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AN EMPIRICAL STUDY OF THE EFFICIENCY OF EA FOR

DIFFUSION SIMULATION

STEFANO PELUCHETTI, GARETH O. ROBERTS

Abstract. In this paper we investigate the e�ciency of some simulation schemes for the
numerical solution of a one dimensional stochastic di�erential equation (SDE). The schemes
considered are: the Exact Algorithm (EA), the Euler, the Predictor-Corrector and the Ozaki-
Shoji schemes. The focus of the work is on EA which samples skeletons of SDEs without
any approximation. The analysis is carried out via a simulation study using some test SDEs.
We also consider e�ciency issues arising by the extension of EA to the multi-dimensional
setting.

1. Introduction

In this paper we focus on the e�ciency of the Exact Algorithm (EA), introduced by
Beskos and Roberts [2005], Beskos et al. [2006a]. The framework that we consider is that of
the simulation of a di�usion process, solution of a SDE, whose transition densities are not
known. Hence the direct simulation of �nite dimensional, or discretised, paths is not feasible.
EA is a method that, under suitable conditions, permits the simulation of the discretised
di�usion process. The novelty of EA is that we are able to simulate from the true law of the
di�usion process, without resorting to any type of approximation.
Numerical schemes for the simulation of di�usion processes have been around for some

time, the �rst contribution probably being that of Maruyama [1955]. However, before the
work of Beskos and Roberts [2005], the exact nature of the simulation was con�ned to a
very small class of di�usion processes. The �eld of numerical schemes for the simulation of
di�usion processes is vast and growing rapidly, motivated by the fact that the class of solvable
di�usions, that is to say di�usions for which the transition densities have a known tractable
from, is quite small. See however some recent results on the topic by Albanese and Kuznetsov
[2005]. Subsequently, the importance of having a method that allows for exact simulation is
clear, if not for validating purposes. The cost that we have to pay for this achievement is
less obvious. Hence our focus on the e�ciency of EA.
Some preliminary results on the e�ciency of EA, in a Monte Carlo scenario, can be found

in Casella [2005]. However this paper gives a much more extensive investigation of EA. We
initially consider a class of test models that synthesise a range of one-dimensional di�usive
dynamics that are encountered in real world applications. We thus simulate them using
three well known discretisation schemes and EA and we compare the results obtained. The
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simulation study is replicated in the multi-dimensional settings where only the e�ciency of
the multi-dimensional EA is examined.
This paper is organised as follows. In Section 2, EA and the three discretisation schemes

are brie�y introduced. Section 3 consists of the simulation study where the e�ciency of the
4 schemes is studied. The main di�culty is comparing a scheme that returns the exact result
with schemes that return approximated results. Consequently it is necessary to introduce
a comparison criterion that measures a "distance" between the true and the approximated
result. We are interested in both the sensitivity of the schemes to the parameters of the
test SDEs and the ratio of e�ciency between EA and the other schemes. In Section 4 the
e�ciency of the multi-dimensional extension of EA is investigated, without any comparison
with the other discretisation schemes. Section 5 concludes the paper.

2. The simulation schemes

2.1. The Exact Algorithm. We begin considering a generic one-dimensional and time
homogeneous Stochastic Di�erential Equation (SDE)

dYt = b (Yt) dt+ σ (Yt) dBt 0 ≤ t ≤ T(1)

Y0 = y

where B is the scalar Brownian Motion (BM) and y is the initial condition. The drift
coe�cient b and the di�usion coe�cient σ are assumed to satisfy the proper conditions for
the existence and uniqueness of a strong solution of (1). Let Y be the di�usion process strong
solution of (1).
Under the additional requirement that σ is continuously di�erentiable and strictly positive

let

(2) η (u) :=

� u

σ−1 (z) dz

be the anti-derivative of σ−1. It follows that Xt := η (Yt) satis�es the unit di�usion coe�cient
SDE

dXt = α (Xt) dt+ dBt 0 ≤ t ≤ T(3)

X0 = x := η (y)

with drift coe�cient

(4) α (u) :=
b {η−1 (u)}
σ {η−1 (u)}

− σ′ {η−1 (u)}
2

SDE (3) is assumed to admit a unique strong solution and we denote with X the state space
of X. The map (2), also known as the Lamperti transform, allows us to consider the simpler
problem of simulating from (3) for a vast class of one-dimensional SDEs.
In what follows the laws of stochastic processes are de�ned on the measurable space of

continuous functions C ([0, T ] ,R) with its cylinder sigma algebra C ([0, T ] ,R), or on the
obvious restrictions of this space. Let Qx

T and Wx
T denote the law of the di�usion X and the
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law of a BM respectively on [0, T ] both started at x. From now on the following hypotheses
are assumed to hold

• (C1) ∀x ∈ X Qx
T � Wx

T and the Radon-Nikodym derivative is given by Girsanov's
formula

(5)
dQx

T

dWx
T

= exp

{� T

0

α (ωs) dXs −
1

2

� T

0

α2 (ωs) ds

}
where ω ∈ C ([0, T ] ,X)

• (C2) α ∈ C1 (X,R);
• (C3) α2 + α′ is bounded below on X.

An application of Ito's formula to the function A (u) =
� u

c∈X α (z) dz results in a more tractable
form of (5)

dQx
T

dWx
T

= exp {A (ωT )− A (x)} exp

{
−
� T

0

α2 + α′

2
(ωs) ds

}
(6)

Under the integrability assumption

• (C4) ∀x ∈ X ηx,T := EWx
T

[
eA(ωT )

]
<∞

it is possible to get rid of the (possibly unbounded) term A (ωT ) of (6) introducing a new
process Z with law Zx

T by the Radon-Nikodym derivative

dZx
T

dWx
T

= eA(ωT )/ηx,T(7)

ηx,T = EWx
T

[
eA(ωT )

]
(8)

We refer to Z as the Biased Brownian Motion (BBM). This process can be alternatively
de�ned as a BM with initial value x conditioned on having its terminal value ZT distributed
according to the density

(9) hx,T (u) := ηx,T × exp

{
A (u)− (u− x)2

2T

}
It follows that

dQx
T

dZx
T

(ω) = ηx,T exp {−A (x)} exp

{
−
� T

0

α2 + α′

2
(ωs) ds

}
(10)

∝ exp

{
−
� T

0

φ (ωs) ds

}
≤ 1(11)

where φ (u) := (α2 (u) + α′ (u)) /2− l and l := infr∈X (α2 (r) + α′ (r)) /2 <∞. Equation (11)
suggests the use of a rejection sampling algorithm to generate realisations from Qx

T . However
it is not possible to generate a sample from Z, being Z an in�nite-dimensional variate, and
moreover it is not possible to compute analytically the value of the integral in (11).
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Let L denote the law of a unit rate Poisson Point Process (PPP) on [0, T ] × [0,∞), and
let Φ = {χ, ψ} be distributed according to Φ. We de�ne the event Γ as

(12) Γ :=
⋂
j≥1

φ
(
Zχj

)
≤ ψj

that is the event that all the Poisson points fall into the epigraph of s 7→ φ (Zs). The following
theorem is proven in Beskos et al. [2006b]

Theorem 1. (Wiener-Poisson factorisation) If (Z,Φ) ∼ Zx
T ⊗ L | Γ then Z ∼ Qx

T

At this stage the result is a purely theoretical, as it is not possible to simulate from the
law L. However, in the speci�c case of φ bounded upon by m < ∞ it is su�ce to consider
Φ as a PPP on [0, T ] × [0,m]. The reason is that for the determination of the event Γ only
the points of Φ below m matter. The algorithm resulting from this restrictive boundedness
condition on φ is EA1.
It should be noted that this hypothesis can be weakened or even removed, leading to EA2

(Beskos et al. [2006a]) and to EA3 (Beskos et al. [2006b]) respectively. Both extensions
involves the simulation of some functional of Z or of an event depending on Z which restrict
the range of Z, and by continuity the range of φ (Z).
We brie�y consider the case of EA3. The probability that the BB Z stays in an arbitrary

interval can be expressed as an in�nite series only. As a consequence the direct simulation of
the minimum and the maximum of Z is not feasible. However, we can rearrange the terms
of this series so that the sequence of the partial sums sn satis�es the relations:

sn−1 ≤ l⇒ sn ≥ l(13)

sn−1 ≥ l⇒ sn ≤ l(14)

where l is the limit value of the serie. As explained in Beskos et al. [2006b] we can consider
an increasing collection of nested intervals {In}n≥1 which contains the starting and ending
values of Z. Due to the behaviour of the partial sums sn we can simulate the value n so that
both the maximum and the minimum of Z are included in a speci�c In and at least one of
them is included in In ∩ IC

n−1. Conditional on this event Rn the range of Z is bounded.
It remains to implement an algorithm to sample from Z | Rn, as we have to compute the

value of this process at the time instances given by the PPP Φ. It is not sensible to use Z
as a trivial RS proposal, the reason being that the number of proposed paths before the �rst
acceptance has in�nite expectation. A better RS algorithm proposes from a mixture of two
probability measures with equal weight. One of them is the law of Z conditioned on achieving
its minimum in In∩IC

n−1. The other one is the law of Z conditioned on achieving its maximum
in In ∩ IC

n−1. Crucially, it is possible to sample the constrained minimum (or maximum) m
of Z and the time τ at which Z hits this minimum (or maximum). Moreover Z | m, τ gets
factorised in the product measure of two 3-dimensional Bessel bridges, whose simulation is
trivial. As the Radon-Nikodym derivative of this proposal with respect to Z | Rn is available
in closed form we are done.
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2.2. Optimisation of EA. From a practical point of view, every version of EA require the
simulation from the density (9). This is not a trivial problem as the functional form of (9)
depends on the drift coe�cient α in (3). Moreover, theoretical results (see Beskos et al.
[2006a]) suggest that the acceptance rate of EA typically decreases exponentially with T . It
turns out that it is usually more e�cient to partition the time interval [0, T ] into smaller
sub-intervals of length t and apply EA sequentially. This in turn implies that we have to
sample from a parametric family of densities {hx,t (u)}x∈X, as the starting value x is di�erent
on every sub-interval.
Furthermore the time spent in the simulation from {hx,t (u)}x∈X is not negligible in EA.

In the particular case of EA1 roughly half of the time is spent in the simulation from
{hx,t (u)}x∈X. Thus an e�cient sampler results in a signi�cantly lower computational cost
for the EA. We brie�y introduce two adaptive accept-reject samplers that we have developed
to sample e�ciently from {hx,t (u)}x∈X and we refer to Peluchetti [2007] for a more detailed
exposition.
We begin considering the case of a single hx,t for a �xed x ∈ X (t is always �xed). The

�rst sampler, ARS1 from now on, requires the following semi sub-linear condition to hold

• (E1) ∃n+, N+,m−,M−,∈ R, c ∈ X :

α (u) ≤ n+ +N+u c ≤ u(15)

m− +M−u ≤ α (u) u < c(16)

The monotonicity of the integral and of the exponential function thus implies the following
bounds on hx,t

hx,t (u) ≤ q
u0
+ (u) := e−

(u−x)2

2t
+A(u0)+n+(u−u0)+N+

2 (u2−u2
0) c ≤ u0 < u(17)

hx,t (u) ≤ qu0
− (u) := e−

(u−x)2

2t
+A(u0)+m−(u−u0)+M−

2 (u2−u2
0) u < u0 < c(18)

To construct the envelope, we start by considering the point u0 = c (c is required to be a
point of the envelope in this algorithm). Then, the initial envelope is given by

(19) q (u) = qc
− (u) 1[u<c] + qc

+ (u) 1[c≤u]

We have successfully bounded hx,t from above with a piece-wise function formed by the
kernels of a Gaussian density times �nite constants. Using the bounds (17) and (18) it is
possible to re�ne q (u) by adding more points to it too. We illustrate the results of this
procedure in Figure 1. If α is sub-linear, a di�erent construction of q results in a tighter
envelope for the same number of points.
Considerable attention has been put in the implementation of an e�cient algorithm to

sample from ARS1:

(1) a binary search is performed (instead of a sequential one) to sample the interval of
the piece-wise proposal q;

(2) the same uniform variate used to sample the interval is used to sample from the proper
truncated Gaussian distribution by the cdf inversion method;

(3) all the values relevant to the algorithm are cached for re-use.
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Figure 1. The test kernel hx,t and the proposal q constructed from condition
(E1) for a test function hx,t. Starting from quadrant IV going clockwise we
have the envelope constructed from 1, 2, 3 points and the envelope that satis�es
an acceptance rate of 95%

The second sampler, ARS2 from now on, has much weaker requirements of ARS1 and is of
interest on its own. We basically require the function hx,t to be piece-wise twice di�eren-
tiable and to exhibit an exponential decay in the tails. This sampler is a generalisation of
the adaptive accept-reject sampler introduced in Gilks and Wild [1992], Gilks [1992]. We
partition the state space X into intervals where hx,t is convex/concave and use the geometric
interpretation of convexity to construct linear bounds above and below hx,t. We illustrate
the results of this procedure in Figures 2 and 3.
Similarly to the case of ARS1, considerable attention has been put in the implementation

of an e�cient algorithm to sample from ARS2. A brief simulation study in Peluchetti [2007]
reveals that the e�ciency of ARS2 is comparable to that of the Gnu Scienti�c Library's
ad-hoc samplers. ARS1, while somewhat less e�cient, is a more robust sampler as it targets
a very speci�c family of densities.
We now consider the more general problem of sampling from {hx,t (u)}x∈X. Our idea is

to slice the subset D ⊆ X where the di�usion X is most likely to stay, to be found by a
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Figure 2. The initial construction of the ARS2 on a single interval (left) and
on the test density (right)
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Figure 3. The re�ned construction of the ARS2 on a single interval (left) and
on the test density (right)

preliminary simulation, into a �nite number of equi-spaced intervals. For each interval, we
construct an envelope that uniformly bounds all the hx,t whose x is a point of this interval.
To �nd this uniform bound we notice that for l < r ∈ X

sup
l≤x≤r

hx,t = sup
l≤x≤r

eA(u)− (u−x)2

2t

{
1[u<l] + 1[l≤u≤r] + 1[r<u]

}
(20)

≤ eA(u)− (u−l)2

2t 1[u<l] + eA(u)1[l≤u≤r] + eA(u)− (u−r)2

2t 1[r<u](21)

≤ eA(u)− (u−l)2

2t 1[u<l] + eAmax1[l≤u≤r] + eA(u)− (u−r)2

2t 1[r<u](22)

where Amax = supl≤u≤r A (u) < ∞ as A is a continuous function on a bounded interval,
hence A is bounded. The �rst and the last term of (22) can be easily bounded by envelopes
resulting from ARS1 or ARS2. Regarding the central term of (22) we propose the trivial
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accept-reject sampling algorithm whose acceptance rate is high if the length of the intervals
is reasonably short. We thus pre-compute and cache all these uniform envelopes, one for each
intervals in which we split D. During the simulation according to EA, if x ∈ D we select
the right envelope, otherwise (an event whose probability can be arbitrarily small increasing
D) we create an envelope accordingly. As the intervals are equi-spaced there is virtually no
e�ciency penalty in searching for the right envelope.

2.3. The discretisation schemes. We now shortly introduce the three discretisation schemes
(DS) whose e�ciency, with that of EA, is investigated in the simulation study. All the DSs
are assumed to have an equi-spaced discretisation interval of length ∆ = T/n, where n is the
number of steps and Y ∆ denotes a corresponding generic DS. In the following i = 1, · · · , n
and Y0 = x implicitly.
The Euler scheme is the simplest DS that can be used to approximate the solution of (1).

It can be de�ned by the recursion

W i
∆

iid∼ N (0,∆)(23)

Yi∆ = Y(i−1)∆ + b
(
Y(i−1)∆

)
∆ + σ

(
Y(i−1)∆

)
W i

∆(24)

The Predictor-Corrector scheme is de�ned by

W i
∆

iid∼ N (0,∆)(25)

Y i∆ = Y(i−1)∆ + b
(
Y(i−1)∆

)
∆ + σ

(
Y(i−1)∆

)
W i

∆(26)

Yi∆ = Y(i−1)∆ +
1

2

{
b
(
Y(i−1)∆

)
+ b
(
Y i∆

)}
∆ + σ

(
Y(i−1)∆

)
W i

∆(27)

The idea behind this DS is to make a Euler prediction Ȳi∆ by using (26) and adjust Ȳi∆ by
computing an average of the drift's value over the time step ((i− 1) ∆, i∆] using the trapezoid
quadrature formula. This approach results in the correction (27). It is fundamental to use
the same W i

∆ in (26) and (27). For more details about the Euler and the Predictor-Corrector
schemes see Kloeden and Platen [1992].
Finally we introduce the Ozaki-Shoji scheme. This DS uses a completely di�erent approach

that is only applicable to di�usion process with constant di�usion coe�cient and, without
loss of generality, to (3). This DS belongs to the family of "linearisation schemes" which
approximates the drift α of (3) by some sort of linear approximation. The speci�c version
here presented it the one of Shoji and Ozaki [1998]. The idea behind this DS is to approximate
the behaviour of α (Xt) in a neighbourhood of Xt using Ito's Lemma

dα (Xt) = α′ (Xt) dXt +
1

2
α′′ (Xt) dt(28)

α (Xt+h) ≈ α (Xt) + α′ (Xt) (Xt+h −Xt) +
1

2
α′′ (Xt)h(29)
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The law of the Ozaki-Shoji scheme on the time interval (0,∆] is given by the solution of the
linear SDE

(30) dXt =

{
α (x) + α′ (x) (Xt − x) +

1

2
α′′ (x) t

}
dt+ dBt

i.e. a Gaussian process. By the time-homogeneity this DS is de�ned by the iterative formulae

W̃ i
∆

iid∼ N

(
0,

exp
{
2α′
(
Y(i−1)∆

)
∆
}
− 1

2α′
(
Y(i−1)∆

) )
(31)

Yi∆ = Y(i−1)∆ +
α
(
Y(i−1)∆

)
α′
(
Y(i−1)∆

) (exp
{
α′
(
Y(i−1)∆

)
∆
}
− 1
)

(32)

+
α′′
(
Y(i−1)∆

)
2
(
α′
(
Y(i−1)∆

))2 {exp
{
α′
(
Y(i−1)∆

)
∆
}
− 1− α′

(
Y(i−1)∆

)
∆
}

+ W̃ i
∆(33)

3. A simulation study

A standard way to compare DSs is related to the concepts of weak and strong convergence.
Y ∆ is said to be a strong approximation of (1) if ∃∆∗, k,S > 0 : ∀∆ ≤ ∆∗

(34) E
∣∣XT − Y ∆

T

∣∣ ≤ k∆S

where S is the rate of convergence. This strong converge criterion basically states the L1

convergence of the last simulated point Y ∆
T to XT . As such, the rate S is an indicator of how

well Y ∆ approximates the paths of X (for a �xed ω). The convergence is not uniform on the
time interval [0, T ] and the leading order constant k depends on (1).
Y ∆ is said to be a weak approximation of (1) if ∃∆∗, k,W > 0 : ∀∆ ≤ ∆∗, g ∈ G

(35)
∣∣E [g (XT )]− E

[
g
(
Y ∆

T

)]∣∣ ≤ k∆W

where W is the rate of weak convergence and G is a class of test functions. Here the rate
W is an indicator of how accurately the distribution of Y ∆ approximates the distribution of
X. Hence this convergence criterion is more indicated if we are interested in Monte Carlo
simulations based on Y ∆. Similarly to (34) the convergence in not uniform on [0, T ] and the
constant k of (35) depends on the SDE (1), limiting the practical appeal of these criteria.
Our empirical results shows that DSs with the same W can perform very di�erently.
The framework of the simulation study is very simple: we consider a unit di�usion coe�-

cient SDE X (3) and a functional F , possibly path-dependent, of interest. In this framework
we compare the e�ciency of EA and the three DSs previously introduced.
As EA does not clearly involves any discretisation error, its e�ciency is inversely pro-

portional to the average computational cost required to sample a single realisation of the
functional F (X).
For a given Y ∆, the smallest computational cost, i.e. the biggest ∆, required for F

(
Y ∆
)
to

be an accurate approximation of F (X) is then computed. More precisely, we are interested
in how similar the distribution of F

(
Y ∆
)
is to the distribution of F (X). Our test of choice

is the two-sided two-samples Kolmogorov-Smirnov (KS) test. EA is used to sample F (X)
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exactly. Let α ∈ (0, 1) be a �xed threshold and ∆∗ be the biggest value of ∆ such that the
p-value of the KS test of

{
F (X) , F

(
Y ∆
)}

is higher then the threshold α. The e�ciency
of Y ∆ is then de�ned as inversely proportional to the computational cost required for the
simulation of a single realisation of the functional F

(
Y ∆∗)

.

To compute the KS test of
{
F (X) , F

(
Y ∆
)}

we choose to sample N ∈ N skeletons from
X using EA and N discretisation using Y ∆. For each one of these samples the value of the
functional F is computed resulting in 2N samples: N exact and N approximated observa-
tions. Finally the p-value of the KS statistic calculated over these 2N samples. Moreover
to decrease the variance of the KS test (that in this framework is just stochastic noise) we
average its value over M ∈ N repetitions. All these simulations needs to be repeated until
we �nd the right ∆∗ for each of the three DSs considered in the comparison, i.e. the smallest
∆ so that we accept the null hypothesis according to the KS test. Finally we repeat all
these steps for a reasonable number of combinations of the parameters of the SDE, to obtain
computational cost surfaces (as a function of the parameters) for EA and the DSs.
In our simulation study the following arbitrary values are considered: α = 0.05, N =

105,M = 103. The choice of the KS test is arbitrary too, but there are a number of reasons
why we opted for the this test. First of all, it has an intuitive meaning. More importantly, it
is possible to obtain the limiting distribution of the KS statistic under the null hypothesis.
Lastly we want to be cautious about our conclusions. The use of a more powerful goodness
of �t test would pose questions about the robustness of our results to the choice of the test
statistic considered. This would be especially true for tests that give more importance to
the tails of the distribution, as preliminary examination of the histograms of the densities
involved reveals that the biggest di�erences are usually in the tails.
The aim of this simulation study is to obtain useful indication about the e�ciency of EA

and the three DSs. The choice of the di�usion models that we take into account re�ects this
objective, they are "toy examples".

3.1. The case of EA1. The class of parametric di�usion models that can be considered is
limited by the assumptions of EA1. We focus on the following three models:

• The PSINE SDE

dXt = θ sin (γXt) dt+ dBt θ > 0, γ > 0(36)

• The NSINE SDE

dXt = θ sin (γXt) dt+ dBt θ < 0, γ > 0(37)

• The PTANH SDE

dXt = θ tanh (γXt) dt+ dBt θ > 0, γ > 0(38)

• The NTANH SDE

dXt = θ tanh (γXt) dt+ dBt θ < 0, γ > 0(39)
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We take into account these models because they summarise a good range of di�usion dy-
namics. In every model the starting point x and the terminal time T are �xed to 0 and 1
respectively.
The functionals considered are the last point L (X) = XT and the maximum of the path

M (X) = sup0≤s≤T Xs. For M (X) we simulate the maximum of a BB between each dis-
cretized value even when dealing with DSs.
In Figures 4 to 11 the four plots on the top of each �gure represents on the Z-axis the

computational time required by EA and by the three DSs to complete the simulation (with
the required level of accuracy) as function of the values of the SDE's parameters.
In the remaining 3 plots of each �gure, the ratio of the computational time of a DS over

the computational time of EA is represented on the Z-axis, again as a function of the SDE's
parameters. Whenever possible, the white colour represents a unitary ratio, the red colour a
ratio lower than 1 and the blue colour a ratio higher than 1. We remark that these ratios are
the results of our arbitrary choices. For example comparing a higher number of observations
would increase the power of the test and this would result in a lower e�ciency of the DSs.
Moreover the shape of these surfaces is of interest on its own, as it says how the DSs behave

with respect to parametric classes of drift and di�usion coe�cients. From this point of view
EA is a valuable validation tool.
The two main goals of this simulation are: commenting the e�ciency of EA with respect

to other DSs and study the behaviour of EA and of the DSs with respect to qualitative
characteristics of the di�usion model X. Regarding the �rst of these points, we note that:

(1) EA1 has a computational cost that is comparable to that of good DSs such as the
Predictor-Corrector scheme. This means that there is generally not a huge di�erence
between simulating from the approximated or the exact law of the process.

(2) EA1 is favoured when we consider the functional M (X). One possible explanation
for this is that while simulating L (X) the discretisation errors of every step are likely
to cancel, but when simulating M (X) the errors are likely to accumulate. Moreover,
we are using two levels of approximations: we approximate the discretized path and
also the maximum of the path conditionally on the discretisation.

(3) While all DSs share a very good performance when γ is very low, independently of
the value of θ, this is not the case with EA1. While the computational cost in EA1
remains very contained it increases with |θ| more rapidly. Conversely, EA1 has a
better e�ciency than DSs when |θ| is low.

(4) There are situations where EA1 performs much better, and this is the case of the
PTANH model. This happens because if α2 = α′ in (3) it follows that EA always
accept the proposed skeleton. In this case we actually know the transition density
of X. This is the case when γ = θ in the PTANH. When we move away from the
diagonal the range of α2 + α′ increases and so does the rejection rate.

Concerning the second of these points, we note that:
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Figure 4. model: PSINE, functional: L (X)
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Figure 5. model: PSINE, functional: M (X)
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Figure 6. model: NSINE, functional: L (X)
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Figure 7. model: NSINE, functional: M (X)
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Figure 8. model: PTANH, functional L (X). Ozaki-Shoji scheme does not
converge if −θ = γ = 4
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Figure 9. model: PTANH, functional: M (X). Ozaki-Shoji scheme does not
converge if θ = γ = 4
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Figure 10. model: NTANH, functional: L (X)
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Figure 11. model: NTANH, functional: M (X)
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(1) Euler scheme is clearly the least e�cient DS. In some situation it can be 20 times
more ine�cient than the other two DSs. Moreover the implementation di�culty o�
all these DSs is comparable.

(2) Predictor-Corrector and Ozaki-Shoji scheme shares more or less the same e�ciency,
even if in the same situations the former can be two times more e�cient than the
latter. Furthermore, the Ozaki-Shoji scheme exhibits numerical instabilities every
time α′

(
Y(i−1)∆

)
≈ 0. Hence it is necessary to introduce an extra check for the

algorithm that would slow down the simulation even more. All this suggests that the
Predictor-Corrector scheme should be the �rst choice in most situations.

(3) As already stated, the weak convergence criterion is not very useful from a practitioner
point of view. In fact both the Euler DS and the Predictor-Corrector DS share the
same unit-order of weak convergence.

(4) It is very di�cult with this limited amount of information to infer a rule of thumbs
that links the e�ciency of the DSs to the qualitative behaviour of the target di�usion
model X. We just notice that the computational time surface has more or less the
same shape in all the DSs. The di�erence is in the multiplicative factor.

3.2. The case of EA3. We consider the following di�usion models

• the LANG SDE

dXt = −ksign (Xt) |Xt|β dt+ dBt k > 0, β ∈ N(40)

• the XXCUBE SDE

dXt =
{
−αX3

t + βXt

}
dt+ dBt α > 0, β > 0(41)

In the case of EA3, we can no longer easily and exactly simulate from the law of M (X),
hence the comparison is only limited to the L (X) functional. As the results of Section
3.1 suggests that Shoji-Ozaki scheme does not o�er any clear advantage against Predictor-
Corrector scheme, while showing numerical instabilities, we decide to include the Euler DS
and the Predictor-Corrector DS in the comparison only.
Regarding the e�ciency of EA3 with respect to Predictor-Corrector scheme we notice that

the former is always less e�cient then the the latter. The most obvious reason is that EA3
is much more complicated from an algorithmic point of view than EA1, and this results in
a higher computational time. However, everything is relative to the choice of the speci�c
comparison criterion considered. As a rule of thumb we can say that EA3 is a factor of 10
slower than EA1.
Given these results, there is no obvious link between qualitative behaviour of the di�usion

model X and the expected e�ciency of the DSs. The relative e�ciency of Euler with respect
to Predictor-Corrector is con�rmed. But for the �rst time we observe a di�erence in the
shape of the computational time surfaces of the Euler and the Predictor-Corrector schemes.
This is the case of the LANG model. More investigation is needed to �nd the reasons of this
result.
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Figure 12. model: LANG, functional: L (X)

4. The multi-dimensional setting

We now concentrate on the unit-di�usion d-dimensional SDE

dXt = α (Xt) dt+ dBt t ∈ [0, T ](42)

X0 = x
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Figure 13. model: XXCUBE, functional: L (X)

where Bt is the d-dimensional BM. The drift coe�cient α is assumed to satisfy proper con-
ditions that guarantee the existence of a unique non-explosive strong solution of (42). In
this section Qx

T and Wx
T represent the law of the di�usion process X solution of (42) and the

d-dimensional Wiener measure for the initial condition B0 = x respectively. Let X be the
state space of X.
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It is possible to �nd equivalent conditions to (C1)-(C4) for the d-dimensional framework
and we refer to Beskos et al. [2006b] for a formal development of EA in this setting. The
main theoretical limitations of EA in the d-dimensional setting are:

(1) the necessary and su�cient condition for the existence of a transformation from a
generic d-dimensional SDE to the unit di�usion coe�cient SDE (42) is quite demand-
ing (see Ait-Sahalia [2002]);

(2) we require the existence of a potential function A : Rd → R such that α (u) = ∇A (u).

EA then generalises to this setting in a simple way. We de�ne the d-dimensional BBM Z as
a d-dimensional BM with initial value x conditioned on having its �nal value ZT distributed
according to hx,t (u) where

(43) hx,t (u) ∝ exp

{
A (u)− ‖ u− x ‖2

2T

}
and denote with Zx

T its law. Let φ : X → R, assumed to be bounded below, be de�ned as
φ (u) := (‖ α (u) ‖2 +divα (u)) /2 − l and l := infr∈X φ (r) < ∞. As before L denote the
law of a unit rate Poisson Point Process (PPP) on [0, T ] × [0,∞), and let Φ = {χ, ψ} be
distributed according to Φ. We de�ne the event Γ as

(44) Γ :=
⋂
j≥1

φ
(
Zχj

)
≤ ψj

The following extension of Theorem 1 holds

Theorem 2. (Multivariate Wiener-Poisson factorisation) If (Z,Φ) ∼ Zx
T ⊗ L | Γ

then Z ∼ Qx
T

Proof. see Beskos et al. [2006b] �

Using Theorem 2, the extension of EA1 to the d-dimensional setting is immediate. The
only di�culty is �nding the global maximum of φ over the domain X. The extension of EA3
to the d-dimensional setting is similarly immediate, with the added di�culty that we now
have to compute the maximum of φ over a bounded d-dimensional hyper-rectangle in X.
As in the case of the one-dimensional EA the simulation of Z requires to sample from

{hx,T (u)}x∈X. Unfortunately the high dimensionality of the problem makes any adaptive
approach, such as the ones in Peluchetti [2007], infeasible. However, if we can �nd a d-
dimensional matrix K, a vector v and a constant k such that

(1) ∀u ∈ XA (u) ≤ (u− v)′K (u− v) + k

(2)
�

X exp
{

(u− v)′K (u− v)− ‖u−x‖2
2T

}
<∞

it is possible to implement a simple accept-reject sampler using a multivariate Gaussian
variate as proposal (the LPS from now on). In most di�usion models of interest it is possible
to �nd such K,v, k that satis�es these conditions (at least for T small enough) indeed.
To see how the computation cost of EA scales as d increases we considered two test d-

dimensional SDEs de�ned by their potential function A:
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Dimension 1 2 4 8 16

EA1 comp.cost 0.48 0.92 1.85 5.56 27.51
Table 1. The multi-dimensional EA1

Dimension 1 2 3 4 5 6 7 8 9 10 11

LPS acceptance 83.9 71.3 61.3 52.3 44.4 37.4 32.5 27.2 23.3 19.3 17.2
EA3 comp. cost 0.39 0.31 0.40 0.46 0.75 1.21 2.15 5.87 15.9 45.9 129.9

Table 2. The multi-dimensional EA3

• the d-dimensional SINE, A (u) = − cos
(∑d

i=1 ui

)
• the d-dimensional LANG, A (u) = −

∑n
i=1 u

4
i

The initial value x is the origin of Rd and T = 1. Theoretical consideration suggests that
partitioning [0, T ] in sub-intervals of length T/d (and applying EA sequentially) would keep
the acceptance rate of EA stable as d changes. Our simulation study suggests that this
intuition is correct and we adopt this strategy.
In Table 1 we report the computational cost (in seconds) required to sample 1000 observa-

tions from the d-dimensional SINE SDE using EA1. We see that, apart from variations due
to the implementation, the computational cost increases linearly with d. Due to the bounded
nature of this example the acceptance rate of the LPS is stable.
In Table 2 we report the computational cost of the d-dimensional EA3 required to sample

100 observations from the d-dimensional LANG SDE. While the acceptance rate of the LPS
decreases with d (as expected) this is not the reason of the explosive behaviour of the d-
dimensional EA3's computational cost. The problem is the computation of the maximum of
over a bounded d-dimensional hyper-rectangle that requires at least 2d computations.

5. Conclusions

In this paper we have performed a simulation study of EA's e�ciency. We have investigated
the computational time required by EA1 and EA3 in di�erent scenarios, both in the one and d-
dimensional setting. In the one-dimensional case the results of this simulation are compared
with the computational time required by three other numerical schemes too. The results
are quite encouraging: EA1 proves to be very competitive with respect to the other DSs
as the computational time required for an accurate approximation using traditional DSs is
comparable to that necessary for an exact simulation of the SDE. Thus its exact nature makes
EA1 the preferred discretization scheme, according to our opinion. Additionally, knowing the
true distribution of the path of the process conditioned on the returned skeleton makes the
exact simulation of some path-dependent functionals possible.
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In the case of EA3, the added complexity of the algorithm has resulted in a less e�cient
scheme. The choice of the suggested discretization schemes thus depends on the particu-
lar application. When a very precise simulation is needed, EA3 still presents a reasonable
e�ciency, being roughly a factor of 10 slower then EA1.
In the d-dimensional case EA1 scales quadratically with the dimension d, while in most

cases EA3 scales exponentially. However, the exact simulation of not too high-dimensional
problems remains feasible.
Moreover, the exact nature of EA is of great importance when e�ciency is not the �rst

concern. Thanks to EA we have been able to analyse the e�ciency of other discretization
schemes with a high degree of accuracy. And we did so by considering di�usion models for
which the exact solution is not available in a closed form. Another example of an application
of EA as a validation tool is that of inference for di�usion model. Some methods rely on Euler-
like approximations of the di�usion process. By using the Euler (or similar) discretization
scheme again for generating paths to test the method would false the conclusions of the
experiment.
Concerning the behaviour of the DSs with respect to the SDEs' parameters, the small

amount of information collected is not su�cient to establish any rule of thumb. Additional
research is needed to gain more insight on this interesting topic.
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