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Abstract

Here a new class of local separation measures over prior densities is
studied and their usefulness for examining prior to posterior robustness
under a sequence of observed likelihoods, possibly erroneous, illustrated.
It is shown that provided an approximation to a prior distribution sat-
is�es certain mild smoothness and tail conditions then prior to posterior
inference for large samples is robust, irrespective of whether the priors
are grossly misspeci�ed with respect to variation distance and irrespec-
tive of the form or the validity of the observed likelihood. Furthermore
it is usually possible to specify error bounds explicitly in terms of statis-
tics associated with the posterior associated with the approximating prior
and asumed prior error bounds. These results apply in a general multi-
variate setting and are especially easy to interpret when prior densities
are approximated using standard families or multivariate prior densities
factorise.

1 Introduction

Let f0 and g0 denote two prior densities and fn and gn their corresponding
posterior densities after observing a sample xn, n � 1. Suppose we implement
a Bayesian analysis using a prior density f0 - henceforth called our functioning
prior - instead of g0 -our genuine prior : i.e. the one we would specify if we
had enough time and skill to elicit it perfectly. Our interest in this paper
focuses on examining when Bayesian inference using a posterior density fn after
n observations based on the functioning prior f0 provides a good approximation
for inferences based on g0 as a sample size grows.
Suppose the posterior density fn(�) can be used to calculate an optimal

decision d�(fn) 2 D associated with any utility functions U as a function of
(d;�) - for example a utility associated with the prediction of any possible type
of future observable associated with the context of the model - by choosing
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d�(fn) = argmaxd2D U(d; fn), where U(d; f) denotes the expected utility under
decision d utiltiy U and density f . Let dV (f; g) =

R
�
jf(�)�g(�)jd� denote the

variation distance between densities f and g. Then if dV (fn; gn) < " it is trivial
to check that for any utility U in the class U of all measurable utility functions
bounded below by 0 and above by 1, on a decision space D��U(d�(fn); fn)� U(d�(fn); gn)�� � sup

d2D

��U(d; fn)� U(d; gn)�� < "
It follows that closeness in variation distance of the functioning posterior

density fnto the genuine posterior density gn guarantees all decisions will be
close to optimal in this sense. This is the most we could reasonably hope
to achieve from approximate inference of this kind - see [15],[14] for a careful
discussion of this issue. Henceforth in this paper we will measure adequacy of
approximation in terms of this metric.
Bayesian robustness issues are commonly addressed through examining when

both the sequences of posterior functioning densitiesffngn�1 and genuine fgngn�1,
are consistent [24]. Thus assume a random sample xn each have a distribution
with parameter �0 2 � in a �nite dimensional family indexed by �. When
ffngn�1 and fgngn�1 are both consistent and continuous at �0 2 �0 where �0
is the interior of � it is straightforward to prove [see e.g.[12] or [11], p18].that,
limn!1 dV (fn; gn) = 0. almost surely P�0 . This in turn implies that fn will
provide a good working approximation for gn for all reasonable estimation pur-
poses in the sense above, given consistency..
For �nite parametric inference this consistency condition is apparently not

too restrictive. Thus for example it is shown in [24] p429 that consistency of
a posterior sequence will automatically follow for both ffngn�1 and fgn�)gn�1
provided that a consistent estimator of � can be constructed and the parametri-
sation of � respects Kullback- Leibler separations in the sense of Theorem 7.80
in [24]. However these results rely heavily on the assumption that the sample
family is precisely and correctly speci�ed. Typically this is rarely credible or
veri�able. A more useful result would be that provided our functioning posterior
distribution concentrates near to a value �0 2 �, then limn!1 dV (fn; gn) = 0.
Ideally we would like this property for any given observed likelihood, even when
the sample distribution family is not accurately speci�ed and the data is not
a random sample. In this paper we prove that, under mild smoothness and
regularity conditions this is also true. In Section 2 we introduce a new family
of separation measures that are closely related to density ratio separation mea-
sures [9], [30], [23], but rede�ned so that they apply locally. In Section 3 we
examine various useful properties of these topologies and proceed in Section 4
to show that in the limit they can be used to compare the relative roughness of
two prior densities and provide a very coarse topology where a Bayesian might
plausibly assert that her functioning and genuine prior would be close.
In Section 5 the "isoseparation property" is used to show that, provided we

believe that the genuine prior density is in one of these coarse neighbourhoods of
the functioning prior we obtain convergence in variation between the functioning
and genuine posteriors. Furthermore we are also usually able to �nd explicit
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bounds for the approximation as a function of parameters we already know:
speci�cally the parameters associated with our beliefs about the accuracy of our
functioning prior and certain statistics of our calculated posterior density. These
bounds apply irrespective of whether the observed data is consistent with the
family of sample distributions underpinning the observed likelihood and make
the robustness operational. The bounds can even apply when the functioning
posterior does not converge in distribution to a degenerate distribution In
Sections 6 we examine the neighbourhoods of various well - known classes of
models more closely and show that within these classes the neighbourhoods are
extremely natural.

2 Density ratio balls and Isoseparation

Assume we receive a sequence of observed sample densities fp(xnj�)gn�1of an
n -vector of data xn = (x1; x2; : : : xn)
For the purposes of this paper we will assume that the genuine prior g0(�) is

strictly positive and continuous on the interior of its support - and so uniquely
de�ned, and each observed likelihood, p(xnj�), n � 1 is measurable with re-
spect to g0(�). We will calculate our posterior density gn(�) , g(�jxn) after n
observations using Bayes Rule using the usual formula. Thus let �(n) = f� 2
� : p(xnj�) > 0g. Then for all � 2 �(n) our genuine posterior density is given
by the formula

log gn(�) = log g0(�) + log pn(�)� log pg(xn) (1)

The predictive density

pg(xn) =

Z
�2�(n)

p(xnj�)g0(�)d�

is usually calculated indirectly, either algebraically or numerically so as to ensure
gn(�) integrates to 1. For all � 2 �n�(n) we simply set gn(�) = 0. In this paper
we call this the formal Bayesian updating formula and henceforth assume that
our inference is su¢ ciently regular that it is appropriate to use it. We shall say
that f(�) is a 1 � � concentrate on an open set B(�0; �), centred at �0 and of
radius �, if F (� =2 B(�0; �)) � �, writing f(�) 2 C�(�0; �).
Let fn(�) , f(�jxn); � 2 �(n) represent our functioning posterior density,

and suppose that the functioning posterior density fn(�) 2 C�n(�n0 ; �n) con-
verges in distribution to a point mass in the closure neighbourhood of �0 2 �(n).
We would then like to be able to state that for g0 2 N where N is a suitably
chosen neighbourhood of f0, dV (fn; gn) < "n(�n; �n) where "n(�n; �n) > 0 -
whatever fpn(�)gn�1 is - and where "n is an explicit function of prior parame-
ters and functions of fn.
It has long been established that this is not so in general. For example

[6], [22] [1] prove that even when the functioning posterior convergences to a
defective distribution the variation distance between fn(�) and gn(�) cannot be
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guaranteed. Thus suppose xn is a random sample of n normal N(�; 1) random
variables, the prior f0(�) is a normal N(0; 1) density whilst the genuine prior
g0;"(�) takes the form

g0;"(�) = (1� ")f0(�) + "h(�)

where 0 < " < 1 and h(�) is the Cauchy density given by

h(�) = ��1(1 + �2)�1

Clearly dV (f0; g0;") < ". However the posterior density fn under prior f0 is
N(�f ; (n + 1)

�1) where �f = n(n + 1)�1xn whilst under prior g0;" it can be
shown (see for example [6]) that the posterior density gn;" ' hn when x2n is
su¢ ciently large, which is approximately distributed N(xn; n�1). It follows
that for any �xed n and " > 0, for a sequence fxngn�1 diverging (to 1 say)

lim
n!1

dV (fn; g";n) = 1

Note that this does not contradict the consistency result quoted above because,
for any �0 2 �; limn!1Xn is �nite with probability one whilst in our construc-
tion xn diverges. But it demonstrates how fragile the demand for consistency
is. For example it is elementary to construct an in�nitely di¤erentiable sample
density eq(xj�) - arbitrarily close to the normal density q(xj�) given above in
variation distance and to within drawing accuracy to q(xj�) - where the distri-
bution of Xn diverges with n with probability one. So in this sense under the
slightest contamination of the sample distribution the two posterior densities
may in fact diverge. We show below that this divergence phenomenon occurs
because f0 and g0;" are not equicontinuous in an appropriate topology at the
point �0 of convergence - here 1.
We are also interested in determining explicit rates of convergence all of

whose parameters are given from the problem description. It has been estab-
lished that such issues cannot be directly addressed using variation distance
alone. Thus Gustafson &Wasserman [9] proved that, for almost all parametric
inference, the ratio

sup
g2N

�
dV (fn; gn)

dV (f0; g0)

�
(2)

of the supremum over a neighbourhood N of f0 the prior and posterior variation
distance almost always diverged rather than converged with increasing sample
size n, even when data are drawn from a "true" density indexed by the parameter
�0 2 �0 .Furthermore this is true even when the class N is chosen so the tail
characteristics of f0 and g0 are identical - thus precluding cases like the one
cited above - and g0 is constrained to be in�nitely di¤erentiable. Therefore
this phenomenon cannot be explained by discrepancy in tails - contra [2] - nor
does it occur because the deviation between g0 and f0 is discontinuous in a
neighbourhood of a maximum likelihood estimate. They further proved that
when a random sample is drawn from observations whose sample density is
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labelled by a �0 2 �0, under certain mild regularity conditions, the rate of
divergence of this ratio is nk=2, where k is dim� with probability 1. So in this
sense the precise speci�cation of our prior appeared to become more and more
critical the more information we gathered and is dramatic when the dimension
of the parameter space is large!
However the problem here is that the prior variation distance dV (f0; g0) has

virtually no bearing on the posterior variation distance dV (fn; gn) even in the
tight neighbourhood N they specify [9]. So this Frechet derivative cannot be
expected to do the job we require. Here we show supg2N fdV (fn; gn)g can be
bounded and typically decreases in powers of n for neighbourhoods N much less
tight than the ones speci�ed in [9].

De�nition 1 Let B[1]; B[2] � A and A � � be measurable sets with respect to
the common dominating measure of two distributions F and G with respective
densities f and g Say that g lies in the A�DeRobertis ball BA(f; �) i¤

dRA(f; g) , sup
B[1];B[2]�A

���� f(B[1])g([2])f(B[2])g(B[1])
� 1
���� (3)

In fact if the functions f and g are continuous on their shared support - an
assumption we will make in this paper unless speci�cally stating otherwise, this
formula simpli�es thus

De�nition 2 Let A � � be measurable. Then g is said to lie in the A�DeRobertis
ball BA(f; �) of f i¤

dRA(f; g) , sup
�;�2A

����f(�)g(�)f(�)g(�)
� 1
���� = sup

�;�2A

�
f(�)g(�)

f(�)g(�)

�
� 1 < � (4)

and write dR(f; g) , dR�(f; g). Call dRA(f; g) the A�DS:

The separation measure de�ned by [7] and cited above is dR(f; g).
An equivalent separation measure to dR(f; g) is called the density ratio sep-

aration and will be denoted by dL(f; g). This has an obvious extension to an
A�density ratio separation which we will denote by dLA(f; g) - and for continuous
densities is given by

dLA(f; g) , sup
�;�2A

(log f(�)� log g(�))� (log f(�)� log g(�))

where dL(f; g) = dL�(f; g). Note that

dRA(f; g) = exp d
L
A(f; g)� 1 (5)

Because dLA(f; g) and d
R
A(f; g) are equivalent henceforth we freely move between

them.
It is easy to check that all these functions are separation measures in the sense

that for all continuous densities f; g 2 F ; d(f; g) takes values in R[1 where for
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all f; g 2 F , d(f; f) = 0; d(f; g) � 0 and d(f; g) = d(g; f). On the other hand,
unless A = �; �(f; g) = 0; f = g nor that the induced neighbourhood system
is equimeasurable: that is invariant to permutation - like transformations of
the � space [ see [19] for a precise de�nition of this term]. However on all
measurable sets A � � and sets F with the property that for all f; g 2 F ,
dLA(f; g), d

L
A(f; g) < 1 dLA(f; g) is a semi-metric, since it is easily checked that

the triangle inequality is also satis�ed.
Note that the smaller the set A the coarser the neighbourhoods de�ned by

dLA(f; g) < �: if A1 � A2 then dLA1
(f; g) is weaker than dLA2

(f; g). Also note that
when the lower bound and upper bound are attained

dLA(f; g) = (log f(�u(A;f;g))�log g(�u(A;f;g)))�(log f(�l(A;f;g))�log g(�l(A;f;g)))

where

�u(A;f;g) = arg sup
A
(log f(�)� log g(�)) (6)

�l(A;f;g) = arg inf
A
(log f(�)� log g(�))

So in particular dLA(f; g) is the di¤erence of the two log densities at their max-
imum and minimum value within a set A. These separations therefore have a
simple and transparent interpretation.

3 Some basic properties of dLA(f; g) and d
R
A(f; g)

3.1 Isoseparation

For any measurable subset A of � a striking property -here called the isosep-
aration property - of dLA(f; g) (and hence d

R
A(f; g)) can be calculated directly

from the formal Bayes Rule. Thus for all f0; g0 2 F whereF is any subset of
continuous densities given above is that for all n � 1;for � 2 A � �(n)

dLA(fn; gn) = d
L
A(f0; g0) (7)

So in particular, when the observed likelihood pn(�) > 0 for all � 2 �, for all
for any measurable subset A of �

sup
go

�
dLA(fn; gn)

dLA(f0; g0)

�
= 1 (8)

Thus unlike the variation distance analogue this ratio does not diverge for any
neighbourhood N of f0. Prior densities that are close under these topologies
remain close a posteriori. However surprisingly they do not get closer either:
the assumptions you make about neighbourhoods endure for all time regardless
of what is observed - provided p(xnj�) > 0 for any � 2 A. In this case the data
simply shifts us in an invariant way around the space of densities. Note that in
general when �(n) � �

sup
go

�
dLA(fn; gn)

dLA(f0; g0)

�
� 1 (9)
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with equality if and only if there exists a pair
�
�u(A;f0;g0);�l(A;f0;g0)

�
2 �(n)

where �(n) is the closure of �(n) if
�
�u(A;f0;g0);�l(A;f0;g0)

�
are de�ned.

This property when A = � has in fact been known for a very long time.
However A = � is perhaps the least interesting of special cases because this
separation is very �ne, for example being a discrete topology on the class of
densities in standard exponential families - see below. The most useful of these
separations is when A is small because when studying posterior behaviour we
are usually interested in small areas of the parameter space on to which the
posterior is concentrating Because this paper largely focuses on convergence
results here we let A = B(�0; �) where B(�0; �) denotes the open ball centred
on �0 of radius �. We write dR�0;�

(fn; gn) , supfdRB(�0;�)(f; g) : �0 2 �0g,
dR� (f; g) , supfdLB(�0;�)(f; g) : �0 2 �g, (d

L
�0;�

(f; g) , supfdLB(�0;�)(f; g) : �0 2
�0g and dL� (f; g) , supfdLB(�0;�)(f; g) : �0 2 �g). Note that all these are
separation measures in the sense above and that for all � > 0. when F is any
subset of densities for which dL� (f; g) <1, dL� (f; g) is in fact a metric.
Unlike dRA(f; g), d

R
�0;�

(f; g) is a function of parametrisation we use. So in
particular to obtain invariance of convergence to transformations T : � ! �,
of the parameter space we may require that the reparametrising map T is a
di¤eomorphism and open sets under the two parametrisations map invertibly
to one another: see below. However this restriction is usually consistent with
a parametric model where parametrisations are usually speci�cally chosen so
the sample densities with similar parameter values are "close" and certainly
where their interpretations are close. Demanding that neighbourhood system
be invariant to arbitrary measurable reparametrisations, as does [30], appears
inappropriate for the parametric purposes of this paper.

3.2 Isoseparation minus nuisance parameters

Note that if fpn(�)gn�1 are not explicit functions of �2 where � = (�1;�2), f0;1
and g0;1 are the functioning and genuine prior marginal and fn;1 and gn;1 are
the functioning and the genuine posterior marginal density of �1 then when the
observed likelihood pn(�) > 0 for all � 2 �, these marginal densities inherit the
isoseparation property. Thus for all n � 1;for � 2 A � �(n)

dLA(fn;1; gn;1) = d
L
A(f0;1; g0;1)

This property becomes important in for example the study of hierarchical models
where the distribution of the �rst hidden level of variables together with the
relevant sampling distribution, is often su¢ cient for any prediction of observable
quantity.

Example 3 Suppose that the joint distribution of our observations Xn have a
sample distribution depending on �1 = (�;�) where � is the vector of means of
Xn and � a vector of other hyperparameter, for example variances and covari-
ances, which together with � uniquely specify this distribution. To specify the
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prior on � it is common practice to extend this model so that

� = � (�) + "

where � is a low dimensional vector � is a known function (often linear) and " is
an error vector parametrised by a vector � of for example covariances Often our
utility will be a function only of � through �1. The invariance property above
then allows us to substitute �1 for � in all the examples of robust inference
discussed below. Note that in simple linear models with unknown variances, �
will often have a marginal density with inverse polynomial tails: for example
multivariate Student t- distributions. We will see later that such priors give rise
to dLA neighbourhoods exhibiting strong robustness properties.

3.3 Conditioning and Local Invariance

Let fA(gA) here and henceforth denote the densities of f(g) conditioned on the
event f� 2 Ag, A � �. A second property we call conditioning invariance is
essentially a special case of the �rst. When we learn that f� 2 Bg, for some
measurable set B where A � B, then

dRA(fB ; gB) = d
R
A(f; g) (10)

This property is important in its own right because it demonstrates an invariance
under conditioning which the variation distances between conditioned densities
do not possess. Note that in particular this implies that dRA(f; g) = d

R(fA; gA)
A third immediate property henceforth called local invariance we will use

below is that if there exists a �u(A;f;g)and a �l(A;f;g) 2 A � B where these
parameter values are de�ned in 6 then

dRA(f; g) = d
R
B(f; g)

3.4 Marginal Separation

Most current applications of Bayesian inference are in high dimensional, but
also often highly structured spaces: breaking up the space into modules of
locally speci�es neighbourhoods. Common examples of these classes are state
space time series, hierarchical models and Bayesian networks. It is therefore
interesting to examine to what extent these separation measures respect the
sorts of modularity these classes exhibit.
Let � = (�1;�2) and � = (�1;�2) be two candidate parameter values in

� = �1 � �2 where �1;�1 2 �1 and �2;�2 2 �2, where the joint densities
f(�) = f1(�1)f2j1(�2j�1), g(�) = g1(�1)g2j1(�2j�1) and f1(�1); g1(�1) are the
marginal densities on �1 of the two joint densities f(�) and g(�) respectively.

Suppose, that f(�) and g(�) are continuous at e� and e� where e� = �e�1; e�2�ande� = �e�1; e�2� where e�1 = �u(A;f1;g1) and e�1 = �l(A;f1;g1) and e�2 is any point
satisfying f2j1(e�2je�1) � g2j1(e�2je�1) and e�2 is any point satisfying f2j1(e�2je�1) �
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g2j1(e�2je�1). Note that such points e�2 and e�2 of the conditional densities must
exist because f2j1(e�2je�1) and g2j1(e�2je�1) are densities. Then for all continuous
joint densities f; g and sets A � �

dRA(f; g) = sup
�;�2A

�
f1(�1)f2j1(�2j�1)g1(�1)g2j1(�2j�1)
f1(�1)f2j1(�2j�1)g1(�1)g2j1(�2j�1)

�
� 1

�
f1(e�1)f2j1(e�2je�1)g1(e�1)g2j1(e�2je�1)
f1(e�1)f2j1(e�2je�1)g1(e�1)g2j1(e�2je�1) � 1

= sup
�1;�12A1

�
f1(�1)g1(�1)

f1(�1)g1(�1)

�
� 1 = dRA1

(f1; g1)

and therefore
dLA(f; g) � dLA1

(f1; g1)

where A1 = f�1 : � = (�1;�2) 2 A for all �2 2 B � �2 for some open set B in
�2g, the property we require. Note that when f2j1(�2j�1) = g2j1(�2j�1) this is
an equality.
On the other hand if � = (�1;�2; : : :�k) where all these subvectors f�1;�2; : : :�kg

of parameters are mutually independent then in common with Chernov or
Kullback-Liebler separations it is easy to check that

dLA(f; g) =

kX
i=1

dLAi
(fi; gi) (11)

where fi (gi)denotes the �i margin of f(g); 1 � i � n. Note that if we a priori set
�
a
� in the hierarchical model above then the equation above gives a simple

decomposition of the prior separation between the functioning and genuine prior
which will hold a posteriori. So in this sense the consequences of this commonly
made prior independence assumption endures a posteriori.

3.5 Conditional Separation

There is a similar relationship that equates the distance between two joint den-
sities and two of their conditionals. Thus without loss of generality assume
that � = (�1; �2; : : : �k) 2 � = �1 � �2 � : : : � �k is such that �k is the line
segment joining �uA;f;g to �

u
A;f;g. and �b1 = (; �2; : : : �k) parametrises its orthog-

onal space. (Otherwise perform a rotation of the space so that this is so and
note that all local distances we de�ne above - under the appropriate transfor-
mations of A are invariant to such rotations and in particular the radius of all
balls are preserved) Then we can see immediately from their de�nition, since
proportionality constants cancel, that

dLA(f; g) = sup
�2�

dLA(f(�1j�b1); g(�1j�b1) � sup
�0
02�

dLA(f(�
0
1j�b10); g(�01j�b10) (12)

for any invertible linear map � ! �: Further inequalities relating especially to
Bayesian Networks are discussed below.

9

CRiSM Paper No. 07-9, www.warwick.ac.uk/go/crism



3.6 When Likelihoods are not held in Common

In Section 2 we discussed the lack of stability of consistency based limiting
results to the misspeci�cation of the likelihood. So far we have considered only
the possibility that this likelihood is misspeci�ed in the same way for both
the functioning and genuine priors, but this need not be so. Write pfn(�) ,
pf (xnj�)

sup� p
f (xnj�) and p

g
n(�) , pg(xnj�)

sup� p
g(xnj�) where these likelihoods are no longer

assumed the same. Thus suppose the priors f0 and g0 have di¤erent respective
associated likelihoods

pfn(�) =
nY
i=1

qfi (�); p
g
n(�) =

nY
i=1

qgi (�)

where now we do not assume that qfi (�) = q
g
i (�), 1 � i � n.where 0 � q

f
1 (�) =

pf1 (�) � 1 and

0 � qfi (�) =
pf (xijx1;:::xi�1;�)

sup�2� p
f (xijx1; : : : xi�1;�)

� 1 (13)

with an analogous formula for qgi (�). From Bayes Rule we now calculate that
for all f0; g0 2 F whereF is any subset of continuous densities given above is
that for all n � 1;for � 2 A � �(n)

dLA(fn; gn) = sup
�;�2A

flog f(�)� log g(�)� log f(�) + log g(�) (14)

+ log qfi (�)� log q
g
i (�)� log q

f
i (�) + log q

g
i (�)g (15)

� dLA(f0; g0) + �
L
A(p

f (�); pg(�)) (16)

� dLA(f0; g0) +
nX
i=1

�LA(q
f
i ; q

g
i ) (17)

where

�LA(q
f
i (�); q

g
i (�)) = sup

�;�2A

�
log qfi (�)� log q

g
i (�)

�
�
�
log qfi (�)� log q

g
i (�)

�
(18)

the natural analogue to dLA but applied to likelihoods. Henceforth let � inherit
the notation for d given above. Note that in the particular case when qfi =
qf and qgi = qg as for example would be the case after observing a random
identically distributed sample xn with all observations equal then it is easy to
check that

dLA(fn; gn) � n�LA(qf ; qg) (19)

So in this worst case scenario a data set can cause divergence between the
functioning and genuine posterior with respect to these separation measures
for any A for which supg2N �

L
A(q

f ; qg) 6= 0. This is in fact re�ected in the
complementary result in [6] when we switch the roles of likelihood and prior.
The message here is clear. Models (f; pf ) whose data generating process pf
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depend on the explanation whose related uncertainty is expressed through f
are inherently less robust than models where this is not so: see [25] for a related
point albeit made in a di¤erent context. The lack of large sample robustness of
any likelihood based method is of course well established and this is simply a
very special example of this phenomenon.
However note that if we can parametrise � = (�1;�2) so that � maps to �1

and
qfi (�1;�2) = qi(�1;�2[f ]); q

g
i (�1;�2) = qi(�1;�2[g])

for some functions qi, i = 1; 2; : : : so that the discrepancy in the two likelihoods
is explained by di¤erent values of hyperparameters, whose prior respective den-
sities f2;0 and g2;0 are independent of f1;0 and g1;0 respectively then from (11)
and the isoseparation property

dLA(fn; gn) = d
L
A(f1;0; g1;0) + d

L
A(f2;0; g2;0) (20)

i.e. the awkward dependence on sample size is removed. So if it is possible
to represent the associated uncertainty in this Bayesian way then we typically
recover robustness: see below. The propriety of this type of construction is of
course entirely dependent on the context of the inference.

3.7 Links to Simulated annealing and melding

To improve the behaviour characteristics of Bayes numerical algorithms it is
common to "increase the temperature" of a given posterior or perform simulated
melding. This can improve mixing whilst retaining the geometrical form of the
posterior density and substitutes f� _ f� for some value of �, 0 < � < 1 and
has a simple interpretation within the distances discussed above. Thus we note
that for all f; g for which dLA(f; g) <1, for this �xed value of �

dLA(f
�; g�) = �dLA(f; g)

This is therefore simply a linear contraction on the separation space de�ned by
dLA(f; g) and draws all densities closer to one another. On the other hand simu-
lated annealing employ the same transformation but lets �!1 :i:e:increasingly
separates the densities with respect to these separations until a degenerate dis-
tribution is attained.

Example 4 (The Power Steady Model) A class of state space models based
on increasing temperature was introduced in [26],[27]. These speci�ed the pre-
dictive distributions of fYtjy1; y2; : : : yt�1gt�1 in terms of a recurrence of the
form

p(ytj�t; y1; y2; : : : yt�1) = p(ytj�t); t � 1
ft(�tjy1; y2; : : : yt�1) _ f�t�1(�t�1jy1; y2; : : : yt�1); t � 2

f1(�1) _ f�0 (�0)

11
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for some 0 < � < 1. One example of such processes is the Gaussian Steady
DLM (Harrison and West) if priors hyperparameters of f0(�0) are set to ap-
propriate limiting values Note that although the state space distribution is not
fully speci�ed, the one step ahead predictives - and hence the whole predictive
distribution of fytgt�1is via the equations

p(ytj; y1; y2; : : : yt�1) _
Z
�t2�t

p(ytj�t)f�t (�t�1jy1; y2; : : : yt�1)d�

ft�1(�t�1jy1; y2; : : : yt�1) _ p(yt�1j�t�1)ft�1(�t�1jy1; y2; : : : yt�2)

where the proportionality constants can be calculated using the fact that den-
sities integrate to unity. Suppose our interest is to the joint distribution of
fYtjy1; y2; : : : yt�1gt�T T � 2 and that we are con�dent that our sample distrib-
utions fp(ytj�t)gt�T are correctly speci�ed. Note that the margin fT�1(�T�1jy1; y2; : : : yT�1)
of �T�1jy1; y2; : : : yT�1 is su¢ cient for forecasting fYtjy1; y2; : : : yt�1gt�T . Let
gT�1(�T�1jy1; y2; : : : yT�1) be the corresponding density using f0(�0) instead of
f0(�0). Then from the isometry property and the melding property above

dLA(fT (�T jy1; y2; : : : yT ); gT (�T jy1; y2; : : : yT ))
= dLA(fT (�T jy1; y2; : : : yT�1); gT (�T jy1; y2; : : : yT�1))
= �dLA(fT�1(�T�1jy1; y2; : : : yT�1); gT�1(�T�1jy1; y2; : : : yT�1))

It follows that the quality of the approximation using the functioning prior in-
stead of the genuine prior improves exponentially fast in T with respect to all
these separation measures, i.e.

dLA(fT (�T jy1; y2; : : : yT ); gT (�T jy1; y2; : : : yT ) = �T dLA(f0(�0); g0(�0))

Notice furthermore that the isoseparation property ensures that this result will
still hold whatever fp(ytj�t)g1�t<T is and whether or not this sequence were
supplemented or corrupted (for example by censoring). It follows that in the
long run this class of models is very robust with respect to prior misspecifation:
see below.

4 Smoothness and Local Density Ratio Separa-
tion

Here we introduce some smoothness conditions that would often be plausible
for both our functioning and genuine prior to satisfy. Suppose that for j = 1; 2

sup
�;�2B(�0;�))

jlog fj(�)� log fj(�)j � "j(�0; �)

Then in particular

dLB(�0;�)(f1; f2) � "1(�0; �) + "2(�0; �) (21)

12
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Let F(�0;M(�0); p(�0)) denote the set of densities g such that for all �0 2
�0 � �

"g(�0; �) �M(�0)�0:5p(�0) (22)

M(�0) <1. Let F(�0;M(�0); 0) to be the set of functions for which

sup
�02�0

"g(�0; �)! 0 as �! 0

Then clearly for any set �0 when 0 � p1 < p2 � 2

F(�0;M(�0); p2) � F(�0;M(�0); p1)

The parameter p thus governs the roughness of the densities in these sets. For
example if p = 0 then we require that log g is equicontinuous with log f and
uniformly continuous over the set �0, where M is the modulus of continuity
whilst F(�0;M(�0); 2) is the set of log densities di¤erentiable on �0 with all
derivatives bounded in modulus by M . Even with no strong contextual knowl-
edge a Bayesian may well note that his functioning f0 and believe that his
genuine density g0 both lie in this class for an arbitrary compact set �0. Thus
for example f; g 2 F(M([�m;m]); 2) when f is Gaussian and g is believed to
be di¤erentiable with bounded derivative on the closed set [�m;m].
It is now trivial to show the following property:

Lemma 5 If there is a function h(�) such that f = f 0h and g = g0h where
f 0; g0 2 F(�0;M(�0); p(�0)); p(�0) > 0 then for all �0 2 �0

dL�0;�(f; g) � 2M(�0)�
1=2p(�0) (23)

dR�0;�(f; g) � exp
n
2M(�0)�

1=2p(�0)
o
� 1

and if there is a function h(�) such that f = f 0h and g = g0h where f 0; g0 2
F(�0;M(�0); 0) then

dL�0;�(f; g) ! 0 as �! 0

dR�0;�(f; g) ! 0 as �! 0

Proof. This follows from simply noting that by hypothesis, for all �0 2 �0,
when p(�0) > 0

dLB(�0;�)(f; g) = sup
�;�2B(�0;�))

j(log f(�)� log f(�))� (log g(�)� log g(�))j

= sup
�;�2B(�0;�))

j(log f 0(�)� log f 0(�))� (log g0(�)� log g0(�))j

� sup
�;�2B(�0;�))

jlog f 0(�)� log f 0(�)j+ sup
�;�2B(�0;�)

jlog g0(�)� log g0(�)j

� "f 0(�0; �) + "g0(�0; �) � 2M(�0)�1=2p(�0)

The second inequality is a simple consequence of the identity 5::The �nal limits
are obtained simply by substituting the de�nition of F(�0;M(�0); 0).
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Thus in particular if we treat the term "su¢ ciently smooth" to mean that
f; g 2 F(�0;M(�0); p(�0)) then dL�0;�

(f; g) can be made arbitrarily small by
choosing the radius � > 0 su¢ ciently small. By imposing this weak equiconti-
nuity conditions rather than the one used in [9] that ff; g : dR(f; g) < �g where
� is chosen arbitrarily small, allows us to use these local separations to prove
the expected large sample stability results. Furthermore the inequalities above
also allow us the bound the rate at which this occurs: see below

Corollary 6 If f; g are one dimensional densities such that log f and log g are
both continuously di¤erentiable and have derivatives bounded byM for all � 2 �,
then dL� (f; g) � 2M�.

Proof. This simply uses the result above when p = 2.
Thus suppose � is one dimensional log f is continuously di¤erentiable with

derivative bounded by M for all � 2 �, and f is misspeci�ed only in terms
of its location and scale parameter so that we know that the genuine prior
g(�) = f(��1(� � �)) where � and � > 0 are arbitrary .Then the lemma above
tells us that dL� (f; g) automatically tends to zero at a rate �: see the example
below

Example 7 Two one dimensional Student t densities fj(�) = f(�j�j), j = 1; 2
where

f(�j�) = �(0:5[�+ 1])p
���(0:5�)

(1 + ��1��2 (� � �)2)�0:5(�+1)

have

dLA(f1; f2) = 1=2 sup
�;�2A

������
2X
j=1

(�j + 1) log
�
1 + �(�; �; �j ; �j ; �

2
j )
	������

where �(�; �; �; �; �2) = (���)(�+�+2�)(��2+(�� �)2)�1 Assuming without
loss that �0 � 0, then

sup
�;�2B(�0;�)

���(�; �; �; �2)�� � 4�(�0 � �+ �)
(��2 + (�0 � �+ �)2)

� 2�

�
p
�

where the last inequality is obtained by identifying a maximum by di¤erentiating.
Thus

dL� (f1; f2) �
X
j=1;2

(�j + 1) log

�
1 +

2�

�j
p
�j

�
� �M

where
M =

X
j=1;2

2��1j (�
1=2
j + �

�1=2
j )

Suppose our functioning prior f1 has the Student t density given above. Then we
know that the distance dL� (f1; f2) of any genuine Student t prior f2 with arbitrary
prior mode �2 tends to zero at a rate of � provided the degrees of freedom of the

14

CRiSM Paper No. 07-9, www.warwick.ac.uk/go/crism



genuine prior and their spread parameter are bounded i.e. 0 < aL � �2 � aU <
1, 0 < sL � �2 � sU < 1. Note that, by letting j�2 � �1j ! 1 two prior
densities, close with respect to these separations, can be arbitrarily far apart in
variation distance.

Thus the condition that dL� (f1; f2) is small for small � is a mild one to
impose for �at tailed bounded densities: whole families of densities with di¤erent
locations and scales can lie in the same neighbourhood. Only when we are
centred near �0 where the derivative of log f � log g might be unbounded - for
example when �0 lies in the tail of a density f where either f or g has an
exponential or faster tail - might f and g be a long distance apart for a small
enough value of �. If we believe our genuine prior has inverse polynomial tails
and choose a functioning prior that also shares this property then f and g will
lie in the same neighbourhood for su¢ ciently small �. But even when this is not
so, to obtain bounds on dL�0;�

(f1; f2) as �! 0 we need only require that �0 2 �o
� � in a suitable compact set �0. to retrieve this property for continuous f1,f2:
see below.

Example 8 Consider a simple Bayesian model hierarchical where joint prior
densities over parameters are speci�ed through vector equations like

� = �+ "

where � is some function of hyperparameters encoding the systematic mean vari-
ation in � and " is a vector of error terms with zero mean and independent of �.
Commonly the prior density f" of the error term " is chosen from some smooth
family - for example a Student t (if an associated variance hyperparameter is
given an inverted gamma distribution and integrated out). This will ensure that
f" 2 F(�;M; p) for some suitable choices of these �rst two parameters. Here "
can be considered as a nuisance parameter vector in the sense given in Section
3 because the likelihood would not be a function of it given �. Let f�(g�) and
f�(g�) denote the functioning (genuine) joint density of � and � respectively.
Since

f�(�)� f�(� � �) =

Z
(f"("� �)� f"("� �� �)) f�(�)d�

g�(�)� g�(� � �) =

Z
(f"("� �)� f"("� �� �)) g�(�)d�

an automatic consequence of constructing the prior in this way is that f�; g� 2
F(�;M; p) irrespective of the density of the mean signals f� and g�, even if
this is governed by a discrete process - for example the realisation of a Dirichlet
process. Thus we have surreptitiously imposed the condition that our genuine
and functioning prior are suitably smooth in the sense given above, which we
will see in turn forms the basis for the sort of posterior closeness we require.
Notice that this is also true even if we allow the error distribution to come
from a di¤erent family, provided the genuine g" 2 F(�;M; p). Similar albeit
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slightly weaker robustness also applies if f" 2 F(�0;M; p) for some subset �0 �
�. Interestingly the more levels of hierarchy we use to specify our model the
more smoothing of this type we tend to introduce into the second level marginal
densities.

5 Variation distance and local separations

5.1 Chebychev Type Bounds

We next show that the distance between the functioning and genuine prior
dLB(�0;�)(f0; g0) being small for small � is almost a su¢ cient condition for poste-
rior variation distance between these densities being close for su¢ ciently large
sample size n when the observed likelihood is common to both models. Fur-
thermore we can usually �nd explicit bounds for this variation distance between
two posteriors in terms of features of the functioning posterior fn - which we
have calculated - together with the parameters of our prior bounds.

Notation 9 Let N (f0;�;M(�0); p(�0)) denote the set of g0 such that dR(g0; f0) �
� where � <1 and there exists a function k such that f0 = f 00k and g0 = g

0
0k

where f 00; g
0
0 2 F(�0;M(�0); p(�0)); 0 < p � 2.

When f0 is bounded then heuristically the condition g0 2 N (f0;�;M; p)
stipulates that g0 is "comparably smooth" to f0 and has identical tail behaviour
to f0. Thus for example if f0 had faster tail behaviour than g0 it might smooth
away signi�cant masses under the likelihood that happens to centre in its tail
(and vice versa). This condition provides us with a very coarse but nonetheless
very useful upper bound for the variation distance between the corresponding
two posterior densities.
There are various ways to bound the term Tn(2; �). A coarse bound that does

not require any condition on the observed likelihood other than boundedness
and positivity is used below.

Theorem 10 If g0 2 N (f0;�;M(�0); p) then for 0 < p � 2

dV (fn; gn) � inf
�>0

fTn(1; �) + 2Tn(2; �) : B(�0; �) � �0; fn(�) 2 C�n(�0; �)g
(24)

where

Tn(1; �) = exp
n
2M�p=2

o
� 1

Tn(2; �) = (1 + �)�n(�)

Moreover if fn(�) converges in distribution to a point mass at distribution �0
then for 0 � p � 2

lim
n!1

sup
g02N (f0;�;M(�0);p)

dV (fn; gn) = 0
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Proof. See the Appendix
When the smoothness parameter p > 0 we illustrate below that this often

enables us to calculate explicit bounds for dV (fn; gn) and to calculate natural
rates of convergence not depending on any assumptions about the form of the
likelihood. Furthermore neither the condition f 00; g

0
0 2 F(�0;M; p); which just

asks that f0; g0 are comparably smooth nor the condition dR(g0; f0) � � which
regulates the tails of the densities - require anything about where the two can-
didate prior densities concentrate their mass. In particular the prior variation
distance which could be arbitrarily close to its maximum value of 1 and the
results still hold. This is consistent with the generally held belief that, provided
the functioning posterior concentrates, the choice of prior will not be critical.
Here are some illustrations.

Example 11 Suppose Fn is the one dimensional distribution function of a nor-
mal N(�n0 ; �

2
n). Let �n = �

�r
n for some 0 < r < 1., and let �n = �n�n. Note that

if �2n ! 0 then �n ! 1 and �n ! 0. Suppose we believe that dR(f0; g0) � �
and that g0 2 F(�n0 ;M(�0); p) for some prespeci�ed values of (�;M(�0); p): It
follows that, provided B(�n0 ; �) � �0

Tn(1; �) � exp
n
2M(�0)�

p(1�r)=2
n

o
� 1

Also since (see e.g. Moran , p. 279) the standard normal distribution function
� satis�es for all x > 0

�(�x) < (2�)�1=2 x�1 exp�x2=2

we have that

Tn(2; �) = dR(f0; g0)Fn(� =2 B(�0; �)): � 2��(��n)

<

r
2

�
��rn exp���2rn =2

Choosing 0 < r < 1 appropriately we can now obtain an upper bound for the
variation distance. Note that with the di¤erentiability condition that p = 2
con�rms that for any 0 < r < 1:

lim
n�1

sup
g2N

�
dV (fn; gn)

�
(1�r)
n

�
= 0

Typically �n � �n�1=2 for some � when this becomes

lim
n�1

sup
g2N

n
nr

0
dV (fn; gn)

o
for any r0 = 1=2 f1� rg < 1=2. Thus we retrieve the expected n�1=2 speed of
convergence in variation distance between the two posteriors, contrasting withp
n speed of divergence using the [9] analogue 2. Note here that it is the di¤er-

ence in mutual roughness of the approximation of f and g that governs the rate
above.
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Example 12 Suppose Fn is any one dimensional functioning distribution func-
tion with mean �n0 and variance �

2
n and we believe that g0 2 N (f0;�;M(�0); 2),

where �0 � B(�0; �n). Then by Chebychev�s inequality

Tn(2; �) � �Fn(� =2 B(�0; �n)): � �
�2n
�2n

using the de�nition above and setting r = 1=3 when p = 2 give that

dV (fn; gn) � exp
n
2M�2=3n

o
� 1 + 2��

2
n

�2n

= exp
n
2M�2=3n

o
� 1 + 2��2=3n

It follows that for any one dimensional functioning posterior density with a
�nite mean and variance the variation distance between posteriors (fn; gn),
g0 2 N (f0;�;M; 2) lying in this neighbourhood typically is bounded by a rate
3
p
n. Thus for example it is common for the posterior density fn(�) of a mean

parameter � to be Student t so that

fn(�) _
"
1 +

(x� �n0 )
2

(�n � 2)�2n

#�(�n+1)=2
where �n = �0 + n=2; n > 4 ,E(�jxn) = �n0 and V ar(�jxn) = �2n. To obtain
robustness intervals we can simply plug in these moments. Note that for a given
data set this posterior variance �2n could increase, as in the example above.
However this would be unexpected and furthermore, provided we can calculate (or
reliably estimate) �2n, as in the example above, we know when this is happening.

Example 13 Even when the moments of fn do not exist we can still obtain
bounds, it is just that the rate of convergence associated with these bounds can
be slower. Thus suppose fn(x) = f

�
��1n (� � �n0 )

�
where f is a Cauchy density

and note that x > 0 the Cauchy distribution function F (x). has the property
that F (�x) < 1

2�x
�1 It then follows that if g0 2 N (f0;�;M; 2) then letting

�n = �
�r
n

Tn(2; �) �
�

�
�rn

The best asymptotic bound for dV (fn; gn) of this type we can obtain using these
inequalities is by setting r = 0:5 when

lim
n�1

sup
g2N

�
dV (fn; gn)p

�n

�
=M + 2�

Example 14 Now suppose that � = (�1; �2; : : : ; �k) and that the �j;n; �
2
jj;n de-

note, respectively the mean and variance of �j, 1 � j � k under the functioning
posterior density fn. Then [29], p153) proves that, writing �

n
0 = (�1;n; �2;n; : : : �k;n)

Fn (� 2 B(�n0 ; �n)) � Fn

24 k\
j=1

n���j � �j;n�� � pk�no
35 � 1� k��2n kX

j=1

�2jj;n
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so that

Fn (� =2 B(�n0 ; �n)) � k��2n
kX
j=1

�2jj;n

so that

Tn(2; �) � �
�2n
�2n

where �2n = kmax1�j�k �
2
j;n. Under this notation we therefore have exactly

analogous bounds to the univariate Chebychev bounds given above. In fact this
bound is coarse and can be improved (see [20]). Note here that this bound in-
creases linearly with the dimension k of the parameter space. Note also here
that if we are interested in the margin of a subvector �1of the parameter � this
bound can be made tighter.

Example 15 In the particular case when the functioning posterior density fn
is Gaussian with mean vector �n0 and covariance matrix �n = f�2ijng has an
l structure - i.e. for values �1;n; �2;n; : : : �k;n where �j;n 2 (�1; 1); �2ijn =
�1;n; �2;n�iin�jjn 1 � i 6= j � k then by the inequality in the univariate example
above and Theorem 2.2.4 in [29] (p20)

Tn(2; �) �
r
2k

�
�

kY
j=1

�rjjn exp���2rjjn =2 �
r
2k

�
��kr0n exp���2rn =2

where �0n = min1�j�k �jjn and ��2rn =
Pk

j=1 �
�2r
jjn . So in this case the

p
n

bounds of the univariate case still apply. However the l structure is di¢ cult to
verify.

Thus, provided that f0 and g0 are close with respect to these new separa-
tion measures whilst the family of models may be inconsistent with the data,
the functioning posterior distribution nevertheless will tend to provide a good
approximation of the genuine posterior. All similar priors will give similar (if
possibly erroneous) posterior densities. So in this sense issues of the appropri-
ateness of the model and its robustness to prior misspecifation are separated
from one another.
In fact the smoothness conditions on dRA(f0; g0) are almost necessary for

convergence. Thus if local closeness of the type described above does not exist
then it is possible to construct a sequence of likelihoods that converge in a
very strong way to a true values �0 - so in particular we obtain uniformly
consistent estimates of � - but for which the genuine and functioning posterior
densities remain at least an " distance apart whatever the value of sample size
n. The formal statement and proof of this property are rather technical and so
is relegated to an appendix.
There is a second useful and often tighter bound based on another belief

we might hold when we are concerned that f0 and g0 might have di¤erent tail
characteristics Call a genuine prior c-rejectable if the ratio of marginal likelihood
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pg(x)
pf (x)

< c. If we believed that the genuine prior would explain the data better
than the functioning prior this in turn would mean that we would expect this
ratio to be small: and certainly not c- rejectable for a moderately large values
of c � 1. Say density f ��tail dominates a density g if

sup
�2�

g(�)

f(�)
= � <1

When g(�) is bounded then this condition requires that the tail convergence of
g is no faster than f .

Notation 16 Let N 0(f0; c;�;M(�0); p(�0)) denote the set of g0 is not c re-
jectable with respect to f0 , f0 ��tail dominates g0 and there exists a func-
tion k such that f0 = f 00k and g0 = g00k where f

0
0; g

0
0 2 F(�0;M(�0); p(�0));

0 < p � 2.
Then we have the following theorem

Theorem 17 If g0 2 N 0(f0; c;�;M(�0); p(�0)) then for 0 < p � 2
dV (fn; gn) � inf

�>0
fTn(1; �) + 2T 0n(2; �) : B(�0; �) � �0; fn(�) 2 C�n(�0; �)g

(25)
where

Tn(1; �) = exp
n
2M�p=2

o
� 1

T 0n(2; �) = (1 + c�)�n(�)

Moreover if fn(�) converges in distribution to a point mass at distribution �0
then for 0 � p � 2

lim
n!1

sup
g02N (f0;�;M(�0);p)

dV (fn; gn) = 0

Proof. See the Appendix
Note that if the genuine prior were c - rejectable for a large c we would

probably want to abandon it. Here the prior tail dominance condition simply
encourages us to use a �at tailed functioning prior so that if a tail observation
is seen it allows the likelihood to dominate the posterior and this information
is not killed o¤ by the functioning prior tail. This formal result just techni-
cally con�rms Bayesian modelling principles seen by many as good practical
management anyway see for example [23]. Under these conditions, analogues
of all the examples above can be calculated simply by substituting c� for �
throughout. Alternative bounds can also be calculated in terms of the Highest
Posterior Density Bounds of fn which are tighter but of less practical use - see
[5] for related results.
Of course if we make assumptions about the form of the likelihood, then we

can also improve these bounds: indeed that takes us closer to standard con-
sistency results [11]. Note in particular the close link between the convergence
rates above and those derived in for example [10] and [18] under consistency
conditions. However in the spirit of using formal Bayes, we prefer to derive
results that are not dependent on the form of the likelihood..
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5.2 Robustness without Consistent estimators

It is not uncommon to know that a Bayesian analysis will not produce consis-
tency. For example even after sampling a very large number of data points,
aliasing problems can exist in a variety of hierarchical linear models, many la-
tent class models can at best exhibit multiple local minima along the orbits of
sometimes quite unexpected invariant group actions [28] and censoring in gen-
eral often produces likelihoods with multiple local maxima. However in these
cases it is often possible to exhibit stability of inference by slightly adapting the
results above.

Theorem 18 If g0 2 N (f0;�;M(�0); p) then for 0 < p � 2

dV (fn; gn) � inf
�>0

n
mTn(1; �) + 2Tn(2; �) : B(�0; �) � �0; fn(�) 2 [mj=1C�n[j](�0[j]; �)

o
(26)

where Tn(1; �) and Tn(2; �) are de�ned in the last section and �n(�) =
Pm

j=1 �[j]
and B(�0[j]; �) are all disjoint.

Proof. See the Appendix
Thus for example when the posterior converges in distribution to a discrete

a non- defective distribution on a support with m atoms, provided g0 is in an
appropriate neighbourhood of f0 we retain robustness.

Example 19 Suppose a random sample is drawn from a mixture of normal
densities with respective means �1; �2, unit variances and associated mixing
probability 1=2. Suppose that the distribution on (�1; �2) is exchangeable. Then
since for all n

Fn(�1 2 A1; �2 2 A2) = Fn(�1 2 A2; �2 2 A1)

unless �1 = �2 ffngn�1 will not converge to a point mass as n!1. However
it is easy to check that the posterior density will converge on the space spanned

by
�
�(1); �(2)

�
where �(1) = min (�1; �2) and �(2) = max (�1; �2) :It follows

that Fn will concentrate its mass around two points so that the theorem above
applies. Obviously in this example a simple reparametrisation will su¢ ce but in
more complex models like discrete latent class models identifying which points
are equally likely is non-trivial. What the theorem above tells us is that though
this is important for determining the actual inference it is less important an
issue with regard to the robustness of that inference.
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6 Examples of De Robertis Separation

6.1 Exponential families and density balls

These local separations make sense in a parametric setting. Thus suppose
f1(�) = f(�j�1) and f2(�) = f(�j�2) lie in the same regular exponential family.

f(�j�) = c(�(�))h(�) exp
(

kX
i=1

�i(�)ti(�)

)
for some measurable functions �1; �2; ::; �k; t1; t2;:::;tk for some integer k

where �(�) = (�1; �2; : : : ; �k); t = (t1; t2;:::;tk) 2 T. For 1 � i � k, and
j = 1; 2 write

�i(�j) = �i;j

where, since the exponential family is regular, T does not depend on �. Note
that if a set A is of the form A = f� 2 � : t(�) 2 A = A1 � A2 � : : :Akg and
�(Ai) denotes the length of the interval Ai then,

dLA(f1; f2) = sup
�;�2A

log

�
f(�)g(�)

f(�)g(�)

�

= sup
t(�);t(�)2A

(
kX
i=1

(�i;1 � �i;2)(ti(�)� ti(�))
)

=
kX
i=1

j�i;1 � �i;2j�(Ai)

It follows that if �(Ai) is in�nite for some (f1; f2) with �i;1 6= �i;2 then dL(f1; f2) =
1 so the usual density ratio diverges. In particular two densities within the
family with parameters arbitrarily close under Euclidean distance are usually
in�nitely separated under this separation. But under its local form we note
that two models with parameters close in Euclidean distance have close local
separation as well. For example suppose t(�) = �. Then

dLB(�0;�)(f1; f2) � 2�

vuut kX
i=1

(�i;1 � �i;2)2

In the special case when all points � 2 B(�0; �) lie in the sample space (so
that �0 is not near the boundary of � and the components of � functionally
independent within this ball).so does not depend on �0 the inequality above
becomes an identity. So these separation give us what we might expect for
a standard family, being a weighted distance between the components of the
natural parameters of the two prior densities.

Example 20 (Exponential ) When fj is an exponential E(�j) density with
rate is �j, j = 1; 2 then � � �0

dLB(�0;�)(f1; f2) = 2� j�1 � �2j
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whilst when 0 � �0 < �

� j�1 � �2j � dLB(�0;�)(f1; f2) < 2� j�1 � �2j

Note that if prior f2 2 G(f1;�;�; 2) for any �xed �1 provided that the parameter
of our genuine prior j�1 � �2j � �.

Example 21 (Gaussian) Suppose fj is a normal N(�j ; �
2
j ) density j = 1; 2

so that k = 2. Then for j = 1; 2

�1;j =
�j
�2j
; �2;j = �

1

2�2j

We can conclude that under a conjugate analysis we can never learn anything
about the di¤erence between the reciprocal of the square of the coe¢ cient of
variation. and the di¤erence in precision in these two distributions. This fact
is of course easily checked from the usual recursions: see e.g.[3]. Note here that
t(�) = (t1(�); t2(�)) = (�; �

2). If we de�ne A = f� : B(�0; �)g then

dLA(f1; f2) = sup
t(�);t(�)2A

�
(�1;1 � �1;2)(� � �) + (�2;1 � �2;2)(�2 � �2))

	
= sup

t(�);t(�)2A
f(� � �) [(�1;1 � �1;2) + (�2;1 � �2;2)(� + �))]g

� 2� sup
t(�);t(�)2A

j(�1;1 � �1;2) + 2(�2;1 � �2;2)(�0 + �))j

which is bounded only if �2;1 = �2;2 (i.e. the variances of the two distributions
are the same) or �0 lies in some bounded interval. Assuming the latter is so we
can obtain the usual bounds provided that we are conservative in the sense that
we ensure our choice of prior precision in our functioning prior is no larger than
the prior precision of our genuine prior (i.e. use a prior as "vague" as possible).
Note below that we obtain even better stability by choosing a functioning prior
that has inverse polynomial tails. Finally note in this example we could have
de�ned neighbourhoods using use a 2 dim. ball on (�; �2) look at the image of
this on �- space. In this case we note that, for �1 and �2 to be close we not only
require not only j�1 � �2j < 2� but also

j�1 � �2j < 2�max
�
1;

1

j�1 + �2j

�
< 2�max

�
1;

1

jj�0j � 2�j

�
i.e. that the further the location of the densities from zero, the closer we require
them to be.

6.2 Conjugate densities to Exponential families

Now suppose f1(�) = f(�jn1;y1) and f2(�) = f(�jn2;y2) lie in the same conju-
gate of the exponential family [3] p277.

f(�j�) = c(n;y)hn(�) exp
(
n

kX
i=1

yiti(�)

)
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for some integer k where yj = (y1;j ; y2;j ; : : : ; yk;j) for j = 1; 2 where; t =
(t1; t2;:::;tk) 2 T where T does not depend on y.
Then provided all points � 2 B(�0; �) lie in �0 (so that �0 is not near the

boundary)

dLB(�0;�)(f1; f2) = sup

(
kX
i=1

(n1yi;1 � n2yi;2) (ti(�)� ti(�)) + (n1 � n2)(log h(�)� log h(�)) : �; � 2 B(�0; �)
)

� 2�
kX
i=1

jn1yi;1 � n2yi;2j+ jn1 � n2j jlog h(�0 + �)� log h(�0 � �)j

so that

jC1(n1; n2;y1y2; �)� C2(n1; n2; �)j � (2�)
�1
dLB(�0;�)(f1; f2) � jC1(n1; n2;y1y2; �) + C2(n1; n2; �)j

where

C1(n1; n2;y1y2; �) ,
kX
i=1

jn1yi;1 � n2yi;2j

C2(n1; n2; �) , (2�)
�1 jn1 � n2j jlog h(�0 + �)� log h(�0 � �)j

' jn1 � n2j jrh(�0)j = jn1 � n2j jE�0Y�j

by properties of the exponential family (see e.g. [3] p. 203) where Y� is the
random vector of data whose exponential family density is the sample density
to which this prior is conjugate. In general the non-linear function h(�) can
cause problems near the boundary of the parameter space.

Example 22 Suppose f1(�j�1; �1) and f2(�j�2; �2) have respectively a Beta(�1; �1)
Beta(�2; �2) density where

f(�j�; �) _ ���1(1� �)��1

Then

dLB(�0;�)(f1; f2) = sup

�
(�1 � �2) log

�
�

�

�
+ (�1 � �2) log

�
1� �
1� �

�
: �; � 2 B(�0; �)

�
So if

� < min f�0; 1� �0g
then

dLB(�0;�)(f1; f2) � j�1 � �2j log
�
�0 + �

�0 � �

�
+ j�1 � �2j log

�
1� �0 + �
1� �0 � �

�
with equality when (�1 � �2) (�1 � �2) � 0. Note that when

2�� min f�0; 1� �0g
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then this upper bound is approximately

2�

�
j�1 � �2j+ (j�1 � �2j � j�1 � �2j) �0

�0 (1� �0)

�
which is uniformly bounded for any given closed interval �0 � [0; 1]. On the
other hand, near the boundary of the parameter space, distances become large,
even for relatively similar parameter value. For example if �0 = � so that we
examine probabilities � close to zero, then, for all � > 0

dLB(�;�)(f1; f2) =1

if �1 6= �2. This means - see a result in the appendix - that posteriors may well
not converge in variation. To demonstrate this let rn(�) denote the digits {0; 1
or 2} of the rthn term in the tertiary expansion of �. Let rn = (r1; r2; : : : rn),
xn = (x1; x2; : : : xn), n � 2 and let xn(rn) denote the observation of the value
of rn�1 together with a noisy observation of the value of rn so that

p(xnj�) =
�

(r1; r2; : : : rn) with probability 1� �n
(r1; r2; : : : [rn + 2]mod 3) with probability �n

for some set of probabilities f�n : 0 < �n < 1; n � 1g. Let A(xn) = f� :
p(xnj�) > 0g. Clearly � is uniformly estimable. For example, irrespective of the
value of f�n : n � 1g and possible values of xn if

e�(Xn) =
nX
i=1

�
1

3

�ixi
n � 2, then ���e�(Xn)� �

��� � �1
3

�n
Now suppose that f1; f2 are respectively prior beta densities Be(�1; �); Be(�2; �)
where we choose �1(") > �2(") so that dV (f1; f2) < " for some suitable small
value of " > 0. By noting the continuity of the gamma function on the positive
half plane, we can always do this using the inequality [8] that the Hellinger
distance d2H(f1; f2) � dV (f1; f2) by choosing �1 � �2 su¢ ciently small since it
is straightforward to verify that

d2H(f1; f2) = 1�

s
�(�1 + �)�(�2 + �)�2(�)

�2(�+ �)�(�1)�(�2)

where � = 1=2(�1 + �2). Suppose for all n we now observe xn = (0; 0; : : : ; 0).
Then by construction, since

dRA(xn)(f1; f2) = sup
�;�2A(xn)

�
�

�

��1��2
� 1
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this is unbounded; as n!1. Using analogous arguments to those in the result
in the appendix the distance dV (f1;n; f2;n) the posterior densities is therefore
bounded away from zero as n ! 1. Thus, even two common densities on
bounded support and close in prior variation distance but not exhibiting at the
limit point the local smoothness we demand, may not converge as a sequence of
increasingly informative experiments are performed.
Of course in this example despite diverging in total variation both f1;n and

f2;n converge in distribution to one that assigns probability one to the event
f� = 0g. So such failure of robustness might not be critical. However it might
be. For example if the distribution to �rst failure time �(�) was of primary
interest and the probability of failure in any interval was � then the posterior
densities of �(�) under priors f1 and f2 will look very di¤erent. Furthermore
the prior probability under either model of observing data consistent with such
a likelihood is zero. But in complicated models we do not expect a speci�ed
model to be absolutely accurate. For example BN�s with hidden variables often
have an observed likelihood that assigns a maximum likelihood of a conditional
probability of the latent variable to lie on a boundary see e.g. [28] . We can
therefore expect high dependence on the parameters of the product Beta priors
when the analysis does not involve the use of a boundary searching diagnostic
applied to the functioning prior f1. These are rarely used in these contexts.

6.3 Factorisations of densities and graphical models

Unstructured high dimensional models are hard to analyse in general and it is
now common practice to work within families of distributions which exhibit fac-
torisations of their joint density. One popular example is the Bayesian Network
(BN) of which the usual family of hierarchical models is a special case. A model
is often elicited �rst through qualitative features that can be encoded in terms of
such a factorization and speci�c functional forms of various conditionals added
only subsequent to this framework being established.
Suppose our functioning prior f(�) and genuine prior g(�) where � = (�1; �2; : : : �k) 2

� = �1 ��2 � : : :��k are both constrained to respect the factorisation

f(�) = f(�1)
kY
i=2

fij:(�ij�pai)

g(�) = g(�1)
kY
i=2

gij:(�ij�pai)

where for 2 � i � m; �pai is a subvector of (�1; �2; : : : �i�1) and write
�[1] = �1 2 �[1] = �1and �[i] = (�i;�pai) 2 �[i], 2 � i � k:Then letting
A = A[1]�A[2]� : : :�A[k] � � where A[i] � �[i], 1 � i � k:and

t1(�[1];�[1]) = log f1(�1)� log g1(�1) + log g1:(�1)� log f1(�1)
ti(�[i];�[i]) = log fij:(�ij�pai)� log gij:(�ij�pai) + log gij:(�ij�pai)� log fij:(�ij�pai)
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we note directly from the de�nition of dLA(f; g) that

dLA(f; g) = sup
�;�2A

(
kX
i=1

ti(�[i];�[i])

)

�
kX
i=1

sup
�;�2A[i]

fti(�[i];�[i])g

where A[i] = A \�[i]. Letting

dLA[i](fij; gij) = sup
�[i]2A[i]

�
log fij(�[i])� log gij(�[i])� log fij(�[i]) + log gij(�[i])

	
we then have that

dLA(f; g) � dLA[1](f1; g1) +
kX
i=2

dLA[i](fij; gij)

Applying the inequality 12 to each subset �[i] i = 2; 3; : : : ; k now gives that

dLA(f; g) �
kX
i=2

dLA[i](f[i]; g[i])

where fA[i]; gA[i] are respectively the margin of fand g on the space �[i]. This
gives a relatively simple upper bound of the full distance in terms of distances
of clique marginal densities which in common models all often only consist of
a low number of components. So for graphical models at least bounds on the
convergence of the full posterior can be written in terms of characteristics of the
low dimensional priors on the clique margins of the two densities. There is also
a lower bound for dLA(f; g) in terms of its components provided both densities
are continuous on their support. Thus let

dL�A[i](fij; gij) , sup
�[i]2A[i]

n
log fij

�
�i;�

u
pai

�
� log gij

�
�i;�

u
pai

�
� log fij

�
�i;�

L
pai

�
+ log gij(

�
�i;�

L
pai

�o
where

�u1 ; �
l
1 , arg sup

�1;�12A1

flog f1(�1)� log g1(�1) + log g1:(�1)� log f1(�1)g

and for 2 � i � k,

�ui ; �
l
i , arg sup

�[i];�[i]2A[i]

n
log fij

�
�i;�

u
pai

�
� log gij

�
�i;�

u
pai

�
� log

�
�i;�

L
pai

�
+ log gij(

�
�i;�

L
pai

�o
Then we have that

dLA1
(f1; g1) +

kX
i=2

dL�A[i](fij; gij) � dLA(f; g)
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Finally suppose we want to set the prior bounds for the conditional densities
in the factorisation above functionally independently of the particular parent
con�guration �pai :

De�nition 23 Say the neighbourhood N (f) of f(�) = f(�1)
kY
i=2

fij:(�ij�pai) is

uniformly A uncertain if g 2 N (f) respect the same factorisation as f and

sup
g2G(f)

sup
�i;�i2A[i]

�
log fij (�i;�pai)� log gij (�i;�pai)� log (�i;�pai) + log gij((�i;�pai)

	
is not a function of �pai 2 � i � n.

If we believe the genuine prior g 2 G(f) is uniformly A uncertain then we
can write

dLA(f; g) =
kX
i=1

dL�A[i](fij; gij)

The separation between the joint densities f and g is then simply the sum of
the separation between its component conditionals fij and gij 1 � i � k. So in
particular to calculate bounds for the joint density of the genuine posterior form
prior smoothness conditions on each of the genuine and functioning conditionals
and parameters of the posterior. Notice that these bounds will apply even when
the likelihood destroys the factorisation of the prior. So the critical property we
assume here is the fact that we believe that g respects the same factorisation
as g. If we learn the value of �(I) = f�i : i 2 Ig where I is some index set then
the separation between the densities reduces to

dLA(f(:j�(I)); g(:j�(I))) =
X
i=2I

dL�A[i](fij; gij)

If the factorisation of both g0(�) and f0(�) have a factorisation which re-
spects a decomposable undirected graph [16] with cliques C[1]; C[2]; : : : C[m]
and separators S[2]; S[3]; : : : S[m]. Let �(C[i]) 2 �i denote the subvector of
components of � in the clique C[i] and �(S[i]) 2 e�i be a subvector of �(C[i])
with shared components from earlier listed clique contained only in C[j(i)]where
1� j[i] < i � k. Then we note that since

log g0(�) =
kX
i=1

log g0;i(�(C[i]))�
kX
i=2

log eg0;i(�(S[i]))
where g0;i(�(C[i])) is the joint density of �(C[i]) and eg0;i(�(S[i])) is the joint
density of �(S[i]), with an identical equation for f0(�)

dLA(f0; g0) =
kX
i=1

dLA(f0;i; g0;i)�
kX
i=2

dLA(
ef0;i; eg0;i)

=
kX
i=1

dLA[i](f0;i; g0;i)�
kX
i=2

dLeA[i]( ef0;i; eg0;i)
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where A[i] = �i \A and eA[i] = e�i \A. Since �(S[i]) is a margin of �(C[i])
dLeA[i]( ef0;i; eg0;i) � dLA[i](f0;i; g0;i)

and dLA(f0; g0) is simply a function of clique distances and these distances never
change if we partially observe them through a strictly postive likelihood. This
supports the practical observation that the di¤erences between inferences in
graphical models respecting the same underlying conditional independencies are
usually not large if prior assumptions are perturbed. However models with dif-
ferent prior conditional independencies, here ones that a priori exhibit di¤erent
clique structure can lead to very di¤erent inferences.

6.4 Discussion

It appears that to employ a proper prior whose mass is poorly positioned will
give the same answers as getting the prior right provided we have enough data
albeit under on three conditions. The �rst is that the same likelihood is shared
by the two priors. The second is that functioning posterior converges: and not
to a defective distribution unless the rate of convergence of the appropriate tail
of the two distributions are comparable in some sense. Thirdly we require both
priors to be comparably smooth: a property that is often induced systematically
by the way priors are currently speci�ed.
However there are three caveats to these comforting points when working

in high dimensions. First, it is quite likely that the posterior density will not
concentrate on to a ball so that unidenti�ability issues prevent routine robust-
ness: the bounds above being dominated by the most uncertain parameter and
the multiple prior tolerance bounds being much more uncertain. Second the
tail regions represent an increasingly larger proportion of the whole density, so
issues associated with tails are more signi�cant. Third if the functioning prior
respects a factorisation, the assumption that the genuine prior also respects that
factorisation is critical for robustness to be guaranteed.
An interesting question is whether the methods of the last section can be

extended into non-parametric setting where robustness issues are known to be
more fragile. Much current non-parametric Bayesian inference is performed
with hierarchical models prior densities that at their lowest level are discrete
with probability one. This makes it unlikely that they can be stable in the
sense above for the full parameter space although the smoothing properties on
the second level variables will often ensure smoothness and hence robustness on
this margin can be recovered.
One non-parametric class that does not appear to su¤er this problem is the

Gaussian process prior. For example [21] assume a priori that

r(�) = 1� g0(�)

f0(�)

is a sample path from a Gaussian process with zero mean. Notice that the con-
dition f 00; g

0
0 2 F(�0;M(�0); 2); where these terms are given in 22 is equivalent
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to requiring that r(�) is contiuously di¤erentiable with bounded derivative on
�0: The typical Gaussian covariance function these authors use appear to give
rise to sample paths for which this condition typically holds true (i.e. with
probability one). This is also true of the transformation used by [17]. Note that
Gaussian processes with rougher paths, for example di¤usions have roughness
coe¢ cient p < 1; and so prior to posterior inferences are less robust in this sense.
Further discussion of these issues will be reported elsewhere.
Finally we note that the posterior robustness of variation distances to prior

speci�cation is the strongest we could reasonably demand. If we demand less
strong forms of stability - see [14] for examples of these - then obviously more
robustness can be achieved. However what we have been able to demonstrate
above is that conditions that appear fairly mild, ensure this strong form of
stability anyway.
Acknowledgement This paper has greatly bene�tted from discussions with

Ali Daneshkah, Jim Gri¢ n, Jon Warren, Wilf Kendall, Sigurd Assing and
Stephen Walker.

7 Appendix

We begin proving three simple lemmas.

Lemma 24 For any set measurable set A

dV (f; g) � 2
Z
�=2A

jf(�)� g(�)j d �+ dRA(f; g)

Proof. First note that if

�A(�jf; g) ,
����gA(�)fA(�)

� 1
����

where fA(�) =
f(�)
F (A) and gA(�) =

g(�)
G(A) are respectively the conditional densities

of � under f(�) and g(�) given � 2 A then

�A(�jf; g) � sup
�2A

����gA(�)fA(�)
� 1
���� � dRA(fA; gA) = dRA(f; g) (27)

by invariance of the De Robertis local separation to conditioning. It follows thatZ
�2A

jf(�)� g(�)j d� =

Z
�=2A

jF (A)fA(�)�G(A)gA(�)j d�

� jF (A)�G(A)j
Z
�=2A

gA(�)d� + F (A)

Z
�2A

jfA(�)� gA(�)j d�

= jF (Ac)�G(Ac)j+ F (A)
Z
�2A

jfA(�)� gA(�)j d�

�
Z
�=2A

jf(�)� g(�)j d �+ F (A)dRA(f; g)
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The result follows.
Let G denote an arbitrary set containing both f and g .

Lemma 25 Suppose f = f 0k and g = g0k, f g 2 G are such that f 0; g0 �
F(�0;M(�0); p) , let A(�) � B(�0; �) � �0 and let 0 < p� < p. Then

sup
f;g2G

Z
�2A

jf(�)� g(�)j d� � sup
f;g2G

Z
�=2A

jf(�)� g(�)j d� + S(A)

where
lim
�!0

��1=2p
�
S(A) = 0

Proof. From the above

sup
f;g2G

Z
�2A

jf(�)� g(�)j d� � sup
f;g2G

Z
�=2A

jf(�)� g(�)j d� � sup
f 0;g02F(�0;M(�0);p(�0))

dRA(f; g)(28)

�
�
exp 2M(�0)�

1=2p(�0) � 1
�

since A � B(�0; �) by 27 and 23 .Since for any � < 1

lim
y!0

exp�y � 1
y�

= 0

substituting y = �1=2p; � = 2M(�0); � = p�=p < 1 and 0 � F (A) � 1 now gives
the result.

Lemma 26 For n � 1;

dV (fn; gn) � inf
�02�;�>0

�
Tn(1; �) + 2T

0
n(2; �)

	
where

Tn(1; �) = dRB(�0;�)(f0; g0)

T 0n(2; �) =

Z
�=2B(�0;�)

jfn(�)� gn(�)j d�:

Proof.

dV (fn; gn) =

Z
�

jfn(�)� gn(�)j d�

=

Z
�2B(�0;�)

jfn(�)� gn(�)j d� +
Z
�=2B(�0;�)

jfn(�)� gn(�)j d�

where form the �rst lemma aboveZ
�2B(�0;�)

jfn(�)� gn(�)j d� � dRB(�0;�)(fn; gn) +
Z
�=2B(�0;�)

jfn(�)� gn(�)j d�

by28 The result now follows.
There are various ways to bound the term T 0n(2; �). A coarse bound that

does not require any condition on the observed likelihood is used below.
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Theorem 27 If g0 2 N (f0;�;M(�0); p) then for 0 < p � 2

dV (fn; gn) � inf
�>0

fTn(1; �) + 2Tn(2; �) : B(�0; �) � �0; fn(�) 2 C�n(�0; �)g
(29)

where

Tn(1; �) = exp
n
2M�p=2

o
� 1

Tn(2; �) = (1 + �)�n(�)

Moreover if fn(�) converges in distribution to a point mass at distribution �0
then for 0 � p � 2

lim
n!1

sup
g2G

dV (fn; gn) = 0

Proof. The �rst part is immediate from the lemmas above and noticing
that if g0 2 G(f0;�;M; p) then

Tn(2; �) �
Z
�=2B(�0;�)

jfn(�)� gn(�)j d�

� Fnf� =2 B(�0; �)g
Z
�=2B(�0;�)

����1� gn(�)

fn(�)

���� d�
= Fnf� =2 B(�0; �)g sup

�2�

����1� gn(�)

fn(�)

����
� �n�

The result thus follows immediately from the lemmas above and the de�nition
of a concentrate. The second part follows from the de�nitions above and the
de�nition of convergence in distribution ensures that limn!1 �n = 0.
A tighter bound can be found provided we assume that g0 is not c rejectable.

Theorem 28 If g0 2 N 0(f0; c;�;M(�0); p(�0)) then for 0 < p � 2

dV (fn; gn) � inf
�>0

fTn(1; �) + 2T 0n(2; �) : B(�0; �) � �0; fn(�) 2 C�n(�0; �)g
(30)

where

Tn(1; �) = exp
n
2M�p=2

o
� 1

T 0n(2; �) = (1 + c�)�n(�)

Moreover if fn(�) converges in distribution to a point mass at distribution �0
then for 0 � p � 2

lim
n!1

sup
g02G(f0;�;M(�0);p)

dV (fn; gn) = 0
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Proof. The �rst part is immediate from the lemmas above and noticing
that if g0 2 G0(f0; c;�;M(�0); p(�0)) then

T 0n(2; �) � Fnf� =2 B(�0; �)g+Gnf� =2 B(�0; �)g

= Fnf� =2 B(�0; �)g+
Z
�=2B(�0;�)

gn(�)

fn(�)
fn(�)d(�)

= Fnf� =2 B(�0; �)g+
Z
�=2B(�0;�)

pf0(x)

pg0(x)

g0(�)

f0(�)
fn(�)d(�)

� Fnf� =2 B(�0; �)g+ c�
Z
�=2B(�0;�)

fn(�)d(�)

� �n(1 + c�)

The result thus follows immediately from the lemmas above and the de�nition
of a concentrate. The second part follows from the de�nitions above and the
de�nition of convergence in distribution ensures that limn!1 �n = 0.

Theorem 29 If g0 2 N (f0;�;M(�0); p) then for 0 < p � 2

dV (fn; gn) � inf
�>0

n
mTn(1; �) + Tn(2; �) : B(�0; �) � �0; fn(�) 2 [mj=1C�n[j](�0[j]; �)

o
(31)

where Tn(1; �) and Tn(2; �) are de�ned above and �n(�) =
Pm

j=1 �[j] and B(�0[j]; �)
are all disjoint.

Proof. Let B = �n [mj=1 B(�0[j]; �)

dV (fn; gn) =
mX
j=1

Z
�2B(�0[j];�)

jfn(�)� gn(�)j d� +
Z
�2B

jfn(�)� gn(�)j d�

�
mX
j=1

dRB(�0[j];�)(fn; gn) + �nd
R(fn; gn)

by 27. The result follows.
A useful result that demonstrates the necessity of these local smoothness

conditions and convergence in total variation is given below. It shows that if a
local DS does not converge as the radius � decreases then there is at least one
sequence of likelihoods, concentrating round a single parameter value �0 such
that the posterior distributions fn and gn do not converge. For simplicity we
prove this result for certain types of regular f0 and g0 only.

De�nition 30 Say two densities f(�) and g(�) are (�u;�l) -regular if there
are points �u;�l 2 �0, where �0 is a compact subset of � satisfying

log f(�u)� log g(�u) = sup
�2�

flog f(�)� log g(�)g , �+

log g(�l)� log f(�l) = sup
�2�

flog g(�)� log f(�)g , ��
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such that, for n � 1, both B+n and B�n contain open sets containing �u and �l
respectively where

B+n = f� : sup
�2�

flog f(�)� log g(�)g > �+(1� (2n)�1) (32)

B�n = f� : sup
�2�

flog g(�)� log f(�)g > ��(1� (2n)�1)

Demanding the (�u;�l) -regularity is a very weak condition. For example
when � is one dimensional it is satis�ed for any (f; g) such that log f(�)�log g(�)
is right (or left) continuous.

De�nition 31 Say a sequence fpn(�) : n = 1; 2; 3 : : : ;� 2 �g of sample den-
sities is strongly concentrating on �0 if there is a sequence f�n : n � 1g such
that 0 < �n+1 � �n; n � 1 where �n ! 0 as n ! 1, for which pn(�) = 0;
� =2 B(�0; �n) \�.

Note in particular that, directly from 1 ffn(�)gn�1 concentrates on f�n0gn�1
where we set f�ngn�1 as de�ned above and �n = 0, n � 1 wheneverfpngn�1
strongly concentrates on �0.

De�nition 32 Say that (f; g) are DRS singular at �0 2 � where � is the
compacti�cation of � if

lim
�!0

dLB(�0;�)(f; g) > 0

Note that if �0 = (�1;0; �2;0; :::; �k;0) then we allow �i;0 =1 or �i;0 = �1.
We then use the convention that

B(�0; �) = B0(�0; �) \B�1(�0; �) \B1(�0; �)

where

B0(�0; �) =
\
f� : �i;0 � � < �i < �i;0 + �; where i such that �i;0 6=1;�1g

B�1(�0; �) =
\
f� : �i < ���1; where i such that �i;0 = �1g

B1(�0; �) =
\
f� : �i > ��1; where i such that �i;0 =1g

Under this de�nition we have shown above that f; g 2 F(�0;M(�0); 0) are not
DRS singular at any point in �0 2 �0. However it is easily checked that the
constructions used in [9] to demonstrate the divergence of the ratio 2 have a
singularity of this type near the maximum of the likelihood. Furthermore when
� = R and f and g have di¤erent rates of convergence in their tails then both
1 and �1 are singular points. For example in this case for every � > 0 we can
�nd a pair �(�); �(�) 2 � such that �(�); �(�) 2 B1(1; �) ; i.e. as large as we
like so that for any M > 0

j(log f(�(�))� log g(�(�))� (log f(�(�))� log g(�(�))j > M

so that lim�!0 d
L
B(1;�)(f; g) =1.
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De�nition 33 Call sequence of pairs of sets f(A+n ; A�n ) : n � 1g (F;G) - test
sequence on �0 2 �0 and f(�+n ; ��n ; �n) : n � 1g when for n � 1

A+n = B(�u; �
+
n ) \B+n \B(�0; �n)

A�n = B(�l; �
�
n ) \B�n \B(�0; �n)

where �+n+1 � �+n , ��n+1 � ��n and

maxf�+n+1; ��n+1g ! 0 as n! 0 (33)

and where
F (A+n [A�n ) = G(A+n [A�n ) (34)

Demanding the (�u;�l) -regularity is a very weak condition. For example
when � is one dimensional it is satis�ed for any (f; g) such that log f(�)�log g(�)
is right (or left) continuous. Since f(�u); f(�l); g(�u); g(�l) > 0; it enables us
to assert that for n � 1

F (A+n ); F (A
�
n ); F (A

+
n ); F (A

�
n ) > 0 (35)

Note also as a consequence of this de�nition, for n � 1, A+n+1 � A+n ; A�n+1 � A�n
and A+n \A�n = ;
For any given absolutely continuous F and G that are (�u;�l) -regular with

respect to their densities f; g and a sequence f�n : n � 1g decreasing to zero it
is straightforward to construct a sequence f(�+n ; ��n ) n � 1g so that f(A+n ; A�n ) :
n � 1g are a test sequence. Go by induction. First choose two arbitrary
(�+1 (0); �

�
1 (0)). All we need do now is reduce one of (�

+
1 (0); �

�
1 (0)) so that (34)

is satis�ed, which, since A+1 \A�1 = ;, can be written as

F (B(�u; �
+
1 ) \B(�0; �1))�G(B(�u; �+1 ) \B(�0; �1))

= G(B(�l; �
�
1 ) \B(�0; �1))� F (B(�l; ��1 ) \B(�0; �1)) (36)

Since by construction F (B(�u; �))�G(B(�u; �)) is continuous in � and is also
by construction clearly increasing in � with

lim
�!0

fF (B(�u; �) \B(�0; �1))�G(B(�u; �) \B(�0; �1))g = 0

by the midpoint theorem if we have that

F (B(�u; �
+
1 (0)) \B(�0; �1))�G(B(�u; �+1 (0) \B(�0; �1)))

> G(B(�l; �
�
1 (0)) \B(�0; �1))� F (B(�l; ��1 (0)) \B(�0; �1))

we simply reduce �+1 (0) to a value �
+
1 where the equality is satis�ed and set

��1 = �
�
1 (0). Similarly if

F (B(�u; �
+
1 (0)) \B(�0; �1))�G(B(�u; �+1 (0)) \B(�0; �1))

< G(B(�l; �
�
1 (0)) \B(�0; �1))� F (B(�l; ��1 (0)) \B(�0; �1))
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noting that

lim
�!0

fF (B(�l; �) \B(�0; �1))�G(B(�l; �)) \B(�0; �1)g = 0

setting �+1 = �
+
1 (0) we can �nd �

�
1 < �

�
1 (0) so that the equality above is satis�ed.

Now assume such that (�+m; �
�
m) satisfy the conditions above for 1 � m � n

and choose �+n+1(0) � minf�+n ,n�1g and ��n+1(0) � minf��n ; n�1g Now simply
to reduce one of (�+n+1; �

�
n+1) n � 1 so that 34 is satis�ed using exactly the

same argument as above but with the subscript n replacing the subscript 1. The
inductive step is complete and the test set sequence now constructed.
Note that under this construction if for n � 1 An , A+n [ A�n by the

isoseparation property,

dLAn
(fn; gn) = d

L
An
(f; g) = dL(fn; gn) = d

L(f; g) , 2�

where 2� = �+ + ��.
Now suppose we are lucky enough to learn from xn that there exists a

sequence f�n : n � 1g decreasing to zero as n!1 that � 2 B(�0; �n) then we
might hope that, at least the variation distance between the posterior densities
of two close densities might converge. However this is not true in general for
any pair of (�u;�l) -regular priors (f; g) that are DRS singular at �0 2 �.
To construct a case when variation convergence does not hold let

pn(xnj�) _ �An
(�) (37)

where
An , A+n [A�n

and where f(A+n ; A�n ) : n � 1g form a test sequence. Notice that since An �
An+1; n � 1 an observed (uniform) independent sample for which

pn(xnj�) = 0 � =2 An

would give such a joint sampling distribution. Then, in this simple case the
sequence of posterior densities can be written down explicitly as

fn(�) = (F (An))
�1
f(�)�An

(�)

gn(�) = (G(An))
�1
g(�)�An

(�)

and it is straightforward to prove the following theorem in section 4

Theorem 34 Suppose that (f; g) are (�u;�l) -regular and DRS singular at �0 2
�0.where �0 is a compact subset of �. Then there exists an " > 0 and a sequence
of sample distributions concentrating on �0 such that for all n > N(")

dV (fn; gn) > "
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Proof. Assume that f(A+n ; A�n ) : n � 1g is a (F;G) - test sequence on �
and pn(xnj�) is de�ned in 37. Notice that if dL(f; g) > 0 then

minf�+(f; g); ��(f; g)g = �� > 0

Then

0:5dV (fn; gn) =

Z
A+
n

�
1� y+n (�)

�
fn(�)d �+

Z
A�
n

�
1� y�n (�)

�
gn(�)d�

where, for � 2 A+n
y+n (�) = exp (�flog fn(�)� log gn(�)g)

� exp
�
��+(1� (2n)�1

�
, y+n

and for � 2 A�n
y�n (�) = exp (�flog fn(�)� log gn(�)g)

� exp
�
���(1� (2n)�1

�
, y�n

So in particular Z
A+
n

y+n (�)fn(�)d� �
�
1� y+n

�
Fn(A

+
n )

and Z
A+
n

y�n (�)gn(�)d� �
�
1� y�n

�
Gn(A

�
n )

Since by construction

F (A+n )
�
1� y+n

�
� F (A+n )�G(A+n ) = G(A�n )� F (A�n ) � F (A�n )

��
y�n
��1 � 1�

so since F (A�n ) = 1� F (A+n )

F (A+n ) �
�
1� y�n

� �
1� y�n y+n

	�1
Similarly

G(A�n ) �
�
1� y+n

� �
1� y�n y+n

	�1
So, substituting into the above gives

dV (fn; gn) > "(�
+; ��)

where
"(�+; ��) =

�
1� y+n

� �
1� y�n

� �
1� y�n y+n

	�1
> 0

Thus whenever priors f0; g0 exhibit a DRS singularity at some point �0 it
is possible that dV (fn; gn) will not converge even if, in the very strong sense
described above, information becomes more and more informative that � = �0
as n!1.
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