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Abstract

Transcriptional regulation of genes is fundamental to all living or-
ganisms. The spatial, temporal and condition-specific expression lev-
els of genes are in part determined by inherited regulatory codes in
non-coding regions of the DNA. A large set of methods have been
proposed to detect conserved regions of regulatory DNA by means of
sequence alignments. However, it has become clear that some reg-
ulatory regions do not show statistically significant alignments even
in the presence of functional conservation. Therefore, detecting and

characterising elusive regulatory codes remains a challenging problem.

In this thesis we develop and validate a novel computational alignment-
free model for detection of functional similarity of regulatory sequences.
We show that our model can detect functional links between pairs of
sequences that do not align with a significant score. We apply the
model to a) detect enhancers within the same genome that are likely
to have similar functions and b) to detect functionally conserved en-
hancer regions in orthologous genomes. Our method finds regulatory
codes that are common to groups of similar enhancers and consistent

with previous biological knowledge.

The inputs for our model are two sequences that we wish to compare
in terms of their functional similarity as well as a set of transcription

factor motifs.

The mathematical framework of our model is built on two main com-
ponents: In the first model component, each sequence is mapped to
a vector of estimated occupancy levels for all motifs. These vectors
are representing which motifs at what multiplicity and specificity are

present in each sequence.



In the second model component, a statistical approach is established
where we first estimate a probability distribution of motif occupancy
levels for sequences that function similar to the template sequence. We
then compute a statistical similarity score to evaluate if the sequences

are more similar to each other than to random background sequences.

Two applications of this model are presented: First it is applied
to a set of experimentally validated non-alignable enhancers from

D. melanogaster. We show that:

e Our model can detect statistical links between these enhancers,

e Weak binding sites can make a strong contribution to sequence

similarity,

e Our model treats statistically significant presence and absence
of motifs symmetrically. Similarity of sequences, therefore, can
be based on a combination of the two. We show examples of
motifs making contributions to sequence similarity through their

absence.

e Using our model, we can create a network of similarities among
the fly enhancers. Groups of enhancers in this network show com-
mon regulatory codes. One of these regulatory codes is strongly
supported by existing experimental data.

In the second application of our model we predict functional subre-
gions of a known D. melanogaster enhancer. To achieve this, we first
show that the model can detect the orthology of this enhancer between
10 Drosophila species. We then demonstrate how this statistical link
can be used to predict functional subregions within this enhancer.
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Introduction

The fascinating process of animal development starts from a single fertilized egg
which develops into an embryo as embryonic cells divide and differentiate into
diverse cell types leading to adult body formation and completion of the organism.
This accurate process is regulated under an instruction written in the genomic
DNA sequence and under a mechanism which is known as gene regulation.

The gene regulation mechanism in eukaryotic organisms takes place at a vari-
ety of different levels including gene localization inside the nucleus, transcription,
RNA processing, mRNA stability and translation. In a multicellular animal, al-
though different cell types possess the same genomic DNA sequence, they exhibit
different gene expression profiles that are regulated at the transcription level. In
other words, at this level, it is controlled when transcription starts and how much
RNA is created.

The transcriptional regulation is one of the most fundamental mechanisms
employed by the cell to ensure coordinated expression of its numerous genes. A
key component of this process are the interactions between some proteins and
corresponding DNA sequences. However, there are other components and events
involved transcriptional regulation including chromatin structure and modifica-
tion states. The interplay of these events in the complex control of transcription
is sometimes called transcriptional regulatory code. Understanding which pro-
teins are required for expression of different genes, where exactly they bind, under
what conditions they are activated and which genes they are regulating is all part

of deciphering the transcriptional regulatory code.
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Despite of many advances in recent years (38; 62; 63; 80 and 20), the de-
ciphering of the genome’s regulatory code remains far from complete. This is
mainly because of the complex control of transcription in eukaryotic cells. For
example, transcriptional initiation of a gene demands combinatorial interactions
of some proteins with the corresponding DNA subsequences, remodeling of local
chromatin structure as well as the different types of histone modifications. In ad-
dition, in some genomes, the transcriptional regulatory sequences for a gene may
be scattered over large regions and sometimes hundreds of kilobases away from
the transcription starting sites. Therefore, unlike the protein coding sequences,
integrating information over these various layers of control makes deciphering the
regulatory code far from straightforward.

Our general goal is to contribute to on-going effort of deciphering the regula-
tory code. However, we should clarify that within the gene regulation machinery
we only focus on the transcription level. Furthermore, by a regulatory code in
this context we mean a distribution of different motifs in a genomic regulatory
sequence (this will be defined in the following subsection) that are recognized
by proteins in different levels and therefore directing different spatio-temporal
expression patterns. Our emphasis will be to have a predictive and quantita-
tive model of the transcriptional behaviours encoded by DNA sequence. We are
ignoring the fact that a motif can be recognized by different proteins. We are
assuming that the regulatory sequence is a linear sequence and do not take into

account nucleosomes.

1.1 Basics and terminologies

In the following subsections we will provide the reader with some background
and basic terminologies that will be used frequently throughout the rest of this
thesis.

1.1.1 Regulatory sequences

Transcription factors (TFs) are proteins that regulate transcription, the process
by which messenger RNA is synthesised from a DNA template. TFs facilitate
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or inhibit recruitment of the RNA polymerase by binding to DNA, usually near
the gene that they regulate. We should note that any transcription factor may
recognize more than one site (mismatches and variations often occur). The col-
lection of these short patterns are called motifs. Motifs are usually represented by
position weight matrices (see Section 1.1.2). Detection of such short motifs in the
DNA sequence is therefore of great importance in the study of gene regulation.

The genomic regions that are bound by TFs and control spatio-temporal gene
expression patterns are called cis-regulatory modules (CRMs). These are called
‘cis’ because usually they are located at the same locus of the DNA molecule as
their target genes. But 'trans’ are usually referred to some proteins that bind to
'cis’ elements (binding sites). These proteins are some times produced by some
genes where as they dictate expression of different genes.

It is well-known that regulatory sequences makes only a small fraction of
the 95% of the mammalian genome that does not encode proteins. But these
regions are crucial in determination of the level, location and chronology of gene
expression (54).

CRMs are built of clusters of binding sites (which are called regulatory ele-
ments) for specific sets of TFs and are thought to integrate the bound factors’
cues. These regions broadly fall into two categories: promoters and enhancers.
Promoters are proximal to the gene transcription starting site (T'SS) and act as
a binding site for RNA polymerase and from which transcription is initiated.
Enhancers are, on the other hand, independent of the gene positions and can
be found upstream, downstream or within a target or neighbouring gene (25).
Enhancers (as their names imply) contribute to enhance the transcription.

An initial step in the analysis of any gene is the identification of CRMs.

1.1.2 Position weight matrices

The most common representation of binding sites is the position weight matrix
(PWM) which is also called position specific scoring matrix (PSSM). In this
representation, a motif with length L is represented by a 4 x L matrix M where
each possible base ¢, at each position j, is assigned a probability P;; where i €
A = {A,C,G,T} and j € {1,---,L}. The probability of a specific sequence
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given the model M is the product of probabilities of each particular nucleotide
occurring at that position. For example, given the matrix M, a sequence like
S = 515+ 5y, is associated with the probability P(S|M) = I—[il‘:l Ps,;.

Although an underlying assumption in a PWM is the independency of the
positions in the binding site, this type of presentation is widely used and believed
to be a reasonable approximation to the factor binding specificity.

The sequence logo that was first introduced by Schneider in (61) is a visual
depiction of a PWM. In this graphical representation, each stack is associated
with the information content of the base frequencies at that position which is
I; = logy |A| 4+ 3~ 4 Ps,i x logy(Ps,;). According to this equation, positions can
contain information in a range of 0 at positions where all four bases occur equally,
to 2 bits at positions that are perfectly conserved, (for more information the reader

is referred to 12).

Figure 1.1: Logo representation of a Position Weight Matrix (Hunchback).

We must also note that the probability of a given sequence is usually calculated
with respect to a background distribution (or model; denoted it by B) that the
sequence might belong to. Markov models are the most commonly used models for
the background distribution of nucleotides in different genomes. In this context
we use a uniform zeroth order Markov model for the background model i.e.,
Pg(A) = Pg(C) = Pg(G) = Pg(T) = 0.25. Therefore the probability of sequence
S, given this background model is P(S|B) = (). This implies that the binding
specificity of this sequence can be considered as Py (S)/Pg(S). The (base 2)
log of this quantity is usually called the log odds ratio and denoted by L i.e.,
L(S) = log(Pm(S)/Pp(S)) = Llog4 + Zf‘zllogi)gn. A prior belief of binding
likelihood can be added to this equation: £(S) = Llog4 + 327 logPs,; + V.



1.2 Motivations of the project

One common task in the analysis of regulatory DNA sequences is to search
for potential transcription factor binding sites (TFBSs) within DNA regions of
interest. For example, one may have a gene or set of genes whose expression is of
interest and wants to find potential sites governing their regulation.

To accomplish this task one needs a database of regulatory motifs and an
implementation of the PWM models in which the significance of the potential
sites is determined. Among others, two databases that include comprehensive
information about TFs are commonly used. The TRANSFAC database (47)
provides extensive data on experimentally characterised TFs in several organisms,
known binding sites, the PWM models and genes that are regulated by specific
TFs.

Another recently developed and widely used database is JASPAR (60) which
is an open access database for eukaryotic TF binding profiles. JASPAR has a
smaller set but is believed to be less redundant than TRANSFAC. Two exam-
ples of widely used implementations of the PWM models are PATSER (26) and
MATCH (33). However, in our analysis we used an implementation of the PWM
model called BiFa tool (unpublished tool developed by N. Dyer and J. Reid). The
reason why the BiFa tool is used in our model to score the binding strengths is

explained in Subsection 3.1.

1.2 Motivations of the project

As we earlier mentioned, CRMs carry regulatory elements that are necessary to
the specification of the spatio-temporal gene expression patterns. Understanding
the rule by which modules process these regulatory elements is key to under-
standing the transcriptional processes.

The growing scientific interest in gene regulation means that it will a signifi-
cant advantage to be able to detect the cis-regulatory modules in newly sequenced
genomes that are homologous to known enhancers and/or promotors.

Despite the importance of the regulatory sequences in gene regulation, our
ability to detect these sequences and also to predict their functions is very limited.

This contrasts with non-coding sequences, where the wide-spread availability and
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study of complementary DNAs (which are used for gene cloning) and proteins has
made identification and prediction of their functions possible (54).

In the sequence comparison context, the most well-studied framework is mea-
suring the sequence similarity between proteins or coding sequences in order to
detect the homology. The basic local alignment search tool (BLAST) (3) is the
most widely used alignment tool for this purpose. But, it is not very suitable
in comparison of DNA regulatory sequences where, in contrast to the coding

sequences, they demonstrate less significant alignments. This case may arise:

e where two sequences being compared are not orthologous ( we note that the
orthologous sequences are referred to those that share a common ancestor),
yet functionally related. In Chapter 4, we will demonstrate a set of non-
alignable enhancers in which a subset of enhancers is likely to be functionally

related.

e where the sequences are evolutionarily highly diverged yet maintaining sim-
ilar functions. Recently Hare et al. in (24) detailed evidence of some eve
modules that produce near identical regulatory outputs where in more dis-
tantly related D. wilstoni and D. virilis groups only 29% of modules were

conserved in these species.

Thus for comparison of DNA regulatory sequences alignment-free models are
required.

The first alignment-free sequence comparison model proposed in 1986 by Blais-
dell (8), and from that time it has received a great deal of attention by researchers.
The overwhelming majority of reports about alignment-free models have been
published over last 10 years (1; 20; 31; 62; 63; 77). These published models can
be categorized into two groups.

Models in the first group are based on the principle that CRMs with simi-
lar functions should share some binding sites for the same transcription factors.
These common binding sites are likely to be the key factor in driving similar
expression patterns. In Chapter 2 we will provide the reader with an overview
of some of key models in this group. We will see that these models are widely

applicable to any type of data even protein sequences, but the results are, not
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informative enough. For a review of these type of models the reader is referred
to (44).

Models in the second group, on the other hand, are aimed at predicting spatio-
temporal gene expression patterns from the regulatory sequences. In Chapter 2
we will review some of these models. Although these models advance our under-
standing of how genomic sequences are translated into transcriptional outputs,
the complexity and extreme data dependency of the models in this group do not
allow for a wide application of these models as a sequence comparison tool.

Having seen some advances in both of these groups, leading to more anno-
tation of regulatory sequences and further understanding of regulatory systems,
there has been very few successful attempts at using them for the comparison of
regulatory modules. Indeed, our ability to quantify functional (dis)similarity of
two regulatory modules, will help us to detect other enhancers in the same genome
that are likely to have similar functions to the given enhancer. It also can be used
to detect functionally conserved enhancer regions in orthologous genomes even if
the enhancers do not align.

Here, we present a regulatory region scoring (RRS) model that overcomes this
problem in some of its recent applications presented in this thesis. Our model
takes as input a template sequence, a test sequence and a set of transcription
factors motifs for which we need binding affinity and also the concentration of
factors. As output, RRS provides the user with some statistical similarity scores
and a list of factors that contribute to this (dis)similarity.

The mathematical and computational framework of the RRS has two main
components. In the first model component, we establish a mathematical concept
that represents what proteins, in what level of specificity and multiplicity are
bound to the module. In the second model component, we estimate a probability
distribution of motif occupancy levels for sequences that are functionally similar
to the template sequence. We then compute a Bayes factor to evaluate if the
test sequence is more similar to the template sequence or more similar to random
background sequences.

Relative to the above mentioned families of models, the reader may wonder
where the RRS stands in relation to existing models. Throughout Chapter 2
we shall try to convince the reader that there is a gap between these families
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of models. The former family of models is defined very generally and is widely
applicable, but some natural principles underlying transcriptional control, such
as TF competition, motif degeneracy, and effects of weak binding sites, are com-
pletely ignored. Consequently, the results are less conclusive. Whereas the latter
is based on a mechanistic understanding of the regulation of gene expression by
predicting expression patterns using TF occupancy and interaction and is too
dependent on a specific combination of data sets to be generally applicable. The
key idea of the development of the RRS that we shall try to bring to the reader’s
attention throughout this thesis, was to enhance the conclusiveness of the results
and lessen the data dependency of the model by borrowing the key ideas of each
family of models so as to get more accurate results on a wider range of data.

This thesis consists of five chapters. In the first chapter, we provide the
reader with a brief background and also the clarification and/or motivations of
the problem. In the second chapter, we will briefly review some of the existing
models, emphasising their strengths and pointing out their weaknesses. There has
been an enormous amount of published work on alignment-free methods applied
for detection and/or comparison of the regulatory modules as well as predicting
expression profiles from the regulatory modules (recently, it has been also used as
a motif finding tool see 21). Reviewing all of these reported models is out of the
scope for this chapter. We consider those models that, to some extent, have had
an influence on the establishment of our model. The third chapter is devoted to
our regulatory region scoring model including its mathematical foundations and
its computational framework. This is followed by two applications of the RRS.
The first application is presented in Chapter 4 where the RRS is used to detect
functional and/or evolutionary links between some non-alignable enhancers with
a strong statistical significance. We will also identify groups of enhancers that
are likely to be similarly regulated. Chapters 3 and 4 are based on our published
paper (38).

Chapter 5 is devoted to the second application of our model. In this chapter,
we first demonstrate how the RRS detects orthology between some fly species.
Some of the orthologous sequences with (relatively) high statistical significant

RRS scores are then used for our in silico predictions of functional subregions
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of a D. melanogaster enhancer that are likely to drive expression patterns in a
subset of projection neurons in the D. melanogaster olfactory system.

It is widely thought that the targeting specificity of the projection neurons
in the fly olfactory system is controlled by a transcriptional code but very little
of the underlying mechanism is understood. Therefore we are aiming to open
some new insights into this poorly understood notion by predicting functional
subregions and their key regulators using our RRS model.

The underlying project of this chapter is a close collaboration with our col-
laborators at Stanford University . Here the emphasis is on the bioinformatical
side of the project (For the biological side of this project the reader is referred
to Chapter 4 of 71). This project is still ongoing and a manuscript of both
bioinformatical and biological results of this project is under preparation.

Finally, we would like to further clarify that each chapter in this thesis ends
with a conclusion subsection in which we provide the reader with brief findings
as well as some future directions specific to that chapter. We believe that this
will help readers who are interested in only some parts the thesis to follow their

interests easily.
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Existing Models

It is widely accepted that cis-regulatory modules are key for establishment of
precise spatio-temporal gene expression patterns. Some recent studies show that
CRMs may function similarly in different species despite substantial sequence
divergence (45 and 24). This implies that, firstly, alignment-based sequence com-
parison tools are not applicable for further decoding the conserved function of such
CRMs and secondly, that some CRMs must share common patterns that drive
almost identical regulatory outputs but possibly with different arrangements of
binding sites. When different, but functionally related enhancer loci in the same
species are considered, then alignment-based tools are not normally suitable for
regulatory sequence comparisons as these sequences are not orthologous.
Recently, there has been a great deal of attention on alignment-free methods
to further reveal the mechanism of transcription control (see 78). Among these
methods, two families are of particular interest for us within this project. We
call them data intensive and general models. The former is based on a mechanis-
tic understanding of the regulation of gene expression by predicting expression
patterns using TF occupancy and interaction and is too dependent on a specific
combination of data sets to be generally applicable. The latter family of models
is defined very generally and is widely applicable, but some natural principles un-
derlying transcriptional control, such as TF competition, motif degeneracy, and
effects of weak binding sites are completely ignored. Consequently, the results

are less conclusive.

10



2.1 Data intensive models

In the following two sections we shall review some of the models in any of

these families.

2.1 Data intensive models

Recent studies show that some CRMs with the same function may have strik-
ingly different architectures (10). A big challenge in the field is now to predict the
activity of a CRM based on its organisation. This has been recently attempted
by many researchers, but among others three closely related computational mod-
elling approaches (in order: 62; 80 and 32) have been at the center of debate
by making new insights of our understanding from the regulatory code. These
models are aimed at predicting spatio-temporal gene expression patterns from
the regulatory sequences. They all follow the same idea but differ mainly in in-
put and slightly in structure. As representative of data intensive models, we will

review these three approaches in this section.

2.1.1 A thermodynamic model for prediction of gene ex-

pression patterns

In theoretical gene regulation frameworks, thermodynamically motivated models
(for the sake of simplicity, from now on we will call them thermodynamic models)
are based on the assumption that the level of gene expression is proportional to
the equilibrium probability that RNA polymerase is bound to the promoter of
interest. This is perhaps the most attractive feature of these models for theoretical
scientists interested in gene regulation, because it avoids the difficult task of
computing gene expression from the concentration of proteins produced by the
gene of interest.

These models are established, however, based on some different assumptions
that can be problematic. The equilibrium assumption itself can be considered the
most critical one that according to our best knowledge has not been systematically
evaluated yet (see 7 and 63). The second problematic assumption in these models

is that the gene expression level is considered proportional to the probability of

11



2. EXISTING MODELS

promoter occupancy by the RNA polymerase. This assumption can mean igno-
rance of several different mechanisms that do occur between polymerase binding
and the existence of a functional gene product. For a more detailed review of
thermodynamic models in gene regulation frameworks including their modeling
and applications, the reader is referred to (7 and 6).

Despite of these critical assumptions, there are some reports showing that
these models are very instructive and predictive (see 20; 22; 62 and 66).

In this subsection, we well review only one of these thermodynamic models
that has been established by Segal et. al. (62), in which the reader can see that
the developers are strongly motivated by some previous work for example (14;
17, 74; 78 and 59).

Similar to the others, this model is based on the above mentioned thermo-
dynamic equilibrium assumption. In other words the probability of polymerase
occupancy is computed from the intrinsic equilibrium affinities and concentra-
tions of the transcription factors. The gene expression level is considered to be
proportional to the polymerase occupancy.

This thermodynamic model for prediction of gene expression patterns made
use of TF expression levels as well as the arrangement and quality of their bind-
ing affinity to predict the expression profile of an arbitrary DNA sequence. The
authors achieved this by generating a model based on the biochemical properties
and binding site preferences of eight key TFs (Bicoid, Hunchback, Caudal, Krup-
pel, Giant, TorRE, Knirps and Tailless) of the early Drosophila segmentation
network. For previous related work see

This model (in this context we call it thermodynamic model) is based on a
thermodynamic equilibrium (between DNA-binding proteins) assumption. The
probability of polymerase occupancy is computed from the intrinsic equilibrium
affinities and concentrations of the transcription factors (TFs). The gene expres-
sion level is considered to be proportional to the polymerase occupancy.

This model takes into account some important aspects of TF-DNA interaction
including competition of TFs for TF binding sites, self-cooperativity of TFs, and

the effects of weak binding sites.

12
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2.1.1.1 Mathematical framework of the model

The thermodynamic model takes three input parameters: Module sequence, con-
centration of any of the factors under analysis at any anterior-posterior (AP)
position and also binding affinity of the factors. As output, it provides the reader
with a prediction of expression pattern that the given sequence might have as a
profile over the AP axis. Figure 2.1 on page 14 is an schematic depiction of this
model.

The mathematical structure of this model is built by two main components.

Throughout the first model component, each factor views the sequence in a
unique way - called binding landscape - depending on its recognition specificity at
any set of concentrations of the DNA binding proteins. The range of this binding
landscape is key to cooperative and competitive binding interactions between the
factors and the DNA sequence. According to this binding landscapes, one may see
a particular arrangement of molecules along the DNA sequence which includes
specification of the precise position and orientation at which each molecule is
bound. Any of these distributions of a set of molecules bound to the sequence is
called a binding configuration or more precisely a valid binding configuration by
not allowing overlapped molecules (from now on by a configuration we will mean
a valid binding configuration).

It is worth pointing out that different interpretations of this idea have been
applied for other organisms including bacteria (7), yeast (20) and mammals (22
and 66).

It is then argued that any of these distinct configurations convey a distinct
transcriptional behaviour.

Therefore, according to this framework the key question turns to further un-
derstand these binding configurations. For this, all possible configurations are
taken into account and each configurations is associated with a statistical weight.

We should note that in this context, the binding affinity that can be considered
as the strength of binding that is measured by using a position weight matrix

model. In other words, lets assume that S = S, --- S5, and position weight matrix

P(S|M)
pP(8|B)’

numerator means probability of the sequence using the weight matrix model M

M are given. Then the binding affinity of S is defined as where the

13
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Figure 2.1: An schematic illustration of the thermodynamic model. This figure

has been taken from (62).

and the denominator means the probability of the sequence given the background
model B.

Assuming that molecules bind independently, a statistical weight of a config-
uration is defined as the product of contributions of any of the molecules bound
to the sequence within the given configuration. The contribution of each of the
binding events is in turn computed from the concentration of the corresponding
factor and affinity of the binding site that the molecule is occupying. Thus, for a
set of n transcription factors i.e. {T'Fy,--- ,TF,}, if we assume that N molecules
m; of these factors are bound to the sequence within the configuration ¢, then we

can write:

N
W(c) = [ [ r(mi) x F(mi, P,) (2.1)

i=1

where P; is the interval of the DNA sequence that has been occupied by the
molecule m;, 7(m;) is the concentration of the m; and F(m;, F;) is the binding
affinity of the interval P; for molecule m;. It worth pointing out that firstly the

linear dependency does not model saturation effects, and we are not dealing with
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situations where concentrations are known in this work, but simply assume a
constant and identical concentration for all TFs. Secondly, for a given state of a
thermal system - in statistical mechanics and thermodynamic contexts - F(m;, P)
is called Boltzmann factor and is defined as the exponential of minus its energy
which is measured in kg7 units. More precisely, the energetic contribution of the
binding of molecule m; to the sequence from position P; to position P, |, with
L; being the binding interval length is defined as:
F(mi, P) = ¢ %a'T (2.2)
For more details the reader is referred to (7 and 63).
The normalised statistical weight of each configuration is then defined as the

probability of that configuration, that is :

__ Wi
B ZC'GCW(CJ)

All in all, at the end of the first model component the user is provided with

P(c) (2.3)

the occupancy distribution of the molecules on the target DNA sequence.

The second model component on the other hand translates this occupancy dis-
tribution into a level of gene expression in other words P(FE|c) which is discussed
below.

We should recall that the probability of the gene expression is assumed to be
proportional to the probability of the RNA polymerase binding and is denoted
by P(E). The overall probability that polymerase is binding is obtained from the
weighted sum of the polymerase binding at every configuration, with the weight

of each configuration is being its probability:

P(E) = P(c)P(Elc) (2.4)

ceC
in which P(E|c) is interpreted as a translation of expression level driven by the
configuration c¢. The underlaying assumption at this level is that each factor
bound in the configuration contributes independently to the expression outcome,
with activators contributing positively and repressors contributing negatively.
The authors employ a logistic function to translate these contributions into ex-

pression. In other words, if we assume that a configuration ¢ has built up by
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binding N molecules mq,--- ,my at positions Pp,--- , Py to the DNA sequence,

then the probability of expression can be expressed as:

N

P(E|c) = logit(we + Z Whn,) =
i=1

1
1+ e_(w0+21N:1 Wm,)

(2.5)

where wy is the basal expression level and w; is the expression contribution of
the molecule i. From this equation one may see that the parameters are the
same for all sequences and also in longer sequences all of the factors would be
able to simultaneously have their effects. To overcome this problem the authors
normalised the input of the logistic function by dividing it by the length of the

sequence.

2.1.1.2 Parameter fitting and validation of the model

As parameter fitting of this model, 44 gap and pair-rule gene modules with known
expression patterns were used. By comparing the predicted expression patterns
of these models with measured expression patterns, and devising a learning algo-
rithm they trained the parameters of the model. For any factor these parameters
included a) the absolute concentration of the factor in vivo, b) the transcription
rate resulting from its interactions with the basal machinery, ¢) the strength of
binding cooperativity and d) the strength of the PSSM which was representing
the factors’ binding preferences. The model then was used to predict expression
patterns for 11 D. melanogaster and 15 D. pseudoobscura modules. The result of

this analysis is presented in Table 2.1 on page 16.

Species number of modules good fair poor
D. melanogaster 11 4 4 3
D. pseudoobscura 15 2 9 4

Table 2.1: Results of predictions of expression patterns for 11 D. melanogaster
and 15 D. pseudoobscura modules. Predictions were subjectively classified into

three categories: good, fair and poor.
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2.1.1.3 Conclusion

This thermodynamic model advances our understanding of how genomic se-
quences are translated into transcriptional outputs. It shows that knowing the
TF concentration at different AP positions as well as the arrangement and quality
of the binding sites can be sufficient to explain the segmentation pattern in fly
species.

The knowledge about these two key parameters of the model, however, is ac-
counted as the main drawback of the model. On one hand detailed knowledge
of biochemical TF properties is often not available. On the other hand, detailed
knowledge of some spatial expression patterns of a number of related enhancers
and their key regulators is required which is again not always available. Further-
more, the number of configurations is an exponential function of the length of the
sequence and the number of TFs which makes computation of occupancy level of
factors very expensive and almost impossible for genome wide applications.

Finally, according to (63), although the underlying thermodynamic assump-
tion of this model has been successfully used in some other models, it remains

unclear how and even whether regulatory systems equilibrate.

2.1.2 Global predictions of regulatory module activity

In Section 2.1.1 we argued that a key factor for the thermodynamic model was
knowledge about the concentration of proteins which are rarely available. To
overcome this problem, Zinzen et al. (80) decided to predict enhancers’ activity
solely from their TF binding site patterns. They established a novel approach
based on comprehensive catalogue of CRMs involved in Drosophila mesoderm
development that are bound by five key factors.

In this section we briefly review this model. For the sake of simplicity we call
it Zinzen model.

2.1.2.1 Computational framework

Using chromatin immunoprecipitation combined with microarray (ChIP-chip) as-

says Zinzen et al. determine the genome wide distribution of binding sites of five
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key factors of mesoderm and muscle (Twist, Mef 2, Tinman, Bagpipe, Biniou) at 5
different time points (spanning the majority of stages when each TF is expressed),

resulting in high resolution binding data for 15 developmental conditions.

Mesoderm B

§
5'1;31-;5 Somatic muscle
v - 'n.o -
cé‘1o-11 _'Peak ’ ..... 'l.
My heights | /—* Visceral muscle
@ 57 ' S
Bin Bap Mef2 Tin Twi SVM ’. “’
Expression categories

Figure 2.2: An schematic illustration of the Zinzen model. This figure has been
taken from (72).

With this protocol, they found in total 19522 binding sites that were clustered
into 8008 distinct CRMs. In order to investigate whether combinatorial transcrip-
tion factor binding is predictive of CRM activity, they collected a reference data
set of enhancers (CAD : the CRM activity database) with characterized tissue-
specefic expression pattern. They then identified 310 among 8008 CHIP-CRMs
that were overlapping with CAD. From these 310, 87 fall into one five broad and
partially overlapping categories: early mesoderm, visceral (gut) muscle, somatic
muscle, meso and somatic muscle and visceral.

They trained a machine learning algorithm called support vector machine
(SVM) with the respective CRM activity information. This was first used for 310
known CRMs, by excluding each CRM in turn for testing, and training the SVM

with the remaining ones.

2.1.2.2 Conclusion

A novelty in the Zinzen model was that the developer used a ChIP approach not
only to predict the location of CRMs but also to predict their spatio-temporal

activity. Also, the user does not need detailed knowledge of the system, including
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estimates of transcription factor concentrations, their affinity for various sequence
motifs and cooperativity and competition between transcription factors.

Impressively, the model was able to predict the expression pattern of the
modules with a high accuracy, in other words, 71% of the predictions turn out to
be correct: the enhancers drive expression of transgenic reporters specifically in
the predicated regions and not in other mesodermal tissues.

Despite of the high accuracy of predictions, the Zinzen model is still intensively
based on in vivo activity data which is not often available.

In comparison of the Zinzen model with the thermodynamic model, one can
argue that both are novel strategies for predicting CRM expression pattern, but
are strongly dependent on availability of experimental data. The thermodynamic
model looks powerful when a detailed knowledge of concentration of key factors
at different developmental stages is available, but it does not need a whole map
of CRMs. On the other hand, the Zinzen model, does not require detailed bio-
chemical information about regulators but rather requires in vivo TF binding and
CRM activity data.

Another drawback of the presented Zinzen model is that it is based on a
machine learning algorithm where its robustness and reliability is not addressed
therefore further applications of this model in a wider range of data is required
and will provide further insights into its usability.

Finally, the authors in (80) argue that their previous data for binding profiles
of transcription factors were not of enough quality to model the CRM activity.
However, there is no clear definition of quality level of the data that will be
enough for the CRM activity prediction. On the other hand, for generating high
resolution data, they performed Chip-on-chip on each TF at consecutive time
points in 5 different developmental stages. This procedure provided them with
binding data for 15 developmental conditions. But, as far as we can see, there is
no relationship between this binding data with the level of accuracy of the model.
In other words, how much of this binding data is required for some statistically
significant predictions.

We should leave reviewing of this model at this level, the interested reader is
referred to (57 and 72) for more details.
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2.1.3 Quantitative analysis of CRMs using pattern gener-

ating potentials

Recently, a new computational approach for annotation of genomic sequences
was established by Kazemian et al. (32). This model that we will call it the
regression-based model is based on a pattern generating potential and similar to
the thermodynamic model, it uses both the DNA binding specificity and concen-
tration of transcription factors. However, as will be described through the next
subsection, the binding specificities as well as the input for the logistic function
are computed quite differently.

The regression-based model is the first model in this family that can be used
in a genome-wide manner to identify modules by scanning genomic sequences for
the potential to generate all or part of the expression pattern of a flanking gene.

As output, it provides the user with a location of a module as well as an
estimation of its potential expression pattern. Furthermore, based on an in silico
genetic analysis, a transcriptional regulatory network is constructed in which
each edge depicts the direct contribution of individual factor with an associated
estimate for its statistical significance.

In the following subsection we will provide the reader with more details of

mathematical and computational framework of the regression-based model.

2.1.3.1 Computational framework

We would like to recall that the thermodynamic model is constructed based on
two components, one that is estimating the occupancy level of factors in a given
sequence based on Equation 2.3 and the other that is translating this occupancy
level into an expression pattern using Equation 2.5. But a key issue with com-
putations of these quantities is the enormous number of configurations that in-
creases exponentially as a function of length of the sequence and the number of
factors. Although the authors used a dynamic programming approach to address
this computational cost, it still prevents the model from having a wider range of
applications.

The regression-based model, on the other hand, is a new strategy to tackle

this problem. The mathematical structure of the model is similar to the ther-
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modynamic model built of two parts. First, a cross-species comparison strategy
is used and transcription factor binding specificity profiles are computed. Next,
a logistic regression function is employed to combine factor motif scores with
transcription factor expression information to predict the module activity. The

details of these procedures are as follows:

e Computation of binding specificities: The basic idea of this approach
was that CRMs with conserved activity across Drosophila species will main-
tain some binding activity for each TF while binding sites in non-functional
regions will be less conserved. They used the Hidden Markov Model-based
Stubb (67) program to generate genome profiles of binding motif scores for
a set of 10 TF's including BCD, CAD, HB, KNI, KR, GT, HKB, TLL, FKH
and CIC. For the sake of generality we will denote the set of TFs as:
F={F,---,Fn}.

They then created a multi-species motif profile by averaging the motif pro-
files from the D. melanogaster and 10 other Drosophila genomes ( averaging
scores from orthologous 500bp regions). However, the averaging was not
just the additive mean of the scores. In order to reflect the evolutionary
distances among the species, the motif score of a region was defined as a
random variable evolving according to the Brownian motion process along
the branches of a phylogenetic tree. The average was thus defined as the
expected tree-wide average of this variable given its observed value in the
extant species. Using this approach, each module [ was associated with a
motif score C! for any i € F. For more details of this averaging scheme the

reader is referred to (73).

e Employment of a logistic regression model: Within this model, the
AP axis is divided into 100 bins. Lets assume that the concentration of any
factor ¢ € F at bin b is equal to 7;,. Then the predicted expression level for
the CRM [ at bin b is defined as:

1
wé + e‘(z,’eg wl'YleD

El,b = logzt(wé + Z wi'y,-bC’f) =
ieF

(2.6)
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where the w) is the basal expression level of CRM [ and w; is called the

regression coefficient (positive for activators and negative for repressors)

for each factor i. The basal expression and regression coefficient are free

parameters of the regression model and are learned by applying the model

to 46 modules with known expression profiles.
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Figure 2.3: An schematic illustration of the regression-based model. This figure

has been taken from (32).

From the

~

Equations 2.5 and 2.6 we can see that both the thermodynamic

and the regression-based model are using the same logistic models to translate

the differently computed occupancy level of motifs into the expression level, but

the input of logistic functions is different. The authors are claiming that this

logistic model is simpler than the one used in thermodynamic model in a sense

that they have fewer number of free parameters to be learnt from data ( 2 vs 3)

and that the regression-based model has the advantages of incorporating multiple

species comparisons and of computation that is order of magnitude faster. But

from our point of view, the ability of incorporating multi-species comparisons

makes regression-based model more dependent to data than its counterpart. It
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is worth mentioning that although a direct comparison of these models has not
been presented, the authors are claiming that the regression-based model is as

effective as the thermodynamic model.

2.1.3.2 Detection of regulatory modules with the regression-based
model

In the paper under review, the authors presented a measure of similarity between
a genomic sequence activity (predicted expression by regression-based model)
with a gene’s endogenous expression pattern. This scoring scheme was called
pattern generating potential (PGP). Given a predicted expression profile (real
numbers between 0 and 1 for each bin along AP axis) and endogenous expression

profile (again numbers ranging from 0 to 1) the PGP was defined as:

ZbEngEgb Zb(l_Egb)ngb
PGP =0.5x (1+ ' ~ —3 X ’ ‘ 2.7
SRR Yo - )7

where E,; is endogenous expression value of the gene g in bin b and E,, is

the predicted expression value. We should note that the -E—:%;g;’—fﬂ—" is in fact
the average of the predicted expression in expressed bins and is called the reward
term whereas the ;%ﬂ is the average of the predicted expression in non-
expressed bins and called the penalty term. The difference of reward and penalty
is indeed the PGP score, the coefficient 3 in the penalty term of Equation 2.7 is
Just a weight. The PGP scores are linearly scored as y = 0.5 = 0.5z.

This scoring scheme inferred a genome wide application of the regression-based
model for detection of CRMs in the following way: A genomic region consisting of
gene transcript and 10kb of its upstream and downstream region is scanned with
windows of fixed length (for instance 1kb, colour-filled rectangles in Figure 2.4).
The predicted expression profile of each window (open blue and green rectangles
in the same figure) is then compared with the endogenous expression (open red
rectangle) of the gene leading to PGP scores that are plotted as a function of the
genomic coordinate of the window (as is depicted in Figure 2.4).

The PGP was first tested on 22 genes regulated by 46 CRMs and then applied
to a collection of 144 genes where the authors identified 123 putative CRMs from

68 genes.
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Figure 2.4: An schematic illustration of the PGP scoring scheme. This figure has

been adapted from (32).

2.1.3.3 Inferring transcription factor and regulatory module interac-

tion networks

The authors then used this formalism to infer factor-module interactions as a net-
work. The principal idea was simple: the PGP method was working as a function
of binding specificities of TFs as well as the concentration of factors. Therefore it
was possible to computationally assess the contribution of each TF by setting its
concentration to 0 and compare this in silico mutant to the concentration of the
wild type. For any TF, in order to test the statical significance of its mutation,
they measured the root mean square error (RMSE) between predicted expression
profile of 1000 random permutations of that TF’s concentration (blue histogram
in Figure 2.5) and the true expression. They set up an empirical p—value for the
RMSE which reflects how important this factor is to the CRM expression.

Top right panel in part A of Figure 2.5 on page 25, depicts the true (red) and
predicted (blue) expression profiles. The reader also can see the effect of in silico
mutant of three factors (CAD, HB and TLL) in red border rectangles and the

corresponding RMSE score as a red dot in any of the histograms.

2.1.3.4 Conclusion

The regression-based model can be used for genome-wide predictions of CRMs
and their potential activity as well as to examine the effect of each motif on each

putative CRM and empirical assessment of its statistical significance. In this
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Figure 2.5: A: lustration of formalism for construction of factor-module inter-
actions network. B: Predicted regulatory network for 10 TF and 35 experimentally

characterised CRMs. This figure has been taken from (32).

sense, the approach presented by Kazemian et al. provides the user with a multi-
functional method for the analysis of CRMs that promises further annotation of
the regulatory sequences.

However, unlike the thermodynamic model, the regression-based model does
not capture some of the known mechanistic features of a regulatory module func-
tion such as the synergy between pair of motifs. And unlike to the Zinzen model,
it lacks the in vivo context of ChIP data.

We should mention that in an attempt to compare the performance of the
regression-based model to the Zinzen model, the developers of the regression-
based model replaced the motif scores of 8 TFs with ChIP scores and retained
the regression-based model using these data, but it did not lead to superior pre-
dictions.

The regression-based model is only applicable to systems where the adequate

expression data are available for relevant TFs, CRMs and target genes. Thus it
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seems more dependent to data than two other counterparts.

Finally, all three above reviewed studies are based on some machine learning
algorithms. Therefore, the abundance as well as the quality of a training set
for these machine learning algorithms is a fundamental requirement that might
affect the quantity and quality of their results. A direct comparison of these three
models, will reveal the robustness of these algorithms in particular with respect
to the over-fitting problem. Obviously further investigation of disagreements of

such a study will enhance our understanding of the regulatory code.

2.2 General models

This family of alignment-free methods is mostly based on the rationale that func-
tionally similar sequences must share some common words. Within these meth-
ods each sequence is mainly associated with a vector of k-mer counts. A distance
function for these vectors is then defined (1; 8; 31; 77 and 40).

In this section we will be reviewing only three of these methods (in a chrono-
logical order) as representatives of this family. Throughout, we are hoping to
convince the reader that this family of models is defined very generally and there-
fore is widely applicable, but some natural principles underlying transcriptional
control such as TF competition, motif degeneracy, cooperativity of binding sites,

effects of weak binding sites and concentration of factors are completely ignored.

2.2.1 Maetrics for comparing regulatory sequences on basis
of pattern counts

The key idea behind this model (we call it the Poisson-based model (77)) was that
the presence of common motifs in the regulatory regions of two sequences (genes)
might be considered as a measure of similarity, and presence of different motifs as
a sign of dissimilarity. Therefore common putative regulatory properties of genes
can be captured by defining a pattern count-based similarity and/or dissimilarity

function.
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2.2.1.1 Computational framework

The functional similarity of two sequences a and b in the Poisson-based framework

is defined as:
M® = 8% _ oD% 43 (2.8)

where 5% and D® are respectively similarity and dissimilarity metrics (as defined
below), a is a positive weighting parameter, which can be tuned arbitrarily to give
more emphasis on the common (low values) or distinct (high values) occurrences
between two sequences and 3 is offset to ensure the that metric is always positive.

In this model the data set is considered as a matrix N, containing n rows (one
per sequence) and p columns (one per pattern). N? corresponds to the number
of occurrences of pattern ¢ in sequence a. In order to define a (dis)similarity
between two sequences (a and b) a Poisson distribution is employed.

Each pattern ¢ is characterised by a prior probability f;, indicating the prob-
ability to find an occurrence at any position of a sequence. Prior probabilities
can be calculated either on the basis of the data set itself, or on the basis of an
external background model. The expected number of occurrences m; is obtained
by multiplying the prior probability f; by the number of possible positions T for
the pattern:

m; = fiT = fi(L-w+1) (2.9)

where L is the length of the sequence and w the length of the pattern. (For
simplicity, assume all the sequences have the same lengths). Let us denote the
cumulative function of the Poisson distribution by F(z,m;), that is the proba-
bility to observe at most x occurrences, when the expected value is m;. Thus
for a single gene a and single pattern ¢, the probability to observe at least N?
occurrences is obtained by:

1— F(N%,m;) if No>0

1 if No=0 (2.10)

Pz > N!) = {
It is clear that when N increases (i.e. for over-represented patterns)

F(N#,m;) — 1 and consequently P(z > N?) — 0 ie., the low values of
P(z > N?) correspond to overrepresented patterns.
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The contribution of each pattern ¢ to the similarity of a pair of sequences is
then calculated on the basis of the probability of common counts. For this, lets
assume that C® =< C#, ... C8 >, where C{* = min(N{, N) is the number of
common counts for pattern q.

Now the probability to observe at least C® occurrences of pattern ¢ in each

sequence, is the product of the probabilities (under the assumption of indepen-

dency):
an [ [L = F(C® m)]* if C®>0
P(z > C; )—{ 1 if o = 0 (2.11)
This probability is then converted into a similarity metric as:
® _ 1 - P(x>C®) (2.12)

reflecting how exceptional is to find at least C® common occurrences of pattern
¢ in a pair of sequences. For a multi-variate similarity, the score then can be

defined either as additive mean which is defined as:
8%, = Z 528 (2.13)

or to consider a joint probability simultaneously, and applying geometric mean:

d_l—vHPx>Cab) (2.14)

From this similarity metric one can see that :

e A pair of sequences that do not share a common motif are obtaining 0 as

their similarity score.

e High number of occurrences of a single motif or multiple occurrences of

different motifs increase the similarity score.

e Patterns with low prior probabilities contribute more than those with higher

prior probabilities.
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For establishment of a dissimilarity metric, the author calculates the proba-
bility of the distinct occurrences, i.e., those found in one sequence but not in the
other one. For this, it is assumed that pattern i has occurred N® and N} times
respectively in sequences a and b, and that N# < NP, then the contribution of

this motif to dissimilarity can be defined as:

distinc; distinct

1 p
de . = |F(N},m;) — F(N&,my)|, DRine = = > d&° 2.15
|[F (N, mq) = F( )| ,,Z (2.15)

In order to capture the degree of over-represention of a motif which is indicated
by low values of the probability to observe at least = occurrences: P(x > N?) =
1 — F(N# — 1,m;), the author defined another catalogue of dissimilarity metric
as:

dier, = |P(z 2 Nf) = P(z 2 N7)|

over;

over

1 P
D2 =}—7ng" (2.16)

From Equations 2.15 and 2.16 on page 29, one can see that: a) a motif with
the same number of occurrences in both sequences has a 0 contribution to the
dissimilarity definition, b) high number of distinct counts of a motif and also
high number of different motifs occurring with different counts in both sequences
increases the dissimilarity.

Finally, the author defines the mixed metric as Equation 2.8 on page 27,
in which some key points are worth highlighting: a) motifs found in both se-
quences are contributing positively whereas motifs found in one sequence but
not in the other are contributing negatively, b) score 0 means that either none
of the sequences contains any occurrences of any motif or common and distinct

occurrences of motifs are compensating each other’s effect.

2.2.1.2 Conclusion

The Poisson-based model is easy to implement and computationally efficient al-

gorithm. However, there are some points that we would like to bring them to the
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2. EXISTING MODELS

reader’s attention. Firstly, there is no significance defined to the final similarity
(dissimilarity) metric i.e., Equation 2.8. In other words, for instance, 5 motifs
with the same number of occurrences in both sequences has the same effect as
100 motifs with same number of occurrences in both sequences. Secondly, there
is no evidence to show why the underlying Poisson distribution is an appropriate
distribution for the occurrences of motif in a sequence, in particular, this means
that we are assuming that the occurrences of a motif in a regulatory sequence
is only by chance, which seems unrealistic. Thirdly, a big concern that the user
might have about this model is that he/she requires a prior knowledge about
motifs. Finally, as a minor technical point, it might worth mentioning that from
a mathematical point of view the term ’metric’ is inappropriate in particular for
Equation 2.8. For instance,we know that as a (mathematical) metric (function)
the score 0 corresponds only to the same sequences which is not true in this

definition.

2.2.2 Fixed-length word distribution model

The model we will be reviewing in this section is called D2z and established by
Kantorovitz et al. (31). The D2z model is based on comparing the frequencies
of all fixed-length words in the two sequences. In this way sequences are mapped
to to vectors by the counts of (for instance) k-mers. The vectors obtained in this
way, represent the original sequences with a fixed resolution k. Then the basic
logic is that similar sequences will share more words. This is being quantified by

defining different techniques.

2.2.2.1 Computational framework

Lets assume that A = {A,C,G,T} is the alphabet set, and the background
model is a Markov model of order w ( we note that different sequences may
fit different background models). We suppose that A = AjA,---A,, and B =
B\ B, ... By, are two sequences that we wish to measure their similarities in terms
of distributions of k—mers. The D, statistics (42) is defined to be the number

of k—mer matches between two sequences A and B, including overlaps. It is
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originally computed as:

Day(A,B) = Y Y(i,j) (2.17)

(i,5)yel

where Y (4, 5) is the indicator variable between the k—words starting at position
iin A and B, and the index set [ = {(¢,5) : 1 <i<m—k+1, and1 <5<
ny — k + 1}. One may note that:

Do(A,B) =< N4, N® >= 3" NJNJ (2.18)
weWw
where similar to what we defined in Section 2.2.1.1, N,f,‘ is the number of occur-
rences of the word w in sequence A and w € W = {wy, wo,- - - wy }.
In order to measure the number of standard deviations by which the observed
value of D, deviates from the mean, the authors presented a normalised version

of the D2 score:
Dy(A, B) — E(D)

o(Ds)
where E(D,) and o(D;) are the expectation and the standard deviation of the D,

D2z(A, B) =

(2.19)

respectively. For computations of these parameters, two different computational
algorithms based on independent and identically distributed random variables
IID, and also Markov model (MM) is presented.

2.2.2.2 Conclusion

In applications where several different distributions are to be compared the nor-
malization of the D2z becomes very useful as different background distributions
of the sequences are taken into account. This makes it possible to compare se-
quences from different species.

Besides, we can see that this model is relatively easy to implement and also can
be adapted to a more limited set of k—mers, in order to reduce the computational
expenses. It can be used for any sort of sequences (even protein sequences).
However, it is too theoretical. In other words, some particular limitations of this

method can be listed as:
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1. Not all functional motifs in a pair of sequences are in the form of 6-mers.
So by considering only k-mers as patterns underlying functional similarity
of a pair of sequences, some motifs which contribute to the gene expression

pattern may be overlooked.

2. Not all k-mers are biologically meaningful words, hence using all 6-mers
may mean introducing some noise to the model and furthermore, we may

want to compare two sequences just based on a subset of meaningful words.

3. Within the D2z framework, degeneracy of TF binding motifs is not ac-
counted for. So different 6-mers are treated separately even if they only

differ in one base.

4. The framework does not allow for a sequence and its reverse complement

to be combined for the purposes of assessing possible TF binding.

2.2.3 Identifying regulatory modules by word profile sim-
ilarity

Most recently, Garmay Leung et al. (40) came up with a different idea for compar-
ison of vectors of counts of k—mers associated to two sequences. They presented
their solutions as a model called word profile hits or WPH in short. In this frame-
work, given a sequence (for example a CRM), the WPH algorithm uses its word
composition to search other putative CRMs with similar word composition. In
the following subsections we shall provide the reader with more details of the
WPH framework. We should mention that in this study the authors were only
interested in compositions of 8—mers. Therefore, by a word profile of a sequence

they mean its 8—mer composition.

2.2.3.1 Computational framework

In this framework, the similarity of two sequences is determined by comparing
the degree of word overlap between two profiles with the expected overlap given

the number of words in each sequence. To see this in more details, we need to
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establish some notations. We will use '8 —mer’ and 'word’ to refer to the same
object in this section.

Lets assume that two sequences A and B are given and we wish to measure
their functional similarity based on WPH framework. Lets also assume that W (A)
and W(B) are the sets of all 8—mers occurred in sequences A and B respectively.
A 1—neighbour of a word w € W(A) is a word w’ which has maximum 1 mismatch
with w. The set of words in 1—neighbourhood of W (A) is denoted as W’(A) (the
number of allowed mismatches is considered as a free parameter). We should
note that W(A4) C W/(A). A word w € W(A) contributes to the observed word
overlap ov4_,p if a 1—neighbour of w occurs in B. With this definition, it is
clear that each pair of sequences defines two overlaps (ova_.g and ovg_.4) that
lead to two similarity scores z4_.g and zg_. 4 which are defined in the rest of this
subsection.

The probability of the overlaps is calculated by employing a Poisson distri-
bution with mean A\ = |W(A)/n| where n = 32896 is the number of unique
8—mers (a word is mapped to itself and its reverse complement). Therefore the

probability that a given word w occurs at least once in A is equal to:
Pw(A) =1 — e~ WA/ (2.20)

and the probability of a 1—neighbour of a given word w in A is:

pw(A) =1— WA/ (2.21)

This implies that a given word w occurs in A and its 1—neighbour occurs in
B with the probability:

pov(A - B) = pw(A)pW’(B) (222)

Let X% _ 5 be the indicator variable representing whether the word w occurs in
A and one of its 1-neighbours say w’ occurs in B.
The authors then assume that each word occurs independently and therefore

one can use a binomial distribution with the following properties:
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PriXy_p= 1] = pou(A — B)
Xae =) Xi.p

weA

E[Xs_p)=PriX¥ z,=1]-n

Oaen = \[PrIXS s =1 n (1= PrXy_p=1-n)  (223)

note that A = {A,C,G,T}.

Similar to D2z model, the overlap score is defined as:

B — E|Xa
Zap = Va BUAEE? A5 (2.24)

where V4_ g is the actual overlap, E[X 4 5] is the expected overlap and 6 4..p is
the standard deviation. However, to make the scores symmetric, they defined the
final similarity of sequences as Z(A,b) = min(za_n, z5—4)- Taking minimum is
to ensure that similarity requires many words in A to have 1—neighbours in B
and vice versa.

In a series of analyses, the authors noticed that upon applying this scoring
scheme sequences with similar GC-content are clustered together. Therefore they
decided to bin together words with equal GC-ratio and calculating the probability
of word overlap for each bin. That is they argued that for a fixed word length
k, there are n, words for each GC-ratior =0,1/k,2/k,--- ,1. Let W,(A) be the
set of words in A with GC-ratio of r, and similarly W/(A) be the set of words
in the 1—neighbourhood of W,(A). Then the word occurrence probability for a
given GC-ratio 7 is as: py, (A) = 1 — e" WA/l and p,, (A) = 1 — - WA/,
Similar to Equation 2.22 the corresponding pairwise word overlap probability
between sequences A and B for words with a given GC-ratio is: p,, (A — B) =
Puw, (A)pw. (B) and overall probability of word overlap is defined as sum over all
possible GC-ratios:

Ny

Pov(A— B) =) ~—Pov (A — B) (2.25)

Figure 2.6 on page 35 shows how this scheme can be used to identify sub-

sequences in the target sequence with similar sequence composition to a given
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CRM’s word composition: First the CRM is split to subsequences of length 500bp.
Fach of these subsequences then is associated with their word profiles. Finally,
using the above mentioned scoring scheme, the target sequence is searched for

subsequences with similar word profiles.

CRM ——— ———— -
i i i 3 | 1. Split CRM into
! ! § K ! | overlapping windows
500 bp \ . ; i
CRM i — |
4 =
2. Build word profiles for each
CRM window based on
its word counts
Counts : st o
of 8-mers (ERTR TCCOGI0 AAATCEGOTT
for each gty TATI (7 N Yoo D
CRM SATTGeCTS [COATTCCCID CGATTW(CTL
window — ==t
S — R ————
: 3. For each CRM window, m FEITl]
e " for : G( 1
i Vod. AT indows with similar (80 b d N b ; o
EXfent profiles (WPHs) using a el sElit
e rity score (Z, see text) e ey

Figure 2.6: An schematic overview of WPH model. The figure has been taken
from (40).

2.2.3.2 Conclusion

The reader might have noticed that the WPH is a combination of the Poisson-
based and D2z model. In comparison to the Poisson-based model, it provides a
better estimation of the mean for the Poisson distribution. In comparison to the
D2z model, they do not consider distribution of all k—mers in both sequences,
but those k—mers that up to 1—neighbourhood have occurred in both sequences.
Furthermore, considering 1 —neighbourhood of a word equal to its own occurrence
is one step development, while comparing to D2z.

But similar problems still remain:
e By only considering 8—mers, some functional words are overlooked.

e By considering all 8—mers, it is very likely to introduce noise to the system.
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e Occurrence of each word in this scheme is equiprobable.

e There is no guarantee that one might not need to do some other corrections

(for example for AT rich sequences, similar to GC-biases correction)
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Regulatory Region Scoring
(RRS) Model

Some recent comparative studies have revealed that regulatory regions can retain
function over large evolutionary distance, even though the DNA sequences are di-
vergent and difficult to align. It is also known that such enhancers can drive very
similar expression patterns. This poses a challenge for in the in silico detection of
biologically related sequences, as they can only be discovered using alignment-free
methods. Our main objective in this chapter is to present a new computational
framework called Regulatory Region Scoring (RRS) model for detection of func-
tional conservation of regulatory sequences using predicted occupancy levels of

transcription factors of interest. Our goals are:

1. To be able to detect functionally similar enhancer regions even if the en-

hancer regions do not align.

2. To find groups of similar enhancers and determine relevant sequence features

shared among enhancers within a group.

The RRS model takes as input a pair of sequences and a set of TF motifs. We
call one of the sequences the template sequence and the other the test sequence.
The task is to judge whether the test sequence has the potential to drive similar
expression patterns as the template sequence, assuming expression is driven by

the given set of motifs. We do not use any cutoff for probabilities of binding of
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3. REGULATORY REGION SCORING (RRS) MODEL

these motifs to the sequences and so allow weak binding events and even absence
of motifs to contribute to sequence similarity. The output from the RRS model is
a statistical similarity score and a list of motifs that contribute to that similarity
score.

The model is built of two main components: one component associates each
sequence with a mathematical vector reflecting which proteins with what mul-
tiplicity and what specificity have the potential to be bound to the sequence.
We call the elements of these vectors motif occupancy values or, in short, o-
values. These vectors give an indication of the potential enhancer function of the
given sequences. As the reader might notice, some parts of this component are a
modification of the thermodynamic model that was reviewed in Subsection 2.1.1,
meaning that to some extent we are accepting both equilibrium assumption and
that the gene expression level is considered proportional to the probability of pro-
moter occupancy by the RNA polymerase. The second component estimates a
probability distribution of motif o-value vectors for sequences that function sim-
ilar to the template sequence. We then compute a Bayes factor to evaluate if the
test sequence is more similar to the template sequence or more similar to random
background sequences (Figure 3.1 shows a simplified schematic illustration of the
RRS concept).

We like to draw the reader’s attention to the point that the RRS has been de-
veloped to be able to learn parameters from both randomly picked and randomly
generated sequences. However, as the reader will notice, within this project we
preferred to learn the model from the randomly picked sequences. This is because
we believed that it is not possible to capture all the genome features (such as re-
peat elements, low complexity DNA and ect) with randomly generated sequences.

In the rest of this chapter we first provide the reader with mathematical foun-
dations of the RRS model in Section 3.1. The main focus of this section therefore
is establishing the feasibility of computation of the o-values. This section is very
mathematically oriented. For those readers with less mathematical background,
we will try to keep the coherence of the story in the next sections by repeating
some of the essential equations in a less mathematically oriented language. Then,

in Section 3.2, we show how the o-values are defined and computed. Section 3.3 is
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Figure 3.1: A simplified schematic illustration of the RRS model. As input, the
RRS model takes two sequences and a set of transcription factor motifs (here just
Hb and Kr for the sake of simplicity). Probabilities of configurations of TFs on
the sequences (four possible configurations illustrated) can be computed. Using
dynamic programming, expected numbers of proteins binding each motif (motif
o-values) are computed integrating over the space of all possible configurations.
The vector of motif o-values for each sequence is taken to represent its potential
regulatory function to some extent. We then define a probabilistic score for the
similarity of a pair of sequences. The score is defined as the ratio of the probability
that the motif e-values for test sequence S were drawn from the same distribution
as for template sequence T over the probability of e-values for S being drawn from

the distribution for random background sequences.

devoted to establishment of our similarity score function. The parameter fitting

procedure of our model is discussed in Section 3.4.
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3.1 Mathematical framework of the RRS model

Throughout this section we are going to provide the reader with the mathemat-
ical foundations of the RRS model. For this, a given sequence is first associated
with a set of binding configurations. Then any of these configurations in turn
is associated with its probability. In the following, the expected number of oc-
currences of a motif is defined. Apart from presenting these terminologies and
definitions in detail, we will put a particular emphasis on mathematical feasibility
of computations of the probability of each configuration and also the expected
number of occurrences of each motif in a given sequence.

In what follows, we will assume a template sequence T, a test sequence S
and a set of transcription factor motifs M = {M,,--- , M, }. We shall denote the
length of a sequence T by Lt or simply by L, if there is no risk of confusion and
the length of a motif M by |M|.

Definition 1 A site s in a sequence T with length L is defined as an element of
Mx{1,...,L}, ie.,, s= (M, P,) for some M € M, and |M| < P, < L where P,
is the position of the last nucleotide of the motif in the sequence T.

We use the term configuration to denote a particular arrangement of protein
molecules along the DNA sequence, which is defined by the sites at which each

molecule is bound to the sequence. In other words:

Definition 2 A configuration ¢ with N molecules bound to a sequence is defined
asc={(M;,P)|1 <i< N, M; € M}, where M; is the i-th molecule bound at a
position P;.

Valid configurations are those in which sites do not overlap:

Definition 3 A walid configuration is a configuration ¢ = {(M;, P)|1 < i
N, M; € M } in which for any given (M;,P;,) and (M,,, P,,), either P,
P, — |Mi,| or P, < P,, — |M;,| holds.

IA A

From now on, we will be only interested in valid configurations and we will denote
the set of valid configurations by C. However, for the sake of our argument we
like to introduce a particular subset of C. That is the set of those configurations
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3.1 Mathematical framework of the RRS model

that have exactly j occurrences of the motif M up to position I’ of the sequence

and there is no site after P, i.e.,

CM={ceC | (V(M,P)€c,(P.<P)YA({(M,P)€c| M =M} =j))}

The following lemma shows that the set of C,”]’

set C. We note that for a given sequence T with length L and a motif M with

s is indeed a partition of the

length | M|, the maximum number of occurrences of M over T is Jy, = L/|M]|.

Lemma 4 Assume that T is a sequence with length L, M s an arbitrary motif
and Jys is the mazimum number of occurrences of M over all valid configurations,
then

1L CYNCH, =0 forany 0 <i# j < Jy,
s Ut ot=c

Proof. The first part is a direct application of the definition. For the second part,
let’s assume that ¢ € C is an arbitrary configuration. If there is no occurrences
of M over c, then c € C'I%. If there are more than zero occurrences of M over ¢,
then we may assume that the j is the position of the last occurrence of M over ¢
that will imply that ¢ € C}Y;. This means that Uiz~ Crl 2 C. The other side
of this inclusion is obvious. ®

Now let’s assume that a configuration ¢ with N molecules bound to the se-
quence is given ie., ¢ = {(M;, P)|1 <i < N, M; € M }. If we further assume
that molecules bind independently then the statistical weight of this configura-
tion is defined as the product of the contribution of each of the binding events.
But the contribution of each molecule is in turn a function of binding affinity and
concentration parameter. In other words:

Definition 5 If we denote the sequence at binding interval of molecule M; at
position P; by B;, then the statistical weight is defined as:
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In which, p(B;|M;) means the probability of subsequence B; using the the corre-

sponding PSSM model and p(B;|M;) means the probability of subsequence B; given
p(Bi| M)
p(Bz“ut)

is considered as the binding

18

the background model (uniform 0—order Markov model in our case).
the contribution of each binding molecule, 2otIB)

B p(M;|B;)
affinity and Z%:% 18 considered as the concentration parameter.

In our model, the BiFa tool (see Subsection 5.2.2) is used to score the strength
p(M;|B;)
p(M;|B;)"
implemented to compute these scores which is equivalent to what has been used

of bindings i.e., This is because in the BiFa tool a Bayesian approach is

in (62). As our model, to some extent, is a modification of (62) therefore one
may agree that it was reasonable to use an equivalent scoring scheme. Besides,
according to the developers (see Figure 3.2 on page 42) of the BiFa tool, it is
more sensitive than the currently used model in the TRANSFAC database.

1
09
08
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Sensitivity
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03

02

01

0
0 0.005 001 0015 002 0025 003 0038 004 0.045 005

Specificity
Figure 3.2: Comparison of sensitivity of BiFa scores vs two other models. Green:

Bayesian model used in BiFa for scoring binding strengths. This scoring model has
been used in our algorithm. The model underlying the Blue curve is a frequentist
statistic provided as an alternative within BiFa. That is, given a position weight
matrix score x, what is the likelihood of observing a score > x by chance. The
yellow triangle shows the performance of the score implemented in the TRANSFAC
database. This figure has been provided by the developers of BiFa tool.
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We should note that according to this definition, statistical weight associated
to the empty configuration i.e., the configuration without any molecule bound
to it is 1 (product over an empty set). We also note that this definition enables
weak binding events to be included in the model. Assume that in a configuration
¢ we have a molecule that has been weakly bound to the sequence many times.

If, for the sake of simplicity we assume an equal binding affinity a (a > 1) in

K positions, then the contribution of this factor to the W(c) is equal to a’.
Depending on K, this might be a strong contribution.
The probability of each configuration c is then defined as p(c) = E_e%

We use the same dynamic programming technique as in (62) to compute this
probability. The core of our model, however, is where we define the expected
number of occurrences of each motifs in a sequence. For a given sequence 7" and

a given motif M, the expected number of occurrences of M over T is defined as:

er = Y p(c)Ia(c) (32)

ceC
where Ip(c) is the number of occurrences of motif M in the sequence over the
configuration ¢. This equation is of particular interest as it contains both the
multiplicity and specificity of a binding event of a protein to the sequence respec-
tively in Ip/(c) and p(c). However, as already mentioned, our main empbhasis in
this section is the mathematical proof of feasibility of computation of this term.

To achieve this we need to establish some more notations.

Notation 6 In the rest of this chapter we define: Pl := > ey ple), Wi =
¥
2(;2{]. W(c) and Z .=y .o W(c)

where L is the length of the sequence T, M is the motif, j is the number of

occurrences of M in sequence 7.

Lemma 7 For a sequence T with length L and a motif M € M, Z;Z({M P}fj =1.
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Proof.

Y ple)=1

ceC
g Z p(c) =1 (According to Lemma 4)

I=JIN ~M
Uj=o" CrL,;

= PO+ + D ple)=1
oM

M
Cro Ly

Lemma 8 For a sequence T' with length L and a motif M € M, Z = Z;fo W,f"fj

Proof. Similar to proof of the Lemma 7. =

Corollary 9 For a sequence T with length L, a motif M € M, 0 < i < L and
0<j<Ju, ZPM = WM

Proof. Proof is straightforward from Notation 6 and Lemmas 7 and 8. =

Lemma 10 Suppose T is a sequence of length L and M is a motif from M then

Y

j=1
Proof.

e{l = Z P(c)Ipm(c)

ceC

= Y ple)xy (According to Lemma 4)
I=JIM M
Vi=o" CL,

It

=" _ple) x3)

=0 cf,

TR

M
CL.J'

Im
= (i x P2y
=0
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[
Assume that M € M and c is a configuration in Ci]g . We remember that ¢
is a configuration in which up to position ¢ of the sequence there are exactly j

occurrences of M. One may consider three possibilities for this configuration.

e (M,7) is an element of c. Let us denote the set of these type of configurations
with CM | meaning that position i has been occupied by M.

e (M' i) is an element of ¢, where M # M' € M. Let us denote the set
of these type of configurations with CM, meaning that position ¢ has been

occupied by another motif.

e There is no element X in M such that (X,3) € ¢. In other word, position
¢ of the sequence is left unoccupied. Let us denote the set of these type of

configurations with CJ1.

It is not difficult to observe that CM = CM U C3" U C3' and consequently:
PM=%"p(c) = _ple)+D_p(d) +_p(c) (3.3)
cecM oM cM oM
The following three lemmas are in fact main tools for the proof of the main
theorem of this section. We should recall that in the following B is the sequence
at the binding interval of molecule M, i.e., B is the S[i — |M]|,4]) subsequence.

Lemma 11 For any motif M € M and with the notations shown above, the
following equation holds:
p(Bi|M)
p(c) = PMs i — =t
2 ) = Fluns-iy )

Proof. Suppose ¢ € CM, then (M,%) is an element of c. This also implies
that c has exactly j — 1 occurrences of M up to position ¢ — |M|. If we assume
|ICM| = t, then we can write:

ZP(C) =pler) +- -+ pla)
oM

_Wle) o W)
VA A
1 pBIMY) | p(BIMY

=72 Emy 1l

P(Bt\Mt)

Ct
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we know that the last site in any of configurations ¢y, - - - ¢; is (M, 7). By separating

the contribution of (M,), we can re-write the last equation as:

_1_ p(Bi|M1) _ p(B|M) P(Btll\f’t) P(BIAZI) _
AN A B " + AL G )
1 p(B Ml) . p(B| M) XP(BMZI)
I T AR WG

|
|
p(B|M)
)

M
Bz M -1 % (BIM

To prove the other side of this inequality, let’s suppose that ¢ is an element of
cM im|j—1- I other words c is a configuration with j — 1 occurrences of M up to

position i — |M|. We can write:

p(BIM) _ W(c) p(Bi|M)
MBI = 7 p(BI » 84
_ 1 pBIM)  p(BIM
= 2150 * e
= p(cy) (where ¢, is an element of CM)

This implies that

Z p(BIM Zp a)

M
i—|M|,j—-1

which completes the proof. =

Lemma 12 For any motif M € M, the following equation holds:
p(B'|M')
Sore= > P mrm
cM MeMM #£M (BIIM/)

Proof. Let us assume that ¢ is an element of C3/. Then according to the
definition of CM, there exists an M’ # M in M such that ¢ = (M’,i). With a

similar argument to the proof of Lemma 11, we may write:

N p(B'|M’
%P(C)S Z P mrj41,5 ¥ %:—M_'i

M'eM\{M}
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3.1 Mathematical framework of the RRS model

For the other side of this inequality again we suppose that c is an element of
Ci]\:llM’l,j where M’ # M is a motif in M. Therefore ¢ has j occurrences of M up

to position ¢ — | M’|. Similar to the proof of Lemma 11, we can write:

P(BIM) _ W) p(BIM)
p(BIT) = Z p(BIAT)
p(BIM) _ p(BIM)
z' 1 S > s

p(c)

1 |M’| )

= p(cy) (where ¢, is an element of C}/)
and so the proof is completed. ®

Lemma 13 For any motif M € M, the following equation holds:
> ple) =
cj!

Proof. Any configuration ¢ € C¥ has j occurrences of M up to position 3,
but the position i itself is left unoccupied. This means that c is a configuration
in C, ;. And obviously any configuration c € CM, ; has j occurrences of M up
to position ¢ but the position ¢ itself remains unoccupied. Meaning that ¢ is an
element of CM. Therefore we have:

> p(c)

CM

We are now in a position to present the main theorem of this section that guar-
anties a dynamic programming method for computation of the expected number
of occurrences of motif a M € M in sequence a T'. i.e., el
Theorem 14 Suppose T is a sequence with length L, M is a motif from M =
{My,--- M}, Jus is the mazimum number of occurrences of M over T, 0 < i <
L and 0 < j < Jy, then

B|M) p(B'|M')
PY =PM +PMie pBIM) | PM o i et (3.5)
1,j 1,j i~|M]|,j 1p(B‘M) M'eM,ZM/;éM |M l’Jp(B"M')
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3. REGULATORY REGION SCORING (RRS) MODEL

Proof. Before proving the theorem in general, we like to pay attention to
some boundary conditions We should recall that W (@) = 1 and consequently
>0y P(c) = Z{@} WZ(C) . If for a motif X € M, ¢ < |X| then P =3 3 p(c) =
0 and therefore the correspondlng term would be cancelled out for the 3.5 and

therefore we will not have any negative values for position indices. Similarly if
J = O then the second term of the Equation 3.5 will be zero and hence Equation 3.5
is modified as:

M M M p(B'|M')
R?j = Pi_lvj + Z Pl_[M/Iv]p(B/'MI)
MeMM #M

Therefore without loss of generality we may assume that i > max{|M||M € M}
and j > 1. Now according to Lemmas 11, 12, and 13 we can write:

Pl =3 "n() Zp +Zp +Zp

B-|M) m  PBIM) | Ly
=PIA_’I . _(__1? + P | P2
M13~1 p(B,| M) M@%’#M SMIp(BMY) T

This finishes the proof. m

Theorem 15 With the above mentioned notations we have:

+ W; N o el ' wM.
MLpBIM) e P(BYIM)

Proof. See Lemma 9 and Theorem 14 =

3.2 Occupancy values of proteins binding a se-

quence (motif o-values)

In this section we shall explain how in our model the expected number of occur-
rences of a given motif in a given sequence is computed. However, as we promised
in Section 3.1, we will repeat the key ideas of the RRS model in a less mathe-
matical language with the hope of keeping the coherence of the story for those
readers with less mathematical background who might have skipped the Section
3.1.
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3.2 Occupancy values of proteins binding a sequence (motif o-values)

We assume a template sequence T, a test sequence S, and a set of transcription
factor motifs M = {M;,--- , M, }. We use the term configuration to denote a
particular arrangement of protein molecules along the DNA sequence, which is
defined by the intervals at which each molecule is bound to the sequence. Valid
configurations are those in which binding intervals do not overlap. By assuming
molecules are bound to sequence independently, we then associate a statistical
weight W (c) to any valid configuration ¢ (see Equation 3.1 ) which is the product
of contribution of each binding event. The contribution of any of these binding
events are in turn a function of function of binding affinity and concentration
parameter.

The probability of each configuration ¢ is then defined as p(c) = %
where C' is the set of all valid configurations. We use the same dynamic program-
ming technique as in (62) to compute this probability.

There can be more than one expressed protein species that can bind to a given
motif. In the absence of information on either the number of protein species
capable of binding a motif or the nuclear concentrations of these proteins we
assume the total nuclear concentration of such proteins to be equal for each
motif and set % to a constant value. Where such information is available it
can be integrated into the RRS model by setting the concentration parameters
accordingly. When the concentration parameter is set to a constant value, it
determines the average density of proteins bound to DNA within our model. We
chose 15 as the setting for the concentration parameter and confirmed that results
presented in this work are robust as long as the concentration parameter is set
such that the protein density is realistic. Note that the scaling of this parameter
depends on the scaling of the binding affinity and therefore the absolute value
does not have a direct interpretation.

Intuitively, this probability distribution over all possible configurations should
reflect a number of aspects of enhancer function in a natural way. Overlapping
binding sites will compete with each other, high affinity binding sites will attract
a binding molecule more often, and weak binding sites can exert an effect if they

are present in numbers. Proteins are more likely to interact with the polymerase

if they occupy the enhancer more often. Therefore, a key quantity relevant to the
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3. REGULATORY REGION SCORING (RRS) MODEL

function of an enhancer is the expected number of copies of a given protein that

bind to motifs in the enhancer (T):

er, = 2 p(e) I, (0) (3.7)
ceC

in which Iy, (c) is the number of occurrences of motif M; in configuration c.
This definition is of particular interest because it captures both the specificity
and multiplicity of a binding event of a protein to the sequence in the p(c) and
I (c) terms respectively. A dynamic programming approach is used to compute
each occupancy value. Finally the sequence T is associated with the vector of
occupancy values, that is, ET =< e}, ,---,e}, > and similarly sequence S is
associated with B =< e§ ,--- , e}, >. Our results show that these occupancy
values are length dependent. We divide them by the length of the sequences
to normalise them. Therefore, each of these vectors summarises the combined
specificity and multiplicity that each protein is likely to bind to each of the

sequernces.

3.3 Similarity scores

Our aim in this section is to define a similarity function over the space of vectors
of occupancy values to extract the similarity of a given pair of o-values. Hav-
ing observed o-values from the template sequence, ET, we want to test if the
vector of o-values from the test sequence, E°, has been drawn from the same
distribution or from a random background distribution. The logarithm of motif
o-values in randomly picked sequences from the genome of the species of interest

approximates a normal distribution (see 3.3).
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Figure 3.3: The normal distribution is a fairly good approximation for normalised
and logged o-values. A: o-values for motif M00092 in 1000 randomly picked se-
quences of length 1000. B: motif M00488 with random sequences of length 300.
C: motif M00093 with random sequences of length 3000. D: motif M00696 with

random sequences of length 1700.

m ~ ois . . p 1S = S S _~
[herefore, the probability of a motif o-vector such as E° =< ey, ,--- ey, >
can be obtained from a multivariate normal distribution. For the sake of sim-

plicity, we shall consider an independent multivariate normal distribution. This
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means that the probability of the o-vector ES under the random model is p(E°|R) =
[Ti: pleds, It = priyo = og,), where, up, and op, are the mean and standard
deviation of o-values for motif ¢ in randomly picked sequences. The proba-

bility that ES has been drawn from the same distribution as the template is
p(ESIT) =TI, p(es;,

p= el 0 =og,). We define the RRS score as:

p(E®|T)
RRS(S|T) = o(E51R) (3.8)
The first point to note about this definition is that it is asymmetric but one may
define it as an average to make it symmetric, i.e. RRS(S,T) = (RRS(S|T) +
RRS(T|S))/2. However, it is sensible to work with the asymmetric version, in
particular when comparing two sequences from different species.
The second point is that, in the current version we are using a single sequence
as template. This limits our prior information about the distribution of the o-
values in the template sequence. In other words, for each motif M; we use only
{1 = ey; as the mean and o = o, as the standard deviation of the distribution.
However, if we know that some enhancers are driving almost similar expression
pattern, then it is better to consider these set of sequences as template and
consequently feed more accurate mean and standard deviation of the distribution
into the model.
The third point that makes this definition more realistic and useful is the

contribution of the individual motifs:

_ pleiy,|n = €iy,, 0 = or,)

 ple3|u = pr, 0 =0g,)

(3.9)

for any motif M;, where 1 < i < n. For any test sequence S, one can consider
Equation 3.9 as a function of variable e} with three extra parameters: e}, pr,,
and og,. The following cases illustrate this definition and its usage in the rest of
this paper:

1. if e}, = pg, (see Figure 3.4A), then f (ef,) can be considered as a constant
function with value = 1 (Figure 3.4D). This means that if the expected
number of occurrences of this motif in the template sequence is very close
to the average of its expected number of occurrences in the random se-

quences, then the overall RRS score for the test sequence will be largely
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3.3 Similarity scores

independent of number of occurrences of this motif in the test sequence.
In biological terms, if the test sequence shares a regulatory code with the
template sequence, but also contains additional binding sites, then these

additional sites do not reduce the sequence similarity.

. if el > pg,, then f(ej;) is an increasing function. More accurately, if
we assume that eqj\:,i > A > pg, where A is the intersection point of the
two distribution curves (Figure 3.4), then f(eﬁ,,i) < 1if e;?,,l < Aelse it is
greater than one. This case occurs when the motif is strongly present in
the template sequence. Accordingly, the greater the motif o-value in the
test sequence, the greater the contribution of the motif (Figure 3.4 parts B
and E). Note that a strongly negative RRS score in this case implies poor

presence of the motif in the test sequence.

. Similarly, if e]; < pg,, then f(e3;,) is a decreasing function. In other words,
flef,) > 1, if ey < A (where e}y < A < pg, is the intersection point of
two curves) then the motif will be assigned a contribution greater than
one, otherwise f (ef,,i) has a value less than one, contributing negatively to

sequence similarity (Figure 3.4 parts C and F).
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Figure 3.4: Illustration of the RRS similarity score for an individual motif. There
are three possibilities. A,D: The motif is neither significantly present nor absent
in the template sequence. The distribution of motif o-values in sequences with the
same function as the template sequence (solid line) is estimated to be equal to the
random background (dashed line). In this case irrespective of the motif o-value in
the test sequence, the function f(ef,l) (see Equation 3.9) is constant (D). B, E:
The motif o-value in the template is higher than in random sequences (B), in this
case f(e‘,f,z) is an increasing function (E). C, F: The motif o-value is lower than in

random sequences, indicating significant absence. In this case f(e‘xll) is decreasing

(F).

3.4 Parameter fitting

Given the sequence T and the motif M € M, the model requires tree parameters:
binding probabilities of the motif at each position of the sequence, maximum
number of occurrences of the motif over the sequence 7" and the concentration of
the corresponding factors.

For calculations of binding binding probabilities in this model we used an
implementation of the PWM (see Section 1.1.2) model called BiFa tool (unpub-
lished tool developed by N. Dyer and J. Reid). We should recall that we do not

use predetermined thresholds for binding probabilities, allowing both weak and
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strong factor binding to contribute.
In the following two subsections we will try to clarify how the other two

parameters can be fitted into the model.

3.4.1 Maximum number of occurrences of a motif in a

sequernce

The maximum number of occurrences of the motif M over the sequence T is the-
oretically defined as Jyax = ﬁ where L is the length of the sequence 7" and | M|
is the length of the motif M. However, using these theoretically defined number
of occurrences of each of the motifs might be computationally expensive and one
may like to see how robust the results are with respect to fewer values for Jys.
To clarify this, first we would like to recall that the number of configurations ex-
ponentially increase as a function of number of motifs. To illustrate this further,
consider a simple example where we have a sequence with length 1000bp, a set of
motifs each of which have a length equal to 10bp and also that factors can only
bind in positions 1,11,21,--. ,991, then even in this very simplified example the
number of configurations is equal to 101%°.

In order to see how we can reduce this computational cost, we should remem-
ber that for a given motif M we have Z = )", W(c) = Zj;":; W, (see Notation 6
and Lemma 8), where W7, is the sum of statistical weights over all configura-
tions with exactly j occurrences of M. However, the number of configuration
with exactly 7 occurrences of M exponentially decreases when j increases. In our
simplified example C}M, = 9'® where as C}’ oy = 9° = 1. Consequently W}, is
an exponentially decreasing function of j, that means that for a big enough j, we
may assume that WI{"I] ~ Wffk for any k > j. This is illustrated in Figure 3.5
on page 56 where the logarithm of statistical weight i.e., log W}J‘f’j is plotted as a
function of j i.e., different number of occurrences of the motif M for 10 different
motifs. The sequence in this figure was of length 450pb and it was randomly
picked from the D. melanogaster genome. The motifs illustrated in this figure are
top 10 motifs in Table 4.2 on page 64. Therefore, it can be concluded that for
computations of the statistical weight over all configurations i.e., Z, one may not

require to take maximum number of occurrences of each motif M as ITI}_I’ instead
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any number around 15 will provide him/her with an accurate approximation that

will lead saving computational costs.
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J
Figure 3.5: Illustrated here is the logarithm of sum of statistical weights, in other
words, Wﬁlj as a function of j which is the number of occurrences of the motif M.
This is depicted for 10 different motifs. The sequence used in this analysis was a

randomly picked sequence from theD. melanogaster genome with length 450pb.

3.4.2 Robustness of the concentration parameter

We note that there can be more than one expressed protein species that can bind
to a given motif. In the presence of information on either the number of proteins
species capable of binding to a motif or the concentration of the corresponding

proteins, then Equation 3.1 on page 41 is re-written as:

o T POAIBY |
W =11 sy < ) (3.10)
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where 7(s;,¢;) is the concentration parameter as a function of s; which is the
protein species that recognizes the motif M; and ¢; which is the corresponding
protein concentration (in one point of AP axis). However, in the absence of such

information we assume that the total nuclear concentration of such proteins to
p(M;)
p(M;)
as the average density of proteins bound to DNA within our model. We also note

be equal for each motif and set to a constant value, that can be considered

that the scaling of the this parameter depends on the scaling of the binding affinity
and, therefore, the absolute value does not have a direct interpretation. We chose
15 as the setting for concentration parameter and confirmed that (see Figures 3.6
and 3.7 on pages 58 and 59 respectively) the result presented in this project is
robust as long as the concentration parameter is set such that the protein density
realistic. Our observations show that this can range from 10 to 100. Intuitively,
protein density close to zero is meaningless and extremely high protein density
can mean the system reaches a saturated point, and also, we should note that

proteins make only a fraction of the cell volume.
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Figure 3.6: The RRS scores of a functional subregion of D. melanogaster vs
its orthologous in D. simulans, D. sechellia and D. yakuba using 6 different con-
centration parameters which are 5,10, 20,50,100 and 5000 are illustrated. Note
that the numbers in both x and y axes are log transformed. More information
about these sequence can be found in Subsection 5.3.1. As we can see, the RRS
is not considerably varying for any concentration from 10 to 50. It worth point-
ing out that, theoretically, the RRS scores for a concentration close to zero is not
defined. The RRS scores for big concentration are statistically less significant as
there are some random sequences obtaining higher scores, when the subsequence of

D. melanogaster compared to 1000 randomly picked sequences from D. simulans.

In Figure 3.7 on page 59 we are illustrating the RRS scores of a subregion
of D. melanogaster (BiFa-Only see Subsection 5.3.1 for more details about this
sequence) vs its orthologs from D. simulans in 6 different concentrations (green
vertical lines) and at each case the subsequence from D. melanogaster is compared
with 1000 randomly picked sequences from D. simulans to show the statistical

significance of the RRS scores at that concentration.
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Figure 3.7: RRS scores of a functional subregion of D. melanogaster vs its or-
thologous sequence from D. simulans at concentrations 5, 10, 20, 50, 100 and 5000.
Green vertical lines show to these scores. The statistical significance of each score
can be seen when compared to the scores of D. melanogaster vs 1000 randomly
picked sequences form the D. simulans genome, computed with the corresponding

concentration parameter.
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3.5 Conclusion

We have presented an alignment-free method for detection of functional conserva-
tion of the regulatory sequences based only on occupancy level of some transcrip-
tion factors of interest. It has been designed such that it is less data-dependent
with a wider range of applications and more conclusive results. This model can
be used for comparison of regulatory sequences where sequences are functionally
related but are not orthologous (see Chapter 4). The RRS can also be used for
comparison of regulatory sequences from different species where they have under-
gone a substantial evolutionary divergence (Chapter 5). Finally, we would like
to close this chapter by listing some finer points and shortcomings of our model

where further development may lead to a more accurate model.

e In the current version of the RRS we use a set of known TF motifs, fo-
cusing the sequence analysis on validated motifs. However, there may be
yet unknown binding motifs relevant to the function of the sequences anal-
ysed. We could introduce some complementary sequence patterns into the

analysis to test for a possible contribution to sequence similarity.

e There are further sources of prior knowledge that could be fed into the
analysis in principle. For example, we are assuming equal concentrations
of all regulators even though these will vary in different cell types. Some
motifs belong to particular pathways which may be of particular interest
in some cases. It would be possible to define a weight for such subsets of
motifs.

e Within the current version, the synergy between pair of motifs is ignored,
but there are some reports that regulation of some fly enhancers requires
synergy between pairs of motifs (65).

e Rather than using a single template sequence, it would be possible to use
multiple template sequences with similar expression pattern. This should

help to define a more accurate distribution of motif occupancy levels.

e Given the key regulators of an enhancer and concentration of factors at
different position of the AP axis, the RRS can be modified in a similar
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way to the regression-based model (see 32 or Subsecection 2.1.3.1 for more
information) to predict the expression profile of the enhancer. For this, one
may employ the same regression function and use the expected number of
occurrences of each motif (i.e., 0-value) instead of the motifs score defined
in regression-based model. This might help lessening the data dependency
of the regression-based model, where for calculations of the motif scores one
need a cross-species comparison. Furthermore, a direct comparison of this
modified RRS with existing models that are predicting expression profiles,
may help further improvements of any of these models and may provide

more insights into the regulatory mechanism.
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4

Functional Links Between
Non-Alignable Enhancers

In this chapter we demonstrate how the RRS can be used to detect functional
links between a set of enhancers that do not show any alignment conservations
(non-overlapping enhancers from D. melanogaster). These type of applications
might be of great importance in situations where a set of co-regulated genes in a
single species is given and it is aimed for searching for some subregions that are
likely to mediate similar expression profiles.

In what follows, after a brief introduction, we first give more details of the
data sets that were used for this analysis. We then present the results at each
corresponding subsection.

It is worth pointing out that a slightly modified version of this chapter has
been published in (38).

4.1 Introduction

Our goal in this chapter is to evaluate if the RRS can distinguish function-
ally/evolutionarily related sequence pairs (positive sets) from the sequence pairs
randomly picked from the genome (negative sets). For this, we apply it to the
same fly data sets as used in (31) as is explained in Section 4.2.1. We first demon-
strate that the distribution of alignment significance levels, or e-values in short,

of positive sets is not significantly different from the distribution of alignment
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e-values of negative sets. Using RRS however, there are 40 pairs of sequences
(edges in Graph 4.3) whose scores are significantly greater than the scores ob-
tained using random pairs. The statistical significance of some of these scores
are highlighted. We show that according to the RRS results, a subset of these
40 enhancers are regulated by the regulator BCD (subgraph highlighted by rect-
angles in Figure 4.3). This finding is of particular significance as it has been
experimentally confirmed by (52). Finally, we do some analysis firstly to show
the contribution of strongly absent motifs to the similarity of a pair of sequences
and secondly to highlight the substantial contribution of weak binding sites in

our model scheme.

4.2 Discussion and results

4.2.1 Data sets

This study uses four data sets of experimentally confirmed fly enhancer sequences
(same data sets as are used in (31)): 82 FLY_BLASTODERM, 23 FLY_PNS, 9
FLY TRACHEAL and 17 FLY_EYE enhancers. For each of these positive sets we
associate a corresponding negative set of sequences randomly picked from non-
coding regions of the same genome. Thus each real enhancer had a randomly
picked counterpart of the same length (Table 4.1). To establish the discriminatory
capabilities of the RRS, scores were calculated for each possible pair of sequences
in the positive sets and in the negative sets. A comparison of these two sets of
results was done by sorting all scores and then looking at top K = ﬂ%——l) pairs,
where & is the number of enhancers in that set. For the set of TF motifs, we used

67 insect-specific PSSMs available in the TRANSFAC database, (47). The full
list of the motif-IDs is presented in Table 4.2.
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4. FUNCTIONAL LINKS BETWEEN NON-ALIGNABLE
ENHANCERS

POSITIVE SET(Real) NEGATIVE SErI‘(Random)i

BLASTODERM
EYES
PNS

TRACHEAL

82
17
23
9

82
17
23
9

GLOBAL

131

131

Table 4.1: Sequences used in this analysis

Table 4.2: List of motifs used throughout work.

Motif ID | Length | Gene Consensus

M00009 8 ttk GGTCCTGC

M00012 9 cf2 RTATATRTA

M00013 9 CF2 GTATATATA

M00016 17 E74 NNAYCCGGAAGTNNKN
M00018 19 Ubx NNNNNNTTAATKGNNNNNN
M00019 16 Dfd NNNNNNTTAMYNNNN
M00020 12 Ftz ANWGCAATTAAG
M00021 10 Kr AMYGGGTTAW

M00022 10 Hb SMANAAAAAA

M00028 5 Hsf AGAAN

M00043 11 Dl GGGTTTTTCCN

M00044 14 Sn ASCACCTGTTNNCA
M00060 13 Sn NNRACAGGTGYAN
M00067 14 H(d) NNGGCACGCGMCNN
M00090 14 Abd NSNTTATGGCNNN
M00091 18 BR-C WNRTAATARACAARWNWN
M00092 16 BR-C NNBTNTNCTATTTNTT
M00093 15 BR-C NANTAAACTARANNN
M00094 13 BR-C WWWRTAAASAWAA
M00110 16 Elf NNKWNYGGTTTTGWAN
MO00111 9 Cf1 GGGGTCAYS

M00112 9 Cf1 GGGGTCACG

M00120 11 DI HGRGAAAANCYV

M00140 8 Bed SGGARRAA

M00163 15 HSTF AGAANAGAANAGAAN
M00164 15 HSTF AGAANAGAANNTTCT

Continued on next page
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Table 4.2 — continued from previous page

Motif ID | Length | Gene Consensus = |
MO00165 15 HSTF AGANNTTCTAGAAN

M00166 15 HSTF NTTCTAGAANAGAAN

M00171 16 Adf CCGCYGCYGYNGCCGV
M00234 13 Su ANYGTGGGAAMCN

M00259 21 STAT NNNNNTTTCCSGGAAANNNNN
M00266 16 Croc WANAATAAATATNNNN

M00270 13 GCM NNACCCGCATNNN

M00283 16 Zeste NNWNTTGAGTGNNNNN
M00362 11 TCF-A CTTTGATCTT

M00455 10 dri NNRATTAATN

M00461 15 Ovo NNNWGTAACNGNNNN

MO00487 11 mtTFA KNCTTATCNNN

MO00488 14 DREF ASCTATCGATADNY

M00629 10 Eve TNWSSYCTGC

MO00662 7 SGF TTRTKCA

M00666 9 Sry CGCATCWCT

M00679 8 Tl AAGTYWAR

M00696 T En YCAATTA

MO00710 8 Zen WCATTWAM

M00723 11 GAGA ASWGAGMGNRA

M00923 21 Adf VCGCYGCMGYCGCGTGMCNGCG
M00934 11 Zeste NWNTTGAGTGN

MO00951 8 Grainyhead = ACYGGTTT

MO01083 10 Abd NNAAATNNNN

MO01084 12 Antp AAWAAMMATWAN

MO01086 15 BYN ARAAWTCRCACTTWN

MO1087 23 CEBPA WNWWNTKTGBVATCAKYYNTNNN
MO1088 12 Deaf GYBMTTCGGNTG

M01089 12 Kr NNAACCCTTNN

MO01090 8 Mad GMGACGVN

M01091 7 Prd AAATTRY

M01092 16 TCF RNNNATCAAARNNNNN
M01094 7 Abd CATAAAA

M01095 8 Ap NNNATTDT

MO01096 7 brk GCGCCAG

MO01097 10 cad NNNTTTNYGN

MO01098 16 Cfl-a BWKAATNAATTNAWAN
M01099 18 Kni NNNNNAAANTGGRNNNNN

Continued on next page
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ENHANCERS

Table 4.2 — continued from previous page

Motif ID | Length | Gene Consensus

MO1101 8 Ovo TAACRGTW

MO01102 7 Sd CATTYCN

MO01103 14 Twi CATRTGTKNHGCNN

4.2.2 Statistical links between sequences

We first used a local sequence alignment tool from the NCBI (http://www.ncbi.
nlm.nih.gov/blast/bl2seq/wblast2.cgi; 'Blast 2 Sequences’) as well as an im-
plementation of the Smith-Waterman algorithm (the water tool from the EBI;
http://www.ebi.ac.uk/Tools/emboss/align/index.html) to show that these
sequences are not alignable. The best hit found over all of these sets for BLAST
had an e-value of le-08 corresponding to a stretch of 23bp from a pair in the
negative BLASTODERM set (4.3). Figure 4.1 shows the results for both algo-
rithms in BLASTODERM positive and negative sets. Therefore by looking at
only the alignment scores, one cannot say if a particular pair is likely to be from

the positive set or negative set.

Positive Set Negative Set
Set Name e-value (length of aligned subsequence) e-value (length of aligned subsequence)
BLASTODERM Te — 06 (19) le — 08 (23)
EYE 0.003 (13) le — 04 (15)
PNS 3e — 04 (20) 5¢ — 05 (17)
TRACHEAL 0.022 (13) 0.003 (18)

Table 4.3: This table shows the alignment significance levels (e-values) of the best

hit for each pair of sequences within the positive and negative sets.

The functional conservation of these sequences presents a very different pic-
ture. To examine this, we looked at the RRS scores for all pairs of sequences
in any of both positive and negative sets. For instance, in BLASTODERM en-
hancers, 43 out of 50 top scores belong to pairs from the positive set. The best (log
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Figure 4.1: Distributions of alignment scores for BLAST

d. ¥ R

Similarity(Smith-Waterman)

and Smith-Waterman

are not significantly different between positive and negative sequences. (Al and
A2) The log of e-values of BLAST applied to BLASTODERM positive set (red)

and negative set (blue). (Bl and B2) Scores of Smith-Waterman algorithm applied

to BLASTODERM positive (red) and negative (blue) sets.

(C1 and C2) Same as

B1/B2 but for sequence similarity instead of scores (as defined by water-tool).
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of) RRS score was 9.64 corresponding to the comparison of eve_stripel (length
801bp) with oc.otd-186 (length 187bp). To check the statistical significance of
the RRS score, we compared eve_stripel with 1000 sequences randomly picked
from the longest chromosome of the D.melanogaster genome, with length ranging
from 100bp up to 3000bp. Interestingly, when comparing eve_stripel with these
random sequences, no pairs gave an RRS score with log greater than 0. The
result of this analysis is illustrated in Figure 4.2A in which the vertical dashed
line is a reference line to show the position of the RRS score from eve_stripel
vs oc_otd-186 and the black histogram is the distribution of the RRS scores of
eve_stripel vs 1000 randomly picked sequences.

We went on to consider what motifs contribute to the functional conservation
that is seen. If the log of the score for a specific motif is greater than 1 (see
Section 3.3), this indicates a significant similarity between the presence of the
motif in the template and test sequence either by multiplicity or by specificity.
An RRS score around zero is expected for a random DNA sequence and scores of
less than —1 indicates a significant dissimilarity between the presence of the motif
in the two sequences. RRS scores of all 67 insect motifs individually computed.
Figure 4.2B depicts the distribution of these scores. As we can see, there are 3
factors that are assigned scores greater than 1. These factors are (in descending
order): Bicoid (BCD), Krippel (KR) and fushi tarazu (FTZ). This means that
according to our model these three factors are main functional similarity-makers
of this pair of enhancers. In comparison to the background sequences, all of these
three factors are strongly presented in both of these sequences (see Section 4.2.4).
This finding is of particular significance as it is supported by (52) where they show
both computationally and experimentally that the regulation of the evel plus 10
other CRMs are strongly dependent to the regulator BCD. This suggests that
the BCD is a regulator for oc_otd- 186, too. We will come back to this point in

more detail in Section 4.2.3.

4.2.3 Identification of enhancers with similar function

In order to make a more global analysis of these enhancers rather than analysing

each individual set of enhancers we put all 131 enhancers into one set (referred to

68



4.2 Discussion and results
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Figure 4.2: A: Illustrating the statistical significance of the RRS score of
eve_stripel vs oc_otd-186. The dashed vertical line shows the log of RRS score
from this pair which is 9.64. The black histogram shows the distribution of log of
RRS scores of eve stripel vs 1000 randomly picked sequences from D.melanogaster
longest chromosome. B: Depiction of the contribution of individual motifs in the
RRS scheme. Shown here, is the distribution of the individual motif scores in com-
parison of eve_stripel vs oc otd-186. Three strongly positively contributed factors
that are obtaining scores above 1, in descending order, are: BCD, KR and FTZ.
The factor that is negatively contributing to this scheme i.e., obtaining a score less
than —1 is SRY_S
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as G_Positive set). Similarly all 131 randomly picked counterpart sequences were
placed into another set called G_Negative set. The RRS scores were computed
and a directed graph was generated in which each node is an enhancer from the
G_Positive set and each edge represents a high RRS score for two corresponding
nodes. The threshold for inclusion of edges was set above the maximum score
within the G_Negative set (equal to 3). Therefore, only enhancer pairs that are
scored above any pair from the G_Negative set are shown. The resulting graph
(see Figure 4.3) shows the RRS prediction of the functional and/or evolutionary
relationship of the enhancers associated to the top 43 scores from the G_Positive
set. From this graph, we can see that only 34 enhancers (nodes) are associated
to these 43 scores (edges). Thus some of the enhancers are paired together more
often than would be expected by random chance alone. For instance HLHg* is
paired with 6 other enhancers (p < le — 04, p-value of binomial test for one node
out of 131 to be part of 6 or more edges). The presence of a large number of
high-scoring edges and the dense connectivity of the graph confirm that the RRS
uncovers statistically significant structure in this data set.

We might want to think of the subgraph highlighted by rectangular nodes as a
core subgraph because: firstly, all four of the nodes are from BLASTODERM en-
hancers, secondly it contains a pair that gets the highest score in BLASTODERM
enhancers and thirdly it satisfies a transitivity property. Focusing more deeply
on this subgraph reveals that, according to our analysis, the factor Bicoid (BCD)
is the most strongly contributing factor in the functional similarity of any pair in
this subgraph. This significant finding is experimentally supported by (52) where
the regulation of the eve_stripel, eve_stripe2 and hstripe0 and 8 more CRMs are
reported to be strongly dependent on the activator BCD. They also showed that
many of the BCD-dependent CRM contain a cluster of the gap protein Krippel
which is again in a high agreement with ours (see Table 4.4) in that in all of these
five comparisons KR is either the second or third strongly contributed factor. We
must recall that according to our model, a motif can obtain a high score either
by its strong presence (because of multiplicity or specificity) or by strong absence
in both sequences. It is also important to note that the five enhancers in this
subgraph are regulated by a set of common factors (as colour-coded in Table 4.4),

and this might be the reason that RRS can almost distinguish it as a subgraph.
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Table 4.5 provides similar results for the subgraph with octagon shaped nodes
distinguished by the RRS and a set of common motifs that we predict to regulate

that subgraph.

Pair of Enhancers Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
eve_stripel vs oc_otd-186 ISFTZ_01 ISHSF 03

eve_stripe2 vs oc_otd-186 ISFTZ.01 I$HSF_03

hstripe0 vs oc_otd-186 - | ISHAIRY .01

hstripe0 vs eve_stripel ISGCN_01 ISEVE_Q6
eve_stripe2 vs eve_stripel ISFTZ.01 [SGCNL0] I$TTK69.01

Table 4.4: The top five factors that are strongly contributing to the functional

similarities of each pair in the subgraph highlighted by rectangles in Figure 4.3.

Pair of Enhancers Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
hstripe5 vs tllk10 ISADF1.Q6

AbdBIAB vs tllk10

dppdlmel vs tllk10 ISADF1_Q6 :
clusteratb5 vs tllk10 I$BRCZ3 01

Table 4.5: The top five factors that are strongly contributing to the similarity of
the enhancers in the subgraph highlighted by octagon shape (see 4.3). Factors are

ordered by their contribution. Colour-coding represents factor identity.

Overall, these findings reveal that our model indeed captures some of the core
principles governing functional conservation of modules and hence performs much

better than random expectation.
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Figure 4.3: This graph represents the functional relationship of some of the top

scored enhancers from the G _Positive set. Each node represents an enhancer and
Enhancer, — Enhancer, means that the log(RRS(Enhancer,, Enhancery)) >
3. The threshold 3 is to filter out other scores that are less than a score from
the G_Negative set. Asterisks indicate abbreviated names. Full names of these

enhancers are provided in Table 4.6 on page 73.
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Enhancer Abbreviated Name

Enhancer Full Name

Slam
clus
rhom
HLHB
obp
Sal2
m4H
Esp
HLHg
bTub
tldP
prdZ
ftzZ
Ubx
hs3
chn
S0SO
serv
ato
Poxn
runsl7
Abd5
Sipl
eves2

evesl
hs0

salm salm TSE_ TRACHEAL
cluster_at 55C_CE8016

rho_ MLE-long TRACHEAL
HLHmbeta _enhancer
Obpbba_prom

salm _sal242S PNS

m4 HZm4

EsPIPNC

HLHmgamma HZmgammaKX
betaTub60D_beta3-14/vml
told Promoterfusionright
prdzebraenhancer
ftz_zebra_element
Ubx_abx17

h_stripe3 ET38

chn_SOP

so.s0l0_EYE

Ser IV-3.0. EYE

ato_RE

Poxn_9

run_stripel?

Abd-B_IAB5

slpl slp_B

eve_stripel2

eve_stripel

h_stripe0

Table 4.6: Abbreviated names and full names for enhancers highlighted by star

sign in 4.3 on page 72.
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4.2.4 Contributions of motif absence and weak binding

sites

We are interested in whether the strong absence of a motif in a pair of sequences
can underly the statistically significant similarities we observed. We looked for
motifs that are associated with a relatively high RRS score but whose associated
o-values are lower than the o-values of the motif in random sequences. In Section
3.2 and Figure 3.4 we considered two situations where a motif is assigned a high
RRS score because the motif is strongly present or it is strongly missing in both
sequences. The strong presence may be more intuitive and it is illustrated in
Figure 4.4 (parts A1 and A2) where we can see both RRS scores for any of the
67 used motifs in the comparison of the eve_stripel and oc-otd-186 (Al) and
also the normalised vectors of o-values for eve_stripel in red and oc_otd-186 in
blue (A2). The yellow base line is to show the o-values from the background
(random sequences). Motifs 24, 8 and 7 associated with the top three RRS scores
(in order) in eve_stripel vs oc.otd-186 comparison. The reader can see from
A2 that for all of these three motifs, the motif o-values are considerably higher
than the background. This is called strong presence of motifs in both sequences.
However, the interesting part is shown in parts B1 and B2 of Figure 4.4 where
first we can see again in B1 the contribution of the individual motifs to the RRS
scores of Ubxabx17EYE vs tllD32 and in B2 the o-values from Ubxabx17EYE in
red, tllD32 in blue and motifs that are obtaining the top three RRS scores. We
see that all three motifs are associated with o-values lower than the background
(strong absence of motifs) but these contribute to the RRS score and, therefore,
to the recognition of functional conservation.

The contribution of weak binding sites to the RRS scores can be seen in Figure
4.2B,C. The log of RRS score for eve_stripel vs oc_otd-186is 9.64. This is the sum
of scores of each motif. The four motifs making the strongest contribution only
contribute about half of this score (Figure 4.2C) while any RRS score above 0 is
still significantly different from noise as none of the random sequences evaluated in
Figure 4.2B had a score above 0. Therefore, the similarity of these two enhancers
cannot be solely attributed to strong binding sites, but is influenced significantly

by contribution of other motif even weak binding sites. This is consistent with
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previous findings in (62), the authors hypothesis the effect of weak binding sites

in functional similarity of two sequences.
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Figure 4.4: Al shows the log of RRS scores for each of the 67 insect motifs that
were used for the comparison of eve_stripel vs oc_otd-186. Motifs 24, 8 and 7 (in
descending order) are the three top contributors to this comparison. A2 illustrates
the o-values of these motifs from eve stripel (red) and from oc_otd-186 in blue.
The y-axis is the number of standard deviations that an o-value deviates from the
mean. The yellow base line shows the background o-values. The vertical lines
highlight the positions of the top three motifs by RRS score. The main feature of
Al and A2 is that motifs with high RRS scores (A1) have o-values considerably
higher than background level (A2), indicating strong presence of the motifs. Bl and
B2 show an example where strong absence of motifs contributes to the statistical
link between the sequences. B1 shows the individual contributions of each of the
motifs in the comparison of Ubzabrl7TEY E with tllD32. In B2 the o-values of
the motifs from Ubzabzl17EY E are shown in red and those from tl1D32 in blue.
The three motifs that contribute strongly to the RRS scores (motifs 17, 2 and 3 in
descending order) all have o-values less than background. This is referred to as a
strongly absent motif.,
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4.2.5 Comparison of performance of RRS against some of

the existing models

In this subsection we will present a comparison of RRS performance versus top
three best performing models that were benchmarked by Kantorovitz et al. (31).
The best performing model in that benchmark was the D2z model that we re-
viewed it in Chapter 2, however we have not reviewed the other two models i.e.,
p.a.5.3 and ed.6. For more details about these models the reader is referred to
(31). We would also like to draw the reader’s attention to the point that a direct
comparison of our model with data intensive models is not possible as they are
not defined as sequence comparison tools, but they try to predict qualitative gene
expression patterns from the regulatory modules.

In order to assess the performance of our model versus these three models,
we took the same approach as to Kantorovitz’s in (31). In other words each
pair of sequences in BLASTODERM positive set was compared by any of these
four models, and so was each pair in BLASTODERM negative set. That is 3321
comparisons in each of the sets from each of the models. It was then assessed
if the sequences in the positive set score higher than sequences in the negative
set. This was done by sorting scores from all pairs, whether they were from
the positive set or the negative set. Then we look at the top 300 scores and
counted the number of scores from the positive set as correct predictions for any
of the models. This analysis was repeated for the three other sets described in
Subsection 4.2.1, i.e., EYES, PNS and TRACHEAL and we obtained almost the
same results as to BLASTODERM that has been described here. Figure 4.5 on 77
shows the results of this comparison.

From this analysis, one may draw the conclusion that our model is not out-
performing the D2z model. It is counted as the second best performing, although
competing with best performing model. Regarding to this conclusion, it can be
argued that in D2z model, the similarity of a pair of sequences is based on the
distribution of all possible 6—mers 4096 words, whereas in our model the simi-
larity of a pair of sequences is based on the distribution of only 69 meaningful
motifs. Therefore, this comparison is not a fair comparison. we should acknowl-

edge the idea from the examiners of this thesis for a more meaningful comparison
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Figure 4.5: Performance of similarity scores form RRS, D2z, p.a.5.3 and ed.6
applied on Fly BLASTODERM.

as a future direction. That is, by computing the number of correct predictions
of RRS using different random subsets of our motif set, one may compute how
the number of correct predictions varies as a function of number of motifs. Per-
forming this analysis with a big enough number of random subsets will assure
that the variation in number of correct predictions is not a consequence of some

strongly contributing motifs in a given subset.

4.3 Conclusion

We have demonstrated that our model can be used for comparison of regulatory
sequences where sequences are functionally related but are not orthologous. For
statistical validation of the RRS scores, the sequences that obtained top scores
were compared with 1000 randomly picked sequences and showed that it is highly
unlikely to get such high RRS scores just by chance. We have shown that the
RRS can significantly detect the functional and/or evolutionary similarities of the
regulatory sequences. In particular, the RRS can categorise some enhancers that

are regulated by a set of common factors, a result that was in strong agreement
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with experimentally validated reports. Based on the predictions of our model,
we have proposed the hypothesis that the strong absence of a motif in a pair of
sequences might be a feature for functional conservation.

In this analysis we used a set of high quality fly motifs that were available at
the time of the analysis. However, as a future direction one may conduct similar
analysis with a bigger set of motifs, for instance, vertebrate motifs. In addition,
there might be unknown binding motifs relevant to the function of the sequences.
Therefore introducing some complementary sequence patterns into the analysis
to test for possible contribution to sequence similarity can be another option for

further development of the model.
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Prediction of Functional Regions
of a Fly Enhancer

It is widely believed that the targeting specificity of the projection neurons (PNs)
in the fly olfactory system is controlled by a transcriptional code. However,
the underlying mechanism is not well understood and according to our current
knowledge only a few of the key regulators of this mechanism have been identified
(37; 70 and 35). On the other hand, it is well-known that the structure of the
antennal lobe (AL) is highly conserved across Drosophila species (53 and 16).
Therefore, one may hypothesize that an enhancer region that drives an expression
pattern in a subset of PNs in D. melanogaster is likely to have a similar function
in other Drosophila species.

In this chapter, we will present our in silico predictions of functional sub-
regions of a fly enhancer region. According to these predictions, our collabora-
tors at Stanford University (Maria Spletter and Liqun Luo) identified putative
boundaries of the subregions. Then to test these predictions and dissect enhancer
function, they generated some deletion constructs within the enhancer region.

Throughout our analysis, three approaches were tried: an alignment-based
method, a motif-based method and our recently developed alignment-free method.
The alignment-based method identified a region that was well conserved between
some of the Drosophila species. The motif-based method revealed four regions
with a high density of motifs. Some initial experiments based on these iden-

tified regions from the alignment-based and motif-based approaches raised the
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requirement of predictions of shorter subregions. The final detailed predictions
of these subregions were made by the RRS, our innovative alignment-free model.
We show that the RRS can detect the orthology between 10 Drosophila species.
Three of these orthologous sequences were assigned statistically very significant
RRS scores. The top eight predicted key regulators of these three orthologous
sequences are presented. We also demonstrate how one of these orthologous
sequences is used to predict functional subregions within the D. melanogaster
enhancer.

It is also shown that our model can construct the phylogenetic tree of 10
Drosophila species with a high level of accuracy from only the orthologous regu-
latory sequences of these species and distributions of 67 input PWMs.

5.1 Introduction

It is widely accepted that the precise connectivity of neural circuits (in the ol-
factory system) is mainly regulated by transcription factors that determine the
particular set of guidance factors a neuron expresses (51 and 56). However, very
little is known about the underlying transcriptional regulation and the identity
of the main regulators (transcription factors).

We are aiming to provide new insights into this poorly understood area by
predicting functional subregions of a D. melanogaster enhancer region that are
likely to drive expression in subsets of PNs.

For this, we will make use of our understanding of the mechanism of the
very well-studied fly olfactory system. In the fly olfactory system (see Figure
5.1), about 1300 olfactory receptor neurons (ORNs) are converged into about
50 glomeruli (~ 30 : 1). Those ORNs that are expressing the same olfactory
receptor (OR) are converged into a single glomerulus. These 50 glomeruli are
diverged into about 150 PNs (~ 1 : 3). In other words, each PN belongs to one
of 50 unique groups based on which glomerulus they are connecting to. These
cell types (groups) are determined by genes that they express. Expression of the
corresponding genes, in turn, is regulated by many factors that bind a regula-
tory sequence (usually) upstream of the transcription start site. The regulatory
sequence upstream of one of these genes (i.e. the oaz gene) is called GH146-Gal4

80



5.1 Introduction

enhancer region. GH146-Gal4 is a P-element insertion 290bp off the transcrip-
tion start site of the oaz gene located on chromosome 2R of the D. melanogaster
genome (see Figure 5.4 on page 89). GH146-Gal4 labels around 90 of the 150 PNs
in the AL and displays a relatively stable expression pattern in three lineages of
PNs called anterodorsal, lateral and ventral (further details about GH146-Gal4
can be found in (29) and (71)). The enhancer region of our interest that is known
to drive expression in these 90 PNs is just upstream of the GH146-Gal4 inser-
tion point and therefore we call it GH146 enhancer region or GH146 enhancer in
short. Therefore the fly AL is a well-studied system in which the identification
of enhancer regions that are driving expression patterns in PNs can be assayed

from the expression of subsets of PNs.

(®)

Figure 5.1: Illustrated here is a simplified schematic of the fly olfactory organs
and its mechanism. (A) Olfactory organs are depicted in red. The upper struc-
ture contains about 1200 receptor neurons, while the maxillary palp (the bottom
structure) contains about 120. (B) A simplified schematic cartoon of the olfactory
mechanism showing how ORN are converged into a glomerulus and how glomeruli
are diverged to higher brain centres such as mushroom bodies and lateral horns.

lustration has been taken from (27).
One way of gaining genetic access to different classes of PNs is assembling a

collection of Gal4 enhancer trap lines that label a subset of PNs. But the small

soma size (cell body) of PNs and limited amount of tissue precludes biochemical
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methods, such as chromatin immunoprecipitation and its many variations, mak-
ing it biologically difficult to use PNs as a model to investigate enhancer elements
(see 71). Therefore, Bioinformatics becomes an alternative potential approach to
the problem.

This project was a close collaboration with our experimental collaborators
and is still ongoing. We hope that these predictions in combination with some
additional experiments will provide new insights into rules of enhancer function
in PNs and identification of some of the key regulators. One may consider this
chapter as a bioinformatical counterpart of Chapter 4 in (71).

This chapter is mainly devoted to our in silico predictions of functional sub-
regions of GH146-Gal4 enhancer region that were used by biologists to identify
putative boundaries of enhancer regions. Some deletion constructs in the GH146
enhancer region were made to test our predictions. The experimentally evaluation
of these predictions is still ongoing and not fully completed.

In the following, we will refer to conserved regulatory sequences (detected
by the alignment-based ReMo algorithm, see Subsection 5.2.1) as ReMos and
regions detected by the motif-based tool (binding factor analysis tool, see Sub-
section 5.2.2) as BiFa regions. A pair of sequences that obtains a statistically
significant RRS score, will be called functionally conserved. The reader may
note that in this context, 'regions’, ’subregions’, ’subsequences’ and ’intervals’

are considered synonyms.
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5.2 Methods

This study was mainly based on regulatory elements of the GH146 enhancer. This
sequence is about 4kb long, located upstream of oaz and is believed to contain
most of the regulatory elements (see 71).

Identification of the homologous regulatory sequences between Drosophila
species was done based on the fact that the oaz gene is present in all 12 Drosophil-
idae species (BLAST on http://flybase.org/blast/ was used). However, due to
high level of repetitive elements upstream of the oaz gene in D. persimilis and
D. wilistoni, these two species were excluded from the analysis. Figure 5.2 on

page 83 shows the evolutionary relationship of the fly species.
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Figure 5.2: Phylogenetic tree of the fly species. The divergence period for the

Drosophilidae species is estimated about 50 million years.

As the first series of experiments, three constructs were made by our col-
laborators and the expression pattern driven from the corresponding sequences
were evaluated (more details about these analysis can be found in 71). These
constructs were called GH146-Full, ReMo-Only and BiFa-Only. The reasons of
making (and also naming of) these constructs are provided in the following.

The first construct i.e., the GH146-Full construct included the whole 4kb

GH146 enhancer (see the bottom blue rectangle in Figure 5.4 on page 89). The
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experiment based on this construct confirmed that this sequence contains most of
the key binding sites (the experiment showed the full expression pattern in PNs
see Figure 5.5:D1 on page 89).

Thus our task was to see if we can predict some functional subregions of the
D. melanogaster GH146 enhancer that are likely to drive the same expression
pattern as the whole GH146 enhancer. For this, three methods were applied: an
alignment-based algorithm called the ReMo algorithm, a motif-scanning based
model called the BiFa tool and the RRS, our newly developed alignment-free
method. The two former models are unpublished methods developed by Sascha
Ott and John Reid.

In the following subsection we provide the reader with a brief outline of the
ReMo algorithm. For a more comprehensive description of this algorithm, the
interested readers are referred to Appendix A where he/she can see that this al-
gorithm is more sensitive than its (publicly available) counterparts, in particular,

for detection of short conserved stretches of sequences.

5.2.1 Outline of the ReMo algorithm

We should recall that within this project, a pair of genomic sequences is called
alignment-conserved or sequence-conserved if their optimal alignment has a sta-
tistically significant score and the sequences are not repeats. The algorithm
employed to comprehensively detect alignment conserved non-coding regions at
the oaz locus as potential conserved regulatory modules essentially computes an
optimal alignment for every pair of 100bp-fragments, comparing D. melanogaster
to each of the other Drosophila species. For instance, when comparing two se-
quences of 100kb the algorithm compares in the order of 10*° pairs of 100-mers.
The statistical evaluation of sequence alignment scores is greatly simplified by
this approach as all aligned sequences have the same length.

The analysis based on the ReMo algorithm identified four well-conserved reg-
ulatory modules that were called ReMos A, B, C and D positioned 3713 — 4637bp
upstream of the oaz gene (ReMo-C was significantly conserved between all 10

species). Therefore, the second construct called ReMo-Only was made by our
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collaborators that included ReMos A, B, C and D (ReMos are shown as golden
rectangles in Figure 5.4, the ReMo-Only construct is seen as a blue rectangle).

5.2.2 Outline of the BiFa tool

The BiFa tool is an implementation of a PWM model (see Subsection 1.1.2),
in which a 0-order Markov model was used to evaluate matches found in GH146
D. melanogaster against the background. The likelihood of binding in each species
was evaluated individually and the geometric mean to aggregate likelihoods across
species was used. Briefly, sequences were scanned using fly and vertebrate PWMs
extracted from the TRANSFAC database. A PWM of length L induces a dis-
tribution over L-mers that models binding sites for the transcription factor(s) it
represents. Figure 5.3 on page 86 shows and example output from the BiFa tool.

The BiFa tool analysis revealed four regions with high density of factors in
the D. melanogaster GH146 enhancer region. These regions were called BiFaA,
BiFaB, BiFaC and BiFaD (yellow rectangles in Figure 5.4 on page 89). BiFaA
overlapped with the ReMo-Only region. A subsequence positioned 1300 — 3300bp
upstream of the oaz gene in D. melanogaster, consisting mainly of the other three
regions (i.e., BiFaB, BiFaC and BiFaD) was called BiFaOnlyDmel. For the sake of
shortness we will call it BiFaDmel in this text (see purple rectangle in Figure 5.11
on page 101). The homologs of this sequence in other species named similarly, for
example, in D. simulans the homologous sequence is called BiFaDsim. Therefore,
the third construct aimed to test the significance of BiFaDmel and was called

BiFa-Only construct (see blue rectangle in Figure 5.4 on page 89)
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Figure 5.3: An example of the BiFa tool output that depicts the distribution of
the fly and vertebrate motifs exported from the TRANSFAC that are obtaining a
score above a threshold in ReMo C. In this figure the x-axis is the nucleotides from
5 to 3'. The rectangles in the figure are depicting motifs that are scoring above
the threshold. Y-axis shows the significance of the occurrence of the motifs. For
instance, the LEF1TCF1 factor with y-component 17536 means that in a sequence
with length 17536 one may expect to see one occurrence of this motif. If a set of
motifs are known (to the BiFa tool) to belong to the same signaling pathway, they
are colour-coded. In this figure factors corresponding to the top two scored motifs
are illustrated. Diamonds are to highlight motifs that are conserved in the same

order in the other species.
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5.3 Discussion and results

A set of initial experiments based on the three above mentioned constructs re-
vealed that GH146-Full drives a full expression pattern in PNs (Figure 5.5:D1
on page 89). They also found that expression in PNs is completely lost in the
ReMo-Only construct (see Figure 5.5:E1 on page 89), whereas the BiFa-Only
construct drives almost the same expression pattern in PNs as the GH146-Full
(see Figure 5.5:F1 on page 89).

The main conclusion of these experiments was that the main regulatory ele-
ments are distributed in the BiFa-Only region. It is also possible that the deletion
of such a large region of sequence may disrupt higher order interactions that may
result in not having expression from the ReMo-Only construct.

For the next step, our task was to further narrow down the functional part of
the GH146 enhancer by predicting shorter subsequences of the BiFa-Only region
that were likely to drive an expression pattern similar to the expression pattern of
the BiFa-Only construct. However, it was too hard to make predictions of these
functional regions with either BiFa tool or ReMo algorithm any longer. The main

problem with BiFa tool were:

e Although the BiFa tool is very useful for some analyses, (for instance, one
may find some motifs strongly distributed over some subregions,) judgement
about significance of motif-rich subregions is dependent on the user. In
other words, there is no mathematical or computational way to provide
the user with boundaries of the motif-rich subregions with their associated
significance. This is becoming a more serious obstacle when the user needs
to judge about multiplicity vs specificity of the motifs or vice versa. Besides,
in the BiFa tool the motif scores are computed individually and independent
of the other motifs, whereas we needed a tool to provide us with a score
associated to any input sequence that reflects its potential activation level

based on the set of motifs.

e The contribution of weak binding sites is ignored whereas we have some
recent evidence showing the strong contribution of weak binding sites in

expression of an enhancer (38 and 62).
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e Many of the motifs occurring in a given genomic sequence are overlapping
and the BiFa tool has not been implemented such as to be able to consider
competitions of different factors for these overlapping motifs. Figure 5.3 on

page 86 illustrates an example output of the BiFa tool.

And with respect to the ReMo algorithm:

e The ReMo algorithm did not detect any significant conservation between

BiFa-Only regions of these 10 species.

e Recently, we have had some reports that the regulatory regions can retain
function over large evolutionary distances, even though the DNA sequences
are divergent and difficult to align. Therefore, if an alignment-based method
such as ReMo algorithm does not detect any conservation, it does not nec-

essarily mean lack of functional conservation.

To overcome these limitations of alignment-based and motif-scaning-base al-
gorithms we developed and applied the RRS our alignment-free model.

The experimental results based on predictions of the RRS will be of great sig-
nificance. In essence, agreements of the RRS predictions with the experimental
results will mean that our model understands the regulatory code governing the
fly olfactory wiring specificity, whereas the failures of our model will be as instruc-
tive as it successes. They will suggest that some input factors and some higher
interaction rules are not captured, but also that the model does not artificially
compensate for these missing features.

For the sake of completeness, in what follows, we first discuss the data sets that
used for the RRS analysis for detection of functional subregions of the BiFaDmel.
This is followed by presenting analysis of orthology detection of D. melanogaster
in some other drosophilas. The orthologous sequence was then used to obtain
statistical links between species in order to predict the optimal position of the

functional subregions of the BiFaDmel.
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Figure 5.4: GH146 enhancer regions and some of the deletion constructs. Golden

rectangles known as ReMo A, B, C and D are sequence-conserved regions detected

by the ReMo algorithm. The ReMo-Only construct (blue rectangle underneath the

map) was made to test significant of this prediction. Four yellow rectangles are
S

motif-rich subregions and identified by the BiFa tool. BiFaA is overlapped with

ReMo region, but the other three BiFa regions made up the BiFa-Only construct
(the second blue rectangle from the bottom). The GH146-Full construct included
the entire 4kb upstream of the oaz (the last blue rectangle). Deletions 2, 4 and 7
in this figure were made based on the RRS predictions. Blue circles are GH146
P-element and lacZ insertion points. The amber circles called Ndell are restriction

enzyme sites. The green arrow is the start of the oaz gene.

Figure 5.5: Expression patterns driven from the GH146-Full construct indicated
as D1, from the ReMo-Only as E1 and from the BiFa-Only as F'1. For more details

of this figure the reader is referred to (71).

5.3.1 Identifying sequence regions for analysis

As observed, the ReMo C was conserved in all of the Drosophila species and
also that BiFa-Only construct in D. melongaster (denoted as BiFaDmel) drove
the same expression pattern as the GH146-Full. By using BLAST for any other
species, we identified the position of a subsequence that was conserved with ReMo

C and also the oaz gene in that species genome. Within this interval, a subse-
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quence with the same length as BiFaDmel was chosen such that its distance from
the ReMo C counterpart was the same as the distance of the BiFaDmel from the
ReMo C in the D. melanogaster genome. In this way, corresponding to any of
the 10 species, we obtained the BiFa-Only sequences (see Table 5.1 on page 90).
These 10 sequences plus 67 fly PWMs as described in Chapter 4 ( see Table 4.2
on page 64) were used for the RRS analysis.

Species Sequence Name
D. melanogaster | BiFaDmel
D. simulans BiFaDsim
D. sechellia BiFaDsec
D. yakuba BiFaDyak
D. erecta BiFaDere
D. ananassae BiFaDana
D. pseudoobscura | BiFaDpse
D. mojavensis BiFaDmoj
D. virilis BiFaDvir
D. grimshawi BiFaDgri

Table 5.1: BiFa-Only Regions and corresponding species used for the RRS anal-
ysis

5.3.2 Detection of orthology between Drosophila species

Our next step was to detect the functional conservation of BiFaDmel in other
species. For this, the RRS scores of BiFaDmel as the template vs any of the other 9
sequences as the test sequence was computed. We found that BiFaDsim, BiFaDsec
and BiFaDyak in order were the top three functionally conserved sequences to
BiFaDmel.

The RRS results of the comparisons of the BiFaDmel vs the BiFaDsim, Bi-
FaDpse and BiFaDgri are illustrated in the Figure 5.6 on page 93. In the left-hand
side of the figure (A1, A2 and A3), we have illustrated the log of the RRS scores
of comparisons of BiFaDmel vs BiFaDsim (which is about 12), BiFaDpse (about
—3) and BiFaDgri ( about -4) as vertical green lines. The significance of these
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scores can be seen when compared to the scores of BiFaDmel vs 1000 randomly
picked sequences from D. simulans (black histogram in Al), D. pseudoobscura
(A2) and D. grimshawi (A3).

From A1, we can see that the log of the RRS score for BiFaDmel vs BiFaDsim
1s around 12 whereas the maximum score of BiFaDmel vs 1000 random sequences
is about 3. This fact supports the statistical significance of the RRS score of
BiFaDmel vs BiFaDsim.

From A2, it is clear that the log of the RRS score for BiFaDmel vs BiFaDpse
1s around —3 and that only 5 out of 1000 of the random sequences are obtaining
a score greater than or equal to the score of BiFaDmel vs BiFaDpse. Although
this orthology signal detected by the RRS might not look very strong, it becomes
interesting when we note that the alignment-based ReMo algorithm does not
detect any conserved subregions in these region of the sequence (see part B of
Figure 5.7 on page 106).

And finally from A3 we see that the log of the RRS BiFaDmel vs BiFaDgri
is about —4 and about 30 of the random sequences are obtaining a score greater
than or equal to the score of BiFaDmel vs BiFaDgri. This score may not seem
statistically very significant in the first instance, we may argue that firstly it is still
greater than 97% of the scores from the random sequences secondly D. grimshawi
was the most distant species in our analysis and thirdly the alignment-based
comparison of BiFaDmel vs BiFaDgri does not show any statistically significant
sequence conservation in this region (see part C of Figure 5.7 on page 106).
Therefore, the BiFaDgri still can be suggested as orthologous.

In the right-hand side of the figure (Bl, B2 and B3), the contribution of the
individual motifs in any of these three comparisons are depicted. As we explained
in Section 3.3, in the RRS framework, an individual motif score around zero is
expected from a random DNA sequence, but the greater the scores means the
stronger presence of the motif (either by multiplicity or by specificity).

A very interesting point to note in this figure is that in comparison of the Bi-
FaDmel vs the BiFaDsim where we had the strongest RRS score among the other
species, we can see a strong right-hand side tail in the histogram of individual
motif contributions (B1). This is means that motifs distributed in this tail (for

a list of top 8 contributors see Figure 5.2 on page 95) are significantly present in
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both of the sequences and that the greater the score, the greater the contribution
of that motif in functional conservation of that pair of sequences. But in com-
parison of BiFaDmel vs BiFaDpse and BiFaDmel vs BiFaDgri where the scores
were not as significant as BiFaDmel vs BiFaDsim, the histograms of individual
motif contributions are almost a normal distribution with mean zero. This can
be interpreted that occurrences of most of the motifs over these two comparisons
(B2 and B3) are the same as their occurrences in the random sequences.
Another point of interest is the common regulators of these top three RRS-
scored sequences. In Table 5.2 on page 95 we have presented 8 key regulators
from comparisons of BiFaDmel vs any of the BiFaDsim, BiFaDsec and BiFaDyak.
The common regulators of these comparisons have been colour-coded in Table 5.2
(where a factor being common at least between two sequences has been coloured
and non-common regulators have been left with a white background). One can
easily see that the number of common regulators in this table is a direct proportion
to the RRS score of BiFaDmel vs that species. In other word, the BiFaDsim gets
the most significant RRS score and the corresponding row of the table (rowl)
is fully coloured whereas in the row corresponding to the BiFaDyak we see only
four coloured cells. This fact is supporting the contribution of the key regulators

in these orthologous sequences.
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Figure 5.6: Al: Illustrating the statistical significance of the RRS score of BiFaD-
mel vs BiFaDsim. The green vertical line shows the log of the RRS score from this
pair which is around 12. The black histogram shows the distribution of log of the
RRS scores of BiFaDmel vs 1000 randomly picked sequences from the D. simulans
genome. A2 and A3: same as Al, but comparison of BiFaDmel vs BiFaDpse and
BiFaDgri respectively. From A2 one can see that around five random sequences are
scoring greater the score of BiFaDmel vs BiFaDpse. This number in A3 increases to
30 sequences (out of 1000), reducing the significance of the RRS score, but still can
be considered as a signal of orthology detection by the RRS. Figures B1 ,B2 and
B3 are depictions of the contribution of any of the 67 motifs (used in this analysis)
in the RRS scheme, BiFaDmel vs BiFaDsim in B1, BiFaDmel vs BiFaDpse in B2
and BiFaDmel vs BiFaDgri in B3. For the list of top eight contributors see Table

5.2 on page 95
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Figure 5.7: Alignment profiles (ReMo algorithm) of the 5kb upstream of the gene
oaz in D. simulans, D. pseudoobscura and D. grimshawi vs 5kb upstream the oaz
in D. melanogaster. The shadowed area is to highlight the BiFa-Only region- the
region of interest. The horizontal lines are reference lines (equal to 55 in this figure)
to show the significance of the alignment scores.
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On the other hand, one may also note that, the RRS suggests BiFaDsim, Bi-
FaDsec and BiFaDyak as (in order) the strongest functionally linked sequences
to the BiFaDmel and in these comparisons we have listed 8 top contributors.
However, for instance in comparison of BiFaDmel vs BiFaDsim, the sum of con-
tributions of these 8 regulators is about 6, and by subtracting this number from
the real score (in order to ignore the contributions of key regulators) which was
about 12, we will still have a score about 6 which is higher than scores of Bi-
FaDmel vs randomly picked sequences. Overall, we may conclude that in order
for a pair of sequences be considered functionally linked by the RRS with a high
statistical significance, the contribution of the key regulators are necessary but
not sufficient.

The last point that we would like to make in this section is that according
to same table, for example, Engrailed (the factor identity is ISEn) and Kruppel
(the factor identity is ISKR) are listed between top 8 regulators of BiFaDmel vs
BiFaDsim and BiFaDsec but not in BiFaDmel vs BiFaDyak. On the other hand,
D. melanogaster, D. simulans, D. sechellia and D. yakuba are belonging to the
melanogaster subgroup in the fly phylogenic tree (see Figure 5.2 on page 83 ).
One may expect that a significant occurrence of a motif in three species of the this
subgroup (i.e., BiFaDmel, BiFaDsim and BiFaDsec) might imply its occurrence
in BiFaDyak. But in our example, the occurrences of the I$En and I$KR in
BiFaDyak are not statistically significant. This might mean that according to

the RRS results, we have had a loss of these motifs over the evolution.

Pair of Enhancers Factorl Factor2 Factor3 Factord Factorb Factor6 Factor7 Factor8
Mel vs Sim I$TCF.1
Mel vs Sec I$HSF_Q4 = I$TCF.1 ISADF_Q6

Mel vs Yak I$DRI.1 I$STLL.Q5 ISSTAT. QI I$ZEN_Q6 I$STCF.1

Table 5.2: The top eight factors (in a descendent order) that are strongly con-
tributing to the functional similarities of BiFaDmel vs any of BiFaDsim, BiFaDsec
and BiFaDyak. Colour-coding is to highlight the common regulators. Factors that
are common in at least two species have been coloured the same. the rest have been

left with a white background.
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5.3.3 Results of in silico deletions in D. melanogaster

As mentioned, the main idea was to detect subregions of BiFaDmel that are
likely to drive an expression pattern similar to the expression pattern driven by
BiFaDmel itself, and thereby further defining the function enhancer boundaries.
Having observed a statistically significant link between functional conservation of
BiFaDmel and BiFaDsim in Section 5.3.2, it was natural to take BiFaDsim as the
template sequence and then scan subregions of BiFaDmel as the test sequence
for functionally similar subsequences. One way of doing that was to delete some
subsequences of BiFaDmel and find deletions which induce a drop in RRS score.
For such deletions the drop in the RRS scores means that the functional similarity
of the BiFaDsim and the BiFaDmel can no longer be detected by the RRS method.

Therefore, in a sliding manner, with step size 25bp we deleted subsequences
of a fixed window length from the BiFaDmel and each time the remaining sub-
sequence was considered as a test sequence. This scenario was repeated with
different window lengths including 50, 100, 150, 200, 250, 300, 350 and 500bp and
the results were plotted.

The results of this deletion analysis with window lengths 100, 150, 250 and 500
are shown in Figure 5.8 on page 98. With respect to these predictions we would

like to make the following points:

o The troughs in these profiles mean that by deleting the corresponding win-
dow, we have had an extreme loss of the RRS score which in turn means
that deleted window must be the most functionally similar subsequence to

the template sequence.

e x-axis depicts the length of step size. Because the step size for this analysis
was 25bp, in order to get the starting position of the deletion window, one

may need to multiply the numbers corresponding to any of the troughs by
25.

e As we can see, the starting positions for the suggested deletion windows
are dependent to the deletion window length. In other words, if one needs

a deletion with length 100bp, then the RRS is suggesting a subsequence
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starting from 50 x 25 = 1250 in BiFaDmel, whereas if one needs a deletion
with length 250pb, then the suggested starting position is 55 x 25 = 1375.

e The x-component of the last point in any of these profiles is less than
or equal the the length of BiFaDmel sequence minus the deletion window

length.

e One may observe that the shorter the deletion window length, the sharper

the corresponding profile.
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Figure 5.8: Plots from deletion subsequences: The first plot shows the RRS
scores of BiFaDsim vs some subsequences of BiFaDmel each of which was obtained
by deleting a region with length 300bp as depicted in part A. Parts B, C and D
are the same but with window lengths 200, 100 and 150bp accordingly. Note that

numbers in x-axis are based on coordinates of GH146Full sequence.

We repeated the same analysis but with BiFaDsec, BiFaDyak and even with
BiFaDmel itself as template sequences. Interestingly, the peaks and troughs in
corresponding output profiles were in a high agreement with those suggested
from the analysis of BiFaDsim. Whereas when we chose the BiFa region from a
more distant species for example BiFaDgri as template sequence, we had a flatter
profile. This makes the results of these predictions more significant because we

have already observed that these were the best functionally conserved sequences
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to the BiFaDmel. Figure 5.9 on page 99 shows the profiles of deletion analysis

where the template sequence was BiFaDyak.
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Figure 5.9: Plots from deletion subsequences: The first plot shows the RRS
scores of BiFaDyak vs some subsequences of BiFaDmel each of which was obtained
by deleting a region with length 300bp starting at positions 0,25,50,---. The
second and third plots show the same for window lengths of 400 and 500bp. Note
that numbers on the x-axis must be multiplied by the stepsize (i.e. 25) to obtain
the deletion position in the sequence.

5.3.3.1 Experimental results of our deletion predictions

According to these RRS deletion predictions, our collaborator made 7 deletion

constructs. Figures 5.11 on page 101 and 5.4 on page 89 are showing more details
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about how and where these deletion constructs were made. Not all of these
constructs have been experimentally tested. Continued experiments are likely to
reveal more details about the significance of these predictions and consequently
about the logic of this enhancer region. However, experiments based on some of
these deletions (deletions 2,4 and 7) revealed that the GH146 expression pattern is
differently affected by different deletions (see Figure 5.10 on page 101) suggesting
that deletions 2 and 7 are likely to contain repressor elements whereas deletion 4
is likely to contain some promoter elements.

From the experiments completed so far one may argue that the effect of these
deletions seem to be more phenotypic. For instance, deletions 2 and 7 are both
overlapped and both drived expression of some cells outside of the PNs. For more
details of results of the completed experiments the reader is referred to Chapter
4 of (71).

Although making a final conclusion for this project requires all the experi-
ments from the deletion constructs to be completed, based on current state of
the project the following discussion can be made:

On one hand, we have observed (both theoretically and and experimentally)
that BiFaDmel is the main functional region of the GH146 enhancer. On the other
hand, bioinformatical analyses suggest that some subregions of the BiFaDmel are
likely to have the same expression pattern as the BiFaDmel itself. But the result
of experiments are not as significant as the bioinforamtical evidence. The simplest
conclusion that one can draw is that the bioinformatical analysis was not accurate
enough. This might be due to the inappropriateness of the PWMs used in these
analysis. However, we can argue that the expression of the BiFaDmel is likely
to be a result of a combinatorial effect of some shorter functional subregions. At
this moment, I do not know how one can experimentally test this hypothesis.

A further step that will lead towards a more confident conclusion is to perform
some experiments in which each deletion construct is accompanied with an eqi-
length control deletions corresponding to the peak of that deletion profile. It will
be also very informative to see the affect of deleting two regions corresponding to

two non-overlapped troughs of an RRS deletion profile made in one construct.
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According to the RRS predictions for deletions regions, our collab-

Figure 5.10: Expression patterns: E1 drived from the construct of deletion 2, F1

drived from deletion 4, G1 from deletion 7.

5.3.4 Reconstruction of a phylogenetic tree from regula-

tory sequences

We found that the RRS was able to detect the evolutionary links between the

species with a high level of accuracy. The resulting phylogenetic tree was of signif-

icant interest because it was made only from the BiFaDmel and its homologous

in 9 other species (i.e., BiFaDsim, BiFaDsec, BiFaDyak, BiFaDere, BiFaDana,

BiFaDpse, BiFaDmoj, BiFaDvir and BiFaDgri) and 67 PWMs that used in this

analysis. Figure 5.12 on page 103 shows the heatmaps and phylogenic tree made

by the RRS. (A) is the heatmap that made only from these sequences and (B)

is the heatmap that made from these sequences plus two randomly picked se-
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quences as controls. Each row in heatmp was considered as the template and
each column was considered as the test sequence. Therefore similarity of a pair
of sequences can be judged by comparing colours of related rows. The trees in
the left hand-side of the heatmaps (made by the similarity of rows) reflect the
functional similarity of the species. We see that the RRS can distinguish the
random sequences as outliers.

One may argue that there must be a pattern of occurrences of some of the
(possibly key) regulators governing this evolutionary link between these species
that are picked up by the RRS. To address this question lets once again have a
look to the (log of ) the RRS score for BiFaDmel vs BiFaDsim which was nearly
12. In Table 5.2 on page 95 we have represented the top eight key contributors
of this similarity score. The overall contribution of these 8 regulators is about
6.5. We should note that practically it is almost impossible to force these 8
regulators to score zero (by deleting or filtering their sites), because according to
the RRS framework these scores are made up by looking through all the possible
configurations and accounting even very weak binding site effects. But, for a
moment lets assume we have managed to force these regulators to obtain an
overall zero contribution, then the rest of motifs will assign a score around 6 to
this pair which is still significantly more than scores of BiFaDmel vs randomly
picked sequences from the D. simulans. Meaning that the functional similarity of
a pair of sequences in the RRS framework is influenced by contribution of weak
binding sites too. Therefore it is really too hard to propose a simple pattern
behind the phylogenetic tree made by the RRS, as it seems to be made by more
than a simple pattern.

As a future direction point, it worth mentioning that according to this anal-
ysis the BiFaDsim, BiFaDsec and BiFaDayk that were detected as orthologous
sequences to the BiFaDmel are very likely to drive a similar expression pattern
when planted to the D. melanogaster genome. This has not been experimentally
tested yet. An experiment targeting this hypothesis will provide new insights into

evolutionary significance of the enhancer regions.
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Figure 5.12: A: Heatmap made by RRS similarity (log) scores from BiFaDmel,
BiFaDsim, BiFaDsec, BiFaDyak, BiFaDere, BiFaDana, BiFaDpse, BiFaDmoj, Bi-
FaDvir, and BiFaDgri. Please note that in this figure for the sake of simplicity a
sequence name such as BiFaDmel has been denoted by Dmel and so on for other
sequences. B: The same as A but with two extra randomly picked sequences from

the D. simulans.
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5.3.5 Consistency of the RRS predictions with alignment
based methods

At this stage one may wonder if these deletion predictions made by the RRS are
producible by any of the alignment based methods and also that how and why
these agreements and/or disagreements are for. Our objective in this section is
to address this question. For this, we made the alignment-based ReMo algorithm
profiles of 5kb upstream of gene oaz of any other 9 species vs 5kb upstream of
the oaz in D. melanogaster . Although we looked at the alignment profiles of 5kb
upstream of the gene to get an overall image, one may need to concentrate only on
BiFaDmel (shown as orange shadowed area in Figure 5.13 on page 106) region.
This is because we had some both theoretical and experimental evidence, as
explained, that this region was driving the same expression pattern as the GH146-
Full and the original idea was to dissect this region and detect its functional
subregions with the RRS. The results of this alignment-based analysis have been
presented in Figure 5.13 on page 106 and Figure 5.7 on page 94.

In both the RRS and the ReMo algorithms, similarity scores are linear to
the evolutionary distance of the species under comparison to D. melanogaster.
This can be seen from Figures 5.6 on page 93 and 5.7 on page 94. In both
algorithms, BiFaDsim is the most similar sequence to BiFaDmel and the similarity
score falls in more distant species such as BiFaDpse and BiFaDgri sequences.
However, it seems that the significance of similarity level in the RRS model is
higher for BiFaDpse and BiFaDgri. For instance, in Figure 5.7 on page 94 where
D. grimshawi is compared to D. melanogaster, it is too hard to point out any
conserved subregions in the BiFa-Only region.

From Figure 5.13 on page 106, we can see that deletions 1,2,7, and 4 (red
rectangles in the figure) which were made based on our RRS predictions are in
a high agreement with some peaks of the alignment profiles, whereas deletions
5, 3 and 6 (golden rectangles) are matching with some troughs of the profiles.
From these comparisons, we can not draw any conclusion about the level of the
significance of any the RRS or the alignment-based model. To make this point

more clear we should note that:
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e In Chapter 4 and also (45) and (24) we have seen examples of functionally

conserved non-alignable sequences. Detection of these types of functionally
conserved sequences has been the initial reason of developing alignment-
free DNA sequence comparison algorithms including the RRS. Therefore,
we will not be surprised if any of these predictions made by the RRS were
not identified by any of the alignment-based methods.

On the other hand, we do not expect the RRS to detect all the regions that
have been identified as conserved sequences by the alignment-based method
as functionally conserved regions. The reason is that the RRS judgement
about the similarity of a pair of sequences is based on the distribution of
a set of PWMSs that was passed to it as an input (in this analysis only 67
fly PWMs). According to the appropriateness of these motifs, we may or
may not have significant RRS score for a pair of sequences with high level

of sequence conservation.
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AlignmentScore
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Figure 5.13: Comparison of predictions of the RRS with the alignment based
method. Shown here are the ReMo algorithm profiles of the 5kb upstream of the
gene oaz of 9 Drosophila species used in this analysis compared with their homologs
in D. melanogaster. The x-axis is the sequence position (5’ to 3" upstream of the
oaz) and y-axis is the alignment scores. The grey rectangle in the x-axis is to show
the area that drove a full expression pattern in PNs. The red rectangles D1, D2, D7
and D4 are the RRS deletion predictions that look to be in a good agreement with
some peaks from the alignment profiles. The golden rectangles D5, D3 and D6
are the RRS deletion prediction that look in a disagreement with the sequence
conserved subregions detected by the ReMo algorithm. The area shadowed as
orange is to highlight the BiFa-Only region that drove the same expression pattern
as the GH146-Full and therefore is the region of the interest. The area shadowed
as blue is to highlight the ReMo-only region, and the area shadowed as green is

the promoter area and of no interest in this analysis.
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5.4 Conclusion

We have presented our predictions of the functional subregions of the GH146.
These deletion predictions were made by our RRS model. However, prior to the
development of the RRS, an alignment based-model ( the ReMo algorithm), and
a motif-scanning based model (BiFa tool) were used and identified ReMo-Only
BiFa-Only regions. These enhancer subregions were corroborated by some ex-
periments and revealed that although the ReMo-Only is conserved in almost all
of the species, the ReMo-Only construct is not capable of driving PN expression
pattern. On the other hand, the BiFa-Only region recapitulate the expression
pattern, suggesting that the functional enhancer region lies in the BiFa-Only
region. Our RRS model was then used to predict these functional regions. Ac-
cording to these deletion predictions, 7 deletion constructs were made, but the
function of all of these 7 constructs have not been yet completely experimented.
The results from three of these constructs revealed that the effect of these dele-
tions is likely to be phenotypic and also that deletions contain both promoter and
repressor elements. We also found that the RRS looks to be capable of picking up
the evolutionary links between species surprisingly from only (short) regulatory
sequences and a (small) set of PWMs.

This project is still ongoing and we believe that cross-referencing results from
the underlying experiments to our predictions will make new insights into the reg-
ulatory code in fly olfactory system and also will signify our model development.
But based on currently existing results, we can set up the following discussions

and future directions to this project.

e According to the RRS results (see 5.12), BiFaDsim, BiFaDsed and Bi-
FaDyak are functionally conserved to the BiFaDmel with a high statistical
significance (this is supported by alignment-base tools as well, see 5.13A).
This suggests that rather than taking a single template sequence, a multi-
template version of the RRS where the set of BiFaDmel, BiFaDsim, BiFaD-
sec and BiFaDyak will be considered as the template set, will strength the
significance the RRS results.
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e Another pertinent point to make is that the result of the RRS is strongly
dependent to the set of input PWMs. Thus a more appropriate set of
PWMs will lead to more accurate, conclusive and meaningful results. On
the one hand, the computational expenses is not allowing to take a very big
set of PWMs (for example all the available PWMs), on the other hand a set
of PWMs with high level of redundancy may introduce some noise to the
model. Thus, a set of non-redundant PWMs that includes all the possible

key regulators of the systems is suggested.

e Some control experiments are required to evaluate the significance of the
RRS predictions for instance for a construct corresponding to a trough of
an RRS profile and another construct made for either a peak or a plateau
area of the profile would reveal the significance of the RRS predictions.
The control experiments can be based on some constructs corresponding
to the peaks of the RRS profiles. In addition, some experiments assessing
the combinatorial effects of shorter functional subregions will enhance our

understanding from the transcriptional machinery.
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Appendix A

Loss-free Identification of
Alignment-Conserved CRMs

In this appendix we provide the reader with a comprehensive description of the
ReMo algorithm that we applied in Chapter 5 to detect alignment-conserved non-
coding subregions in D. melanogaster GH146 enhancer. This description includes
the proof of correctness, and evaluates the algorithm’s running time. Please note
that this data has been provided by developers of the algorithm and therefore
analysis and results mentioned in this appendix are to show the advantages of
the ReMo-algorithm. There is no direct relationship between this analysis and
my PhD project, and I have had no contribution to this analysis.

A.1 Introduction

We define a pair of genomic sequences as alignment-conserved if their optimal
alignment has a statistically significant score and the sequences are not repeats.
Using alignments rather than TF binding motifs to identify potential CRMs pro-
vides a relatively unbiased approach as CRMs containing yet undescribed binding
motifs can be identified as well.

The most frequently used algorithms for CRM-detection are members of the
BLAST-family. These are heuristic algorithms that can not guarantee to find
weakly conserved regions, but are relatively fast and, therefore, currently being

employed by browsers for non-coding conserved regions (5; 34).
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We have used the algorithmic techniques described below to perform a loss-
free genome-wide scan for conserved non-coding regions in the vicinity of mouse
and fugu genes. We found that about half of the alignment-conserved regions
between mouse and fugu show a sequence similarity below 70 percent (see Figure
A.1). Given that BLAST was found to fail in more than 60 percent of cases in a
study based on randomly generated sequences (41), this heuristic is bound to miss
a substantial number of biologically relevant regions, in particular for distantly

related species.

6263 64 6566 67 66 69 7071 72 73 T4 75 76 77 76 79 80 61 62 83 84 65 66 67 68 89 90 91 62 93 94 95 96 97 98 99

Figure A.1: Number of conserved regions in fugu detected in the vicinity of 10272
mouse genes including most transcription factors, segmented by maximal degree
of conservation in windows of 100 bases. For a conservation of 62 to 64, numbers
are reduced to those regions for which significant conservation was also found in at
least one other species than mouse and fugu.

As an alternative approach optimal local alignments of upstream regions have

been employed (13). However, these can fail to detect biologically significant
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conservation on short stretches as long but meaningless alignments can cross the
alignment path of the shorter alignment in the Smith-Waterman matrix (called
shadow effect (4; 68)). To avoid this problem a method for maximising the ratio
of alignment score to sequence lengths has been proposed (4). As the authors
indicate themselves their method suffers from the dependence on a parameter for
which no general selection rule has been given. Therefore, even this method is

not guaranteed to find all alignment-conserved CRMs.

A.2 Naive Algorithm

The following algorithm provides a straightforward approach to ensure detection
of all short alignment-conserved regions within two stretches s and ¢ of genomic
DNA (such as the upstream regions of two orthologous genes). The basic idea is

to compute an optimal alignment for every pair of short substrings of s and t.

Algorithm 16

Step 1:  Read input: strings s, t, step width w, and a window length [

Step 2:  Compute the minimal alignment score S that is still statistically significant
for two sequences of length [.

Step 3:  Compute number of window positions:
ny = [((Is| = [I])/lw]) + 1]
ng = [(([¢t] = i)/|wl]) + 1]

Step 4:  Initialise variables:
set R=10

Step 5: For all pairs (¢,7) with 1 <¢<mj;and 1 <j < ng:

Step 5A:  Apply the Needleman-Wunsch algorithm to compute the optimal alignment
score
of substrings s[(i — 1)w, (i — w+ ! —1] and ¢[(j — Dw, (j — Dw +1— 1]
N = optimal alignment score of window-pair (z, j)

Step 5B: If N > S, then add (i, 7, N) to set R.

Step 6:  Output: R

As Needleman-Wunsch alignments require O(l?) dynamic programming (DP)
steps the feasibility of Algorithm 16 is limited. For example, if two 100kb se-

quences are considered, and the step width is set to w = 5, a total of about 400
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million optimal alignments, each requiring 10,000 DP steps are needed. While
this is feasible for the comparison of a limited number of genes across a limited

number of species, it is not realistically applicable to genome-wide scans.

Finding a reasonable setting for the window length [ is not a problem in
practice as it is sufficient for the window to cover only a part of a CRM. In this
case a number of significant window pairs will be found which can be grouped
and displayed as a single block of conserved sequence.

The statistical evaluation of sequence alignment scores is greatly simplified by

our approach as all aligned sequences have the same length.

A.3 Our Algorithm

The key idea to improve the sliding-window approach of Algorithm 16 is to make
use of previously computed alignment scores for other pairs of windows in order to
reduce the CPU-time needed to do the computation for following window pairs.
This is done by deriving upper and lower bounds for the alignment score of a
given window pair, before the application of Needleman-Wunsch is considered. If
the upper bound is lower than the cut-off S, the alignment would not be part of
the final output and can be omitted. If the lower bound is high, an alignment
has to be computed, but the Needleman-Wunsch matrix can be restricted to a
tight corridor around the main diagonal as alignment paths that deviate from
this corridor would not be optimal. A full applicaton of Needleman-Wunsch is

only required if neither bound provides a computational saving.

We also add the computation of conservation profiles for each input sequence
to the algorithm. These are informative in practice, but are not part of the speed

improvement over Algorithm 16.

Algorithm 17
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A.3 Our Algorithm

Step 1:  Read input: strings s,t, step width w, and a window length [
Step 2:  Compute the minimal alignment score S that is still statistically significant
for two sequences of length [.
Step 3:  Compute number of window positions:
ny = [((|s] = [2])/]w]) + 1]
na = (1t - 1)/ fwl) + 1]
Step 4: Initialise variables:
set R=10
vector P; of length ny, Vi: P[i] =0
/* conservation profile first sequence */
vector P, of length no, Vj : Py[7] =0
/* conservation profile second sequence */
ny X ng matrix A/[min’ V’L,] : Mmin['éa ]] = -
/* to store lower bounds for alignment scores */
Ny X ng matrix Myax, V4,7 : Mnalé, 7] = 00
/* to store upper bounds for alignment scores */
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Step 5:

Step HA:

Step 5B:

Step 5C:

Step 5D:
Step 5E:

Step S5F:

Step 5G:
Step 5H:

Step 51:
Step 5J:

Step 6:

For all pairs (7,7) with 1 <i<njand 1 <j <ny
(in any order):
Compute lower bound:
r711 = max{Munin[t — 1, 5], Munin[t, 7 — 1], Muin[i, 5 + 1], Mmin[2 + 1, 5]}
/* best score moving sideways "‘/"
my = max{Mui[i — 1,7 — 1], Mpi[t + 1,7 + 1]}
/* best score moving on one diagonal *;
m3 = max{Muin[t — 1,7 + 1], Mpp[i + 1,5 — 1]}
/* best score moving on other diagonal */
b = max{m; — w + 2wd, my — w,m3 — 2w + 4wd}
Compute upper bound:
m) = min{]\lma.x[i l J] Almax{? J ]-]a Almax[ivj + 1]v Ajmax[i + 17]]}
/* best score moving sideways */
mz = min{Mpax[i — 1,j — 1], Myax[i + 1,5 + 1]}
/* best score moving on one diagonal */
m3 = min{Mpnax[t — 1,7 + 1], Mpax[i + 1 ,j—1]}
/* best score moving on other diagonal */
by = min{m; + w — 2wd, my + w, m3 + 2w — dwd}
Compute minimum score to influence final results:
A = min{ P, [¢], P[j], S}
If (by < A) then jump to Step 5J
Compute corridor of interest:

I— —Mnin[t,J ~|

1-26
Apply the Needleman-Wunsch algorithm to compute the optimal alignment

score
of substrings s[(i — 1)w, (i — 1)w + 1 — 1] and t[(j — Dw, (j — w + 1 — 1]

N = optimal alignment score of window-pair (3, )

Only compute the corridor of the Needleman-Wunsch matrix that is within C
positions off the main diagonal.

If N> S, then add (4,7, N) to set R.

If N> Pi[i] then set Pi[i] = N

If N > P,[j] then set Py[j] =

Store computed bounds:

Muinlz, 7] = by (or N if computed)

Max[t, 7] = by (or N if computed)

Output: R, Py, and P,

For readibility we ignore undefined indexing of matrices M., and M., such

as M,ax[0, 0] - these would be replaced by oo or —oo in real programme code.

We decided to employ the original Needleman-Wunsch algorithm as a subrou-

tine for Step 5F (49), since the existing subquadratic algorithms do not make an
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improvement for this application (2; 11; 46).

A.4 Correctness

We only need to prove that the upper and lower bounds computed in Algorithm
17 are correct. We formulate our Lemma for the special case of a match-score
of 1 and a mismatch-score of 0, but similar results can be derived for general
alignment scores. We employed this scoring matrix for our work as it reflects our
limited knowledge of nucleotide frequencies in CRMs.

Lemma 18 Let ¥ be an alphabet. Let s,t,u,v € X% such that s =
ar,u=z0,t =~vy,v =1yé for some o, B,7,0 € £*. Let N(-,-) denote
the optimal alignment score of two strings when using a match-score
of 1, a mismatch score of 0, and a gap-penalty —%, for Z €]0, 0o].

1. N(u,v) > N(s,t) — (max{|al, ||} + lel=DUZIB-1y
2. N(u,v) < N(s,t) + (max{|], 6]} + L=l l8-10l)
3. N(s,0) > N(u,t) = (|8] + || + EHEEAEE
4. N(s,0) < N(u,t) + (|a| + (8] + ilBlthitdl)

Proof. 1.) Let p,q € (¥ U {-})* be an optimal alignment for s and ¢.
For any given string § € (XU {—})* let T(#) denote the string that is derived
from 6 by removing all gap-characters. Let p/,¢’,e,w € (¥ U {—})" such that
p=¢e,q=wqd,x=T(p),y=T(¢), and || as well as |w| maximal.

Case 1: [8] > |4], Ip| > |¢/

Let 1 = p/B and ry = (=)PI-19lg’'(=)PI-l. Obviously |r1| = |r2| holds. Let
S(r1,72) denote the alignment score of r; and 72. Then N(u,v) > S(r1,73), since
u = T(r;) and v = T(ry). As in the alignment (r,73) ¢’ is aligned to the same

suffix of p’ as in alignment (p, q), we have:

llod = il _ 181 = 19]
Z Z

Here max{|a|, |v|} is an upper bound for the number of matches that are lost by

S(r1,72) 2 N(s,t) — max{|al, 7|} -

removing € and w. lle ;m is an upper bound for the number of additional gaps
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at the beginning of r,.
Case 2: 5] > 6] ] 2 I
For ry = p’B(=)l1-18l and ry = (=)P1-19'1¢’§ the following inequality holds:

ol = Il _ 18] - 18]

S(’I"l,'f'g) > N(S»t) - max{[a|, |7|} - 7 7z

Case 3: |8] > 6], 1p'| < |¢'|

For r; = (=)l41-PIpy/8 and 74 = q'6(=)PP°l the same inequality as in Case 1
holds (see Equation A.1).

Case 4: 6] < |4|, |p’' < |¢|

For ry = (=)l¢1-Wly3(—)01-18l and r, = ¢'§ the same inequality as in Case 3
holds (see Equation A.1).

Hence the claim holds in all cases.

2.) We use R : £* — I* to denote the reversion function for strings. For
any z1,zy € L* N(z1,z9) = N(R(z1), R(x2) holds, since alignment scores are

invariant under string reversions. Therefore, we have

N(u,v)

|
2

(R(u), R(v))
N(R(B)R(z), R(6)R(y))

(R(z)R(a), R(y)R(7)) + max{|R(B)|, [R(&)I} +
[R(B)| — |R(O)| + || R(a)| — [ROYI

Z
15 _
— N(s,t)+max{|ﬁ|,|6|}+ 1181 — | H';Hal Il

IA
= =

3.) This statement can be seen by first applying statement 2 and then statement

1 both of which are already proven:

N(s,v) = N(az,v)
> Nab,o) - o) - 2L
= Ny -5~ 221
Z N(u,vy)—hl—w—ﬁ—m
= N(w )~ (8] + by AL DI
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Sequence Lengths | w = w = w = w = w =
15,000 x 17,500 308 365 431 543 881
15,000 x 23, 500 414 483 571 722 1155
48,000 x 48,000 2508 | 2891 | 3316 | 4069 | 6368
80,500 x 93, 000 7100 | 8075 | 9212 | 11334 | 18338
120,000 x 120,000 | 14802 | 16915 | 19292 | 23555 | 37305

Table A.1: Effect of Step Width on CPU time

4.) Using statement 3 we conclude:

N(s,v) = N(R(z)R(a), R(6)R(y))
< N(R(B)R(z), R(y)R(7)) + |R(a)| + |R(3)]
+IR(oz)|+|R( )] N |R(7)| + |R(9)]
VA Z
la] + 18] + |v] + 4]

A.5 Performance

N(u,t) + |a| + || +

zZ

The asymptotic order of Algorithm 17 is still in O(|s||¢|{?) for a constant step

width w, but it makes a substantial improvement over Algorithm 16 in practice.
Table A.1 shows the effect of step width on CPU time (in seconds) and pro-

vides examples of running time on real biological sequences using a 3GHz Linux

machine.

Computing conservation profiles increases the CPU time as potential updates

of the profiles have to be considered in Step 5C, resulting in fewer omissions of

alignments. However, these increases are modest as the profiles will quickly reach

values near the cut-off S during the execution of the algorithm.
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Glossary

AP  Anterior Posterior, page 11

BiFa tool Binding Factor analysis tool, page 78

BLAST Basic Local Alignment Search Tool, page 5

CAD CRM Activity Database, page 16

ChIP-chip Chromatin Immunoprecipitation combined with microarray, page 15
CRM cis-Regulatory Module, page 3

IID Independent and Identically Distributed, page 28

MM Markov Model, page 28

PGP Pattern Generating Potential, page 20

PSSM Position Specific Scoring Matrix, page 3

PWM Position Weight Matrix, page 3

ReMo GUI Regulatory Module Graphical User Interface, page 78
RRS Regulatory Region Scoring Model, page 6

TF  Transcription Factor, page 2

TFBS Transcription Factor Binding Site, page 4

TSS Transcription Starting Site, page 3
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