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1.   Introduction 

 

Clive Granger told in his Nobel autobiography how he came to forecasting as a line of 

research that ‘had great potential’ by reading an advance copy of Box and Jenkins’ book in 

1968.  Two important articles quickly appeared, both in the British OR journal.  First was an 

article on forecasting with generalised cost functions, which has fewer citations than the 

second article but is currently enjoying a resurgence of interest, as research finds increasing 

evidence that responses to forecast surveys in several countries exhibit important departures 

from the quadratic loss function that is found so convenient in theoretical work.  Second was 

the seminal article with John Bates on forecast combination, which opened up a whole new 

sub-field in forecasting.  Although Bates and Granger (1969) cited an earlier article by 

Barnard (1963) which contained an empirical example in which a simple average of two 

forecasts had smaller Mean Square Error (MSE) than either of the individual forecasts, theirs 

was the first work to develop a general analysis of the point forecast combination problem.  

Twenty years after its publication, Clemen (1989) provided a review of the new field and an 

annotated bibliography containing over 200 items, which he described as ‘an explosion in the 

number of articles on the combination of forecasts.’  Clemen’s article in the International 

Journal of Forecasting was accompanied by several commentaries and reflections by leading 

researchers, while the Journal of Forecasting simultaneously published a special issue on 

combining forecasts, in which the first article was ‘Combining forecasts – twenty years later’ 

(Granger, 1989).  This article returns to two of the topics in that article, forty years after Bates 

and Granger’s work. 

 

 Clive Granger’s remarkably long list of publications includes several articles in which 

he discussed current developments and future prospects in particular fields of time-series 

econometrics.  They are full of his thoughts on where more research was needed and his ideas 

on how that research could be developed.  They are more forward-looking than backward-

looking, containing very little by way of literature review.  In the present case, although the 

Journal of Forecasting described his article as an ‘invited review article’, he explicitly 

excluded an ‘attempt to survey the literature on combining, which is now voluminous and 

rather repetitive.’  More often, such an exclusion was implicit rather than explicit, without 

any excuse being offered, and the pages were devoted to an unceasing flow of new ideas and 

creative suggestions, which became an invaluable resource for other researchers.  Not all of 

these ideas have stood the test of time, but his success rate is notably high. 
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 A major theme of ‘Twenty years later’ is the relevance of information sets, discussion 

of which ‘is an essential feature of all forecasting situations, including combining.’  Section 2 

of this article revisits its analysis of how the original treatment of point forecast combination 

is affected when competing forecasters have different information sets, and all of them use 

their own information efficiently.  Explicit expressions are presented for the forecast MSEs 

that support its main result, referred to as ‘the inefficiency of mean forecasts’ in independent 

work by a later group of authors.  The simple average of several available forecasts has been 

a popular summary device for as long as competing forecasts have been available, and how it 

might be improved, in similarly simple fashion, remains a topic of interest. 

 

 The final ‘extensions’ considered in ‘Twenty years later’ concern the combination of 

uncertainty measures such as quantiles, which ‘is a step towards the larger question of how 

we would combine or aggregate distributions.’  As I have observed (Wallis, 2005), 

distributions have been aggregated ever since Zarnowitz (1969) published averages of the 

density forecasts of inflation and GNP growth supplied in histogram form by respondents to 

the ASA-NBER survey of forecasts by economic statisticians (continued since 1990 as the 

Survey of Professional Forecasters).  I noted that the finite mixture distribution is an 

appropriate statistical model for such combined density forecasts; the same algebraic form 

appears in statistical decision theory as the linear opinion pool, and the two terms have come 

to be used interchangeably.  On the other hand the quantile-based methods of combining 

forecast distributions proposed in ‘Twenty years later’ have not been taken up. 

 

 A popular choice of functional form for interval and density forecasts is the normal 

distribution.  When combining density forecasts it might be desired for presentational reasons 

and/or analytical convenience that the combined forecast retains the same functional form as 

the component forecasts, but in the normal case linear combination does not deliver this.  

Section 3 of this article considers the properties of the logarithmic opinion pool or geometric 

average of component normal density forecasts, which does preserve this distributional form, 

as an alternative to linear combination.  An example is constructed as an additional variant 

forecast in the Monte Carlo experiment of Mitchell and Wallis (2010).  With respect to the 

probabilistic calibration and goodness-of-fit of combined density forecasts, some parallels 

with the inefficiency of mean (point) forecasts discussed in Section 2 are observed. 
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2.   Point forecasts with different information sets 

 

The basic optimality result of Bates and Granger (1969) is that a linear combination of two 

competing point forecasts using the optimal (variance minimising) weight in general has a 

smaller forecast MSE than either of the two competing forecasts.  It might have seemed 

counter intuitive that combining with an inferior forecast could improve matters, relative to 

the MSE measure, but combining using the weight that is optimal with respect to the same 

measure is seen to achieve this.  The only case in which no improvement is possible is that in 

which one forecast is already the optimal (minimum MSE) forecast; its optimal weight is then 

1, and there is no gain in combining with an inferior forecast, whose weight is 

correspondingly 0.  Twenty years later Granger (1989, p.168) noted that in this original 

setting the two forecasts were implicitly based on the same information set, and ‘For 

combining to produce a superior forecast, both component forecasts clearly had to be 

suboptimal.  It is more usual for combining to produce a better forecast when the individual 

forecasts are based on different information sets, and each may be optimal for their particular 

set.’ 

 

 A stylised representation of this more usual situation is obtained by assuming that 

each forecaster’s information set has two components, one available to all N forecasters and 

the other available only to the specific individual, with the various components assumed to be 

mutually independent.  All the information available to all the forecasters is referred to as the 

universal information set.  The target variable is denoted ty , and the contents of the public 

and private information sets are the current and past values of the variables tz  and 

,  1,...,jtx j N= , respectively.  These could be vector series, but are taken to be univariate for 

convenience.  If the universal information set tU  were known, the optimum linear least 

squares one-step-ahead forecast would be 

  ( )1Et t tE y U+=  

       
1

( ) ( )
N

t j jt
j

B z B xα β
=

= +∑        (1) 

where ( ), ( )jB Bα β  are lag operator polynomials.  This is equation (1) of Granger (1989), 

with subscript t replacing his subscript n.  He continues ‘With the assumptions made, the 

optimum forecast of the jth person is 
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  ( ) ( )jt t j jtE B z B xα β= + .       (2) 

Forming a simple average of these individual forecasts gives 

  
1

1 N

t jt
j

E E
N =

= ∑  

       
1

1( ) ( )
N

t j jt
j

B z B x
N

α β
=

= + ∑ .’      (3) 

Clearly, neither this equally-weighted combination of the individual forecasts nor any other 

combination with weights adding to one achieves the optimum forecast tE .  ‘It is seen that 

aggregating forecasts is not the same as aggregating information sets.  tE  is based on all the 

information, but is not equal to tE , as the information is not being used efficiently.’  

However, if yet another forecast is constructed, using only the public information, namely 

  0 ( )t tE B zα=          (4) 

‘then it is seen immediately that the optimal forecast tE  can be achieved by 

  0
1

( 1)
N

t jt t
j

E E N E
=

= − −∑ .’       (5) 

 

 No direct comparisons of forecast efficiency are given in this analysis, and we pursue 

these in a slightly modified setting.  We redefine tz  and ,  1,..., ,jtx j N=  as the components 

of the forecasts of 1ty +  based on public and private information respectively, and denote the 

respective MSEs of tz  and jtx  as 2
0σ  and 2

1σ , constant over j.  Then the individual forecasts 

constructed as the optimally ‘inverse MSE’ weighted combination of the two components, 

and their MSEs, are 

  
2 2
1 0

2 2
1 0

t jt
jt

z x
E

σ σ

σ σ

+
=

+
,        (2') 

  ( )
2 2
0 1

2 2
1 0

MSE ,  1,...,jtE j Nσ σ
σ σ

= =
+

. 

We note that this alternative definition of tz  and jtx  does not affect the structure of the 

forecast jtE : the variance weights in equation (2') are incorporated in the least squares 
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coefficients ( )Bα  and ( )j Bβ  of the originally defined variables in equation (2).  The 

corresponding mean of the N individual forecasts, and its MSE, is 

  

2 2
1 0

1
2 2
1 0

1 N

t jt
j

t

z x
N

E

σ σ

σ σ
=

+

=
+

∑
,       (3') 

  ( )
( )

2
2 2 2 0
0 1 1

22 2
1 0

MSE t
N

E

σσ σ σ

σ σ

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠=
+

. 

It is clear that the MSE of the mean forecast is less than the MSE of each individual forecast, 

increasingly so as N increases.  The optimal forecast given the universal information set is a 

similarly modified version of equation (1); together with its MSE we have 

  

2 2
1 0

1
2 2
1 0

N

t jt
j

t

z x

E
N

σ σ

σ σ
=

+

=
+

∑
,       (1') 

  ( ) ( )
2 2
0 1

2 2
1 0

MSE tE
N

σ σ

σ σ
=

+
. 

The inefficiency of the mean forecast, that is, ( ) ( )MSE MSEt tE E>  follows on observing 

that 

  ( ) ( )
2 22 2 2 2 20

1 1 0 1 0N
N
σσ σ σ σ σ

⎛ ⎞
+ + > +⎜ ⎟⎜ ⎟

⎝ ⎠
  if  N>1. 

Finally, we see that the optimal forecast can be achieved as a combination of the mean 

forecast and the public forecast, as above.  Noting that equation (5) gives the optimal forecast 

as the combination 0(1 )t tkE k E+ −  with weight k N= , the effect of the modifications in the 

present paragraph is to require 

  
( )2 2

1 0
2 2
1 0

N
k

N

σ σ

σ σ

+
=

+
 

in order to obtain the corresponding result. 

 

 Equivalent results to these modified results, except the last one, are given completely 

independently by Kim, Lim and Shaw (2001), working in accounting and finance and making 

no reference to the statistical forecasting literature.  They consider several financial analysts 
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forecasting a firm’s forthcoming earnings.  Each analyst possesses both common and private 

information, in the form of a public and a private signal, each equal to the forthcoming 

earnings plus a zero-mean random error.  The assumed source of random variation – noise in 

the signals – differs from that assumed in the forecasting literature – the innovation in the 

data-generating process – but the main result, referred to as ‘the inefficiency of mean 

forecasts’ and expressed in terms of the precision of the signals rather than forecast MSEs, is 

the same.  However Kim, Lim and Shaw do not consider the possibility of constructing a 

fully efficient forecast, with no equivalent to equation (5) above, since ‘neither analysts’ 

common nor private information is separately observable’ (2001, p.330).  Instead they 

consider the exploitation of a sequence of signals and associated forecast revisions in a fixed-

event forecast context.  Models in which agents receive noisy public and private signals about 

the underlying state have a long history in economics, serving to relax the Walrasian 

postulate of complete information: see, for example, the references given by Morris and Shin 

(2002) prior to their analysis of the social value of public information.  As with the 

forecasting literature, however, Kim, Lim and Shaw’s work is independent of this. 

 

 Crowe (2010) similarly considers the fixed-event context of the forecasts of economic 

growth collected by Consensus Economics in several countries: forecasts for the current year 

and the next year are collected monthly.  The source of the inefficiency in the mean or 

‘consensus’ forecast is interpreted as its overweighting of public information – compare 

equations (1) and (3) or (1') and (3').  In fixed-event forecasting the public information 

includes previously published mean forecasts of the same target variable, and hence the 

successive revisions to those mean forecasts.  The manifestation of the inefficiency is 

(negative) correlation between the mean forecast and its forecast error, the latter being a 

function of all past forecast revisions.  Consideration of this relationship allows an estimate 

of the efficient forecast to be obtained via an adjustment to the current mean forecast which 

depends on the latest forecast revision.  With the model estimated for 38 countries over the 

period 1989-2006, evaluation of out-of-sample current-year forecasts for 2007 and 2008 

shows that efficiency gains of some 5% root mean square error could have been achieved. 
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3.   Linear and logarithmic combination of density forecasts 

 

We consider N individual density forecasts of a random variable Y at some future time, 

denoted ( ) ,  1, ..., ,jf y j N=  with means and variances 2,  .j jμ σ   For economy of notation 

time subscripts and references to the information sets on which the forecasts are conditioned 

are suppressed.  The linear combination or finite mixture distribution is 

  ( ) ( )
1

N

C j j
j

f y w f y
=

= ∑ ,        (6) 

with weights 0,  1,..., ,  1.j jw j N w≥ = Σ =   The combined density has mean and variance  

  
1

N

C j j
j

wμ μ
=

=∑ ,        (7) 

  ( )22 2

1 1

N N

C j j j j C
j j

w wσ σ μ μ
= =

= + −∑ ∑ .      (8) 

If the density forecast means are equal to the point forecasts, and equal weights 1jw N=  are 

used, then equation (7) gives the simple average point forecast, and equation (8) gives the 

variance of the combined density as the average individual variance plus a measure of the 

dispersion of the individual point forecasts.  This decomposition of the combined variance 

into measures of uncertainty and disagreement is employed in recent studies of survey 

forecasts in the UK (Boero, Smith and Wallis, 2008) and the US (Rich and Tracy, 2010).  As 

noted above, the linear combination of normal densities is not a normal density, indeed it may 

be multimodal; it was the consideration of a mixture of two normal distributions by Pearson 

(1894) that initiated the finite mixture distribution literature. 

 

 The logarithmic opinion pool first appeared, according to Genest and Zidek’s (1986) 

survey of combining probability distributions, in an unpublished 1972 manuscript by Michael 

Bacharach, who in turn, they say, attributed it to Peter Hammond, but there appears to be no 

surviving copy of either Bacharach’s manuscript or Hammond’s communication.  A further 

remark by Genest and Zidek (1986, p.119) suggests that Winkler (1968) earlier referred to the 

logarithmic opinion pool, and later authors, for example Kascha and Ravazzolo (2010, 

pp.233, 237), similarly reference Winkler, but this is not correct: Winkler (1968) does not 

mention the logarithmic opinion pool.  For Genest and Zidek, the most compelling reason for 

using the logarithmic opinion pool is that the processes of pooling and updating then 
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commute.  That is, suppose (a) individual distributions are first combined, then the combined 

distribution is updated following Bayes’ rule using some later observation, or (b) individual 

distributions are first updated using the later (common) observation, then combined: with 

logarithmic pooling both approaches give the same result, but not with linear pooling.  For 

this reason the logarithmic opinion pool is sometimes said to be ‘externally Bayesian’ (see, 

for example, Faria and Smith, 1997), since to an external observer the combined forecast 

looks like that of a single Bayesian forecaster. 

 

 The logarithmic combination is usually written using the geometric form, as 

  
( )

( )
( )

j

j

w
j

G w
j

f y
f y

f y dy
= ∏
∏∫

,       (9) 

where the denominator is a constant that ensures that ( )Gf y  is a proper density.  Our main 

interest lies in the logarithmic combination’s preservation of the normality of component 

distributions; more generally, if the component distributions are from the regular exponential 

family, then the combined distribution is from the same family and hence, in particular, is 

unimodal (Faria and Mubwandarikwa, 2008).  Formally, for the normal case, we have that if 

( )2( ) , ,  1,..., ,j j jf y j Nμ σ= =N   then  ( )2( ) ,G G Gf y μ σ= N   where 

  2 2
1

N
jG

j
jG j

w
μμ

σ σ=
=∑ ,                  (10) 

  2 2
1

1 1N

j
jG j

w
σ σ=

=∑ .                  (11) 

With equal weights 1jw N=  on the densities, equation (11) gives 2
Gσ  as the harmonic mean 

of the individual variances; this is less than their arithmetic mean, which is less than the finite 

mixture variance given in equation (8).  Substituting into equation (10) then gives the 

combined mean or point forecast as a linear combination of the component means with 

inverse variance weights.  Thus logarithmic combination with equal weights delivers a 

combined point forecast that is more efficient than the linear combination with equal weights, 

unless the component forecast variances are equal, in which case the two combined means 

coincide.  In practice it is often found that competing forecast variances are not very different 

from one another, in which case it may be more efficient to impose equal weights than to 
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estimate the weights – the squared bias is less than the estimation variance (Smith and Wallis, 

2009). 

 

Example 

We add a logarithmic combination to some of the competing forecasts that appear in the 

simulation study of Mitchell and Wallis (2010), which extends the example given by Wallis 

(2005).  The data-generating process is the Gaussian second-order autoregression 

  ( )2
1 1 2 2 ,  ~ 0, .t t t t tY Y Y εφ φ ε ε σ− −= + + N  

The universal information set comprises the observations 1ty −  and 2ty − , the model and its 

parameter values, hence the important practical effects of model uncertainty and parameter 

estimation error are neglected.  Then the optimal or ‘ideal’ density forecast of ty  is 

  ( ) ( )2
1 1 2 2,o t t tf y y y εφ φ σ− −= +N . 

The first individual forecaster (labelled AR1 below) assumes that the data are generated by a 

first-order autoregression and so issues the forecast 

  ( ) ( )2
1 1 1 1, ,t tf y yρ σ−= N  

while the second individual (AR2) similarly uses only a single observation but is subject to a 

one-period data delay, so the forecast is 

  ( ) ( )2
2 2 2 2,t tf y yρ σ−= N , 

where ( )2 2 2
1 11 yσ ρ σ= − , ( )2

2
2

2 21 yσ ρ σ−= , ( )2 2
1 1 2 21 yεσ φ ρ φ ρ σ= − −  and ,  1, 2i iρ = , are the 

autocorrelation coefficients: 

  ( )1 1 21ρ φ φ= − ,  2 1 1 2ρ φ ρ φ= + . 

 

 The linear combination of these two individual forecasts, with equal weights, is the 

finite mixture distribution 

  ( ) ( ) ( )2 2
1 1 1 2 2 20.5 , 0.5 , ,C t t tf y y yρ σ ρ σ− −= +N N  

with mean and variance obtained from equations (7) and (8).  The logarithmic combination is 

a normal distribution with mean and variance given as 

  
2 2
2 1 1 1 2 2

2 2
1 2

,t t
G

y yσ ρ σ ρμ
σ σ
− −+

=
+
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2 2

2 1 2
2 2
1 2

2 .G
σ σσ

σ σ
=

+
 

The composite information set for the combined density forecasts includes the same two 

observations as the information set of the optimal forecast.  However the combined forecasts 

use this information inefficiently, relative to the optimal forecast.  This parallels the 

inefficiency of the mean (point) forecast discussed in Section 2. 

 

 A standard tool for checking the distributional form of density forecasts is the 

sequence of probability integral transform (PIT) values of the outcomes in the forecast 

distributions 

  ( ) ,t t tp F y=  

where (.)tF  is the forecast cumulative distribution function.  For the ideal forecast, the stp  

are independent uniform (0,1)U  variables.  If the forecast is the correct conditional 

distribution with respect to its specific information set, then the stp  are uniformly but in 

general not independently distributed: such a forecast satisfies ‘probabilistic calibration’ but 

not ‘complete calibration’.  Uniformity is often assessed in an exploratory manner, by 

inspection of histograms of PIT values, for example, and goodness-of-fit tests are also 

available, although their performance is affected by departures from independence.  For a 

joint test of complete calibration we consider the likelihood ratio test of Berkowitz (2001), 

based on the inverse normal transformation of the s,tp  namely ( )1
t tz p−= Φ , where ( )Φ ⋅  is 

the standard normal distribution function.  If tp  is iidU(0,1), then tz  is iid (0,1).N   Under a 

maintained hypothesis of normality, the joint null hypothesis of correct mean and variance 

(‘goodness-of-fit’) and independence is tested against a first-order autoregressive alternative 

with mean and variance possibly different from (0,1), via a likelihood ratio test with three 

degrees of freedom. 

 

 Comparisons of forecast performance can be based on the logarithmic score, defined 

for forecast density jtf  as 

  ( ) ( )log logj t jt tS y f y= . 

To a Bayesian the logarithmic score is the logarithm of the predictive likelihood, and if two 

forecasts are being compared, the log Bayes factor is the difference in their logarithmic 
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scores.  If one of the forecasts is the ideal forecast, then the expected difference in their 

logarithmic scores is the Kullback-Leibler information criterion (KLIC) or distance measure 

  { }KLIC log ( ) log ( ) .jt o ot t jt tE f y f y= −  

If the ideal forecast is known, as in a simulation experiment, competing forecasts can be 

tested against it via their average logarithmic scores, using the transformed variables tz  

(Mitchell and Hall, 2005).  For density forecasts based on normal distributions we have 

(Mitchell and Wallis, 2010), subscripting parameters appropriately, 

  
( )22 2

1 1 1
2 2 22 2 2KLIC log .

2
o jo o

jt
j j j

μ μσ σ
σ σ σ

⎛ ⎞ −
⎜ ⎟= − − + +
⎜ ⎟
⎝ ⎠

 

This has a minimum at zero: the sum of the first three terms on the right-hand side is non-

negative, as is the fourth term.  Thus a positive KLIC may result from departures in mean 

and/or variance in either direction, and additional investigation, via the PIT histogram, for 

example, is needed to discover the direction of any departure.  For example the competing 

forecast may be too dispersed or not dispersed enough, indicated by a hump-shaped or U-

shaped PIT histogram, respectively. 

 

 The relative performance of the two combination methods is assessed by adding the 

logarithmic combination to the AR1, AR2 and linear combination forecasts that appear 

(among others) in the simulation study of Mitchell and Wallis (2010), retaining all other 

features of their experimental design, with 500 replications of samples of 150 observations.  

The four pairs of values of the autoregressive parameters 1φ  and 2φ  used are shown, together 

with the corresponding first- and second-order autocorrelation coefficients and the associated 

values of the density forecast variances, in Table 1.  Case (1) represents a relatively persistent 

series, whereas case (2) exhibits rather less persistence than is observed in inflation and GDP 

growth, for example: it is tending towards white noise, in which case all these forecasts 

would be identical.  The structure of case (3) is such that the AR1 forecast coincides with the 

unconditional forecast, hence its variance is equal to the variance of the observed series, 

while the AR2 forecast coincides with the ideal forecast, with variance equal to the 

innovation variance.  Case (4) represents a rather unusual oscillating form.  It is seen that, in 

all cases, 2 2
G Cσ σ< , as anticipated in the discussion following equation (11) above.  The 

difference is greatest in case (3), where the component variances are most unequal and the 
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Table 1.  Simulation design and density forecast variances 
 

             Parameter      Autocorrelation                Density forecast variance 
Case 1φ  2φ  1ρ 2ρ 2

1σ
2
2σ

2
Cσ  

2
Gσ

    
(1) 1.5 –0.6 0.94 0.81 1.56 4.52 3.40 2.32

    
(2) 0.15 0.2 0.19 0.23 1.04 1.02 1.05 1.03

    
(3) 0 0.95 0 0.95 10.26 1 7.94 1.82

    
(4) –0.5 0.3 –0.71 0.66 1.10 1.27 1.34 1.18

    
Note:  2 1εσ =  in all cases 
 
expected disagreement term in equation (8) also contributes strongly to 2

Cσ .  In cases (2) and 

(4) 2
Cσ  exceeds both the component variances, whereas 2

Gσ  always lies between 2
1σ  and 2

2σ , 

of course. 

 

 For initial diagnostic checking we consider histograms of PIT values, to allow an 

informal assessment of their uniformity and hence of the probabilistic calibration of the 

forecasts.  This is expected to hold for the two separate components of the combinations, that 

is, the AR1 and AR2 forecasts, since each of these represents the correct conditional 

distribution in respect of its normality and its first two moments conditional on the past data 

being used.  The results presented in Figure 1 entirely meet these expectations, with all the 

histograms in the first two columns being essentially uniform.  Despite this, the PIT 

histograms for the combinations of these forecasts in the third and fourth columns show 

departures from uniformity, most dramatically in cases (3) and (4).  The histograms are 

approximately symmetric but hump-shaped, thus the dominant effect is the increased 

variance of these forecasts relative to the correct conditional forecast for the combined 

information set: too few observations lie in the tails of these forecast densities.  In the rows 

with the greater departures from uniformity, comparison of the third and fourth columns 

indicates that the logarithmic combination is performing better than the linear combination, 

having a smaller variance and the correct distributional form, but the relative contributions of 

these two factors are not distinguishable. 
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Table 2.  Tests of complete calibration and forecast performance: rejection percentages at 
nominal 5% level 

 
  Case (1)  Case (2)  Case (3)  Case (4) 

Forecast   Bk   KLIC   Bk   KLIC   Bk   KLIC   Bk   KLIC 

         

AR1   100  98   17  25   99 100    62  46 

AR2   100 100   30  15   5.6 n.a.    97  93 

Lin combn     100 100   14  10   100 100    62  55 

Log combn   100 100   12    7   99   84    37  25 

Note:  Bk, the likelihood ratio test of Berkowitz (2001); KLIC, the test of KLIC differences 
vs. the ideal forecast of Mitchell and Hall (2005) 

 
 
 The results of formal tests of complete calibration and forecast performance are 

reported in Table 2.  The AR1 and AR2 forecasts are probabilistically calibrated, as shown in  

Figure 1, so the Berkowitz test is essentially a test of the independence of the s,tz and 

indirectly a test of the independence of the s.tp   It is seen that the test has good power: in case 

(1), a relatively persistent series, there are no Type 2 errors in the 500 replications; the 

rejection rate is smallest in case (2), which is closest to a white noise series.  In case (3) the 

AR2 forecast is the same as the ideal forecast, and the rejection rate is not significantly 

different from the nominal size of the test.  Otherwise the test gives a good indication that the 

two individual forecasts do not satisfy complete calibration.  The results of the KLIC-based 

test of forecast performance against the ideal forecast give very much the same finding. 

 

 The combination forecasts satisfy neither probabilistic calibration nor independence, 

and can be expected to be rejected against the ideal forecast.  The main interest lies in the 

possibility of discriminating between the linear and logarithmic combinations.  In case (1), no 

discrimination is possible, since there is no failure to reject either forecast using either test.  

In the remaining cases the results favour the logarithmic combination, which is rejected less 

frequently by either test than the linear combination.  Finally, with respect to these measures 

some gains from combining can be observed, with the logarithmic combination being 

rejected less frequently than either of the two component forecasts in cases (2) and (4). 
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Discussion 

The combination density forecasts in our example are constructed using equal weights, 

whereas there is an emerging literature on the problem of estimating the weights in practice.  

It seems to be agreed to base the weights on past forecast performance as measured by the 

average logarithmic score, possibly allowing for time variation in the weights (Hall and 

Mitchell, 2007; Geweke and Amisano, 2009; Jore, Mitchell and Vahey, 2010; Kascha and 

Ravazzolo, 2010).  The first three groups of authors only consider linear combinations, 

whereas the last-named also include logarithmic combinations.  Using the same performance 

measure they find no clear ranking of the two forms of combination of the various (linear) 

forecasting models of inflation they construct for four countries, but no information on their 

comparative calibration characteristics is given.  However a similar exercise conducted at the 

same institution (Norges Bank), studying combinations of forecasting models for Norwegian 

GDP growth and inflation, presents PIT histograms for linear and logarithmic pools 

(Bjornland et al., 2009, Figures 15-18).  For both variables the logarithmic combination 

appears to be better calibrated, with the linear combination having too few observations in the 

tails of the histograms, indicating excessive dispersion in the combined forecast densities, as 

in our example above. 

 

 The weak statistical evidence favouring the logarithmic over the linear combination of 

density forecasts may be augmented in practice by the advantages of a combined forecast that 

retains the distributional form of its components.  A committee of individual forecasters, each 

producing a density forecast according to a given specification, and charged with producing a 

composite forecast, will find it more convenient analytically and easier to communicate the 

results if the composite forecast has the same form, which the logarithmic combination is 

more likely to deliver.  When the normal distribution is used, this applies exactly. 

 

 The result that a combination of two probabilistically calibrated density forecasts is 

not itself probabilistically calibrated parallels the inefficiency of mean point forecasts 

discussed in Section 2.  In each case the component forecasts are the correct conditional 

statements with respect to their specific information sets, but their combination, with respect 

to the combined information set, is not.  The same result also obtains for combinations of 

event probability forecasts (Hora, 2004; Ranjan and Gneiting, 2010).  In these broader  
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circumstances, it remains the case that ‘aggregating forecasts is not the same as aggregating 

information sets’ (Granger, 1989, p.169), a remark that, like so many others of Clive 

Granger’s, requires our continuing attention. 
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 Figure 1.  PIT histograms for the autoregressive example.  Rows: cases (1)-(4) as 

 defined in Table 1.  Columns: forecasts, respectively AR1, AR2, their linear 

 combination and their logarithmic combination 

 
 

 
 
 

 
 


