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Beta-Stacy survival regression models

Fabio Rigat∗and Pietro Muliere†

April 11th 2007

Abstract

This paper introduces a class of survival models for discrete time-to-
event data with random right censoring. Flexible distributions for the
survival times are constructed by modelling the random survival func-
tions as discrete-time beta-Stacy processes (DBS) and by introducing
the regression effects via their prior means. Identifiability is attained
by defining the DBS precision parameters as appropriate functions of
the regression coefficients. By the conjugacy of the beta-Stacy process
with respect to random right censoring, marginal posterior inferences
for all model parameters can be efficiently approximated using the
standard Gibbs sampler. The latter also yields a Monte Carlo approx-
imation for the predictive distributions of the survival probabilities for
future covariate profiles. We provide three clinical applications of the
DBS survival regression framework comparing its estimates with those
of parametric, semiparametric and non-parametric survival models.

Keywords: survival analysis, random right censoring, beta-Stacy pro-
cess, Bayesian hierarchical models, Markov chain Monte Carlo, melanoma,
cerebral palsy.

1 Introduction

This paper introduces a class of hierarchical regression models for discrete
univariate time-to-event data with random right censoring. The distinc-
tive feature of our approach is that the regression coefficients, the survival
probabilities and their precision are represented by random parameters in-
troduced via a hierarchical model structure. Our approach offers a flexible
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alternative to mixture modelling (Farewell [1982], Farewell [1986], Jewell
[1982], Ibrahim et al. [2001]) and to semiparametric models (Cox [1972],
Kalbfleisch [1978], Sinha and Dey [1996], Kleinman and Ibrahim [1998],
Walker and Mallick [1999], Kottas and Gelfand [2001], De Blasi and Hjort
[2007]). An advantage of the models presented here with respect to mixture
models is that inference and prediction are carried out within a fixed param-
eter space using the standard Gibbs sampler (Gelfand and Smith [1990]).
Unlike the semiparametric proportional hazards model, the structure of our
models is non-separable in the regression coefficients and in the random sur-
vival processes. This assumption is relaxed by modelling the latter as a set
of discrete time beta-Stacy processes (DBS) whose prior mean incorporates
a regression component (Cifarelli et al. [1981]). The beta-Stacy process is a
generalization of the Dirichlet process, in that more flexible prior beliefs are
able to be represented and, unilke the Dirichlet process, is conjugate to right
censored observations. Connections with beta process introduced by Hjort
[1990] are immediate (Walker and Muliere [1997]). To ensure identifiability
of the models thus constructed we define the DBS precision parameter so
that large regression effects correspond to posterior survival processes con-
centrated around their mean and vice versa. By the conjugacy of the DBS
process the joint posterior distribution of our models’ parameters factors
into the product of the prior distributions for the regression coefficients, the
marginal likelihood of the survival data and the conditional posterior density
of the survival probabilities. Similar results are obtained under a Dirichlet
process prior in absence of censored observations in Mira and Petrone [1996],
Dominici and Parmigiani [2001] and Carota and Parmigiani [2002], following
Antoniak [1974] and Cifarelli and Regazzini [1978].

The hierarchical DBS framework is used in this paper to analyse clin-
ical survival data recording the occurrence of events related to a patient’s
status at discrete times such as days, weeks or months. In this context, the
survival times can be thought of as taking values on a finite time grid of
time points {τ1, . . . , τK} fixed by design. Under this assumption, each indi-
vidual’s survival distribution is a finite-dimensional random process defined
by the random heights of its jumps at the grid points. We show that as
long as all the observed survival times are included in the grid the posterior
estimates are not sensitive to changes of its resolution.

The paper is organized as follows. The DBS prior and the marginal
distribution of the survival times are presented in Section 2. The deriva-
tion of the latter is reported in the Appendix. In Section 3 the hierarchical
survival regression models are introduced along with a Markov chain algo-
rithm to sample from the joint posterior distribution of their parameters
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and from the predictive distributions under a Weibull prior mean. Section
4.1 illustrates the analysis of the photocarcinogenic study of Grieve [1987]
using both proportional hazards and accelerated failure time Weibull DBS
models. The inferences obtained using the proportional hazards DBS model
are compared with those of Dellaportas and Smith [1993] and with the non-
parametric Kaplan-Meier (Kaplan and Meier [1958]) estimates. In Section
4.2 the Danish melanoma dataset of Andersen et al. [1993] is analysed. Un-
like the Cox proportional hazards model (Cox [1972]), the DBS analysis of
this dataset uncovers the significance of the skin resistance to the tumor infil-
tration, the tumor thickness and the patients’ age at surgery as independent
prognostic factors. Section 4.3 illustrates the results of a DBS analysis of
the cerebral palsy survival data of Hutton and Pharoah [2002]. We confirm
their findings with regard to the non-linear effect of birth weight on the sur-
vival probability of the cerebral palsy patients. We also produce summaries
of the predictive survival probabilities for the seven covariate profiles not
included in the dataset. Should the next patient display one such covariate
profiles, these predictions can be used for medical and legal purposes. Sec-
tion 5 concludes the paper with a critical discussion of the DBS approach
and by noting two possible generalizations.

2 The discrete beta-Stacy process

The beta-Stacy is a Lévy process introduced in Walker and Muliere [1997] as
a non-parametric prior for the survival function of randomly right-censored
survival times. Here we recall the constructive definition of its discrete-time
version and we summarize its relevant properties for this work.

A scalar random variable Y ∈ (0, ε) has a beta-Stacy distribution, with
non-negative parameters (α, β, ε), if its probability density function is

f(Y | α, β, ε) =
Γ(α + β)

Γ(α)Γ(β)

Y α−1(ε − Y )β−1

εα+β−1
.

Its mean and variance are

E(Y | α, β, ε) =
α

α + β

1

ε
,

V (Y | α, β, ε) =
αβ

(α + β)2(α + β + 1)

1

ε2
.

If Y is beta-Stacy then Z = Y
ε

has a beta (α, β) distribution.
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When each element of the ordered K-dimensional random vector {Yk}
K
k=1

is conditionally independent beta-Stacy with parameters (αk, βk, 1−
∑

j<k Yj),
their joint distribution is generalized Dirichlet (Connor and Mosimann [1969])
with probability density function

fY (Y1, . . . , YK | α1, . . . , αk, β1, . . . , βK) ∝

k
∏

k=1

Y
αk−1
k

(1 −
∑

j≤k Yj)
βk−1

(1 −
∑

j<k Yj)αk+βk−1
. (1)

The standard Dirichlet density obtains if βk−1 = βk + αk for k = 1, ...,K.
If {Yk}

K
k=1 is jointly generalised Dirichlet and Sk = 1 −

∑

j≤k Yj , then

{Sk}
K
k=1 is a discrete-time beta-Stacy process (DBS) with parameters {αk, βk}

K
k=1,

written as
{Sk}

K
k=1 ∼ DBS

(

{αk, βk}
K
k=1

)

.

In what follows the DBS process is used as the prior distribution for the
survival probabilities {Sk}

K
k=1 having random jumps {Yk}

K
k=1 at the fixed

time points τ = {τ1, . . . , τK}.
Let t = {ti}

N
i=1 and δ = {δi}

N
i=1 represent a sample of univariate ran-

dom survival times with δi = 1 if ti is observed exactly and δi = 0 if
ti is right-censored at random. Let τ be such that

∑

k 1{ti=τk} = 1 for
i = 1, . . . , N . If the survival probabilities of each individual are a priori
{Si,k}

K
k=1 ∼ DBS({αi,k, βi,k}

K
k=1), by Theorem 1 of Walker and Muliere

[1997] their posterior distributions are

{Si,k}
K
k=1 | ti, δi ∼ DBS

(

{αi,k + ni,k, βi,k + mi,k}
K
k=1

)

,

with

ni,k = 1{ti=τk,δi=1},

mi,k = 1{ti≥τk,δi=0} + 1{ti>τk,δi=1}.

The conjugacy of the beta-Stacy process with respect to random right cen-
soring also yields a closed form expression for their marginal posterior pre-
dictive survival probabilities, that is

p(tN+1 = τk | ti, δi, {αi,j , βi,j}
k
j=1) =

αi,k+ni,k

αi,k+βi,k+ni,k+mi,k

∏

j<k
βi,j+mi,j

αi,j+βi,j+ni,j+mi,j
.

2.1 Marginal likelihood for DBS survival models

To construct a class of survival regression models using the discrete DBS
process prior, we follow Walker and Muliere [1997] by letting {αi,k, βi,k} be

αi,k = νi(Gi,k − Gi,k−1), (2)

βi,k = νi(1 − Gi,k). (3)
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for i = 1, . . . , N and k = 1, . . . ,K. Here Gi,k represents the prior mean
cumulative distribution function (CDF) at time τk for the survival time of
individual i and the coefficient νi ≥ 0 represents their prior precision. When
the DBS parameters are defined as in (2) and (3) we write

{Si,k}
K
k=1 ∼ DBS

(

νi, {Gi,k}
K
k=1

)

.

Under this parametrization the prior mean and variance of the increments
of the survival function Yi,k = (Si,k − Si,k−1) = P (ti = τk) are (Connor and
Mosimann [1969])

E(Yi,k | Gi,k, Gi,k−1) = Gi,k − Gi,k−1, (4)

V (Yi,k | νi, {Gi,j}
k
j=1) = (Gi,k − Gi,k−1) ×

×
(

1+νi(Gi,k−Gi,k−1)
νi(1−Gi,k−1)+1

∏

j<k
1+νi(1−Gi,j )

1+νi(1−Gi,j−1) − (Gi,k − Gi,k−1)
)

, (5)

and for l < k their covariance is

Cov(Yi,l, Yi,k | νi, {Gi,j}
k
j=1) = (Gi,k − Gi,k−1) ×

×
(

1+νi(Gi,l−Gi,l−1)
νi(1−Gi,l−1)+1

∏

j<l
1+νi(1−Gi,j )

1+νi(1−Gi,j−1) − (Gi,l − Gi,l−1)
)

.

By equation (4) the prior survival probability for individual i at time τk is
centered around its prior mean (1 − Gi,k). The right-hand side of equation
(5) is decreasing in νi, which motivates the interpretation of the latter as
the prior precision for the survival probabilities. By (2) and (3) we have
αi,k + βi,k = βi,k−1, so that the survival probabilities for each individual are
assigned a discrete Dirichlet process prior and have a discrete beta-Stacy
posterior. Within this framework the prior coefficient νi can be interpreted
as a measure of the prior strenght of belief in model Gi,k (Ferguson [1974],
Antoniak [1974], Ferguson and Phadia [1979], Kuo [1983], Brunner and Lo
[1989], Muliere and Tardella [1998], Escobar [1994]).

Let G = {{Gi,k}
K
k=1}

N
i=1 be a N × K matrix including the prior mean

CDF values for all samples at τ . The marginal probability mass function of
the survival times is

p(t | δ,G, τ) =
∏

i,k

(

(Gi,k−Gi,k−1)
δi (1−Gi,k)1−δi

(1−Gi,k−1)

∏

j<k
(1−Gi,j )

(1−Gi,j−1)

)1{ti=τk}

.(6)

Equation (6) is derived in the Appendix. The analogy between (6) and
parametric models which do not allow for the randomness of the survival
function itself can be seen when τ1 = 0 and τk − τk−1 = ∆K = 1

K
for all

k = 2, ...,K. When the prior mean CDF G(·) has a density with respect
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to Lebesgue measure, if K → ∞ the right-hand side of (6) approximates
the likelihood function of the conditionally independent right-censored data
t under model G(·).

3 Hierarchical DBS regression models

When the covariate profiles Xi = [Xi,1, . . . , Xi,q] are given for each sample
unit i = 1, . . . , N , a regression component is incorporated in the prior mean
model G(·) by letting

Gi,k(Xi, θ, η) = G(ti ≤ τk | Xi, θ, η),

where θ represents a q × 1 vector or regression effects and η are additional
parameters indexing the prior mean CDF. We propose constructing flexible
survival models by letting the distribution of the survival data ti at the time
points τ be represented by the DBS random survival probabilities {Si,k}

K
k=1

centered around their mean survival function 1 − Gi,k(Xi, θ, η) with preci-
sion νi. However, if both the coefficients (θ, η) indexing G(·) and the DBS
precision parameters (ν1, ..., νN ) are unknown, such models are not identi-
fiable from the data. This can be seen by considering that under (2) and
(3) the generalised Dirichlet density for the survival probabilities of individ-
ual i may not be integrable with respect to νi. The same issue has been
noted by Dominici and Parmigiani [2001] and by Carota and Parmigiani
[2002] with regard to the total mass parameter of their Dirichlet process
priors. In this paper we identify the hierarchical DBS models by defining
the covariate-specific precisions as

νi = (Xiθ)2. (7)

By (7) when the regression coefficients are large in absolute value the DBS
random survival probabilities are concentrated around their mean and vice
versa. Therefore, under (7) the random survival probabilities have a promi-
nent role to fit the survival data only when their relationship with the co-
variates is weak under model G(·).

The hierarchy of the DBS survival regression models is completed by
the specification of the prior distributions for the coefficients (θ, η). By
letting S = {{Si,k}

K
k=1}

N
i=1 and by assuming that the survival times t are

independent random variables conditionally on their survival probabilities,
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the hierarchy can be written as

(θ, η) ∼ fθ,η(θ, η),

{Si,k}
K
k=1 ∼ DBS

(

(Xiθ)2, {G(ti ≤ τk | Xi, θ, η)}K
k=1

)

for i = 1, . . . , N,

P (t | δ,S, τ) =
∏

i,k

(

(Si,k−1 − Si,k)
δiS1−δi

i,k

)1{ti=τk}

, (8)

with Si,0 = 1 for all i = 1, ..., N . We adopt two alternative formulations for
the regression component under a Weibull prior mean survival function G,
namely

GPH(t ≤ τ | Xθ, η) = 1 − e−eXθτη

, (9)

GAFT (t ≤ τ | Xθ, η) = 1 − e−(eXθτ)
η

, (10)

where X is the N×q matrix which ith row Xi represents the covariate profile
for individual i. Here the Weibull distribution is adopted for the availability
of a closed form expression for the survival function 1 − G(·). Equation (9)
assumes that the prior mean cumulative hazard processess for individuals
having different covariate profiles are proportional at different time points
(Cox [1972]). Equation (10) adopts an accelerated failure time regression
(Prentice and Kalbfleisch [1979]) where the survival time is shifted along
the time axis proportionally to a stress factor. The latter is represented
by the exponential of the linear predictor Xθ as in Walker and Mallick
[1999]. The coefficient η in (9) and in (10) is the Weibull index parameter,
which determines the convexity of the prior mean survival distribution for
all individuals over time.

3.1 Parameter estimation

Under (9) and (10) the unknown parameters of the DBS survival models are
(θ, η,S). A key feature of (8) is that the joint posterior density factors as

f(θ, η,S | t, δ,X) = f(θ, η)p(t | δ,G(Xθ, η), τ)fS(S | t, δ,G(Xθ, η)),(11)

where G(Xθ, η) = {{Gi,k(Xiθ, η)}K
k=1}

N
i=1, p(t | δ,G(Xθ, η), τ) is the marginal

likelihood of the survival data (6), f(θ, η) represents the joint prior density
for (θ, η) and fS(S | t, δ,G(Xθ, η)) is the product of the generalized Dirichlet
posterior densities for the survival probabilities of the N conditionally inde-
pendent samples. Similar factorizations can be found in Mira and Petrone
[1996], Carota and Parmigiani [2002] and Dominici and Parmigiani [2001].
The analogy between their models and the hierarchy (8) is the availability

7
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of a closed-form expression for the marginal likelihood of the data condi-
tionally on the parameters of their random distributions. In previous works
the marginal likelihood for exact data is obtained using a Dirichlet process
prior whereas in this work equation (6) was derived for discrete randomly
right-censored survival times using the conjugacy of the DBS process.

In what follows we let the priors for the coefficients θ and η be respec-
tively Gaussian N(m, s) with fixed mean m and standard deviation s and

gamma Ga(a2

b
, b

a
), having mean a and variance b. To elicit the prior hyper

parameters (m, s, a, b) we consider the corresponding marginal prior pre-
dictive survival processes. Since the generalised Dirichlet density cannot
be marginalised analytically with respect to the priors for (θ, η) we use a
Monte Carlo strategy. For given values of (m, s, a, b) we sample an array of
realisations of (θ, η) from their priors and we generate corresponding realisa-
tions of the DBS prior survival processes for each distinct covariate profile.
The sample distribution of the generated survival probabilities approximates
their marginal prior distribution, thus representing the marginal effect of a
given configuration (m, s, a, b) on the prior predictive survival functions. In
what follows a set of values for (m, s, a, b) is adopted if the corresponding
prior predictive mean survival probabilities at τ and their 95% prior proba-
bility intervals are considered appropriate for the data to be analysed.

The conditional posterior densities for (θ, η) are log-concave but they are
not available for exact sampling, so that approximate marginal posterior in-
ferences can be computed via the Gibbs sampler (Gelfand and Smith [1990],
Tierney [1998]) using a Metropolis-Hastings (MH) rejection step (Hastings
[1970]). The posterior inferences reported in Section 4 were computed using
a component-wise random walk MH update for (θ, η). For each component
of θ we employ a Gaussian proposal density centerd at its current value
whereas for the Weibull index η we use a gamma random walk proposal of

the form Ga( η2
w

Cη
,

Cη

ηw
) where ηw represents the current value of η and Cη is

a fixed coefficient. Under this parametrization the proposal mean is ηw and
its variance is Cη. The survival probabilities S are updated exactly within
the Gibbs sampler using the constructive definition of the DBS process of
Section 2. When the covariate profiles of all N samples are distinct, the
parameters of their generalized Dirichlet conditional posterior densities are

α∗
i,k = (Xiθ)2 (Gi,k(Xiθ, η) − Gi,k−1(Xiθ, η)) + δi1{ti=τk},

β∗
i,k = (Xiθ)2 (1 − Gi,k(Xiθ, η)) + δi1{ti>τk} + 1{ti≥τk,δi=0}.

If X is a design matrix defining groups of observations, in (8) all observations
within the same group share the same survival probabilities. In such a case

8
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let {g(i)}N
i=1 be the group label of the ith observation, with 1 ≤ g(i) ≤ N for

all values of i. The posterior parameters of the DBS process for the survival
probabilities for group g(i) are

α∗
g(i),k = (Xg(i)θ)2

(

Gi,k(Xg(i)θ, η) − Gi,k−1(Xg(i)θ, η)
)

+
∑

i=g(i)

δi1{ti=τk}, (12)

β∗
g(i),k = (Xg(i)θ)2

(

1 − Gi,k(Xg(i)θ, η)
)

+
∑

i=g(i)

δi1{ti>τk} + 1{ti≥τk,δi=0}.(13)

3.2 Predictions

Let tN+1 be the unknown exact survival time for a future sample with co-
variates Xg(N+1). According to the hierarchy (8), if Xg(N+1) = Xi∗ for some
i∗ ∈ [1, N ], the distribution of the survival probabilities (SN+1,1, ..., SN+1,K)
coincides with that of (Si∗,1, ..., Si∗,K), so that summaries of their Gibbs
sampler draws provide approximate marginal posterior predictions for tN+1

at the time points τ . When Xg(N+1) does not coincide with any of the ob-
served covariate profiles, approximate marginal posterior predictions can be
computed using the Gibbs sampler draws {θw, ηw}

M
w=1. For instance, within

the DBS framework the marginal posterior predictions for the survival time
of patient (N + 1) with covariates Xg(N+1) at time τk are summaries of
the random variable SN+1,k given (t, δ,X,Xg(N+1)). Its conditional pos-
terior distribution can be sampled exactly by drawing a realization of the
increments (SN+1,1, SN+1,2 −SN+1,1, ..., SN+1,k −SN+1,k−1) for each couple
(θw, ηw) using their generalised Dirichlet joint posterior distribution. Sum-
maries of the sequence {SN+1,k(w)}M

w=B+1 thus generated provide a Monte
Carlo approximation of its marginal posterior moments. These summaries
can be used to evaluate the survival perspective of a future patient which
clinical profile Xg(N+1) has not been observed in the past. If Xg(N+1) in-
cludes covariates which value can be controlled, such as treatments, esti-
mates of SN+1,k under alternative scenarios indicate which combinations of
values of Xg(N+1) correspond to the highest survival rates at time τk having
observed (t, δ,X).

4 Applications of the model

4.1 Analysis of the mice dataset

The study reported in Grieve [1987] includes the survival times of 80 mice
divided in four groups of 20 individuals. Each group was given a different

9
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photocarcinogenic treatment to assess whether pre-treatment with a test
substance (8-MOP) shortens the time to occurrence of skin tumors (Grieve
[1987]). This data have been analysed via a proportional hazards Weibull
survival model by Grieve [1987] using the numerical integration techniques
of Naylor and Smith [1982] and by Dellaportas and Smith [1993], who fitted
the same model using the Gibbs sampler. In this Section we analyse the
mice data via the DBS Weibull survival models using the PH and AFT
regressions (9) and (10) under two specifications of the time grid τ . The
latter include respectively the months (1, ..., 40) and all time points between
1 and 40 months equally spaced by 0.1 months. The first specification of
τ matches the resolution and range of the survival data, which facilitates
the comparison between the DBS estimates of the survival probabilities and
the nonparametric Kaplan-Meier (KM; Kaplan and Meier [1958]) estimates.
The second time grid represents a ten-fold increase in the number of time
points over the same range. The comparison of the posterior estimates
for the two specifications of τ informs on the sensitivity of the posterior
distributions of (θ, η,S) with respect to the resolution of the time grid.
Posterior sampling was carried out for fifty thousand iterations via the Gibbs
sampler described in Section 3. All posterior estimates were computed using
the last twenty five thousand samples.

Figure 1 shows the KM estimates of the survival curves for the four
groups along with their 95% point-wise confidence intervals. The estimated
group medians in months are respectively 21(13, 23) for group 1 (irradi-
ated controls), 22(15, 26) for group 2 (test substance: 8-methoxypsoralen),
18(17, 22) for group 3 (positive controls) and 30(27, 32) for group 4 (vehicle
controls), implying that the survival perspective for the mice belonging to
the vehicle control group is better that those of the other groups.

Figure 2 displays the Monte Carlo summaries of the prior predictive mean
survival probabilities for all groups and their 95% highest probability density
(HPD) intervals under the PH and the AFT regressions. Prior summaries
were computed for two sets of values of (m, s, a, b), that are respectively
(0, 1, 1, 1) for the plots in the first row and (−3, 1, 1, 0.1) for the second row.
The top plots in Figure 2 indicate that under the first prior setting all mice
are expected to die within two months from the beginning of the experiment.
This emphasizes that an apparently weakly informative prior for (θ, η) can
have unforseen consequences for the prior distribution of the DBS survival
probabilities. For the following analyses we adopt the second set of values

10
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Figure 1: Kaplan-Meier estimates of the survival probabilities for the four groups
composing the mice dataset (I.C. = irradiated control, T.S. = test substance (8-
MOP), P.C. = positive control, V.C. = vehicle control). Their 95% confidence
intervals were computed using Greenwood’s formula. The estimates show that the
survival perspective for the mice belonging to the vehicle control group is better
that those of the other groups.

for (m, s, a, b), which allows an average 10− 15% of all mice to survive until
month 40 irrespectively of their treatment.

Tables 1 and 2 report the posterior estimates for (θ, η) and for the median
survival times of the four mice groups. Point estimates are represented by
the means of their Gibbs sampler draws and the interval estimates include
95% of the sampled values. The ceontrla column in table 1 and the left-
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Figure 2: prior predictive sample mean survival probabilities and their 95% prior
predictive HPDs under two alternative values of the prior hyper-parameters for
(θ, η) (respectively m = 0, s = 1, a = 1, b = 1 in the first row and m = −2, s =
1, a = 1, b = 0.1 in the second row). The prior predictive summaries were computed
using samples of size 10000 from the marginal priors for (θ, η). The second prior
setting was adopted for the DBS analysis of the mice data.

most column in table 2 correspond to the coarser time grid. The difference
between the estimates reported in these two tables reflects the structural dif-
ference between the PH and the AFT regressions. Under both regressions
positive values of the regression coefficients θ worsen the mean survival prob-
abilities and vice versa. Table 1 also reports the posterior estimates obtained
using the Weibull survival regression model of Dellaportas and Smith [1993]
(DS) using the same priors for (θ, η). Under all models the estimates for the
membership to the vehicle control group are larger in absolute value with
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respect to those of the other three groups, implying that the survival prob-
abilities of the individuals belonging to group 4 are higher than those of the
other groups. This conclusion is consistent with the KM estimates shows
in Figure 1. The large overlapping between the estimated 95% posterior
intervals reported in Tables 1 and 2 suggests that the higher resoultion of
the time grid τ does not affect significantly the posterior estimates of (θ, η).
Figures 3 through 6 illustrate the posterior estimates of the survival proba-

PH PH10 DS

θI.C. −4.65(−5.41,−3.96) −4.46(−5.24,−3.77) −4.63(−5.41,−3.84)

θT.S. −4.90(−5.77,−4.09) −4.66(−5.43,−3.90) −4.86(−5.69,−4.04)

θP.C. −4.60(−5.33,−3.89) −4.40(−5.20,−3.95) −4.60(−5.37,−3.80)

θV.C. −5.42(−6.22,−4.60) −5.17(−6.10,−4.45) −5.37(−6.26,−4.53)

η 1.47(1.26, 1.68) 1.40(1.21, 1.60) 1.92(1.41, 2.44)

I.C. 23(16, 27) 22(16, 27) 18.75(13.95, 25.13)

T.S. 24(18, 30) 24(17.6, 31) 21.95(16.04, 30.13)

P.C. 21(17, 26) 20.6(17, 26) 18.15(13.26, 24.81)

V.C. 32(27, 40) 32(27, 40) 31.47(22.41, 44.50)

Table 1: posterior estimates of (θ, η) and posterior predictive median survival times
obtained using the DBS model with PH regression and the DS model. The esti-
mated regression coefficient θV.C. is lower than the estimates of the other groups,
implying that the posterior mean survival probabilities of the individuals belonging
to the vehicle control group are higher than those of the other groups.

bilities for the four mice groups. The central dots represent their estimated
posterior means and the dashed lines mark the end-points of their estimated
95% posterior intervals. Despite of the difference between the spread of the
prior predictive distributions between regression formulations shown in Fig-
ure 2, the posterior spread within each group is similar across regressions
and across resolutions of τ , indicating that the values of (m, s, a, b) chosen
for our analysis did not overwhelm the data. Figures 3 − 6 also show that
the DBS estimates of the survival probabilities follow the shape of their
Weibull centering distribution over the range of τ when no deaths are ob-
served whereas they display large jumps at the time points where exact
failures occurr. Therefore, unlike models which do not allow for the ran-
domness of the survival function itself, the DBS models allow for a different
degree of smoothness of the fitted survival probabilities depending on the
location of the observed survival times. Unlike semiparametric survival re-
gressions, when no data are observed the DBS survival probabilities follow

13
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AFT AFT10

θI.C. −3.25(−3.46,−3.05) −3.26(−3.47,−3.08)

θT.S. −3.38(−3.62,−3.17) −3.39(−3.62,−3.19)

θP.C. −3.15(−3.37,−2.95) −3.18(−3.40,−2.98)

θV.C. −3.69(−3.93,−2.95) −3.70(−3.94,−3.48)

η 2.92(1.85, 2.78) 2.33(1.87, 2.83)

I.C. 23(20, 27) 23(20, 27.2)

T.S. 26(19, 32) 26(19.3, 31)

P.C. 22(18, 26) 22(18, 26)

V.C. 32(28, 40) 32(28.1, 40)

Table 2: posterior estimates of (θ, η) and posterior predictive median survival times
obtained using the DBS model with AFT regression. Consistently with the esti-
mates of the PH model, the AFT model confirms that the mean mortality of the
vehicle control group is the lowest.

their covariate-dependent Weibull centering distribution.

4.2 Analysis of the Danish mealanoma survival data

Andersen et al. [1993] describe a Danish prospective study run between
1962 and 1978 reporting the survival times of 225 patients whose malignant
melanomas were removed by surgery. For most patients a set of fixed-time
predictors were also successfully measured. The predictors are the tumor
depth (3 ordered levels), the level of resistance to the tumor infiltration
(4 ordered levels) presence or absence of epithelioid cells, the presence or
absence of skin ulceration, the tumor thickness (ranging from 0.10mm to
17.42mm), the patients’ gender and their age at the time of surgery. The
dataset is affected by heavy right censoring with 57 exact observations and
148 right-censored observations. A censored observation was recorded when
a patient had not yet perished as a consequence of the melanoma at the
end of the study. The 14 patients belonging to this sample who deceased
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Figure 3: posterior estimates for the DBS survival probabilities for the four mice
groups under PH regression and coarser time grid.

for causes other than the melanoma are considered censored in the following
analysis. This data has been extensively studied in Andersen et al. [1993]
emphasizing a worse survival perspective of the males versus females, an
increased mortality for older patients, for patients having thick tumors and
for those having skin ulceration. Tumor thickness, the skin ulceration status
and the level of resistance are among the factors considered by the current
American Joint Committee on Cancer (AJCC) staging system. The tumor
thickness appears also to be a relevant predictor of the risk of local recur-
rence for cutaneous melanomas (Thompson et al. [2005]). Andersen et al.
also emphasize that the hazards among different patients groups are not
proportional over time.
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Figure 4: posterior estimates for the DBS survival probabilities for the four mice
groups under PH regression and finer time grid.

In this Section we analyse the survival data of the 201 patients having a
complete clinical profile using the DBS model with PH regression (9). We let
τ concide with the observed survival times in months plus years 1 through
20. Posterior sampling was carried out using the Gibbs sampler described in
Section 3 for fifty thousand iterations. Posterior estimates were computed
using the last ten thousand draws. The patients’ age at surgery and tumor
thickness were treated as factors with two levels each. The cutoffs defining
these levels are their sample medians, which are respectively 54 years of
age and 194 millimeters thickness. The remaining covariates were collapsed
into two ordered categories (low/high). The prior parameters for (θ, η) are
m = −1, σ = 5, a = 1, b = 0.1 corresponding to an approximately uniform
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Figure 5: posterior estimates for the DBS survival probabilities for the four mice
groups under AFT regression and coarser time grid.

distribution for the prior predictive medians for the survival times of all
individuals over the range of the data ((0, 183) months).

The central column in table 3 reports the estimated posterior means and
the end-points of the estimated 95% posterior intervals for the regression
parameters θ and for the Weibull index η. Its right-most column reports
the estimates for the regression effects of the semiparametric proportional
hazards model (Cox [1972]). and the end-points of their 95% confidence
intervals. All covariates but the ulceration status are significant predictors
of the survival time according to the DBS estimates, whereas only the tumor
depth and the patients’ age are found significant by the Cox model. This
difference is partially explained by the fact that the hazards among different

17



CRiSM Paper No. 07-06v2, www.warwick.ac.uk/go/crism

0 10 20 30 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

τ

S
(τ

) 
I.C

.

0 10 20 30 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

τ
S

(τ
) 

V
.C

.

0 10 20 30 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

τ

S
(τ

) 
T

.S
.

0 10 20 30 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

τ

S
(τ

) 
P

.C
.

Figure 6: posterior estimates for the DBS survival probabilities for the four mice
groups under AFT regression and finer time grid.

data groups may not be proportional, as pointed out in Andersen et al.
[1993].

The lowest DBS estimated median survival probability at five years af-
ter surgery corresponds to deep thick uninfiltrated melanomas with no ep-
ithelioid cells for young male patients (0.42(0.2, 0.82)) whereas the highest
survival corresponds to superficial thin uninfiltrated tumors with no epithe-
lioid cells for young female patients (0.94(0.87, 1.00)). Figure 7 shows the
posterior predictive median survival probabilities for four hypothetical fu-
ture patients. Should any of such patients represent the next actual case of
melanoma, the estimates depicted in Figure 7 provide an indication of their
likely survival prognosis based on the available past observations. The four
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patients are young females presenting uninfiltrated thick melanomas with-
out epithelioid cells. The predictive survival probabilities are higher for pa-
tients displaying deep tumors with respect to cases of superficial melanomas.
The highest median survival at five years after surgery correspond to deep
melanomas with or without skin ulceration (respectively 0.65(0.43, 0.97) and
0.87(0.50, 0.99)) whereas the lowest estimated survival probabilities corre-
spond to superficial tumors with or without skin ulceration (respectively
0.03(0.01, 0.10) and 0.06(0.02, 0.22)).

Coefficient DBS post. est. Cox PH

θdepth −0.44(−0.92,−0.01) −0.54(−1.03,−0.05)

θresistance −1.16(−1.53,−0.78) −0.01(−0.35, 0.35)

θepithelioid −1.14(−1.55,−0.75) −0.16(−0.52, 0.19)

θulceration 0.10(−0.35, 0.53) 0.06(−0.30, 0.43)

θthick 0.61(0.06, 1.15) 0.87(−0.36, 1.38)

θmale −0.75(−1.20,−0.34) −0.08(−0.44, 0.28)

θage −0.91(−1.36,−0.53) −0.79(−1.15,−0.42)

η 0.22(0.18, 0.26) -

Table 3: DBS posterior estimates of (θ, η) for the melanoma survival data under the
PH regression and the Cox semiparametric survival regression model. According to
the DBS estimates all covariates but the ulceration status are significant predictors
of the survival time, whereas only the tumor depth and the patients’ age are found
significant by the Cox model.

4.3 Cerebral palsy survival times

Hutton and Pharoah [2002] present an accelerated failure time analysis of a
set of cerebral palsy survival times of patients born between 1966 and 1989
in Merseyside and Cheshire. We illustrate an analysis of the same dataset
using the DBS model with Weibull AFT regression (10). We consider the
1585 survival times for which the five available fixed-time covariates are
recorded: ambulatory (a), manual (ma), mental (me) impairment, sight
quality (s) and birth weight. The right-censored times amount to the 84.5%
of this data. The mean survival time for all patients is 24.5 years and
95% of their survival times are included in the interval (2.10, 39.1) years.
We evaluate the DBS survival probabilities over a time grid τ including all
observed survival times plus the years [1, 2, ..., 40]. To control for a non-linear
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Figure 7: estimated marginal posterior predictive median survival probabilities
at five years from surgery for four hypothetical future patients whose covari-
ate profiles are not included among the 201 melanoma patients. The four pa-
tients are young females presenting uninfiltrated thick melanomas without ep-
ithelioid cells. The highest median survival probabilities correspond to deep
melanomas with (0.65(0.43, 0.97)) or without (0.87(0.50, 0.99)) skin ulceration
whereas the lowest estimated survival probabilities correspond to superficial tu-
mors with (0.03(0.01, 0.10)) or without (0.06(0.02, 0.22)) skin ulceration.

effects of birth weight found by Hutton and Pharoah [2002] this predictor
was categorized in three classes, based on its 33rd and 66th percentiles,
which are: [580, 2264), [2264, 3147) and [3147, 5260) grams. The prior for the
regression parameters θ and for the Weibull index η are respectively N(−1, 1)
and Ga(1, 0.1). As in the previous example, these priors correspond to
approximately uniformly distributed prior predictive median survival times
over the range of the observed survival times. Posterior sampling was carried
out for twenty five thousand iterations using the Gibbs sampler described
in Section 3. Posterior estimates and predictions were computed using the
last ten thousand iterations.

Table 4 reports the estimated posterior means and the estimated 95%
posterior intervals for the regression coefficients θ and for the Weibull index
η. The occurrence of any type of impairment has an adverse effect on the
mean survival probabilities. All other predictors being constant, the sur-

20



CRiSM Paper No. 07-06v2, www.warwick.ac.uk/go/crism

vival probabilities for individuals with weight at birth between [3147, 5260)
grams is the lowest whereas those of individuals with birth weight between
[580, 2264) grams is the highest. The difference between estimates of the
birth weight categories indicate a non-linear effect on the mean survival
probabilities consistenly with the results of Hutton and Pharoah [2002].
The estimated Weibull index parameter η indicates that an exponential
mean model is adequate for this dataset. Figure 8 displays the posterior

Coefficient Post.Estimates

θa 0.87(0.41, 1.34)

θma 1.18(0.73, 1.58)

θme 0.60(0.20, 1.00)

θs 0.85(0.57, 1.14)

θlow −6.65(−7.06,−6.27)

θmed −6.48(−6.86,−6.13)

θhigh −6.43(−6.79,−6.08)

η 1.08(0.99, 1.18)

Table 4: posterior estimates of the regression parameters and for the Weibull index
for the cerebral palsy dataset. The occurrence of any impairment worsens the
survival perspective, with manual impairment being the most severe. The effect of
the birth weight on the mean survival probabilities appears to be non-linear. All
other factors being constant, individuals with low birth weight ([580, 2264) grams)
have the best survival whereas those with high birth weight ([3147, 5260) grams)
have the worse perspective.

mean survival probabilities and their 95% posterior intervals for the best
and the worst case in the dataset. The latter displays ambulatory, manual
and mental impairments and has medium birth weigth whereas the former
does not present any impairment at the same birth weight.

Among the possible combinations of covariate values, seven profiles do not
correspond to any of the 1585 recorded patients. Table 6 reports the pos-
terior estimates of the survival probabilities for all seven cases at 24.5 years
from birth, which coincides with the mean survival time for all patients.
The rows of Table 6 are ordered so that the predicted median survival is
non-increasing. Should the next patient display one of such covariate pro-
files, these predictions provide an indication of her likely survival time based
on the available past observations. When the occurrence of cerebral palsy
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Figure 8: best and worst estimated survival probabilities among the 1585 cerabral
palsy patients. The central dots represent the estimated posterior mean survival
probabilities at the grid points τ . The dashed lines represent the survival probabil-
ities’ estimated 95% posterior intervals. The worse survival prespective is associ-
ated to ambulatory, manual and mental impairments and has medium birth weigth
whereas the covariate profile corresponding to the best survival does not present
any impairment at the same birth weight.

is due to admitted medical malpractice, these predictions can provide a ref-
erence to determine the quantum of a compensation based on the child’s
survival probabilities. The highest predicted survival corresponds to future
individuals having ambulatory impairment only and birth weight within
[3147, 5260) grams, whereas the worse predictions correspond to individuals
within the same birth weight categoty and displaying manual, mental and
sight impairments.

5 Discussion

This paper introduces the hierarchical DBS survival regressions as a flexi-
ble and interpretable modelling framework for right-censored survival times.
The DBS regression effects have analogous interpretations to those of sim-
pler survival regressions such as that of Dellaportas and Smith [1993]. The
random DBS survival probabilities at the time points τ effectively represent
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Profile Est. S(24.5)

a, [3147, 5260)gr 0.90(0.73, 0.98)

a,s, [580, 2264)gr 0.74(0.46, 0.93)

a,s, [3147, 5260)gr 0.69(0.41, 0.89)

ma,s, [580, 2264)gr 0.68(0.36, 0.88)

ma,s, [2264, 3147)gr 0.62(0.29, 0.86)

ma,me,s, [580, 2264)gr 0.38(0.08, 0.70)

ma,me,s, [3147, 5260)gr 0.29(0.03, 0.66)

Table 5: posterior predictive median survival probabilities at 24.5 years from birth
and end-points of their 95% HPDs for the 7 profiles for which no observation is
available. The highest predicted survival corresponds to future individuals having
ambulatory impairment only and birth weight within [3147, 5260) grams, whereas
the worse predictions correspond to individuals within the same birth weight cate-
goty and with manual, mental and sight impairments.

time and covariate dependent frailty parameters conferring flexibility to the
survival processes.

The DBS framework represents an intermediate modelling framework
between parametric and non-parametric survival models. While sharing
with the former an interpretable parameter structure, the number of DBS
random survival probabilities can be large as it is typically the case for semi-
parametric and non-parametric models. Having a potentially large number
of unknown parameters is not computationally cumbersome in our work
because, by the conjugacy of the discrete beta-Stacy process, all survival
probabilities are updated exactly in one step within the Gibbs sampler.

In Section 2 we noted that when the DBS precision coefficients and the
parameters indexing the prior mean survival functions are unknown, the
DBS models are not identifiable. An analogous point was noted in Do-
minici and Parmigiani [2001] and Carota and Parmigiani [2002] for model
heirarchies including a Dirichlet process prior centered around a paramet-
ric backbone. Model identifiability is attained in these two papers via an
informative prior for the Dirichlet process precision parameter shared by
all samples. In this work we identify the DBS regressions by defining the
covariate-dependent DBS precision parameters as a quadratic function of
their linear predictors, implying that large regression parameters induce
smooth survival processes and vice versa. This solution does not depend on
specific assumptions on the prior for the precision parameters and it allows
for the smoothness of each survival process to depend on its corresponding
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linear predictor.
The example of Section 4.1 shows that the posterior estimates of the

survival probabilities and those of the regession parameters are consistent
with those of Dellaportas and Smith [1993] and with the non-parametric
Kaplan-Meier estimates. The posterior estimates are also found to be not
significantly affected by the resolution of τ as long as all the observed sur-
vival times are included. The examples of Sections 4.2 and 4.3 demonstrate
the relevance of the DBS framework for clinical applications. The results
presented in Section 4.2 support those of Andersen et al. [1993] and the re-
cent directives included in the American Joint Committee on Cancer Staging
Manual, empsasizing the key role of the tumor thickness, the skin resistance
to tumor infiltration and the patients’ age at surgery as independent prog-
nostic factors of survival. The analysis of the cerebral palsy data of Section
4.3 confirms a non-linear effect of the birth weight on survival and it provides
flexible predictions for the survival times associated to the seven covariate
profiles not included in the dataset.

Throughout this paper we let the resolution of τ be fixed by design.
When the position of some of the time points of τ cannot be fixed in advance,
since the beta-Stacy is a Lévy process the algorithms of Walker and Damien
[1998] and Wolpert and Ickstadt [1998] can be used to efficiently generate
draws from their conditional posterior distributions. If also the number of
jumps needs to be a priori unknown, a reversible jump step (Green [1995])
can be added to their samplers.

A second generalization of the DBS paradigm beyond the scope of this
work allows for the covariate-dependent grouping structure of the different
samples {g(i)}N

i=1 to be a priori unknown. In the current model formulation,
different individuals share a common survival process only if their covariate
profiles are identical. However, when their covariate profiles are similar it
might be possible to associate to all such individuals a common survival pro-
cess. This extension of the DBS paradigm can thus lead to the construction
of more parsimonious models when the covariate profiles of several groups
of individuals are similar among themselves.

Appendix

The marginal likelihood of the survival data t given ther covariates X, the
censoring indicators δ, the coefficients (θ, η) and the time grid τ can be
obtained by integrating the likelihood function with respect to the joint
discrete beta-Stacy prior of the survival probabilities (S1,1, ..., SN,k). Let
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α = {{αi,k}
N
i=1}

K
k=1, β = {{βi,k}

N
i=1}

K
k=1 and Si = {Si,k}

K
k=1. By assuming

that the survival times of the N samples are independent conditionally on
their survival probabilities, this integral can be written as

p(t | δ, τ, α, β) =
∏N

i=1

∫

Si

∏K
k=1

(

(Si,k−1 − Si,k)
δiS1−δi

i,k

)1{ti=τk}

×

×
Γ(αi,k+βi,k)
Γ(αi,k)Γ(βi,k)(Si,k−1 − Si,k)

αi,k−1 S
βi,k−1

i,k

S
αi,k+βi,k−1

i,k−1

dSi.

Let now Yi,k = Si,k−1−Si,k and Yi = {Yi,k}
K
k=1. As shown in Section 2, if the

joint prior for the survival probabilities Si is a discrete beta-Stacy process,
it follows that Yi,k is conditionally distributed as BS(αi,k, βi,k, 1−

∑

j<k Yi,j)
and vice versa. Therefore, the integral can be rewritten as a function of the
random jumps of the survival function Y as

p(t | δ, τ, α, β) =
∏N

i=1

∫

Yi

∏K
k=1

(

Y δi

i,k(1 −
∑

j≤k Yi,j)
1−δi

)1{ti=τk}

×

×
Γ(αi,k+βi,k)
Γ(αi,k)Γ(βi,k)Y

αi,k−1
i,k

(1−
P

j≤k Yi,j )
βi,k−1

(1−
P

j<k Yi,j )
αi,k+βi,k−1 dYi. (14)

The K-dimensional integral on the right-hand side of equation (14) can be
solved with respect to each of its coordinates Yi,k in turn, starting from Yi,K .
The expression of the marginal likelihood (6) follows by observing that

E(Yi,k | αi,k, βi,k, δi) =
αδi

i,kβ
1−δi

i,k

αi,k + βi,k

∏

j<k

βi,j

αi,j + βi,j
,

and by substituting the expressions for the beta-Stacy hyperparameters (2)
and (3).
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urn scheme. The Annals of Statistics, 25:1762–1780, 1997.

S. G. Walker and B.K. Mallick. A Bayesian semiparametric accelerated failure time
model. Biometrics, 55:477–483, 1999.

R.L. Wolpert and K. Ickstadt. Poisson/Gamma random field models for spatial
statistics. Biometrika, 85:251–267, 1998.

28


