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Parameter Bayesian Inference
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Abstract

Under a new family of separations the distance between two poste-

rior densities is the same as the distance between their prior densities

whatever the observed likelihood when that likelihood is strictly pos-

itive. Local versions of such separations form the basis of a weak

topology having close links to the Euclidean metric on the natural

parameters of two exponential family densities. Using these local sep-

aration measures it is shown that when the tails of the approximating

density have appropriate properties, the variation distance between an

approximating posterior density to a genuine density can be bounded

explicitly. These bounds apply irrespective of whether the prior den-

sities are grossly misspecified with respect to variation distance and

irrespective of the form or the validity of the observed likelihood.

Keywords: density ratio class, hierarchical Bayesian inference, high

dimensional inference, local robustness, parametric Bayes, total vari-

ation.

1 Introduction

Let f0 denote the functioning prior over a finite parameter vector θ ∈ Θ - i.e.
the density actually used in a Bayesian analysis - and g0 the genuine prior :
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- i.e. the one that would be used if there was enough time and skill applied
to elicit it perfectly. Denote the two corresponding posterior densities after
observing a sample xn, n ≥ 1 of n observations by fn and gn respectively. In
this paper a new family of separation measures on prior densities is examined.
Using the properties of these separations it is possible to derive conditions
ensuring that the posterior density fn is a good approximation for gn when
n is large, where following other authors closeness in posterior densities is
measured by variation distance dV (fn, gn) =

∫
Θ
|fn(θ) − gn(θ)|dθ.

The problem of posterior robustness is commonly addressed by first as-
suming that both the sequences of posterior functioning densities {fn}n≥1

and genuine {gn}n≥1, are consistent. For example, [16] proved (p.439) that
such consistency will automatically follow provided there is a consistent esti-
mator of θ in a finite dimensional parameter space Θ and the parametrisation
of θ respects Kullback-Leibler separations in the sense of Theorem 7.80 in
[16]. It follows that when each component of a random sample xn is drawn
from a distribution labelled by a parameter θ0 ∈ Θ and whenever {fn}n≥1

and {gn}n≥1 are both continuous at θ0 ∈ Θ0 where Θ0 is the interior of Θ,
limn→∞ dV (fn, gn) = 0 almost surely Pθ0

, e.g. [8], p.18. This in turn im-
plies that fn provides a good working approximation for gn for all reasonable
estimation purposes in the sense above.

These results rely heavily on the assumption that the sample family is
precisely and correctly specified. Typically this is rarely credible or verifiable.
A more useful result would be that limn→∞ dV (fn, gn) = 0 whenever the
functioning posterior distribution concentrates on a point θ0 on the closure
of the parameter space Θ.

In this paper we prove that under a new family of local separation mea-
sures, this property holds for any given observed likelihood, even when the
sample distribution family is not accurately specified and the data is not a
random sample. In Section 2 we introduce a of separation measures, closely
related to density ratio separation measures [7], [20], [14], but redefined so
that they apply locally. In Section 3 various useful properties of these sep-
arations are examined. In Section 4 it is shown that in the limit they can
be used to compare the relative roughness of two prior densities and provide
a very coarse topology where a Bayesian might plausibly believe that her
functioning and genuine prior to be close.

In Section 5 the ”isoseparation property” of the new separations is used
to prove that, provided the genuine prior density lies in one of these coarse
neighbourhoods of the functioning prior, closeness in variation between the
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functioning and genuine posteriors is almost guaranteed. Furthermore ex-
plicit bounds for the approximation can be calculated and apply irrespective
of whether the observed data is consistent with the family of sample distri-
butions underpinning the observed likelihood. This makes the results here
of considerable practical significance to the study of the robustness to prior
specification in high dimensional parametric inference and in particular for
hierarchical models.

2 Density ratio balls and Isoseparation

Henceforth for simplicity assume that all candidate genuine priors g0(θ) and
the functioning prior f0(θ) are strictly positive and continuous on the interior
of their shared support Θ so that they are uniquely defined. Assume a
sequence of observed sample densities {p(xn|θ)}n≥1 of an n -vector of data
xn = (x1, x2, . . . xn) are measurable with respect to g0(θ). Let Θ(n) = {θ ∈
Θ : p(xn|θ) > 0} and assume that p(xn|θ) is continuous on Θ(n). The formal
Bayesian updating formula calculates the posterior density gn(θ) , g(θ|xn)
after n observations for all θ ∈ Θ(n) using the equation

log gn(θ) = log g0(θ) + log p(xn|θ) − log pg0
(xn), (1)

where the predictive density pg0
(xn) =

∫
θ∈Θ(n)

p(xn|θ)g0(θ)dθ is usually cal-

culated indirectly, either algebraically or numerically, so as to ensure gn(θ)
integrates to 1. For all θ ∈ Θ\Θ(n) we simply set gn(θ) = 0. In this paper
we assume that our inference is sufficiently regular that it is appropriate to
use this formula, both for g0 and f0.

Let fn(θ) , f(θ|xn), θ ∈ Θ(n) represent our functioning posterior den-
sity after the first n observations and suppose that the functioning posterior
density fn(θ) ∈ Cαn(θn

0 , ρn) converges in distribution as n → ∞ to a point
mass in the closure neighbourhood of θ0 ∈ Θ(n). It has long been known -
see e.g. [5], [13], [1] - that when the functioning posterior convergences to
a defective distribution the variation distance between fn and gn cannot be
guaranteed to converge to 0 if the tails of the densities fn and gn converge at
different rates. However more recently [7] proved that, for most parametric
models, the ratio of the supremum of prior and posterior variation distance
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over a neighbourhood N of the density f0

sup
g0∈N

{
dV (fn, gn)

dV (f0, g0)

}
, (2)

almost always diverges in n - usually at a of rate nk/2, where k is dim Θ with
probability 1 even when data are drawn from a ”true” density indexed by the
parameter θ0 ∈ Θ0. Furthermore this remains true even when the class N is
chosen so the tail characteristics of f0 and g0 are identical - thus precluding
cases like the one cited above - and g0 is constrained to be infinitely differ-
entiable. Therefore this phenomenon cannot be explained by discrepancy in
tails of f0 and g0 - contra [2] - nor does it occur because the deviation be-
tween g0 and f0 is discontinuous in a neighbourhood of a maximum likelihood
estimate.

These results appear to demonstrate a disturbing lack of robustness in
Bayesian inference. However it is shown below that this lack of stability
occurs because the prior variation distance dV (f0, g0) has virtually no bearing
on the posterior variation distance dV (fn, gn) even in the tight neighbourhood
N given in [7]. By imposing weak equicontinuity conditions on g0 it is shown
that supg∈N {dV (fn, gn)} can be bounded and typically decreases in powers
of n for neighbourhoods N much less tight than the ones specified in [7].

Definition 1 Let B[1], B[2] ⊂ A and A ⊆ Θ be measurable sets with re-
spect to the common dominating measure of two distributions F and G with
respective densities f and g. Define the DRA separation dR

A(f, g) by

dR
A(f, g) , sup

B[1],B[2]⊆A

∣∣∣∣
F (B[1])G(B[2])

F (B[2])G(B[1])
− 1

∣∣∣∣ . (3)

In this paper because two compared densities f and g are assumed to be
continuous on a shared support it is easily checked that dR

A(f, g) simplifies to

dR
A(f, g) = sup

θ,φ∈A

∣∣∣∣
f(θ)g(φ)

f(φ)g(θ)
− 1

∣∣∣∣ = sup
θ,φ∈A

(
f(θ)g(φ)

f(φ)g(θ)

)
− 1 < δ, (4)

a formula used henceforth. Note that the separation measure defined by [6]
and cited above is dR

Θ(f, g).
An equivalent separation measure the A−density ratio separation dL

A(f, g)
- is given by

dR
A(f, g) = exp dL

A(f, g) − 1, (5)
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so that

dL
A(f, g) = sup

θ,φ∈A
{(log f(θ) − log g(θ)) − (log f(φ) − log g(φ))} .

Because dL
A(f, g) and dR

A(f, g) are equivalent henceforth we freely move be-
tween them.

It is easy to check that all DRA and A−density ratio separations are sepa-
ration measures in the sense that for all continuous densities f, g ∈ F , d(f, g)
takes values in R ∪ ∞ where for all f, g ∈ F , d(f, f) = 0, d(f, g) ≥ 0 and
d(f, g) = d(g, f).

The neighbourhoods of these separations have some nice convexity prop-
erties: for example they are closed under the standard multiplicative pool of
f and g. Thus it is immediate from the definition above that for any set A
and 0 ≤ α ≤ 1

dL
A(f, gα,f) = αdL

A(f, g) ≤ dL
A(f, g),

where

gα,f(θ) ,

(∫
f (1−α)(θ)gα(θ)dθ

)−1

f (1−α)(θ)gα(θ).

Note that if A1 ⊂ A2 then dL
A1

(f, g) is weaker than dL
A2

(f, g). When the
lower bound and upper bound are attained

dL
A(f, g) = (log f(θu(A,f,g))− log g(θu(A,f,g)))−(log f(θl(A,f,g))− log g(θl(A,f,g))),

where

θu(A,f,g) = arg sup
A

(log f(θ) − log g(θ)), (6)

θl(A,f,g) = arg inf
A

(log f(θ) − log g(θ)).

So in particular dL
A(f, g) is easy to interpret, being the difference of the two

log densities at their maximum and minimum values within a set A.
To prove the convergence results of this paper it is usually sufficient to

consider only sets A = B(θ0, ρ) where B(θ0, ρ) is an open ball with cen-
tre θ0 and of radius ρ. We write, dR

θ0,ρ(f, g) , dR
B(θ0,ρ)(f, g), dL

θ0,ρ(f, g) ,

dL
B(θ0,ρ)(f, g), dR

Θ0,ρ(f, g) , sup{dR
θ0,ρ(f, g) : θ0 ∈ Θ0} and dL

Θ0,ρ(f, g) ,

sup{dL
θ0,ρ(f, g) : θ0 ∈ Θ0}.

When all densities f and g which lie in a subset of densities F have
the property that dL

Θ,ρ(f, g) < ∞, then it easliy checked that dL
Θ,ρ(f, g) is

5
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in fact a metric. Note that unlike dR
A(f, g), dR

Θ0,ρ(f, g) is a function of the
parametrisation we use. So in particular to obtain invariance of convergence
to transformations T : Θ → Θ of the parameter space, the reparametris-
ing map T needs to be a diffeomorphism, a natural restriction when in a
finitely parametrized family. Demanding that a neighbourhood system be
invariant to arbitrary measurable reparametrizations, as does [20], appears
inappropriate for the parametric purposes of this paper.

We next show that these separations are closely related to Euclidean
distances on the natural parameter when the two densities compared come
from an exponential family.

Example 2 Let f1(θ) = f(θ|α1) and f2(θ) = f(θ|α2) lie in the same regular
exponential family

f(θ|α) = c(π(α))h(θ) exp

{
k∑

i=1

πi(α)ti(θ)

}
,

for some measurable functions (π1, π2, ..., πk, t1, t2, ..., tk) for some integer k
where π(α) = (π1, π2, . . . , πk), t = (t1, t2,...,tk) ∈ T and T does not depend on
α since the exponential family is regular. For 1 ≤ i ≤ k, and j = 1, 2 write

πi(αj) = πi,j.

Note that if a set A is of the form A = {θ ∈ Θ : t(θ) ∈ A = A1×A2× . . . Ak}
and µ(Ai) denotes the length of the interval Ai then

dL
A(f1, f2) = sup

θ,φ∈A
log

{
f(θ)g(φ)

f(φ)g(θ)

}
,

= sup
t(θ),t(φ)∈A

{
k∑

i=1

(πi,1 − πi,2)(ti(θ) − ti(φ))

}
,

=
k∑

i=1

|πi,1 − πi,2|µ(Ai).

It follows that if µ(Ai) is infinite for some (f1, f2) with πi,1 6= πi,2 then so is
dL

Θ(f1, f2) and the usual density ratio diverges. In particular, two densities
within the regular exponential family with parameters arbitrarily close under
Euclidean distance are usually infinitely far apart under dL

Θ(., .). But under
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dL
A(f1, f2) two such models with parameters close in Euclidean distance have

close local separation as well. For example suppose t(θ) = θ. Then

dL
θ0,ρ(f1, f2) ≤ 2ρ

√√√√
k∑

i=1

(πi,1 − πi,2)2.

In the special case when all points θ ∈ B(θ0; ρ) lie in the sample space - so
that θ0 is not near the boundary of Θ, the components of θ are functionally
independent within this ball and they do not depend on θ0 - the inequality
above becomes an identity. So for this family dL

A(f1, f2) simply corresponds
to a weighted Euclidean distance between the components of the natural pa-
rameters of the two prior densities. The distances between prior densities
conjugate to exponential families [3] also have an analogous simple closed
form. However, in [18] it is shown that within this family dL

θ0,ρ distances
have a dependence on θ0 so that in a Euclidean neighbourhood at the bound-
ary of the parameter space they can be unbounded. An example of this and a
demonstration of a correponding lack of robustness for beta densities whose
values of hyperparameters close to zero is given in [18].

Example 3 When f0 and g0 are respectively the prior densities of a col-
lection of n independent normally distributed random vectors with respective
mean vectors µf , µg and covariance matrices Σf , Σg it is easily checked that

dL
θ0,ρ(f, g) ≤ d1

θ0,ρ(f, g) + d2
θ0,ρ(f, g),

where, if e is a vector with all entries 1,

d1
θ0,ρ(f, g) = sup

{(
µfΣ

−1
f − µgΣ

−1
g

)
(θ − φ) eT : θ, φ ∈B(θ0, ρ)

}
,

≤ 2nρ
∣∣µfΣ

−1
f − µgΣ

−1
g

∣∣ ,

and

d2
θ0,ρ(f, g) = sup

{
trace

(
Σ−1

f − Σ−1
g

) {
θθT − φφT

}
/2 : θ, φ ∈B(θ0, ρ)

}
,

≤ 2nρ (n ‖θ0‖ + nρ)
∣∣trace

(
Σ−1

f − Σ−1
g

)∣∣ .

So provided that

∣∣µfΣ
−1
f − µgΣ

−1
g

∣∣ ,
∣∣trace

(
Σ−1

f − Σ−1
g

)∣∣ , ‖θ0‖ ,
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are finite, the DRA separation decreases to zero with ρ and mirrors Euclidean
distance in the natural hyperparameters of this family. Therefore, the usual
choice of low precision priors ensures that when ρ is small the local neighbour-
hoods of f are very coarse and contain most candidate genuine prior densities
g0 that might be entertained. In fact it will be demonstrated later that mixing
on hyperparameters of a family often ensures that the neighbourhoods of the
margins of θ become increasingly coarse even when ‖θ0‖ is unbounded.

3 Some basic properties of dL
A(f, g) and dR

A(f, g)

For any measurable subset A of Θ a striking property - here called the isosep-
aration property - of dL

A(f, g) (and hence dR
A(f, g)) can be calculated directly

from the formal Bayes Rule. Thus for all f0, g0 ∈ F where F is any subset
of continuous densities given above, for all n ≥ 1 and for A ⊆ Θ(n) we have

dL
A(fn, gn) = dL

A(f0, g0). (7)

In particular, when the observed likelihood pn(xn|θ) > 0 for all θ ∈ Θ and
for any measurable subset A of Θ we have

sup
go

{
dL

A(fn, gn)

dL
A(f0, g0)

}
= 1. (8)

Thus unlike the variation distance analogue (2) this ratio does not diverge for
any neighbourhood N of f0. Prior densities that are close under these topolo-
gies remain close a posteriori. However surprisingly - provided p(xn|θ) > 0
and is continuous for any θ ∈ A - they do not get closer either: prior separa-
tions endure regardless of what is observed.

When A = Θ this property has in fact been known for a very long time
([6]). However, A = Θ is the least interesting of special cases because this
separation is very fine, for example being a discrete topology on the class
of densities in standard exponential families. The most useful of these sepa-
rations is when the measure of A is small because, when studying posterior
densities, interest often focuses on the small areas of the parameter space on
to which the posterior functioning density concentrates its mass.

Let the observed likelihood p(xn|θ) > 0 for all θ ∈ Θ. When {p(xn|θ)}n≥1

are not explicit functions of θ2 where θ = (θ1, θ2), f0,1 and g0,1 are the func-
tioning and genuine prior marginal and fn,1 and gn,1 are the functioning and

8
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the genuine posterior marginal density of θ1 then these marginal densities
inherit the isoseparation property. Thus for all n ≥ 1, for θ ∈ A ⊆ Θ(n)

dL
A(fn,1, gn,1) = dL

A(f0,1, g0,1).

This property becomes important in the study of hierarchical models, where
the distribution of the first hidden level of variables together with the rele-
vant sampling distribution is often sufficient for any prediction of observable
quantity.

Example 4 Suppose that the observations Xn have a joint sample distribu-
tion uniquely specified by θ1 = (µ,Σ) where µ is the vector of means of Xn

and Σ a vector of other hyperparameters, for example variances and covari-
ances. To specify the prior on µ it is common practice to extend this model
so that

µ = τ(φ) + ε,

where φ is a low dimensional vector, τ is a known function - often linear - and
ε is an error vector parametrised by a vector Λ of, for example, covariances.
Often a utility will be a function only of θ through θ1 = µ. The invariance
property above then allows us to substitute θ1 for θ in all the examples of
robust inference discussed below.

Let fA(gA) henceforth denote the densities of f(g) conditioned on the
event {θ ∈ A ⊂ Θ}. A second property called conditioning invariance is es-
sentially a special case of the first. When we learn that {θ ∈ B ⊂ Θ}, for
some measurable set B where A ⊆ B, then

dR
A(fB, gB) = dR

A(f, g). (9)

In particular, this property implies the useful identity dR
A(f, g) = dR(fA, gA).

In common with other separation measures such as Hellinger and Kullback-
Leibler, DRA has the property that the separation between two marginal
densities is not larger than the separation between their corresponding joint
densities.

Thus let θ = (θ1, θ2) and φ = (φ1, φ2) be two candidate parameter values
in Θ = Θ1 × Θ2 where θ1, φ1 ∈ Θ1 and θ2, φ2 ∈ Θ2, where the joint densities
f(θ) = f1(θ1)f2|1(θ2|θ1), g(θ) = g1(θ1)g2|1(θ2|θ1) and f1(θ1), g1(θ1) are the

9
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marginal densities on Θ1 of the two joint densities f(θ) and g(θ) respectively.
Then it is proved in the appendix that

dL
A(f, g) ≥ dL

A1
(f1, g1), (10)

where A1 = {θ1 : θ = (θ1, θ2) ∈ A for all θ2 ∈ B ⊂ Θ2 for some open set B in
Θ2}. Through this proof it is transparent that when f2|1(θ2|θ1) = g2|1(θ2|θ1)
this inequality becomes an equality. On the other hand if θ = (θ1, θ2, . . . θk)
where the subvectors {θ1, θ2, . . . θk} of parameters are mutually independent,
then in common with Chernov or Kullback-Liebler separations it is easy to
check that

dL
A(f, g) =

k∑

i=1

dL
Ai

(fi, gi), (11)

where fi (gi) denotes the θi margin of f(g), 1 ≤ i ≤ n. In particular, if in the
hierarchical model of Example 4 a priori µ ∐ Σ, then by equation (11) and
by the isoseparation property the posterior separation over these parameter
vectors continues to be (11), regardless of what is observed.

To improve the mixing characteristics of Bayes numerical algorithms it
is common to ”increase the temperature” of a given posterior or to perform
simulated melding ([21]). A density f is replaced by f ∗ ∝ fα for some value
of α, 0 < α < 1. The interpretation of such a substitution is that for all f, g
for which dL

A(f, g) < ∞, then

dL
A(f ∗, g∗) = αdL

A(f, g).

Therefore, simulated melding corresponds to a simple linear contraction on
the separation space defined by dL

A(f, g) and draws all densities closer to one
another in this sense. On the other hand simulated annealing employs the
same transformation but lets α → ∞, increasingly separating the densities.

Example 5 (The Power Steady Model) A class of state space models
based on increasing temperatures was introduced in [17] and [15]. The pre-
dictive distributions of {Yt|y1, y2, . . . yt−1}t≥1 are specified in terms of a re-
currence of the form

p(yt|θt, y1, y2, . . . yt−1) = p(yt | θt), t ≥ 1,

ft(θt|y1, y2, . . . yt−1) ∝ fα
t−1(θt−1|y1, y2, . . . yt−1), t ≥ 2,

f1(θ1) ∝ fα
0 (θ0).

10
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for some 0 < α < 1. One example of such processes is the Gaussian Steady
DLM ([9]) if the prior hyperparameters of f0(θ0) are set to appropriate lim-
iting values. Note that, although the state space distribution is not fully
specified, the one step ahead predictives - and hence the whole predictive dis-
tribution of {yt}t≥1- are available as

p(yt|, y1, y2, . . . yt−1) ∝

∫

θt∈Θt

p(yt|θt)f
α
t (θt−1|y1, y2, . . . yt−1)dθ,

ft−1(θt−1|y1, y2, . . . yt−1) ∝ p(yt−1|θt−1)ft−1(θ,t−1 |y1, y2, . . . yt−2)

where the proportionality constants can be calculated using the fact that den-
sities integrate to unity. Suppose interest is in the joint distribution of
{Yt|y1, y2, . . . yt−1}t≥T T ≥ 2. Note that the margin fT−1(θT−1|y1, y2, . . . yT−1)
of θT−1|y1, y2, . . . yT−1 is sufficient for forecasting {Yt|y1, y2, . . . yt−1}t≥T . Let
gT−1(θT−1|y1, y2, . . . yT−1) be the corresponding density using g0(θ0) instead of
f0(θ0). Then from the isoseparation property and the melding property above
we have

dL
A(fT (θT |y1, y2, . . . yT ), gT (θT |y1, y2, . . . yT )) =,

dL
A(fT (θT |y1, y2, . . . yT−1), gT (θT |y1, y2, . . . yT−1)) =,

αdL
A(fT−1(θT−1|y1, y2, . . . yT−1), gT−1(θT−1|y1, y2, . . . yT−1)).

It follows that the quality of the approximation using the functioning prior
instead of the genuine prior improves exponentially fast in T with respect to
all these separation measures, i.e.

dL
A(fT (θT |y1, y2, . . . yT ), gT (θT |y1, y2, . . . yT ) = αT dL

A(f0(θ0), g0(θ0)).

Notice furthermore that the isoseparation property ensures that this result
will still hold whatever {p(yt|θt)}1≤t<T is and whether or not this sequence
were supplemented or corrupted, for example by censoring. It follows that in
the long run this class of models is very robust with respect to prior misspeci-
fation.

4 Roughness and Local Density Ratio Sepa-

ration

In this section it is shown that prior closeness dL
θ0,ρ(f0, g0) for small radii

ρ is essentially a condition that f0 and g0 are ”similarly rough” and has

11
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virtually no relationship with prior variation distance between f0 and g0.
Later we show that it is these local separations dL

θ0,ρ(f0, g0) which control
the posterior variation distances of the two densities. It is first necessary
to define what is meant in this paper by the term ”similarly rough”. Say a
function f ∈ F(Θ0, M(Θ0), p(Θ0)) if

sup
θ,φ∈B(θ0;ρ)

|log f(θ) − log f(φ)| ≤ M(Θ0)ρ
0.5p(Θ0),

where Θ0 is a subset of Θ, the domain of f , and where 0 < p ≤ 2. Then the
smallness of the parameter p governs the roughness of these function densities
in these families. In particular, for any set Θ0 when 0 < p1 < p2 ≤ 2 then

F(Θ0, M(Θ0), p2) ⊂ F(Θ0, M(Θ0), p1).

For example F(Θ0, M(Θ0), 2) denotes the set of functions whose logarithm
is differentiable on Θ0 with all derivatives bounded in modulus by M . Say
that g ∈ N (f, Θ0, M(Θ0), p(Θ0)) if there is a continuous function h(θ) such
that f = f ′h and g = g′h where f ′, g′ ∈ F(Θ0, M(Θ0), p(Θ0)), p(Θ0) > 0 for
all θ0 ∈ Θ0. Note that if g ∈ N (f, Θ0, M(Θ0), p(Θ0)) then for all θ0 ∈ Θ0

dL
θ0,ρ(f, g) = sup

θ,φ∈B(θ0;ρ)

|(log f ′(θ) − log f ′(φ)) − (log g′(θ) − log g′(φ))| ,

≤ sup
θ,φ∈B(θ0;ρ)

|log f ′(θ) − log f ′(φ)| + sup
θ,φ∈B(θ0;ρ)

|log g′(θ) − log g′(φ)| ,

≤ 2M(Θ0)ρ
1/2p(Θ0),

so that
dR

Θ0,ρ(f, g) ≤ exp
{
2M(Θ0)ρ

1/2p(Θ0)
}
− 1. (12)

Even with no strong contextual knowledge a Bayesian may well plausibly
believe that her genuine prior density g0 and her functioning prior density
f0 are similarly rough in the sense that g0 ∈ N (f0, Θ0, M(Θ0), p(Θ0)) for all
compact sets Θ0 of sufficiently small measure and for an appropriate choice of
M and p. When this is so for all small sets Θ0, dL

Θ0,ρ(f0, g0) can be made ar-
bitrarily small by choosing the radius ρ > 0 sufficiently small. By demanding
this type of weak equicontinuity condition - that {f, g : dR

Θ(f, g) < η} where
η is chosen arbitrarily small- rather than the one used in [7], it is shown below
that the expected large sample stability results. Furthermore the inequalities
introduced above allow us to bound the rate at which this occurs. Note that

12
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if, g0 ∈ N (f0, Θ0, M(Θ0), 2)) and Θ = R then dL
Θ,ρ(f0, g0) ≤ 2Mρ. In this

case if f0 is misspecified only in terms of its location and scale parameters,
so that the genuine prior g0(θ) = f0(σ

−1(θ − µ)) for some µ and σ > 0, then
dL

ρ (f0, g0) must tend to zero at a rate ρ, as shown in the following example.

Example 6 Two one dimensional Student t densities fj(θ) = f(θ|αj), j =
1, 2 where

f(θ|α) =
Γ(0.5[α + 1])√

απΓ(0.5α)
(1 + α−1σ−2 (θ − µ)2)−0.5(α+1),

have

dL
A(f1, f2) = 1/2 sup

θ,φ∈A

∣∣∣∣∣

2∑

j=1

(αj + 1) log
{
1 + ξ(θ, φ, αj, µj, σ

2
j )

}
∣∣∣∣∣ ,

where ξ(θ, φ, α, µ, σ2) = (θ − φ)(θ + φ + 2µ)(ασ2 + (φ − µ)2)−1. Assuming
without loss of generality that θ0 ≥ 0, it follows that

sup
θ,φ∈B(θ0;ρ)

∣∣ξ(θ, φ, α, σ2)
∣∣ ≤ 4ρ(θ0 − µ + ρ)

(ασ2 + (θ0 − µ + ρ)2)
≤ 2ρ

σ
√

α
,

where the last inequality is obtained by identifying a maximum by differenti-
ating. Thus

dL
Θρ(f1, f2) ≤

∑

j=1,2

(αj + 1) log

(
1 +

2ρ

σj
√

αj

)
≤ ρM,

where
M =

∑

j=1,2

2σ−1
j (α

1/2
j + α

−1/2
j ).

Suppose our functioning prior f1 has the Student t density given above. It
follows that the distance dL

Θ,ρ(f1, f2) of any genuine Student t prior f2 with
arbitrary prior mode µ2 tends to zero at a rate ρ provided the degrees of
freedom of the genuine prior and their spread parameter are bounded i.e.
0 < aL ≤ α2 ≤ aU < ∞, 0 < sL ≤ σ2 ≤ sU < ∞. In particular, by letting
|µ2 − µ1| → ∞ for a sufficiently small choice of radius ρ, two prior student t
densities will be close even when their variation distance is arbitrarily large.

13
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Thus the condition that dL
Θ,ρ(f0, g0) is small for small ρ is a mild one

to impose for flat tailed bounded densities: whole families of densities with
different locations and scales can lie in the same neighbourhood. Only when
the masses of the two densities concentrate near θ0, where the derivative of
log f0 − log g0 might be unbounded might f0 and g0 be a long distance apart
for a small enough value of ρ. This happens for instance when θ0 lies in the
tail of a density f0 where either f0 or g0 has an exponential or faster tail.
Even in this case, provided the mass of the functioning posterior concentrates
on to a compact subset Θ0 ⊂ Θ with high probability, sufficient smoothness
will usually still exist to ensure convergence in total variation, as illustrated
in the example below.

Example 7 Consider a Bayesian hierarchical model where joint prior den-
sities over parameters are specified through vector equations like

θ = ϕ + ε,

where ϕ is some function of hyperparameters encoding the systematic mean
variation in θ and ε is a vector of error terms with zero mean and independent
of φ. Commonly the functioning prior density fε of the error term ε is chosen
from some smooth family - for example a Student t arising from a Gaussian
whose associated variance hyperparameter is given an inverted Gamma dis-
tribution and integrated out. Assume this choice is such that fε ∈ F(Θ, M, p)
for some suitable choices of the two parameters (M, p). Here ε can be consid-
ered as a nuisance parameter vector in the sense given in Section 3 because
the likelihood would not be a function of it given θ. Let fϕ(gϕ) and f(g) de-
note the functioning (genuine) joint prior densities of ϕ and θ respectively.
Then since

f(θ) − f(θ − δ) =

∫
(fε(ε − ϕ) − fε(ε − ϕ − δ)) fϕ(ϕ)dϕ,

g(θ) − g(θ − δ) =

∫
(fε(ε − ϕ) − fε(ε − ϕ − δ)) gϕ(ϕ)dϕ,

an automatic consequence of constructing the prior in this way is that

g ∈ N (f, Θ0, M(Θ0), p(Θ0)),

irrespective of the density of the mean signals fϕ and gϕ, even if this is gov-
erned by a discrete process - for example the realisation of a Dirichlet process.

14
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Thus the condition that the genuine prior density g lies in a neighbourhood
of the functioning prior density f is often simply a consequence of the way
hierarchical priors are conventionally chosen. It is shown below that this
largely determines the robustness of posterior inferences with respect to the
variation metric. Whether the use of such conventions which implicitly im-
pose robustness are justified is of course entirely dependent on the modelling
context.

5 Variation distance and local separations

If A is a measurable subset of Θ and we write

ξA(θ|f, g) ,

∣∣∣∣
gA(θ)

fA(θ)
− 1

∣∣∣∣ ,

where fA(θ) = f(θ)
F (A)

and gA(θ) = g(θ)
G(A)

are respectively the conditional densi-

ties of θ under f(θ) and g(θ) given θ ∈ A then

ξA(θ|f, g) ≤ sup
θ∈A

∣∣∣∣
gA(θ)

fA(θ)
− 1

∣∣∣∣ ≤ dR
A(fA, gA) = dR

A(f, g). (13)

This enables us to relate DRA to total variation. Note that for any A ⊂ Θ0,
dV (fn, gn) = Tn[1] + Tn[2] where

Tn[1] =

∫

θ/∈A

|fn(θ) − gn(θ)| dθ,

=

∫

θ/∈A

|Fn(A)fn,A(θ) − Gn(A)gn,A(θ)| dθ,

≤ |Fn(A) − Gn(A)|
∫

θ/∈A

gn,A(θ)dθ + Fn(A)

∫

θ∈A

|fn,A(θ) − gn,A(θ)| dθ,

≤ |F (Ac) − G(Ac)| +
∫

θ/∈A

|ξA(θ|fn, gn)| fn,A(θ)dθ,

≤ Tn[2] + sup
θ∈A

ξA(θ|fn, gn),

≤ Tn[2] + dR
A(fn, gn) = Tn[2] + dR

A(f0, g0),

by the isoseparation property. Similarly

Tn[2] =

∫

θ/∈A

|fn(θ) − gn(θ)| dθ,

15
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≤
∫

θ∈Θc

|ξΘ(θ|fn, gn)| fn(θ)dθ,

≤ sup
θ∈Ac

ξAc(θ|fn, gn) {1 − Fn(An)} ≤ αn∆, (14)

again by isoseparation, where ∆ = dR
Θ(f0, g0) and αn = {1 − Fn(An)}. In

particular
dV (fn, gn) ≤ dR

An
(f0, g0) + 2Tn[2]. (15)

By choosing {An}n≥1 as a function of the statistics of the functioning pos-
terior in such a way that αn = {1 − Fn(An)} → 0 as n → ∞ but for which
dR

An
(fn, gn) → 0 as n → ∞ ensures convergence. Furthermore explicit bounds

for the total variation between fn and gn to be calculated directly from the
inequality (15). Constructing appropriate sequences {An}n≥1 for a given sta-
tistical model is usually straightforward when ∆ < ∞: An = B(θn,0, ρn)
is simply set to be a sequence of open balls centred at the functioning
posterior mean and whose radius ρn → 0 as n → ∞. For example it
is usually sufficient to use well known Chebychev inequalities with the re-
sult that, from equation (12), g0 ∈ N (f0, An, M(An), p(An)) implies that

dR
An

(f0, g0) ≤ exp
{

2Mρ
p/2
n

}
− 1.

Note that neither of the two conditions g0 ∈ N (f0, An, M(An), p(An))
and ∆ < ∞ imply anything about where the two candidate prior densities
concentrate their mass. Illustrations of how such bounds are given below. In
all these examples it is assumed that the prior mutual roughness condition
g0 ∈ N (f0, An, M(An), p(An)) holds for given values of M(Θ0), p(Θ0) for the
sequence {An = B(θn,0, ρn)} where An ⊆ Θ0 and that dR

Θ(f0, g0) ≤ ∆.

Example 8 For n ≥ 1 let Fn denote the one dimensional Gaussian N(θn
0 , σ2

n)
distribution function. Let τn = σ−r

n for some 0 < r < 1, and let ρn = σnτn.
Note that if σ2

n → 0 then τn → ∞ and ρn → 0. It follows that

dR
An

(f0, g0) ≤ exp
{
2M(Θ0)σ

p(1−r)/2
n

}
− 1.

Also since (see e.g. [12], p.279) the standard normal distribution function Φ
satisfies for all x > 0

Φ(−x) < (2π)−1/2 x−1 exp−x2/2.

It follows that

Tn[2] = dR
Θ(f0, g0)Fn(θ /∈ B(θ0; ρ)). ≤ 2∆Φ(−τn),

<

√
2

π
∆σr

n exp−σ−2r
n /2.
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Choosing 0 < r < 1 appropriately gives an upper bound for the variation
distance. Note that with the differentiability condition p = 2 this confirms
that for any 0 < r < 1

lim
n→∞

sup
g∈N

{
dV (fn, gn)

σ
(1−r)
n

}
= 0.

Typically σn ≤ σn−1/2 for some σ, so that

lim
n→∞

sup
g∈N

{
nr′dV (fn, gn)

}
,

for any r′ = 1/2 {1 − r} < 1/2. Thus the expected n−1/2 speed of convergence
in variation distance between the two posteriors is retrieved. This contrasts
with the

√
n speed of divergence obtained by [7] in their analogue (2). Note

here that it is the difference in mutual roughness between the prior densities
f0 and g0 that governs the latter rate of divergence.

Example 9 Suppose Fn is any one dimensional functioning posterior distri-
bution function with mean θn,0 and variance σ2

n < ∞ . Then by Chebychev’s
inequality

Tn[2] ≤ ∆Fn(θ /∈ B(θ0; ρn)) ≤ ∆
σ2

n

ρ2
n

.

using the definition above and setting r = 1/3 when p = 2 we have that

dV (fn, gn) ≤ exp
{
2Mσ2/3

n

}
− 1 + 2∆

σ2
n

ρ2
n

,

= exp
{
2Mσ2/3

n

}
− 1 + 2∆σ2/3

n .

It follows that for any one dimensional functioning posterior density with a
finite mean and variance the variation distance between posteriors (fn, gn),
lying in this neighbourhood typically is bounded by a rate 3

√
n. For example,

it is common for the posterior density fn(θ) of a mean parameter θ to be
Student t so that

fn(θ) ∝

[
1 +

(x − θn
0 )2

(αn − 2)σ2
n

]−(αn+1)/2

,

where αn = α0 + n/2, n > 4, E(θ|xn) = θn
0 and V ar(θ|xn) = σ2

n. Plugging in
these moments gives the required robustness intervals. For a given data set
this posterior variance σ2

n could increase but this increase will be apparent.

17
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Example 10 Even when the moments of fn do not exist bounds can still
be calculated, although the rate of convergence associated with these bounds
is sometimes slower. Suppose fn(x) = f (σ−1

n (θ − θn
0 )) where f is a Cauchy

density and note that for x > 0 the Cauchy distribution function F (x) has
the property that F (−x) < 1

2π
x−1. It then follows that by letting τn = σ−r

n

Tn[2] ≤ ∆

π
σr

n.

To obtain the best asymptotic bound for dV (fn, gn) of this type using these
inequalities set r = 0.5 when

lim
n→∞

sup
g∈N

{
dV (fn, gn)√

σn

}
≤ M + 2∆.

Example 11 Let θ = (θ1, θ2, . . . , θk) and let µj,n, σ
2
j,n denote, respectively,

the mean and variance of θj, 1 ≤ j ≤ k under the functioning posterior
density fn. Then [19] p.153 proves that writing θn

0 = (µ1,n, µ2,n, . . . µk,n),

Fn (θ ∈ B(θn
0 ; ρn)) ≥ Fn

[
k⋂

j=1

{
|θj − µj,n| ≤

√
kρn

}]
≥ 1 − kρ−2

n

k∑

j=1

σ2
j,n,

so that

Fn {θ /∈ B(θn
0 ; ρn)} ≤ kρ−2

n

k∑

j=1

σ2
j,n,

implies

Tn(2, ρ) ≤ ∆
σ2

n

ρ2
n

.

where σ2
n = k max1≤j≤k σ2

j,n. Thus exactly analogous bounds to the univariate
Chebychev bounds can also be calculated for multivariate problems. In fact
this bound is coarse and can be improved (see [11]). Note that the given bound
increases only linearly with the dimension k of the parameter space. If the
utility is a function only of the margin of a subvector θ1 of the parameter θ
then because of the property (10) such bounds can be tightened. In the case
above such bounds can be calculated directly from prior bounds and the means
and variances only of those components θ1 in the margin of interest.
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A second useful bound can be calculated when a Bayesian wants to enter-
tain the possibility that the prior densities f0 and g0 might have different tail
characteristics violating the condition ∆ < ∞ used in constructing the previ-

ous bound. Call g0 c-rejectable if the ratio of marginal likelihoods
pf0

(x)

pg0 (x)
≥ c.

If the genuine prior is believed to explain the data better than f0 then this
ratio would be predicted a priori to be small and certainly not c-rejectable
for a moderately large values of c ≥ 1 (for example c = 2). Say density f
Λ−tail dominates a density g if

sup
θ∈Θ

g(θ)

f(θ)
= Λ < ∞. (16)

When g(θ) is bounded then this condition requires that the tail convergence
of g is no faster than f . Then if it is believed that g0 is not c-rejectable and
equation (16) holds then

Tn[2] ≤ Fn{An} + Gn{An},

= Fn{An} +

∫

θ/∈An

gn(θ)

fn(θ)
fn(θ)d(θ),

= Fn{An} +

∫

θ/∈An

pf(x)

pg(x)

g0(θ)

f0(θ)
fn(θ)d(θ),

≤ Fn{An} + cΛ

∫

θ/∈An

fn(θ)d(θ) ≤ αn(1 + cΛ).

Here the prior tail dominance condition simply encourages the use of a flat
tailed functioning prior so that if data is observed in its tail the likelihood
will tend to dominate the posterior and this information is not killed off
by the functioning prior tail. This formal result just technically confirms
practical Bayesian modelling principles of using as flat a tailed functioning
prior as possible: see for example [14]. Under these conditions, analogues of
all the examples above can be calculated simply by substituting 1 + cΛ for
∆ throughout. For other related bounds see [4].

Provided that f0 and g0 are close with respect to these new separation
measures whilst the family of models may be inconsistent with the data, the
functioning posterior distribution nevertheless will tend to provide a good
approximation of the genuine posterior. All similar priors will give similar,
if possibly erroneous, posterior densities.

It is interesting that useful bounds can sometimes be obtained even when
the functioning posterior does not converge in distribution ([18]). On the
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other hand, whilst the continuity of f0 and g0 can be relaxed, their mutual
roughness conditions given above are almost necessary for posterior robust-
ness. If f0 and g0 do not lie in a local separation neighbourhood about a
particular location θ0 then no matter how small the radius of that neigh-
bourhood it is possible to construct a sequence of likelihoods that converge
in a very strong way to a true value θ0. In particular, uniformly consistent
estimates of θ can be obtained but nevertheless the genuine and function-
ing posterior densities remain at least a bounded variation distance apart
whatever the value of sample size n. A formal statement and proof of this
property is given in [18] based on the counterexample used in [7].

6 Discussion

The local separation measures introduced in this paper appear natural ones
to employ when examining how Bayesian models learn. It appears that to
employ a proper prior whose mass is poorly positioned will give approxi-
mately the same posterior density as getting the prior right provided the
sample size is large enough - in a way that can be measured - under three
caveats. The first is that the same likelihood is shared by the two priors. This
commonly assumed but very strong condition is absolutely critical ([18]) : if
this is not the case, then posterior inferences will typically diverge with in-
creasing sample size. The second condition is that the functioning posterior
usually needs to converge to a set of small measure. If the convergence is to a
defective distribution then the local DRA distances in the tails of the genuine
and functioning priors need to be comparable: a condition well - known in
the literature. Thirdly both priors need to be comparably rough: a property
that is often implicitly but perhaps not always thoughtfully induced by the
way priors are currently specified.

7 Appendix

To prove the inequality (10) assume that f(θ) and g(θ) are continuous at

θ̃ and φ̃ where θ̃ =
(
θ̃1, θ̃2

)
and φ̃ =

(
θ̃1, φ̃2

)
where θ̃1 = θu(A,f1,g1) and

φ̃1 = θl(A,f1,g1) and θ̃2 is any point satisfying f2|1(θ̃2|θ̃1) ≥ g2|1(θ̃2|θ̃1) and φ̃2 is

any point satisfying f2|1(φ̃2|φ̃1) ≤ g2|1(φ̃2|φ̃1). Note that such points θ̃2 and
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φ̃2 of the conditional densities must exist because f2|1(θ̃2|θ̃1) and g2|1(θ̃2|θ̃1)
are densities. Then for all continuous joint densities f, g and sets A ⊆ Θ

dR
A(f, g) = sup

θ,φ∈A

(
f1(θ1)f2|1(θ2|θ1)g1(φ1)g2|1(φ2|φ1)

f1(φ1)f2|1(φ2|φ1)g1(θ1)g2|1(θ2|θ1)

)
− 1,

≥ f1(θ̃1)f2|1(θ̃2|θ̃1)g1(φ̃1)g2|1(φ̃2|φ̃1)

f1(φ̃1)f2|1(φ̃2|φ̃1)g1(θ̃1)g2|1(θ̃2|θ̃1)
− 1,

= sup
θ1,φ1∈A1

(
f1(θ1)g1(φ1)

f1(φ1)g1(θ1)

)
− 1 = dR

A1
(f1, g1),

and therefore
dL

A(f, g) ≥ dL
A1

(f1, g1). (17)

where A1 = {θ1 : θ = (θ1, θ2) ∈ A for all θ2 ∈ B ⊂ Θ2 for some open set B in
Θ2}, the property we require.
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