained with standard no-slipdibons at the surface could
be improved, it has been found that the wall models requicegpints well within the
viscous sublayer in order to produce reliable results. Heunhore, Breuer et al. [15]
argued that many standard wall models have no sound physas@é for predicting
complex, separated flows. For example, two of the approacked by by Temmer-
man et al. [112], i.e. the classical log-law first formulatBdSchumann [99] and the
model proposed by Werner and Wengle [126], are designedhiieraveraged velocity
profiles in attached flows without pressure gradients. Thezeseveral other models,
usually based on the boundary layer equations, e.g. Baad8enocci [5], that can
cope with the existence of pressure gradients. Howevetasi earlier, the boundary
layer equations do not apply to regions of separated flow.

Evidently, a solution to the problem of flow separation unither influence of an ad-
verse pressure gradient has yet to emerge. The encouraginigsrobtained by high-
resolution methods in under-resolved Large-Eddy simaatiof turbulent, wall-free
flows have stirred the hope that this might also transfer ¢osétparated flow regime.
Thus, the stringent grid requirements could be relaxeceistéparation line can be rea-
sonably well predicted. For this reason, several highlutiem algorithms have been
employed in numerical simulations of the channel flow witlhtyipe constrictions and
the results are benchmarked against the highly-resolve®l afg=rohlich et al. [35].
Furthermore, the following sections will also include ditan the LES published by
Temmerman et al. [112] for comparison.
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5.2 Numerical Framework

For the systematic numerical investigation of the behawddifferent high-resolution
methods employed in Large-Eddy Simulations of separatedsfio a channel with
hill-type constrictions three fferent grids have been used. The computational domain
representing the constricted channel exterigg.®h and betweent2and 3035hin x-,

y- and z-direction, also referred to as streamwise, croesi® and vertical direction,
respectively. Hereh is the height of the hill-type shape at the lower wall as used i
the experiment of Almeida et al. [1]. The two-dimensiondll¢eeometry can be found

in the ERCOFTAC test matrix available online at ERCOFTAC][B3s defined by a
spline through the points measured in the experiment giyeghdcoordinates

(X1,21) = ( 0.0,280), (%,2)=( 9.0,27.0),
(X3, 23) = (14.0,24.0), (x4,24) = (20.0,19.0),
(Xs,25) = (30.0,11.0), (Xs,2) = (40.0, 4.0),
(X7,27) = (54.0, 0.0).

(5.2.1)

The hill height determined by the spline can now be approtechdy the following
third order polynomials

forx; < x<x:

h(X) = min(28.00, 2800+ 6.78- 1073x* - 2.12- 1073x%) ,

for X, < X< x3:

h(X) = 2507+ 9.75- 10'x - 1.02- 1071x* + 1.63- 10733,

for xs < X< xy4:

h(X) = 2579+ 8.21-10'x — 9.06- 102x* + 1.63- 10733,

forxs < x<xs:

h(X) = 40.46-1.38- 10%x + 1.95- 1072x? — 2.07- 10%x® ,

for xs < X< Xg :

h(X) = 17.92+8.74- 10°'x - 557- 102x* + 6.28- 107*x® ,

for X < X< x7:

h(x) = max0.0, 56.39-2.01- 10°%x + 1.64- 102x? + 2.67- 107°x%) .

(5.2.2)

All of the above values are given in millimetres, leading tmaximum hill height of
h = 28mm For the simulations and the results presented in the falig\wections,
however, all data has been non-dimensionalised with thHeumlbcity at the hill crest
and the height of the constriction.

A simple H-H-type grid topology as depicted in Figure 5.1f@s been chosen for
this case. Here, only every fourth grid point in a typicalddalecompositioned com-
putational mesh for parallel simulations is shown. No-blqundary conditions have
been applied at the top and the bottom wall of the channelevgariodicity has been
assumed in the streamwise and cross-stream directions.
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(b) Coarse grid
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Figure 5.1: The computational H-H-type grid topology and the threfedent grids employed
in the simulations of the hill flow.

Three ditferent grid resolutions have been investigated here: (glayunder-resolved
grid, referred to as “coarse”, comprising approximatel§s0< 10° fairly uniformly
distributed points; (ii) a modified version of the coarsalgrith an identical number
of points, referred to as “modified”, featuring a finer clustg near the top and the
bottom wall of the channel; (iii) a moderately finer grid cimtisig of 103x 10° points,
referred to as “medium”, where the refinement mairffigets the distribution around
the hill crest and a slightly better resolution near the dmottwall is achieved, see
Figures 5.1(b) to 5.1(d). More details regarding the twokelisional distribution of
grid nodes in all three grids employed here are presentedgurdé-5.2. The coarse
and the medium grids are basically identical to the ones usé¢de wall-modelled
LES of Temmerman et al. [112] and all grids are by courtesyhef $ame author.
The characteristic parameters for all three grids inclgdin values at the bottom
wall, which are not sensitive to the choice of numerical diisation method, are
givenin Table 5.1. Additionally, the same parameters ferttighly-resolved reference
simulation of Frohlich et al. [35] are included.

For all simulations the Reynolds number based on the higtiteand the bulk velocity

at the hill crest is equal to 1695. The Mach number dfla = 0.2 has been chosen
for near-incompressible conditions. In order to ensurersistent mass flow in the
channel configuration it is necessary to augment the stdridiarier-Stokes equations
with a forcing term. This modification is required becausdagsic pressure-driven
channel flow would violate the boundary conditions for th& tease considered here,
namely the periodicity in x-direction. In the absence of assure drop, the forcing
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Figure 5.2: Grid node distributions at characteristic locations fa three grids employed.

term acts as a driver for the flow and ensures a constant massdte. Here, the
external force has been determined in a similar fashion timed in the plane channel
simulations of Lenormand et al. [66], more details can betbimn Appendix E.

The integration in time has been performed exclusively tgyttiird-order extended
stability Runge Kutta scheme given in Equation (3.2.7) aexkral high-resolution
methods have been considered in combination with the cteairstacs-based Riemann
solver of Eberle [32]. This investigation includes the dharder MUSCL scheme pre-
sented by Zo6ltak and Drikakis [132], the fifth-order MUSCthseme developed by
Kim and Kim [63] and the ninth-order WENO scheme following tldeas of Balsara
and Shu [6]. These methods are referred to as M3, M5 and Wpecgeely, in the
following sections. All simulations have been performedBN eServer326m nodes
with 2.2GHz AMD 275 processors. Here, no information regagdhe computing
time can be presented because of hardware issues. In gdrmvaler, the size of the
time step had to be reduced by a factor of approximately 2dthn M5 and W9 when
compared to M3 to obtain stable solutions.



5.3 Flow Topology 95

Grid  NyxNyx N, Size Ax/h Ay/h Az/h Z Zha
Coarse 11%91x64 065x10° 008 0049 Q032 =~7 =~14
Modified 112x91x64 065x10° 0.08 0049 Q0047 =~1 ~3
Medium 176x91x64 103x10° 004 0049 Q02 =~4 =9
Reference 19& 186x 128 467x10° 0.032 Q024 Q0033 ~05 =1

Table 5.1: Characteristic parameters for the three grids employeel & for the
highly-resolved reference LES of Frohlich et al. [35].

5.3 Flow Topology

In order to provide an overview of theftirent flow regimes encountered in the peri-
odic hill flow, the topological features have been visualiaecording the Q-criterion
proposed by Jeong and Hussain [61], for a definition of Q see &éction 4.3. An
instantaneous snapshot of the resulting vortical strestis shown in Figure 5.3. It
should be noted that, in this case, a single snapshot is pisentative for the evolu-
tion of the flow at all times. However, the chosen time instamharacteristic for the

general behaviour observed.

Figure 5.3: Flow features in the channel visualised by time- and spaeeaged streamlines
and instantaneous vortical structures defined by the @riwit of Jeong and Hussain [61].

In addition to the coherent vortices, colour contours ofaheraged streamwise veloc-
ity and the associated streamlines are illustrated in Ei§u3. The averaging has been
performed over the cross-stream direction and over a timegef approximately 50
flow through times of the fully developed, unsteady statdak been found that this
relatively long time-window is necessary to gain good stetal data presented in the
following sections.

The averaged streamlines, although partially obscuretdoydrtical structures, reveal
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the existence of a closed recirculation area in the lee diitheT his separation bubble
originates at the convex curvature of the wall, a short distadownstream of the hill
crest, and it ends after the flow has passed the region of eerccavature at the foot of
the hill, i.e. in the trough between the constrictions. Alttygunsteady shear layer that
Is emanating from the separation line marks the transiticmaon between recircula-
tion and core flow. After the turbulent shear layer has rehtd, a strongly agitated
boundary layer is formed that subsequently experienceglat secovery before it ap-
proaches the hill. As has been pointed out by Castro and Egikthe boundary layer
downstream of a separation bubble is not of standard formusecthe influence of the
shear layer goes well beyond the line of reattachment. Anvihdward slope, the flow
is quickly accelerated and thus the boundary layer becohmesdr. The acceleration
is clearly indicated by the colour contours of the streamawislocity. As this partic-
ular case generates its own inlet conditions due to the gherip in x-direction, the
incoming boundary layer is also very thin and contains aagetevel of turbulence.
Consequently, both the line of separation and reattachendmibit significant fluctua-
tions around their averaged positions. This behaviour bas bbserved as well by Na
and Moin [85] for the detachment and subsequent attachnfientusbulent boundary
layer.

In the separated flow region, a Kelvin-Helmholtz-type rqilaf the shear layer lead-
ing to the generation of span-wise vortices can be obserkd.unsteadiness of the
separation line enhances the irregular character of thexéormation in space and
time. As a result, the flow field in the lee of the constrictignhighly intermittent
and it exhibits the highest levels of turbulence, especiaithin the shear layer. The
vortices are subject to secondary instabilities as thegness in x-direction and even-
tually impinge on the bottom wall of the channel. Since thetteechment location is
fluctuating, the vortices are either drawn back into the sman bubble or they are
convected downstream. Hence, information is allowed teetrback to the crest of
the hill at irregular intervals. This feedback mechanismsatt the unsteadiness of the
flow detachment and the unpredictability of the shear lagkup.

Downstream of the reattachment, the coherent structusesine bottom wall are pre-
dominantly aligned with the flow. The reason for this is alsigertical inclination
of the structures. One end of the vortices is exposed to arféletv regime than the
other end and thus the principal axis gets aligned with thand@w direction. As
the flow evolves, the velocity gradient normal to the wallde#o an elongation of the
structures and vortex stretching becomes more pronoursttedlow is accelerated
along the windward side of the hill. Additionally, the stgpacceleration can lead to
overshoots at the hill crest and subsequent contaminatithreaore flow by areas of
high vorticity.

The instantaneous flow field discussed here underlines tmplea character of the
separated hill flow. Several features and the physics aedcivith them will be
revisited during the interpretation of the results in thikofeing sections.
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5.4 The Separation Bubble

The most evident phenomenon in the averaged flow field for ihgdometry is the
separation bubble. In order to compare the results fbémdint simulations the point
of separation, marking the beginning of the bubble, and dattachment location,
defining the end of the bubble, have been deduced from thage®rtwo-dimensional
flow field. This is commonly achieved by identifying the miranm the z distribution
along the wall, where g is the distance of the centre of the first grid cell above the
wall measured in wall units. According to Pope [90}, B calculated as

A .
Z+ = il with u, = Tw (5.4.1)
v N p

being the friction velocity and,, is the wall shear-stress given by

d<U||>

Tw = pV T (542)

'WALL'
Here, An is the wall-normal distance of the cell centre aady, > is the averaged
velocity component parallel to the wall, its gradient isccaddited with respect to the
wall-normal direction.

The resulting normalised wall distance along the bottoni wialhe modified grid is
shown in Figure 5.4 for the threefti#rent high-resolution methods. The plot also
includes the corresponding data from the fine grid referd€® of Frohlich et al.
[35]. Although variations regarding the wall distance adlae the position and the

x/h

Figure 5.4: Average of the normalised distance between the bottom weltlze centres of
the adjacent cells for the thredi@irent methods and the modified grid. The corresponding
data from the fine-grid reference LES of Frohlich et al. [B&% also been included.

length of the separation bubble can be observed, all distoibs appear to follow a
similar shape — hence the underlying physics is similarlioades. Most remarkably,
the high-resolution methods predict a small separatioe abthe foot of the windward
slope of the hill, i.ex/h ~ 7.2, which is not noticeable in the reference LES. Frohlich
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Coarse Medium Modified
Method | Xsep/N Xart/N | Xsep/N Xat/N | Xsep/N Xare/h
M3 | 098 2.89| 055 3.62| 0.32 5.06
M5 | 1.06 2.57| 0.63 3.00| 0.24 435
W9 | 0.74 2.33| 0.47 3.40| 0.24 3.77
LL3 | 0.53 298| 0.34 432 - -
WW | 046 4.00| 0.32 4.56 - -
NS | 1.12 2.17| 0.38 3.45 - -
Reference Xsep/N=0.22 Xatt/N=4.72

Table 5.2: Averaged locations of separation and re-attachment aatdy M3, M5 and W9
on the coarse, the medium and the modified grid. The publidatdfrom Temmerman et al.
[112] has also been included for comparison.

et al. [35] have pointed out, however, that the flow in thidaagds indeed at the brink
of separation in the highly-resolved LES. In the wall-mde@lILES of Temmerman
et al. [112], as well as for the coarse and the medium grid,enersed flow can be
seen at the foot of the windward slope of the hill. For the rfiedigrid, the separation
is barely visible for W9, whereas M3 predicts a boundaryidyteo ff well in advance

of the slope. Consequently, the destabilisifiget of the concave curvature appears to
be become less pronounced with increasing order of the mefftus already hints at

a different character of the upstream boundary layer.

All separation and reattachment points obtained with M3,avild W9 for the coarse,
the medium and the modified grid are listed in Table 5.2. Adddlly, the data pub-
lished by Temmerman et al. [112] has been included for coisgar The results in

rows labelled “LL3", “WW" and “NS” are from the classical, Wanodelled LES us-

ing the WALE subgrid-scale model proposed by Ducros et 4l §8 grids identical to

the coarse and the medium mesh. LL3 and WW refer to simukatioth a three-layer
logarithmic wall model and the wall approximation of Werraerd Wengle [126], re-
spectively, whereas NS refers to a simulation with no-stipridary conditions, i.e. no
wall model, at the top and the bottom wall of the channel.

From the data presented here, it is already clear that alilaitons using high-resolution
methods outperform the classical LES without a wall modeltfe highly under-
resolved, coarse grid. Applying the log-law model improtres classical LES result
regarding the prediction of the separation point. Howether,éfect on the reattach-
ment is only minor because it is not valid for separated flo8#sictly speaking, nei-
ther is the WW model, but it still yields the best result foe ttoarse grid. This can
mainly be attributed to the specific implementation in @elegrated form that leads
to a higher wall shear-stress and thus favours separatemmErman et al. [112] has
also shown a declining dependence of the results on thewsdbapproximation for
the medium grid. Thisféect is reflected in the relatively close proximity of the sep-
aration and reattachment predicted by LL3 and WW. The loddl iggfinement also
enhances the performance of the classical LES with no-siigition, although the
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separation bubble remains too short.

Among the high-resolution methods, W9 gives the best résulall grids regarding
the location of the separation. Yet, it highly under-présitbe length of the separation
bubble. On the other hand, the bubble length obtained by Mi®sest to the reference
length from the simulations of Frohlich et al. [35] on alldg. Most remarkably, the
drastic improvement of the results for the medium grid as seeall classical LES is
not reproduced. As expected, however, a grid refinementinvidl normal direction
has the desiredfiect and both detachment and reattachment are in bettemagmee
with the reference LES. It should be noted that, for a corirgtetrpretation of the re-
sults, the diterent behaviour of M3, M5 and W9 has to be assessed in condnnat
with other parameters presented in the following sectiding position of the separa-
tion bubble alone is not very meaningful because it is styomdluenced by several
factors, e.g. the grid resolution near the separation @oidtin the shear layer and
above all the characteristics of the incoming boundaryrlaye

5.5 Length Scales

The scales of the coherent structures as predicted by tidedrder MUSCL (M3), the

fifth-order MUSCL (M5) and the ninth-order WENO (W9) schen@de compared
visually by applying the Q-criterion of Jeong and Hussaif][@® an instantaneous
realisation of the fully developed flow field. It has been fduhat more and finer
structures are resolved by all methods with increasingmgsdlution, but the relative
difference between them appear to be similar irrespective ajrilesize. Therefore,

only the flow fields obtained on the modified grid have beenalisad in Figure 5.5

by using the same levels of Q for all methods.

In accordance with the results presented in Chapter 4, Mblesta resolve smaller
scales than M3 on identical grids and, in turn, W9 providegaér resolution power
than M5. However, the basic character of the structures doeseem to change. In
the free shear layer emanating from the separation line theacrest of the hill, the
preferred axis of orientation is in cross-stream directimnall methods because of
the Kelvin-Helmholtz type instability. It should be notétht this behaviour is largely
obscured by the vortices in the upper portion of the chanmease of W9. When the
shear layer develops further downstream, the vorticekbrea smaller scales more
rapidly with increasing order of the method. As a result, timdulence mixing is
enhanced and more unsteady activity in the core region aniethirculation zone can
be observed for M5 and, most significantly, for W9. This isdlse main reason for
the premature reattachment of the flow predicted by M5 anditiqular W9. For all
methods, predominantly elongated structures alignedra@asiwise direction can be
observed in the trough of the channel after the shear layedisintegrated and in the
core flow over the whole domain.

The coherent structures in the flow field can also be charaeteby exploiting the sta-
tistical information obtained from the two-point corretats of the fluctuating velocity
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components. Here, the correlations between pairs of puwititsidentical streamwise
and vertical coordinates are averaged in time and in spacethE spatial average,
equidistant points in cross-stream direction are consalerhe auto-correlation func-
tion in one-dimensional form is defined by

< 66(dy) >
V<66 ><o(d)o(d) >

Rss(dy) = (5.5.1)

whereé stands for the three fluctuating velocity componauitsv’, w'; <> are the
averages in time and in space; afjdndicates the distance separating the point pair.

Figure 5.6 shows the fluctuating velocity correlations ie bloundary layer of the re-
circulation zone atX/h, z/h) = (1.93,0.03) and in the free shear layer at location
(x/h, z/h) = (2.02,0.79). Since the results reveal similar features for all godky
the correlations obtained on the modified mesh are preséweted In the boundary
layer, the correlation function of the streamwise compoigy merely converges to
a value close to zero for M3, whereas they vanish completelypdth M5 and W9,
see Figure 5.6(a). This behaviour indicates less coherdraviour of the streamwise
velocity fluctuations predicted by the two higher-order Inogls which is most likely
also the reason for the earlier separation from the hillaserin case of M5 and W9.
Moreover, diterences can be noticed regarding the shape of the correddtinctions.
M3 predicts the smoothest shape. W9, on the other hand, sléster initially and the
curvature seems to change at a correlation length of appeigly half a hill height.
M5 lies in between the two and the change in decay rate seepesstaifted slightly to-
wards a larger separation distance when compared with WS.ifimdicative for more
abrupt local changes in the simulations using W9 which casliserved in general for
all components and all positions investigated.

The presence of the wall can be noticed when comparing théeshaincorrelated
lengths for the cross-stream compon&jt, and the vertical componem,, pre-
sented in Figures 5.6(c) and 5.6(e). At this location, tlessistream components are
less impaired by the wall blockage than the vertical comptse- hence the uncorre-
lated length scales are smaller and the level of coheremganisrally lower folR,,.. In
the free shear layer, however, the velocity fluctuation®laamnore isotropic character
than in the boundary layer, as can be seen in Figures 5.68%¢f). Furthermore, the
differences between the high-resolution methods become naneyrced away from
the wall.
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(c) Ninth-order WENO method (W9)

Figure 5.5: Vortical structures in the instantaneous flow field as oletdiby three dferent
high-resolution methods on the modified grid visualisedHsy®-criterion of Jeong and
Hussain [61].
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and in the shear layer obtained bytfdrent high-resolution methods on the modified grid.
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5.6 Comparison with Classical Wall-Resolved LES

In order to assess the performance of the three high-résolatethods employed
quantitatively, the results have been compared againshititdy resolved classical
LES of Frohlich et al. [35]. It should be noted that only theubdary layer at the bot-
tom wall of the channel was fully resolved in the referencgec#\long the top wall, the
approximations proposed by Werner and Wengle [126] had apphed. In this sec-
tion, the profiles of the mean streamwise velocity, the nbamd the shear stress are
investigated. All quantities have been averaged over aqpedely 50 flow through
times in time and across the span-wise extent of the domaspace. Furthermore,
the turbulent stresses have been calculated according &tadhdard Reynolds decom-
position of the flow field into mean and fluctuating componentke data has been
extracted for the coarse, the medium and the modified griduatdharacteristic loca-
tions along the streamwise direction which are represestat different behaviours
of the flow field.

5.6.1 Incoming Flow

The profiles as obtained by M3, M5 and W9 shortly after thetooéghe hill at a
streamwise location at/h = 0.05 are shown in Figure 5.7. The results for the three
grids employed in this study are compared one at a time ag#ieseference data
from the fully wall-resolved reference LES. As a result of tiarbulent reattachment
and the subsequent strong acceleration along the windwapd ef the hill, the flow
at this position features a thin, but excited boundary layear the hill surface. As
suggested by Frohlich et al. [35], however, the sharp pdmemed for the normal
stress in the bottom boundary layer is mainly due to the infteeof the fluctuating
separation line and not a characteristic of the incoming.fldve boundary layer at the
upper wall on the other hand is relatively thick and more lgerfeor the coarse grid,
Figure 5.7(a), all high-resolution methods largely ovegeict the velocity maximum
near the hill and under-predict the second peak near the &ip Since this specific
configuration generates its own inlet conditions, tffeas of all phenomena are able
to propagate through the whole flow field and thus influencé edlser. Therefore,
this behaviour will be explained in the following paragrapf he shear stress shown
in Figure 5.7(b) is nearly zero for all methods and the maximmormal stresses in
the boundary layer are approximately one order of magnitaddow which can be
attributed to the delayed separation at the lee side of thérhgeneral, both Reynolds
stresses are almost uniformly distributed across the eiamal the level of turbulence
is very low.

Although the resolution near the wall is increased only nmaity for the medium
grid, approximately 3 points in the boundary layer as opgdseabout 2 points for
the coarse grid at this position, a drastic improvement@résults can be seen. This
already indicates substantiafidirences in the oncoming flow field. The characteristic
shape of the velocity profile featuring two narrow maximarrtba top and the bottom
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wall is approached, albeit thefect in Figure 5.7(c) is only faint. Additionally, the
peak velocity is much closer to the fully resolved LES with Wélding the best result,
followed by M3 and then M5. Again, this is associated with ¢haracteristics of the
upstream flow. The shear stress in Figure 5.7(d) exhibits#esishape and magnitude
as the reference solution where W9 follows it almost exaettgept in the boundary
layer. Here, the peak is less pronounced. The same holdedanaximum normal
stress. W9 predicts about half the amount of normal strefiseifboundary layer as
observed in the reference LES and it is further decreasindpélower order schemes.
Furthermore, the shape of the normal stress appears moferfit high-resolution
methods when compared with the classical LES in the lowdrdfahe channel and
the level of turbulence is generally lower.

The results for the modified grid featuring a higher clustgrof grid points near the
walls are presented in Figures 5.7(e) and 5.7(f). For thisquadar mesh, approxi-
mately 11 points lie within the boundary layer at the hillfage and the £ distribution
along the bottom wall indicates nearly resolved condititmsughout the domain, see
Figure 5.4. The averaged velocity profiles from the refeedreS and the simulations
performed here are virtually identical near the surfacénefttill. The local minimum
near the half-height of the channel at this position is $higimore pronounced for all
high-resolution methods. Minorfilerences can also be observed at the top wall where
the reference solution yields a very thick boundary layesgsosed to a much thinner
boundary layer predicted by the current simulations. This mainly be attributed
to the fact that the grid employed in the reference LES wasivelly coarse in this
area and a wall function had been used. Additionally, thé tnedtment introduces an
unrealistic kink in the velocity profile which appears atlaltations along the chan-
nel. Frohlich et al. [35] reported that the near-wall ap@mation at the top surface
is not relevant to the solution in the rest of the flow field. Hwer, this claim will be
revisited for the reattached flow region.

In Figure 5.7(f), a significant improvement can also be oleifor the Reynolds
stresses on the modified grid. The shape and magnitude oh#ae stresses as pre-
dicted in all simulations are in very good agreement withréference solution. Al-
though the minimum shear stress in the bottom boundary laygightly less distinct,
the peak normal stresses at the same location are very ddbke teference. Both
are strongly related to the movement of the separation Wvi¢h increasing grid res-
olution in the wall normal direction, the high-resolutiorethods are able to tap their
full potential. This is indicated clearly by the upstreariftsbf the averaged separation
points. Small disturbances start to develop normal to tHeand are propagated along
the surface even though the grid resolution in the streaendirgction is fairly coarse.
Because the higher order methods are more sensitive to #nctliations, they predict
a separation prior to M3. This is reflected by the peak noritnetses shown in Figure
5.7(f). Here, W9 results in the strongest maximum, follovegdM5 and then M3. It
should be noted that the averaged points of separationeméadl for W9 and M5, but
the influence of the fluctuations on the stress profiles aregimy stronger for W9 due
to its higher order of accuracy. Further away from the hilface, less turbulence is
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predicted by all high-resolution methods when comparedhagthe LES of Frohlich
et al. [35] in the lower half of the channel, but increasecls\wf normal stress are
observed for M5 and especially M3 in the upper half.

5.6.2 Separated Flow

The maximum turbulent intensities are reached after séparhas occurred. Here,
several phenomena are interacting with each other: the dmodary layers at the top
and the bottom wall of the channel; the recirculation zon&twhan be seen as a shear
layer; the highly unsteady free shear layer emanating flrseparation line and the
core flow can be distinguished at the streamwise locatjbn= 2. Averaged velocity
and stress profiles for this position are shown in Figure 5.8.

A substantial dterence between the velocity profiles from the reference LitStlae
current simulations on the coarse grid is illustrated inuFég5.8(a). The size of the
separation bubble is heavily under-predicted by all higgnfution methods due to
the delayed separation and the subsequent early reattathkhence, the separation
region covers only approximately half a hill-height in thallsnormal direction and
the reversed flow is less developed. Since the same mass flewasto be achieved
in all simulations, the core velocity is under-predicte¢@dingly when compared
to the reference solution. This is the main reason for thetivelly uniform velocity
distribution above the hill crest in Figure 5.7(a). Surpgy, however, the stress
magnitudes shown in Figure 5.8(b) are of approximately #mesorder. Oterences
between the high-resolution methods can be observed iiagaitte location of the
shear layer, marked by the peak stresses, and the shapeprbfives. M5 yields the
lowest shear layer as late separation favours this behavilthough M3 separates
downstream of W9, the position of the shear layer is slighitiher which is associated
with the early reattachment of W9. Additionally, the peakmal stresses and the
spreading of the shear layer appear to be dominated by thaesdim location. For the
coarse grid, higher normal stresses are observed for dktsparation and the width
of the shear layer grows with the distance from its origin.

Figures 5.8(c) and 5.8(d) present the results for the mediudnat the same stream-
wise location. In accordance with the above, early semarand late reattachment
lead to a better prediction of the separation bubble heifnis, all methods approach
the reference velocity profile in Figure 5.8(c), albeit thearsed flow in the lower por-
tion of the channel is still slightly under-predicted. Retjag the Reynolds stresses,
more turbulence can be supported due to the grid refinement@rsequently higher
levels of shear stress and normal stress are observed Xoabding the predictions of
Frohlich et al. [35] in the trough where the turbulence isdquced. This behaviour is
worrying because it indicates that the solution is not gddwerged. Large variations
of the peak stresses have also been observed by Temmermiafjld2awho asso-
ciated them with the dlierences regarding the separation point. Yet, this corarusi
was not consistent sinceffrent turbulence intensities had been found in simulations
with similar separation points. Hence, theet of grid clustering in the free shear
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layer cannot be disregarded. However, no information ati@ugrid resolution in this

region is available for the reference LES of Frohlich ef2®]. It should be noted that
the peak stresses for the medium grid are less dependené @xdlot location of de-

tachment and reattachment at this position because theliese layer had more time
to develop and it is still well ahead of the impingement attib&#om wall.

For the modified grid, the velocity profiles in Figure 5.8(elldw the reference so-
lution more closely, with minor diierences in the boundary layers at the top and the
bottom wall. Additionally, all high-resolution methodseglict a smoother transition
between the free shear layer and the core flow. M5 appearsthcpra stronger re-
circulation than W9 although separating at identical lmee. This leads to later reat-
tachment of the separation bubble. A strong dependencesafggher boundary layer
on the grid resolution and the core flow can be observed. Asa&d, the boundary
layer becomes thinner for higher velocities in the core ef¢thannel. The classical
LES, despite predicting slightly stronger velocities,ulesin a considerably thicker
boundary layer than the high-resolution methods. This caminbe attributed to the
combined &ect of the relatively coarse grid and the wall approximatiemployed in
the reference solution. Good agreement for the stressesgdaled in Figure 5.8(f). In
the upper portion of the channel, both the shear and the n@tness are very close
to the reference profile. Again, a slight discrepancy doést egar the boundary layer
at the top wall due to the inadequate treatment in the clalssES. In the recircula-
tion region, more turbulent energy is produced by M3, M5 an@ wWen compared
to the results of Frohlich et al. [35]. Here, all high-ragadn methods yield similar
Reynolds stresses. Minorftkrences, however, appear in the shear layer where the
maximum intensities occur. The behaviour of the stresspea@ally near the peaks, is
influenced by a number of parameters, e.g. the location @fraipn and reattachment
or the specifics of the numerical method, but no consistei¢maseems to emerge in
the massively separated flow region.

5.6.3 Reattached Flow

The next position along the channel that has been investgsithe post-reattachment
region atx/h = 6, see Figure 5.9. Here, the flow is recovering to a state ngpredl for

a plane channel geometry. Not surprising, the results bbby the high-resolution
methods on the coarse grid exhibit large discrepanciestoetierence solution as the
time history of the flows dier substantially. The constriction felt by the flow, i.e.
the combination of the hill geometry and the separation ®jlib much smaller for
the former. Hence, the velocity profiles predicted in theewotr simulations, shown in
Figure 5.9(a), are already closer to the state of equilibriMost remarkably, however,
is the qualitative dierence of the normal stress profile obtained by W9 when cagdpar
to the lower order methods. The pronounced maximum in Figu®ébo) indicates
more transport of turbulence initially generated in thefshear layer. Thisfiect is
intensified on the coarse grid because W9 also yields thegdst fluctuations further
upstream.
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The velocity profiles obtained on the medium grid, see FiguBgc), are in better
agreement with the reference solution than for the coarisieagrcould be expected.
In general, earlier reattachment leads to higher veleacitiethe trough at the same
streamwise locations. This is the case indeed for all metif@gpplied on the modified
grid, but does not hold for combinations of W9 and the mediurthe coarse grid.
Here, W9 reattaches prior to M3 and exhibits smaller velegiin the lower portion
of the channel. The Reynolds stresses obtained on the megtidrare displayed in
Figure 5.9(d). Apart from the normal stresses in the vigioitthe top wall, they are
relatively close to the reference profiles. Especially thess stresses are in very good
agreement over the whole height of the channel. At about éigghhor the hill crest,
the distinctive peak due to turbulence transport can bereéddor all methods. It is
most pronounced for W9, however, which leads to higher gwgéturbulence in the
lower half of the attached flow field throughout the channel.

The results for the modified grid are presented in Figure@b&nhd 5.9(f). Regarding
the averaged streamwise velocities, they are approachegeterence profiles in the
main flow field. Near the bottom wall, however, the velocitpi®er-predicted because
of the earlier reattachment. Consequently, the transiieiween the flow in the core
of the channel and the trough is smoother. The boundary &tytee top wall thickens
similar to the prediction from the classical LES of Frohlet al. [35] due to the decel-
eration of the core flow. However, majorfidirences can be observed for the normal
stresses along the top wall, see Figure 5.9(f). The normedstseems to vanish in
the reference solution, whereas all current simulatioeslipt considerable turbulent
activity. According to the fully wall-resolved simulatiefrom Breuer [14], the normal
stress should reach a minimum of approximately 0.015 in itiaity of the top wall
and then increase again as the solid surface is approacltners, all high-resolution
methods appear to reproduce the correct behaviour. In gletiee level of turbulence
across the channel also reflects the location of the reatt@chpoint because they are
relatively close on the medium grid. The reattachment iayd for the lower order
methods and thus the turbulent intensity at the currentilmeas higher for M3 than
M5, and, in turn, M5 than W9. All methods lead to virtually idieal results as the
reference LES regarding the shear stress.

5.6.4 Accelerated Flow

The flow in the channel is subject to strong acceleration passes over the windward
side of the hill. This region is represented by the averagsdcity and stress profiles
at x’h = 8. It should be noted the slope of the geometry has not beeyuatzu
for during the extraction of the data presented in Figur®5Hence, in accordance
with the reference solution of Frohlich et al. [35], the quonents do not represent the
normal and the tangential directions at the surface.

As the flow recovers and a more uniform state is achieved, ¢hacity profiles as
predicted by the high-resolution methods are nearly indisishable irrespective of
the grid employed. The data confirms the observations madetprthis position and
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no new insight can be gained. For the coarse grid, the vglpcdfiles are less full
because of the severely under-predicted size of the sepatatbble. This behaviour
can be improved gradually with increasing the grid resoluhiear the walls as shown
for the medium grid in Figure 5.10(c) and for the modified gndFigure 5.10(e).
Additionally, the boundary layers at the top and the bottoa inecome thinner as the
flow is accelerated in the streamwise direction. In the vigiaf the hill surface, the
velocity is decreased due to the positive pressure gradatimg on the flow field.

Although less pronounced, the Reynolds stresses presarigplires 5.10(b) to 5.10(d)
bear similar features to the ones already discussed foetiteached flow ax/h = 6.
Interestingly, even at this location the wall approximasionade in the reference LES
still have a significantfect on the boundary layer profile and the normal stresses near
the top wall. Attention should be paid to the shear stresséseahill surface since
they appear to reverse sign. However, this is only an attdgathe misalignment be-
tween the hill slope and the velocity components which aésoth be considered when
interpreting the velocity profiles at this specific location
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Figure 5.7: Comparison of the averaged streamwise velocity and Regradtdsses near the
hill crest atx/h = 0.05 as obtained by fferent high-resolution methods on the coarse, the
medium and the modified grid with the reference LES of Fiathét al. [35].
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Figure 5.8: Comparison of the averaged streamwise velocity and Regratidsses across the
recirculation zone ax/h = 2 as obtained by flierent high-resolution methods on the coarse,
the medium and the modified grid with the reference LES ohkch et al. [35].
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Figure 5.9: Comparison of the averaged streamwise velocity and Regradtdsses after
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Figure 5.10: Comparison of the averaged streamwise velocity and Regrabtdsses above
the windward slope at/h = 8 as obtained by élierent high-resolution methods on the coarse,
the medium and the modified grid with the reference LES ohkeh et al. [35].
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5.7 Comparison with Classical Under-Resolved LES

It has been found that a fine grid resolution normal to thedsalrfaces is essential for
accurately predicting the flow features in the constricteahmel using high-resolution
methods. However, the performance can also be assessecgattal to classical LES
for highly under-resolved conditions. Temmerman et al2]lHave investigated this
scenario and tested several wall approximations in cotipmwith the massively sep-
arated hill flow.

From Section 5.4, it is already known that the predictiorhefseparation point and the
location of reattachment can be improved by using hightui®m methods. However,
if this also transfers to the rest of the flow field and to whaeekwall functions fect
the statistical data still needs to be clarified. Therefthre averaged streamwise veloc-
ity and the Reynolds stress profiles as obtained by M3, M5 a@dkMthe coarse grid
are compared against the available data from the wall-neieES of Temmerman
et al. [112] which has been produced on an identical grid Fsgere 5.11. In accor-
dance with Section 5.4, the profiles referred to as “LL3", “W¥hd “NS” are the
results from classical LES using the WALE subgrid-scale eh@d Ducros et al. [31]
in combination with a three-layer logarithmic wall modéietwall function proposed
by Werner and Wengle [126] and no wall approximation, i.eshp condition, respec-
tively. Additionally, the reference data from Frohlichatt [35] has been included for
comparison.

Figures 5.11(a) and 5.11(b) show the averaged velocitylpsafi the separation region
at x/h = 2 and after reattachment occurredkagh = 6. Although the point of separa-
tion is further upstream than for the classical LES with fip-sondition, the velocity
profiles as obtained by the high-resolution methods areslese to the classical LES
without wall-treatment at both locations. Applying a loglamic model near the wall
does not improve the situation significantly in the reciatign zone or the reattached
region. On the other hand, WW appears to be much closer teetaeence solution,
especially after reattachment. However, this is not dudaéopower-law assumption
made in the model of Werner and Wengle [126]. As has beengubmit by Temmer-
man et al. [112], the dierence can mainly be attributed to the specific implementati
of the approximation which results in earlier detachmerthefflow from the hill sur-
face.

For the normal stresses in the recirculation zone presentéigure 5.11(c), a strong
relationship between separation location and both postiod strength of the free
shear layer can be observed for the classical LES. The sgpliesio the shear stresses
shown in Figure 5.11(e). Thisis not the case for the higlolig®n methods. However,
this behaviour can be expected because all classical LEdations used essentially
the same numerical method and the wall model does fliettethe shear layer. The
peak stresses predicted by the high-resolution methods@gnappear to be in better
agreement with the reference solution than the classic8 wih no-slip condition.
Yet, it should be noted that concerns have been raised riegaitte grid-converged
representation of the shear layer. After reattachmentfFggpeae 5.11(d), all normal
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stress profiles obtained without wall approximations sesiy under-predict the level

of turbulence. With wall functions, the normal stress in &tiached boundary layer is
more accurately represented. Here, the log-law assumgdiems to give better results
than the power-law. Away from the wall, however, the redttaent location and the

strength of the shear layer appear to be the two factors damgthe shape and the
peak of the normal stress. This also holds for the shearsssgzresented in Figure
5.11(f).

In general, the semi-empirical wall models used in the @at&ES of Temmerman
et al. [112] only #ect the point of separation in under-resolved conditionswéler,
the dfectiveness depends strongly on the size of the wall adjasdist In order to
yield an improvement in the attached flow region, the firstl groint has to be in the
viscous sublayer as has been pointed out by Breuer et al. fds]itionally, their in-
fluence declines with higher clustering near the solid serfdNo direct improvement
could be observed in the massively separated flow regioneieth of the hill which
could be expected because they are not designed for thigicomd\ better prediction
of the flow detachment can also be achieved by using higHeresio methods. How-
ever, the subsequent development of the free shear layg¢hamint of reattachment
are more sensitive to the specifics of the numerical methad the location of the
separation point.
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5.8 Summary

The performance of three high-resolution methods has besgsaed with respect to
the massively separated flow in the lee of a hill geometry. ddmplex flow field
encountered in this test case comprises various regiongevdifterent requirements
have to be met. Near the crest of the hill, the accurate prediof the thin bound-
ary layer detachment from the gently curved surface is pauatto the downstream
development of the flow field. After separation has occurtieel highly unsteady free
shear layer emanating from the hill challenges the turtadenodelling capabilities of
the numerical method. The reattachment location at th@tottall of the channel is
strongly influenced by the representation of the free steaarl Reattachment itself,
on the other hand, is an unsteady process and the coherestusdis originating in the
shear layer alternate between being propagated downstebaing swept back into
the recirculation bubble. Thus, a feedback loop is genéthit adds to the fluctuation
of the separation line. In the post-reattachment regianrelovery process towards a
plane channel flow has to be captured. Here, the boundary ilaylee trough causes
additional dfficulties because it is of non-standard form and it undergeesral evo-
lution steps before it reaches the next hill crest. Iniiall is very thick and highly
turbulent. As it approaches the windward side of the follayvhill, it is accelerated
and undergoes a less pronounced separated state at tha bbtte slope. During the
acceleration stage, it becomes thinner and thus it posesragee stringent require-
ments regarding the grid resolution.

All of the above phenomena are intimately connected to edodr doecause the hill
flow generates its own inlet condition through the peridgliconstraint in streamwise
direction. Therefore, it is almost impossible to isolate #fects of the numerical
method on individual regions. However, it can certainly bsnoed that the higher
order methods yield an improvement in predicting the avedlaggparation point even
if the boundary layer is under-resolved. It has also beenddhbat a clustering of grid
points in the wall normal direction is more beneficial thatraamwise clustering. This
can be explained by the reduced influence of wall blockagbeflidid movement near
the surface. Since the higher order methods are more sengitsmall disturbances,
they are able to propagate along the wall and increase thiéhidod of separation.

In the free shear layer, the increased sensitivity of thédrnigrder methods M5 and
W9 leads to a more rapid breakdown of the layer when comparg®t Consequently,
the predicted separation length becomes shorter withasarg order of the method.
This is also associated with more turbulence mixing and eheéation of small scale
structures whose size depends on the resolution power afuimerical scheme. No
conclusive prediction can be made for the post-reattachregion, however, because
the history of the flow strongly influences the results oledihere.



CHAPTER 6

Swept Wing

N this chapter, the Implicit Large-Eddy Simulation apprhod@sed on the third-

order accurate MUSCL reconstruction method is applied édritestigation of the
highly complex flow around a fully three-dimensional swemgvgeometry combin-
ing the importance of transition, free shear layers, detd@nd attached regions. As
this case has been designed to test and challenge numegtabas, qualitative and
guantitative data from experiments and hybrid RANSS simulations are available
for comparison. No attempt to incorporate a wall-approxiorehas been made in the
current simulation. Instead, the boundary layer is nea$plved over the majority of
the wing.

6.1 Introduction

One of the greatest challenges for current Large-Eddy Sitiauls is the application
to flow problems of practical engineering interest. In aroaautical context, curved
three-dimensional geometries such as swept and delta \@negsmong the most dif-
ficult scenarios encountered because they are prone toasiepar Swept and delta
wings can be found in all modern aircrafts travelling at s@mic or supersonic speeds.
However, it is not only cruise conditions that are of aeraiyital interest. Most of
these vehicles also fly a considerable amount of time at sibspeeds and moderate
to high angles of attack, e.g. takBand landing or air combat. In fact, as has been
pointed out by Cummings et al. [19], the non-linediieets associated with separa-
tion at these flow conditions are more interesting from thelefler’'s point of view
and much more dicult to simulate accurately. Computational challengebiohe the
prediction of transition leading to turbulence and sepamnatontrol of numerical vis-
cosity, and generation of adequate grids.

Although sharp-edged delta wings ignore the curvature ®fehding edge, the large-
scale flow structures are similar to those observed in tdm@ensional swept wings.

A brief summary of the flow around delta wings at high anglegoidence is given

in the book of Anderson [2]. It is shown that a pair of leadirtye vortices arises
from the pressure fference between the top and bottom surface of the wing. The flow
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tries to curl around the swept leading edge from the bottamesgure side) to the top
(suction side) and eventually separates. A free shear &agpanates from the leading
edge and a span-wise pressure gradient forces the sheatday®#l up, yielding a
closed leading edge vortex (LEV).

On closer examination, however, the flow structure is farevcmmplex. For slender
wings in particular, the LEV induces outflow of the attachedbflon the suction side of
the wing which encounters an adverse pressure gradientdewze leading edge. The
result is a secondary separation zone underneath the LEWtifeg smaller, counter-
rotating vortices, displacing the LEV farther inboard abdwe the surface. Secondary
separation strongly depends on the character of the boyfedar. A laminar bound-
ary layer favours separation, whereas separation ocdersalad the secondary vortices
are smaller for turbulent boundary layers.

As the sweep and angle of attack are modified, the vortextsmejcinteraction and
near-surface phenomena change dramatically as has be&n blgdGursul [52] and
Gursul et al. [53]. For non-slender delta wings at low anglieimcidence, LEVs em-
anate from the apex of the wing only and flow separation at e¢adihg edge may
occur even at low Reynolds numbers, e.g. see Ol and GharlpbT8glor and Gur-
sul [110], Taylor et al. [111] and Yavuz et al. [127]. Sepamatstrongly depends
on the shape of the leading edge and the flow conditions. Witeasing angle of
incidence, the LEV becomes unstable and eventually breaks.d For wings with
lower sweep angle, breakdown occurs at lower angles ofkattampared to wings
with higher sweep. Two distinctive types of vortex breakddvave been reported by
Delery [23], Gordnier [43] and Payne et al. [88]: the bubhieakdown characterised
by a stagnation point, at the head of the breakdown regiahtagrid difusion; and the
spiral breakdown marked by deceleration of the vortex cotelarge scale turbulence.
Furthermore, other phenomena like vortex shedding at viglty angles of attack or
the Kelvin-Helmholtz roll up of the free shear layer haverbstidied experimentally
by Rediniotis et al. [94] and Riley and Lowson [96], respesly.

Computational studies of separated swept wing flows hadiitaally been focused

on sharp-edged delta geometries because the detachmeaspis greatly simplified.
Various combinations of slender and non-slender delta sviigliferent angles of at-
tack between 5and 30 have been investigated for Reynolds numbers ranging from
the order 10to 1P, e.g. see the RANS, LES, and hybrid simulations performed by
Brandsma et al. [13], Gordnier [43], Gordnier and Visbal, [44], Rizzetta [97]. When
transition and separation from curved wing surfaces is m@©goncern, on the other
hand, all previous studies have been limited to quasi-tefimérofoil sections. For ex-
ample, Mellen et al. [80] have summarised the findings froenBhropean LESFOIL
project on Large-Eddy Simulations around an Aerospatiaéefofoil near stall condi-
tions at an angle of incidence of B3. It has been shown that near-wall resolution is of
paramount importance for accurately predicting this tyfoow. This impression has
been confirmed by the ILES simulation of Morgan and Visba] B4 the local 28D
coupling approach for LES employed to the identical configjon by Dahlstrom and
Davidson [20], Mary and Sagaut [79] . These investigaticagehbeen conducted at
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high Reynolds numbers of order®an order to obtain a fully resolved solution of a
similar flow field, however, the Reynolds number has to beeatswd by one order or
magnitude because of the current hardware limitations, geg the direct numerical
simulation for a NACA 0012 aerofoil performed by Shan et 40Q)].

Although a great deal of attention has been paid to complearagéed flow structures
for wings at relatively high angles of incidence, in partacua theoretical or compu-
tational model for predicting the flow behaviour with any degof certainty has not
emerged yet. In fact, no attempt at combining realistic ook for the flow detach-

ment with a leading edge sweep has been made to date. Thssigateon is thus con-
cerned with a fully three-dimensional swept wing geometigtfiring separation from
a smoothly curved leading edge. Here, the resulting flow feeldghly complex, non-

linear and characterised by transition zones, leading addepossible trailing edge
separation, vortical flow, turbulence, secondary separatees and reattachment.

6.2 Numerical Framework

The twisted swept wing geometry considered in this invesitg was specifically de-
signed within the framework of the MSTTAR (Modelling and Silation of Turbu-
lence and Transition in Aerospace) initiative for the vatidn of CFD codes. The
wind tunnel model used in the experimental campaign of Zhemd) Turner [131],
conducted at Manchester University, features a leading ssigep angle of 40a
trailing edge sweep angle of B& and an &ective angle of attack of.23°. The root
chord length is B03mand the span is.65mwith a taper ratio of (B.

In order to capture the leading edge curvature as accurasghpssible and to achieve
an dficient distribution of grid cells around the wing a C-O-typ@adlogy has been
chosen. After preliminary computations on a very coarse goinsisting of approxi-
mately 3.5M cells and spanning a large computational dortierclustering near the
wing surface has been modified and the extent of the domaibd®s significantly
reduced. The results presented here have been obtainedr@hagpprising a total
of 12.5M cells in a computational domain o€,66.14c and & (c is the root chord
length) in x-, y- and z-direction, respectively. During tim@sh generation using the
commercial software GRIDGEN, the structured grid has beétisto eight blocks of
approximately 95« 130x 127 cells in streamwise-, span-wise- and normal-direction
each, see Figure 6.1(a), and the grid quality has been iragrby applying an el-
liptic smoothing algorithm. Subsequently, the no-slip dition on the wing surface,
extrapolated outlet condition in the wake region and fddfe®nditions have been de-
fined in a pre-processing step. In addition, the mesh has éeemmposed for the
high-performance simulation.

The characteristic parameters specifying the grid clugjerear and on the surface of
the swept wing as illustrated in Figures 6.1(b) and 6.1(e)dmtailed in Table 6.1, for
a definition of the corresponding edges see Figure 6.2. Hleeegeometric growth
rate does not exceed 1.05 in any direction and the resultingaiues obtained under
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(a) 3D view of the computational grid (b) 2D slice at the root of the wing

(c) Surface grid (every second point)

Figure 6.1: C-O-type grid topology comprising 12.5M cells in a compiaiaal domain
extending @, 6.14c and & (c is the root chord length) in x-, y- and z-directions, respety
(every third grid point shown here unless stated otherwise)

conditions similar to the experiment of Zhang and Turned]Iange from 1 in areas
of separated flow over 3 in reattachment regions to 5 at thdtrigaedge. Although
this indicates a wall-resolved situation over the majooityhe wing, the flow field is
still far from being fully resolved on the computational heven in the areas near the
wing tips where the clustering is particularly fine. In ordemuantify the degree of
under-resolution, the Kolmogorov length scale has beenoappated for the current
flow conditions to be 5 10-°c, based on the relations given for isotropic turbulence
and a very conservative estimate for the integral lengtleswfa0.5c. Thornber et al.
[114] have shown that the numerical method employed henginegabout 10 grid
cells for the representation of the highest wavenumbersdardo accurately describe
decaying homogeneous turbulence in a statistical sendb.thé data from Table 6.1,
this roughly yields a 5-million-fold under-resolved flowltisear the tips of the swept
wing.

The simulation for the MSTTAR wing at a total angle of atta¢l®bhas been carried
out at a Reynolds number of approximately 2000, based on free-stream velocity and
root chord length, and a near incompressible Mach number3ofThese conditions
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Figure 6.2: Edges employed for the grid clustering in the mirror-syminatomputational
domain as specified in Table 6.1. All other edges feature aidistant distribution of nodes.

Edge| Nodes| Distribution | Ases/C | Aenp/C

1 128 | geometric progression — 50x10*
2 96 | general 33x10°%|33x10°
3 128 | geometric progression 50x10* —

4 96 | monotonic rational quadratic spline3.3x 1073 | 3.8 x 1072
5 131 | general 30x102|10x10°3
6 96 | monotonic rational quadratic spline — 1.0x 103
7 128 | geometric progression — 1.0x 103
8 96 | general 1.0x103|10x10°3
9 128 | geometric progression 1.0x 1073 —

10 | 131 | general 1.0x 103 | 3.0x 102

Table 6.1: Characteristic parameters specifying the point clusgeinirthe immediate vicinity
of the three-dimensional wing surface. A definition of theresponding edges can be found
in Figure 6.2, where the beginning and end of the edges arecchéiym ande, respectively.

have been chosen according to the experiments conducteddmngzand Turner [131]
at Manchester University. Since the computational cosheftear-wall resolved LES
iIs immense and the resources are limited, the third-ordagR#utta time-integration
method from Equation (3.2.7) and the third-order MUSCL a&ptriation in space pro-
posed by Zoltak and Drikakis [132] have been chosen for gwgerior stability char-
acteristics when compared to the performance of other seb@nwall-bounded flows.
Although higher order methods may lead to general improvesnaf the results, this
is not self-evident in the near-wall region. The third-ard@USCL scheme there-
fore seems to be a good compromise between the accuracy angltaiional cost
of the simulation. Furthermore, the characteristics-d&Brmann solver of Eberle
[32] has been employed. All results presented in the folh@nsections have been
non-dimensionalised with the free-stream velocity andrttwe chord length. In order
to obtain converged statistical averages, it wadigant to consider a time-window
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equivalent to two flow-through cycles. Although the lengthihe time-window is not

formally correlated to the extend of the computational dioithis information is pre-

sented here to putitinto perspective. The total runtimkistiog the flow development
from an initial condition based on the coarse grid soluti@se0,000 CPUh on IBM
eServer p5 575 nodes with POWERS 1.5Ghz processors.

6.3 Flow Topology

The general topology of the flow around the swept wing geomistillustrated in
Figure 6.3 by instantaneous streamlines, slices of istieiyrcontours and pressure
codficient distribution on the suction side of the wing. Similarsharp-edged delta
wings, the shear-layer emanating from the leading edgksupinto a distinctive lead-
ing edge vortex system which grows and becomes less stalilpragresses towards
the trailing edge. After about 50% of the root chord the LEY&stsbending inboard
and lift off the wing surface at an increasing rate. The main vortex Gnesssoci-
ated with the large regions of vorticity still visible ne&ettrailing edge. However, as
they are less coherent than near the leading edge and aenicgld by the fully turbu-
lent flow near the wing tips, they exhibit strong fluctuati@msl are not symmetrical
anymore.

Figure 6.3: Instantaneous streamlines, slices of iso-vorticity caorg@nd pressure cfigient
distribution on the suction side of the wing.

The dfect of the leading edge vortex system can also be felt on thg wiirface as
revealed by the pressure d¢heient profiles taken at ffierent locations along the half-
wing spans, see Figure 6.4. A suction peak due to strong flow acceleratam be
observed at the leading edge for all stations. As the LEMasecto the surface inboard
of 50%s a second peak appears near the vortex core and the lift inesthaBecause
the vortex moves away from the wing surface its influenceeises further outboard
and only a flat pressure profile remains on the suction side.
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Figure 6.4: Colour contours of the pressure @ldgent on the top surface and corresponding
distributions on the suction and pressure side of the wintifiErent span-wise locations.

A comparison between time-averaged streamlines just ghewging surface obtained
by the current simulation and the experimental oil-film aksation of Zhang and
Turner [131] is shown in Figure 6.5. The computational ressin the right-hand half
of the picture also include contours of the pressurdtuoment on the suction side of
the wing. Several common flow features, marked by dashesd foreéhe experimental
data, can be observed in both parts of the picture. Firstgiditachment of the leading
edge vortex (VR) is well-defined in the computations inbaardpproximately 30%,
but it starts to dfuse and bend towards the trailing edge as the LEV becomesdess
herent. Close to the wing root, the reattachment line etdhdsimilar angle for both
the experiment and the simulation. However, the deviatiomfa straight line on the
right-hand side appears to begin prior to the one observeteleft-hand side. This
indicates premature non-linear spreading of the leadigg @drtex in the simulation
and leads to a larger extent near the trailing edge. Moretkertwo saddles SAl
and SAZ2 identify the existence of a secondary vortical negiluced by the primary
vortex along the leading edge which can also be observecaiaxperiment of Zhang
and Turner [131], albeit this behaviour is less clear in thdiln visualisation. The
secondary vortical zone does collapse, however, as thendeuof the main vortex
decreases towards the wing tip due to the breakdown of its @dthough the stream-
lines are not following the core of the leading edge vortexhay are close to the wing
surface, breakdown is clearly indicated by the stagnatoomtgSP) between 50%@nd
60%s. This phenomenon is associated with the interaction betweerelatively sta-
ble LEV coming from the inboard section and the fully turlniléow present closer
to the wing tip — hence it is not to be mistaken with the natbralhkdown observed
in, for example, delta wing flows. It should also be noted thstagnation point is not
visible in the experiment and thus the LEV might be still b&aat. Yet another feature
of the flow is apparent closer to the wing tip. In the fully tuldnt region, the fect
of the LEV drives the fluid towards the wing tip where it medie bpposing outer
flow between 80% and 90%. Thus, the characteristic saddle (SA) observed in both
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experiment and simulation is formed.

Figure 6.5: Time-averaged streamlines just above the wing surface eamours of pressure
codficient as predicted by the current simulation (right). Seefail-film visualisation from
experiment on the suction side of the wing (left).

In general, the numerically predicted streamline patteriouind to be in good agree-
ment with the oil-film visualisation from the experimentsaifang and Turner [131].
However, the skin friction lines inboard of the main vortaxhe experimental picture
are aligned in free-stream direction suggesting a simpdel-deér region, whereas the
simulation predicts a weakly detached region of fluid reiajvaround a focal point
(FP). Furthermore, an incipiently separated zone neardiiang edge (TES) not exis-
tentin the experiment can be seen in the computation. Tlsisrehtion is not exclusive
to the current results. Li and Leschziner [69] have repoatsanilar flow behaviour in
their hybrid RANSLES simulation of the same case.

The same authors could also confirm the LEV breakdown mesimamientioned previ-
ously occurring at locations beyond 50% half-span. In otddiustrate the structural
composition of the leading edge vortex as it progressesadte wing, colour con-
tours of the Q-criterion as proposed by Jeong and Hussajmraf@lshown in Figure
6.6. The two-dimensional slices are taken at constant gfis@positions ranging from
30%sto 90%s. A strong and coherent LEV close to the wing surface can hdtiitkd
near the root at 30%and the clearance between the vortex core and the wing surfac
increases further outboard, i.e. at 58%Additionally, the secondary vortical region
is clearly visible for the first two locations. At 70% halfap the LEV has become
unstable and structural integrity can no longer be obserdser to the wing tip,
see Figure 6.6(d), the shear layer emanating from the Igastige undergoes a roll-
up similar to a Kelvin-Helmholtz mechanism and the resgltilow is akin at vortex
shedding.
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(a) Q-criterion at 30% half-span. (b) Q-criterion at 50% half-span.

(c) Q-criterion at 70% half-span. (d) Q-criterion at 90% half-span.

Figure 6.6: Contours of the Q-criterion as proposed by Jeong and HugHjmbtained in
the current simulation at fierent locations along the span of the wing.

6.4 Velocity Profiles

A guantitative comparison between the flow field in the experit of Zhang and
Turner [131], the results obtained with the current ILESrapph using high-resolution
methods and the classical hybrid RANES simulation of Li and Leschziner [69] on
a large grid comprising 23.6M nodes has been performed. iffreedveraged veloc-
ity and Reynolds stress profiles as a function of the disténoce the wing have been
calculated from the experimental data sets measured neamhgal to the surface at
several positions along the half-span and the local chorthi®e-dimensional Laser
Doppler Anemometry (LDA). This data was made available byanthand Turner

[131], but has not been published at the time of writing. Detan the exact loca-

tions of the flow measurements and a full set of profiles canobed in Appendix

F. Furthermore, it should be noted that the velocities andesponding Reynolds
stresses presented here have not been decomposed intotiainged normal direc-

tions to the wall, they rather represent the streamwisesfign-wise (v) and azimuthal
(w) portions.
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Figure 6.7 shows the time-averaged velocity componentdiftarent locations along
the local chord at 30% half-span. Near the leading edge, igeed6.7(a), all stream-
wise velocity profiles are in good agreement with mindfetences regarding the posi-
tion and magnitude of the peak. The current simulation usig-resolution methods,
however, deviates from the experiment and the classicalidhypANS/LES near the
surface at 10% local chord. This behaviour is associatehl thé size and strength of
the secondary vortical region. The span-wise componenigar€ 6.7(b) features the
characteristic cross-flow profile observed in swept wingdgnamics. Close to the
wing surface, the negative pressure gradient leads to dlowubwards the wing tip,
whereas away from the surface the fluid tries to fill the gamepeby the higher dis-
placement near the wing root and thus inflow occurs. Herentigmnitude of both min-
imum and maximum velocity are slightly under-predicted blg$, but over-predicted
by the hybrid simulation. Regarding the azimuthal compaofeigure 6.7(c), the gen-
eral shape of the profile dictated by the existence of therskng vorticity and the
position of the free shear layer is well captured in the qurleES simulation. How-
ever, the near-wall vortical region could not be predictgdhe hybrid RANSLES
approach at this location and thus the simulation of Li ansicheiner [69] produces
an entirely diferent result.

At 30% half-span and 50% local chord, see Figures 6.7(d) Zf)6the profiles ex-
tracted from the experiment, the ILES and the hybrid RANES simulations exhibit
a fairly similar shape for all three velocity components.eTdurrent simulation pre-
dicts a slightly thinner boundary layer and a stronger cflus® component near the
surface than observed in the experiment and the classicllJRAS. On the other
hand, the hybrid approach under-predicts the magnitudaeozimuthal portion of
the flow in Figure 6.7(f). It should be noted that this speddization is just upstream
of the inboard separated zone. Hence, the influence of thelued flow on the velocity
profiles here is only marginal. However, this situation doesnge when approaching
the trailing edge as shown in Figures 6.7(g) to 6.7(i). Batmusations predict incipi-
ent flow separation at 90% local chord which is reflected tlaarthe profiles of the
streamwise and the azimuthal velocity. As the experimanildillm visualisation does
not suggest any detachment in this areffedences regarding the velocity profiles are
expected. Yet, the cross-flow component predicted by ILEHSWS the experimental
data surprisingly close which is most likely a coincidence.

The averaged velocity profiles for the mid-wing section &c3talf-span are presented
in Figure 6.8. The secondary vortical region has developesiderably when com-
pared to the inboard position, and théeet on the streamwise velocity component at
10% local chord is clearly visible in the experiment as wsllb@th simulations, see
Figure 6.8(a). Thecu> profiles near the leading edge compare well, with ILES pre-
dicting a small over-shoot near the surface, indicatingnger vorticity. The hybrid
RANS/LES vyields a peak velocity further from the wing than the ekpent or the
current simulation. The span-wise and the azimuthal vlani Figures 6.8(b) and
6.8(b) obtained by both simulations are slightly over-jctsti near the wall and they
tend to peak at a lower magnitude away from the wing with ressigethe experiment.
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Most remarkably is the stronger displacement of fluid asctfteby a relatively high
level of <w> velocity in case of the ILES simulation.

The agreement is poor at the half-chord position in Figu8 &he velocity profiles
are strongly ffected by the premature non-linear growth of the leading @dgex ob-
served in the current simulation which manifests itseliargé discrepancies between
the ILES prediction and the experiment. The streamwise ha@dzimuthal velocities
are decelerated in the vicinity of the wing, Figures 6.8(djl &.8(f), and the cross-
stream component is amplified by the rotation of the largéexoiFigure 6.8(e). The
classical RAN@A_ES, on the other hand, is closer to the experimental dataveMer,
the kink in the< u> profile measured in the experiment representing the infliehc
the leading edge vortex is not reproduced adequately. Tigigests that the extent of
the LEV in the streamwise direction is under-predicted im liybrid RANSLES, as
has been confirmed by Li and Leschziner [70]. The same ohs@mgacan be made for
the location close to the trailing edge at 90% local choitogidthe éfect is diminished.

Further outboard, the experimental skin friction linesdnevealed a non-linear spread-
ing of the leading edge vortex similar to the current simalat In this region of en-
hanced interaction with the fully separated flow regime talgdahe wing tip the accu-
racy of the ILES prediction appears to recover, see Figi@eMear the leading edge,
at 10% local chord, the streamwise velocity is already @and thus a thickening
of the boundary can be observed in Figure 6.9(a). Thieceis captured in the current
simulation using high-resolution methods, whereas thailyRANS/LES approach
fails. Consequently, both span-wise and azimuthal vetquibfiles do not match the
experimental data at this location and all components nbthby ILES are more ac-
curate. Although the flow is not detached at positions clésehe trailing edge, it
appears that the current results approach the experimesitality profiles in Figures
6.9(d) to 6.9(f), but predictions with the classical RANES are still hindered by the
erroneous flow development near the leading edge. Despitg bemewhat underes-
timated in terms of magnitude, the span-wise and, in pdaticthe streamwise flow
component at 50% local chord from the ILES simulation fokalve shape of the ex-
perimental profile closely. Only weak azimuthal motion carobserved, hence minor
differences regarding thew > velocity in Figure 6.9(f) are deemed less important.
At 90%s, i.e. Figures 6.9(g) to 6.9(i), the profiles exhibit a simib@haviour, except
that the experimental span-wise velocity and the corredipgncomponent obtained
by ILES are in better agreement than at 50% local chord. Wet,i$ not the case for
<w> near the wing surface.

The observations discussed previously for the span-wisatitsn at 70% become
more pronounced in the fully separated and turbulent regiose to the wing tip at
90% half-span as shown in Figure 6.10. It should be notedttigaitmprovements are
partly due to the finer grid clustering in this area, but thevfis certainly still highly
under-resolved on the given computational mesh. On the and,ithe profiles of
all velocity components as predicted by the current sinadre nearly identical to
the experimental data at most chord-wise positions. Adwlgt small discrepancies
regarding the inboard motion and the peak azimuthal velaan be detected near
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the leading edge at 108psee Figures 6.10(b) and 6.10(c), respectively. On the othe
hand, however, the classical RANLES approach completely suppresses separation
because the RANS near-wall approximation cannot treat #eesive flow detachment
adequately. Thus, the results obtained in the hybrid RARS simulation largely
disagree with the experiment in the fully turbulent region.
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Figure 6.7: Comparison between averaged velocity profiles from theraxeats of Zhang
and Turner [131], the results obtained with ILES and the llyBANS/LES of Li and

Leschziner [69] for dferent locations along the local chord at 30% half-span.
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Figure 6.9: Comparison between averaged velocity profiles from theraxeats of Zhang
and Turner [131], the results obtained with ILES and the llyBANS/LES of Li and
Leschziner [69] for dferent locations along the local chord at 70% half-span.
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Figure 6.10: Comparison between averaged velocity profiles from theraxgats of Zhang
and Turner [131], the results obtained with ILES and the ityBANS/LES of Li and

Leschziner [69] for dferent locations along the local chord at 90% half-span.
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6.5 Turbulent Energy Profiles

More insight into the flow structure can be gained by exangtire turbulence levels at
the characteristic positions discussed in the previousssedere, the time-averaged
total turbulent energy in normalised form defined by

<k> 05(<Uu>+ <VV>+ <ww>)
T u2,

(6.5.1)

is investigated. A more detailed picture presents itsenvtonsidering the individual
Reynolds stress components at all locations measured iexgperiment as given in
Appendix F. However, it has been found that the informaticovjgled by the total
turbulent energy at selected positions iffisient to characterise the flow field.

Figure 6.11 shows the turbulent energy profiles from the expnts of Zhang and
Turner [131], the results obtained in the current ILES usiigh-resolution methods
and the hybrid RANAES of Li and Leschziner [69] for dlierent locations along the
local chord at 30% and 50% half-span. It can be noticed tledtdly is essentially lam-
inar at the inboard section, i.e. 3@%@ver most of the chord, see Figures 6.11(c) and
6.11(e). Only the shear layer emanating from the leading @idgduces a significant
level of turbulence as observed in the experiment and thedhiRANS/LES simula-
tion at 10% local chord, Figure 6.11(a). Here, the hybrid FEANES overestimates the
peak by about forty percent. ILES, on the other hand, styongtler-predicts the peak
energy because the relatively thin layer cannot be reprededequately on the given
grid with only four cells across the shear layer. Most notadkecond peak associated
with the secondary vortical region can be detected closéngaving surface in the
profile predicted by the ILES approach which, in line with grevious observations,
does not appear in the experimental or the classical RAES data.

At the mid-span position 50%shown in Figures 6.11(b) to 6.11(f), a similar scenario
is presented near the leading edge. The turbulence levetiLES simulation is still
too low when compared with experiment. However, tife@ of the secondary vortical
region is now clearly visible in all three profiles in Figuredl6(b). A less favourable
impression is left by the hybrid RANBES at this location. It seems that the existence
of the secondary vortical zone influences the shear layeraliats its character —
hence the peak energy is suddenly underestimated by a faicégproximately five.
As can be seen at the mid-chord position, Figure 6.11(d)p#teaviour of the free
shear layer has serious consequences for the downstreatopi@ent of the flow. In
the current simulation using high-resolution methods aiheet of LEV roll-up can be
detected just after 50&@nd thus the shear layer is still intact at this location \Wwhic
is reflected by the peak turbulent energy away from the wingedllt of the delayed
leading edge vortex formation is an increased growth ragetduhe diminished influ-
ence of the wall, leading to a seemingly premature non-tispeeading of the vortex.
Two additional peaks, albeit smaller, can be observed irptoéle from the ILES
simulation. Close to the solid surface, the strong cross-lomponent, caused by
the large extent of the leading edge vortex, also yields arease in turbulent energy.
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Furthermore, the influence of the LEV can be felt between tivggvand the shear
layer as implied by the second peak in Figure 6.11(d). Bothptitofiles obtained in
the experiment and the hybrid RANS simulation suggest teeece of a developed
leading edge vortex at 50&&and the level of turbulence decreases towards the trailing
edge. Here, at 90épthe full profile predicted by ILES indicates a stronger iefiae of

the LEV when compared with the experiment and the classiéNELES in Figure
6.11(f).

Consistent with the previous comment on grid resolutiorhaghear layer, a slightly
thicker shear layer leads to stronger velocity fluctuatiagbserved in the current
simulation near the leading edge for the 70% half-span @@ctiee Figure 6.12(a).
However, the peak turbulent energy is still under-predidtg the ILES approach and
the clearance between wing surface and the shear layerrapjebbw. Although
the reversed flow situation close to the leading edge is notucad by the hybrid
RANS/LES, the maximum turbulent energy recovers to a value cltusére experi-
ment. It should be noted that the profile obtained by the WasRANSLES does
not start from zero at the wall which is clearly unphysicad aaises doubts about the
reliability of the data. At the 70% half-span station, theirmartex core has turned
towards the trailing edge and undergone a breakup mechafikerefore, the shear
layer does not roll up. In fact, it stillféects the turbulent energy profiles at 50% local
chord as indicated by the peaks in both the experimental a8 bbserved in Fig-
ure 6.12(c), but not the hybrid RAMSES results. However, the current simulation
over-predicts the cross-flow fluctuations near the wingaagrfalready observed at the
half-chord position for 50% Close to the trailing edge, the level of turbulence dimin-
ishes for the classical RANEES, whereas it increases in the ILES simulation due to
enhanced mixing caused by the large predicted vortex.

A similar picture to 70% half-span presents itself for thetgas at 90% in Figures
6.12(b) to 6.12(f). Here, the position of the free shearia@meanating from the lead-
ing edge is in better agreement with the experiment thareattioard station, but the
peak magnitude is underestimated again. Moreover, thelembenergy profiles ob-
tained in the current simulation using high-resolutionmoelis match the shape of the
experimental results closely further downstream and theyistually identical in the
vicinity of the trailing edge. As anticipated, however, thdrid RANSLES approach
fails to predict the flow in this fully turbulent region donaited by massive separation.
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Figure 6.11: Comparison between averaged turbulent energy profilestherexperiments of
Zhang and Turner [131], the results obtained with ILES amdhtybrid RANSLES of Li and
Leschziner [69] for dferent locations along the local chord at 30% and 50% halfkspa
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Figure 6.12: Comparison between averaged turbulent energy profilesthherexperiments of
Zhang and Turner [131], the results obtained with ILES amdhtybrid RANSLES of Li and
Leschziner [69] for dferent locations along the local chord at 70% and 90% halfkspa
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6.6 Summary

The numerical approach of Implicit Large-Eddy Simulatiemg high-resolution meth-
ods has been applied to the external flow around a swept wiogefey of practical
aeronautical interest. This highly complex problem corebitarge-scale separation
with substantial regions of attached flow where the realigjpresentation of near-wall
effects are of paramount importance.

The free-stream approaching the inclined wing is quicklgederated and detaches
from the leading edge to form a free shear layer that subsgiguells up into the char-
acteristic leading edge vortex also observed in sharpeedghka wing flows. Inboard
of the vortex reattachment line, the conditions are esagntaminar, and beneath the
LEV the flow is prone to produce secondary vorticity. As it éieps in the span-wise
direction, the main vortex bends towards the trailing edge lsecomes more unsta-
ble. This leads to a mechanism akin to breakdown, where thextmses some of its
coherence, and the interaction with the fully separatathutant flow region near the
wing tip, favoured by the specifics of the twisted geometayng importance.

The conditions for the MSTTAR swept wing have been choserlowanearly wall-
resolved simulations that can be assessed using the exgeahi DA data and oil-
film visualisations of the skin friction lines on the solidface provided by Zhang and
Turner [131]. Furthermore, the classical RAINES using a RANS-type approxima-
tion in the near-wall region performed by Li and Leschzirg9][are included in the
comparison of flow and turbulence characteristics.

It has been found that both simulations predict an area afiyniéversed flow near the
wing root and leading edge vortex breakdown beyond apprabdiy 50% half-span
whereas the experiment suggests an inboard dead-air ragobvortex breakdown
cannot be clearly identified. In other respects, the laogdeslow features are reason-
ably well represented by the two numerical approaches. ,Heeehybrid RANALES
appears to be more accurate than ILES in areas of attachetddldails completely in
the fully turbulent region closer to the wing tip becausertbar-wall approximation is
not adequate for massively separated flow.

It should be highlighted that the computational grids emtbin the two simulations
differ substantially. For the hybrid approach, 23.6M nodes baea distributed using
a H-H-type topology of similar extent to the C-O-type mesasanted for the current
simulation which has only half the number of nodes. Furtleenthey are distin-
guished by the specific requirements in the vicinity of thagwsurface. In the ILES
simulation, the near-wall region is nearly resolved withranging from 1 to 5 whereas
the node clustering in hybrid RAMISES grid yields characteristic values between 20
and 40. Therefore, the near-wall phenomena are captureel accurately in the cur-
rent simulation but the quality of the prediction in the fre@ear layer deteriorates.
This has a severe impact on the development of the leadirg\adtex as exemplified
for the section at 50% half-span. However, when the LEV igonesent and the flow is
fully turbulent, i.e closer to the wing tip, the influence bétshear layer is diminished
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and the statistical data obtained by ILES is in very good exgent with the exper-
iment. In general, this investigation has demonstratetl tlggh-resolution methods
can be applied to complex, separated flows without any madiidic if the near-wall

phenomena are nearly resolved on the computational gridiogexh



CHAPTER 7

Conclusions and Outlook

The work in this thesis covered a range of issues pertinetietmumerical prediction
of low-speed separated flows using high-resolution methotiee context of Implicit
Large-Eddy Simulations. The main findings and lessons tedtbe presented in the
following section. Moreover, future steps for gaining deejnsight into this complex
topic are suggested that will, hopefully, aid the quest fighkidelity simulations of
reasonable computational cost in realistic engineeripdj@dions.

7.1 Conclusions

In simulations of massively separated flows, it is necesgapapture various stages
in the development of the flow field after separation has aeduHere, the behaviour
of a third-order MUSCL, a fifth-order MUSCL and a ninth-ord®ENO algorithm
have been assessed in combination with several Runge Kn#arntegration methods
for predicting the evolution of the Taylor-Green Vortex. elfaylor-Green \Vortex is
probably the simplest model yielding an isolated represdent of the linear, non-linear
and fully turbulent development of an inviscid instabiliyechanism similar to the one
observed in the characteristic free shear layer appearisgparated flows.

It has been demonstrated that the errors due to the spediftbge time-integration
method can be neglected in comparison with thieats of spatial accuracy on the re-
sults. The inviscid instability mechanism is captured Hyhajh-resolution methods
and the onset of the stage dominated by vortex dynamics isad ggreement with
available DNS data and other simulations. However, obsenamade on dierent
grid sizes revealed that in general the computations udmgexr order method become
under-resolved prior to the ones with a higher order schéines, the resolving power
of the numerical method is increasing with its order of aacyr This conclusion is
also supported by the fact that the higher order methodsupeltss numerical dissi-
pation when compared to lower order methods on identicdsgiOn the other hand,
it should be noted that higher order methods are more semsitismall perturbations
in the flow and thus they have to be applied with care. In cagbeflTaylor Green
Vortex, the associated breaking of the symmetric initialdibon leads to a more re-
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alistic evolution of the flow field on coarser grids, but thigyht not hold for practical
problems of engineering interest. Furthermore, a deta&itedparison of the compu-
tational cost for the three high-resolution methods hasvehibhat the savings due to
the increased resolving power, i.e. reduction of grid npdasveighs the #ect of an
increasing complexity of the numerical scheme, i.e. moifig point operations, for
the Taylor-Green Vortex. Hence, higher order methods anesreficient than lower
order methods in wall-free, turbulent flows.

The next test case that has been considered in this thesissadd the fundamental
separation process in wall-bounded flows. Here, a statlbtitwo-dimensional chan-
nel flow with hill-type constrictions has been employed teistigate the performance
of the three high-resolution algorithms mentioned presipwvith respect to detach-
ment from a gently curved surface in grid under-resolvedidamns. The hill flow es-
sentially combines the importance of near-wall phenomeadihg to separation with
the subsequent development of the free shear layer in avedjesimple geometry.

A comparison with classical, wall under-resolved LES urered that high-resolution
algorithms can yield a more accurate prediction of the sgjmarlocation than standard
methods when both are applied in conjunction with no-slipditons at the surface
and the grid is very coarse. fberent éfects of local grid refinement on the results
as obtained in the current simulations and the classicabrgkorder accurate LES
have been observed. The prediction with standard LES arglim@onditions im-
proves considerably when the nodes are clustered in strssnaivection, whereas the
high-resolution methods appear to prefer a predominaralismormal refinement. Be-
cause the higher order schemes are more sensitive to sistaitliinces they are also
more likely to predict flow detachment prior to lower orderthwls on identical grids.
Classical wall-modelled LES consistently outperformsltieS methods regarding the
separation location when taking wall-resolved classi¢sblas a reference. However,
wall functions are also sensitive to the placement of thd-adjacent grid nodes and
still require them to lie within the viscous sublayer. In fhee shear layer, higher or-
der methods lead to seemingly premature breakdown, redlésteshorter separation
bubbles, and the turbulence mixing with the core flow is insezl compared to lower
order methods and the reference LES. However, the qualitigeofeference solution
in this particular region obtained by classical wall-resol LES may be questionable.
Thus, no clear conclusion can be drawn here for the behawibtire ditferent ILES
techniques. The same holds for the reattachment locatidpast-reattachment zone
because the flow development is highly dependent on itsegsthistory.

Finally, the third-order accurate MUSCL scheme has beerareg in a nearly wall-
resolved ILES simulation of the flow around a fully three-dimsional swept wing
geometry. This case has been specifically designed to tes¢ntal methods in an
applied flow problem of practical aeronautical interest.e Thallenge here includes
the prediction of transition leading to turbulence and s&f@n, adaptive control of
numerical viscosity, and generation of suitable grids. rheo to assess the fidelity of
the current simulation, experimental data and the resbtiimed by a classical hybrid
RANS/LES simulation have been used as reference.
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It has been found that the high-resolution method is ablapture the large-scale flow
features such as roll-up of the free shear layer into a |gpélitye vortex and a fully
separated, turbulent region in the vicinity of the wing tn closer examination, the
coarseness of the current grid in the free shear layer lealdelay of the leading edge
vortex roll-up and associated increased vortex growth eItES simulation when
compared with the hybrid RANBES approach and, in particular, with the experiment.
Thus, the boundary layer profiles obtained by ILES and erpant difer in regions
dominated by the structure of the leading edge vortex. Inntlassively separated
and turbulent zone near the wing tip, however, the charaitéine boundary layer
gains importance and the statistics gathered from the musreulation using a high-
resolution method are virtually identical to experimenedults, whereas the near-
wall approximation employed in the hybrid RANES computation fails completely.
The particular strength of ILES is highlighted by the fadttthe hybrid RANA_ES
computation employed nearly twice as many grid nodes tharctinrent simulation
using a high-resolution method. On the other hand, bothlsitmons predict an area of
weakly reversed flow close the root of the wing which disagreith the experiment.

In the past, Implicit Large-Eddy Simulations have been usedimulate a broad vari-
ety of complex flows, e.g. flows that are dominated by vostigading to turbulence,
flows featuring shock waves and turbulence, and the mixingatierials. However,
many classical test cases for these methods are not bougdedlls or feature geo-
metrically well-defined separation lines, e.g. decayirajripic turbulence, free jets
and cavity flows. This gave cause to fervid discussions irGRB community about
the applicability of the ILES approach to complex, wall-bded flows of practical
engineering interest. With the work in this thesis, it hasrbelearly demonstrated that
Implicit Large Eddy Simulations using high-resolution imeds are indeed capable of
realistically predicting just this type of flow without the&d for any adjustment.

7.2 Future Work

In retrospect, several lessons have been learnt and mokeneeds to be done, pri-
marily in order to control the computational cost of wallemaled, turbulent flow sim-
ulations featuring separation from smooth surfaces. Tleeotifiigher order methods
allows for significant reduction of grid nodes in the fullytulent regime. In the near-
wall region, however, they tap their full potential only ife boundary layer is nearly
resolved in wall-normal direction and the grid savings ia tangential direction are
scant. Therefore, the main focus in the future should be ¢heldpment of a reliable
wall-modelling strategy that covers both attached andatheta flow conditions.

Regarding the development of free shear layers, more fuadtahstudies are neces-
sary to determine the exact requirements @edent numerical methods for producing
realistic results. It has been shown that the break up anseguient turbulent mix-
ing strongly depends on the order of the scheme employedhandrtd resolution
available. A similar &ect can be expected for the roll-up of the leading edge vortex
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observed in the swept wing flow. Here, grid convergence studnd comparisons
with experimental data for relatively simple geometries@esirable. In the context of
internal flows, an investigation of flow over a backward fgcstep could fer valu-
able insight and, with respect to external flows, an in-depiidy of sharp-edged delta
wings may be proposed.



Bibliography

[1] G. P. Almeida, D. F. G. Durao, and M. V. Heitor. Wake Flogshind Two-
Dimensional Model Hills Experimental Thermal and Fluid Sciende87-101,
1993.

[2] J. D. AndersonFundamentals of Aerodynamicserospace Science. McGraw-
Hill, second edition, 1991.

[3] J. D. Anderson.Computational Fluid Dynamics: The Basics with Application
McGraw-Hill, New York, 1995.

[4] V. Armenio and U. Piomelli. A Lagrangian Mixed Subgrid8e Model in
Generalized CoordinateElow, Turbulence and Combustiod5:51-81, 2000.

[5] E.Balaras and C. Benocci. Subgrid-scale models in fidifeerence simulations
of complex wall-bounded flows. CP 551, AGARD, 1994.

[6] D. S. Balsara and C.-W. Shu. Monotonicity preserving gived essentially
non-oscillatory schemes with increasingly high order afuaacy. Journal of
Computational Physi¢460:405-452, 2000.

[7] J. Bardina, J. H. Ferziger, and W. C. Reynolds. Improveldsid Scale Models
for Large Eddy Simulation. 113th AIAA Fluidé Plasma Dynamics Confer-
ence number AIAA-1980-1357, July 1980.

[8] R. E. Bensow, M. G. Larson, and P. Vesterlund. Vortigtyain residual-based
turbulence modelling of the Taylor-Green vortémternational Journal for Nu-
merical Methods in Fluidss4:745-756, 2007.

[9] J. P. Boris. On large eddy simulation using subgrid tlgbae models. In J. L.
Lumley, editor,Whither Turbulence? Turbulence at the Crossrqddscture
Notes in Physics, pages 344—-353. Berlin Springer Verlag019

[10] J. P. Boris, F. F. Grinstein, E. S. Oran, and R. L. Kolb@wNnsights into large
eddy simulationFluid Dynamics Resear¢hi0:199-228, 1992.

[11] M. E. Brachet. Direct simulation of three-dimensiotabulence in the Taylor-
Green vortexFluid Dynamics Researcld:1-8, 1991.

[12] M. E. Brachet, D. I. Meiron, S. A. Orszag, Nickel B. G., R. Morf, and
U. Frisch. Small-scale structure of the Taylor-Green vortéournal of Fluid
Mechanics130:411-452, 1983.



144 BIBLIOGRAPHY

[13] F. J. Brandsma, J. C. Kok, H. S. Doi, and A. Elsenaar. irepddge vortex flow
computations and comparison with DNW-HST wind tunnel daf@chnical
Report NLR-TP-2001-238, National Aerospace LaboratoryRINROO1.

[14] M Breuer. New reference data for the hill flow test casealine, 2005. URL
http://www.hy.bv.tum.de/DFG-CNRS/.

[15] M. Breuer, B. Kniazev, and M. Abel. Development of walbdels for LES of
separated flows using statistical evaluatiocBemputerss- Fluids, 36:817-837,
2007.

[16] J. Buckles, T. J. Hanratty, and R. J. Adrian. Turbulemwfover large amplitude
wavy surfacesJournal of Fluid Mechanicsl40:27-44, 1984.

[17] 1. P. Castro and E. Epik. Boundary layer developmerdradtseparated region.
Journal of Fluid Mechanics374:91-116, 1998.

[18] C. Comte-Bellotand S. Corrsin. The use of a contradiidmprove the isotropy
of grid generated turbulencdournal of Fluid Mechanic25:657-682, 1966.

[19] R. M. Cummings, J. R. Forsythe, S. A. Morton, and K. D. segt Computa-
tional challenges in high angle of attack flow predicti®nogress in Aerospace
Sciences39:369-384, 2003.

[20] S. Dahlstrom and L. Davidson. Large eddy simulatiomplega to a high-
Reynolds flow around an airfoil close to stall. 4dst AIAA Aerospace Sciences
Meeting and Exhibjtnumber AIAA-2003-0776, January 2003.

[21] P. A. Davidson. Turbulence — An Introduction for Scientists and Engineers
Oxford University Press, 2004.

[22] V. DeAngelis, P. Lombardi, and S. Banerjee. Direct nuna simulation of
turbulent flow over a wavy wallPhysics of Fluids9:2429-2442, 1997.

[23] J. M. Delery. Aspects of vortex breakdowrogress in Aerospace Scienges
30:1-59, 1994.

[24] D. Drikakis. Godunov Methods: Theory and Applicatipokapter Uniformaly
high-order methods for unsteady incompressible flows, pa§d8—283. Kluwer
Academic Publishers, 2001.

[25] D. Drikakis. Advances in turbulent flow computationsngs high-resolution
methods.Progress in Aerospace Scienc89:405-424, 2003.

[26] D. Drikakis and F. Durst. Investigation of flux formulaeeshock wave turbulent
boundary layer interactionlInternational Journal for Numerical Methods in
Fluids, 18:385-413, 1994.



BIBLIOGRAPHY 145

[27] D. Drikakis and W. J. RiderHigh-Resolution Methods for Incompressible and
Low-Speed FlowsSpringer, 2004.

[28] D. Drikakis, P. A. Govatsos, and D. E. Papatonis. A cbmastic-based method
for incompressible flowslnternational Journal for Numerical Methods in Flu-
ids, 19:667-685, 1994.

[29] D. Drikakis, C. Fureby, F. F. Grinstein, M. Hahn, and mungs. LES of Tran-
sition to Turbulence in the Taylor Green Vortex. In E. Lantial R. Friedrich,
B. J. Geurts, and O. Métais, editoBirect and Large-Eddy Simulation VEr-
coftac, pages 159-166. Springer Netherlands, 2006.

[30] D. Drikakis, C. Fureby, F. F. Grinstein, and D. Young&nS§lation of transition
and turbulence decay in the Taylor-Green vortégournal of Turbulence8(20):
1-12, 2007.

[31] F. Ducros, F. Nicoud, and T. Poinsot. Wall-adaptingalcaddy-viscosity model
for simulations in complex geometries. In M. J. Baines,@dNumerical Meth-
ods for Fluid Dynamics VIpages 293—-299. Oxford University Computing Lab-
oratory, 1998.

[32] A. Eberle. Characteristic flux averaging approach @ solution of Euler’'s
equations. Computational fluid dynamics, VKI Lecture Sgri987.

[33] ERCOFTAC. Periodic flow over a 2-D hill.  online, 2002. UR
http://www.ercoftac.nl/workshopl®/case9.2/geom9.2.html.

[34] J. H. Ferziger and M. Peric.Computational Methods for Fluid Dynamics
Springer, 3rd edition, 2002.

[35] J. Frohlich, C. P. Mellen, W. Rodi, L. Temmerman, and M. Leschziner.
Highly resolved large-eddy simulation of separated flow ichannel with
streamwise periodic constrictionsJournal of Fluid Mechanics526:19-66,
2005.

[36] C. Fureby and F. F. Grinstein. Monotonically Integhtearge Eddy Simulation
of Free Shear FlIowsAIAA Journal 37(5):544-556, May 1999.

[37] C. Fureby and F. F. Grinstein. Large eddy simulationightReynolds number
free and wall bounded flowsJournal of Computational Physic481:68-97,
2002.

[38] C. Fureby and G. Tabor. Mathematical and Physical Gaimds on Large-Eddy
Simulations.Theoretical and Computational Fluid Dynamj&85-102, 1997.

[39] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. A dynarsubgrid-scale
eddy viscosity modelPhysics of Fluids A3(7):1760-1765, July 1991.



146 BIBLIOGRAPHY

[40] S. Ghosal. An Analysis of Numerical Errors in Large-Fd8imulations of
Turbulence.Journal of Computational Physic$25:187-206, 1996.

[41] S. Ghosal and P. Moin. The Basic Equations for the LargdyESimulation
of Turbulent Flows in Complex Geometryournal of Computational Physics
118:24-37, 1995.

[42] S. K. Godunov. Finite Oference Method for Numerical Computation of Dis-
continuous Solutions of the Equations of Fluid Dynamicslatematicheski
Sbornik 47:271-306, 1959.

[43] R. E. Gordnier. Numerical Simulation of a 65-Degree tBalNing Flowfield.
Journal of Aircraft 34(4):492—-499, July-August 1997.

[44] R. E. Gordnier and M. R. Visbal. Compactfi&rence Scheme Applied to Sim-
ulation of Low-Sweep Delta Wing FIowAIAA Journal 43(8):1744-1752, Au-
gust 2005.

[45] R. E. Gordnier and M. R. Visbal. High-Order SimulatiohL.mw Sweep Delta
Wing Flows Using ILES and Hybrid RANS.ES Models. In44th AIAA
Aerospace Sciences Meeting and Exhibitmber AIAA-2006-0504, January
2006.

[46] F. F. Grinstein. private communication. Los AlamosiNaal Laboratory, USA.

[47] F. F. Grinstein and C. R. DeVore. Dynamics of coherentcitires and transition
to turbulence in free square jeBhysics of Fluids8(5):1237-1251, May 1996.

[48] F. F. Grinstein and C. Fureby. Recent Progress on MIL&SHigh Reynolds
Number Flows.Journal of Fluids Engineeringl24:848-861, December 2002.

[49] F. F. Grinstein and K. Kailasanath. Chemical energgasé and dynamics of
transitional, reactive shear flowBhysics of Fluids A4(10):2207-2221, Octo-
ber 1992.

[50] F. F. Grinstein, E. S. Oran, and J. P. Boris. Pressurg, fieedback, and global
instabilities of subsonic spatially developing mixing éay. Physics of Fluids
A, 3:2401-2409, 1991.

[51] F. F. Grinstein, L. G. Margolin, and W. J. Rider, editoimplicit Large Eddy-
Simulation Cambridge University Press, 2007.

[52] I. Gursul. Review of Unsteady Vortex Flows over SlenBeita Wings.Journal
of Aircraft, 42(2):299-319, March-April 2005.

[53] I. Gursul, R. Gordnier, and M. Visbal. Unsteady aeraaiyics of nonslender
delta wings.Progress in Aerospace Sciencé4:515-557, 2005.



BIBLIOGRAPHY 147

[54] A. Harten. High Resolution Schemes for Hyperbolic Gamation. Journal of
Computational Physi¢€19:357-393, 1983.

[55] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthyiformly high or-
der accurate essentially non-oscillatory schemesJdiurnal of Computational
Physics 71:231-303, 1987.

[56] D. S. Henn and R. |. Sykes. Large-eddy simulation of flam&rovavy surfaces.
Journal of Fluid Mechanics383:75-112, 1999.

[57] S. Hickel, N. A. Adams, and J. A. Domaradzki. An adaptiveal deconvolution
method for implicit LES Journal of Computational Phyic213:413-436, 2006.

[58] J. O. Hinze.Turbulence McGraw-Hill, 1975.

[59] J. D. Hudson, L. Dykhno, and T. J. Hanratty. Turbulencedpction in flow
over a wavy wall.Experiments in Fluids20:257-265, 1996.

[60] Y. J. Jang, M. A. Leschziner, K. Abe, and L. Temmermanyvektigation of
Anisotropy-Resolving Turbulence Models by Reference tghHi-Resolved
LES Data for Separated Flows=low, Turbulence and Combustip69:161—
203, 2002.

[61] J. Jeong and F. Hussain. On the identification of a vortédournal of Fluid
Mechanics285:69-94, 1995.

[62] G.-S. Jiang and C.-W. Shu. fii€ient Implementation of Weighted ENO
SchemesJournal of Computational Physic$26:202—228, 1996.

[63] K. H. Kim and C. Kim. Accurate, ficient and monotonic numerical methods
for multi-dimensional compressible flows. Part II: Muliirgensional limiting
process.Journal of Computational Physic208:570-615, 2005.

[64] A. N. Kolmogorov. The local structure of turbulence ncompressible viscous
fluid for very large Reynolds numbenoklady Akademii Nauka SSS¥:299—
303, 1941.

[65] C. B. Laney.Computational Gasdynamic€ambridge University Press, 1998.

[66] E. Lenormand, P. Sagaut, L. Ta Phuoc, and P. Comte. &liBgale Models for
Large-Eddy Simulations of Compressible Wall Bounded FIoM#&\A Journal
38(8):1340-1350, August 2000.

[67] M. A. Leschziner. Turbulence modelling for separateavB with anisotropy-
resolving closuresPhilosophical Transactions of the Royal Society of London,
Series A358:3247-3277, 2000.

[68] R. J. LeVeque.Finite Volume Methods for Hyperbolic Problem€ambridge
University Press, 2002.



148 BIBLIOGRAPHY

[69] N. Li and M. A. Leschziner. Large-eddy simulation of segted flow over a
swept wing with approximate near-wall modellingjhe Aeronautical Journal
111(1125):689-697, November 2007.

[70] N.Liand M. A. Leschziner. private communication. Innja¢ College, London,
UK.

[71] X.-D. Liu, S. Osher, and T. Chan. Weighted Essentiallgnpbscillatory
SchemesJournal of Computational Phyic415:200-212, 1994.

[72] H. Lomax, T. H. Pulliam, and D. W. ZinggFundamentals of Computational
Fluid Dynamics Springer Verlag, 2003.

[73] C. Maas and U. Schumann. Direct numerical simulatiosegfarated turbulent
flow over wavy boundary. In E. H. Hirschel, editéilow Simulation with High
Performance Computersolume 52, pages 227-241. Notes on Numerical Fluid
Dynamics, 1996.

[74] N. MacDonald, E. Minty, J. Malard, T. Harding, S. Brovand M. Antonioletti.
Wrinting Message Passing Parallel Programs with MPI. Hdigib Parallel
Computing Centre, University of Edinburgh.

[75] F. Mallinger and D. Drikakis. Laminar-to-turbulenatrsition in pulsatile flow
through a stenosiBiorheology 39:437-441, 2002.

[76] L. G. Margolin and W. J. Rider. A rationale for implictitoulence modeling.
International Journal for Numerical Methods in Fluid39:821-841, 2001.

[77] L. G. Margolin, P. K. Smolarkiewicz, and Z. Sorbjan. gareddy simulations of
convective boundary layers using nonoscillatorfyedencing.Physica O 133:
390-97, 1998.

[78] L. G. Margolin, P. K. Smolarkiewicz, and A. A. Wyszogd. Implicit turbu-
lence modeling for high Reynolds number flowsurnal of Fluids Engineering
124:862-867, 2002.

[79] I. Mary and P. Sagaut. Large Eddy Simulation of Flow Amdwan Airfoil Near
Stall. AIAA Journal 40(6):1139-1145, June 2002.

[80] C. P. Mellen, J. Frohlich, and W. Rodi. Lessons from Eheopean LESFOIL
project on LES of flow around an airfoil. 140th AIAA Aerospace Sciences
Meeting and Exhibjtnumber AIAA-2002-0111, January 2002.

[81] E. Minty, R. Davey, A. Simpson, and D. Henty. Decompgsihe Potentially
Parallel — A one day course. Edinburgh Parallel Computingt@e University
of Edinburgh.

[82] M. S. Mohammed and J. C. LaRue. The decay power law in-ggiterated
turbulence Journal of Fluid Mechanics219:195-215, 1990.



BIBLIOGRAPHY 149

[83] P. Moin and J. Kim. Tackling turbulence with supercortgya. Scientific Amer-
ican, 276(1):62—68, January 1997.

[84] P. E. Morgan and M. R. Visbal. Large-Eddy Simulation Mbdg Issues for
Flow Around Wing Sections. 1133rd AIAA Fluid Dynamics Conference and
Exhibit, number AIAA-2003-4152, June 2003.

[85] Y. Na and P. Moin. Direct numerical simulation of a segiad turbulent bound-
ary layer.Journal of Fluid Mechanics374:379-405, 1998.

[86] M. V. Ol and M. Gharib. Leading-Edge Vortex StructureNdnslender Delta
Wings at Low Reynolds NumbeAIAA Journa) 41(1):16—26, January 2003.

[87] P. S. Pachecdrarallel Programming with MPIMorgan Kaufmann Publishers,
San Francisco, 1997.

[88] F. M. Payne, T. T. Ng, and R. C. Nelson. Experimental $tafithe Velocity
Field on a Delta Wing. 1ri19th AIAA Fluid Dynamics, Plasma Dynamics, and
Lasers Confereng&iumber AIAA-1987-1231, June 1987.

[89] U. Piomelli. Large-eddy simulation of turbulent flow$n Large-Eddy Simu-
lation and Related Techniques: Theory and ApplicatidKl Lecture Series,
2006.

[90] S. B. Pope.Turbulent Flows Cambridge University Press, 2000.

[91] D. H. Porter, A. Pouquet, and P. R. Woodward. A Numertgidy of Super-
sonic TurbulenceTheoretical and Computational Fluid Dynamjeg1):13—-49,
November 1992.

[92] D. H. Porter, A. Pouquet, and P. R. Woodward. Kolmogelike spectra in
decaying three-dimensional supersonic flonBhysics of Fluids6(6):2133—
2142, June 1994.

[93] D. H. Porter, P. R. Woodward, and A. Pouquet. Inertialgea structures in de-
caying compressible turbulent flonBhysics of Fluids10(1):237-245, January
1998.

[94] O. K. Rediniotis, H. Stapountzis, and D. P. Telionisri®gic Vortex Shedding
ofer Delta Wings AIAA Journal 9:1555-1562, 1993.

[95] L. F. Richardson.Weather Prediction by Numerical ProcesSambridge Uni-
versity Press, 1922.

[96] A. J. Riley and M. V. Lowson. Development of a three-dimi@nal free shear
layer. Journal of Fluid Mechanics369:49-89, 1998.

[97] D.P. Rizzetta. Numerical Simulation of the Interaatlzetween a Leading-Edge
Vortex and a Vertical Tail. I'27th AIAA Fluid Dynamics Conferenceumber
AlAA-1996-2012, June 1996.



150 BIBLIOGRAPHY

[98] H. Schlichting.Boundary-Layer TheoryMcGraw-Hill, 1979.

[99] U. Schumann. Subgrid scale models for finit@atence simulations of turbulent
flows in plane channels and annulournal of Computational Physic$8:376—
404, 1975.

[100] H. Shan, L. Jiang, and C. Liu. Direct numerical simigiatof flow separation
around a NACA 0012 airfoilComputerss Fluids, 34:1096-1114, 2005.

[101] E. Shapiro. Step-by-Step Eberle’s scheme derivatichnical report, Cran-
field University, October 2006.

[102] C.-W. Shu and S. Osher. fiigient Implementation of Essentially Non-
Oscillating Shock-Capturing Scheme®urnal of Computational Physicg7:
439-471, 1988.

[103] C.-W. Shu, W.-S. Don, D. Gottlieb, O. Schilling, and Jameson. Numeri-
cal Convergence Study of Nearly Incompressible, Invis@gldr-Green Vortex
Flow. Journal of Scientific Computin@4(1):1-27, 2005.

[104] L. Skrbek and S. R. Stalp. On the decay of homogeneou®sEc turbulence.
Physics of Fluids12(8):1997-2019, August 2000.

[105] J. Smagorinsky. General circulation experiment$iliie primitive equations:
I. The basic experimenMonthly Weather Reviev®1(3):99-164, March 1963.

[106] P. K. Smolarkiewicz and L. G. Margolin. MPDATA: A FimtDifference Solver
for Geophysical FlowsJournal of Computational Physic$40:459-480, 1998.

[107] P. K. Smolarkiewicz and J. M. Prusa. VLES modeling aspjeysical fluids with
nonoscillatory forward-in-time schemesnternational Journal for Numerical
Methods in Fluids39:799-819, 2002.

[108] K. R. Sreenivasan and R. A. Antonia. The Phenomenotd@mall-Scale Tur-
bulence.Annual Review of Fluid Mechanic29:435-472, 1997.

[109] G. I. Taylor and A. E. Green. Mechanism of the Producid Small Eddies
from Large OnesProceedings of the Royal Society of Londqri#8:499-521,
1937.

[110] G. S. Taylor and I. Gursul. Bteting Flows over a Low-Sweep Delta Wing.
AIAA Journal 42(9):1737-1745, September 2004.

[111] G. S. Taylor, T. Schnorbus, and I. Gursul. An investigeof vortex flows over
low sweep delta wings. 183rd AIAA Fluid Dynamics Conference and Exhibit
number AIAA-2003-4021, June 2003.



BIBLIOGRAPHY 151

[112] L. Temmerman, M. A. Leschziner, C. P. Mellen, and &H#ch. Investigation
of wall-function approximations and subgrid-scale modeltarge eddy sim-
ulation of separated flow in a channel with streamwise pé&iodnstrictions.
International Journal of Heat and Fluid Floy24:157-180, 2003.

[113] H. Tennekes and J. L. Lumley First Course in TurbulenceThe MIT Press,
1972.

[114] B. Thornber, A. Mosedale, and D. Drikakis. On the imjtliarge eddy simula-
tions of homogeneous decaying turbulendeurnal of Computational Physics
226:1902-1929, 2007.

[115] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics — A
Practical Introduction Springer Verlag, Heidelberg, 1997.

[116] G. D. van Albada, B. Van Leer, and W. W. Roberts. A Cornatige Study of
Computational Methods in Cosmic Gas Dynamiéstronomy& Astrophysics
108:76-84, 1982.

[117] H. Van der Ven. A family of large eddy simulation filtassth nonuniform filter
widths. Physics of Fluids7(5):1171-1172, 1995.

[118] M. van Dyke.An Album of Fluid Motion The Parabolic Press, 1982.

[119] B. van Leer. Towards the ultimate conservativedence scheme. Part Il
Monotonicity and conservation combined in a second ordeerse. Journal
of Computational Physi¢44:361-370, 1974.

[120] B. van Leer. Towards the ultimate conservativiedtence scheme. Part V: A
Second-Order Sequel to Godunov’s Methdalrnal of Computational Physics
32:101-136, 1979. Reprinted in Volume 135 Number 2, pp. 228-August
1997.

[121] O. V. Vasilyev, T. S. Lund, and P. Moin. A general class@mmutative filters
for LES in complex geometriesJournal of Computational Physic446(1):
82-104, 1998.

[122] I. Veloudis, Z. Yang, J. J. McGuirk, G. J. Page, and Aeisger. Novel Imple-
mentation and Assessment of a Digital Filter Based Apprdaicine Generation
of LES Inlet ConditionsFlow, Turbulence and Combustipr9:1-24, 2007.

[123] C. Wang, Y. J. Jang, and M. A. Leschziner. Modelling wbt and three-
dimensional separation from curved surfaces with anipgtresolving turbu-
lence closures.International Journal of Heat and Fluid Flonw25:499-512,
2004.

[124] R. F. Warming and B. J. Hyett. The Modified Equation Aggoeh to the Stability
and Accuracy Analysis of Finite-Berence Methodslournal of Computational
Physics14:159-179, 1974.



152 BIBLIOGRAPHY

[125] H. Werle. Le tunnel hydrodynamique au service de lisidie. Technical Report
191, ONERA, 1970.

[126] H. Werner and H. Wengle. Large eddy simulation of tlebtiflow over and
around a cube in a plate channel.8in Symposium on Turbulent Shear Flows
Technical University of Munich, 1991.

[127] M. M. Yavuz, M. Elkhoury, and D. Rockwell. Near-Sur&@agopology and Flow
Structure on a Delta WingAIAA Journa) 42(2):332—-340, February 2004.

[128] D. L. Youngs. Modelling turbulent mixing by Rayleighaylor Instability.Phys-
ica D, 37:270-287, 1989.

[129] D. L. Youngs. Three-dimensional numerical simulata turbulent mixing by
Rayleigh-Taylor instabilityPhysics of Fluids A3(5):1312-1320, 1991.

[130] D. L. Youngs. Application of MILES to Rayleigh-Taylaand Richtmyer-
Meshkov mixing. In16th AIAA Computational Fluid Dynamics Conference
number AIAA-2003-4102, June 2003.

[131] S. Zhang and J. T. Turner. private communication. Ntaster University, UK.

[132] J. Zbltak and D. Drikakis. Hybrid upwind methods fétwetsimulation of un-
steady shock-wave fiifaction over a cylinder.Computer Methods in Applied
Mechanics and Engineering62:165-185, 1998.



APPENDIX A

Notation

In this thesis, the following notation exemplified for twoctersa = [ay, ay, ag]" and
b = [by, by, b3]" has been used. The dot product of two vectors is given by

a-b= a]_b]_ + a2b2 + a3b3 5
the cross product of two vectors is defined as
i j ok
a ad ag
by b, bs

axb=

2

the tensor product of two vectors is written as

a athy ab, aybs
a®b=| a [m b, m]: ab; ab, abs |,
ag aghy agh, aghs

the gradient (nabla) operator yields

0 0 0
void 9 0
Fal oy -
the gadient of a scalar is defined as
da .oa | oa
Va=i—+j—+k—,
a Iax * oy " 0z

the gadient of a vector is given by

a1
Va—[i 9 i] a _6&14_6&24_6&3
[ x a9y oz a2 = Ox 8_y _62 ,

3

the divergence of a vector is written as

day  day  day

ox oy o0z
9 0 9 ]_| dm dk i
ox oy o0z | —

a
=)
as

V.a=
dag  dag  dag
ox oy 0z
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Notation

and the divergence of a tensor yields

V.

A =

a1 A2 A3
dy1 dpp do3
dz; dzz Aadss

9x

0z

0a1 + 0aio + 0ai3

3z?x ?ay az?z
dap1 dago az3
ox + oy + 0z

0az1 0agy 0aza
X + ay + 0z



APPENDIX B

Flowchart

( Start program )

!

/ Read input data /
Initialise simulation

Perform real-time steps

!

— Start RK iterations

y

Calculate RHS

y

Advance iteration

End RK iterations

Yes

ﬁrite intermediate outpV
nd real-time step

Yes

/ Write final output /
( End program )

Figure B.1: Flowchart of the solver for unsteady problems includingliedpmulti-stage
Runge-Kutta time integration schemes.
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APPENDIX C

Viscous Stresses

The individual components of the viscous stress tensor mdimensional form as
used in Chapter 3 can be written as follows

Txx

Tyy

Tzz

Txy

Txz

Tyz =

Re\ 30x 39y 30z

1 40u 20v Zaw)

L (_20u 4ov 20w
Re\ 3dx 30y 30z)°

Re | 39x 30y 30z

1
Tyxzﬁe

1
TZX_HQ

1
sz—R_e

1 20u 206v 48W)

.o
ay ox/)’
. o)
0z 0x/)°
o o)
0z oy)

Please note that the Reynolds number has been includedsh@ppased to the notation

in Equation (3.1.24).
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Viscous Stresses




APPENDIX D

Discretisation

For the sake of completeness, the metric relations and disgretisation as used in
Chapter 3, also found in the book of Drikakis and Rider [27§, jaresented here. In a
three-dimensional context, the metrics for the coorditr@esformation is given by

_ & Y4 _ X4t X _ XY = XYy
é:X - J ’ é:y - J ’ é:Z - J s
_ Y& + Yo% R - s 5 _ XY+ X e
rIX - J ’ T]y - J ’ T]Z - J s
— —XeZ, + X - X
4= yé-‘ZnJ YnZe 4= XEZHJ 0l - XfynJ nYe

and the derivatives across a cell face, e.g. defined by trecgpb( — 1/2, j, k), can be
discretised as

Xplicyz ik = 0.5(% jerk + Xij+1ke1 — Xijk — Xijke1) >

Yoli-r2ik = 0.5 +1k + Yijriker — Yijk — Yijked) »

Zli-12ik = 05(Zjs1k + Zj+1ke1 — Zjk — Zjke1) >

0.125(Kis1,jk + Xisdjo1k + Xied j+ kel + Xitd jk
—Xi—1jk = Xie1j+1k+1 — Xi-Lj+ike1 — Xiedjked) »
Yeli—r2jk = 0.125(/ 1 ik + Viesjeik + Yisdjsikes + Yies jk
~Yi-1ik = Yi-Lj+1ke1 = Yi-Lj+ikel = Yi-1jke1) »
0.125@i 1,k + Zis1 j+1k + Zis1 j+1ke1 + Zisjk

~Zi—1jk — Zi—1j+1ke1 — Lol jaikel — Zi-1 jkel) 5

Xeli—1/2,j.k

Zeli—12,k

Xlicrzjk = 050X j+1k + Xijriker = Xijk = Xijke1) »
Yeli-rzik = 0.5 41k + Yijriker — Yijk — Yijked) »
Zli-12ik = 0.5(Zjerk + Zj+ 1k = Zjk — Zjke1) -

Furthermore, the inter-cell velocity derivatives at thesdace can be calculated as

Uelir/2jk = Uistjk — Uijk
Veli1/2jk = Visvjk — Vijk »
Welic1/2jk = Wikt jk — Wijk »
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Discretisation

Upli—1/2,jk
Vpli-1/2,jk
W, li—1/2,jk

Urli—1/2,jk
Velic1y2,jk
Weli—1/2,jk

0.25@Ui j+1k + Ui—1 j+1k — Ui j-1k — Ui—1j-1k) »
0.25( j1k + Vi1j+1k — Vij-1k — Vi-1,j-1k) >
0.25Wi jr1k + Wisg j+1k — Wi j—1k — Wizt j-1k) »

0.25@Ui j 1 + Uimg e — Ui jke1 = Uim1 jk-1) »
0.25(\ jke1 + Vicgjke1 = Vijk-1 — Vi-1jk-1) >
0.25(Wi jxe1 + Wit jke1 — Wijk-1 — Wio1jk-1) -



APPENDIX E

Forcing Term

For the hill flow geometry, the standard form of the Navieskess equations is ex-
tended by an external forcing terinas has been proposed by Lenormand et al. [66].
This modification is necessary because pressure-drivemehfiow violates the bound-
ary conditions for the test case considered here, nameiydieity in x- direction. In

the absence of a pressure drop, the forcing term acts asex éivthe flow and en-
sures a constant mass flow rate. Thus, the augmented NawlersS=quations can be
written as

dp
LT v =
GtV eu) = 0.
9pu +V-(ouu) = -V-P-f-X
ot
(Z—(:+V (eu) = -V-(P-uy-v.-q-f-u-X,

whereu, p, €, andq stand for the velocity components, density, total energyupé
volume, and heat flux, respectively, axnd the unit basis vector in x-direction.

The forcing term is constant in space and its magnitude caadpested dynamically
to obtain the required mass flow rate. For this purpose, tresiiiaw Q can be esti-
mated by considering the momentum equation for the streaenvélocity component
in dimensionless form as given by

dpu . opu? . dpuv . dpuw ap 1 Oty s 1 Oty s 1 9t
at  ax dy 5z~ ox Re ox ' Re dy Re 0z

Now, the individual terms as applied in the finite volume eomttan be simplified by
taking the specific boundary conditions for the hill flow irtoccount

fffap”d xd d—anQ,
ot
fffapu dxdydz_ffpu
fffapuvdxdydz_ffpu d ] z PErodicity. per|od|C|ty ’
Yo

per|0d|C|ty
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E-2 Forcing Term
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Combining the terms again gives the estimate for the massétmv

9Q _
ot Ll f |_X f f

whereL,, Ly andL, mark the extent of the domain in streamwise, cross-streawemn
tical direction, respectively. All assumptions made poergly are strictly valid only if
the governing equations are given in Cartesian form and uheature at the bottom
wall of the hill is neglected, otherwise the pressure termsdaot drop out. The error
introduced by this simplification, however, is relativetpall as is demonstrated later.
The numerical evaluation of the above equation is performedte transformed co-
ordinate system in order to include th#eet of the hill-type constriction on the term
representing the shear stress contribution. Yet, for tke shsimplicity, the numerical
procedure is outlined here in Cartesian form.

dde periodicity 0 ’

periodicity
dxdz——— 0,

In the next step, the mass flow rate is replaced by its discmieterpart, yielding

Qn+1 Qn At |—y |—Z

wheren marks the current time level anxi is the size of the discrete time-step. Fi-
nally, the sought after expression for the forcing term atftilowing time instance is
obtained by a predictor-corrector rule

C(AQ-Q+5(Q-Q) .

fn+1 — fn

with 8; = 2, 8, = —0.2 as proposed by Lenormand et al. [66] &pdbeing the target
mass flow. It has been found numerically that the error ofdpjgroach lies within 1%
of the ideal value in case of the hill flow.



APPENDIX
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Profiles for the Swept Wing

The velocity and turbulent energy profiles presented in @hrdphave been obtained at

locations according to the the experimental data providedhang and Turner [131].

Here, a full set of comparisons including velocity and Rdgiacstress components

between the ILES simulation using high resolution methaus the experiment is
provided in the following figures.

The base-points of the profiles on the wing surface are pbestin terms of half-

spans and local chora positions as sketched in Figure F.1. In this context, thalloc

chord is defined as the coordinate along the surface of thg & the trajectory of
the measurement in the two-dimensional cut parallel to timgwoot is given by its
inclination with respect to the vertical direction.

10%c T

30%c|
50%c @
70%c|
90%c|

10%s 30%s 5

0%s

@
i o %
B D G
0%s 90%s

Figure F.1: Sketch of the profile base-points on the wing surface.

‘ 30%s 40%s 50%s 60%s 70%s 80%s  90%s
10%c | -3.1230 -9.0018 -9.0013 -8.9999 -8.9999 -1.0785 -0.6679
30%c | -7.6306 -8.9999 -9.0013 -8.9999 -9.0013 -5.4307 -4.9042
50%c | -7.0443 -8.9999 -9.0013 -8.9999 -9.0013 -8.5867 -7.9587
70%c | -9.0013 -9.0013 -8.9904 -9.0013 -8.9919 -8.2950 -8.9621
90%c | -9.0013 -9.0013 -9.0013 -8.9999 -8.9999 -8.2254 -8.8946

Table F.1: Angles between the measurement trajectories and thealadtfection. The
profiles are taken normal to the wing surface unless markexhlasterisk:{=trajectories
normal to the root chord of the wing).



F-2 Profiles for the Swept Wing
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Figure F.2: Comparison between averaged velocity profiles from theraxigats of Zhang
and Turner [131], the results obtained with ILES and the ilyRANS/LES of Li and
Leschziner [69] for dferent locations along the local chord at 30% half-span.



Profiles for the Swept Wing

F-3

015 T T 015 : 015 T
—@— EXPERIMENT —@— EXPERIMENT
—— ILES (M3) —— ILES (M3) —— ILES (M3)
01f 1 01 1 01 1
o o o
=l = =
0.05f 1 005 1 005 1
0 0.5 1 s 1 05 0 02 g 02
<u>/u, <v>/u, <w>/u,
(a) Averaged u at 10% (b) Averaged v at 10% (c) Averaged w at 10%
015 T T 015 T T 015 T T
—8— ILES (M3) —@— ILES (M3)
0.1F 1 0.1 0.1f 1
o o o
= s s
0.05f 1 005 0.05f 4
o= =05 i s ¥ x 0 EV R 02
<u>/u, <v>/u, <w>/u,

(d) Averaged u at 30% (e) Averaged v at 30% (f) Averaged w at 30%

015 T T 015 015 T T T
—8— ILES (M3)
0.1 B 0.1 0.1F 4
=] s s
0.05f 1 005 0.05 4
0 ; s 0 0.2 g 0.2
<u>/u, <w>/u,
(g) Averaged u at 50% (h) Averaged v at 50% (i) Averaged w at 50%
015 T T 015 T 015 T
—8— ILES (M3)
0.1p B 0.1 B 0.1 4
=] s s
0.05f 1 o005 4 005 4
0 5 1 s I 05 0 0.2 g 0.2
<u>/u, <v>/u, <w>/u,
(i) Averagedu at 70% (k) Averagedv at 70% (I) Averaged w at 70%
015 T 015 T 015 T
—8— ILES (M3)
0.1F 1 0.1 1 0.1 1
=] s s
0.05f 1 005 4 005 4
0 5 i s T 05 0 - g 0.2
<u>/u, <v>/u, <w>/u,

(m) Averaged u at 90% (n) Averaged v at90% (o) Averaged w at 90%

Figure F.3: Comparison between averaged velocity profiles from theraxgats of Zhang
and Turner [131] and the results obtained with ILES fdfedient locations along the local

chord at 40% half-span.
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Figure F.4: Comparison between averaged velocity profiles from theraxgats of Zhang
and Turner [131], the results obtained with ILES and the ilyRANS/LES of Li and

Leschziner [69] for dferent locations along the local chord at 50% half-span.
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Figure F.5: Comparison between averaged velocity profiles from theraxigats of Zhang
and Turner [131] and the results obtained with ILES fdfedient locations along the local
chord at 60% half-span.
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Figure F.6: Comparison between averaged velocity profiles from theraxgats of Zhang
and Turner [131], the results obtained with ILES and the ilyRANS/LES of Li and

Leschziner [69] for dferent locations along the local chord at 70% half-span.
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Figure F.7: Comparison between averaged velocity profiles from theraxgats of Zhang
and Turner [131] and the results obtained with ILES fdfedient locations along the local
chord at 80% half-span.
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Figure F.8: Comparison between averaged velocity profiles from theraxgats of Zhang
and Turner [131], the results obtained with ILES and the ilyRANS/LES of Li and
Leschziner [69] for dferent locations along the local chord at 90% half-span.
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Figure F.9: Comparison between averaged stress profiles from the expets of Zhang and
Turner [131] and the results obtained with ILES foffeient locations along the local chord at
30% half-span.
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Figure F.10: Comparison between averaged stress profiles from the exgets of Zhang
and Turner [131] and the results obtained with ILES fdfedient locations along the local
chord at 40% half-span.
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Figure F.11: Comparison between averaged stress profiles from the exgets of Zhang
and Turner [131] and the results obtained with ILES fdfedient locations along the local
chord at 50% half-span.
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Figure F.12: Comparison between averaged stress profiles from the expets of Zhang
and Turner [131] and the results obtained with ILES fdfedient locations along the local
chord at 60% half-span.
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Figure F.13: Comparison between averaged stress profiles from the exgets of Zhang
and Turner [131] and the results obtained with ILES fdfedient locations along the local
chord at 70% half-span.
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Figure F.14: Comparison between averaged stress profiles from the exgets of Zhang
and Turner [131] and the results obtained with ILES fdfedient locations along the local
chord at 80% half-span.
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Figure F.15: Comparison between averaged stress profiles from the exgets of Zhang
and Turner [131] and the results obtained with ILES fdfedient locations along the local
chord at 90% half-span.
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