
 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap 
 
This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  
To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 

Author(s):  JE Griffin 
Article Title: On the Bayesian analysis of species sampling mixture 
models for density estimation 
Year of publication: 2006 
Link to published article:  
http://www2.warwick.ac.uk/fac/sci/statistics/crism/research/2006/paper
06-13/ 
Publisher statement:  None 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/1382815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap


On the Bayesian analysis of species sampling mixture
models for density estimation

J.E. Griffin∗

Department of Statistics, University of Warwick, Coventry, CV4 7AL, U.K.

Abstract

The mixture of normals model has been extensively applied to density estimation prob-
lems. This paper proposes an alternative parameterisation that naturally leads to new forms
of prior distribution. The parameters can be interpreted as the location, scale and smoothness
of the density. Priors on these parameters are often easier to specify. Alternatively, improper
and default choices lead to automatic Bayesian density estimation. The ideas are extended to
multivariate density estimation.

Keywords: Density Estimation, Species sampling models, Dirichlet process mixture models,
Mixtures of normals.

1 Introduction
The problem of density estimation has a long history in the statistical literature. We assume
that y1, . . . , yn are i.i.d. draws from a distribution F , with density f , that must be estimated.
In some recent work the focus has shifted from the distribution of observables to the distrib-
ution of unobserved random quantities. For example, Bush and MacEachern (1996) consider
an unknown distribution of the block effect in a two-way analysis of variance and Müller and
Rosner (1997) estimate the distribution of a random effect nonparametrically. In both cases
we would be interested in replacing the standard parametric assumption of a normal distrib-
ution by a more flexible nonparametric choice which is centred over the standard parametric
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form. However, in neither paper is the nonparametric model (using mixtures of normals) cen-
tred over the standard model since the hyperparameter of the distribution have different prior
distributions under the two models. This paper attempts to address this issue by proposing a
structure for the nonparametric model which allows the model to be centred.

A number of approaches and priors have been proposed in the Bayesian literature, which
are reviewed in Walker et al (1999) and Müller and Quintana (2004) and include: mixture
distributions, Dirichlet process priors, Polya trees, and random histograms. In this paper I
will concentrate on modelling the unknown distribution by a species sampling model mixture
of normals.

f(y) =
∫

N(y|µ, σ2) dG(µ, σ2) (1)

where

G =
q∑

i=1

piδµi,σ2
i
. (2)

The number of components q is an integer or infinity,
∑q

i=1 pi = 1, and N(y|µ, σ2) is the
probability density function of a normal distribution with mean µ and variance σ2, which
is often called a component of the mixture. The concept of a species sampling model was
introduced by Pitman (1996) and makes the assumption that p is a priori independent of
µ and σ2, which are i.i.d. from some distribution H . The class includes: finite mixture
models (Richardson and Green 1997), Dirichlet process mixtures (Ferguson 1983, Lo 1984),
normalized random measures (Nieto-Barajas et al 2004) and many more. In this paper, it
will be assumed that q is infinite. Recent work on infinite-dimensional mixture models has
concentrated on specifying alternative species sampling models to the Dirichlet process, see
e.g. normalized inverse gaussian processes (Lijoi et al 2005) and Poisson-Dirichlet processes
(Ishwaran and James 2002). In fact the only non-species sampling model prior developed is
the spatial neutral to the right model (James 2006). The mixture of normals is a standard
choice and I will assume it throughout the paper (although the ideas are readily extended
to other continuous component distributions). The Bayesian analysis of mixture models is
reviewed in Marin et al (2006) who describe in detail the possible computational approaches
to inference and the potential pitfalls in their use.

It is useful to draw a distinction between density estimation and clustering. In the lat-
ter our interest often focus on the number of clusters and the allocation of observations to
each cluster. It is natural to include prior information about the size, orientation and location
of the clusters. However, in density estimation it is not clear that the number of clusters
and allocation of observations to each cluster are relevant quantities of interest and will of-
ten only enter our thinking in terms of the statistical properties of the estimation procedure.
In a subjective framework, the natural quantities on which to place prior information are
the unknown density f and perhaps the smoothness of the density or the number of modes.
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This paper follows Robert and Titterington (1998) by using uninformative prior for location
and scale whilst placing prior information (with possible “benchmark” values) on other as-
pects. In combination these benchmark values define automatic or semi-automatic Bayesian
density estimation procedures. By providing prior information about the unknown density
directly, we hope to sensibly provide a compromise between prior and data. The framework
also allows us to think sensibly about shrinkage effects, which are inherent in any Bayesian
procedure. The approach allows us to replace a parametric distribution in the model by a
nonparametric distribution whilst retaining the prior structure on hyperparameters.

This paper will concentrate on specification of H , and the prior distribution of its pa-
rameters, rather than the more commonly studied specification of the prior for p. There
have been several choices previously discussed. The orignal work of Ferguson (1983) and
Lo (1984) assumes that the component variances σ2

i in equation (2) share a common value
σ2

k and to unify notation I will write their prior as H(µ, σ2) = N(µ|µ0,
σ2

k
n0

)δσ2
i =σ2

k
. This

prior has recently been studied by Ishwaran and James (2002). Typically a hyperprior would
be assumed for σ2

k which can be made vague. This prior distribution will act as a starting
point for the suggestions in this paper. A drawback with this model is the single variance
hyperparameter σ2

k which may be an overly restrictive assumption. If parts of the density
can be well-represented by a normal distribution with different variances then imposing this
constraint will lead to the introduction of many extra normal distributions to model areas
with larger spreads. Therefore, it is useful to also consider models where the variance is
allowed to vary over the components. A popular choice is a conjugate model for each com-
ponent, discussed by Escobar and West (1995) where H(µ, σ2) = N(µ|µ0,

σ2

n0
)IG(σ2|α, β)

where IG is an inverted Gamma distribution with mean β
α−1 and variance β2

(α−1)(α−2) if they
exist. Its attraction stems from the analytic form of the predictive density of an observa-
tion ypred which is equal to

∫
N(ypred|µ, σ2)h(µ, σ2)dµdσ2, which plays a key role in stan-

dard computational methods. A drawback in the mixture context is the role of n0. It is
not clear why a component with a larger variance should be associated with more uncer-
tain means and unlike the usual normal model we cannot set n0 to be “small” leading to a
“default” analysis since the choice has serious implications for inference about the unknown
distribution. Escobar and West (1995) suggest interpreting n0 as a smoothness parameter
and the idea will be developed in this paper. It is also often difficult to choose α and β.
A further alternative, discussed by MacEachern and Müller (1998) removes the conjugacy
H(µ, σ2) = N(µ|µ0, σ

2
µ)IG(σ2|α, β). An important problem is the choice of the hyperpara-

meter and the effect on the posterior distribution. If we consider how these priors enter the
model it becomes clear that although density estimation problems are commonly approached
using this model, the parameterisation and structure of H(µ, σ2) relates to an alternative
interpretation of the model where we assume that the observed data come from several sep-
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arate subpopulations, which underlies the use of mixture models for cluster analysis. In this
case we express the model in terms of latent allocation variables s1, . . . , sn which link each
observation to a subpopulation represented by a component of the mixture where

yi|si, θ ∼ N(µsi , σ
2
si

)

p(si = j) = pj .

The purpose of this paper is to suggest a simple prior structure when our goal is density
estimation.

The paper is organised in the following way: section 2 discusses an alternative parameter-
isation of the normal mixture model and useful prior distributions for this parameterisation,
section 3 describes computational methods to fit these models, section 4 applies these meth-
ods to four previously analysed univariate data sets with different levels of non-normality and
a bivariate problem, section 5 discuss these ideas and some areas for further research.

2 An alternative parameristation and some prior spec-
ifications
This section introduces an alternative parameterisation of the mixture model. If we assume
a model with equal component variance, H(µ, σ2) = N(µ|µ0, σ

2
0)δσ2=σ2

k
, the predictive

distribution of yi is normal with mean µ0 and variance σ2
k + σ2

0 . The reparameterisation
defines σ2

k = aσ2 and σ2
0 = (1 − a)σ2. It seems natural to define a prior distribution

on the parameters of the marginal distribution of the observables, µ0 and σ2, rather than
the centring distribution of component means, µ and σ2

k. As Mengersen and Robert (1996)
note this is linked to standardisation of the data. Transforming to yi−µ0

σ allows subsequent
development of the model to be considered scale and location free. We now need to interpret
the parameter a. A simple interpretation is in terms of the smoothness of the unknown density
f . If a is large then all component means µi will tend to be close to µ0 and the marginal
distribution will tend to be close to the normal predictive distribution. If a is small then the
components will have a small variance and the centres will be close to draws from the normal
centring distribution. The Dirichlet process (Ferguson 1973) has been a standard choice
of species sampling model in Bayesian nonparametric modelling since the development of
computational methods by Escobar and West (1995) who also review the properties of the
process. It is parametrised by a distribution H and a measure of precision M . Figure 1
shows a number of realized distributions and the distribution of the number of modes for
different choices of a and M . It indicates that the number of modes is largely effected by the
choice of a rather than choice M . This is not surprising since modes are determined by local
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Figure 1: The prior distribution of the number of modes of F and a sample of densities under
different hyperparameter choices

features of the realized distribution. The parameter a can be interpreted as a measure of local
dependence (and so local variability) and the parameter M as measure of global variability.
The figure also gives us an indication of the link between a and the modal number of modes.
A values of a between 0.1 and 0.2 indicates a prior belief of bi- or tri-modality wheareas
a = 0.02 indicates support to a number of modes between 3 and 9. These observations
are helpful for defining a variety of prior distributions of a. The new prior distribution is a
reparameterisation of the usual conjugate prior distribution where a = n0

1+n0
, which is usually

assumed fixed and small which implies unsmooth densities. The scaling is surprising since
n0 = 0.01 would be considered a large value but implies many modes. A notable exception
is Richardson and Green (1997) who define H(µ, σ2) = N(ζ, κ−1)Ga(σ−2|α, β) in a finite
mixture model with a Gamma hyperprior on β. Another interesting aspect of the prior is the
importance of the role played a relative to M in the realised distributions.

I will use various moments of the observables and the unknown distribution f to clarify,
and quantify, the roles of the parameters. The constant component-specific variance can
be generalized to σ2

kζi, where E[ζi] = 1 to allow greater flexibility. A standard choice is
an inverse gamma distribution for ζi with shape parameter α and scale parameter 1, which
is the conditionally conjugate form. The advantage of the single σ2 is the smaller number
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of parameters to be estimated in the model which we hope will lead to more tighly fitting
model but a random effects specification for the variance can lead to a smaller number of
components with certain data. A mixture distribution for ζi would define a compromise prior

p(ζi) = w δζ=1 + (1− w) (α− 1)IG(α, 1).

If we consider a more general form of mixture density for f

f(x) =
∞∑

i=1

pik(x|µi, σ
2
k, φ)

where k is a symmetric probability density function with mean µi, variance σ2
kζi and any

other parameters of the density function denoted by φ. Let the mean of the centring distribu-
tion H be µ0 then the first two predictive central moments have the form

E[yi] = E[µi] = µ0, V[yi] = V[µi] + σ2
kE[ζi] = σ2

and the overall predictive variability can be divided into a component due to the variability
within components and between components so that

V[µi] = (1− a)σ2, σ2
k =

aσ2

E[ζi]
.

The predictive skewness have the form

E[(yi − µ0)3] = E[E[(yi − µi + µi − µ0)3|µi, σ
2
ki]]

= E[(yi − µi)3|µi] + E[(µi − µ0)3],

the sum of the within-component and between-component skewness, and the kurtosis can be
expressed as

E[(yi − µ0)4] = E[E[(yi − µi + µi − µ0)4|µi]]

= E[E[(yi − µi)4|µi]] + 6a(1− a)σ4 + E[(µi − µ0)4].

If both distributions are chosen to be normal then this expression equals 3σ4. However heav-
ier tailed predictive distribution will arise through either changes to the component distrib-
ution or, perhaps more usefully, the distribution of the component means. These properties
are unaffected by the choice of by the choice of the species sampling model. Of course, the
species sampling model will effect the variability in the moments of realized distribution.
To consider the effect of the species sampling model and the parameter a, we look at the
following quantity

Cov[f(x1), f(x2)] = C(x1, x2)
∞∑

i=1

E[p2
i ]
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Figure 2: C(x1, x1) with a standard normal predictive distribution and various values of a

where

C(x1, x2) = E[k(x1|µ, aσ2ζi, φ)k(x2|µ, aσ2ζi, φ)]−E[k(x1|µi, aσ2, ζi, φ)]E[k(x2|µi, aσ2, ζi, φ)].

The variability of f(x1) is then

V[f(x1)] = C(x1, x1)
∞∑

i=1

E[p2
i ].

The first part of the product, C(x,x1), on the right-hand side is related to the choice of k

and a and the second part is related to the choice of species sampling model. If we use a
Dirichlet process mixture

∑∞
i=1 E[p2

i ] = 1
M+1 . Figure 2 shows C(x1, x1) when we assume

a standard normal predicive distribution in the mixture of normals model with various values
of a. The variability decreases as the value of a increases but a second effect is also clear:
the variability will only be monotone decreasing in x for small values of a. Consequently
large a represents a confidence in the density at the mean but less confidence in the density
in the region around one standard deviation. An alternative measure, which underlies our
understanding of the species sampling models themselves is the variability in the probability
measure on a set B which can be expressed as

V[F (B)] =
∫

B

∫

B
C(x, y) dx dy.

The correlation between the density values at two points can be expressed as

Corr[f(x1), f(x2)] =
C(x1, x2)√

C(x1, x1)C(x2, x2)
.

The correlation structure of f(x) is independent of the choice of the species sampling model.
Therefore we can consider a and the form of the component density as correlation parameters
(although in this paper will restrict attention to the standard normal choice). Figure 3 shows
the autocorrelation structure for various values of a. For small a the dark area is almost
contained by two parallel lines which suggests that the correlation is a function of the distance
between two points only. As a increases this pattern disappears and larger absolute values of

7

CRiSM Paper No. 06-13, www.warwick.ac.uk/go/crism



a = 0.1 a = 0.2 a = 0.4 a = 0.7

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

Figure 3: Prior correlation between the density values at two points x1 and x2 for a model with
a standard normal predictive distribution and various values of a where darker colours represent
larger correlations

x are associated with much larger ranges (the distance at which the autocorrelation is equal
to some small prespecified value). The autocorrelation between two sets B1 and B2 can be
expressed as

Corr(F (B1), F (B2)] =

∫
B1

∫
B2

C(x, y) dx dy√∫
B1

∫
B1

C(x, y) dx dy
∫
B2

∫
B2

C(x, y) dx dy

=
∫

B1

∫

B2

w(x, y)Corr(f(x), f(y)) dx dy

where

w(x, y) =

√
C(x, x)C(y, y)∫

B1

∫
B1

C(x, y) dx dy
∫
B2

∫
B2

C(x, y) dx dy
.

The measures considered in this section quantify the relationships that are evident from the
figure 1. The parameter a controls the local prior behaviour of the density function and, at
least in the Dirichlet process case, the parameter of the species sampling model controls the
general variability. It seems reasonable given the results on the variance and correlation of
the density function to assume that these relationship will largely carry over to other species
sampling models. The following section uses these ideas to develop prior distribution for a

and the location and scale parameters µ0 and σ2.

2.1 Prior distributions for the parameters of the model

One purpose of this paper is to suggest forms of prior for the mixture model that allow us
to replace a parametric distribution, in this case the normal distribution, by a nonparametric
alternative. In particular it would useful to maintain the same prior structure across these
two possible specifications. There are two standard choices of prior for µ0 and σ2: the im-
proper choice of Jeffreys’ prior p(µ0, σ

−2) ∝ σ2 and the conjugate choice p(µ0, σ
−2) =

N(µ|µ00, φσ2)Ga(σ−2|α, β). The second choice always leads to a proper posterior dis-
tribution. However the Jeffreys’prior can lead to an improper posterior distribution. The
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following result shows that the posterior distribution will always be proper. Robert and Tit-
terington (1998) have previously considered a similar approach for a different prior in finite
mixture models. They place Jeffreys’ prior distribution on the parameters of the first compo-
nent and then allow the location and scale of the k-th cluster to depend on the locations and
scales of the previous k − 1 components. This seems more suited to a finite mixture case for
cluster analysis rather than density estimation problems where centring the predictive distri-
bution over a particular parametric form seems a useful starting for prior specification. They
observe that dependence between the priors on the parameters of each component is key to
the use of improper priors for location and scale and the same is true for the prior proposed
in this paper. It is simple to show posterior existence for the prior structure in this paper. In
particular the posterior will exist if

p(y|µ0, σ
2, a) =

∫
σ−2

l∏

i=1

∫
k(y|µi, ζi, a, σ2)h(µi|µ0, a, σ2)p(ζi) dµi dζi dµ0 dσ2

is finite, which is true for the the mixture of normals models considered in this paper.
Finally, the prior specification for the smoothness parameter a and the parameters of the

species sampling model is considered. In this paper, the choice of species sampling model
will be restricted to the Dirichlet process and a prior distribution for the mass parameter M

is proposed. The form of the prior distribution of a is restricted to follow a Beta distribution
and several possible parameter choices are considered. The prior distribution of the nonpara-
metric part is defined through a prior distribution for ζ =

∑∞
i=1 E[p2

i ] with the density

p(ζ) = nη
0

Γ(2η)
(Γ(η))2

[ζ(1− ζ)]η−1

[(n0 − 1)ζ + 1]2η
.

In the Dirichlet process case, where ζ = 1
M+1 , the properties of this prior distribution are

discussed by Griffin and Steel (2004).
Figure 4 shows realisations of the density and the distribution of the number of modes

for various choice of the parameters of the prior distribution of a and the M . If we choose
a to follow a uniform distribution (0, 1) then the distribution of the number of modes is
peaked around 1. This prior is giving strong support to a unimodal density with a broadly
normal shape. This could be a sensible prior distribution if our goal is to replace a parametric
distribution with a nonparametric alternative. The choice of a Be(1, 10) places substantial
mass on values of a less than 0.2 implying less smooth distributions. It gives a prior modal
value of 2 for the number of modes and relatively flat shape supporting a large range of
modes. This could represent a more sensible prior distribution in density estimation where
we might expect to have a large departure from normality with several modes. This choices
are just suggestion and other choices may be more appropriate in other situation. For example
a Be(1.75, 10.25) acts like a compromise between the two previous choices and implies a
modal value of 1 but with a wider spread than the Be(1, 1).
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n0 = 10, η = 3 n0 = 5, η = 3
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Figure 4: The prior distribution of the number of modes of F and a sample of densities under
different hyperparameter choices

2.2 Multivariate versions

The ideas described up to this point relate to univariate density estimation. However, the
multivariate problem is important and has received particularly attention in the Bayesian
literature on random effects model where the distribution of the random effects is to be es-
timated (see e.g. Müller and Rosner 1997). The smoothness parameter a in the univariate
case defines the proportion of the overall variance assigned to within component variation.
There is no single natural extension to the multivariate case but there are two natural starting
points: the orientation of the observed vectors has some meaning or the orientation of the ob-
served vectors is essentially arbitary (in which case we would be happy to rotate axis without
affecting the analysis). In both case the univariate model is extended by assuming that the
mean of data is µ0 and the covariance matrix is Σ. In the first case, we want to respect the
dimension of the variables and to have different smoothness parameter (values of a) for each
dimension. The choice of within-component covariance matrix Σk such that

Σkij =
√

aiajΣij

implies that the correlation between the i-th and j-th variable is Σij√
ΣiiΣjj

. This define Model

I which allows different levels of departure from the centring model in different dimension
and the prior for the marginal distibution of the i-th variable will the univariate model with
smoothing parameter ai. The prior covariance matrix of the µi will then have the form
Σ − Σk. In the second case, it seems more natural to first transform the data vector yi to
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Figure 5: Four realisations of the multivariate model 1 with different value of a correlation 0 with
M = 5

zi = A−1(yi − µ0) where A is the Choleksy decomposition of Σ and the distribution of
zi will be centred over a multivariate standard normal. The within component covariance
matrix is assumed to have the form

Σk =




a1

. . .

ap


 .

and the between component covariance is assumed to be

Σ0 =




1− a1

. . .

1− ap


 .

This defines Model II. Some realisations of the processes for Model I with various choices
of the parameters are shown in figures 5 and 6. Clearly small values of a lead to distibutions
with many modes and typically well-seperated components. The value of a = 0.2 and larger
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give rise to distribution with less modes and a more cohesive distribution. As in the univariate
case, it is also possible to define a version where each cluster variance is different. Let

E(yi|µi, σ
2) = µi, V(yi|µi, σ

2) = Σkζi

where ζi is a distribution with the indentity as the mean. Standard choices such a the inverted
Wishart distribution can fit into this structure.
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Figure 6: Four realisations of the multivariate model 1 with different value of a correlation 0.5
with M = 5

3 Computational methods
The fitting of Dirichlet process mixture models have been greatly helped by the development
of efficient MCMC methods. The usual methods make use of the Polya urn scheme represen-
tation (Blackwell and MacQueen, 1973) to avoid the infinite number of elements in G, which
are often called marginal methods. The models developed in this paper are non-conjugate and
methods for this case are described in MacEachern and Müller (1998) and Neal (2000). How-
ever, all the examples in this paper use the Retrospetive Sampling scheme for stick-breaking
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mixture models described in Papaspiliopoulos and Roberts (2004), which uses a finite trunca-
tion of G whilst avoiding truncation error. This allows direct posterior inference for f and G.
Alternatively, Gelfand and Kottas (2002) describe methods for making inference about these
objects using marginal methods. Discussion of computational methods is not the purpose of
this paper and the reader is referred to Papaspiliopoulos and Roberts (2004) for comparison
of the various methods. All methods make use of the Gibbs sampler and the full conditional
distribution for each parameter are fully described in each paper. This section describes meth-
ods for sampling any unusual full conditional distributions. Before describing these steps it
is important to note that in all the methods, the i-th observations is allocated to a compo-
nent value (µsi , σ

2
si

), which leads to simple forms for many full conditional distributions in
a Gibbs sampling scheme.

3.1 Updating M

M can be updated using an independence Metropolis-Hastings sampler. The Newton-Raphson
method is used to find the mode of the full conditional distribution, then the proposal dis-
tribution is a t-distribution centred at the mode, with α degrees of freedom and precision
parameter λ = α

α+1× -Hessian. A default choice of α would be 3.

3.2 Updating σ2
k and σ2

0 in the normal model

To update a, σ2, we transform back to σ2
k and σ2

0 where σ2 = σ2
k + σ2

0 and a = σ2
k

σ2
k+σ2

0
. The

jacobian of the transformation is 1
σ2

k+σ2
0

. The transformed prior is

p(σ2
k, σ

2
0) =

1
σ2

k + σ2
0

pa

(
σ2

k

σ2
k + σ2

0

)
pσ2(σ2

k + σ2
0).

If σ2 has an improper prior, we use a rejection sampler with the envelope

σ2
k ∼ IG

(
n/2 + βâ− (1− â)α,

1
2

n∑

i=1

(yi − θsi)
2

)

σ2
0 ∼ IG

(
k/2 + α(1− â)− βâ,

1
2

k∑

i=1

(θi − µ0)2
)

where â is the current value of σ2
k

σ2
0+σ2

k
. The acceptance probability is

1
(σ2

k + σ2
0)α+β

(
σ2

k

â

)(α+β)â (
σ2

0

1− â

)(α+β)(1−â)

.
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In the proper case, where σ2 follows an inverted Gamma distribution with shape c and scale
d, we define the joint distribution

σ2
k ∼ IG

(
n/2 + (β + c)â− (1− â)α,

1
2

n∑

i=1

(yi − θsi)
2 + dâ2

)

σ2
0 ∼ IG

(
k/2 + (α + c)(1− â)− βâ,

1
2

k∑

i=1

(θi − µ0)2 + d(1− â)2
)

which can be used as a proposal distribution in a Metropolis-Hasting sampler which has
acceptance probability

min





1,

(
σ′2â

kσ′21−â
0

σ′2k+σ′20

)α+β+c

exp
{
−d

[
1

σ′2k+σ′20
− â

σ′2k
− 1−â

σ′20

]}

(
σ2â

kσ21−â
0

σ2
k+σ2

0

)α+β+c

exp
{
−d

[
1

σ2
k+σ2

0
− â

σ2
k
− 1−â

σ2
0

]}





where σ′2k and σ′20 represent the proposed values of σ2
k and σ2

0 respectively.

3.2.1 Updating ζi

If ζi ∼ IG(α, β) then

ζi ∼ IG

(
α + 0.5ni, 1 + 0.5

∑
j|sj=i(xj − µi)2

(α− 1)aσ2

)

Updating a and σ2 use the rejection sampler from above replacing
∑

j|sj=i(xj − µi)2 by
1

(α−1)ζi

∑
j|sj=i(xj − µi)2.

3.3 Multivariate extensions

3.3.1 Updating Σ and a

For both models described in section 2.2, these parameters can be updated using a random
walk Metropolis-Hastings with normal proposals whose variance have been tuned to achieve
an acceptance rate close to 0.234.

4 Examples

4.1 Univariate density estimation

The Bayesian model developed in this paper will be illustrated on a series of data sets previ-
ously analysed in the literature. The “galaxy data” was initially analysed by Roeder (1992)
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and introduced into the Bayesian literature by Roeder and Wassermann (1997). It has be-
come a standard data set for the comparison of Bayesian density estimation models and their
related computational algorithms. The data records the estimated velocity (×10−2) at which
82 galaxies are moving away from our galaxy. Some galaxies are thought to be moving at
similar speeds whilst other move much faster or slower. Inferring the clusters of galaxy is
the main inferential problem. Of course, this rather contradict the basis of this paper and
the problem here is treated as density estimation (in common with much of the subsequent
literature). However, if the clusters are not assumed normal then modality of the data may
give some clue to the various groupings. The “acidity” data refers to a sample of 155 acidity
index measurement made on linkes in noth-central Wisconsin which are analysed on the log
scale, the “enzyme” data measures the enzymatic activity in the blood of 245 unrelated indi-
viduals. It is hypothesised that there are groups of slow and fast metabolizers. These three
data sets were previously analysed in Richardson and Green (1997). A final data records the
red blood cell sodium-lithium countertransport (SLC) in six large English kindreds. The data
was previously analysed by Roeder (1994) who wants to distinguish between a two and three
component finite mixture, which she postulates will have the same variance. Further back-
ground to the genetic implications of different types of multi-modality are explained in the
reference. Some summary statistics for the four data sets are shown in table 1. In all analyses
the prior for M is set to have hyperparameters n0 = 5 and η = 3 and ζi ∼ IG(2, 1). Two
prior choices for a were chosen: Be(1, 10) and Be(1, 1) which represent a prior distribution
with substantial prior mass on a wide range of modes and prior distribution that places a lot
of a mass on a single mode.

Data set sample size mean standard deviation
Galaxy 82 20.8 4.6

Log Acidity 155 5.11 1.04
Enzyme 245 0.62 0.62

Sodium Lithium 190 0.26 0.099

Table 1: Summary statistics for the 4 data sets

Figure 7 shows the predictive distribution (solid line) and a 95% highest probability den-
sity region of f(x) for each of the four data sets when the prior distribution is Be(1, 1). The
results are largely unchanged by the alternative prior distribution (although some features do
change which will be discussed subsequently). These results are extremely similar to pre-
vious analyses, although the galaxy data results do differ largely from analyses described in
Marin et al (2006) and Wasserman and Roeder (1997) who find a single mode between 20
and 24 rather than the two modes inferred in this analysis. The extra mode has been found in
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Galaxy Acidity Enzyme Sodium Lithium
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Figure 7: Posterior predictive densities for the four data sets with a pointwise 95% HPD interval

a number of other analyses e.g. Richardson and Green (1997).
Table 2 shows summaries of the posterior distributions of a and M under the two prior

distributions of a. The parameter a has been interpreted as the smoothness of the realised dis-
tribution and related to the number of posterior modes. The results show that the distribution
which are less smooth (in particular the multi-modal galaxy data) have smaller estimates of
a, which is estimated with good precision in each case. Unsurprisingly the unimodal distri-
bution of sodium lithium has the highest estimates of a. The posterior distribution is robust
to the choice between the two prior distribution when the density are estimated to be less
smooth. For distributions which have higher levels of smoothness the prior distribution is
much more influential. This mostly shows a prior-likelihood mismatch since the tighter prior
distribution places nearly at its mass below 0.2 and neglible mass above 0.3. Clearly under
the more dispersed prior distribution the posterior distribution for the acidity and sodium
lithium data sets place mass at larger values. This suggests that a dispersed prior distribution
will be useful when we are unsure about the smoothness and likely modality of the data. The
posterior inferences of M for each data set show only small differences between the posterior
median and credibility intervals, illustrating that differences in modality will not be captured
in these models by the M parameters. The results for the number of clusters (not shown) also
display a lack of difference in the form of the posterior distribution across the different data
sets.

a M

Data set Be(1, 1) Be(1, 10) Be(1, 1) Be(1, 10)

Galaxy 0.04 (0.01, 0.12) 0.03 (0.01, 0.10) 3.73 (1.14, 10.80) 3.93 (1.31, 10.06)
Acidity 0.16 (0.04, 0.46) 0.10 (0.03, 0.27) 3.47 (0.95, 10.66) 3.23 (0.83, 9.48)
Enzyme 0.06 (0.01, 0.23) 0.05 (0.01, 0.16) 2.40 (0.75, 6.40) 2.39 (0.69, 7.31)

Sodium Lithium 0.44 (0.12, 0.82) 0.17 (0.04, 0.41) 3.71 (0.79, 15.01) 2.25 (0.49, 6.69)

Table 2: The posterior distribution of a summarised by the posterior median with 95% credibility
interval in brackets for the 4 data sets
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Galaxy Acidity Enzyme Sodium Lithium
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Figure 8: Posterior predictive densities for the four data sets

The inferences about the number of modes is shown in figure 8. The degree of posterior
uncertainty for most of the data sets (with the exception of sodium lithium) is substantial
and is obscured in the posterior predictive distributions. In all cases the results are shown
for Be(1, 1) prior, as with a, the results are unchanged with the second prior for the galaxy
and enzyme data. The galaxy data supports a range of values between 3 and 9. The values
5 and 6 receive almost equal posterior support. The acidity data shows strongest support for
2 modes and some uncertainty about and extra 1 or 2 modes. The enzyme data also shows
a large amount of posterior uncertainty about the number of modes. It show most support
for 3 modes with good support for upto 7 modes. The results are rather surprising given the
shape of the posterior predictive distribution. It seems reasonable to conjecture that the form
of the model may lead to these results. The data can be roughly divided into two groups. The
skewness of the second group can only be captured by a number of normal distribution. This
may lead to rather unrealistic estimates of the number of modes. The sodium lithium data set
results are shown for the Be(1, 1) prior. The posterior distribution strongly supports a single
mode with a posterior probability of about 0.8.

4.2 Multivariate data example

As an example, I re-analyse a data set, previously analysed by Bowman and Azzalini (1997),
that relates to a study of the development of aircraft technology originally analysed by
Saviotti and Bowman (1984). The data set contain six characteristics (total engine power,
wing span, length, maximum take-off weight, maximum speed and range) of aircraft de-
signs. The first two principal components are shown in figure and can be interpreted as
“size” and “speed adjusted for size”. Further details are given in the reference. A Beta(1,1)
prior distribution was used for a1 and a2. The prior distribution of Σ was chosen to be an
inverse Wishart distribution with 3 degrees of freedom and the prior mean fixed to the sample
covariance matrix. The data is analysed using Model I to illustrate the methodology although
Model II seems more appropriate in this application.

The posterior distribution of a1 and a2 are summarised in table 3 and show that there is a
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parameter median 95% credible interval
a1 0.103 (0.078, 0.137)
a2 0.095 (0.086, 0.140)

Table 3: Summary of the posterior distribution of a1 and a2 for the aircraft data

similar level of non-normality in both variables. Once again both parameter are estimated to
a good level of certainty. Figure 9 shows a scatterplot of the data and the posterior predictive
distribution for the chosen prior. The predictive distribution gives a good description of the
data. In particular, the higher density of points on the for small x1 is well captured and gives
similar results to Bowman and Azzalin (1997).
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Figure 9: Aircraft data: (a) a scatterplot of the data and (b) a heatplot of the posterior predictive
density function where darker colours represent higher density values

5 Discussion
This paper presents an alternative interpretation of the species sampling mixture of normals
model often used for Bayesian density estimation which contrast with the more usual subpop-
ulation motivation. The unknown density, f , is treated as the main parameter of interest and
prior information is consequently placed directly onto this object. This naturally leads to an
alternative parameterisation and prior distribution that are, in certain situations, much easier
to specify than previously defined models. It is usual to fix n0 in the standard conjugate prior
distribution and define a value of σ2 related to the overall variability in the data. In univariate
problem, the model can be fitted using a non-informative prior distribution for the scale and
location for which the posterior distribution exists. A range of default prior specification are
discussed that allow an “automatic” Bayesian density estimator to be chosen. These speci-
fications have good properties over a range of data sets which have a different numbers of
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modes. Recent developments in computational methods for non-conjugate Dirichlet process
and general stick-breaking prior distribution (Neal 2000, Neal and Jain 2006, Papaspiliopou-
los and Roberts 2004) make these ideas feasible. However, in common with many other
Bayesian methods, non-informative prior distributions can lead to posterior distributions for
σ2 which have long tails. Use of prior information about the location and scale will lead to
more concentrated posterior distributions which may be preferable in a some applications.
However, the automatic nature of improper priors is often appealing.

This paper has concentrated on density estimation of distributions of observables but
many Bayesian applications of nonparametric density estimation of unobservable quantities,
such as random effects. The approach developed here can play a more important role in these
problems where choices of scale for the component and the distribution of the component
means will be hard to choose in many practical applications. The specification describe in
this paper allows us to replace a parametric distribution by a nonparametric specification of
f whilst retaining the other structure of the parametric model. For example, the univariate
analyses presented in this paper directly generalize the standard Bayesian normal model with
Jeffreys’ prior for the location and scale.

This paper has been restriced mostly to the Dirichlet process mixture of normals model
which has been used extensively in the practical applications of Bayesian nonparametric
methods. This paper could be generalized in a number of ways. A number of alternative
species sampling models have been considered and it would be interesting to see the effect of
alternative species sampling models on the inference. An alternative generalisation consider
changing either the component specific distribution from normal or, perhaps more usefully,
the centring distribution of f . The results in section 2 suggest that the former idea will lead
to different prior correlation structures for the density function. Other centring distribution
are also possible. A simple method assumes that some lower order prior predictive moments
of f are fixed to coincide with those of a parametric distribution. For example, we could
replace at t-distribution with a mixture of normals where the the mean of the normals are also
drawn from a t-distribution. The results in section 2 make the link between the skewness and
kurtosis of the various distributionss explicit.
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