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IMPLIED DISTRIBUTIONS IN MULTIPLE CHANGE POINT PROBLEMS
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ABSTRACT. A method for efficiently calculating marginal, conditional and joint distributions

for change points defined by general finite state Hidden Markov Models is proposed. The dis-

tributions are not subject to any approximation or sampling error once parameters of the model

have been estimated. It is shown that, in contrast to sampling methods, very little computation is

needed. The method provides probabilities associated with change points within an interval, as

well as at specific points.
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2 ASTON, PENG & MARTIN

1. INTRODUCTION

This paper investigates some exact change point distributions when fitting general finite state

Hidden Markov models (HMMs), including Markov switching models. Change point problems

are important in various applications, including economics (Hamilton 1989; Chib 1998; Sims

and Zha 2006) and genetics (Durbin, Eddy, Krogh, and Mitchison 1998; Eddy 2004; Fearnhead

and Liu 2007). In many instances change point problems are framed as HMMs (Chib 1998;

Frühwirth-Schnatter 2006; Fearnhead and Liu 2007), however, to date, the characterisation of

the change point distributions implied by these models has been performed using sampling

methods (Albert and Chib 1993; Cappé, Moulines, and Rydén 2005), exact posterior sampling

(Fearnhead 2006; Fearnhead and Liu 2007), or the distributions are ignored and deterministic

algorithms such as the Viterbi algorithm (Viterbi 1967) or posterior (local) decoding (Juang

and Rabiner 1991) are used to determine the implied change points. The distributions in this

paper are exact in that, conditioned on the model and parameters, they completely characterise

the probability distribution function without requiring any asymptotic or other approximation

or being subject to any sampling error. It will be shown that these distributions can be calcu-

lated in many cases using a small number of calculations compared to those needed to yield an

approximate distribution through sampling.

The method can be used to determine probabilities of whether a change in regime has oc-

curred at any particular time point. This will be evaluated through a concept called the change

point probability (CPP), which is a function of the marginal probabilities of particular time or-

dered change points occurring at certain times. The marginal probabilities are determined after

finding the joint and conditional distributions of multiple change points. Using the marginal

distributions allows a probabilistic quantification of the relationship between changes in the

behaviour described by the model and real-life events occurring at specific times.

A model might be deemed to capture the influence of an event causing a change in the data

when the probability distribution of a change point around the time point of the event is peaked.
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CHANGE POINTS DISTRIBUTIONS 3

In contrast, a model for which the probability of a change in regime is more uniform indicates

that the regime specified by the model is not particularly affected at that or any other particular

point. To illustrate this point, US Gross National Product (GNP) regime switches will be exam-

ined in relation to the CPP of recession starts and ends as determined by the National Bureau of

Economic Research (NBER). The NBER can be seen as providing external estimates of change

points based on overall economic data. Comparing change points determined by the NBER and

those determined by maximisation of local posterior state probabilities (Hamilton 1989) leads

to the surprising result that regime switches determined from the latter method may not be a

useful metric. In contrast, the CPP gives the exact probability of a change occurring at any time

point or interval, given the model.

HMMs are widely used in statistics and engineering; see MacDonald and Zucchini (1997)

and Cappé, Moulines, and Rydén (2005) for good overviews on the current state of the art both

in theory and applications of them. To locate change points (or equivalently to perform data

segmentation) HMMs are generally trained on data and then applied to test data (Rabiner 1989;

Durbin et al. 1998). The methodology of this paper is appealing in that it allows complete quan-

tification of uncertainty in test data analysis. This methodology is generic in that it depends only

on the Markovian nature of regime switches and the ability to generate posterior probabilities,

and not upon the structure of any particular HMM model.

The structure of the paper is as follows. Section 2 derives the methods to find change point

distributions from data via HMMs and the use of waiting time distributions. Also in that section,

the joint and marginal distributions of a set of change points are derived and the concept of

CPP is defined. Section 3 contains applications of the methodology to the GNP data given by

Hamilton (1989). Section 4 contains a few concluding remarks.

In the appendices, a basic smoothing algorithm for Markov switching models will be given,

completing an algorithm given by Kim (1994) so that the smoother contains all needed terms.
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4 ASTON, PENG & MARTIN

2. WAITING TIME DISTRIBUTIONS AND CHANGE POINTS

The methods that will be presented here can be applied to general finite state Hidden Markov

Models (including Markov switching models) with the general form:

yt ∼ f(St−r:t, y1:t−1),

P [St|S−r+1:t−1] = P [St|St−1], t = 1, . . . , n. (2.1)

The data yt from time 1 to time n is distributed conditional on previous data and r previous

switching states St−r, . . . , St−1 in addition to the current state St (as well as model parameters,

the values of which are implicitly assumed to be fixed). Here, yt1:t2 = yt1 , . . . , yt2 with St1:t2

defined analogously. This general form is equivalent to assumption Y2 in Frühwirth-Schnatter

(2006, p. 317). For simplicity, the switching states {St} are assumed to be a first-order Markov

chain with finite state space S, but extension to higher-order Markov structures is straightfor-

ward. A given initial distribution π for S−r+1:0 is also assumed. With suitable modification, the

above model may also include exogenous variables. No assumption on the distribution of the

noise in the system is made other than that the posterior probabilities of the states (probabilities

conditional on the data) must exist.

Definition A run of length k in state s is defined to be the consecutive occurrence of k states

that are all equal to s, i.e. St−k+1 = s, . . . , St = s (c.f. Feller (1968), Balakrishnan and Koutras

(2002)).

Now for m ≥ 1, let Ws(k,m) denote the waiting time of the mth run of length at least k in

state s, and let W (k,m) denote the waiting time for the mth run of length at least k of any state

s ∈ S. Note that W (k,m) is invariant under any state re-labelling, whereas Ws(k,m) is not.

Consider, for example, the case of growing (s = 1) and falling GNP (s = 0). W0(k, 1) is

then the first time that a period of falling (
=k︷ ︸︸ ︷

0 . . . 0) GNP has occurred in {St} whereas W (k, 1)
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CHANGE POINTS DISTRIBUTIONS 5

is the first time either a period of falling GNP or growing (
=k︷ ︸︸ ︷

1 . . . 1) GNP occurs. By changing

the value of k, shorter or longer length periods can be investigated.

A change point at time t is typically defined to be any time at which St−1 6= St, the beginning

of a run of length at least one. A special case is given in Chib (1998), where the states are re-

quired to change in ascending order. However, a more general definition is allowed here, where

a change point is defined to have occurred when a change persists at least k time periods, k ≥ 1.

A classic example of when the generalised definition is needed is the common definition of a

recession, where two quarters of decline are required (k = 2) before a recession is deemed to

be in progress. Let τ (k)
i , i = 1, . . . ,m be the time of the ith change point under this generalised

definition. Then

P [τ
(k)
i = t] = P [W (k, i) = t+ k − 1]. (2.2)

Equation (2.2) follows because the ith run of length at least k occurs at time t + k − 1 if and

only if the switch into that regime has occurred k − 1 time points earlier. When k = 1, it is

assumed in this work that a change point of some sort has occurred at t = 1, i.e. P [W (1, 1) =

1) = 1] = P [τ
(1)
1 = 1] = 1, and hence the ith change point using the common definition will

be equivalent to (i+ 1)st change point (τ (1)
i+1) as defined here. Since a regime or run of length at

least k can continue, P [τ
(k)
i+1 > n] > P [τ

(k)
i > n] > 0.

Other distributions can be calculated from the waiting time distribution. For example, the

distribution of the maximal length of a particular regime Rs(t) up to time t is given by

P [Rs(t) = k] = P [Rs(t) ≥ k]− P [Rs(t) ≥ k + 1]

= P [Ws(k, 1) ≤ t]− P [Ws(k + 1, 1) ≤ t]. (2.3)

Analogously, the probability that the maximal length of any regime is k, P [R(t) = k], can be

defined in terms of P [W (k, 1) ≤ t].
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6 ASTON, PENG & MARTIN

2.1. Methods to Calculate Waiting Time Distributions for the First Change Point. Finite

Markov chain imbedding (Fu and Koutras 1994; Aston and Martin 2007) will be used to com-

pute distributions associated with the regime periods. The method involves imbedding the {St}

sequence into a new Markov chain {Zt} with a larger state space. Though {St} forms a homo-

geneous Markov chain, conditioning on the data induces rth order inhomogeneous dependence,

i.e. the posterior transition probabilities P [St|St−r:t−1, y1:n] are transition probabilities of an

inhomogeneous rth order Markov process (Cappé, Moulines, and Rydén (2005) and Appendix

A).

The state space of {Zt} (which is denoted by Zs or Z depending on whether runs of a

particular state s or a run of any state is of interest) will consist of vector states of the form

((st−r+1, . . . , st), j). The component (st−r+1, . . . , st) ∈ Sr, necessary due to the rth-order

dependence of states conditional on the data y1:n, gives the values of the last r states at time

t, t = 0, . . . , n. The component j, j = 0, 1, . . . , k, gives the length of the current run of a

particular state s (j = max1≤φ≤k : St = s, St−1 = s, . . . , St−φ+1 = s if St = s, j = 0

otherwise), or of the current value of St if general runs are of interest. If k > r,

Zs =
r−1⋃
j=0

 ⋃
st−r+1:t:sl=s,l=t−j+1,...,t; sl∈S,l=t−r+1,...,t−j

(st−r+1:t, j)

 ∪
(

k⋃
j=r

((s, . . . , s), j)

)
,

(2.4)

and if k ≤ r,

Zs =
k⋃
j=0

 ⋃
st−r+1:t:sl=s,l=t−j+1,...,t; sl∈S,l=t−r+1,...,t−j

(st−r+1:t, j)

 , (2.5)

where any strings sa:b with a > b or any sb with b < t− r + 1 are ignored. (Notice that in (2.4)

and (2.5), some states are needed only for the initialisation stage when t < r).

When j = k, a run of length k or longer has occurred. The set A of states with j = k are

absorbing, i.e., once entered, the sequence remains in that state with probability one. The state
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CHANGE POINTS DISTRIBUTIONS 7

space Z for calculating P [W (k, 1) ≤ t] is then

Z =
⋃
s∈S

Zs. (2.6)

Let z∗ represent the size of either Zs or Z as appropriate. As the components of states

of {Zt} are functions of states {St}, the |S| non-zero row entries in the z∗ × z∗ transition

probability matrix Mt for transitions from transient states of {Zt} are completely determined

by the posterior transition probabilities P [St|St−r:t−1, y1:n]. Specifically,

P [Zt = ((st−r+1, . . . , st), j)|Zt−1 = ((st−r, . . . , st−1), l), y1:n]

= P [St = st|St−1 = st−1, . . . , St−r = st−r, y1:n] (2.7)

for appropriate values of j which are determined in the following manner: For transient states

of Zs, j = l + 1 when st = s, and j = 0 if st 6= s. For transient states of Z , j = l + 1 when

st = st−1, and j = 0 if st 6= st−1. In Appendices A and B, a completion of Kim’s algorithm is

given for the purpose of calculating the posterior transition probabilities of (2.7).

The initial probability distribution for Z0 is contained in the 1× z∗ row vector ψ0, which has

non-zero probabilities

ψ0((s−r+1, . . . , s0), 0) = P [Z0 = ((s−r+1, . . . , s0), 0)] = π(s−r+1, . . . , s0). (2.8)

From the well-known Chapman-Kolmogorov equations for Markov chains (Feller 1968), it

follows that the 1 × z∗ probability vector ψt of Zt lying in its various states at time t ≥ 1 is

given by

ψt = ψ0

t∏
τ=1

Mτ . (2.9)

P [Ws(k, 1) ≤ t] can then be calculated as

P [Ws(k, 1) ≤ t] = P [Zt = A] = ψtU(A), (2.10)

with the analogous result holding for P [W (k, 1) ≤ t], where U(Ω) is a z∗ × 1 column vector

with ones in the locations of the set of states Ω and zeros elsewhere. Equation (2.10) holds
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8 ASTON, PENG & MARTIN

since the Markov chain {Zt} is in an absorbing state if and only if a run of length at least k has

occurred. Combining (2.9) and (2.10), for t ≥ k,

P [Ws(k, 1) = t] = P [Ws(k, 1) ≤ t]− P [Ws(k, 1) ≤ t− 1] = ψ0

(
t−1∏
l=1

Ml

)
(Mt − I)U(A),

(2.11)

where I is a z∗ × z∗ identity matrix.

2.2. Methods to Calculate Waiting Time Distributions for Multiple Change Points. In this

subsection, a method is given to calculate joint probabilities associated with change points

through augmenting the state spaces Zs and Z . Manipulations of the joint probabilities will

lead to an algorithm for computing marginal change point distributions. The algorithm obviates

the need to repeat states for each of the i = 1, . . . ,m change point occurrences.

2.2.1. Setup of Markov chain for Distributions Associated with Multiple Change Points. A set

of states C, called continuation states, is added to Zs and Z , and the respective sizes z∗ are

incremented by the number of continuation states. The role of the continuation states is that

once the ith run of length at least k has occurred, a new Markov chain {Z(i+1)
t } is started to

determine probabilities associated with the next occurrence of a run of the desired length. The

continuation states serve to initialise the new chain {Z(i+1)
t }, and indicate that run i is still in

progress and needs to end before the (i+ 1)st run can begin.

The continuation states ((st−r+1, . . . , st),−1) ∈ C correspond to absorbing states ((st−r+1, . . . , st), k) ∈

A, with -1 indicating that a run continues and must end for the next run to begin. The (less than

full rank) z∗ × z∗ matrix Υ defined by

Υ (z1, z2) =

 1 if z1 ∈ A and z2 ∈ C is the corresponding state

0 otherwise
(2.12)

maps probabilities of being in the states of A into probabilities for being in the corresponding

states of C.

CRiSM Paper No. 08-26, www.warwick.ac.uk/go/crism
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The transition probability matrices Mt are revised to account for the continuation states.

Continuation states may only be entered from other continuation states. The generic non-zero

transition probabilities beginning in a continuation state ((st−r+1, . . . , st),−1) ∈ C, and condi-

tional on the data are of the form

P [Zt = ((st−r+1, . . . , st), j)|Zt−1 = ((st−r, . . . , st−1),−1), y1:n]

= P [St = st|St−r = st−r, . . . , St−1 = st−1, y1:n], (2.13)

where the appropriate values of j for (2.13) are determined by:

(1) If st = st−1, j = −1 for both Zs and Z;

(2) If st 6= st−1, then j = 0 for Zs, and j = 1 for Z .

The transition probabilities for the rest of the states in either Zs or Z are unchanged.

2.2.2. Computation of Joint, Conditional and Marginal Distributions. The joint distribution of

the first m change points can be factorised as

P [τ (k)
m = tm, . . . , τ

(k)
1 = t1] = P [τ

(k)
1 = t1]

m∏
i=2

P [τ
(k)
i = ti|τ (k)

i−l = ti−1, . . . , τ
(k)
1 = t1]. (2.14)

By (2.11),

P [τ
(k)
1 = t1] = P [W (k, 1) = t1 + k − 1] = ψ0

(
t1+k−2∏
l=1

Ml

)
(Mt1+k−1 − I)U(A). (2.15)

To calculate P [τ
(k)
i = ti|τ (k)

i−1 = ti−1, . . . , τ
(k)
1 = t1], define

ξ
(1)
t1+k−1 = ψ0

(
t1+k−2∏
l=1

Ml

)
(Mt1+k−1 − I). (2.16)

and for i = 2, . . . ,m

ξ
(i)
ti+k−1 =

(
ξ

(i−1)
ti−1+k−1Υ

ξ
(i−1)
ti−1+k−1U(A)

) ti+k−2∏
l=ti−1+k

Ml

 (Mti+k−1 − I). (2.17)

CRiSM Paper No. 08-26, www.warwick.ac.uk/go/crism



10 ASTON, PENG & MARTIN

By (2.15) and (2.16), P [τ
(k)
1 = t1] = ξ

(1)
t1+k−1U(A). The vectors

(
ξ
(i−1)
ti−1+k−1Υ

ξ
(i−1)
ti−1+k−1U(A)

)
serve as

the initial distribution for the excursion of the Markov chain {Z(i)
t } beginning in a continuation

state at time ti−1 + k − 1, analogous to ψ0 for the first chain at time zero, and

P [τ
(k)
i = ti|τ (k)

i−1 = ti−1, . . . , τ
(k)
1 = t1] = ξ

(i)
ti+k−1U(A). (2.18)

Thus, for i = 2, . . . ,m, the joint probability

P [τ (k)
i = ti, . . . , τ

(k)
1 = t1]

= P [W (k, i) = ti + k − 1, . . . ,W (k, 1) = t1 + k − 1]

=
i∏

q=1

ξ
(q)
tq+k−1U(A)

= ψ0

i−1∏
q=1

 tq+k−2∏
l=tq−1+k

Ml

 (Mtq+k−1 − I)Υ

 ti+k−2∏
l=ti−1+k

Ml

 (Mti+k−1 − I)U(A), (2.19)

where t0 ≡ 1− k for convenience and
(∏b

l=aMl

)
= if b ≤ 0.

Marginal distributions for change point τ (k)
i , or equivalently the marginal waiting time distri-

bution for the first ith run occurrence, i = 2, . . . ,m, can then be written as

P [τ (k)
i = ti] = P [W (k, i) = ti + k − 1]

=
∑

1≤t1<ti

. . .
∑

ti−2<ti−1<ti

P [W (k, i) = ti + k − 1, . . . ,W (k, 1) = t1 + k − 1]

=
∑

1≤t1<ti

. . .
∑

ti−2<ti−1<ti

i∏
j=1

ξ
(j)
tj+k−1U(A)

=

 ∑
ti−2<ti−1<ti

. . .

 ∑
t1<t2<ti

 ∑
1≤t1<ti

ξ
(1)
t1+k−1U(A)

 ξ
(2)
t2+k−1U(A)

 . . .

 ξ
(i)
ti+k−1U(A) (2.20)

with the marginal distribution P [τ
(k)
1 = t1] given by (2.15).

Equation (2.20) suggests the use of some form of sum-product algorithm (MacKay 2003) for

its calculation. Let ψ(i)
t be row vectors carrying probabilities for the Markov chain Z(i)

t , i.e. the

joint probability that the (i − 1)st run has occurred by time t, and that the chain is in state z at

CRiSM Paper No. 08-26, www.warwick.ac.uk/go/crism



CHANGE POINTS DISTRIBUTIONS 11

time t (so that ψ(1)
t = ψt). The marginal distributions are then

P [τ
(k)
i = ti] = P [W (k, i) = ti + k − 1] = (ψ

(i)
ti+k−1 − ψ

(i)
ti+k−2)U(A), (2.21)

the probability of being absorbed at time t, and a similar formula holds for Ws(k, i). Two

operations need to be carried out to update ψ(i)
t−1 to ψ

(i)
t : (1) Due to the Markovian nature

of the system, we must multiply by the transition probability matrix Mt, and (2) Absorption

probabilities for the (i − 1)st run occurrence must be incremented since they serve as initial

probabilities when waiting for the occurrence of the ith run. These operations may be carried

out simultaneously for i = 1, . . . ,m by replacing (2.9) with matrix computations.

Let Ψt, t = 0, . . . , n be m× z∗ matrices with ith row ψ
(i)
t . The initial matrix Ψ0 then has as

its first row ψ0, with the remaining rows being composed of zeroes since the probability is zero

that a run has occurred at time t = 0. The algorithm for t = 1, . . . , n is

Ψt = Ψt−1Mt, (2.22)

ψ
(i)
t ← ψ

(i)
t + ψ

(i−1)
t−1 (Mt − I)Υ, i = 2, . . .m, (2.23)

where (2.22) is related to computing the matrix product
(∏ti+k−2

j=ti−1+kMj

)
of (2.19) while (2.23)

is related to computing (Mti−1+k−1 − I)Υ, i = 2, . . .m.

Even though the algorithm is non-linear, it can be determined in almost linear time, as the

non-linear update step (2.23) is just a simple alteration to entries in the matrix Ψt, requiring

only linear time computations.

Using the calculations given above, the distribution of the number of regime changes P [Ns(k) =

i] into a particular state is given by

P [Ns(k) = i] = P [Ws(k, i) ≤ n]− P [Ws(k, i+ 1) ≤ n] i = 0, . . . , ζ + bn− (k + 1)ζ

k
c,

(2.24)

where bxc indicates the integer part of x and ζ = b n
k+1
c. In practice, the value at which

P [Ws(k, i) ≤ n] becomes negligible will be i � ζ + bn−(k+1)ζ
k
c. Analogous results hold
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12 ASTON, PENG & MARTIN

for probabilities P [N(k) = i] associated with the number of change points in the data, by

considering P [W (k, i) ≤ n] for i = 0, . . . , bn/kc.

By using the setup above it is also possible to determine distributions associated with the time

when regimes are left. Let W e
s (k, i) be the time that the ith run in state s ends, with W e(k, i)

being defined in an analogous fashion for the ith run over all states. Regime i ends when Z(i+1)
t

leaves the continuation states. Thus for t = 1, . . . , n− 1,

P [W e
s (k, i) = t] = ψ

(i+1)
t (I −Mt+1)U(C), i = 1, . . . ,m− 1. (2.25)

again with an analogous result for P [W e(k, i) = t].

2.3. Change Point Probability. Changes in regime are often deemed qualitatively to coincide

with external events such as the start or end of a recession, or a political or historical event such

as the Oil Crisis or September 11. Change point probabilities (CPPs) quantify the chance that

a switch occurs at a particular time point or within a particular interval. Since only one regime

switch can occur at any particular point, a CPP at time t may be computed by summing the

probability of the ith change point occurring at that time over i:

CPPs(t, k) =
∑
i

P [Ws(k, i) = t+ k − 1] (2.26)

and

CPPes(t, k) =
∑
i

P [W e
s (k, i) = t], (2.27)

with analogous definitions for probabilities CPP(t, k) and CPPe(t, k) of change points associ-

ated with any state of S.

When k = 1 and t < n, CPPe(t, 1) = CPP(t + 1, 1), since the end of one regime guarantees

the start of another. However when k > 1, this is not necessarily the case, as it can take more

than one time period before a new regime of length at least k appears.

Probabilities CPP(t1 : t2, k) that at least one change point occurs in t1, t1 + 1, . . . , t2 may

be computed using the framework of the algorithm (2.22-2.23). If ψ(i)
t (z) is the component
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of ψ(i)
t corresponding to state z, then, since

∑
z∈Z\A

[
ψ

(1)
t (z)

]
+
∑

z∈A

[
ψ

(1)
t (z)

]
= 1 and∑

z∈Z\A

[
ψ

(i)
t (z)

]
=
∑

z∈A

[
ψ

(i−1)
t (z)

]
,

m∑
i=1

∑
z∈Z\A

ψ
(i)
t (z) +

∑
z∈A

ψ
(m)
t (z) = 1. (2.28)

Let ψ̃t(z) =
∑

i ψ
(i)
t (z), for z ∈ Z \ A, then

CPP(t1 : t2, k) = ψ̃t1−1

(
t2∏
l=t1

Ml

)
U(A) (2.29)

in an analogous fashion to (2.11), and similarly for CPPs(t1 : t2, k). By a similar argument

and taking care with the continuation states C, CPPes(t1 : t2, k) and CPPe(t1 : t2, k) can

also be found. A small note is that ψ̃t1−1 is not strictly a (initial) distribution due to the term∑
z∈A ψ

(m)
t (z). However, (2.29) still gives the exact probability.

2.4. Computational Considerations. Given the prevalence of Bayesian techniques in the anal-

ysis of Markov switching models (see Frühwirth-Schnatter (2006) for the latest on these tech-

niques), it is of interest to compare the computational cost of calculating the waiting time and

change point distributions through the exact scheme above versus drawing samples from the

posterior distribution of the states. Of course, in terms of error for fixed parameters, the two

approaches cannot be compared as the exact distribution is not subject to any sampling error.

For both drawing conditional samples of the underlying states and the exact scheme, a pass

through a Markov chain is necessary. Every state in either approach has at most |S| possible

transition destinations, so all that needs to be compared is the size of the state spaces associated

with the two techniques.

For drawing conditional samples (for example through Markov Chain Monte Carlo), in gen-

eral, a state space of size |S|r is needed as the order of dependence of the posterior Markov

chain for the model given in (2.1) is r. For the exact scheme with k > r, the state space Zs (the
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14 ASTON, PENG & MARTIN

number of states given in (2.4) plus one for the continuation state) is of size

r∑
l=0

|S|l + (k − r + 1) =
1− |S|r+1

1− |S|
+ (k − r + 1) < |S|r+1 + (k − r + 1)

while for Z , the size needed is at most

|S|r +
1− |S|r+1

1− |S|
+ |S|(k − r + 1) < |S|r(|S|+ 1) + |S|(k − r + 1).

Thus when k > r, if k � |S|r, at most |S|m (and often less) equivalent sample computations

are needed to calculate the marginal waiting time distributions. Of course as k increases, the

number of states will increase, but this is only at a linear rate proportional to k.

For k ≤ r, the size of state space required for Zs and for Z respectively are

(
r∑

i=r−k

|S|i) + |S|r−k,

and

|S|r + (
r∑

i=r−k+1

|S|i) + |S|r−k+1.

Comparing the computational cost for a standard change point analysis with k = 1 and m

change points, the number of computations required to calculate the exact marginal distributions

is the same as for drawing 3m simulation samples, which is small in the usual case when m is

small. Note that with the sampling approach, the precise amount of sampling needed can be

difficult to quantify given convergence and approximation issues.

All these calculations presume that the state space model is of a general structure. Models

such as the change point model of Chib (1998) would require significantly less computation for

the exact distributional method given the structure in the model.

3. GNP ANALYSIS

The Markov switching model, a particular form of HMM, which relaxes the assumption of

independence between the observed data, is popular in economics. One of the first uses of

Markov switching models was to investigate the business cycle. Hamilton (1989) analysed
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logged and differenced quarterly GNP data for the time period 1951:II to 1984:IV. He showed

that a two-state mean switching AR(4) is a good model for business cycles. The model is

yt = αSt + zt,

zt = φ1zt−1 + · · ·+ φ4zt−4 + εt, (3.1)

εt
i.i.d.∼ N (0, σ2),

where yt represents the logged and differenced GNP data, St is the underlying state that affects

the mean αSt , zt is an AR(4) process with parameters φ1, . . . , φ4 and εt is a Gaussian white

noise process with zero mean and variance σ2. In this paper, the underlying states are initialised

in the steady state distribution for the chain, and a reduced model is used for y1, . . . , y4, so that

any φi associated with y−3, . . . , y0 is set to zero. This initialisation differs slightly from that

in Hamilton (1989), where the first r data points were designated as y−r+1:0 and thus the full

model was applied to a slightly smaller range of data. The effect of which initialisation is used

becomes negligible after the first few time points.

The likelihood function of the model is

f(yt|St−4:t, y1:t−1) (3.2)

=
1√

2πσ2
exp

{
−
[
(yt − αSt)− φ1(yt−1 − αSt−1)− · · · − φr(yt−4 − αSt−4)

]2
2σ2

}
.

The state space of {St} is {0, 1}, where 0 corresponds to a regime of falling GNP and 1 to

a regime of growing GNP. The analysis is conditional on the parameter estimates given in

Hamilton (1989), who also conditioned posterior state probabilities on those values.

In Hamilton’s analysis, the state at time t is the value that maximises the posterior probability

P [St = st|y1:n], and (implicit) change points into a recession are time points where the state

switches from one to zero. In general, depending on the properties of the transition matrix for

St, this method for determining states, known as local or posterior decoding (Juang and Rabiner

1991; Durbin et al. 1998), does not necessarily give a posterior state sequence that can occur
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with positive probability. Determining change points through local decoding neither takes into

account the common definition of a recession, which requires at least two quarters of negative

growth, nor does it properly account for the exponential number of possible state sequences and

their associated probabilities.

In the present work, to calculate distributions of changes into recessions, the imbedding state

space Z0 is constructed as outlined in Section 2. The value of k = 2 used here corresponds to

the common definition of requiring two quarters of falling GNP for a recession to be confirmed.

The posterior transition probabilities P [St = st|St−1 = st−1, . . . , St−r = st−r, y1:n] are used

in the transition probability matrix of the process Zt. The resulting distributions are plotted in

Figures 1-3.

[Figure 1 about here.]

Different statistics were examined to determine whether their distributions seem plausible in

light of economic theory. For example, it would be expected that the number of contraction

periods in the data, N0(2), should have a unimodal distribution that is quite peaked, as a high

variability in N0(2) would indicate the model does not explain the data very well. This is

indeed the case (Figure 1). The probability of seven contractions is almost 0.5 (seven was also

the number of change points in Hamilton’s analysis), with a probability of about 0.35 of eight,

but little probability of any other number. This corresponds well with the fact that the NBER

also found seven periods of recession in the data.

[Figure 2 about here.]

The distributions of the length of the longest continuously falling (Figure 2a) or continuously

growing (Figure 2b) period of GNP were computed, using state space Z1 for the imbedding

Markov chain associated with growing GNP. The length distributions will not necessarily be

unimodal as the data may well support quite different length periods being present in relation to

the location and number of regime switches that are present. This is borne out in the computed

distribution. The longest continuous fall in GNP is moderately stable at around 7-8 quarters
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(Figure 2). However, this is not the case when looking at the longest continuous rise in GNP,

where the case can be made that it lasted anywhere from 20-40 quarters, although 33-35 quarters

are most likely. The mean of 30.0 quarters in this instance is not particularly informative, given

the multimodal nature of the distribution. This large variability and the multimodal nature of the

distribution suggests that trying to use the model to determine the longest period of expansion

might prove to be more difficult than one might hope.

[Table 1 about here.]

[Figure 3 about here.]

Whereas Figures 1-2 give insight into particular distributions, Figure 3 gives more informa-

tion about the specific structure of the changes in regime for GNP. The first thing to note is that

the third period of falling GNP may occur with reasonable probability in two quite different

places. This indicates that the second period could be two distinct periods rather than only one.

The bimodal nature then carries on from this point, indicating that regimes of falling GNP could

begin and end at two different places. A sustained period of growth is then indicated from the

early 1960’s until just before 1970, with little variability in this assessment, which concurs with

the NBER economic thinking about the time period. For the remainder of the plots in Figure

3, it can be seen that the distribution peaks are still fairly distinct, meaning that the model is

characterising regimes as being either falling or growing without too much overlap. This assess-

ment concurs with economic thinking on the nature of the business cycle, in that high frequency

oscillations are not likely, suggesting that the model is still capturing properties of the data even

towards the end of the data period. Probabilities for regime periods are only plotted for cases

with at least 0.05 total probability. There is only a 0.018 chance of there being ten or more

periods of falling GNP in the data so only the first nine change point distributions are plotted.

[Figure 4 about here.]

In Hamilton’s original paper, the Hidden Markov AR(4) model was shown to coincide qual-

itatively well with all the NBER determinations of recessions but no quantitative analysis is
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possible using their methodology. Table 1 gives the CPPs according to the model of peaks and

troughs of the business cycle occurring at those determined by the NBER. As can be seen, the

model produces a quantitatively good fit for most of the NBER determinations but some NBER

peaks are not particularly probable under the model, especially the second and sixth peaks.

These two recessions were of particular interest in the Hamilton (1989) analysis as they were

associated with the Suez Crisis and the Iranian Revolution, respectively. The present analysis

shows that the NBER recession dates closest to these two events likely do not reflect the im-

mediate effect of the two events. It is also interesting to note that while there are two quarters

difference between the locations of the NBER peak (1957.III) and the peak in the posterior state

probabilities (1957.I) for recession two, and three quarters difference (NBER: 1980.I, Posterior

Decoding: 1979.II) for recession six, the probability of recession six starting at the NBER point

is higher than the probability of recession two starting at the NBER point. This shows that when

trying to determine whether events are explained by the model, exact CPP are better than using

distance from the time of a peak in the posterior state probabilities for the event of interest. It

is also interesting to note that the NBER troughs for the business cycle are more stable under

the model than the peaks. This can be seen in the graph in Figure 3. In addition to the point

estimates, interval probabilities of a change point being at most one quarter different from the

NBER dates are also given in Table 1, yielding a confidence interval for the NBER dates in

addition to the point probabilities.

Figure 4 shows that the time locations for change points are grouped, although it should be

remembered that this plot, unlike those of Figure 3, is not a distribution over time due to the

multiple regimes in the data, but rather a graph of the CPP at each time point. The probabilities

are moderately peaked, indicating that there are only a few times where change points are likely

to occur. It is of interest to note however from both this graph and those in Figure 3 that the

fourth change point into a recessionary state as determined by Hamilton’s analysis (posterior

decoding) occurs between two peaks (at 1969.III). Thus this is actually an unlikely time (0.18
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from Figure 4) for the change to have occurred, with it much more likely to have occurred either

just before or just after this date (the NBER peak is just after at 1969.IV). This illustrates that

change points determined through posterior decoding are not necessarily the most likely ones

over all possible state sequences.

4. CONCLUDING REMARKS

In this paper, methods for calculating change point distributions in general finite state HMMs

(or Markov switching models) have been presented. A derived link between waiting time distri-

butions and change point analysis has been exploited to compute probabilities associated with

change points. The methodology provides a means of improved inference, as change points

determined by maximising the conditional probability at each time point of states given the data

can be misleading. As a by-product of deriving the theoretical basis for the approach, smooth-

ing algorithms in the literature have been investigated and a correction to the algorithm given in

Kim (1994) has been presented in Appendix B.

Functions of run distributions have been examined. It would be straightforward to extend the

ideas to patterns that are more complex than runs, and to models with multiple regimes. The

definition of change points has been generalised to force a sustained change before a change

point is counted, however the normal definition of change point (without the first point being

deemed a change point) as a switch from the current regime can be handled by a slight modifi-

cation of the methodology, namely by adding a continuation state for the zeroth occurrence.

If the distribution of the change points is of fundamental interest, and a suitable prior distri-

bution π(θ) is known for the parameters θ, then a Bayesian approach can be considered:

P [τi = t|y1:n] ∝
∫
θ

P [τi = t|y1:n, θ]π(θ)dθ =

∫
θ

P [W (1, i) = t|y1:n, θ]π(θ)dθ. (4.1)

Numerical integration over the parameter space has been used in change point analysis in the

past (Fearnhead and Liu 2007). Equation (4.1) does not include the unknown states explicitly;

they only occur through terms that may easily be computed exactly. Thus state sampling is
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not needed, especially if a suitable importance sampling distribution can be found to compute

the integral. Most sampling schemes such as MCMC need the likelihood to include the un-

known states, a much higher dimensional problem than when only the change point times are

considered.

While the distributions given in this paper can be approximated by sampling the unknown

states, there are several disadvantages to this approach. Repeated sampling over the set of

unknown states is computationally expensive and introduces sampling error into the computa-

tions, whereas in the present work P [W (1, i) = t|y1:n, θ], i = 1, . . . ,m are calculated exactly, at

a computational complexity equivalent to at most drawing 3m samples in the standard change

point approach. In addition, the problem of lack of invariance of change point results under

state re-labelling is avoided using the presented method.

The CPP point distribution could alternatively be found, without using the presented tech-

niques, by finding the posterior distribution of St−max(k,r), . . . , St−1, St using smoothing tech-

niques similar to the smoother given in the appendix, but the computation time would then be

exponential in k. Also, the methodology presented in this paper is necessary if change point

distributions for each individual occurrence are required, and in that case CPP would require no

extra computation other than summing probabilities over time points.

All the analysis and computational steps of this paper have been conditioned on the parameter

values in the model. The effect of parameter estimation on the distributions calculated has not

been explicitly considered; plug-in MLEs have been used, as is often done with other techniques

such as local decoding or the Viterbi algorithm. However, in a small stability study using

asymptotic MLE distributions and Monte Carlo integration for the GNP data, the CPPs were

found to be robust to small fluctuations in the parameter estimates (data not shown). In addition,

in applications where the parameters are determined using training data and the model is then

applied to test data, the distributions of the change point locations in the test data are exact.
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It should also be noted that many Markov switching models, such as state space switching

models (Kim 1994), are analysed through the use of approximations to obtain the smoothed

state probabilities. This is done to allow computation in situations where complexity becomes

very large when taking advantage of algorithms such as the Kalman filter and also when r is

not a fixed value but is dependent on the data length (Frühwirth-Schnatter 2006), for example in

moving average Markov switching models. There have been several suggestions for ways to im-

plement approximations (Kim 1994; Billio and Monfort 1998) to the likelihood function in such

cases. These techniques can also be used to approximate the smoothed transition probabilities

needed in this paper.

In conclusion, methods for further investigation of change points implied by Hidden Markov

models (including Markov switching models) have been presented. The methods are ways of

detecting and evaluating change points that are implied by a model. In addition, formulas are

given to facilitate evaluation of joint and marginal change point distributions. The widespread

use of Markov switching models and change point models in statistics and econometrics, along

with hidden state segmentation models in computer science, will provide many possible appli-

cations of this work.

APPENDIX A. SMOOTHED TRANSITION PROBABILITIES

In order to calculate the smoothed transition probabilities conditional on the data, the follow-

ing lemma is needed. It is already well known that the posterior transition probabilities form a

Markov process (Cappé, Moulines, and Rydén 2005), so only the order of dependence needs to

be determined.

Lemma A.1. For a first order Markov switching model with rth order lag dependence in the

data, conditional on y1:n, {St} forms an rth order Markov process:

P [St|S−r+1:t−1, y1:n] = P [St|St−r:t−1, y1:n] (A.1)
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The proof of this lemma is straightforward from the definitions of the Markov switching

model.

The transition probabilities in Lemma A.1 are given by:

P [St|St−r:t−1, y1:n] =
P [St−r:t|y1:n]∑

s0∈S P [St−r:t−1, St = s0|y1:n]
, (A.2)

where P [St−r:t|y1:n] is the quantity calculated in Lemma B.2.

APPENDIX B. POSTERIOR TRANSITION PROBABILITIES FOR MARKOV SWITCHING

MODELS

In this section, the smoother algorithm and proof of the Markovian nature of the posterior

transition probabilities for Markov switching models are outlined. Posterior transition proba-

bilities are needed to derive the exact distributions. The same general form of Markov switching

models given in (2.1) will be assumed throughout. The filtering algorithm in Hamilton (1989)

is used and output P [St−r:t|y1:t] and P [St−r:t|y1:t−1] for t = 1 to n is stored for use in the

smoothing algorithm.

B.1. Smoothing Algorithm. The following lemma will be needed for the proof of the smooth-

ing algorithm for Markov switching models.

Lemma B.1. For a Markov switching model of lag dependence order r,

f(yt+1:n|S−r+1:t+1, y1:t) = f(yt+1:n|St−r+1:t+1, y1:t), t > 0 (B.1)

Proof.

f(yt+1:n|S−r+1:t+1, y1:t) =

∑
St+2:n

f(y1:n, S−r+1:n)

f(y1:t, S−r+1:t+1)
(B.2)

=

∑
St+2:n

f(yn|y1:n−1, S−r+1:n) · · · f(yt+1|y1:t, S−r+1:n)f(y1:t, S−r+1:n)

f(y1:t, S−r+1:t+1)
. (B.3)

By the model definition

f(yt|y1:t−1, S−r+1:n) = f(yt|y1:t−1, St−r:t), (B.4)
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thus (B.3) can be written as

=

∑
St+2:n

f(yn|y1:n−1, Sn−r:n) · · · f(yt+1|y1:t, St−r+1:t+1)f(y1:t, S−r+1:n)

f(y1:t, S−r+1:t+1)
, (B.5)

which by dividing the last term in the numerator by the denominator and using the Markov

property of St (and the independence of St+1 and y1:t given St)

=
∑
St+2:n

f(yn|y1:n−1, Sn−r:n) · · · f(yt+1|y1:t, St−r+1:t+1)P [St+2:n|St−r+1:t+1, y1:t] (B.6)

=

∑
St+2:n

f(y1:n, St−r+1:n)

f(y1:t, St−r+1:t+1)
(B.7)

=
f(y1:n, St−r+1:t+1)

f(y1:t, St−r+1:t+1)
= f(yt+1:n|St−r+1:t+1, y1:t). (B.8)

�

Lemma B.2 (Markov Switching Model Smoothing Algorithm). For a Markov switching model

of lag dependence order r, the joint probability of the state variables conditional on the data

from time 1 to n can be computed recursively as follows:

P [St−r:t+1|y1:n] =
P [St−r+1:t+1|y1:n]P [St−r:t|y1:t]P [St+1|St]

P [St−r+1:t+1|y1:t]
, (B.9)

where

P [St−r:t|y1:n] =
∑
St+1

P [St−r:t+1|y1:n]. (B.10)

Proof.

P [St−r:t+1|y1:n] =
f(yt+1:n, St−r:t+1|y1:t)

f(yt+1:n|y1:t)
(B.11)

=
P [St−r:t+1|y1:t]f(yt+1:n|St−r:t+1, y1:t)

f(yt+1:n|y1:t)
, (B.12)

which by the Markov property of {St} and the independence of St+1 and y1:t given St
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= P [St−r:t|y1:t]
P [St+1|St]f(yt+1:n|St−r:t+1, y1:t)

f(yt+1:n|y1:t)
, (B.13)

which by lemma B.1

= P [St−r:t|y1:t]
P [St+1|St]f(yt+1:n|St−r+1:t+1, y1:t)

f(yt+1:n|y1:t)
(B.14)

= P [St−r:t|y1:t]
P [St+1|St]f(yt+1:n, St−r+1:t+1|y1:t)

f(yt+1:n|y1:t)P [St−r+1:t+1|y1:t]
(B.15)

= P [St−r:t|y1:t]
P [St+1|St]P [St−r+1:t+1|y1:n]

P [St−r+1:t+1|y1:t]
. (B.16)

By summing over all the possible states of St+1,

P [St−r:t|y1:n] =
∑
St+1

P [St−r:t+1|y1:n]. (B.17)

�
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Figures 27

FIGURE 1. P [N0(2) = i], i = 1, . . . , 16; the distribution of the number of

falling GNP periods within the time period 1951:II to 1984:IV. The graph shows

that there are most likely seven falling GNP periods within the data range, but

there is also a probability of about 0.35 that there are eight periods. The mean

number of periods of falling GNP is 7.56.
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28 Figures

(a) Falling GNP (b) Growing GNP

FIGURE 2. Distributions of the longest period of falling (R0(n)) and growing

(R1(n)) GNP within the time period 1951:II to 1984:IV. Graph (a) shows that

the longest GNP falling period most probably lasts seven quarters within the

data range. The mean value for the longest falling GNP period is 7.43 quarters.

Graph (b) shows that the longest GNP growing period is much more variable

than the longest falling GNP period. The mean value for the longest growing

GNP period is 30.0 quarters.
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Figures 29

FIGURE 3. Regime Variability of GNP. This is a graphical plot to detect the

variability of when different periods of falling GNP states occur in GNP data

from 1951:II to 1984:IV. The numbers in the legends to the right of the graphs

indicate the index of period falling GNP period under consideration, followed

by the probability of at least that many periods occurring by the end of the data.

The very top graph gives a plot of the logged differenced GNP data along with

the start (blue line) and finish (red line) of periods where P [St = 0|y1:n] > 0.5.

For the subsequent graphs, the blue area indicates the distribution of the start of

a period of falling GNP while the red line indicates the distribution of the end

of the falling GNP regime, thus giving a measure of the variability in the length

of periods of falling GNP. The ith graph gives the distribution of the ith falling

GNP period having occurred at time t, for i = 1, . . . ,m. The final plot gives the

posterior probability plot P [St = 0|y1:n], as used in posterior decoding.
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30 Figures

FIGURE 4. Plot of the CPP of starting (CPP0) or ending (CPPe0) a falling GNP

regime within the time period 1951:II to 1984:IV. The graph, while not a distribu-

tion, gives information as to the probability of a switch occurring in a particular

quarter.
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Tables 31

TABLE 1. Dating of the US business cycle peaks and troughs as determined by

the NBER, along with their associated probabilities of occurring at or before

each time according to the AR(4) mean switching model.

i Peak (t1) P [W0(2, i) = t1+1] CPP0(t1, 2) CPP0 Trough (t2) P [W e
0 (2, i) = t2] CPPe

0(t2, 2) CPPe
0

(t1−1: t1+1, 2) (t1−1: t1+1, 2)

1 1953.III 0.46 0.47 0.93 1954.II 0.72 0.73 0.99

2 1957.III 0.0036 0.0092 0.58 1958.II 0.13 0.18 0.99

3 1960.II 0.66 0.83 0.85 1961.I 0.034 0.042 0.87

4 1969.IV 0.2 0.33 0.89 1970.IV 0.44 0.71 0.72

5 1973.IV 0.065 0.1 0.45 1975.I 0.48 0.8 0.98

6 1980.I 0.0088 0.019 0.37 1980.III 0.2 0.42 0.85

7 1981.III 0.012 0.023 0.88 1982.IV 0.36 0.72 0.96
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