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Abstract 

Transcriptional regulation of genes is fundamental to all living or­

ganisms. The spatial, temporal and condition-specific expression lev­

els of genes are in part determined by inherited regulatory codes in 

non-coding regions of the DNA. A large set of methods have been 

proposed to detect conserved regions of regulatory DNA by means of 

sequence alignments. However, it has become clear that some reg­

ulatory regions do not show statistically significant alignments even 

in the presence of functional conservation. Therefore, detecting and 

characterising elusive regulatory codes remains a challenging problem. 

In this thesis we develop and validate a novel computational alignment­

free model for detection of functional similarity of regulatory sequences. 

We show that our model can detect functional links between pairs of 

sequences that do not align with a significant score. We apply the 

model to a) detect enhancers within the same genome that are likely 

to have similar functions and b) to detect functionally conserved en­

hancer regions in orthologous genomes. Our method finds regulatory 

codes that are common to groups of similar enhancers and consistent 

with previous biological knowledge. 

The inputs for our model are two sequences that we wish to compare 

in terms of their functional similarity as well as a set of transcription 

factor motifs. 

The mathematical framework of our model is built on two main com­

ponents: In the first model component, each sequence is mapped to 

a vector of estimated occupancy levels for all motifs. These vectors 

are representing which motifs at what multiplicity and specificity are 

present in each sequence. 



In the second model component, a statistical approach is established 

where we first estimate a probability distribution of motif occupancy 

levels for sequences that function similar to the template sequence. We 

then compute a statistical similarity score to evaluate if the sequences 

are more similar to each other than to random background sequences. 

Two applications of this model are presented: First it is applied 

to a set of experimentally validated non-alignable enhancers from 

D. melanogaster. We show that: 

• Our model can detect statistical links between these enhancers, 

• Weak binding sites can make a strong contribution to sequence 

similarity, 

• Our model treats statistically significant presence and absence 

of motifs symmetrically. Similarity of sequences, therefore, can 

be based on a combination of the two. We show examples of 

motifs making contributions to sequence similarity through their 

absence. 

• Using our model, we can create a network of similarities among 

the fly enhancers. Groups of enhancers in this network show com­

mon regulatory codes. One of these regulatory codes is strongly 

supported by existing experimental data. 

In the second application of our model we predict functional subre­

gions of a known D. melanogaster enhancer. To achieve this, we first 

show that the model can detect the orthology of this enhancer between 

10 Drosophila species. We then demonstrate how this statistical link 

can be used to predict functional subregions within this enhancer. 
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1 

Introduction 

The fascinating process of animal development starts from a single fertilized egg 

which develops into an embryo as embryonic cells divide and differentiate into 

diverse cell types leading to adult body formation and completion of the organism. 

This accurate process is regulated under an instruction written in the genomic 

DNA sequence and under a mechanism which is known as gene regulation. 

The gene regulation mechanism in eukaryotic organisms takes place at a vari­

ety of different levels including gene localization inside the nucleus, transcription, 

RNA processing, mRNA stability and translation. In a multicellular animal, al­

though different cell types possess the same genomic DNA sequence, they exhibit 

different gene expression profiles that are regulated at the transcription level. In 

other words, at this level, it is controlled when transcription starts and how much 

RN A is created. 

The transcriptional regulation is one of the most fundamental mechanisms 

employed by the cell to ensure coordinated expression of its numerous genes. A 

key component of this process are the interactions between some proteins and 

corresponding DNA sequences. However, there are other components and events 

involved transcriptional regulation including chromatin structure and modifica­

tion states. The interplay of these events in the complex control of transcription 

is sometimes called transcriptional regulatory code. Understanding which pro­

teins are required for expression of different genes, where exactly they bind, under 

what conditions they are activated and which genes they are regulating is all part 

of deciphering the transcriptional regulatory code. 

1 



1. INTRODUCTION 

Despite of many advances in recent years (38; 62; 63; 80 and 20), the de­

ciphering of the genome's regulatory code remains far from complete. This is 

mainly because of the complex control of transcription in eukaryotic cells. For 

example, transcriptional initiation of a gene demands combinatorial interactions 

of some proteins with the corresponding DNA subsequences, remodeling of local 

chromatin structure as well as the different types of histone modifications. In ad­

dition, in some genomes, the transcriptional regulatory sequences for a gene may 

be scattered over large regions and sometimes hundreds of kilobases away from 

the transcription starting sites. Therefore, unlike the protein coding sequences, 

integrating information over these various layers of control makes deciphering the 

regulatory code far from straightforward. 

Our general goal is to contribute to on-going effort of deciphering the regula­

tory code. However, we should clarify that within the gene regulation machinery 

we only focus on the transcription level. FUrthermore, by a regulatory code in 

this context we mean a distribution of different motifs in a genomic regulatory 

sequence (this will be defined in the following subsection) that are recognized 

by proteins in different levels and therefore directing different spatio-temporal 

expression patterns. Our emphasis will be to have a predictive and quantita­

tive model of the transcriptional behaviours encoded by DNA sequence. We are 

ignoring the fact that a motif can be recognized by different proteins. We are 

assuming that the regulatory sequence is a linear sequence and do not take into 

account nucleosomes. 

1.1 Basics and terminologies 

In the following subsections we will provide the reader with some background 

and basic terminologies that will be used frequently throughout the rest of this 

thesis. 

1.1.1 RegUlatory sequences 

Transcription factors (TFs) are proteins that regulate transcription, the process 

by which messenger RNA is synthesised from a DNA template. TFs facilitate 
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1.1 Basics and terminologies 

or inhibit recruitment of the RNA polymerase by binding to DNA, usually near 

the gene that they regulate. We should note that any transcription factor may 

recognize more than one site (mismatches and variations often occur). The col­

lection of these short patterns are called motifs. Motifs are usually represented by 

position weight matrices (see Section 1.1. 2). Detection of such short motifs in the 

DNA sequence is therefore of great importance in the study of gene regulation. 

The genomic regions that are bound by TFs and control spatio-temporal gene 

expression patterns are called cis-regulatory modules (CRMs). These are called 

'cis' because usually they are located at the same locus of the DNA molecule as 

their target genes. But 'trans' are usually referred to some proteins that bind to 

'cis' elements (binding sites). These proteins are some times produced by some 

genes where as they dictate expression of different genes. 

It is well-known that regulatory sequences makes only a small fraction of 

the 95% of the mammalian genome that does not encode proteins. But these 

regions are crucial in determination of the level, location and chronology of gene 

expression (54). 

CRMs are built of clusters of binding sites (which are called regulatory ele­

ments) for specific sets of TFs and are thought to integrate the bound factors' 

cues. These regions broadly fall into two categories: promoters and enhancers. 

Promoters are proximal to the gene transcription starting site (TSS) and act as 

a binding site for RNA polymerase and from which transcription is initiated. 

Enhancers are, on the other hand, independent of the gene positions and can 

be found upstream, downstream or within a target or neighbouring gene (25). 

Enhancers (as their names imply) contribute to enhance the transcription. 

An initial step in the analysis of any gene is the identification of CRMs. 

1.1.2 Position weight matrices 

The most common representation of binding sites is the position weight matrix 

(PWM) which is also called position specific scoring matrix (PSSM). In this 

representation, a motif with length L is represented by a 4 x L matrix M where 

each possible base i, at each position j, is assigned a probability ~j where i E 

A = {A, C, G, T} and j E {I,··· ,L}. The probability of a specific sequence 

3 



1. INTRODUCTION 

given the model M is the product of probabilities of each particul ar nucleotide 

occurring at that position. For example, given the matrix /\1, a seq uence like 

S = SlS2" . SL is associated with the proba biLity P(SIM) = 0:=1 PS,i' 

Although an underlying assumption in a P\,yM is the independency of t he 

positions in t he binding site, this type of pre entat ion i wid ly used and beli v d 

Lo be i;I, reasonable approximation to t he factor binding specificity. 

The sequence logo that was first introduc d by Schneid r in (61) is a vis ual 

depiction of a PWM. In this graphical representation , each stack is a sociaLed 

with th information content of the bas frequ n i s at t hat posit ion whi h i 

I i = 10g21AI + ~A P ,i X ]Og2(PS,i)' According to thi s equ ation , posit ions can 

ontain information in a rang of 0 at posit ion wh r all four base occur equa lly, 

to 2 bits at po itions that ar p rf ct ly con erved, (for mor inform ation th r ader 

is ref rred to 12). 

z 

Figure 1.1: Logo repre ntation of a Po ition Wight Matrix (Hun hba ·k). 

W must also note that the probability of a given sequ 11 i u ually alcul L d 

with r pe t to a background di tribut ion (or model; d n t d it by B ) t hat th 

s quence might belong to. Ma rkov model are th mo t mmonly u d mod I [or 

the background distribution of nucleotide in different g n me . In th i . 

we u e a uniform zeroth ord r Markov mod J for t h background mod J i .c., 

PB (A) = PB(C) = PB(G) = PB(T) = 0.25. Therefor the probability of s qu n e 

S, given this background mod 1 i P(SIB) = 0)1.,. Thi implie that the binding 

p cificity of this sequenc can be cons idered a: PM ( )/ PB(S) . Th (ba: 2) 

log of this quantity i usually called the log odds ratio and denot d by £.., i .. , 

'(' (S) = log (PM(S)/ PB(S) ) = L log 4 + ~:=llogP ,i ' A prior beli f of bindin g 

likelihood can be added to th is equation: £"'(5) = L log4 + 2::=llogPS,i + v. 

4 



1.2 Motivations of the project 

One common task in the analysis of regulatory DNA sequences is to search 

for potential transcription factor binding sites (TFBSs) within DNA regions of 

interest. For example, one may have a gene or set of genes whose expression is of 

interest and wants to find potential sites governing their regulation. 

To accomplish this task one needs a database of regulatory motifs and an 

implementation of the PWM models in which the significance of the potential 

sites is determined. Among others, two databases that include comprehensive 

information about TFs are commonly used. The TRANSFAC database (47) 

provides extensive data on experimentally characterised TFs in several organisms, 

known binding sites, the PWM models and genes that are regulated by specific 

TFs. 

Another recently developed and widely used database is JASPAR (60) which 

is an open access database for eukaryotic TF binding profiles. JASPAR has a 

smaller set but is believed to be less redundant than TRANSFAC. Two exam­

ples of widely used implementations of the PWM models are PATSER (26) and 

MATCH (33). However, in our analysis we used an implementation of the PWM 

model called BiFa tool (unpublished tool developed by N. Dyer and J. Reid). The 

reason why the BiFa tool is used in our model to score the binding strengths is 

explained in Subsection 3.1. 

1.2 Motivations of the project 

As we earlier mentioned, CRMs carry regulatory elements that are necessary to 

the specification of the spatia-temporal gene expression patterns. Understanding 

the rule by which modules process these regulatory elements is key to under­

standing the transcriptional processes. 

The growing scientific interest in gene regulation means that it will a signifi­

cant advantage to be able to detect the cis-regulatory modules in newly sequenced 

genomes that are homologous to known enhancers and/or promotors. 

Despite the importance of the regulatory sequences in gene regulation, our 

ability to detect these sequences and also to predict their functions is very limited. 

This contrasts with non-coding sequences, where the wide-spread availability and 
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1. INTRODUCTION 

study of complementary DNAs (which are used for gene cloning) and proteins has 

made identification and prediction of their functions possible (54). 

In the sequence comparison context, the most well-studied framework is mea­

suring the sequence similarity between proteins or coding sequences in order to 

detect the homology. The basic local alignment search tool (BLAST) (3) is the 

most widely used alignment tool for this purpose. But, it is not very suitable 

in comparison of DNA regulatory sequences where, in contrast to the coding 

sequences, they demonstrate less significant alignments. This case may arise: 

• where two sequences being compared are not orthologous ( we note that the 

orthologous sequences are referred to those that share a common ancestor), 

yet functionally related. In Chapter 4, we will demonstrate a set of non­

alignable enhancers in which a subset of enhancers is likely to be functionally 

related. 

• where the sequences are evolutionarily highly diverged yet maintaining sim­

ilar functions. Recently Hare et al. in (24) detailed evidence of some eve 

modules that produce near identical regulatory outputs where in more dis­

tantly related D. wilstoni and D. virilis groups only 29% of modules were 

conserved in these species. 

Thus for comparison of DNA regulatory sequences alignment-free models are 

required. 

The first alignment-free sequence comparison model proposed in 1986 by Blais­

dell (8), and from that time it has received a great deal of attention by researchers. 

The overwhelming majority of reports about alignment-free models have been 

published over last 10 years (1; 20; 31; 62; 63; 77). These published models can 

be categorized into two groups. 

Models in the first group are based on the principle that CRMs with simi­

lar functions should share some binding sites for the same transcription factors. 

These common binding sites are likely to be the key factor in driving similar 

expression patterns. In Chapter 2 we will provide the reader with an overview 

of some of key models in this group. We will see that these models are widely 

applicable to any type of data even protein sequences, but the results are, not 
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1.2 Motivations of the project 

informative enough. For a review of these type of models the reader is referred 

to (44). 

Models in the second group, on the other hand, are aimed at predicting spatio­

temporal gene expression patterns from the regulatory sequences. In Chapter 2 

we will review some of these models. Although these models advance our under­

standing of how genomic sequences are translated into transcriptional outputs, 

the complexity and extreme data dependency of the models in this group do not 

allow for a wide application of these models as a sequence comparison tool. 

Having seen some advances in both of these groups, leading to more anno­

tation of regulatory sequences and further understanding of regulatory systems, 

there has been very few successful attempts at using them for the comparison of 

regulatory modules. Indeed, our ability to quantify functional (dis )similarity of 

two regulatory modules, will help us to detect other enhancers in the same genome 

that are likely to have similar functions to the given enhancer. It also can be used 

to detect functionally conserved enhancer regions in orthologous genomes even if 

the enhancers do not align. 

Here, we present a regulatory region scoring (RRS) model that overcomes this 

problem in some of its recent applications presented in this thesis. Our model 

takes as input a template sequence, a test sequence and a set of transcription 

factors motifs for which we need binding affinity and also the concentration of 

factors. As output, RRS provides the user with some statistical similarity scores 

and a list of factors that contribute to this (dis)similarity. 

The mathematical and computational framework of the RRS has two main 

components. In the first model component, we establish a mathematical concept 

that represents what proteins, in what level of specificity and multiplicity are 

bound to the module. In the second model component, we estimate a probability 

distribution of motif occupancy levels for sequences that are functionally similar 

to the template sequence. We then compute a Bayes factor to evaluate if the 

test sequence is more similar to the template sequence or more similar to random 

background sequences. 

Relative to the above mentioned families of models, the reader may wonder 

where the RRS stands in relation to existing models. Throughout Chapter 2 

we shall try to convince the reader that there is a gap between these families 
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1. INTRODUCTION 

of models. The former family of models is defined very generally and is widely 

applicable, but some natural principles underlying transcriptional control, such 

as TF competition, motif degeneracy, and effects of weak binding sites, are com­

pletely ignored. Consequently, the results are less conclusive. Whereas the latter 

is based on a mechanistic understanding of the regulation of gene expression by 

predicting expression patterns using TF occupancy and interaction and is too 

dependent on a specific combination of data sets to be generally applicable. The 

key idea of the development of the RRS that we shall try to bring to the reader's 

attention throughout this thesis, was to enhance the conclusiveness of the results 

and lessen the data dependency of the model by borrowing the key ideas of each 

family of models so as to get more accurate results on a wider range of data. 

This thesis consists of five chapters. In the first chapter, we provide the 

reader with a brief background and also the clarification and/or motivations of 

the problem. In the second chapter, we will briefly review some of the existing 

models, emphasising their strengths and pointing out their weaknesses. There has 

been an enormous amount of published work on alignment-free methods applied 

for detection and/or comparison of the regulatory modules as well as predicting 

expression profiles from the regulatory modules (recently, it has been also used as 

a motif finding tool see 21). Reviewing all of these reported models is out of the 

scope for this chapter. We consider those models that, to some extent, have had 

an influence on the establishment of our model. The third chapter is devoted to 

our regulatory region scoring model including its mathematical foundations and 

its computational framework. This is followed by two applications of the RRS. 

The first application is presented in Chapter 4 where the RRS is used to detect 

functional and/or evolutionary links between some non-alignable enhancers with 

a strong statistical significance. We will also identify groups of enhancers that 

are likely to be similarly regulated. Chapters 3 and 4 are based on our published 

paper (38). 

Chapter 5 is devoted to the second application of our model. In this chapter, 

we first demonstrate how the RRS detects orthology between some fly species. 

Some of the orthologous sequences with (relatively) high statistical significant 

RRS scores are then used for our in silico predictions of functional subregions 
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1.2 Motivations of the project 

of a D. melanogaster enhancer that are likely to drive expression patterns in a 

subset of projection neurons in the D. melanogaster olfactory system. 

It is widely thought that the targeting specificity of the projection neurons 

in the fly olfactory system is controlled by a transcriptional code but very little 

of the underlying mechanism is understood. Therefore we are aiming to open 

some new insights into this poorly understood notion by predicting functional 

subregions and their key regulators using our RRS model. 

The underlying project of this chapter is a close collaboration with our col­

laborators at Stanford University. Here the emphasis is on the bioinformatical 

side of the project (For the biological side of this project the reader is referred 

to Chapter 4 of 71). This project is still ongoing and a manuscript of both 

bioinformatical and biological results of this project is under preparation. 

Finally, we would like to further clarify that each chapter in this thesis ends 

with a conclusion subsection in which we provide the reader with brief findings 

as well as some future directions specific to that chapter. We believe that this 

will help readers who are interested in only some parts the thesis to follow their 

interests easily. 
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2 

Existing Models 

It is widely accepted that cis-regulatory modules are key for establishment of 

precise spatio-temporal gene expression patterns. Some recent studies show that 

CRMs may function similarly in different species despite substantial sequence 

divergence (45 and 24). This implies that, firstly, alignment-based sequence com­

parison tools are not applicable for further decoding the conserved function of such 

CRMs and secondly, that some CRMs must share common patterns that drive 

almost identical regulatory outputs but possibly with different arrangements of 

binding sites. When different, but functionally related enhancer loci in the same 

species are considered, then alignment-based tools are not normally suitable for 

regulatory sequence comparisons as these sequences are not orthologous. 

Recently, there has been a great deal of attention on alignment-free methods 

to further reveal the mechanism of transcription control (see 78). Among these 

methods, two families are of particular interest for us within this project. We 

call them data intensive and general models. The former is based on a mechanis­

tic understanding of the regulation of gene expression by predicting expression 

patterns using TF occupancy and interaction and is too dependent on a specific 

combination of data sets to be generally applicable. The latter family of models 

is defined very generally and is widely applicable, but some natural principles un­

derlying transcriptional control, such as TF competition, motif degeneracy, and 

effects of weak binding sites are completely ignored. Consequently, the results 

are less conclusive. 

10 



2.1 Data intensive models 

In the following two sections we shall review some of the models in any of 

these families. 

2.1 Data intensive models 

Recent studies show that some CRMs with the same function may have strik­

ingly different architectures (10). A big challenge in the field is now to predict the 

activity of a CRM based on its organisation. This has been recently attempted 

by many researchers, but among others three closely related computational mod­

elling approaches (in order: 62; 80 and 32) have been at the center of debate 

by making new insights of our understanding from the regulatory code. These 

models are aimed at predicting spatio-temporal gene expression patterns from 

the regulatory sequences. They all follow the same idea but differ mainly in in­

put and slightly in structure. As representative of data intensive models, we will 

review these three approaches in this section. 

2.1.1 A thermodynamic model for prediction of gene ex­

pression patterns 

In theoretical gene regulation frameworks, thermodynamically motivated models 

(for the sake of simplicity, from now on we will call them thermodynamic models) 

are based on the assumption that the level of gene expression is proportional to 

the equilibrium probability that RNA polymerase is bound to the promoter of 

interest. This is perhaps the most attractive feature of these models for theoretical 

scientists interested in gene regulation, because it avoids the difficult task of 

computing gene expression from the concentration of proteins produced by the 

gene of interest. 

These models are established, however, based on some different assumptions 

that can be problematic. The equilibrium assumption itself can be considered the 

most critical one that according to our best knowledge has not been systematically 

evaluated yet (see 7 and 63). The second problematic assumption in these models 

is that the gene expression level is considered proportional to the probability of 

11 
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promoter occupancy by the RNA polymerase. This assumption can mean igno­

rance of several different mechanisms that do occur between polymerase binding 

and the existence of a functional gene product. For a more detailed review of 

thermodynamic models in gene regulation frameworks including their modeling 

and applications, the reader is referred to (7 and 6). 

Despite of these critical assumptions, there are some reports showing that 

these models are very instructive and predictive (see 20; 22; 62 and 66). 

In this subsection, we well review only one of these thermodynamic models 

that has been established by Segal et. al. (62), in which the reader can see that 

the developers are strongly motivated by some previous work for example (14; 

17; 74; 78 and 59). 

Similar to the others, this model is based on the above mentioned thermo­

dynamic equilibrium assumption. In other words the probability of polymerase 

occupancy is computed from the intrinsic equilibrium affinities and concentra­

tions of the transcription factors. The gene expression level is considered to be 

proportional to the polymerase occupancy. 

This thermodynamic model for prediction of gene expression patterns made 

use of TF expression levels as well as the arrangement and quality of their bind­

ing affinity to predict the expression profile of an arbitrary DNA sequence. The 

authors achieved this by generating a model based on the biochemical properties 

and binding site preferences of eight key TFs (Bicoid, Hunchback, Caudal, Krup­

pel, Giant, TorRE, Knirps and Tailless) of the early Drosophila segmentation 

network. For previous related work see 

This model (in this context we call it thermodynamic model) is based on a 

thermodynamic equilibrium (between DNA-binding proteins) assumption. The 

probability of polymerase occupancy is computed from the intrinsic equilibrium 

affinities and concentrations of the transcription factors (TFs). The gene expres­

sion level is considered to be proportional to the polymerase occupancy. 

This model takes into account some important aspects of TF-DNA interaction 

including competition of TFs for TF binding sites, self-cooperativity of TFs, and 

the effects of weak binding sites. 

12 
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2.1.1.1 Mathematical framework of the model 

The thermodynamic model takes three input parameters: Module sequence, con­

centration of any of the factors under analysis at any anterior-posterior (AP) 

position and also binding affinity of the factors. As output, it provides the reader 

with a prediction of expression pattern that the given sequence might have as a 

profile over the AP axis. Figure 2.1 on page 14 is an schematic depiction of this 

model. 

The mathematical structure of this model is built by two main components. 

Throughout the first model component, each factor views the sequence in a 

unique way - called binding landscape - depending on its recognition specificity at 

any set of concentrations of the DNA binding proteins. The range of this binding 

landscape is key to cooperative and competitive binding interactions between the 

factors and the DNA sequence. According to this binding landscapes, one may see 

a particular arrangement of molecules along the DNA sequence which includes 

specification of the precise position and orientation at which each molecule is 

bound. Any of these distributions of a set of molecules bound to the sequence is 

called a binding configuration or more precisely a valid binding configuration by 

not allowing overlapped molecules (from now on by a configuration we will mean 

a valid binding configuration). 

It is worth pointing out that different interpretations of this idea have been 

applied for other organisms including bacteria (7), yeast (20) and mammals (22 

and 66). 

I t is then argued that any of these distinct configurations convey a distinct 

transcriptional behaviour. 

Therefore, according to this framework the key question turns to further un­

derstand these binding configurations. For this, all possible configurations are 

taken into account and each configurations is associated with a statistical weight. 

We should note that in this context, the binding affinity that can be considered 

as the strength of binding that is measured by using a position weight matrix 

model. In other words, lets assume that S = SI ... SI and position weight matrix 

M are given. Then the binding affinity of S is defined as ~\~I~}' where the 

numerator means probability of the sequence using the weight matrix model M 

13 
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and t he d nomina tor mean th probabili ty of t h 

model B. 

qu n given the ba kground 

A uming tha t molecul s bind independently, a tati t i al wight r a nfig-

uration i defined as the product of contribu tion of any of t h mol cuI . 

to th equ n e wi thin the given configuration. Til ntribu t ion of ach r t h 

binding event is in turn comput d from the con centrat ion or Lh orre p nding 

rac or and affini ty of th binding it that the molecule i upying. Thu , r r a 

tof ntranscription factor i . . {TF1 , ·· · ,TFn } , ifw a urn thatN m I u l 

mi of thes factor are bound to the sequenc wi th in th 

can wri t : 

N 

W( c) = II T(mi) X F (mi, Pi) 
i = l 

nfi gurat ion , Lh n w 

(2.1 ) 

where Pi i the interval of th DNA equence that has been 0 cupied by th 

mole ule mi, T(m i) is the concentration of th m i a nd F (mi, Pi) i the binding 

affinity of t h interval Pi for mole ul e mi. It wort h point ing out t hat fir Lly th 

lin ar dependency does not model aturation eff t , and w are not dealing wi th 
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situations where concentrations are known in this work, but simply assume a 

constant and identical concentration for all TFs. Secondly, for a given state of a 

thermal system - in statistical mechanics and thermodynamic contexts - F ( rni, Pi) 

is called Boltzmann factor and is defined as the exponential of minus its energy 

which is measured in kBT units. More precisely, the energetic contribution of the 

binding of molecule rni to the sequence from position Pi to position Pi+L'_1 with 

Li being the binding interval length is defined as: 

(2.2) 

For more details the reader is referred to (7 and 63). 

The normalised statistical weight of each configuration is then defined as the 

probability of that configuration, that is : 

P(c) = W(c) 
LC'EC W(c') 

(2.3) 

All in all, at the end of the first model component the user is provided with 

the occupancy distribution of the molecules on the target DNA sequence. 

The second model component on the other hand translates this occupancy dis­

tribution into a level of gene expression in other words P(Eic) which is discussed 

below. 

We should recall that the probability of the gene expression is assumed to be 

proportional to the probability of the RNA polymerase binding and is denoted 

by P( E). The overall probability that polymerase is binding is obtained from the 

weighted sum of the polymerase binding at every configuration, with the weight 

of each configuration is being its probability: 

P(E) = L P(c)P(Elc) (2.4) 
cEC 

in which P(Elc) is interpreted as a translation of expression level driven by the 

configuration c. The underlaying assumption at this level is that each factor 

bound in the configuration contributes independently to the expression outcome, 

with activators contributing positively and repressors contributing negatively. 

The authors employ a logistic function to translate these contributions into ex­

pression. In other words, if we assume that a configuration c has built up by 
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binding N molecules ml,'" ,mN at positions PI,'" ,PN to the DNA sequence, 

then the probability of expression can be expressed as: 

N 1 
P(Elc) = logit( Wo + L W m ,) = l:N) 

. 1 + e-(WO+ >=1 Wm, 
1=1 

(2.5) 

where Wo is the basal expression level and Wi is the expression contribution of 

the molecule i. From this equation one may see that the parameters are the 

same for all sequences and also in longer sequences all of the factors would be 

able to simultaneously have their effects. To overcome this problem the authors 

normalised the input of the logistic function by dividing it by the length of the 

sequence. 

2.1.1.2 Parameter fitting and validation of the model 

As parameter fitting of this model, 44 gap and pair-rule gene modules with known 

expression patterns were used. By comparing the predicted expression patterns 

of these models with measured expression patterns, and devising a learning algo­

rithm they trained the parameters of the model. For any factor these parameters 

included a) the absolute concentration of the factor in vivo, b) the transcription 

rate resulting from its interactions with the basal machinery, c) the strength of 

binding cooperativity and d) the strength of the PSSM which was representing 

the factors' binding preferences. The model then was used to predict expression 

patterns for 11 D. melanogaster and 15 D. pseudoobscura modules. The result of 

this analysis is presented in Table 2.1 on page 16. 

Species number of modules 

D. melanogaster 11 

D. pseudoobscura 15 

good 

4 

2 

fair poor 

4 3 

9 4 

Table 2.1: Results of predictions of expression patterns for 11 D. melanogaster 

and 15 D. pseudoobscura modules. Predictions were subjectively classified into 

three categories: good, fair and poor. 
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2.1.1.3 Conclusion 

This thermodynamic model advances our understanding of how genomic se­

quences are translated into transcriptional outputs. It shows that knowing the 

TF concentration at different AP positions as well as the arrangement and quality 

of the binding sites can be sufficient to explain the segmentation pattern in fly 

species. 

The knowledge about these two key parameters of the model, however, is ac­

counted as the main drawback of the model. On one hand detailed knowledge 

of biochemical TF properties is often not available. On the other hand, detailed 

knowledge of some spatial expression patterns of a number of related enhancers 

and their key regulators is required which is again not always available. F\lrther­

more, the number of configurations is an exponential function of the length of the 

sequence and the number of TFs which makes computation of occupancy level of 

factors very expensive and almost impossible for genome wide applications. 

Finally, according to (63), although the underlying thermodynamic assump­

tion of this model has been successfully used in some other models, it remains 

unclear how and even whether regulatory systems equilibrate. 

2.1.2 Global predictions of regulatory module activity 

In Section 2.1.1 we argued that a key factor for the thermodynamic model was 

knowledge about the concentration of proteins which are rarely available. To 

overcome this problem, Zinzen et al. (80) decided to predict enhancers' activity 

solely from their TF binding site patterns. They established a novel approach 

based on comprehensive catalogue of CRMs involved in Drosophila mesoderm 

development that are bound by five key factors. 

In this section we briefly review this model. For the sake of simplicity we call 

it Zinzen model. 

2.1.2.1 Computational framework 

Using chromatin immunoprecipitation combined with microarray (ChIP-chip) as­

says Zinzen et al. determine the genome wide distribution of binding sites of five 

17 



2. EXISTING MODELS 

key fa .tor of mesoderm and muscl (Twist, Mef 2, Tinman , Bagpip , Binio u) at 5 
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estimates of transcription factor concentrations, their affinity for various sequence 

motifs and cooperativity and competition between transcription factors. 

Impressively, the model was able to predict the expression pattern of the 

modules with a high accuracy, in other words, 71% of the predictions turn out to 

be correct: the enhancers drive expression of transgenic reporters specifically in 

the predicated regions and not in other mesodermal tissues. 

Despite of the high accuracy of predictions, the Zinzen model is still intensively 

based on in vivo activity data which is not often available. 

In comparison of the Zinzen model with the thermodynamic model, one can 

argue that both are novel strategies for predicting CRM expression pattern, but 

are strongly dependent on availability of experimental data. The thermodynamic 

model looks powerful when a detailed knowledge of concentration of key factors 

at different developmental stages is available, but it does not need a whole map 

of CRMs. On the other hand, the Zinzen model, does not require detailed bio­

chemical information about regulators but rather requires in vivo TF binding and 

CRM activity data. 

Another drawback of the presented Zinzen model is that it is based on a 

machine learning algorithm where its robustness and reliability is not addressed 

therefore further applications of this model in a wider range of data is required 

and will provide further insights into its usability. 

Finally, the authors in (80) argue that their previous data for binding profiles 

of transcription factors were not of enough quality to model the CRM activity. 

However, there is no clear definition of quality level of the data that will be 

enough for the CRM activity prediction. On the other hand, for generating high 

resolution data, they performed Chip-an-chip on each TF at consecutive time 

points in 5 different developmental stages. This procedure provided them with 

binding data for 15 developmental conditions. But, as far as we can see, there is 

no relationship between this binding data with the level of accuracy of the model. 

In other words, how much of this binding data is required for some statistically 

significant predictions. 

We should leave reviewing of this model at this level, the interested reader is 

referred to (57 and 72) for more details. 
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2.1.3 Quantitative analysis of CRMs using pattern gener­

ating potentials 

Recently, a new computational approach for annotation of genomic sequences 

was established by Kazemian et al. (32). This model that we will call it the 

regression-based model is based on a pattern generating potential and similar to 

the thermodynamic model, it uses both the DNA binding specificity and concen­

tration of transcription factors. However, as will be described through the next 

subsection, the binding specificities as well as the input for the logistic fUIlction 

are computed quite differently. 

The regression-based model is the first model in this family that can be used 

in a genome-wide manner to identify modules by scanning genomic sequences for 

the potential to generate all or part of the expression pattern of a flanking gene. 

As output, it provides the user with a location of a module as well aR an 

estimation of its potential expression pattern. FUrthermore, based on an in silica 

genetic analysis, a transcriptional regulatory network is constructed in which 

each edge depicts the direct contribution of individual factor with an associated 

estimate for its statistical significance. 

In the following subsection we will provide the reader with more details of 

mathematical and computational framework of the regression-based model. 

2.1.3.1 Computational framework 

We would like to recall that the thermodynamic model is constructed based on 

two components, one that is estimating the occupancy level of factors in a given 

sequence based on Equation 2.3 and the other that is translating this occupancy 

level into an expression pattern using Equation 2.5. But a key issue with com­

putations of these quantities is the enormous number of configurations that in­

creases exponentially as a function of length of the sequence and the number of 

factors. Although the authors used a dynamic programming approach to address 

this computational cost, it still prevents the model from having a wider range of 

applications. 

The regression-based model, on the other hand, is a new strategy to tackle 

this problem. The mathematical structure of the model is similar to the ther-
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modynamic model built of two parts. First, a cross-species comparisoll st.rategy 

is used and transcription factor binding specificity profiles are computed. Next, 

a logistic regression function is employed to combine factor motif scores with 

transcription factor expression information to predict the module activity. The 

details of these procedures are as follows: 

• Computation of binding specificities: The basic idea of this approach 

was that CRMs with conserved activity across Drosophila species will main­

tain some binding activity for each TF while binding sites in nOll-functional 

regions will be less conserved. They used the Hidden Markov Model-based 

Stubb (67) program to generate genome profiles of binding motif scores for 

a set of 10 TFs including BCD, CAD, HB, KNI, KR, CT, HKB, TLL, FKH 

and CIC. For the sake of generality we will denote the set of TFs as: 

l' = {Fl' ... ,F N }. 

They then created a multi-species motif profile by averaging the motif pro­

files from the D. melanogaster and 10 other Drosophila genomes ( averaging 

scores from orthologous 500bp regions). However, the averaging was not 

just the additive mean of the scores. In order to reflect the evolutionary 

distances among the species, the motif score of a region was defined as a 

random variable evolving according to the Brownian motion process along 

the branches of a phylogenetic tree. The average was thus defined as the 

expected tree-wide average of this variable given its observed value in the 

extant species. Using this approach, each module l was associated with a 

motif score ct for any i E 1'. For more details of this averaging scheme the 

reader is referred to (73). 

• Employment of a logistic regression model: Within this model, the 

AP axis is divided into 100 bins. Lets assume that the concentration of any 

factor i E l' at bin b is equal to 'Yib. Then the predicted expression level for 

the CRM 1 at bin b is defined as: 

El,b = logit( w~ + L Wi'YibCf) = l _(~ ell (2.6) . w + e iE:T W,I',b i 
tE:7 0 
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where the wb i the basal expression level of CRM l a nd W i i. aIl ed the 
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F igure 2.3: An schematic ill ustrat ion of the regr ion-ba d In d I. Thi fi gure 

has b en taken from (32). 
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is worth mentioning that although a direct comparison of these models has not 

been presented, the authors are claiming that the regression-based model is as 

effective as the thermodynamic model. 

2.1.3.2 Detection of regulatory modules with the regression-based 

model 

In the paper under review, the authors presented a measure of similarity between 

a genomic sequence activity (predicted expression by regression-based model) 

with a gene's endogenous expression pattern. This scoring scheme was called 

pattern generating potential (PGP). Given a predicted expression profile (real 

numbers between 0 and 1 for each bin along AP axis) and endogenous expression 

profile (again numbers ranging from 0 to 1) the PG P was defined as: 

where Eg,b is endogenous expression value of the gene 9 in bin band Eg,b is 

the predicted expression value. We should note that the L.b~9,~XE9'b is in fact 
b g,b 

the average of the predicted expression in expressed bins and is called the reward 

term whereas the Lbt-(~.:,~Xfg,b is the average of the predicted expression in non-
b g,b 

expressed bins and called the penalty term. The difference of reward and penalty 

is indeed the PGP score, the coefficient 3 in the penalty term of Equation 2.7 is 

just a weight. The PCP scores are linearly scored as y = 0.5 = 0.5x. 

This scoring scheme inferred a genome wide application of the regression-based 

model for detection of CRMs in the following way: A genomic region consisting of 

gene transcript and lOkb of its upstream and downstream region is scanned with 

windows of fixed length (for instance 1kb, colour-filled rectangles in Figure 2.4). 

The predicted expression profile of each window (open blue and green rectangles 

in the same figure) is then compared with the endogenous expression (open red 

rectangle) of the gene leading to PCP scores that are plotted as a function of the 

genomic coordinate of the window (as is depicted in Figure 2.4). 

The PCP was first tested on 22 genes regulated by 46 CRMs and then applied 

to a collection of 144 genes where the authors identified 123 putative CRMs from 

68 genes. 
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SIp2 Genomic Region 

I _~ ~ 

-
:~~ '~~~ '~ 

'~~.u:: ,-.:,.:!o,,= O Jl)«I1D1D 100 
o.n. l!.p.~O" 

· 10Kb .ot<b +OI(b +10KI 
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2.1.3.4 Conclusion 
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seems more dependent to data than two other counterparts. 

Finally, all three above reviewed studies are based on some machine learning 

algorithms. Therefore, the abundance as well as the quality of a training set. 

for these machine learning algorithms is a fundamental requirement that might 

affect the quantity and quality of their results. A direct comparison of these three 

models, will reveal the robustness of these algorithms in particular with respect 

to the over-fitting problem. Obviously further investigation of disagreements of 

such a study will enhance our understanding of the regulatory code. 

2.2 General models 

This family of alignment-free methods is mostly based on the rationale that func:­

tionally similar sequences must share some common words. Within these meth­

ods each sequence is mainly associated with a vector of k-mer counts. A distance 

function for these vectors is then defined (1; 8; 31; 77 and 40). 

In this section we will be reviewing only three of these methods (in a chrono­

logical order) as representatives of this family. Throughout, we are hoping to 

convince the reader that this family of models is defined very generally and there­

fore is widely applicable, but some natural principles underlying transcriptional 

control such as TF competition, motif degeneracy, cooperativity of binding sites, 

effects of weak binding sites and concentration of factors are completely ignored. 

2.2.1 Metrics for comparing regulatory sequences on basis 

of pattern counts 

The key idea behind this model (we call it the Poisson-based model (77)) was that 

the presence of common motifs in the regulatory regions of two sequences (genes) 

might be considered as a measure of similarity, and presence of different motifs as 

a sign of dissimilarity. Therefore common putative regulatory properties of genes 

can be captured by defining a pattern count-based similarity and/or dissimilarity 

function. 
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2.2.1.1 Computational framework 

The functional similarity of two sequences a and b in the Poisson-based framework 

is defined as: 

(2.8) 

where sab and Dab are respectively similarity and dissimilarity metrics (as defined 

below), a is a positive weighting parameter, which can be tuned arbitrarily to give 

more emphasis on the common (low values) or distinct (high values) occurrences 

between two sequences and {3 is offset to ensure the that metric is always pm;itive. 

In this model the data set is considered as a matrix N, containing n rows (one 

per sequence) and p columns (one per pattern). Nr corresponds to the number 

of occurrences of pattern i in sequence a. In order to define a (dis)similarity 

between two sequences (a and b) a Poisson distribution is employed. 

Each pattern i is characterised by a prior probability ii, indicating the prob­

ability to find an occurrence at any position of a sequence. Prior probabilities 

can be calculated either on the basis of the data set itself, or on the basis of an 

external background model. The expected number of occurrences mi is obtained 

by multiplying the prior probability ii by the number of possible positions T for 

the pattern: 

(2.9) 

where L is the length of the sequence and w the length of the pattern. (For 

simplicity, assume all the sequences have the same lengths). Let us denote the 

cumulative function of the Poisson distribution by F(x, mi), that is the proba­

bility to observe at most x occurrences, when the expected value is mi' Thus 

for a single gene a and single pattern i, the probability to observe at least Nt 
occurrences is obtained by: 

(2.10) 

It is clear that when Nr increases (i.e. for over-represented patterns) 

F(Nr, mi) ---. 1 and consequently P(x 2: Nt) ---. 0 i.e., the low values of 

P(x 2: Nt) correspond to overrepresented patterns. 
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2. EXISTING MODELS 

The contribution of each pattern i to the similarity of a pair of sequences is 

then calculated on the basis of the probability of common counts. For this, lets 

assume that cab =< Crb, ... ,C;b >, where Cr = min(Nt, Nib) is the number of 

common counts for pattern i. 

Now the probability to observe at least Crb occurrences of pattern 'i in each 

sequence, is the product of the probabilities (under the assumption of indepen­

dency): 

P( cab) = { [1 - F(Cr, miW if C'/ > 0 
X 2': 1 1 if cab = 0 

1 

(2.11 ) 

This probability is then converted into a similarity metric as: 

sab = 1 - P(x > cab) 
1 - 1 (2.12) 

reflecting how exceptional is to find at least Cfb common occurrences of pattern 

i in a pair of sequences. For a multi-variate similarity, the score then can be 

defined either as additive mean which is defined as: 

p 

S ab _! '"' sab 
add- ~ i 

P 1=1 

(2.13) 

or to consider a joint probability simultaneously, and applying geometric mean: 

p 

ab 1 
Sprod = - p II P(x ~ Cfb). (2.14) 

i=p 

From this similarity metric one can see that : 

• A pair of sequences that do not share a common motif are obtaining 0 as 

their similarity score. 

• High number of occurrences of a single motif or multiple occurrences of 

different motifs increase the similarity score. 

• Patterns with low prior probabilities contribute more than those with higher 

prior probabilities. 
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For establishment of a dissimilarity metric, the author calculates the proba­

bility of the distinct occurrences, i.e., those found in one sequence out not in the 

other one. For this, it is assumed that pattern i has occurred Nt and NP times 

respectively in sequences a and b, and that Nt ::; NP, then the contribution of 

this motif to dissimilarity can be defined as: 

p 

dd~stinc, = IF(Ni
b

, mi) - F(Nt, mdl, D'dfstillct = ~ 2: d7b 

P i=l 

(2.15) 

In order to capture the degree of over-represent ion of a motif which is illdicated 

by low values of the probability to observe at least x occurrences: P(x 2: Nt) = 
1 - F(Nt - 1, md, the author defined another catalogue of dissimilarity metric 

as: 

dab = IP(x > NIL) - P(x > Nb)1 overi -! -! 

= IF(Nt - 1, mi) - F(Ni
b 

- 1, mi)1 
p 

Dab = ~ "'" dab 
over p L...J ! 

i=l 

(2.16) 

From Equations 2.15 and 2.16 on page 29, one can see that: a) a motif with 

the same number of occurrences in both sequences has a 0 contribution to the 

dissimilarity definition, b) high number of distinct counts of a motif and also 

high number of different motifs occurring with different counts in both sequences 

increases the dissimilarity. 

Finally, the author defines the mixed metric as Equation 2.8 on page 27, 

in which some key points are worth highlighting: a) motifs found in both se­

quences are contributing positively whereas motifs found in one sequence but 

not in the other are contributing negatively, b) score 0 means that either none 

of the sequences contains any occurrences of any motif or common and distinct 

occurrences of motifs are compensating each other's effect. 

2.2.1.2 Conclusion 

The Poisson-based model is easy to implement and computationally efficient al­

gorithm. However, there are some points that we would like to bring them to the 
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reader's attention. Firstly, there is no significance defined to the final similarity 

(dissimilarity) metric i.e., Equation 2.8. In other words, for instance, [) motifs 

with the same number of occurrences in both sequences has the same effect as 

100 motifs with same number of occurrences in both sequences. Secondly, there 

is no evidence to show why the underlying Poisson distribution is an appropriate 

distribution for the occurrences of motif in a sequence, in particular, this means 

that we are assuming that the occurrences of a motif in a regulatory sequence 

is only by chance, which seems unrealistic. Thirdly, a big concern that the user 

might have about this model is that he/she requires a prior knowledge about 

motifs. Finally, as a minor technical point, it might worth mentioning that from 

a mathematical point of view the term 'metric' is inappropriate in particular for 

Equation 2.8. For instance,we know that as a (mathematical) metric (function) 

the score 0 corresponds only to the same sequences which is not true in this 

definition. 

2.2.2 Fixed-length word distribution model 

The model we will be reviewing in this section is called D2z and established by 

Kantorovitz et al. (31). The D2z model is based on comparing the frequencies 

of all fixed-length words in the two sequences. In this way sequences are mapped 

to to vectors by the counts of (for instance) k-mers. The vectors obtained in this 

way, represent the original sequences with a fixed resolution k. Then the basic 

logic is that similar sequences will share more words. This is being quantified by 

defining different techniques. 

2.2.2.1 Computational framework 

Lets assume that A = {A, C, G, T} is the alphabet set, and the background 

model is a Markov model of order w ( we note that different sequences may 

fit different background models). We suppose that A = A 1A 2 ••• Ani and B = 

B1B2 • •• Bn2 are two sequences that we wish to measure their similarities in terms 

of distributions of k-mers. The D2 statistics (42) is defined to be the number 

of k-mer matches between two sequences A and B, including overlaps. It is 
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originally computed as: 

D 2(A, B) = L Y(i,j) (2.17) 
(i,j)EI 

where Y(i,j) is the indicator variable between the k-words st.arting at position 

i in A and B, and the index set I = {(i,j) : I:=; i :=; nl - k + 1, and 1 :=; j :=; 

n2 - k + I}. One may note that: 

D 2(A, B) =< N A
, N B >= L N~N:; (2.18) 

wEW 

where similar to what we defined in Section 2.2.1.1, N~ is the number of occur­

rences of the word w in sequence A and W E W = {WI, W2, •.. W4k }. 

In order to measure the number of standard deviations by which the observed 

value of D2 deviates from the mean, the authors presented a normalised version 

of the D2 score: 
D2z(A, B) = D2(A, B) - E(D2) 

a(D2) 
(2.19) 

where E(D2) and a(D2) are the expectation and the standard deviation of the D2 

respectively. For computations of these parameters, two different computational 

algorithms based on independent and identically distributed random variables 

I I D, and also Markov model (MM) is presented. 

2.2.2.2 Conclusion 

In applications where several different distributions are to be compared the nor­

malization of the D2z becomes very useful as different background distributions 

of the sequences are taken into account. This makes it possible to compare se­

quences from different species. 

Besides, we can see that this model is relatively easy to implement and also can 

be adapted to a more limited set of k-mers, in order to reduce the computational 

expenses. It can be used for any sort of sequences (even protein sequences). 

However, it is too theoretical. In other words, some particular limitations of this 

method can be listed as: 
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1. Not all functional motifs in a pair of sequences aH~ in the form of 6-Illers. 

So by considering only k-mers as patterns underlying functional similarity 

of a pair of sequences, some motifs which contribute to the gene expression 

pattern may be overlooked. 

2. Not all k-mers are biologically meaningful words, hence using all 6-lIlers 

may mean introducing some noise to the model and furthermore, we may 

want to compare two sequences just based on a subset of meaningful words. 

3. Within the D2z framework, degeneracy of TF binding motifs is not ac­

counted for. So different 6-mers are treated separately even if they only 

differ in one base. 

4. The framework does not allow for a sequence and its reverse complement 

to be combined for the purposes of assessing possible TF binding. 

2.2.3 Identifying regulatory modules by word profile sim­

ilarity 

Most recently, Garmay Leung et a1. (40) came up with a different idea for compar­

ison of vectors of counts of k-mers associated to two sequences. They presented 

their solutions as a model called word profile hits or WPH in short. In this frame­

work, given a sequence (for example a CRM), the WPH algorithm uses its word 

composition to search other putative CRMs with similar word composition. In 

the following subsections we shall provide the reader with more details of the 

WPH framework. We should mention that in this study the authors were only 

interested in compositions of 8-mers. Therefore, by a word profile of a sequence 

they mean its 8-mer composition. 

2.2.3.1 Computational framework 

In this framework, the similarity of two sequences is determined by comparing 

the degree of word overlap between two profiles with the expected overlap given 

the number of words in each sequence. To see this in more details, we need to 

32 



2.2 General models 

establish some notations. We will use '8-mer' and 'word' to refer to the same 

object in this section. 

Lets assume that two sequences A and B are given and we wish to measure 

their functional similarity based on WPH framework. Lets also assume that W(A) 

and W(B) are the sets of all 8-mers occurred in sequences A and B respectively. 

A I-neighbour of a word W E W(A) is a word w' which has maximum 1 mismatch 

with w. The set of words in I-neighbourhood of ~V(A) is denoted as W'(A) (the 

number of allowed mismatches is considered as a free parameter). We should 

note that W(A) ~ W'(A). A word w E W(A) contributes to the observed word 

overlap OVA-+B if a I-neighbour of w occurs in B. With this definition, it is 

clear that each pair of sequences defines two overlaps (OVA~B alld OVB~.A) that 

lead to two similarity scores ZA-+B and ZB~A which are defined in the rest of this 

subsection. 

The probability of the overlaps is calculated by employing a Poisson distri­

bution with mean). = IW(A)/nl where n = 32896 is the number of unique 

8-mers (a word is mapped to itself and its reverse complement). Therefore the 

probability that a given word w occurs at least once in A is equal to: 

Pw(A) = 1 - e-1W(A)/n l (2.20) 

and the probability of a I-neighbour of a given word w in A is: 

Pw,(A) = 1 - e-1W'(A)/nl (2.21 ) 

This implies that a given word w occurs in A and its I-neighbour occurs in 

B with the probability: 

(2.22) 

Let XA~B be the indicator variable representing whether the word w occurs in 

A and one of its I-neighbours say w' occurs in B. 

The authors then assume that each word occurs independently and therefore 

one can use a binomial distribution with the following properties: 
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Pr[X%---->B = 1] = Pov(A ~ B) 

XA---->B = LX%---->B 
wEA 

E[XA-+B] = Pr[X%---->B = 1]· n 

(JA-+B = J Pr[XA---->B = 1]· n· (1 - Pr-[XA-+B = 1]· n) 

note that A = {A, C, G, T}. 

Similar to D2z model, the overlap score is defined as: 

(2.23) 

(2.24) 

where VA-+B is the actual overlap, E[XA-+B] is the expected overlap and (J A-~B is 

the standard deviation. However, to make the scores symmetric, they defined the 

final similarity of sequences as Z(A, b) = min(zA-+B' ZB-+A)' Taking minimum is 

to ensure that similarity requires many words in A to have I-neighbours in B 

and vice versa. 

In a series of analyses, the authors noticed that upon applying this scoring 

scheme sequences with similar GC-content are clustered together. Therefore they 

decided to bin together words with equal GC-ratio and calculating the probability 

of word overlap for each bin. That is they argued that for a fixed word length 

k, there are nr words for each GC-ratio r = 0, 1/ k, 2/ k, ... ,l. Let Wr(A) be the 

set of words in A with GC-ratio of r, and similarly W~(A) be the set of words 

in the I-neighbourhood of Wr(A). Then the word occurrence probability for a 

given GC-ratio r is as: PWr (A) = 1 - e-1Wr(A)/nl and Pw~ (A) = 1 - e-1W:(A)/nl. 

Similar to Equation 2.22 the corresponding pairwise word overlap probability 

between sequences A and B for words with a given GC-ratio is: Pov,(A ~ B) = 

PWr (A)pw~ (B) and overall probability of word overlap is defined as sum over all 

possible GC-ratios: 

Pov(A ~ B) = L nr POVr (A ~ B) 
n 

r 

(2.25) 

Figure 2.6 on page 35 shows how this scheme can be used to identify sub­

sequences in the target sequence with similar sequence composition to a given 
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CRM ' word composit ion: First the CRM i p li t to ub 'equ -l1 ces of I ngt. h 500bp. 

Each of these subsequences then i assoc iated with their word pro fi les . Fina lly, 

u ing th e above ment ion d scoring scheme, t he target sequence is earch d for 

ubsequences with simi la r word profiles . 
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Figure 2.6: An sci emaLic overview of WI H mod I. Th fi gur has b n La k 11 

fr m (40). 

2 .2.3.2 Conclusion 

Th r ad r m ight have noti d th at th WPH i a ombin Li n f t h [ oi 11 -

ba d a nd D2z mod 1. In compari on to h Poi n-bas d rn d I, iL prov id ' a 

b tt r tima tion of th rn an for the Poi on d i Lr ibuLion. In c mpari on to Lh ­

D2z model, they do not can id r di Lribu t ion of a ll k - rn rs in b Lh qu n s 

bu t tho k - m rs tha t up to 1- neighbourho d hav a ULT d in b t h s qu n 

FUrthermor , on id r ing 1- n ighbourhood of a word qual to iL wn oc urr n e 

one step d v lopm nt , whil compar ing La D2z. 

But similar problem till r main: 

• By only consid ring - mer \ om functional W I'd ar v dook d . 

• By considering all - m r , it i v ry likely Lo introdu noi to th sy tern. 
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• Occurrence of each word in this scheme is equiprobable . 

• There is no guarantee that one might not need to do some other ('orre('tions 

(for example for AT rich sequences, similar to GC-biases correction) 
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3 

Regulatory Region Scoring 

(RRS) Model 

Some recent comparative studies have revealed that regulatory regions can retain 

function over large evolutionary distance, even though the DNA sequences are di­

vergent and difficult to align. It is also known that such enhancers can drive very 

similar expression patterns. This poses a challenge for ill the in silico detection of 

biologically related sequences, as they can only be discovered using alignment-free 

methods. Our main objective in this chapter is to present a new computational 

framework called Regulatory Region Scoring (RRS) model for detection of func­

tional conservation of regulatory sequences using predicted occupancy levels of 

transcription factors of interest. Our goals are: 

1. To be able to detect functionally similar enhancer regions even if the en­

hancer regions do not align. 

2. To find groups of similar enhancers and determine relevant sequence features 

shared among enhancers within a group. 

The RRS model takes as input a pair of sequences and a set of TF motifs. We 

call one of the sequences the template sequence and the other the test sequence. 

The task is to judge whether the test sequence has the potential to drive similar 

expression patterns as the template sequence, assuming expression is driven by 

the given set of motifs. We do not use any cutoff for probabilities of binding of 
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these motifs to the sequences and so allow weak binding event.s and even absence 

of motifs to contribute to sequence similarity. The output from the RIlS model is 

a statistical similarity score and a list of motifs that contribute to that similarity 

score. 

The model is built of two main components: one component a.'isociates each 

sequence with a mathematical vector reflecting which proteins with what. mul­

tiplicity and what specificity have the potential to be bound to the sequence. 

We call the elements of these vectors motif occupancy values or, in short, ()­

values. These vectors give an indication of the potential enhancer function of the 

given sequences. As the reader might notice, some parts of this component are a 

modification of the thermodynamic model that was reviewed in Subsection 2.1.1, 

meaning that to some extent we are accepting both equilibrium assumption and 

that the gene expression level is considered proportional to the probability of pro­

moter occupancy by the RNA polymerase. The second component estimates a 

probability distribution of motif a-value vectors for sequences that function sim­

ilar to the template sequence. We then compute a Bayes factor to evaluate if the 

test sequence is more similar to the template sequence or more similar to random 

background sequences (Figure 3.1 shows a simplified schematic illustration of the 

RRS concept). 

We like to draw the reader's attention to the point that the RRS has been de­

veloped to be able to learn parameters from both randomly picked and randomly 

generated sequences. However, as the reader will notice, within this project we 

preferred to learn the model from the randomly picked sequences. This is because 

we believed that it is not possible to capture all the genome features (such as re­

peat elements, low complexity DNA and ect) with randomly generated sequences. 

In the rest of this chapter we first provide the reader with mathematical foun­

dations of the RRS model in Section 3.1. The main focus of this section therefore 

is establishing the feasibility of computation of the o-values. This section is very 

mathematically oriented. For those readers with less mathematical background, 

we will try to keep the coherence of the story in the next sections by repeating 

some of the essential equations in a less mathematically oriented language. Then, 

in Section 3.2, we show how the a-values are defined and computed. Section 3.3 is 
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3.1 Mathematical framework of the RRS model 

Throughout this section we are going to provide the reader with the mathemat­

ical foundations of the RRS model. For this, a given sequence is first asso('iated 

with a set of binding configurations. Then any of these configurations in turn 

is associated with its probability. In the following, the expected number of 0('­

currences of a motif is defined. Apart from presenting these terminologies and 

definitions in detail, we will put a particular emphasis on mathematical feasibility 

of computations of the probability of each configuration and also the expected 

number of occurrences of each motif in a given sequence. 

In what follows, we will assume a template sequence T, a test sequence 8 

and a set of transcription factor motifs M = {A11, . . • , M n}. We shall denote the 

length of a sequence T by LT or simply by L, if there is no risk of confusion and 

the length of a motif M by IMI. 

Definition 1 A site s in a sequence T with length L is defined as an element of 

M x {I, ... , L}, i.e., s = (M, Pi) for some M E M, and IMI ::; Pi::; L where Pi 

is the position of the last nucleotide of the motif in the sequence T. 

We use the term configuration to denote a particular arrangement of protein 

molecules along the DNA sequence, which is defined by the sites at which each 

molecule is bound to the sequence. In other words: 

Definition 2 A configuration c with N molecules bound to a sequence is defined 

as c = {( Mi, Pi) 11 ::; i ::; N, Mi EM}, where Mi is the i-th molecule bound at a 

position ~. 

Valid configurations are those in which sites do not overlap: 

Definition 3 A valid configuration is a configuration c = {( Mi , ~) 11 ::; i < 
N, Mi EM} in which for any given (Mijl Ph) and (Mi2' ~2)' either' Pil < 
Pi2 - I Mi21 or ~2 ::; Pi} - I Mit I holds. 

From now on, we will be only interested in valid configurations and we will denote 

the set of valid configurations by C. However, for the sake of our argument we 

like to introduce a particular subset of C. That is the set of those configurations 
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that have exactly j occurrences of the motif M up to positioll J)i of t.he sequen(,e 

and there is no site after ~, i.e., 

ct] = {c E C I (V(M, Pk) E C, (Pk ::; ~) 1\ (I{(M', Pk) E cl AI' = M}I = j))} 

The following lemma shows that the set of CI~J s is indeed a partition of the 

set C. We note that for a given sequence T with length L and a motif M with 

length 1M!, the maximum number of occurrences of Mover T is JM = L/IMI. 

Lemma 4 Assume that T is a sequence with length L, M is an arbitmr'Y motif 

and J M is the maximum number of occurrences of M over all valid conjigumtions, 

then 

1. Ct;i n ct;j = 0 for any 0::; i ::I j ::; JM ; 

2. U~:~M Cf,k = C 

Proof. The first part is a direct application of the definition. For the second part, 

let's assume that c E C is an arbitrary configuration. If there is no occurrences 

of Mover c, then c E ct;o. If there are more than zero occurrences of Mover c, 

then we may assume that the j is the position of the last occurrence of Mover c 

that will imply that c E ct;j. This means that U~:~M Ct;k ;2 C. The other side 

of this inclusion is obvious. • 

Now let's assume that a configuration c with N molecules bound to the se­

quence is given i.e., c = {(Mi' Pi)11 ::; i ::; N, Mi EM}. If we further a.'Isume 

that molecules bind independently then the statistical weight of this configura­

tion is defined as the product of the contribution of each of the binding events. 

But the contribution of each molecule is in turn a function of binding affinity and 

concentration parameter. In other words: 

Definition 5 If we denote the sequence at binding interval of molecule Mi at 

position ~ by B i , then the statistical weight is defined as: 

(3.1 ) 
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In which, P(Bi!Mi) m eans the probability of subsequen ce Bi using the the corre­

sponding PSSM m odel and P(Bi!Mi) m eans the probability of subsequence Bi given 

the background m odel (unifo rm O- order Markov model in our' case) . ~~~:: ~;:i i 

the contribution of each binding molecule, ~i~: :~:i is considered as the binding 

affin ity and ~i ~: i is considered as the concentration parameter. 

In our model, the BiFa tool (see Subsection 5. 2.2) i used to core t h strength 

of bindings i. e., ~i~::~:i . This is b cause in the BiFa tool a Bayesian approach is 

implemented to compute these scores which i equivalent to what has b n used 

in (62). As our model, t o some ext nt , is a modification of (62) therefor one 

may agree that it was reason able to use an equivalent scoring ch me. Bides , 

according to the develop r (see Figure 3.2 on page 42) of t he BiFa tool , it is 

more sensitive t han the curr ntly used model in th T RANSFAC database. 
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Figure 3.2: Comparison of sensitivity of BiFa scores vs two oth r model . Gr en: 

Bayesian model used in BiFa for coring binding strengths. T his scoring model has 

been u ed in our algorithm. The model underlying the Blue curve is a fr qu nti t 

stat ist ic provided as an alternative within BiFa. T hat is, given a position weight 

matrix score x, what is the likelihood of observing a score 2 x by chance. The 

yellow triangle shows th performance of the score implemented in the TRA FAC 

database. This figure has been provided by the developer of BiFa tool. 
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3.1 Mathematical framework of the RRS model 

We should note that according to this definition, statistical weight associated 

to the empty configuration i.e., the configuration without any molecule bound 

to it is 1 (product over an empty set). We also note that this definition enables 

weak binding events to be included in the model. Assume that in a configuration 

c we have a molecule that has been weakly bound to the sequence many times. 

If, for the sake of simplicity we assume an equal binding affinity a (a > 1) in 

K positions, then the contribution of this factor to the W (c) is equal to aK . 

Depending on K, this might be a strong contribution. 
W(c) The probability of each configuration c is then defined as p( c) 

LCEC W(c)· 

We use the same dynamic programming technique as in (62) to compute this 

probability. The core of our model, however, is where we define the expected 

number of occurrences of each motifs in a sequence. For a given sequence T and 

a given motif M, the expected number of occurrences of Mover T is defined as: 

eIt = LP(c)IM(c) (3.2) 
cEC 

where IM(c) is the number of occurrences of motif M in the sequence over the 

configuration c. This equation is of particular interest as it contains both the 

multiplicity and specificity of a binding event of a protein to the sequence respec­

tively in IM(c) and p(c). However, as already mentioned, our main emphasis in 

this section is the mathematical proof of feasibility of computation of this term. 

To achieve this we need to establish some more notations. 

Notation 6 In the rest of this chapter we define: PfJ := Lct; p(c), WfJ .­
LCM W(c) and Z := LCEC W(c) 

L,J 

where L is the length of the sequence T, M is the motif, j is the number of 

occurrences of M in sequence T. 

Lemma 7 For a sequence T with length L and a motif M E M, L;:iM P~ = 1. 
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3. REGULATORY REGION SCORING (RRS) MODEL 

Proof. 

• 

CEC 

=> LP(c) + ... + L pee) = 1 
CM 

L,O 

(According to Lemma 4) 

Lemma 8 For a sequence T with length L and a motif ME M, Z = L:~o wt· 
Proof. Similar to proof of the Lemma 7 .• 

Corollary 9 For a sequence T with length L, a motif M E M, a S; i S; Land 

as; j S; JM , ZP/1 = wtJ 
Proof. Proof is straightforward from Notation 6 and Lemmas 7 and 8. • 

Lemma 10 Suppose T is a sequence of length Land M is a motif from M then 

JM 
T ~pM . 

eM = ~ L,j'J 

j=1 

Proof. 

cEC 

L pee) x j (According to Lemma 4) 
Uj=JM CM 

1=0 L,1 

JM 

= L(LP(C) x j) 
j=O Ct!,j 

JM 

= L(j x LP(c» 
j=O Ct!,j 

JM 

= L(j x pt) 
j=O 
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3.1 Mathematical framework of the RRS model 

• 
Assume that M E M and c is a configuration in C/J. We remember that c 

is a configuration in which up to position i of the sequence there are exactly j 

occurrences of M. One may consider three possibilities for this configuration. 

• (M, i) is an element of c. Let us denote the set of these type of configurations 

with Cf4, meaning that position i has been occupied by M. 

• (M', i) is an element of c, where M =J. M' E M. Let us denote the set 

of these type of configurations with ctt, meaning that position i has been 

occupied by another motif. 

• There is no element X in M such that (X, i) E c. In other word, position 

i of the sequence is left unoccupied. Let us denote the set of these type of 

configurations with cf. 
It is not difficult to observe that Cfj = Cf4 u ctt U C;! and consequently: 

(3.3) 
CECf':J 

The following three lemmas are in fact main tools for the proof of the main 

theorem of this section. We should recall that in the following B is the sequence 

at the binding interval of molecule M, i.e., B is the Sri - IMI, i]) subsequence. 

Lemma 11 For any motif M E M and with the notations shown above, the 

following equation holds: 

" M p(BiI M ) 
~p(C) = ~-IMI,j-lp(BiIM)" 

1 

Proof. Suppose C E Cf4, then (M, i) is an element of c. This also implies 

that c has exactly j - 1 occurrences of M up to position i - IMI. If we assume 

Icttl = t, then we can write: 

LP(c) = p(cd + ... + p(Ct) 
ctt 
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3. REGULATORY REGION SCORING (RRS) MODEL 

we know that the last site in any of configurations Cl, ..• Ct is (M, i). By separating 

the contribution of (M, i), we can re-write the last equation as: 

To prove the other side of this inequality, let's suppose that C is an element of 

Ct!IMI,j-l' In other words C is a configuration with j - 1 occurrences of M up to 

position i - IMI. We can write: 

p(cl(BIM) = W(c) P(BiI M ) 
p(BIM) Z P(BiIM) 

(3.4) 

= ~(rr p(B'IM') x p(BIM)) 
Z p(B'IM') p(BIM) 

c 

= p(cd (where Cl is an element of Cf4) 

This implies that 

'"" )p(BIM) < '"" ( ) CM~ p(c p(BIM) - f;;:P Cl 

'-IMI,]-l 1 

which completes the proof. _ 

Lemma 12 For any motif ME M, the following equation holds: 

M p(B'IM') 
LP(c) = L Pi-1M'l,jp(B'IM') 
cf M'EM,M'¥M 

Proof. Let us assume that C is an element of Cit. Then according to the 

definition of Cf!, there exists an M' =I M in M such that C = (M', i). With a 

similar argument to the proof of Lemma 11, we may write: 

M p(B'IM') 
LP(C) ~ L Pi-1M'I+l,j x p(B'IM') 
cf M'EM\{M} 
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3.1 Mathematical framework of the RRS model 

For the other side of this inequality again we suppose that c is an element of 

C/'!.IM'1,j where M' =I- M is a motif in M. Therefore c has j occurrences of M up 

to position i - IM'I. Similar to the proof of Lemma 11, we can write: 

(
c)p(B'IM') = W(c) p(B'IM') 

p p(B'IM') Z p(B'IM') 

= ~( II p(BIM) X p(B'IM')) 
Z M p(BIM) p(B'IM') 

Ci_1M'I,j 

(where C2 is an element of ctt) 

and so the proof is completed. _ 

Lemma 13 For any motif M E M, the following equation holds: 

LP(C) = ~"!l,j 
cr 

Proof. Any configuration C E cft has j occurrences of M up to position i, 

but the position i itself is left unoccupied. This means that c is a configuration 

in C/"!.l,j' And obviously any configuration C E C!'!l,j has j occurrences of M up 

to position i but the position i itself remains unoccupied. Meaning that c is an 

element of Cft. Therefore we have: 

-
LP(C) = ~"!l,j 
c:f 

We are now in a position to present the main theorem of this section that guar­

anties a dynamic programming method for computation of the expected number 

of occurrences of motif aM E M in sequence a T. i.e., eIt. 

Theorem 14 Suppose T is a sequence with length L, M is a motif from M = 

{Mt ,··· ,Mn}, JM is the maximum number of occurrences of Mover T, 0 S; i S; 

Land 0 ::; j ::; JM, then 

M M M p(BIM) '"' M p(B'IM') 
~,j = ~-l,j + ~-IMI,j-l p(BIM) + M'E~'iM Pi-IM'l.j p(B'IM') (3.5) 
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3. REGULATORY REGION SCORING (RRS) MODEL 

Proof. Before proving the theorem in general, we like to pay attention to 

some boundary conditions. We should recall that W(0) = 1 and consequently 

L{0} p(c) = L{0} wJc) = i. If for a motif X E M, i ::; IXI then ~~ = L0 p(c) = 
o and therefore the corresponding term would be cancelled out for the 3.5 and 

therefore we will not have any negative values for position indices. Similarly if 

j = 0 then the second term of the Equation 3.5 will be zero and hence Equation 3.5 

is modified as: 

M p(B'IM') 
pM = pMl . + '"' P IM'I .---=--C-

2,) 2- ,) ~ 2- ,Jp(B'IM') 
M'EM,M'-:/-M 

Therefore without loss of generality we may assume that i 2:: max{IMIIM E M} 

and j 2:: 1. Now according to Lemmas 11, 12, and 13 we can write: 

(B 1M) M p(B'IM') M _pM Pi,", P p 
- i-IMI,j-1 (HIM) + ~ i-IM'I,jp(B'IM') + i-l,j 

p 2 M'EM,M'-:/-M 

This finishes the proof. _ 

Theorem 15 With the above mentioned notations we have: 

WM - WM WM p(BIM) '" M p(B'IM') (36) 
t,j - i-I,) + i-IMI,)-I p(BIM) + M'E~'-:/-M Wi-IM'!,J p(B'IM') . 

Proof. See Lemma 9 and Theorem 14 • 

3.2 Occupancy values of proteins binding a se­

quence (motif a-values) 

In this section we shall explain how in our model the expected number of occur­

rences of a given motif in a given sequence is computed. However, as we promised 

in Section 3.1, we will repeat the key ideas of the RRS model in a less mathe­

matical language with the hope of keeping the coherence of the story for those 

readers with less mathematical background who might have skipped the Section 

3.1. 
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3.2 Occupancy values of proteins binding a sequence (motif o-values) 

We assume a template sequence T, a test sequence S, and a set of transcription 

factor motifs J\{ = {M1,··· ,Mn}. We use the term configuration to denote a 

particular arrangement of protein molecules along the DNA sequence, which is 

defined by the intervals at which each molecule is bound to the sequence. Valid 

configurations are those in which binding intervals do not overlap. By assuming 

molecules are bound to sequence independently, we then associate a statistical 

weight W(c) to any valid configuration c (see Equation 3.1 ) which is the product 

of contribution of each binding event. The contribution of any of these binding 

events are in turn a function of function of binding affinity and concentration 

parameter. 

The probability of each configuration c is then defined as p(c) = Ec::(~(c) 
where C is the set of all valid configurations. We use the same dynamic program­

ming technique as in (62) to compute this probability. 

There can be more than one expressed protein species that can bind to a given 

motif. In the absence of information on either the number of protein species 

capable of binding a motif or the nuclear concentrations of these proteins we 

assume the total nuclear concentration of such proteins to be equal for each 

motif and set :i!:j to a constant value. Where such information is available it 

can be integrated into the RRS model by setting the concentration parameters 

accordingly. When the concentration parameter is set to a constant value, it 

determines the average density of proteins bound to DNA within our model. We 

chose 15 as the setting for the concentration parameter and confirmed that results 

presented in this work are robust as long as the concentration parameter is set 

such that the protein density is realistic. Note that the scaling of this parameter 

depends on the scaling of the binding affinity and therefore the absolute value 

does not have a direct interpretation. 

Intuitively, this probability distribution over all possible configurations should 

reflect a number of aspects of enhancer function in a natural way. Overlapping 

binding sites will compete with each other, high affinity binding sites will attract 

a binding molecule more often, and weak binding sites can exert an effect if they 

are present in numbers. Proteins are more likely to interact with the polymerase 

if they occupy the enhancer more often. Therefore, a key quantity relevant to the 
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3. REGULATORY REGION SCORING (RRS) MODEL 

function of an enhancer is the expected number of copies of a given protein that 

bind to motifs in the enhancer (T): 

e'£ri = LP(c)IMi(c) (3.7) 
cEC 

in which I Mi (c) is the number of occurrences of motif Mi in configuration c. 

This definition is of particular interest because it captures both the specificity 

and multiplicity of a binding event of a protein to the sequence in the p(c) and 

1Mi(c) terms respectively. A dynamic programming approach is used to compute 

each occupancy value. Finally the sequence T is associated with the vector of 

occupancy values, that is, ET =< e'L
l
,··· ,e'L

n 
> and similarly sequence S is 

associated with E S =< eXt
l
,· •• ,eXt

n 
>. Our results show that these occupancy 

values are length dependent. We divide them by the length of the sequences 

to normalise them. Therefore, each of these vectors summarises the combined 

specificity and multiplicity that each protein is likely to bind to each of the 

sequences. 

3.3 Similarity scores 

Our aim in this section is to define a similarity function over the space of vectors 

of occupancy values to extract the similarity of a given pair of a-values. Hav­

ing observed a-values from the template sequence, E T , we want to test if the 

vector of a-values from the test sequence, E S , has been drawn from the same 

distribution or from a random background distribution. The logarithm of motif 

a-values in randomly picked sequences from the genome of the species of interest 

approximates a normal distribution (see 3.3). 
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3.3 S im ila ri ty scores 
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quenee of lengLh 1000. B: moLi[ M004 with random . equen ee of length 300. 

C: motif M00093 with random eqll nees of l ·ngth 3000. D: motif M00696 with 

random seqll nees of length 1700. 

Therefor, the probability of a mo if o-vector uch as E =< e~h' . . . , Xrn > 
an be obtain d from a multivariat normal di triblltion. For tbe ake of im­

pliciLy, we shall consider an independent multivariate normal distribution. Thi 
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3. REGULATORY REGION SCORING (RRS) MODEL 

means that the probability of the a-vector E S under the random model is p( E S I R) = 
n~=l p( eXt; IfL = /-LR;, (J = (JR,), where, fLR; and (JR; are the mean and standard 

deviation of a-values for motif i in randomly picked sequences. The proba­

bility that E S has been drawn from the same distribution as the template is 

p(ESIT) = n~=lP(etJfL = eLi,(J = (JR;). We define the RRS score as: 

(3.8) 

The first point to note about this definition is that it is asymmetric but one may 

define it as an average to make it symmetric, i.e. RRS(S, T) = (RRS(SIT) + 
RRS(TIS))/2. However, it is sensible to work with the asymmetric version, in 

particular when comparing two sequences from different species. 

The second point is that, in the current version we are using a single sequence 

as template. This limits our prior information about the distribution of the 0-

values in the template sequence. In other words, for each motif A-fi we use only 

fL = eLi as the mean and (J = (JR; as the standard deviation of the distribution. 

However, if we know that some enhancers are driving almost similar expression 

pattern, then it is better to consider these set of sequences as template and 

consequently feed more accurate mean and standard deviation of the distribution 

into the model. 

The third point that makes this definition more realistic and useful is the 

contribution of the individual motifs: 

J(eS ):= p(et-ilfL = eLi,(J = (JR;) 
Mi p(etJfL = /-LRi' (J = (JR;) 

(3.9) 

for any motif M i , where 1 S; i S; n. For any test sequence S, one can consider 

Equation 3.9 as a function of variable eSM. with three extra parameters: eTM' fLR, 
t t t 

and (JR;. The following cases illustrate this definition and its usage in the rest of 

this paper: 

1. if eLi ~ MR; (see Figure 3.4A), then J(et-J can be considered as a constant 

function with value ~ 1 (Figure 3.4D). This means that if the expected 

number of occurrences of this motif in the template sequence is very close 

to the average of its expected number of occurrences in the random se­

quences, then the overall RRS score for the test sequence will be largely 
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3.3 Similarity scores 

independent of number of occurrences of this motif in the test sequence. 

In biological terms, if the test sequence shares a regulatory code with the 

template sequence, but also contains additional binding sites, then these 

additional sites do not reduce the sequence similarity. 

2. if eIr; > J-tR;, then f(e~J is an increasing function. More accurately, if 

we assume that eIr; > A > J-tR; where A is the intersection point of the 

two distribution curves (Figure 3.4), then f(e~J ::; 1 if e'L, ::; A else it is 

greater than one. This case occurs when the motif is strongly present in 

the template sequence. Accordingly, the greater the motif o-value in the 

test sequence, the greater the contribution of the motif (Figure 3.4 parts B 

and E). Note that a strongly negative RRS score in this case implies poor 

presence of the motif in the test sequence. 

3. Similarly, if eIri < J-tR;, then f(e'LJ is a decreasing function. In other words, 

f(e'LJ > 1, if e'L; < A (where eIr; < A < J-tR; is the intersection point of 

two curves) then the motif will be assigned a contribution greater than 

one, otherwise f(e'LJ has a value less than one, contributing negatively to 

sequence similarity (Figure 3.4 parts C and F). 
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Figure 3.4: Illu t rat ion of th RR imi lari ty cor for an ind ividua l moLif. Th r 

are t hr e possibi litie . A,D: T h motif i neit h r ignifi cant ly pre nt nor a b nL 

in th template qu nee. Th d i tribution of motif a-vah.L s in quenc s wit h the 

am fun t ion as the t mplate quenc (solid li n ) i t imated to be equal to th 

random backgro und (dashed lin ) . In t hi case irr sp t iv of th mot if a-valu in 

t h te t quence, t h fun t ion f ( AI) ( EquaLion 3.9) is con tant (D). B E: 
t 

Th motif a-value in t h t mplat is higher than in random qu n e (B), in t his 

as J( AIJ i an incr asing fun tion (E ). C, F: Th mot if a-value i low r than in 

random equ nc , indicating ignificant absenc . In t hi case f ( !lIJ i de r as ing 

(F). 

3.4 Parameter fitting 

G iven t he sequence T and t he mot if M E M , th mod I requir tree param ter : 

binding probab ili ties of th motif at ach po it ion of t h equen e, m axImum 

number of occurr nce of t he moW over t he s qu nc T and t he conc nt ra t i n o f 

th correspond ing fact r . 

For alcula t ions of binding binding proba bili ties in this model w us d an 

implementation of t he PWM ( €I Section 1.1.2) mod I called BiFa tool (unpub­

Ii hed tool developed by . Dyer and J. Reid) . We ho uld recall tha t w d n t 

u pred termined thr hold for binding probab ili t i ,allowing bo h w ak and 
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3.4 Parameter fitting 

strong factor binding to contribute. 

In the following two subsections we will try to clarify how the other two 

parameters can be fitted into the model. 

3.4.1 Maximum number of occurrences of a motif in a 

sequence 

The maximum number of occurrences of the motif M over the sequence T is the­

oretically defined as Jrnax = lifl where L is the length of the sequence T and IMI 
is the length of the motif M. However, using these theoretically defined number 

of occurrences of each of the motifs might be computationally expensive and one 

may like to see how robust the results are with respect to fewer values for Jrnaxs. 

To clarify this, first we would like to recall that the number of configurations ex­

ponentially increase as a function of number of motifs. To illustrate this further, 

consider a simple example where we have a sequence with length 1000bp, a set of 

motifs each of which have a length equal to lObp and also that factors can only 

bind in positions 1,11,21, ... ,991, then even in this very simplified example the 

number of configurations is equal to 10100. 

In order to see how we can reduce this computational cost, we should remem­

ber that for a given motif M we have Z = L:c W(c) = L:::~x Wtj (see Notation 6 

and Lemma 8), where Wt:.t is the sum of statistical weights over all configura­

tions with exactly j occurrences of M. However, the number of configuration 

with exactly j occurrences of M exponentially decreases when j increases. In our 

simplified example Ct:o = 9100 where as Ct:100 = 90 = 1. Consequently Wtj is 

an exponentially decreasing function of j, that means that for a big enough j, we 

may assume that Wtj ~ Wt;"k for any k »j. This is illustrated in Figure 3.5 

on page 56 where the logarithm of statistical weight i.e., log W t:.t is plotted as a 

function of j i.e., different number of occurrences of the motif M for 10 different 

motifs. The sequence in this figure was of length 450pb and it was randomly 

picked from the D. melanogaster genome. The motifs illustrated in this figure are 

top 10 motifs in Table 4.2 on page 64. Therefore, it can be concluded that for 

computations of the statistical weight over all configurations i.e., Z, one may not 

require to take maximum number of occurrences of each motif M as liI l , instead 
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any number around 15 will provide him/ her wi th an a .urate approximat ion t hat 

will lead saving computational co ts. 
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F igure 3.5: Illustrated h r is t he logarit hm of um r tat i t i al wight, in t her 

word , wt;j as a function f j whi h is t he numb r of 0 urr nce of t he m t if IVI . 

Thi i dep icted for 10 diff r nt motifs . The sequ nc used in t his an ly j wru a 

randomly picked equenc from th D. meianogaster- g n me with lengt h 450pb. 

3.4.2 Robustness of the concentration paramet r 

W n te that there can be mor than one expr that n bind 

Lo a giv n motif. In the pr ence of information on it h r th number of pr L in 

p CI capable of binding to a motif or the con ntration of the corr ponding 

prot ins, th n Equation 3.1 on page 41 i re-wri tt n a : 

(3. 10) 
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3.4 Parameter fitting 

where ,(Si, Ci) is the concentration parameter as a function of Si which is the 

protein species that recognizes the motif Mi and Ci which is the corresponding 

protein concentration (in one point of AP axis). However, in the absence of such 

information we assume that the total nuclear concentration of such proteins to 

be equal for each motif and set ~~~:~ to a constant value, that can be considered 

as the average density of proteins bound to DNA within our model. We also note 

that the scaling of the this parameter depends on the scaling of the binding affinity 

and, therefore, the absolute value does not have a direct interpretation. We chose 

15 as the setting for concentration parameter and confirmed that (see Figures 3.6 

and 3.7 on pages 58 and 59 respectively) the result presented in this project is 

robust as long as the concentration parameter is set such that the protein density 

realistic. Our observations show that this can range from 10 to 100. Intuitively, 

protein density close to zero is meaningless and extremely high protein density 

can mean the system reaches a saturated point, and also, we should note that 

proteins make only a fraction of the cell volume. 
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Figure 3.6: T he RRS cores of a fun ctional subregion of D. melanogasteT v 

it orthologou in D. imulan , D. sechellia and D. yakuba using 6 diff r nt con-

ent ration param ters which are 5, 10, 20,50, 100 and 5000 ar illustrat d. Not 

that t he numbers in both x and y axe are log t ransformed. More informat ion 

about these sequence can be found in Subsection 5.3 .1. As we can see, the RR 

i not considera bly varying for any concentration from 10 to 50. I t worth poin t­

ing out that, t heoretically, the RRS scores for a cone ntration clo e to zero i not 

defin d . T he RRS scores for big concentration ar statistically I ss significant as 

there are som random sequence obtaining higher score, wh n the ub equenc of 

D. m elanogasteT compared to 1000 randomly pick d sequences from D. simulans. 

In Figure 3.7 on page 59 we are illu trating the RRS scores of a ubregion 

of D. m elanogaster (BiFa-Only see Subsection 5.3. 1 for more detail about t hi 

equence) vs its ortholog from D. simulans in 6 different concent rations (green 

vert ical lines) and at each ca e the subsequenc from D. m elanogaster i compared 

with 1000 randomly picked sequences from D. simulans to show th statistical 

ignificanc of the RRS scores at that concent rat ion. 
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3. REGULATORY REGION SCORING (RRS) MODEL 

3.5 Conclusion 

We have presented an alignment-free method for detection of functional conserva­

tion of the regulatory sequences based only on occupancy level of some transcrip­

tion factors of interest. It has been designed such that it is less data-dependent 

with a wider range of applications and more conclusive results. This model can 

be used for comparison of regulatory sequences where sequences are functionally 

related but are not orthologous (see Chapter 4). The RRS can also be used for 

comparison of regulatory sequences from different species where they have under­

gone a substantial evolutionary divergence (Chapter 5). Finally, we would like 

to close this chapter by listing some finer points and shortcomings of our model 

where further development may lead to a more accurate model. 

• In the current version of the RRS we use a set of known TF motifs, fo­

cusing the sequence analysis on validated motifs. However, there may be 

yet unknown binding motifs relevant to the function of the sequences anal­

ysed. We could introduce some complementary sequence patterns into the 

analysis to test for a possible contribution to sequence similarity. 

• There are further sources of prior knowledge that could be fed into the 

analysis in principle. For example, we are assuming equal concentrations 

of all regulators even though these will vary in different cell types. Some 

motifs belong to particular pathways which may be of particular interest 

m some cases. It would be possible to define a weight for such subsets of 

motifs. 

• Within the current version, the synergy between pair of motifs is ignored, 

but there are some reports that regulation of some fly enhancers requires 

synergy between pairs of motifs (65). 

• Rather than using a single template sequence, it would be possible to use 

multiple template sequences with similar expression pattern. This should 

help to define a more accurate distribution of motif occupancy levels. 

• Given the key regulators of an enhancer and concentration of factors at 

different position of the AP axis, the RRS can be modified in a similar 
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3.5 Conclusion 

way to the regression-based model (see 32 or Subsecection 2.1.3.1 for more 

information) to predict the expression profile of the enhancer. For this, one 

may employ the same regression function and use the expected number of 

occurrences of each motif (i.e., a-value) instead of the motifs score defined 

in regression-based model. This might help lessening the data dependency 

of the regression-based model, where for calculations of the motif scores one 

need a cross-species comparison. Furthermore, a direct comparison of this 

modified RRS with existing models that are predicting expression profiles, 

may help further improvements of any of these models and may provide 

more insights into the regulatory mechanism. 
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4 

Functional Links Between 

Non-Alignable Enhancers 

In this chapter we demonstrate how the RRS can be used to detect functional 

links between a set of enhancers that do not show any alignment conservations 

(non-overlapping enhancers from D. melanogaster). These type of applications 

might be of great importance in situations where a set of co-regulated genes in a 

single species is given and it is aimed for searching for some subregions that are 

likely to mediate similar expression profiles. 

In what follows, after a brief introduction, we first give more details of the 

data sets that were used for this analysis. We then present the results at each 

corresponding subsection. 

It is worth pointing out that a slightly modified version of this chapter has 

been published in (38). 

4.1 Introduction 

Our goal in this chapter is to evaluate if the RRS can distinguish function­

ally / evolutionarily related sequence pairs (positive sets) from the sequence pairs 

randomly picked from the genome (negative sets). For this, we apply it to the 

same fly data sets as used in (31) as is explained in Section 4.2.1. We first demon­

strate that the distribution of alignment significance levels, or e-values in short, 

of positive sets is not significantly different from the distribution of alignment 
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4.2 Discussion and results 

e-values of negative sets. Using RRS however, there are 40 pairs of sequences 

(edges in Graph 4.3) whose scores are significantly greater than the scores ob­

tained using random pairs. The statistical significance of some of these scores 

are highlighted. We show that according to the RRS results, a subset of these 

40 enhancers are regulated by the regulator BCD (subgraph highlighted by rect­

angles in Figure 4.3). This finding is of particular significance as it has been 

experimentally confirmed by (52). Finally, we do some analysis firstly to show 

the contribution of strongly absent motifs to the similarity of a pair of sequences 

and secondly to highlight the substantial contribution of weak binding sites in 

our model scheme. 

4.2 Discussion and results 

4.2.1 Data sets 

This study uses four data sets of experimentally confirmed fly enhancer sequences 

(same data sets as are used in (31)): 82 FLY_BLASTODERM, 23 FLY_PNS, 9 

FLY _TRACHEAL and 17 FLY _EYE enhancers. For each of these positive sets we 

associate a corresponding negative set of sequences randomly picked from non­

coding regions of the same genome. Thus each real enhancer had a randomly 

picked counterpart of the same length (Table 4.1). To establish the discriminatory 

capabilities of the RRS, scores were calculated for each possible pair of sequences 

in the positive sets and in the negative sets. A comparison of these two sets of 

results was done by sorting all scores and then looking at top K = k(k2-1) pairs, 

where k is the number of enhancers in that set. For the set of TF motifs, we used 

67 insect-specific PSSMs available in the TRANSFAC database, (47). The full 

list of the motif-IDs is presented in Table 4.2. 
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4. FUNCTIONAL LINKS BETWEEN NON-ALIGNABLE 
ENHANCERS 

POSITIVE SET (Real) NEGATIVE SET(Random) 

BLASTODERM 82 82 
EYES 17 17 
P S 23 23 
TRACHEAL 9 9 
GLOBAL 131 131 

Table 4.1: Sequences u ed in this ana lysis 

Table 4.2: Li t of mot ifs used throughout work. 

Motif ID Length Gene Consensus 
MOOOO9 8 ttk GGTCCTGC 
MOOO12 9 f2 RTATATRTA 
MOOO13 9 CF2 GTATATATA 
MOOO16 17 E74 NNAY CGGAAGTNNKN 
MOOOI 19 Ubx NNNNNNTTAATKGNNNNNN 
MOOO19 16 Dfd NNN NNTTAMYNNNN 
MOOO20 12 Ftz ANWGCAATTAAG 
MOOO21 10 Kr AMYGGGTTAW 
MOO022 10 Hb SMANAAAAAA 
MOO02 5 H f AGAA 
MOOO43 11 Dl GGGTTTTTCC 
MOOO44 14 Sn ASCACCTGTT CA 
MOO060 13 Sn RACAGGTGYA 
MOO067 14 H(d) GGCACGCGMCNN 
MOOO90 14 Abd NSNTTATGGCNNN 
MOOO91 1 BR-C WNRTAATARACAARW W 
MOOO92 16 BR-C NNBTNT CTATTT TT 
MOOO93 15 BR-C NA TAAACTARA NN 
MOOO94 13 BR-C WWWRTAAASAWAA 
MOOllO 16 Elf NKWNYGGTTTTGWA 
MOOlll 9 cn GGGGTCAYS 
MOO1l2 9 cn GGGGTCACG 
MOO120 11 01 HGRGAAAANCV 
MOO140 8 Bcd SGGARRAA 
MOO163 15 HSTF AGAA AGAA AGAAN 
MOO164 15 HSTF AGAA AGAAN TTCT 
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4 .2 Discussion and results 

Table 4.2 - continued from previous page 
Motif ID Length Gene Consensus 
MOO165 15 HSTF AGANNTTCTAGAAN 
MOO166 15 HSTF NTTCTAGAA AG AN 
MOO171 16 Adf CCGCYGCYGY GCCGV 
M00234 13 Su ANYGTGGGAAMCN 
M00259 21 STAT NNNNNTTTCCSGGAAANNN N 
M00266 16 Croc WANAATAAATATN NN 
M00270 13 GCM ACCCG AT 
M00283 16 Zeste N W TTGAGTGN 
M00362 11 TCF-A CTTTGATCTT 
M00455 10 dr i N RATTAAT 
M00461 15 Ovo WGT AC G N 
M00487 11 mtTFA K CTTATCN 
M00488 14 DREF ASCTATCGATADNY 
M00629 10 Ev T WSSY TGC 
M00662 7 SGF TTRTKCA 
M00666 9 Sry GCATCWCT 
M00679 TIl AAGTYWAR 
M00696 En YCAATTA 
M00710 Zen WCATTWAM 
MOO723 GAGA SWGAGMG RA 
M00923 Adf VCGCYGCMGY GCGTGMC G G 
M00934 Zeste NWNTTGAGTGN 
M00951 Grainyh ad ACYGGTTT 
M010 3 10 Abd AAATNN 
MOI084 12 Antp AAWAAMMATWAN 
M01086 15 BYN ARAAWT RCACTTW 
M01087 23 CEBPA WNWW TKTGBVATCAKYY T 
M01088 12 Deaf GYBMTTCGG TG 
M01089 12 Kr N AACCCTT 
M01090 8 Mad GMGACGYN 
MOI091 7 Prd AAATTRY 
MOI092 16 TCF RN NAT AAAR NN 1 

MOI094 7 Abd CATAAAA 
M01095 Ap NNNATTDT 
MOI096 7 brk GCGCCAG 
M01097 10 cad N NTTT YG 
MOI098 16 Cfl-a BWKAATNAATTNAWAN 
M01099 18 Kni N NNNAAANTGGR NNN 
Continued on next pag 
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4. FUNCTIONAL LINKS BETWEEN NON-ALIGNABLE 
ENHANCERS 

Table 4 .2 - continued from previous pag 
Motif ID Length Gene Consensus 
MOllOl 8 Ova TAACRGTW 
MOll02 7 Sd CATTYCN 
MOll03 14 Twi CATRTGTKNHGCN 

4.2.2 Statistical links between sequences 

W fir t used a local sequence alignment tool from the CBI (http://www . ncbi. 

nlm. nih. gov /blast/b12seq/wblast2 . cgi ; 'Blast 2 S quen ) as w 11 as an im­

plementation of th Smith-Waterman algorithm (the wat r tool from th EBI; 

http://www.ebi.ac . uk/Tools/emboss/align/index. html) to show that thes 

sequenc s are not alignabJ . Th be t hit found ov r all of th t for BLAST 

had an -value of le-08 carre ponding to a tr tch of 23bp from a pair in th 

negative BLASTODERM set (4.3). Figure 4.1 hows the r ult for both alg -

rithms in BLASTODERM positive and negative st. Th refor by look ing at 

only the alignm nt core, one cannot ay if a particular pair i lik ly to be from 

the positive set or n gative t. 

EYE 
PNS 

TRA HEAL 

Positive S t 

e-valu (length of align d 

7 - 06 (19) 

0.003 (13) 

3 - 04 (20) 

0.022 (13) 

N gativ S t 

Table 4.3: Thi tabl shows th alignment ignincanc I v ls (e-value ) of th best 
hit for ach pair of s quences within the positiv and n gativ ts. 

Th functional cons rvation of these sequences pr sents a very different pi -

ture. To xamine this, we looked at the RRS scor s for all pairs of quences 

in any of both positive and n gative s ts. For in tance, in BLASTODERM en­

hancers , 43 out of 50 top cores b long to pair from th posi tive s t. Th b st (log 
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4. FUNCTIONAL LINKS BETWEEN NON-ALIGNABLE 
ENHANCERS 

of) RRS score was 9.64 corresponding to the comparison of eve_stripe1 (length 

801 bp) with ocotd-186 (length 187 bp). To check the statistical significance of 

the RRS score, we compared eve_stripe1 with 1000 sequences randomly picked 

from the longest chromosome of the D. melanogaster genome, with length ranging 

from 100bp up to 3000bp. Interestingly, when comparing eve_stripe1 with these 

random sequences, no pairs gave an RRS score with log greater than O. The 

result of this analysis is illustrated in Figure 4.2A in which the vertical dashed 

line is a reference line to show the position of the RRS score from evcstTipe1 

vs ocotd-186 and the black histogram is the distribution of the RRS scores of 

eve_stripe 1 vs 1000 randomly picked sequences. 

We went on to consider what motifs contribute to the functional conservation 

that is seen. If the log of the score for a specific motif is greater than 1 (see 

Section 3.3), this indicates a significant similarity between the presence of the 

motif in the template and test sequence either by multiplicity or by specificity. 

An RRS score around zero is expected for a random DNA sequence and scores of 

less than -1 indicates a significant dissimilarity between the presence of the motif 

in the two sequences. RRS scores of all 67 insect motifs individually computed. 

Figure 4.2B depicts the distribution of these scores. As we can see, there are 3 

factors that are assigned scores greater than 1. These factors are (in descending 

order): Bicoid (BCD), Kruppel (KR) and fushi tarazu (FTZ). This means that 

according to our model these three factors are main functional similarity-makers 

of this pair of enhancers. In comparison to the background sequences, all of these 

three factors are strongly presented in both of these sequences (see Section 4.2.4). 

This finding is of particular significance as it is supported by (52) where they show 

both computationally and experimentally that the regulation of the eve1 plus 10 

other CRMs are strongly dependent to the regulator BCD. This suggests that 

the BCD is a regulator for oc_otd-186, too. We will come back to this point in 

more detail in Section 4.2.3. 

4.2.3 Identification of enhancers with similar function 

In order to make a more global analysis of these enhancers rather than analysing 

each individual set of enhancers we put all 131 enhancers into one set (referred to 
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4 .2 Discussion and results 

RRS Score s Individ u a l M ot if Con tri bu t io n s 

A B 

, I I 

·'00 .5O 50 -10 4.5 00 0 5 1.0 IS 10 2.5 

Log of R RS Sco res Log o f RRS Scores of Individua l ~ I oli fs 

F igure 4 .2: A: Illustrating t he taLi t i a l ignificanc f t h RRS or f 

v _strip 1 vs oc_otd- 186. Th dash d v rt i a l lin hows t he log of RR score 

from thi pair whi ch is 9.64. The black his togram . how til di t ribu t ion of log of 

RRS scor s of eve_stripe l v 1000 randomly picked equ n es from D.meLanogaster 

longest chromo orn e . B: Depiction of t he con t ribu t ion of individu al moti£ in th 

RR scheme. Shown her , i th distribu t ion of t he individua l motif sc r in COll1-

pa rison of ev _stripe1 v oc otd- l 6. Th r e t rongly po itively ont ribuLed [act rs 

t hat ar obtaining cores above 1, in descending order, a re: BCD , KR and FTZ. 

Th fac tor t hat is 11 gatively cont ribu t ing to t hi h m i . . , ob taining a co re I s 

t han - 1 i RY_{3 

69 



4. FUNCTIONAL LINKS BETWEEN NON-ALIGNABLE 
ENHANCERS 

as G_Positive set). Similarly all 131 randomly picked counterpart sequences were 

placed into another set called G_Negative set. The RRS scores were computed 

and a directed graph was generated in which each node is an enhancer from the 

G_Positive set and each edge represents a high RRS score for two corresponding 

nodes. The threshold for inclusion of edges was set above the maximum score 

within the G_Negative set (equal to 3). Therefore, only enhancer pairs that are 

scored above any pair from the G_Negative set are shown. The resulting graph 

(see Figure 4.3) shows the RRS prediction of the functional and/or evolutionary 

relationship of the enhancers associated to the top 43 scores from the G _Positive 

set. From this graph, we can see that only 34 enhancers (nodes) are associated 

to these 43 scores (edges). Thus some of the enhancers are paired together more 

often than would be expected by random chance alone. For instance HLHg* is 

paired with 6 other enhancers (p < Ie - 04, p-value of binomial test for one node 

out of 131 to be part of 6 or more edges). The presence of a large number of 

high-scoring edges and the dense connectivity of the graph confirm that the RRS 

uncovers statistically significant structure in this data set. 

We might want to think of the sub graph highlighted by rectangular nodes as a 

core subgraph because: firstly, all four of the nodes are from BLASTODERM en­

hancers, secondly it contains a pair that gets the highest score in BLASTODERM 

enhancers and thirdly it satisfies a transitivity property. Focusing more deeply 

on this subgraph reveals that, according to our analysis, the factor Bicoid (BCD) 

is the most strongly contributing factor in the functional similarity of any pair in 

this subgraph. This significant finding is experimentally supported by (52) where 

the regulation of the eve_stripe 1 , eve_stripe2 and hstripeO and 8 more CRMs are 

reported to be strongly dependent on the activator BCD. They also showed that 

many of the BCD-dependent CRM contain a cluster of the gap protein Knippel 

which is again in a high agreement with ours (see Table 4.4) in that in all of these 

five comparisons KR is either the second or third strongly contributed factor. We 

must recall that according to our model, a motif can obtain a high score either 

by its strong presence (because of multiplicity or specificity) or by strong absence 

in both sequences. It is also important to note that the five enhancers in this 

subgraph are regulated by a set of common factors (as colour-coded in Table 4.4), 

and this might be the reason that RRS can almost distinguish it as a subgraph. 
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4 .2 Discussion and results 

Tabl 4.5 provides similar resul ts for the subgraph wi th octagon shaped nod s 

distinguished by the RRS and a set of common motifs t hat we pr d ict to regulate 

that subgraph. 

Pair of Enhancers 

eve...stripel vs oc_otd- l 6 

eve tr ip 2 v oc_otd-186 

h tripeO v oc_otd-186 

hstri peO v eve...st ripel 

ve...stri pe2 v eve...st ripel 

Factor 1 Factor 2 Factor 3 Factor 4 

I HSL03 

J$H F_03 

Factor 5 

Table 4.4: The to p five factor t hat are sLrongly cont ribuLing to th fun ct iona l 

imi lar it ie o[ each pa ir in t he ubgra ph hig hlighted by rectangle in Figure 4.3. 

Pair of Enhancers 

h tr ipe5 vs t llklO 

AbdBIAB vs t llklO 

clppd lmel v t llklO 

cI u t rat55 vs t llkl O 

Table 4.5: T he top five factor that ar strongly contribut ing t the im.ilar iLyof 

the en hancer in the ubgra ph highlighted by octagon ha pe ( 4.3) . Factor a r 

ordered by t heir cont rib ution. Colour-cod ing r pre eni facto r id nt ity. 

Overall , t he e find ing r veal that our mod lind ed apt ur s som of th ore 

principl s governing fun ctional conservation of module and h n p rforms mu h 

better than random xp ctation. 
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4. FUNCTIONAL LINKS BETWEEN NON-ALIGNABLE 
ENHANCERS 

Figure 4 .3: This graph repr nt th fun t ional relat ion hip f om f t h top 

cor d nhancer from the GYo i t ive et . Each node r pr nt an nhanc r and 

Enhanc r1 -> Enhanc r 2 mean that th log(RR (Enhanc 1'1, Enhan 1"2)) 2:: 
3. Th Lhreshold 3 i t filter ut oth r c r t hat ar I Lhan a cor from 

th G_ gative et . A st ri ks indi ate abbreviaL d nam . F\Ill nam s of the 

en hanccr ar provided in Tab I 4.6 on page 73. 
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4.2 Discussion and results 

Enhancer Abbreviated ame Enhancer Full arne 

Slam salm _salm _ TSE_ TRACHEAL 

clu 

rhom 

HLHB 

obp 

Sa12 

m4H 

Esp 

HLHg 

bTub 

t ldP 

prdZ 

ftzZ 

Ubx 

h 3 

chn 

so 0 

serv 

ato 

Poxn 

runs17 

Abd5 

Slpl 

eves2 

evesl 

h 0 

cl uster _aL55C_CE80l6 

rho_MLE-long_TRACHEAL 

HLHrnbeta_enhanc r 

Obp56a _prom 

salm al242SY S 

rn4_HZm4 

EsPIPNC 

HLHmgamma_HZmgammaKX 

betaTub60D_beta3-14/vml 

toldPromoterfusionright 

prdz bra nhan r 

ftz-z bra_ lem nt 

Ubx_abx17 

h_strip 3_ET3 

chn_SOP 

o_solO_EYE 

S LIV-3.0_EYE 

ato_RE 

Poxn_9 

run_strip 17 

Abd-B_IAB5 

sIp LsIpJ3 

tripe12 

trip 1 

h_ tripeO 

Table 4.6: Abbreviat d names and full nam s for enhancers highlighted by star 

sign in 4.3 on page 72. 
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4. FUNCTIONAL LINKS BETWEEN NON-ALIGNABLE 
ENHANCERS 

4.2.4 Contributions of motif absence and weak binding 

sites 

We are interested in whether the strong absence of a motif in a pair of sequences 

can underly the statistically significant similarities we observed. We looked for 

motifs that are associated with a relatively high RRS score but whose associated 

a-values are lower than the a-values of the motif in random sequences. In Section 

3.2 and Figure 3.4 we considered two situations where a motif is assigned a high 

RRS score because the motif is strongly present or it is strongly missing in both 

sequences. The strong presence may be more intuitive and it is illustrated in 

Figure 4.4 (parts Al and A2) where we can see both RRS scores for any of the 

67 used motifs in the comparison of the eve_stripe I and oc_otd-186 (AI) and 

also the normalised vectors of a-values for eve_stripe I in red and acotd-186 in 

blue (A2). The yellow base line is to show the a-values from the background 

(random sequences). Motifs 24,8 and 7 associated with the top three RRS scores 

(in order) in eve_stripe 1 vs oc_otd-186 comparison. The reader can see from 

A2 that for all of these three motifs, the motif a-values are considerably higher 

than the background. This is called strong presence of motifs in both sequences. 

However, the interesting part is shown in parts BI and B2 of Figure 4.4 where 

first we can see again in Bl the contribution of the individual motifs to the RRS 

scores of UbxabxI7EYE vs tllD32 and in B2 the a-values from Ubxabx17EYE in 

red, tllD32 in blue and motifs that are obtaining the top three RRS scores. We 

see that all three motifs are associated with o-values lower than the background 

(strong absence of motifs) but these contribute to the RRS score and, therefore, 

to the recognition of functional conservation. 

The contribution of weak binding sites to the RRS scores can be seen in Figure 

4.28,C. The log ofRRS score for eve_stripe I vs oc_otd-186 is 9.64. This is the sum 

of scores of each motif. The four motifs making the strongest contribution only 

contribute about half of this score (Figure 4.2C) while any RRS score above 0 is 

still significantly different from noise as none of the random sequences evaluated in 

Figure 4.28 had a score above o. Therefore, the similarity of these two enhancers 

cannot be solely attributed to strong binding sites, but is influenced significantly 

by contribution of other motif even weak binding sites. This is consistent with 
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4 .2 Discussion and results 

previous findings in (62), the authors hypothe is t he effect of weak binding s ites 

in functiona l similarity of two sequences. 
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Figure 4.4: Al how th log of RRS scor s for ach of t h 67 ins ct motif that 

were u d for the comparison of eve_stTip 1 v oc-otd-l 6. Motif 24 , and 7 (in 

descending order) are the thr e top contributor to this compari on. A2 illu trat 

the a-values of th se motifs from eve_stTip 1 (red) and from oc_otd- 186 in blu . 

Th y-axis is t he number of tandard devia tions that an o-value d vi ate. from the 

mean. The yellow base line hows th background a-values. The vertical lin 

highlight the position of th top three motif by RRS core. Th main f at ure of 

Al and A2 is that motifs with high RRS or s (AI) hay a-values onsid ra bly 

higher than background level (A2) , indicating strong pre nce of the motif. Bl and 

B2 how an example wh re trong abs nce of motif contributes to t he stat i t ical 

link between the equences. Bl shows the individual contribu t ions of each of the 

motifs in the comparison of Ubxabx 17 EY E with tllD32. In B2 the o-values of 

the motifs from U bxabx 17 EY E are hown in r d and tho e from t llD32 in bl ue. 

The three motifs that contribute strongly to the RRS scores (motifs 17, 2 and 3 in 

descending order) all have a- values I s than background . This is r ferr d to as a 

trongly absent motif. 
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4. FUNCTIONAL LINKS BETWEEN NON-ALIGNABLE 
ENHANCERS 

4.2.5 Comparison of performance of RRS against some of 

the existing models 

In this subsection we will present a comparison of RRS performance versus top 

three best performing models that were benchmarked by Kantorovitz et al. (31). 

The best performing model in that benchmark was the D2z model that we re­

viewed it in Chapter 2, however we have not reviewed the other two models i.e., 

p.a.5.3 and ed.6. For more details about these models the reader is referred to 

(31). We would also like to draw the reader's attention to the point that a direct 

comparison of our model with data intensive models is not possible as they are 

not defined as sequence comparison tools, but they try to predict qualitative gene 

expression patterns from the regulatory modules. 

In order to assess the performance of our model versus these three models, 

we took the same approach as to Kantorovitz's in (31). In other words each 

pair of sequences in BLASTODERM positive set was compared by any of these 

four models, and so was each pair in BLASTODERM negative set. That is 3321 

comparisons in each of the sets from each of the models. It was then assessed 

if the sequences in the positive set score higher than sequences in the negative 

set. This was done by sorting scores from all pairs, whether they were from 

the positive set or the negative set. Then we look at the top 300 scores and 

counted the number of scores from the positive set as correct predictions for any 

of the models. This analysis was repeated for the three other sets described in 

Subsection 4.2.1, i.e., EYES, PNS and TRACHEAL and we obtained almost the 

same results as to BLASTODERM that has been described here. Figure 4.5 on 77 

shows the results of this comparison. 

From this analysis, one may draw the conclusion that our model is not out­

performing the D2z model. It is counted as the second best performing, although 

competing with best performing model. Regarding to this conclusion, it can be 

argued that in D2z model, the similarity of a pair of sequences is based on the 

distribution of all possible 6-mers 4096 words, whereas in our model the simi­

larity of a pair of sequences is based on the distribution of only 69 meaningful 

motifs. Therefore, this comparison is not a fair comparison. we should acknowl­

edge the idea from the examiners of this thesis for a more meaningful comparison 
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applied on Fly BLASTODERM. 

a a future dir ction. That is, by computing the number of corr cL predi tion 

of RRS using diff r nt random ub t of our motif set, one may omput how 

the numb r of correct pr diction varies a a funct ion of numb r of m tif . P r­

forming this analy i with a big enough number f random ubs t will assur 

that the variation in number of correct pr diction i not a on qu n of om 

trongly contributing motifs in a g.iven ub t. 

4.3 Conclusion 

We have demonstrated that our model can be u ed for omparison of regulaLory 

equence where sequence ar functionally relaL d but are not orthologous. For 

tatistical validation of the RRS Lcore ,the equen e that obtain d top scores 

wer ompared with 1000 randomly pick d sequen e and showed that it is highly 

unlikely to get such high RR cores just by chance. W have hown that the 

RRS can ignificantly detect the functional and/or evolutionary similarities of th 

regulatory quence. In particular, the RRS an categoris orne enhancers that 

are regulated by a set of common factors , a result that was in trong agr em nt 
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with experimentally validated reports. Based on the predictions of our model, 

we have proposed the hypothesis that the strong absence of a motif in a pair of 

sequences might be a feature for functional conservation. 

In this analysis we used a set of high quality fly motifs that were available at 

the time of the analysis. However, as a future direction one may conduct similar 

analysis with a bigger set of motifs, for instance, vertebrate motifs. In addition, 

there might be unknown binding motifs relevant to the function of the sequences. 

Therefore introducing some complementary sequence patterns into the analysis 

to test for possible contribution to sequence similarity can be another option for 

further development of the model. 
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5 

Prediction of Functional Regions 

of a Fly Enhancer 

It is widely believed that the targeting specificity of the projection neurons (PNs) 

in the fly olfactory system is controlled by a transcriptional code. However, 

the underlying mechanism is not well understood and according to our current 

knowledge only a few of the key regulators of this mechanism have been identified 

(37; 70 and 35). On the other hand, it is well-known that the structure of the 

antennal lobe (AL) is highly conserved across Drosophila species (53 and 16). 

Therefore, one may hypothesize that an enhancer region that drives an expression 

pattern in a subset of PNs in D. melanogaster is likely to have a similar function 

in other Drosophila species. 

In this chapter, we will present our in silico predictions of functional sub­

regions of a fly enhancer region. According to these predictions, our collabora­

tors at Stanford University (Maria Spletter and Liqun Luo) identified putative 

boundaries of the subregions. Then to test these predictions and dissect enhancer 

function, they generated some deletion constructs within the enhancer region. 

Throughout our analysis, three approaches were tried: an alignment-based 

method, a motif-based method and our recently developed alignment-free method. 

The alignment-based method identified a region that was well conserved between 

some of the Drosophila species. The motif-based method revealed four regions 

with a high density of motifs. Some initial experiments based on these iden­

tified regions from the alignment-based and motif-based approaches raised the 
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requirement of predictions of shorter subregions. The final detailed predictions 

of these subregions were made by the RRS, our innovative alignment-free model. 

We show that the RRS can detect the orthology between 10 Drosophila species. 

Three of these orthologous sequences were assigned statistically very significant 

RRS scores. The top eight predicted key regulators of these three orthologous 

sequences are presented. We also demonstrate how one of these orthologous 

sequences is used to predict functional subregions within the D. melanogaster 

enhancer. 

It is also shown that our model can construct the phylogenetic tree of 10 

Drosophila species with a high level of accuracy from only the orthologous regu­

latory sequences of these species and distributions of 67 input PWMs. 

5.1 Introduction 

It is widely accepted that the precise connectivity of neural circuits (in the ol­

factory system) is mainly regulated by transcription factors that determine the 

particular set of guidance factors a neuron expresses (51 and 56). However, very 

little is known about the underlying transcriptional regulation and the identity 

of the main regulators (transcription factors). 

We are aiming to provide new insights into this poorly understood area by 

predicting functional subregions of a D. melanogaster enhancer region that are 

likely to drive expression in subsets of PNs. 

For this, we will make use of our understanding of the mechanism of the 

very well-studied fly olfactory system. In the fly olfactory system (see Figure 

5.1), about 1300 olfactory receptor neurons (ORNs) are converged into about 

50 glomeruli (rv 30 : 1). Those 0 RN s that are expressing the same olfactory 

receptor (OR) are converged into a single glomerulus. These 50 glomeruli are 

diverged into about 150 PNs (f"V 1 : 3). In other words, each PN belongs to one 

of 50 unique groups based on which glomerulus they are connecting to. These 

cell types (groups) are determined by genes that they express. Expression of the 

corresponding genes, in turn, is regulated by many factors that bind a regula­

tory sequence (usually) upstream of the transcription start site. The regulatory 

sequence upstream of one of these genes (Le. the oaz gene) is called GH146-Ga14 
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enhancer region. GH146-G a14 is a P-element in ertion 290bp off the transcrip­

tion start site of the oaz g ne located on chromosome 2R of the D. melanogaster 

genome (see Figure 5.4 on page 89). GHl46-Ga14 labels around 90 of the 150 P 

in the AL and displays a r latively stabl expression pattern in three lineages of 

P s called anterodorsal, lateral and ventral (further details about GH146-G a14 

can be found in (29) and (71)). The enhancer region of our interest that is known 

to drive expres ion in these 90 PNs is just upstream of the GH146-G a14 in r­

tion point and therefore we call it GH146 enhancer region or GH146 nh anc r in 

short. Therefor the fly AL is a well-studied sy tern in whi ch the id ntification 

of enhancer regions that ar driving expression pattern in P can be assayed 

from the xpres ion of sub ets of P 

Antenna I Brain 

Mushroom Body 

(8) Antennal Lobe, At (0IfadDry Bulb) 

Figure 5.1: Illustrated here i a implifi d chemati of th fly olfa tory organ 

and its m chanism. (A) Olfactory organs ar depicted in red. The upp r 't ruc­

ture contain about 1200 receptor neurons, while the maxillary palp (th bottom 

tructure) contains about 120. (B) A simplified schematic cartoon of the olfactory 

mechanism show ing how ORN are converg d into a glomerulu and how glomeru li 

are diverged to higher brain centres uch as mushroom bodie and lat ral horns. 

Illu tration has be n taken from (27). 

One way of gaining gen tic acc ss to different cla es of F s is assembling a 

collect ion of Gal4 nh ancer trap lin that label a sub et of PN . But the mall 

oma size (cell body) of PNs and limited amount of tissue preclud s biochemical 
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methods, such as chromatin immunoprecipitation and its many variations, mak­

ing it biologically difficult to use PNs as a model to investigate enhancer elements 

(see 71). Therefore, Bioinformatics becomes an alternative potential approach to 

the problem. 

This project was a close collaboration with our experimental collaborators 

and is still ongoing. We hope that these predictions in combination with some 

additional experiments will provide new insights into rules of enhancer function 

in PNs and identification of some of the key regulators. One may consider this 

chapter as a bioinformatical counterpart of Chapter 4 in (71). 

This chapter is mainly devoted to our in silico predictions of functional sub­

regions of GH146-Ga14 enhancer region that were used by biologists to identify 

putative boundaries of enhancer regions. Some deletion constructs in the GH146 

enhancer region were made to test our predictions. The experimentally evaluation 

of these predictions is still ongoing and not fully completed. 

In the following, we will refer to conserved regulatory sequences (detected 

by the alignment-based ReMo algorithm, see Subsection 5.2.1) as ReMos and 

regions detected by the motif-based tool (binding factor analysis tool, see Sub­

section 5.2.2) as BiFa regions. A pair of sequences that obtains a statistically 

significant RRS score, will be called functionally conserved. The reader may 

note that in this context, 'regions', 'subregions', 'subsequences' and 'intervals' 

are considered synonyms. 
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5.2 Methods 

This study was mainly based on regulatory elements ofthe GH146 nhancer. Thi 

sequence is about 4kb long, locat d up tream of oaz and is b Ii ved to ontain 

most of the regulatory elements (see 71). 

Identification of the homologous regulatory s quen b tw n Dro 'ophila 

species was done based on the fact that the oaz g ne is pre nt in all 12 Dro ophil­

idae species (BLAST on http)/ flybase.org/ bla t/ wa u ed). How v r , du to 

high level of r petitive lements up tream of th oaz gene in D. p r imili and 

D. wilistoni, th se two species wer exclud d from the analysis. Figur 5.2 on 

pag 3 show the evolutionary relation hip of th fly spe i s. 

Sopho p h ....... 

Dro o phUld." 

D . m ell.n C. fer 
~--D .• lmul 
----D. h U I • 

.r---- D . ak.ub 
-----D. ~ •• 

'------D .. n . n 

c u r. 

Figure 5.2: Phylogenetic tr of th fly sp i . Th div rg n p ri d for th 
Dro ophilidae p ci is timated about 50 mi ll ion y ars . 

As the first s ri s of experim nt thr mad by our 01-

laborators and the xpression pattern driv n fr m th corr ponding equ nc 

were evaluated (more detai ls about th analysi can b found in 71). Th e 

onstru ts w re called GH146-Full , ReMo-Only and BiFa-Only. Th r on of 

making (and al 0 naming of) these construct ar provid d in th fo llowing. 

The first con truct Le., th GH146-Full on tru t in lud d th wh I 4kb 

GH146 enhancer (se th bottom blu r tangl in Figure 5.4 on pag 9). The 
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experiment based on this construct confirmed that this sequence contains most of 

the key binding sites (the experiment showed the full expression pattern in PNs 

see Figure 5.5:Dl on page 89). 

Thus our task was to see if we can predict some functional subregions of the 

D. melanogaster GH146 enhancer that are likely to drive the same expression 

pattern as the whole GH146 enhancer. For this, three methods were applied: an 

alignment-based algorithm called the ReMo algorithm, a motif-scanning based 

model called the BiFa tool and the RRS, our newly developed alignment-free 

method. The two former models are unpublished methods developed by Sascha 

Ott and John Reid. 

In the following subsection we provide the reader with a brief outline of the 

ReMo algorithm. For a more comprehensive description of this algorithm, the 

interested readers are referred to Appendix A where he/she can see that this al­

gorithm is more sensitive than its (publicly available) counterparts, in particular, 

for detection of short conserved stretches of sequences. 

5.2.1 Outline of the ReMo algorithm 

We should recall that within this project, a pair of genomic sequences is called 

alignment-conserved or sequence-conserved if their optimal alignment has a sta­

tistically significant score and the sequences are not repeats. The algorithm 

employed to comprehensively detect alignment conserved non-coding regions at 

the oaz locus as potential conserved regulatory modules essentially computes an 

optimal alignment for every pair of lOObp-fragments, comparing D. melanogaster 

to each of the other Drosophila species. For instance, when comparing two se­

quences of lOOkb the algorithm compares in the order of 1010 pairs of lOO-mers. 

The statistical evaluation of sequence alignment scores is greatly simplified by 

this approach as all aligned sequences have the same length. 

The analysis based on the ReMo algorithm identified four well-conserved reg­

ulatory modules that were called ReMos A, B, C and D positioned 3713 - 4637bp 

upstream of the oaz gene (ReMo-C was significantly conserved between all 10 

species). Therefore, the second construct called ReMo-Only was made by our 
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collaborators that included ReMos A, B, C and 0 (ReMos are shown as golden 

rectangles in Figure 5.4, the ReMo-Only construct is seen as a blue rectangle). 

5.2.2 Outline of the BiFa tool 

The BiFa tool is an implementation of a PWM model (see Subsection 1.1.2), 

in which a O-order Markov model was used to evaluate matches found in GH146 

D. melanogaster against the background. The likelihood of binding in each species 

was evaluated individually and the geometric mean to aggregate likelihoods across 

species was used. Briefly, sequences were scanned using fly and vertebrate PWMs 

extracted from the TRANSFAC database. A PWM of length L induces a dis­

tribution over L-mers that models binding sites for the transcription factor(s) it 

represents. Figure 5.3 on page 86 shows and example output from the BiFa tool. 

The BiFa tool analysis revealed four regions with high density of factors in 

the D. melanogaster GH146 enhancer region. These regions were called BiFaA, 

BiFaB, BiFaC and BiFaD (yellow rectangles in Figure 5.4 on page 89). BiFaA 

overlapped with the ReMo-Only region. A subsequence positioned 1300 - 3300bp 

upstream of the oaz gene in D. melanogaster, consisting mainly of the other three 

regions (i.e., BiFaB, BiFaC and BiFaD) was called BiFaOnlyDmel. For the sake of 

shortness we will call it BiFaDmel in this text (see purple rectangle in Figure 5.11 

on page 101). The homo logs of this sequence in other species named similarly, for 

example, in D. simulans the homologous sequence is called BiFaDsim. Therefore, 

the third construct aimed to test the significance of BiFaDmel and was called 

BiFa-Only construct (see blue rectangle in Figure 5.4 on page 89) 
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Figure 5 .3: An exampl of the BiFa tool output that d pi t the distribution of 

the fly and y rtebrate motifs export d from t he TRA SFA that ar obtaining a 

core aboy a thr shold in R Mo C. In thi figur the x-axi i th nucleotid from 

5' to 3' . Th rectangle in th figur are depicting motj£ that ar coring aboy 

the thre hold. Y-axis shows th significance f th OCCUlT nc of th motifs. For 

instanc , the LEF1 TeFl factor with y-compon nt 17536 mean t hat in a quenc 

with I ngth 17536 one may exp ct to ee on OCCUlT nc of th i motif. If a s t of 

motifs are known (to t he BiFa tool) to belong to the sam ignaling pathway, th y 

are colour-coded. In this figure factors corr Sl onding to t h Lop two s or d moti£ 

are illustrated . Diamonds are to highlight motifs t hat ar con eryed in the same 

order in t he other p ci s. 
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5.3 Discussion and results 

A set of initial experiments based on the three above mentioned constructs re­

vealed that GH146-Full drives a full expression pattern in PNs (Figure 5.5:01 

on page 89). They also found that expression in PNs is completely lost in the 

ReMo-Only construct (see Figure 5.5:E1 on page 89), whereas the BiFa-Only 

construct drives almost the same expression pattern in PNs as the GH146-Full 

(see Figure 5.5:Fl on page 89). 

The main conclusion of these experiments was that the main regulatory ele­

ments are distributed in the BiFa-Only region. It is also possible that the deletion 

of such a large region of sequence may disrupt higher order interactions that may 

result in not having expression from the ReMo-Only construct. 

For the next step, our task was to further narrow down the functional part of 

the GH146 enhancer by predicting shorter subsequences of the BiFa-Only region 

that were likely to drive an expression pattern similar to the expression pattern of 

the BiFa-Only construct. However, it was too hard to make predictions of these 

functional regions with either BiFa tool or ReMo algorithm any longer. The main 

problem with BiFa tool were: 

• Although the BiFa tool is very useful for some analyses, (for instance, one 

may find some motifs strongly distributed over some subregions,) judgement 

about significance of motif-rich subregions is dependent on the user. In 

other words, there is no mathematical or computational way to provide 

the user with boundaries of the motif-rich subregions with their associated 

significance. This is becoming a more serious obstacle when the user needs 

to judge about multiplicity vs specificity of the motifs or vice versa. Besides, 

in the BiFa tool the motif scores are computed individually and independent 

of the other motifs, whereas we needed a tool to provide us with a score 

associated to any input sequence that reflects its potential activation level 

based on the set of motifs. 

• The contribution of weak binding sites is ignored whereas we have some 

recent evidence showing the strong contribution of weak binding sites in 

expression of an enhancer (38 and 62). 
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• Many of the motifs occurring in a given genomic sequence are overlapping 

and the BiFa tool has not been implemented such as to be able to consider 

competitions of different factors for these overlapping motifs. Figure 5.3 on 

page 86 illustrates an example output of the BiFa tool. 

And with respect to the ReMo algorithm: 

• The ReMo algorithm did not detect any significant conservation between 

BiFa-Only regions of these 10 species. 

• Recently, we have had some reports that the regulatory regions can retain 

function over large evolutionary distances, even though the DNA sequences 

are divergent and difficult to align. Therefore, if an alignment-based method 

such as ReMo algorithm does not detect any conservation, it does not nec­

essarily mean lack of functional conservation. 

To overcome these limitations of alignment-based and motif-scaning-base al­

gorithms we developed and applied the RRS our alignment-free model. 

The experimental results based on predictions of the RRS will be of great sig­

nificance. In essence, agreements of the RRS predictions with the experimental 

results will mean that our model understands the regulatory code governing the 

fly olfactory wiring specificity, whereas the failures of our model will be as instruc­

tive as it successes. They will suggest that some input factors and some higher 

interaction rules are not captured, but also that the model does not artificially 

compensate for these missing features. 

For the sake of completeness, in what follows, we first discuss the data sets that 

used for the RRS analysis for detection of functional subregions of the BiFaDmei. 

This is followed by presenting analysis of orthology detection of D. melanogaster 

in some other drosophilas. The orthologous sequence was then used to obtain 

statistical links between species in order to predict the optimal position of the 

functional subregions of the BiFaDmei. 
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T' 
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Figure 5.4: [Il4G enhancer regions and some of the dekti n constructs. Gold .n 

r('ctangles known as R f'..10 A, B. C and D ar sequ nee-conserved regions d<.'le('('d 

by the ReMo algorithm. The Ref'..[o-Only construct (bill . r ctangle:> lIndern ath the 

map) war made to test significant of this pr('diction. Four yC'llow reclangks are 

motif-rich subrgiolls and identified by the BiFa t 01. BiFaA is overlapp cl with 

ReMo r gion, but the other three BiFa regiom; made up th EiFa-Only construct 

(the .'econd blue rectangle [rom the bottom). The GI114G-Full const ruct includ('d 

the entire 4kb upstream of the oaz (th(' las! blue recLangl ). O('letions 2 , ,I and 7 

in thi ' figur were made bas d all lhe RR ' pr dictions. BIll(' circles arc GlIlt!G 

p- lement and la'Z insertion p in!.s. The amber circles rail d dell ar rest riet ion 

enzyme, it s . The gr n arr withe star( of the oaz gene. 

F ig ure 5.5: Expr 'sion pattern. driven from the G fI 14G-Full construct indicated 

ru 01, from the Re la-Only as 1 and fr III th BiFa-Only a ' FI. For III rc dC'tails 

of this figure the read r i r ferre I to (71). 

5.3.1 Identifying equcnc regIon for analy is 

A bserved, th . R 10 was cOll '('rvec1 in all of I he Drosophila sp ci sand 

al. 0 that BiFa-Only COil trucl in D. rnriongasleT (d n tcd as BiFaDnlE'l) drove 

the same cxpre ion pattern as th G [] 14G-Full. By u ing BL T for any other 

p ci ,we iclenlifie Ilhe position of a , ubs qu Il that wa ' cons rve I with R 10 

and al 0 th oaz g nc in lbat sp IC g n0111C'. Within this intrrval, a sub €-
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quence with the same length as BiFaDmel was chosen such that its distaIlce from 

the ReMo C counterpart was the same as the distance of the BiFaDmel from the 

ReMo C in the D. melanogaster genome. In this way, corresponding to any of 

the 10 species, we obtained the BiFa-Only sequences (see Table 5.1 on page 90). 

These 10 sequences plus 67 fly PWMs as described in Chapter 4 ( see Table 4.2 

on page 64) were used for the RRS analysis. 

Species Sequence Name 

D. melanogaster BiFaDmel 

D. simulans BiFaDsim 

D. sechellia BiFaDsec 

D. yakuba BiFaDyak 

D. erecta BiFaDere 

D. ananassae BiFaDana 

D. pseudoobscura BiFaDpse 

D. mojavensis BiFaDmoj 

D. virilis BiFaDvir 

D. grimshawi BiFaDgri 

Table 5.1: BiFa-Only Regions and corresponding species used for the RRS anal­
ysis 

5.3.2 Detection of orthology between Drosophila species 

Our next step was to detect the functional conservation of BiFaDmel in other 

species. For this, the RRS scores of BiFaDmel as the template vs any of the other 9 

sequences as the test sequence was computed. We found that BiFaDsim, BiFaDsec 

and BiFaDyak in order were the top three functionally conserved sequences to 

BiFaDmel. 

The RRS results of the comparisons of the BiFaDmel vs the BiFaDsim, Bi­

FaDpse and BiFaDgri are illustrated in the Figure 5.6 on page 93. In the left-hand 

side of the figure (AI, A2 and A3), we have illustrated the log of the RRS scores 

of comparisons of BiFaDmel vs BiFaDsim (which is about 12), BiFaDpse (about 

-3) and BiFaDgri ( about -4) as vertical green lines. The significance of these 
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scores can be seen when compared to the scores of BiFaDmel vs 1000 randomly 

picked sequences from D. simulans (black histogram in AI), D. pseudoobscura 

(A2) and D. grimshawi (A3). 

From AI, we can see that the log of the RRS score for BiFaDmel vs BiFaDsim 

is around 12 whereas the maximum score of BiFaDrnel vs 1000 random sequences 

is about 3. This fact supports the statistical significance of the RRS score of 

BiFaDmel vs BiFaDsim. 

From A2, it is clear that the log of the RRS score for BiFaDmel vs BiFaDpse 

is around -3 and that only 5 out of 1000 of the random sequences are obtaining 

a score greater than or equal to the score of BiFaDmel vs BiFaDpse. Although 

this orthology signal detected by the RRS might not look very strong, it becomes 

interesting when we note that the alignment-based ReMo algorithm does not 

detect any conserved subregions in these region of the sequence (see part B of 

Figure 5.7 on page 106). 

And finally from A3 we see that the log of the RRS BiFaDmel vs BiFaDgri 

is about -4 and about 30 of the random sequences are obtaining a score greater 

than or equal to the score of BiFaDmel vs BiFaDgri. This score may not seem 

statistically very significant in the first instance, we may argue that firstly it is still 

greater than 97% of the scores from the random sequences secondly D. grimshawi 

was the most distant species in our analysis and thirdly the alignment-based 

comparison of BiFaDmel vs BiFaDgri does not show any statistically significant 

sequence conservation in this region (see part C of Figure 5.7 on page 106). 

Therefore, the BiFaDgri still can be suggested as orthologous. 

In the right-hand side of the figure (Bl, B2 and B3), the contribution of the 

individual motifs in any of these three comparisons are depicted. As we explained 

in Section 3.3, in the RRS framework, an individual motif score around zero is 

expected from a random DNA sequence, but the greater the scores means the 

stronger presence of the motif (either by multiplicity or by specificity). 

A very interesting point to note in this figure is that in comparison of the Bi­

FaDmel vs the BiFaDsim where we had the strongest RRS score among the other 

species, we can see a strong right-hand side tail in the histogram of individual 

motif contributions (81). This is means that motifs distributed in this tail (for 

a list of top 8 contributors see Figure 5.2 on page 95) are significantly present in 
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both of the sequences and that the greater the score, the greater the contribution 

of that motif in functional conservation of that pair of sequences. But in com­

parison of BiFaDmel vs BiFaDpse and BiFaDmel vs BiFaDgri where the scores 

were not as significant as BiFaDmel vs BiFaDsim, the histograms of individual 

motif contributions are almost a normal distribution with mean zero. This can 

be interpreted that occurrences of most of the motifs over these two comparisons 

(B2 and B3) are the same as their occurrences in the random sequences. 

Another point of interest is the common regulators of these top three RRS­

scored sequences. In Table 5.2 on page 95 we have presented 8 key regulators 

from comparisons of BiFaDmel vs any of the BiFaDsim, BiFaDsec and BiFaDyak. 

The common regulators of these comparisons have been colour-coded in Table 5.2 

(where a factor being common at least between two sequences has been coloured 

and non-common regulators have been left with a white background). One can 

easily see that the number of common regulators in this table is a direct proportion 

to the RRS score of BiFaDmel vs that species. In other word, the BiFaDsim gets 

the most significant RRS score and the corresponding row of the table (row 1 ) 

is fully coloured whereas in the row corresponding to the BiFaDyak we see only 

four coloured cells. This fact is supporting the contribution of the key regulators 

in these orthologous sequences. 
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F igure 5.6: Al: IlIu trating the tat isti a l . ignifl an' f the RR f Bi <aD-

mel vs BiFaD im. Th gr n v rti a l lin how th log f the RR cor [r 111 thi 

pair which i arou nd 12. The black hi t gram hows t h di tribution of log r the 

RR score of BiFaD lli I v 1000 randomly pick d qu nee fr 111 th D .. imulan 

g nom. A2 and 3: sam a AI , but compari n of BiFaD lnel v BiFaDpse an d 

BiFaDgri r spect ively. From 2 one can that a round flv rand 111 equen ar 

scoring gr ater th or of BiFaDm I v B iFaDp e. Thi. numb r in 3 in reas to 

30 s quence (out of 1000), r ducing t h ignifi an o[ th RR core, but till can 

b con idered as a ignal f orthology detecti n by th RR . Figures B 1 B2 and 

B3 a re d pi tion of th contribution of any of Lh 67 motif (u ed in thi a naly i ) 

in the RR h m , BiFaDmel v. BiFaD im in B1 B iFaDm I vs Bi aDp e in B2 

and BiFaDm I v BiFaDgri in B3 . For t h Ii t of top ight c ntributor Table 

5.2 on page 91: 
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to show t he signifi ance of t h alignment cores. 
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On th other hand, one may also note that , th RRS ugge t BiFaD im , Bi­

FaDse and BiFaDyak as (in order) the strongest funct ionally linked eq uen es 

to the BiFaDmel and ill these compari on we have listed top contributors. 

However, for in tan e in comparison of BiFaDmel vs BiFaDsim , the um of con­

tributions of th e r gulators i about 6, and by ubtracting thi numb r from 

the r al ore (in ord r to ignore the conLributi n of key regul ator) which wa 

abo ut 12, we will till have a cor about (j which i high r than cores of Bi­

FaDmel vs randomly pick d sequ nces. Overa]], we may c n Iud that in order 

for a pair of sequen e be considered fun ti naJJy Link d by th RR with a high 

staLi tical ignificanc , the contribution of th key r gula tors ar - n cary but 

not uffi i nL. 

The last point that w would like to mak in thi s ct ion i that a c rding 

to arne tabl , [or xample, Engrailed (th factor id ntity i J En) a nd KruppeJ 

(th factor identity i I KR) are Ii t d b tw en top r gulat r ' f BiFaDm I vs 

BiFaD iIn and BiFa D but not in BiFaDmel v BiFaDya k. On th ot11 r hand , 

D. m lanoga t r, D. im7.dan , D. ch llia and D. yakuba ar belonging La th 

melanogaster subgroup in the fly phylogenic tr Figur.2 n pag 3). 

On mayexp ct that a ignificant occurr n .e of a motif in thr sp f t he this 

subgroup (i . . , BiFaDm 1, BiFaDsim and BiFaD ) might iml Iy it , ccurren 

m iFaDyak. But in our xampl , th ccurr n es of tb J$En and i$KR in 

BiFaDyak ar not tati tically ign ifi ant. Thi migh m an th L a rd ing L 

th RRS re ults, w hav had a 10 of th v r th - evoluti 11 , 

P,lir of Enhancer, Factor 1 Factor2 Fartor3 Fddor~ 

~1c>1 vs im 

I\lcl vs Sec 
~[pl vs Yak 

Table 5.2: The top eight factors (in a de 

Factor5 FactorG Fa('tor7 Factor 

r) that ar ' tr ngly n-

tributing to the functional similarities of BiFaDm I v any of BiFaD im , BiFaD 

and BiFaDyak. Colour-coding i to highlight th common regulator. Fa tor that 

ar common in at least two sp cie have b n coloured th arne, th r t hav I n 

I ft with a wh ite background. 
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5.3.3 Results of in silica deletions in D. melanogaster 

As mentioned, the main idea was to detect subregions of BiFaDmel that are 

likely to drive an expression pattern similar to the expression pattern driven by 

BiFaDmel itself, and thereby further defining the function enhancer boundaries. 

Having observed a statistically significant link between functional conservation of 

BiFaDmel and BiFaDsim in Section 5.3.2, it was natural to take BiFaDsim as the 

template sequence and then scan subregions of BiFaDmel as the test sequence 

for functionally similar subsequences. One way of doing that was to delete some 

subsequences of BiFaDmel and find deletions which induce a drop in RRS score. 

For such deletions the drop in the RRS scores means that the functional similarity 

of the BiFaDsim and the BiFaDmel can no longer be detected by the RRS method. 

Therefore, in a sliding manner, with step size 25bp we deleted subsequences 

of a fixed window length from the BiFaDmel and each time the remaining sub­

sequence was considered as a test sequence. This scenario was repeated with 

different window lengths including 50,100,150,200,250,300,350 and 500bp and 

the results were plotted. 

The results of this deletion analysis with window lengths 100,150,250 and 500 

are shown in Figure 5.8 on page 98. With respect to these predictions we would 

like to make the following points: 

• The troughs in these profiles mean that by deleting the corresponding win­

dow, we have had an extreme loss of the RRS score which in turn means 

that deleted window must be the most functionally similar subsequence to 

the template sequence. 

• x-axis depicts the length of step size. Because the step size for this analysis 

was 25bp, in order to get the starting position of the deletion window, one 

may need to multiply the numbers corresponding to any of the troughs by 

25. 

• As we can see, the starting positions for the suggested deletion windows 

are dependent to the deletion window length. In other words, if one needs 

a deletion with length 100bp, then the RRS is suggesting a subsequence 

96 



5.3 Discussion and results 

starting from 50 x 25 = 1250 in BiFaDmel, whereas if one needs a deletion 

with length 250pb, then the suggested starting position is 55 x 25 = 1375. 

• The x-component of the last point in any of these profiles is less than 

or equal the the length of BiFaDmel sequence minus the deletion window 

length. 

• One may observe that the shorter the deletion window length, the sharper 

the corresponding profile. 
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F igure 5.8: Plots from d letion ub equ nc : Th first plot shows th RRS 

scor s of BiFaD im vs some sub equences of BiFaDm I ach of whi h wa obtain d 

by dIeting a region with I ngth 300bp as d pict d in part A, Parts B, C and D 

ar the same but with window I ngth 200, 100 and l50bp accordingly. Note that 

numbers in x-axis are b ed on coordinat s of GH146Full qu nee. 

DIl 

We repeated the sam analy i but with BiFaDse , BiFaDyak and ev n with 

BiFaDmel itself as template seq uences. Intere tingly, the peaks and trough in 

orresponding output profiles were in a high agr ment with those sugg t d 

from th analy i of BiFaDsim. Whereas wh n w cho e the BiFa region from a 

more distant p cie for exam ple BiFaDgri as templat s quence, w had a fl atter 

profile. Thi make t h re ult of th e pr diction more significant becau w 

hay already ob erved t hat t he e were t he be t fun t ionally conserved s quenc s 
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to the BiFaDmel. Figure 5.9 on page 99 shows the profiles of deletion analysis 

wher the template sequen e was BiFaDyak. 
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Figure 5.9: P lots from deletion sub equ nc : The first plot h ws th RR 

scores of BiFaDyak v som sub qu nc of BiFaDmel ach of which was obtain d 

by deleting a region with length 300bp starting at position 0, 25,50, ··· . The 

second and third plots show t he same for window lengths of 400 and 500bp. ote 

that number on the x-axis must b multiplied by the step iz (i.e. 25) to obtain 

the deletion po ition in the sequenc 

5.3.3.1 Experimental results of our d e letion predictions 

According to these RRS deletion predi tions our ollaborator mad 7 d letion 

on tructs . Figures 5.11 on page 101 and 5.4 on page 89 are showing mor d tails 
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about how and where these deletion constructs were made. Not all of these 

constructs have been experimentally tested. Continued experiments are likely to 

reveal more details about the significance of these predictions and consequently 

about the logic of this enhancer region. However, experiments based on some of 

these deletions (deletions 2,4 and 7) revealed that the GH146 expression pattern is 

differently affected by different deletions (see Figure 5.10 on page 101) suggesting 

that deletions 2 and 7 are likely to contain repressor elements whereas deletion 4 

is likely to contain some promoter elements. 

From the experiments completed so far one may argue that the effect of these 

deletions seem to be more phenotypic. For instance, deletions 2 and 7 are both 

overlapped and both drived expression of some cells outside of the PNs. For more 

details of results of the completed experiments the reader is referred to Chapter 

40f(71). 

Although making a final conclusion for this project requires all the experi­

ments from the deletion constructs to be completed, based on current state of 

the project the following discussion can be made: 

On one hand, we have observed (both theoretically and and experimentally) 

that BiFaDmel is the main functional region of the GH146 enhancer. On the other 

hand, bioinformatical analyses suggest that some subregions of the BiFaDmel are 

likely to have the same expression pattern as the BiFaDmel itself. But the result 

of experiments are not as significant as the bioinforamtical evidence. The simplest 

conclusion that one can draw is that the bioinformatical analysis was not accurate 

enough. This might be due to the inappropriateness of the PWMs used in these 

analysis. However, we can argue that the expression of the BiFaDmel is likely 

to be a result of a combinatorial effect of some shorter functional subregions. At 

this moment, I do not know how one can experimentally test this hypothesis. 

A further step that will lead towards a more confident conclusion is to perform 

some experiments in which each deletion construct is accompanied with an eqi­

length control deletions corresponding to the peak of that deletion profile. It will 

be also very informative to see the affect of deleting two regions corresponding to 

two non-overlapped troughs of an RRS deletion profile made in one construct. 

100 



5 .3 D iscussion and r e u lt s 

1 • '011.1 • 
' 1 1 

F igure 5 .11 : Ace rd ing t t he RR pred ictions fo r de let ions regions, our coll ab­

orator mad . somE' onstruct (red rectangles). 

F igure 5. 10: x pre ion pattern:;: < 1 dri v d [rom th . construct o[ d le t ion 2, F 1 

d rived [rom delet ion 4, Gl [rom d let ion 7. 

5.3.4 Recon truction of a phylog n tic tree from r gula­

tory sequenc s 

V,J, found that th RRS was able to detect th evolutionary link ' between lhe 

1 eeies with a high level of accura y. The re ulting phylogen Lie (.re was of . ignif­

icanl int er l becau e it wa, made only from the BiFaDm 1 and it homol gou 

in 9 other I ee i (i.e., BiFaDsim, BiF aD ee, BiFaDyak, BiFaD r , BiFaDana, 

BiFaDp e, BiFaDmoj , BiFaDvir and BiFaDgri ) and 67 PWI\1 that u ed in lhi 

analy i . Figur 5.1 2 on page 103 how the heatmap and phyl g ni tre mad 

by the RR . (A) i the heaLmap th a t mad only from the quen e and (B) 

i t he heal map that mad from these quence pIll . two randomly pi k d e-
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quences as controls. Each row in heatmp was considered as the template and 

each column was considered as the test sequence. Therefore similarity of a pair 

of sequences can be judged by comparing colours of related rows. The trees in 

the left hand-side of the heatmaps (made by the similarity of rows) reflect the 

functional similarity of the species. We see that the RRS can distinguish the 

random sequences as outliers. 

One may argue that there must be a pattern of occurrences of some of the 

(possibly key) regulators governing this evolutionary link between these species 

that are picked up by the RRS. To address this question lets once again have a 

look to the (log of ) the RRS score for BiFaDmel vs BiFaDsim which was nearly 

12. In Table 5.2 on page 95 we have represented the top eight key contributors 

of this similarity score. The overall contribution of these 8 regulators is about 

6.5. We should note that practically it is almost impossible to force these 8 

regulators to score zero (by deleting or filtering their sites), because according to 

the RRS framework these scores are made up by looking through all the possible 

configurations and accounting even very weak binding site effects. But, for a 

moment lets assume we have managed to force these regulators to obtain an 

overall zero contribution, then the rest of motifs will assign a score around 6 to 

this pair which is still significantly more than scores of BiFaDmel vs randomly 

picked sequences from the D. simulans. Meaning that the functional similarity of 

a pair of sequences in the RRS framework is influenced by contribution of weak 

binding sites too. Therefore it is really too hard to propose a simple pattern 

behind the phylogenetic tree made by the RRS, as it seems to be made by more 

than a simple pattern. 

As a future direction point, it worth mentioning that according to this anal­

ysis the BiFaDsim, BiFaDsec and BiFaDayk that were detected as orthologous 

sequences to the BiFaDmel are very likely to drive a similar expression pattern 

when planted to the D. melanogaster genome. This has not been experimentally 

tested yet. An experiment targeting this hypothesis will provide new insights into 

evolutionary significance of the enhancer regions. 
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F igure 5.12: A: Heatmap made by RR similarity (l g) scor s [rom BiFaDm 1, 

BiFaDsim ) BiFaDsec, BiFaDyak, BiFaDere, BiFaDana, BiFaDpse, BiFaDmoj , Bi­

FaDvir , and BiFaDgri. Please note that in this figure for the sak o[ impli ·ity a 

sequence name SllCh as BiFaDmel has be n denoted by Dm I and s on [or other 

sequences. B: The same a A buL with two xtra randomly picked qllences from 

the D. simulan . 
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5.3.5 Consistency of the RRS predictions with alignment 

based methods 

At this stage one may wonder if these deletion predictions made by the RRS are 

producible by any of the alignment based methods and also that how and why 

these agreements and/or disagreements are for. Our objective in this section is 

to address this question. For this, we made the alignment-based ReMo algorithm 

profiles of 5kb upstream of gene oaz of any other 9 species vs 5kb upstream of 

the oaz in D. melanogaster. Although we looked at the alignment profiles of 5kb 

upstream of the gene to get an overall image, one may need to concentrate only on 

BiFaDmel (shown as orange shadowed area in Figure 5.13 on page 106) region. 

This is because we had some both theoretical and experimental evidence, as 

explained, that this region was driving the same expression pattern as the GH146-

Full and the original idea was to dissect this region and detect its functional 

subregions with the RRS. The results of this alignment-based analysis have been 

presented in Figure 5.13 on page 106 and Figure 5.7 on page 94. 

In both the RRS and the ReMo algorithms, similarity scores are linear to 

the evolutionary distance of the species under comparison to D. melanogaster. 

This can be seen from Figures 5.6 on page 93 and 5.7 on page 94. In both 

algorithms, BiFaDsim is the most similar sequence to BiFaDmel and the similarity 

score falls in more distant species such as BiFaDpse and BiFaDgri sequences. 

However, it seems that the significance of similarity level in the RRS model is 

higher for BiFaDpse and BiFaDgri. For instance, in Figure 5.7 on page 94 where 

D. grimshawi is compared to D. melanogaster, it is too hard to point out any 

conserved subregions in the BiFa-Only region. 

From Figure 5.13 on page 106, we can see that deletions 1,2,7, and 4 (red 

rectangles in the figure) which were made based on our RRS predictions are in 

a high agreement with some peaks of the alignment profiles, whereas deletions 

5, 3 and 6 (golden rectangles) are matching with some troughs of the profiles. 

From these comparisons, we can not draw any conclusion about the level of the 

significance of any the RRS or the alignment-based model. To make this point 

more clear we should note that: 
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• In Chapter 4 and also (45) and (24) we have seen examples of functionally 

conserved non-alignable sequences. Detection of these types of functionally 

conserved sequences has been the initial reason of developing alignment­

free DNA sequence comparison algorithms including the RRS. Therefore, 

we will not be surprised if any of these predictions made by the RRS were 

not identified by any of the alignment-based methods. 

• On the other hand, we do not expect the RRS to detect all the regions that 

have been identified as conserved sequences by the alignment-based method 

as functionally conserved regions. The reason is that the RRS judgement 

about the similarity of a pair of sequences is based on the distribution of 

a set of PWMs that was passed to it as an input (in this analysis only 67 

fly PWMs). According to the appropriateness of these motifs, we mayor 

may not have significant RRS score for a pair of sequences with high level 

of sequence conservation. 
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Figure 5.13: Compari on of pr diction of t he RRS wi t h the alignment based 

m thod . Shown h r a r the R Mo algori thm profil es of the 5kb upstr a m of th 

gene oaz of 9 Dro ophila pecie u d in this analy is compar -d wi th th ir homologs 

in D. melanogaster. T he x-axi i the equenc po it ion (5' to 3 upstr a m of th 

oaz) a nd y-axi i the alignm nt scor . The grey rectangl in t h x-axi i to show 

the area t hat drov a full expres ion pattern in P N . Th r d rectangl Dl , D2, D7 

and D4 ar t he RRS del t ion prediction t ha t look to be in a good agr m nt wi t h 

ome p aks from t h al ignm nt profil es. Th gold n rectangles D5, D3 and D6 

ar t he RRS deletion pr diction t hat look in a disagreem nt quence 

conserved subregion detected by the ReMo algorithm . Th area hadow d as 

orange i to highlight the BiFa-Only region t hat drove t h sam expr ion pat tern 

as th GH1 46-FuIl and therefor i t he region of t he intere t. T h area hadowed 

as blue i to highlight the ReMo-only region, and t he a r a hadow d as green i 

the promoter area and of no int rest in this analy is. 
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5.4 Conclusion 

We have presented our predictions of the functional subregions of the GH146. 

These deletion predictions were made by our RRS model. However, prior to the 

development of the RRS, an alignment based-model ( the ReMo algorithm), and 

a motif-scanning based model (BiFa tool) were used and identified ReMo-Only 

BiFa-Only regions. These enhancer subregions were corroborated by some ex­

periments and revealed that although the ReMo-Only is conserved in almost all 

of the species, the ReMo-Only construct is not capable of driving PN expression 

pattern. On the other hand, the BiFa-Only region recapitulate the expression 

pattern, suggesting that the functional enhancer region lies in the BiFa-Only 

region. Our RRS model was then used to predict these functional regions. Ac­

cording to these deletion predictions, 7 deletion constructs were made, but the 

function of all of these 7 constructs have not been yet completely experimented. 

The results from three of these constructs revealed that the effect of these dele­

tions is likely to be phenotypic and also that deletions contain both promoter and 

repressor elements. We also found that the RRS looks to be capable of picking up 

the evolutionary links between species surprisingly from only (short) regulatory 

sequences and a (small) set of PWMs. 

This project is still ongoing and we believe that cross-referencing results from 

the underlying experiments to our predictions will make new insights into the reg­

ulatory code in fly olfactory system and also will signify our model development. 

But based on currently existing results, we can set up the following discussions 

and future directions to this project . 

• According to the RRS results (see 5.12), BiFaDsim, BiFaDsed and Bi­

FaDyak are functionally conserved to the BiFaDmel with a high statistical 

significance (this is supported by alignment-base tools as well, see 5.13A). 

This suggests that rather than taking a single template sequence, a multi­

template version of the RRS where the set of BiFaDmel, BiFaDsim, BiFaD­

sec and BiFaDyak will be considered as the template set, will strength the 

significance the RRS results. 
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• Another pertinent point to make is that the result of the RRS is strongly 

dependent to the set of input PWMs. Thus a more appropriate set of 

PWMs will lead to more accurate, conclusive and meaningful results. On 

the one hand, the computational expenses is not allowing to take a very big 

set of PWMs (for example all the available PWMs), on the other hand a set 

of PWMs with high level of redundancy may introduce some noise to the 

model. Thus, a set of non-redundant PWMs that includes all the possible 

key regulators of the systems is suggested. 

• Some control experiments are required to evaluate the significance of the 

RRS predictions for instance for a construct corresponding to a trough of 

an RRS profile and another construct made for either a peak or a plateau 

area of the profile would reveal the significance of the RRS predictions. 

The control experiments can be based on some constructs corresponding 

to the peaks of the RRS profiles. In addition, some experiments assessing 

the combinatorial effects of shorter functional subregions will enhance our 

understanding from the transcriptional machinery. 
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Appendix A 

Loss-free Identification of 

Alignment-Conserved CRMs 

In this appendix we provide the reader with a comprehensive description of the 

ReMo algorithm that we applied in Chapter 5 to detect alignment-conserved non­

coding subregions in D. melanogaster GH146 enhancer. This description includes 

the proof of correctness, and evaluates the algorithm's running time. Please note 

that this data has been provided by developers of the algorithm and therefore 

analysis and results mentioned in this appendix are to show the advantages of 

the ReMo-algorithm. There is no direct relationship between this analysis and 

my PhD project, and I have had no contribution to this analysis. 

A.1 Introduction 

We define a pair of genomic sequences as alignment-conserved if their optimal 

alignment has a statistically significant score and the sequences are not repeats. 

Using alignments rather than TF binding motifs to identify potential CRMs pro­

vides a relatively unbiased approach as CRMs containing yet undescribed binding 

motifs can be identified as well. 

The most frequently used algorithms for CRM-detection are members of the 

BLAST-family. These are heuristic algorithms that can not guarantee to find 

weakly conserved regions, but are relatively fast and, therefore, currently being 

employed by browsers for non-coding conserved regions (5; 34). 
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A. LOSS-FREE IDENTIFICATION OF 
ALIGNMENT-CONSERVED CRMS 

We have u ed the algorithmic techniques described below to perform a los -

free genome-wide scan for conserved non-coding regions in t he vicinity of mou e 

and fu gu genes. V\le found that about half of the alignment-conserv d regions 

b tween mouse and fu gu how a quence similarity below 70 percent (see Figure 

A.l ). Given that BLAST wa found to fail in more than 60 percent of cases in a 

study based on randomly generated sequence (4 1), t hi heuristic is bou nd to mis 

a sub tantial numb I' of biologically relevant regions, in particular for distantly 

related pecles. 

180 

160 

140 

100 

80 

110 

II 111111111_ .. 
81 63 64 65 66 6) 66 89 )0 71 72 )) )' 75 ) )8)9 80 61 82 U 84 85 ee 81 88 eg 90 91 9 9) ~ 95 96 9) 98 99 

Figure A.I: Number of conserved regions in fugu detected in t he vlcinity of 10272 

mouse genes including mo t t ranscription factor , egm nted by maximal d gr 

of conservation in windows of 100 base . For a con ervation of 62 to 64, number 

ar red uced to those regions for which significant con ervat ion was also found in at 

I ast one other specie than mOll e and fugu. 

A an alternative approach optimal local alignment of upstream region hay 

b en mployed (13). How ver , th e can fail to detect biologically ignificant 
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conservation on short stretches as long but meaningless alignments can cross the 

alignment path of the shorter alignment in the Smith-Waterman matrix (called 

shadow effect (4; 68)). To avoid this problem a method for maximising the ratio 

of alignment score to sequence lengths has been proposed (4). As the authors 

indicate themselves their method suffers from the dependence on a parameter for 

which no general selection rule has been given. Therefore, even this method is 

not guaranteed to find all alignment-conserved CRMs. 

A.2 Naive Algorithm 

The following algorithm provides a straightforward approach to ensure detection 

of all short alignment-conserved regions within two stretches sand t of genomic 

DNA (such as the upstream regions of two orthologous genes). The basic idea is 

to compute an optimal alignment for every pair of short substrings of sand t. 

Algorithm 16 

Step 1: 
Step 2: 

Step 3: 

Step 4: 

Step 5: 
Step 5A: 

Step 5B: 
Step 6: 

Read input: strings s, t, step width w, and a window length l 
Compute the minimal alignment score S that is still statistically significant 
for two sequences of length l. 
Compute number of window positions: 
nl = l((lsl-lll)/lwl) + 1J 
n2 = l((ltl- Ill)/lwl) + 1J 
Initialise variables: 
set R = 0 
For all pairs (i, j) with 1 :::; i :::; nl and 1 :::; j :::; n2: 

Apply the Needleman-Wunsch algorithm to compute the optimal alignment 
score 
of substrings s[(i - l)w, (i - l)w + l- 1] and t[(j - l)w, (j - l)w + l- 1] 
N = optimal alignment score of window-pair (i, j) 
If N ~ S, then add (i,j, N) to set R. 
Output: R 

As Needleman-Wunsch alignments require 0(l2) dynamic programming (DP) 

steps the feasibility of Algorithm 16 is limited. For example, if two 100kb se­

quences are considered, and the step width is set to w = 5, a total of about 400 
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million optimal alignments, each requiring 10,000 DP steps are needed. While 

this is feasible for the comparison of a limited number of genes across a limited 

number of species, it is not realistically applicable to genome-wide scans. 

Finding a reasonable setting for the window length I is not a problem In 

practice as it is sufficient for the window to cover only a part of a CRM. In this 

case a number of significant window pairs will be found which can be grouped 

and displayed as a single block of conserved sequence. 

The statistical evaluation of sequence alignment scores is greatly simplified by 

our approach as all aligned sequences have the same length. 

A.3 Our Algorithm 

The key idea to improve the sliding-window approach of Algorithm 16 is to make 

use of previously computed alignment scores for other pairs of windows in order to 

reduce the CPU-time needed to do the computation for following window pairs. 

This is done by deriving upper and lower bounds for the alignment score of a 

given window pair, before the application of Needleman-Wunsch is considered. If 

the upper bound is lower than the cut-off S, the alignment would not be part of 

the final output and can be omitted. If the lower bound is high, an alignment 

has to be computed, but the Needleman-Wunsch matrix can be restricted to a 

tight corridor around the main diagonal as alignment paths that deviate from 

this corridor would not be optimal. A full applicaton of Needleman-Wunsch is 

only required if neither bound provides a computational saving. 

We also add the computation of conservation profiles for each input sequence 

to the algorithm. These are informative in practice, but are not part of the speed 

improvement over Algorithm 16. 

Algorithm 11 
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Step 1: 
Step 2: 

Step 3: 

Step 4: 

A.3 OUf Algorithm 

Read inpu t: t rings s, t, step wid th w, and a window length l 
Compute the minimal alignment score S that is still tatistically significant 
for two sequence of length l . 
Compute number of window positions: 

nl = l((lsl - Ili)/lwl) + 1 J 
n2 = l((ltl-l l l) / lwl) + 1J 
Ini t iali e variables: 
set R = (/) 
vector H of length nl , Vi : PI [i] = a 
/* con 'eI'Yation profile fi rst equence *1 
vector P2 of length n2 , V j : P2 [j] = a 
1* con 'ervat ion profil e second sequence *1 
ni x n2 matrix lVJmin , Vi,j : Mmin[i,j] = -00 

1* to store lower bounds for ali gnm nt scores * I 
ni x n2 matrix ],,1m ax , Vi, j : Mmax[i , j] = 00 

/* to store upper bound for alignment cores *1 
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Step 5: 

Step 5A: 

Step 5B: 

Step 5C: 

Step 5D: 
Step 5E: 

Step 5F: 

Step 5G: 
Step 5H: 
Step 51: 
Step 5J : 

For all pairs (i , j) wi t h 1 ::; i ::; nl and 1 ::; j ::; n2 
(in any order): 
Compute lower bound: 
ml = max{ Mmin [i - 1, j], M min [i, j - 1], M min [i, j + 1], Mmin [i + 1, j]} 
/ * best score moving sideways * / 
m2 = max{Mmin[i - l ,j - 1], Mmin[i + l , j + I]} 
/* br 't 'core mO\'illg on one di agonal * / 
m3 = max{Mmin[i - l , j + 1], Mmin[i + l ,j - I]} 
/* be 't core moving on ot her diagonal * / 
bL = max{ml - w + 2wb,m2 - W,m3 - 2w + 4w8 } 
Compute upper bound: 
ml = min{ Mmax[i - l , j], Mmax[i,j - 1], Mmax[i,j + 1], Mmax[i + l ,j ]} 
/* be t cor moving : ide\\'a~'s * / 
m2 = min {Nfmax[i - l , j - 1], Mmax[i + 1 j + I ]} 
/* best core moving on on diagonal * / 
m3 = min{ Mmax[i - 1,j + 1], Mmax[i + l ,j - I]} 
/* be t score moving on ther di agonal * / 
bu = min{ml + w - 2wb, m2 + w, m3 + 2w - 4w8} 
Compute minimum score to influence final re ults : 
A = min{P1[i], P2 [j], S } 
If (bu < A) t hen jump to Step 5J 
Compute corridor of intere t : 
C = rl - Mmin [i,j]l 

1- 28 
Apply the N edleman-Wun ch algori thm to compute t he opt imal alignm nt 
score 
of substrings [(i - l )w, (i - l )w + l - 1] and t[(j - l )w, (j - l)w + l - 1] 
N = optimal alignm nt core of window-pair (i, j) 
Only compute the corridor of t he ed leman-Wunsch matrix that is within C 
positions off t he main di agonal. 
If N::: S, t hen add (i, j , N) to s t R. 
If N ::: PI til then set PI til = N 
If N ::: P2[j] t h n set P2[j ] = N 
Store computed bounds: 
Nfmin[i, j ] = bL (or N if computed) 
Mmax [i,j] = bu (or N if computed) 

Step 6: Output : R, Pr , and P2 
For readibility we ignore undefined indexing of matrices Mmax and Mmin such 

as Mmax[O, 0] - these would be replaced by 00 or -00 in real programme code. 

We decided to employ the original Needleman-Wunsch algorit hm as a subrou­

tine for Step 5F (49), since the existing ubquadratic algorithms do not make an 
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improvement for this application (2; 11; 46). 

A.4 Correctness 

We only need to prove that the upper and lower bounds computed in Algorithm 

17 are correct. We formulate our Lemma for the special case of a match-score 

of 1 and a mismatch-score of 0, but similar results can be derived for general 

alignment scores. We employed this scoring matrix for our work as it reflects our 

limited knowledge of nucleotide frequencies in CRMs. 

Lemma 18 Let ~ be an alphabet. Let s, t, u, v E ~+ such that s = 

ax, U = x13, t = ,,(y, v = y6 for some a, 13, ,,(, fJ E ~*. Let N(·,·) denote 

the optimal alignment score of two strings when using a match-score 

of 1, a mismatch score of 0, and a gap-penalty -i, for Z EjO, 00[. 

1. N(u,v) ~ N(s,t) - (max{lal, hi} + Ilal- I'YII;II13I-I<5II ) 

2. N(u, v) ::; N(s, t) + (max{I13I, IfJl} + Ilal-I1'II;"f3I-I<5II ) 

3. N(s, v) ~ N(u, t) - (1131 + 1"11 + 10 1+1131;11'1+1<51) 

4. N(s, v) ::; N(u, t) + (Ial + IfJl + 10 1+1131;11'1+1<51) 

Proof. 1.) Let p, q E (~U { - })+ be an optimal alignment for sand t. 

For any given string () E (~U {-})+ let T(O) denote the string that is derived 

from 0 by removing all gap-characters. Let p', q', f, W E (~U { - } ) + such that 

p = EP', q = wq', x = T(p'), y = T(q'), and lEI as well as Iwl maximal. 

Case 1: 1131 ~ IfJl, Ip'l ~ Iq'l 

Let r1 = p'13 and r2 = (- )lp'I-lq'lq'( - )1131-1<51. Obviously Ir11 = Ir21 holds. Let 

8(r1' r2) denote the alignment score of r1 and r2. Then N(u, v) ~ 8(r1, r2), since 

u = T(rd and v = T(r2). As in the alignment (r1' r2) q' is aligned to the same 

suffix of p' as in alignment (p, q), we have: 

8(rl' r2) ~ N(s, t) _ max{lal, I,I} _ Iial ~ 1"111 _ 1131 ~ 161 

Here max{lal, hi} is an upper bound for the number of matches that are lost by 

removing E and w. Ilal~I'Y11 is an upper bound for the number of additional gaps 
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at the beginning of r2. 

Case 2: 181 2: I,BI, Ip'l 2: Iq'l 
For rl = p'13( - )1 81-1131 and r2 = (- )lp' I-lq' lq'8 the following inequality holds: 

Ilal- hll 181-1f31 
S(rl' r2) 2: N(s, t) - max{lal, hi} - z - Z 

Case 3: I,BI 2: 181, Ip'l < Iq'l 
For rl = (- )lq' I-lp' lp'13 and r2 = q'8( - )1131-181 the same inequality as in Case 1 

holds (see Equation A.I). 

Case 4: 1131 < 181, Ip' < Iq'l 
For rl = (- )Iq'l-Ip'lp' 13( - )181-1131 and r2 = q'8 the same inequality as in Case 3 

holds (see Equation A.I). 

Hence the claim holds in all cases. 

2.) We use R : E* ----> E* to denote the reversion function for strings. For 

any Xl, X2 E E* N(XI' X2) = N(R(Xl), R(X2) holds, since alignment scores are 

invariant under string reversions. Therefore, we have 

N(u, v) - N(R(u), R(v)) 

- N(R(j3)R(x), R(8)R(y)) 

< N(R(x)R(a), R(y)R(r)) + max{IR(13)I, IR(8)1} + 
IIR(j3)I-IR(8)11 + IIR(a)I-IR(r)11 

Z 

_ N(s, t) + max{I13I, 181} + 11131- 1811; Iial - hll 

3.) This statement can be seen by first applying statement 2 and then statement 

1 both of which are already proven: 

N(s, v) - N(ax, v) 

> N(x13, v) _ 1131 _ lal ; 1131 

_ N(u, y8) - 1f31 _ lal ; 1f31 

> N(u, "IY) - hl- hi; 181 _ f3 _ lal ; I,BI 

_ N(u, t) - (1f31 + hi + lal + 1131; hi + 181) 
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A.5 Performance 

Sequence Lengths w = 5 w =4 w=3 w = 2 w = 1 

15,000 x 17,500 308 365 431 543 881 

15,000 x 23,500 414 483 571 722 1155 

48,000 x 48, 000 2508 2891 3316 4069 6368 

80,500 x 93,000 7100 8075 9212 11334 18338 

120,000 x 120,000 14802 16915 19292 23555 37305 

Table A.I: Effect of Step Width on CPU time 

4.) Using statement 3 we conclude: 

N(s, v) - N(R(x)R(a), R(8)R(y)) 

< N(R(fJ)R(x), R(y)R(r)) + IR(a)1 + IR(8)1 
IR(a)1 + IR(fJ)1 IR(r)1 + IR(8)1 

+ z + Z 

_ N(u, t) + lal + 181 + lal + IfJl ; hi + 181 

• 

A.5 Performance 

The asymptotic order of Algorithm 17 is still in O(lslltll2
) for a constant step 

width w, but it makes a substantial improvement over Algorithm 16 in practice. 

Table A.l shows the effect of step width on CPU time (in seconds) and pro­

vides examples of running time on real biological sequences using a 3GHz Linux 

machine. 

Computing conservation profiles increases the CPU time as potential updates 

of the profiles have to be considered in Step 5C, resulting in fewer omissions of 

alignments. However, these increases are modest as the profiles will quickly reach 

values near the cut-off S during the execution of the algorithm. 
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Glossary 

AP Anterior Posterior, page 11 

BiFa tool Binding Factor analysis tool, page 78 

BLAST Basic Local Alignment Search Tool, page 5 

CAD CRM Activity Database, page 16 

ChIP-chip Chromatin Immunoprecipitation combined with microarray, page 15 

CRM cis-Regulatory Module, page 3 

lID Independent and Identically Distributed, page 28 

MM Markov Model, page 28 

PGP Pattern Generating Potential, page 20 

PSSM Position Specific Scoring Matrix, page 3 

PWM Position Weight Matrix, page 3 

ReMo GUI Regulatory Module Graphical User Interface, page 78 

RRS Regulatory Region Scoring Model, page 6 

TF Transcription Factor, page 2 

TFBS Transcription Factor Binding Site, page 4 

TSS Transcription Starting Site, page 3 
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