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7

This paper reports on a study of the effect of the passage of multi-axle harvesting machines8

on the soil physical properties. In particular, to determine the effect of the rear tyre of a9

combine harvester on the amount of soil compaction subsequent to the passage of the front10

tyre/track. The work was conducted in controlled laboratory conditions to determine the effect11

of a simulated self propelled combine harvester with a total machine weight of 30 – 33 t. This12

was assessed by embedding talcum powder lines as a tracer in the soil to measure soil13

displacement and soil density changes. Additionally, dry bulk density and penetrometer14

resistance were measured. The results showed that the benefit of the rubber track found by15

Ansorge and Godwin (2007, a) was maintained after the additional passage of the rear tyre.16

After the passage of a track the effect of rear tyre size was insignificant, but the rear tyre size17

had a significant influence on soil density when following a leading tyre. This was due to a18

higher strength layer at the soil surface created by the track which was able to withstand the19

load of the subsequent passes and protect the soil below from further compaction. Results20

similar to those found for a tracked machine were also achieved by three passes of a 900 mm21

section width tyre at 5 t load and 0.5 bar inflation pressure. The track results for the 33 t22

machine were very similar to those of a smaller combine harvester with a total load of 11 t23

and similar rut width. The study corroborated the benefit of tracks with regard to soil24

compaction and emphasised the fact that total axle loads and machine weights are less25

important than how the loads are distributed on the soil.26
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1. Introduction1

2

This paper is the second in a series of three; it describes an investigation into the effect of3

multi-axle machine systems on soil compaction in a controlled laboratory environment. It4

explains the beneficial behaviour of tracks found by Ansorge and Godwin (2007a) – the first5

paper of the series - which compared the effect of single passes of both tyres and a track on6

soil compaction. The final paper will extend and develop prediction models to estimate the7

increase in soil density from both tyres and rubber tracks relating these to the experimental8

results in the earlier two papers.9

10

The demand for higher productivity in agriculture leads to growing size and weight of11

harvest machinery which in turn increases the danger of soil compaction (Raper, 2005). To12

oppose this trend, emphasis has to be put on the design of undercarriage systems aiming to13

minimize the resulting soil compaction originating from field-traffic. Soil compaction could14

be minimized by using low ground pressure tyres (Hakansson, 2005) or equipping axles with15

tracks (Ansorge and Godwin, 2007 a). However, little detail is known about the individual16

soil compaction behaviour of single tyres within whole machine configurations. Thus for17

example the question cannot be answered whether the benefit found for a rubber track is18

maintained after the passage of the rear axle in half track configurations or which rear tyre19

size would be appropriate in order not to exceed the soil density increase already caused by20

the front axle.21

22

Single axle configurations have been investigated in detail by Ansorge and Godwin23

(2007a) and showed a benefit of a rubber track with respect to soil density change and24

penetrometer resistance compared to tyres. Therefore the subsequent step was to investigate25

the implications of the effect of the passage of a tyre on the second (rear) axle. Thus, the aim26
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of the study was to investigate the effect of the passage of whole machine configurations on1

soil compaction and quantify the total soil density increase caused by different combine2

harvester undercarriage systems, i.e. half-tracks, common wheeled configurations and a3

lighter older machine configuration.4

5

The second part of this paper describes the effect of a track on soil strength immediately6

below the surface, which was found in penetrometer resistance measurements, by7

investigating longitudinal soil displacement.8

9

2. Literature Review10

11

The importance of soil compaction and its economical consequences were shown by12

Hakansson and Reeder (1994) who report that soil compaction caused by tyres at an axle load13

of 10 t penetrated the soil to a depth of 500 mm measurably and that it possibly permanently14

reduces crop yields. The demand for lighter machinery rises due to such results. The15

importance in reducing vehicle weight as a mean of reducing soil compaction was shown in a16

study by Smith and Dickson (1990). Weight reduction by using light alloys and composite17

materials rather than steel products has its limits due to increased machinery cost. Smaller18

machinery on the contrary cannot be operated at the same economical efficiency as larger19

machines. These two arguments strengthen the need for a better undercarriage design.20

21

Ansorge and Godwin (2007a) discussed the literature with respect to tyres and tracks in22

detail and therefore only a short summary is given here. The findings from literature could not23

be generalized as some studies reported advantages (Bashford et al., 1988; Rusanov, 1991) or24

disadvantages (Blunden et al., 1994) for tracks which are summarized by Alakukku et al.25

(2003). Watts et al. (2005) found that maximum rut depths were caused by heavy trailers26
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rather than by tractors and, moreover, showed that crawler tractors created the least soil1

damage supporting tracked undercarriage systems. A similar benefit was found in an infield2

investigation for sugar beet harvesters by Brandhuber et al. (2006). The tracked type3

undercarriage system caused less reduction in hydraulic conductivity than its wheeled4

counterpart. Ansorge and Godwin (2007,a) report a clear benefit of a rubber track at a load of5

10.5 – 12 t in comparison to tyres laden to 10.5 t with respect to soil displacement and6

resulting soil density increase for both a uniform soil profile and a layered field situation7

replicated in a soil bin laboratory.8

9

According to Hadas (1994) some field studies indicate that soil compaction blamed to the10

passage of high axle loads can be attributed to other processes and even natural variabilities,11

too. Thus it can be concluded that it is very important to minimize the environmental12

variability and their impact on the results which raises the demand for controlled repeatable13

laboratory studies.14

15

Only few studies distinguished soil compaction caused by single axles in literature. One of16

these studies is Pytka (2005) who showed that the largest increase in soil deformation is17

caused after the first and second pass of a tractor tyre. The additional soil deformation from18

subsequent passages decreases. The studies reviewed by Ansorge and Godwin (2007, a) did19

not distinguish soil density increase caused by single passes compared to multiple passes with20

different tyre configurations in detail. None of them investigated the influence of tyres21

following a track on soil density increase. Therefore the focus of this second part will be on22

the additional soil compaction caused by the subsequent pass of the rear axle.23

24

25

26
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1

3. Methods2

3

The effect of simulated self propelled combine harvesters with total machine weights4

ranging from 11 – 33 t and equipped with tyres, or a track followed by a tyre, on soil5

compaction was investigated in a full size study in a controlled laboratory environment.6

7

The individual rubber track, large harvester tyres and implement (rear-combine) tyres and8

loads used in the study are specified in Table 1. The front axle of modern combine harvester9

configurations was simulated using either a track laden to 12 t or the 900/65 R32 tyre laden to10

10.5 t at a recommended inflation pressure of 1.9 bar. These two units were combined with11

the largest (700mm/4.5t/1.0bar) and the smallest (500-70mm/4.5t/2.3bar) of the four12

implement tyres (Ansorge and Godwin, 2007a) to simulate the rear axle of the combine. The13

whole-machine abbreviations are listed in Table 2. Additionally, a narrow tyre combination of14

the 680mm/10.5t/2.2bar followed by the 500-85mm/4.5t/1.4 was investigated. In addition, the15

900/65 R32 tyre was laden to 5 t at 0.5 bar inflation pressure and passed three times over the16

soil to represent an alternative hypothetical three axle machine concept. These machine17

configurations with total weights of 30 – 33 t were compared to a configuration representing18

the design of the Claas Dominator, manufactured in Europe from 1970, with a weight of 11 t19

and equipped with 23.1-26 tyres on the front axle at 4 t and 1.2 bar inflation pressure and20

11.5/80-15.3 tyres at 1.5 t and 2 bar inflation pressure on the rear axle; constituting the21

medium tyre size configuration available for this particular machine.22

23

Soil compaction was assessed by embedding talcum powder lines as a tracer in the soil24

during preparation to measure soil displacement and soil density changes. Additionally dry25
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bulk density and cone penetrometer resistance were recorded. Full details on measured1

parameters are given in Ansorge and Godwin (2007, a).2

3

The soil used was a sandy loam (Cotternham series; King, 1969) with 17% clay, 17% silt4

and 66% sand; the water content was maintained at 10% dry base during the studies. A5

uniform soil condition was prepared to a dry bulk density of 1.4 g/cm3 which was chosen to6

represent soil conditions with a relatively low bearing capacity where tracks and large size7

tyres would have value in agricultural practice. The initial penetrometer resistance profile for8

a uniform soil condition is shown in Fig. 10 with a resistance of 0.9 – 1 MPa from 0.2 to 0.79

m depth. This uniform profile was achieved by rolling each 50 mm deep layer once after it10

had been placed onto the underlying soil and levelled with a blade. Obviously the soil11

underneath was further compacted when the subsequent layer received its virgin compression12

with a roller of 3.5 kN and 0.6 m diameter at a speed of 1 m/s. However, as the penetrometer13

resistance profile in Fig. 10 indicated, the resulting overall profile was uniform.14

15

4. Results16

4.1. Whole machine studies17

4.1.1. Soil displacement18

19

Figure 1 shows that the tyre undercarriage systems created a significantly larger soil20

displacement i.e. increase in soil density than the rubber track type under carriage systems. A21

clear differentiation is visible between the tracked types compared to the wheeled types with22

the exception of the three passes of the 900 tyre each with a reduced load of 5 t. All23

treatments were significantly different from each other except the two tracks and the three24

passes of the 900mm/5t/0.5bar. Thus the influence of the rear tyre size had a greater effect25

following a tyre on the front axle than following a track.26
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To investigate the effect of the rear tyre in more detail, Fig. 2 shows the soil displacement1

caused by both the front tyre/track alone and after the passage of the rear tyre. The additional2

soil displacement caused by the 700mm/4.5t/1.0bar rear tyre was insignificant for both tyre3

and track. However, the additional soil displacement caused by the 500-70mm/4.5t/2.3bar4

tyre was significant for the tyre in front. An insignificant increase in soil displacement for the5

track followed by the 500-70mm/4.5t/2.3bar was visible at the surface, yet, below a depth of6

300 mm this data converged with the other curves for tracks. However, if the 500-7

70mm/4.5t/2.3bar tyre followed the 900mm/10.5t/1.9bar tyre the additional soil displacement8

was significantly greater over the profile to a depth of 450 mm where the data converged with9

the 900mm/10.5t/1.9bar tyre followed by 700mm/4.5t/1.0bar. Thus, rear tyre size has greater10

significance in relation to soil displacement after the passage of a leading tyre, than when11

following a track. This is shown in detail in Fig. 3, which shows that the magnitude of the12

increase from the additional passage of the 500-70mm/4.5t/2.3bar compared to the13

700mm/4.5t/1.0bar was smaller for the track and the differences merge at shallower depth14

than the differences for the tyres.15

16

The track not only maintained its smaller rut depth, but also had a smaller increase in rut17

depth from subsequent passages. For the track the rear tyre only affected the soil to the depth18

to which conventional cultivation treatments were carried out as long as the rear tyre load19

could be carried and distributed by the compact zone created just below the surface by the20

track. We attempt to explain the reasons for the benefit of the tracks in Section 4.2.21

22

Additional studies were conducted to compare the track systems with a smaller combine23

harvester having a total weight of 11 t on the following tyre sizes (Front: 23.1-26; Rear:24

11.5/80-15.3) with an inflation pressure of 1.2 bar and a load of 4 t on the front wheel and 1.525

t load at 2 bar on the rear wheel. This tyre combination is in the middle of the available range.26
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The data is shown in Fig. 4 and compared to a tracked machine which shows that the soil1

displacement below a tracked machine was not significantly different from that of a wheeled2

machine of one third of the weight.3

4

The least significant difference bars (LSD) have all the same length because they compare5

the overall treatments whereby variability with depth has been taken into consideration.6

7

4.1.2. Penetrometer resistance8

9

The penetrometer resistance profiles resulting from different undercarriage systems are10

shown in Fig. 5 which reveals two distinctive groups: (a) track and (b) tyre, in comparison11

with the undisturbed control. The track data exhibits a higher penetrometer resistance near the12

surface at approximately 150 mm which then reduces almost exponentially with depth. This13

indicated that the soil had its greatest strength at the soil surface; however, the penetrometer14

first needed to fully engage with the soil to show the peak penetrometer resistance.15

Consequently, the highest reading of penetrometer resistance was about 40 mm below the16

surface of the rut. Both track treatments were not significantly different from each other, but17

from the group of tyres. The tyre data in Fig. 5 b was overall more uniform and showed a18

slightly smaller magnitude at the surface, but larger values below 250 – 300 mm than the19

track. All two axle configurations had similar penetrometer resistance and hence there were20

no significant differences in penetrometer resistance for the 900mm/10.5t/1.9bar treatments21

and the 680mm/10.5t/2.2bar treatment. In comparison, the three axle configuration was22

significantly different from the other wheeled undercarriage treatments due to its lower23

penetrometer resistance over the entire depth.24

25
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The increase in penetrometer resistance caused by the rear tyre (500-70mm/4.5t/2.3bar) can1

be seen in Fig. 6 for both the track and the 900mm/10.5t/1.9bar tyre. In both cases the rear2

tyre caused a small but significant increase in penetrometer resistance over the full depth3

range.4

5

Similar to the data from the soil displacement, the penetrometer resistance caused by an 11t6

machine was compared to that of a tracked machine in Fig 7. Statistically there were no7

differences overall. The tracked machine showed its pronounced peak at the surface, however,8

at a depth of 300 mm the penetrometer resistance merged with that of the lighter wheeled9

machine, supporting the soil displacement results from Fig. 4 and leading to the overall10

similarity between the two treatments.11

12

4.1.3. Dry bulk density13

14

There were no significant differences in DBD among individual under carriage systems15

due to the inherent large variations caused by the measurement of DBD shown in Fig. 8. The16

initial DBD was 1.43 g/cm3. Grouping the undercarriage systems into the average wheel and17

average track type system, final DBD values were 1.59 g/cm3 and 1.56 g/cm3, respectively.18

This order corresponded to the measurement of soil displacement shown in Fig. 1, whereby19

tracks caused a smaller increase in DBD than tyres. The difference of 0.03 g/cm3 between the20

two groups was not statistically significant. The tendency of the DBD agreed for gravimetric21

DBD compared to the estimated increase in DBD utilizing the slope of the soil displacement22

graphs; i.e. both times the DBD was greater after the wheeled than after the tracked machines.23

The resolution of the soil displacement measurement was greater than that of the DBD.24

25

26
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4.1.4. Discussion of whole machine Studies1

2

The small variability within the results satisfies the requirement imposed by Hadas (1994)3

for a study with small variability when comparing the soil density increase of different4

treatments.5

6

For wheeled machinery the findings from Pytka (2005) can be corroborated that the largest7

part of soil displacement is caused in the first pass. However, Pytka (2005) also reported soil8

displacement for the 2nd pass. In contrast, this study showed that the additional soil9

compaction originating from the subsequent pass could reach zero if the second tyre did not10

exceed the bearing capacity of the soil created with the first pass as for example with the11

900mm/10.5t/1.9bar+700mm/4.5t/1.0bar configuration. For the tracked undercarriage systems12

the strong layer at the surface supported the load without further compaction of the underlying13

soil.14

15

The advantage for a rubber track with respect to soil displacement, penetrometer resistance16

and soil density increase reported by Ansorge and Godwin (2007, a) were maintained after the17

passage of the rear axle. Therefore the advantages for rubber tracks reported by Bashford et18

al. (1994) and Rusanov (1991) can be supported even after the passage of an additional rubber19

tyre following the track. The same holds true for the results from Watts et al. (2005) who20

showed that crawler tractors created the least soil damage. Brandhuber et al. (2006) found the21

same beneficial results for tracks in comparison to tyres for sugar beet harvesters in an in-22

field study whereby the tracked undercarriage system caused less reduction in hydraulic23

conductivity than its wheeled counterpart.24

25
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A three axle tyre configuration with 5 t load per tyre caused similar vertical soil1

displacement compared to a track with a load of 12 t followed by a rear tyre with a load of 4.52

t. An undercarriage unit with a track unit on the front axle and a gross weight of 33 t resulted3

in a similar vertical soil displacement to that of an 11 t combine harvester on commercially4

fitted normal front and rear tyre sizes.Therefore machines with either large section width tyres5

and low payloads or tracked or half tracked vehicles could be the answer to satisfy the6

demand for increasing agricultural machinery while minimizing soil compaction. The7

comparison of the soil displacement caused by a half-track combine at 33 t to a wheeled8

combine harvester at 11 t showed, that modern heavy weight machinery must not necessarily9

exceed the soil displacement that would have been (or has already been) caused by older10

lighter machines on medium available tyre sizes. By using smart undercarriage design the11

demand from Smith and Dickson (1990) for reducing weight in order to reduce soil12

compaction can therefore be contradicted. Hakansson and Reeder (1994) reported that soil13

compaction caused by 10 t axle loads penetrated the soil to a depth of 500 mm measurably.14

Assuming a very weak field situation this is in agreement with the results of this study for15

wheeled undercarriage systems showing a residual soil displacement between 500 – 600 mm16

depth. In contrast to this soil displacement for half – track undercarriage systems has17

decreased to zero at about 500 – 600 mm depth. The residual soil displacement for wheeled18

common combine harvester tyre combinations demonstrates their possible impact on the19

subsoil.20

21

4.2. Track behaviour22

4.2.1. Discussion of track behaviour23

24

The explanation for the high surface penetration resistance caused by the tracks at a load of25

10.5 – 12 t at the surface shown in Section 4.1.2 and by Ansorge and Godwin (2007a) will be26
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considered in this section. Whilst initially of some concern, it is much more easily removed1

than the deeper compaction caused by the tyres (Ansorge and Godwin, 2007a). For reduced or2

no-tillage systems this layer might cause some problems, although Ansorge (2005) found a3

larger effect of un-tilled wheel ruts than track ruts for broadcast sown oil seed rape. This layer4

is also of value by reducing the subsequent amount of soil displacement caused by the rear5

tyres, compared to that following a wheel as shown in Fig. 3.6

7

The high penetrometer resistance was thought to originate from either vertical soil8

compaction close to the surface (possibly by vibrations, pressure peaks from rollers, or long9

contact time) or the application of shear forces during the passage of the track.10

11

In a first instance the possibility of a larger vertical soil density increase at the surface will12

be investigated. If the high penetrometer resistance was caused by vertical soil compaction13

this would be visible from the soil displacement curves with depth at the surface. Hence, the14

average slope of the soil displacement lines should indicate a larger increase in soil density15

for the tracks than for tyres in the top 300 mm. Figure 9 shows the relevant data from16

Ansorge and Godwin (2007a) including the best fit linear regression lines. Independent of the17

depths considered, the average slope for the tracks was always larger than the slope for the18

tyres (with the exception of the 800mm/10.5t/1.25bar) indicating less vertical soil19

displacement and compaction at the surface. If vibrations transmitted through the track onto20

the soil caused the peak in penetrometer resistance, this should also have been visible in soil21

displacement curves.22

23

Another experimental result shedding light on the hard layer was the similar vertical soil24

displacement caused by the rear/implement tyres to that of the rubber track (Ansorge and25

Godwin, 2007a). However, the penetrometer resistance results for the smaller implement tyres26
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did not show a peak close to the surface and as shown in Fig. 10, merging of the data for the1

track and rear tyres occurred at a depth of less than 300 mm.2

3

Average contact pressure for the track was virtually identical to that of the 500-4

85mm/4.5t/1.4bar tyre at 83 kPa and 85 kPa, respectively (Ansorge and Godwin, 2007 b). For5

the 600mm/4.5t/1.4bar tyre a larger contact pressure of 110 kPa was measured. Nevertheless6

all three treatments caused similar soil displacement. Thus their increases in soil density agree7

well with their average contact pressures. As the true pressure distribution underneath a track8

was not uniform, one could argue that the dense layer was caused by the pressure peaks9

underneath the track; this was not visible from the study of the vertical soil displacement.10

Hence, neither both the absolute contact pressure or its distribution could be the cause of the11

higher penetrometer resistance. The same reasoning applies to vibrations transmitted to the12

soil and causing compaction.13

14

Since the peak in penetrometer resistance had no counterpart in the vertical soil15

displacement curves or in the original soil profiles in the soil bin laboratory, no lateral16

displacements were found, and we did not measure displacements in the direction of travel17

our only conclusion can be that these displacements are the source of the hard layer. In turn18

such motions can only be caused by shear forces in the direction of travel.19

20

The different slip behaviour of a tyre and a track could be responsible for this increase in21

soil strength indicated by the peak in penetrometer resistance. Calculating shear displacement22

resulted in twice the displacement underneath a track compared to that for a tyre according to23

Wong (2001). This seems rather strange as the track operated generally at a lower slip (5 %)24

compared to tyres (10 %) in this investigation (Ansorge, 2005) to develop the same thrust25

necessary to propel itself. The shear displacement, however, is gained by the integration of26
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slip velocity underneath the implement over the distance traveled. Hence the long contact area1

of the track (2.4 m) coupled with constant slip velocity led to a greater total shear2

displacement. The resulting constant shear strain application over the entire contact length3

additionally increased plastic shear displacement. Total length of the contact area for the tyre4

was about half (1.2 m) of that of the track, whereby the slip velocity depended on the position5

of the soil with respect to the tyre. The highest slip velocity occurs at the beginning of the6

contact patch when the tyre surface velocity is greater than that of the deformed section of the7

tyre under its centre line due to differences between the actual and the rolling radius (Wong,8

2001). Thus shear strain decreases in traveling direction from the edge of the tyre to the9

centre.10

11

This decrease in shear strain can be compared to an impact load allowing for some elastic12

recovery. The track on the contrary applies the shear force for a greater length and thus an13

extended period of time thereby compacting the soil horizontally and allowing less elastic14

recovery due to the spring-damper behavior of the soil. The spring-damper behavior of soil15

during compaction was exemplarily shown by Aboaba (1969) who changed the contact time16

of a roller by altering forward velocities.17

18

The actual longitudinal soil displacement measured in the soil bin laboratory and caused by19

a self propelled track and tyre will be discussed in the next Section.20

21

4.2.2. Longitudinal soil displacement caused by tyre and track22

23

To shed light onto the question how much the soil is displaced longitudinally by tyres and24

tracks the total longitudinal soil movement was determined by embedding a series of vertical25

sand columns into the soil. These columns are 5 mm in diameter at a spacing of 50 mm and26



Ansorge, D. and Godwin, R.J., 2008. The Effect of Tyres and a Rubber Track at High Axle Loads on Soil
Compaction: Part 2: Multi-Axle Machine Studies. Biosystems Engineering 99 (3) pp. 338 – 347.

15

reach to a depth of 250 mm in the centreline of the path of the tyre or track. After the passage1

of the 900mm/10.5t/1.9bar tyre and T12 track, respectively, these were carefully excavated2

along their centre line thereby showing the direction of the movement of the soil throughout3

the surface 250 mm. The position of each sand column was digitized using the same method4

as for the determination of soil displacement.5

6

Figure 11 shows a uniform forward soil movement of the sand columns numbered 1 – 107

close to the surface after the passage of the 900mm/10.5t/1.9bar. The arrow indicates the8

direction of travel. To aid the interpretation of soil movement within the column, Fig. 119

includes vertical lines representing the average longitudinal position of the lower 100 mm for10

each sand column. At the surface the forward movement of the soil varied depending on the11

position relative to the lug. The columns on the back of a lug exhibited only a forward12

movement close to the surface, but not at depth (Column 1, 6, and 10 from left); all other13

columns tilted forward. The soil movement caused by a rubber track at 12 t is shown in Fig.14

12; these show an alternating backward and forward soil movement close to the surface,15

whereby the backward movement was more pronounced than the forward movement. The16

front face of a lug appears to push the soil slightly forwards (Columns 2, 5, and 8 from left),17

but the remaining section of the lug and the rear area push the soil backwards. The void-lug18

ratios in these particular cross sections were 0.43 for the track and 1 for the tyre, representing19

a larger proportion of lugs for the track within the contact area.20

21

In order to conduct a statistical analysis of the longitudinal soil movement below the tyre22

each column within Fig. 11 was assigned either B or F to account for the tilt direction of the23

soil; B - indifferently to backward; F – forward. The assigned order was from left to right:24

BFFFFBFFFB. Within Fig. 12 the sand columns of the track treatment were assigned either25

B, F, or I depending on whether the column was tilted backward, forward or indifferent with a26
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shear failure below the lug and the following order was assigned: BFIBFIB. The statistical1

analysis conducted for the entire length of each column and accounting for the treatment2

(track or a tyre), for the tilt direction and allowing an interaction of tilt direction with depth,3

revealed all parameters to significantly describe the observed sand column movement.4

5

To investigate the soil movement with depth the columns were divided into a lower and an6

upper part. The lower 100 mm were taken as a reference basis and hence excluded from the7

comparison because of the assumption that this depth was not affected by the treatment. The8

assumption was confirmed by an analysis for the values from the lower 100 mm (track9

position -0.0008 mm, tyre position +0.0133 mm, LSD 0.51 mm). All parameters used to10

describe the data did not significantly influence the remaining variation and thus indicated a11

random distribution of the data around zero (p-values >0.9). For the upper 150 mm tilt, drive12

unit, and the interaction of tilt with depth were significant parameters describing the variation13

within the data. The mean position for the rubber track unit of the top 150 mm was -4.45 mm14

which was significantly different from zero. This compared to a mean position of 2.05 mm for15

the wheel which was not significantly different from zero with an LSD equal to 2.18 mm.16

Looking at the assigned tilt variables B, F, and I for both treatments, tilts B and I were17

negative and tilt F was significantly different from both indicating a positive, i.e. a forward18

soil movement.19

20

In further support of the previous argument for shear displacement causing the peak in21

penetrometer resistance it is interesting to note that the longitudinal movement which ceases22

at approximately 150 mm is equivalent to the point where the magnitude of penetrometer23

resistance drops back to that of the rear tyres (Fig. 10) and even below front tyres (Fig. 6).24

25
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Hence it was shown that in this very situation overall the track caused a significant back-1

ward soil movement at the surface whereas the wheel tended to cause a forward soil2

movement which was not significantly different from zero. As available slip data could not be3

accurately assigned over the distance the units travelled across the sand columns, it could be4

argued that the track had positive slip and the tyre negative slip thus causing these differences.5

However, the sand columns enclose three replications of lug-void cycles over a distance of6

0.5 m and the data in Fig. 11 and Fig. 12 did not indicate a change in behaviour. Therefore7

the slip conditions could be regarded as constant with respect to longitudinal soil movement8

over the distance traveled and as both units are driven, it must be positive slip. Moreover9

penetrometer resistance randomly taken over the length of the soil bin always showed a10

higher surface strength for the track. These findings may change under the application of11

greater thrusts/slips.12

13

4.2.3. Discussion of measured longitudinal soil displacement in contrast with literature14

According to Wong (2001) soil movement below a tyre is accompanied by a flow pattern15

including two opposing flow directions. There are two exceptional extreme conditions. At 10016

% slip, soil will only flow backward. For a locked wheel, only a soil wedge will be formed17

pushing the soil forward whereby the size of the wedge depends on sinkage and the18

corresponding rake angle of the tyre. Any slip condition between these two extremes will19

include both forward and backward flow of soil. The higher the slip, the larger the backward20

movement will become. Following the soil trajectories given by Wong (2001) for three21

wheels (towed wheel, 37 % slip, and 63 % slip) on a clay soil, at a slip range of about 10 – 1522

% the integrated longitudinal soil movement below a tyre could be zero due to the equilibrium23

of backward and forward soil flow. This was observed in this condition for the tyre. For the24

track on the contrary, the bow wave and therefore forward soil movement was smaller due to25

the smaller rake angle and reduced sinkage. However, the backward flow pattern was more26
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pronounced due to the constant slip conditions leading to an overall backward soil movement.1

Therefore the measured longitudinal displacement agrees with the theory suggested by earlier2

literature.3

4

Figure 13 shows backward soil movement at the very beginning of a passage of a5

track/tyre and agreed with the results above. When a track started, soil was moved backwards6

as shown by the left hand figure which shows a clear shear failure boundary compared to the7

edge of the footprint from the track. In contrast, after the start of the tyre, no shear8

displacement could be seen, see right hand figure, although the soil lug disturbance pattern9

indicate high slipage at the start.10

11

5. Conclusions12

13
(1) The smaller increase in soil density for a self propelled track with loads of 10.5 and 12 t14

compared to self propelled tyres at recommended and at half recommended inflation15

pressure with a load of 10.5 t found by Ansorge and Godwin (2007a) on weak uniform16

soil conditions in a soil bin laboratory were maintained after the additional passage of the17

rear axle tyre. A typical wheeled combine increased the soil density by 19 % compared to18

a tracked machine with an increase of 14 %.19

(2) The effect of the rear axle tyre size had less effect on soil conditions following a front axle20

track unit than a tyre. Soil displacement increased by 6 mm compared to 12 mm for the21

tyre over the same depth range and extended to a shallower depth (300 mm) only after the22

track. This was due to the bearing capacity of the stronger layer in the top 150 mm23

observed from the penetrometer studies.24
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(3) A hypothetical three axle tyre configuration with 5 t load caused similar vertical soil1

displacement compared to track loaded to 12 t followed by a smaller rear tyre loaded to2

4.5 t.3

(4) An undercarriage unit with a front axle unit loaded to 33 t resulted in a similar vertical soil4

displacement to that of an 11 t combine harvester on the commercially fitted normal front5

and rear tyre sizes.6

(5) The overall configuration of the undercarriage system of the combine harvester was more7

important than individual weight on a single axle.8

(6) The high penetrometer resistance for the track at the surface is caused by the application9

of shear for a longer period of time than for the tyre leading to a larger shear10

displacement. This longitudinal movement was limited to the uppermost 150 mm of the11

soil for both, tyre and track under these conditions.12

13

14
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Figure 3. Difference in additional soil displacement from 500-70mm/4.5t/2.3bar compared to21
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Figure 4. Soil displacement caused by ×, 23in/4t/1.2bar+11in/1.5t/2.0bar; ■, a tracked24

combine harvester (33 t) followed by a 700mm/4.5t/1.0bar tyre; □, a tracked combine25
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Figure 5. Penetrometer resistance for different undercarriage systems. Tracked2

undercarriages Group a) Δ, Control; □, Track+700mm/4.5t/1.0bar; ■, Track+500-3

70mm/4.5t/2.3bar. Wheeled Undercarriages Group b) Δ, Control; ×,4

900mm/10.5t/1.9bar+500-70mm/4.5t/2.3bar; +, 900mm/10.5t/1.9bar+5

700mm/4.5t/1.0bar; •, 680mm/10.5t/1.9bar+500-85mm/4.5t/1.4bar; ▲,6

900mm/5t/0.5bar three passages; , LSD at 95% confidence level7
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Figure 6. Penetrometer resistance with and without influence of rear tyre. Δ, Control; +,10

900mm/10.5t/1.9bar alone; ×, 900mm/10.5t/1.9bar+500-70mm/4.5t/2.3bar; □, Track11

alone; ■, Track+500-70mm/4.5t/2.3bar; , LSD at 95% confidence level12
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Figure 7. Penetrometer Resistance vs. Depth for a tracked, wheeled and 11 t machine. Δ,14

Control; ▲, 23in/4t/1.2bar+11in/1.5t/2.0bar; ■, Track+700mm/4.5t/1.0bar; , LSD15

at 95% confidence level16
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Figure 8. Gravimetrically measured (grey) and from soil displacement estimated (white) dry18

bulk density measurements for wheel and track systems19

20

Figure 9. Displacement vs. Depth, top 300 mm with regression lines. □, track 10.5t; ■, track 21

12t; , , 680mm/10.5t/2.2bar; ×, 900mm/10.5t/1.9bar; +, 800mm/10.5t/2.5bar; ♦,22

800mm/10.5t/1.25bar;23

Figure 10. Penetrometer resistances for rear tyres and track at 12 t. Δ, Control; •,24

600mm/4.5t/1.4bar; +, 500/85mm/4.5t/1.4bar; ■, Track12t ; , LSD at 95%25

confidence level26
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Figure 11. A digital image of the longitudinal position of the sand columns after the passage1

of a 900mm/10.5t/1.9bar tire2

3

Figure 12. A digital image of the longitudinal position of the sand columns after the passage4

of a 12 t rubber track5

Figure 13. Soil disturbance after the track (left) and tyre (right)at the onset of movement6
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Figure 1. Soil displacement for different undercarriage systems. ■,4

Track+700mm/4.5t/1.0bar; □, Track+500-70mm/4.5t/2.3bar; Δ, 680mm/10.5t/2.2bar5

+580-85mm/4.5t/1.4bar; ×, 900mm/10.5t/1.9bar+700mm/4.5t/1.0bar; +,6

900mm/10.5t/1.9bar+500-70mm/4.5t/2.3bar; ♦, 900mm/5t/0.5bar Three passes; ,7

LSD at 95% confidence level8
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Figure 2. Soil displacement caused by the front axle and additional soil displacement caused4

by the rear axle. ■, Track alone; □, Track+700mm/4.5t/1.0bar; ○, Track+500-5

70mm/4.5t/2.3bar; ×, 900mm/10.5t/1.9bar alone; +,900mm/10.5t/1.9bar6

+700mm/4.5t/1.0bar; ◊,900mm/10.5t/1.9bar+500-70mm/4.5t/2.3bar; , LSD at 95%7

confidence level8
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Figure 4. Soil displacement caused by ×, 23in/4t/1.2bar+11in/1.5t/2.0bar; ■, a tracked2

combine harvester (33 t) followed by a 700mm/4.5t/1.0bar tyre; □, a tracked combine3

harvester (33 t) followed by a (500-70mm/4.5t/2.3bar) tyre; , LSD at 95%4
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Figure 5. Penetrometer resistance for different undercarriage systems. Tracked4

undercarriages Group a) Δ, Control; □, Track+700mm/4.5t/1.0bar; ■, Track+500-5

70mm/4.5t/2.3bar. Wheeled Undercarriages Group b) Δ, Control; ×,6

900mm/10.5t/1.9bar+500-70mm/4.5t/2.3bar; +, 900mm/10.5t/1.9bar+7

700mm/4.5t/1.0bar; •, 680mm/10.5t/1.9bar+500-85mm/4.5t/1.4bar; ▲,8

900mm/5t/0.5bar three passages; , LSD at 95% confidence level9
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Figure 6. Penetrometer resistance with and without influence of rear tyre. Δ, Control; +,5
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Figure 7. Penetrometer Resistance vs. Depth for a tracked, wheeled and 11 t machine. Δ,2
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800mm/10.5t/1.25bar;4
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Figure 11. A digital image of the longitudinal position of the sand columns after the passage6

of a 900mm/10.5t/1.9bar tire7
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Figure 12. A digital image of the longitudinal position of the sand columns after the passage3

of a 12 t rubber track4
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Figure 13. Soil disturbance after the track (left) and tyre (right)at the onset of movement2
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Table 11

Tyre and Track Specifications2

Undercarriage System Load

(t)

Inflation Pres

sure (bar)

Abbreviation

Section Width/Load/Inflation Pressure

680/85 R32 10.5 2.2 680mm/10.5t/2.2bar

800/65 R32 10.5 2.5 800mm/10.5t/2.5bar

900/65 R32 10.5 1.9 900mm/10.5t/1.9bar

800/65 R32 10.5 1.25 800mm/10.5t/1.25bar

Claas Terra Trac 10.5 - T10.5t

Claas Terra Trac 12 - T12t

500/70 R24 4.5 2.3 500-70mm/4.5t/2.3bar

500/85 R24 4.5 1.4 500-85mm/4.5t/1.4bar

600/55 – 26.5 4.5 1.4 600mm/4.5t/1.4bar

710/45 – 26.5 4.5 1.0 700mm/4.5t/1.0bar

23.1-26 4.0 1.2 23in/4t/1.2bar

11.5/80-15.3 1.5 2.0 11in/1.5t/2.0bar
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Table 21

Whole Machine Specifications2

Front Axle Specification Rear Axle Specification

T12t 700mm/4.5t/1.0bar

T12t 500-70mm/4.5t/2.3bar

900mm/10.5t/1.9bar 700mm/4.5t/1.0bar

900mm/10.5t/1.9bar 500-70mm/4.5t/2.3bar

680mm/10.5t/2.2bar 500-85mm/4.5t/1.4bar

900mm/5t/0.5bar Three subsequent passes

23in/4t/1.2bar 11in/1.5t/2.0bar
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