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Inference for point processes with unobserved

one-dimensional reference structure

J. Su, B. Hill, W.S. Kendall and E. Thönnes

June 18, 2008

Abstract

We present a novel approach to examining local anisotropy in planar

point processes. Our method is based on a kernel Principal Component

Analysis and produces a tensor field that describes local orientation. The

approach is illustrated on an example examining pore patterns in ink

fingerprints.

Keywords: Fingerprint, pore pattern, point process, directional analysis, local
anisotropy, kernel PCA, tensor field, Rice formula

1 Introduction

In this paper we consider planar point processes that are observed on a (random)
reference set. We develop an approach that infers the local orientation of the
reference set which can then be used to explore some of its geometrical and
topological characteristics. As an example, we consider sweat pore features in
fingerprints. Sweat pores lie on the ridges of the palmar skin of humans. Solely
based on the location of sweat pores we infer the local orientation of the ridge
structure. This information produces an orientation field that enables tasks such
as fingerprint classification, registration of fingerprint images using warping and
classification of pores according to ridge association.

Fingerprints have been used as a tool for identification since the early twenti-
eth century [2]. They are produced by friction ridge skin whose general topology
can be classified into a small number of standard patterns. Figure 1(a) shows an
example ink fingerprint, whose general pattern is called a loop. The ridge flow
exhibits isolated singularities such as ridge endings and bifurcations. These are
called minutiae or level two features and are commonly used for identification
and verification. However, with the improvement of imaging technology, and
availability of storage, the interest is moving towards using finer detail features.
So called level three features include ridge shape, sweat pore shape and sweat
pore location. In [8] first steps towards quantifying evidence of sweat pore lo-
cations are discussed. Sweat pores are more densely distributed on fingerprints
than minutiae and so pore patterns seem a viable alternative for identification.

While spatial models have been proposed for minutiae pattern [2], but very
little attempts have been made to investigate the relation between pores and
the underlying ridge structure. In this paper we begin to address this question

1



Paper No. 08-10v1, www.warwick.ac.uk/go/crism

by considering a fundamental issue: how much information does a (noisy) pore
pattern reveal about the underlying ridge structure?

2 Data

To illustrate our method we use an ink fingerprint from the NIST 30 special
database [18]. We examine a central 256 × 256 pixel section from fingerprint
‘a002 05’, see Figure 1(a), which was scanned at a resolution of 500 dpi. To
extract the pore pattern from the fingerprint image we use the following algo-
rithm, a simpler version of the algorithm in [6]. For an alternative algorithm
see [8]. As a first step the image is normalized to have zero mean and unit
variance. The aim of this normalization is to reduce the variations in grey level
values along the ridges and furrows. All subsequent procedures take place on
the normalized image. In order to enhance the pores in the image we use a
2D Mexican hat wavelet transform which is a bandpass filter that captures the
high negative frequency response at the location of pores. The 2D Mexican hat
wavelet with scale s is given by

φ(x, y) =
(

(
x

s
)2 + (

y

s
)2 − 2

)

exp
(

− 1

2
(
x

s
)2 + (

y

s
)2

)

and is convolved with the image. The filter response then is normalized using a
min-max normalization. To extract the pores we identify the regional minima
in the filtered image using the H-transform with a depth threshold of t1. Any
regional minima whose area is greater than t2 is removed. We then determine
the pore locations as the centroids of the regional minima. For the print in
Figure 1(a) we used parameters s = 0.7, t1 = 0.15 and t2 = 15. Figure 1(b)
shows the extracted pore locations on the right.

(a) Original fingerprint section. (b) Extracted pore locations.

Figure 1: Fingerprint a002 05.
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3 Methods for the analysis of anisotropy in point

patterns

The directional analysis of point processes was developed in papers such as
[9, 14, 15]. We follow the description in [16]. The directional distribution Θr1,r2

of a point process Φ is the distribution function (or rose) of the directions of
segments formed by point pairs of the point process whose inter-point distances
lie between r1 and r2. Anisotropy is indicated by departure of Θr1,r2

from
uniformity. Related to Θr1,r2

is the rose density which is simply the density
of the distribution function Θr1,r2

. To estimate the rose density kernel density
estimation methods are used.

The method above investigates (scale-dependent) global directionality over
the whole point pattern. In contrast we are interested in local directionality,
which can then be extrapolated to an orientation field over the whole sampling
window. While the method above could be easily generalized to our aim of es-
timating local directionality by applying appropriate windowing functions, this
would be a computationally rather expensive approach. The rose of direction
was developed as a tool to quantify departure from isotropy rather than esti-
mating the orientation per se. To produce an orientation estimate the modes
of the rose density need to be determined which is computationally much more
expensive than our approach.

4 Estimation of local ridge structure

We will describe the local ridge orientation by the orientation of the dominant
eigenvector field of a tensor field S(x) where x ∈ W . Here W is the sampling
window in which the fingerprint is observed. In the following we identify tensors
with 2 × 2 symmetric, positive definite matrices. To obtain the tensor field
we first estimate the tensors at the pore locations. Tensor estimates at other
locations in W can then be produced by interpolation, see Section 5.

To produce a local orientation estimate we will use a Principal Component
Analysis (PCA). The orientation of the first principal component then can be
used as an orientation estimate for the anisotropic point cloud. However, as we
are trying to estimate local orientation properties, it is immediately clear that
nearby pores should be given a larger weight than pores at larger distance from
the location of interest. To do this we use a kernel-based Principle Component
Analysis (KPCA) [13]. KPCA is a computationally efficient form of non-linear
PCA which uses a non-linear transformation from the space of the data to a
possibly higher-dimensional feature space. In our example we use a Gaussian
kernel with standard deviation σ. This has the advantage that the influence of
pore locations further than a distance of 2 σ from the location of interest is very
limited, see also Section 6.

In more detail, suppose the pore pattern has n pores at locations {x1, . . . , xn}.
Let xn be the location at which we estimate the tensor. We assume without
loss of generality that xn = 0 is the origin and then apply a non-linear trans-
formation φ to the pore pattern. Let {(R1, θ1), . . . , (Rn−1, θn−1)} be the polar
coordinates of the pore locations {x1, . . . , xn−1}. We map the pore at location

3



Paper No. 08-10v1, www.warwick.ac.uk/go/crism

(Ri, θi) to the location (R̃i, θi) where

R̃i = exp
(

− 1

2σ2
R2

i

)

for i = 1, . . . , n − 1.

Thus φ : R+
0 × [0, π] → [0, 1] × [0, π] with

φ(R, θ) =
(

exp
[

− 1

2σ2
R2

i

]

, θ
)

.

Let

Φ+ = {(R̃1 cos(θ1), R̃1 sin(θ1)), . . . , (R̃n−1 cos(θn−1)), R̃n−1 sin(θn−1))}

be the transformed pore pattern. Then define

Φ− = {(−R̃1 cos(θ1),−R̃1 sin(θ1)), . . . , (−R̃n−1 cos(θn−1)),−R̃n−1 sin(θn−1))}

as the point pattern produced by rotating Φ+ by 1800 around the origin.
The estimate of the tensor at location xn is then given by S(xn) = Σ where

Σ is the variance-covariance matrix of Φ = Φ+ ∪ Φ−. The local orientation
estimate at xn is given by the orientation of the major eigenvector of S(xn) (or
first principal component of Φ). Figure 2(a) shows the orientation of the major
eigenvectors at the pore locations for the fingerprint in Figure 1(a). For this
example the smoothing parameter σ was chosen to be equal to 10.

Let λ1(xn) and λ2(xn) be the eigenvalues of the major and minor eigenvector
of S(xn) respectively. The fractional anisotropy index

FAI(xn) =
λ1(xn)

λ1(xn) + λ2(xn)
∈ [

1

2
, 1]

gives a measure of accuracy of the orientation estimate. A large FAI indicates
strong evidence for the estimated local orientation.

5 Interpolation of tensors

To obtain tensor estimates at arbitrary locations x within the sampling window
we use interpolation based on a Gaussian kernel. This also induces smoothing.
A naive approach to interpolating tensors would be based on the Frobenius norm
to define a distance measure. This yields a Euclidean structure that allows for
cheap computation of Euclidean means. While this approach yielded acceptable
results in our experiments, it has the undesirable effect of “tensor swelling”
[1]: the determinant of a tensor average can be larger than the determinant of
the original tensors. Furthermore, tensor averages may have null or negative
eigenvalues. Affine-invariant Riemannian metrics [4] avoid this problem but
are computationally expensive. An alternative is proposed in [1] using the so-
called Log-Euclidean metric. This method is based on performing Euclidean
computations on the matrix logarithm of the tensors. A Log-Euclidean weighted
average of a set of tensors S1, . . . , SN is defined as

S̄ = exp
(

N
∑

i=1

wi log(Si)
)
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where log(Si) is the logarithm of the matrix Si and wi is the chosen weight.
Hence this is a generalization of the geometric mean. Because the mean is
based on the Euclidean operations and matrix exponentials and logarithms it
is relatively cheap to compute. Figure 2(b) shows the direction of the major
eigenvector field derived from the tensor field interpolation.

(a) Major eigenvectors at pore locations. (b) Major eigenvectors on a regular grid.

Figure 2: Major eigenvectors of the estimated tensor field for fingerprint a002 05.

Using the above interpolation method, we can then use methods such as the
Runge-Kutta algorithm [10] to produce streamlines that illustrate the general
topology of the ridge flow.

6 The smoothing parameter σ

The method presented in Section 4 derives an orientation estimate at xn by
examining the orientations θj of line segments between xn and xj where j ∈
{1, . . . , n − 1}. The influence of a pore location xk on the orientation estimate
can be bounded in terms of its distance Rk from xn as the following calculations
show.

Set Σ = (n− 1)S(xn) where S(xn) is the tensor estimate at xn. Suppose we
remove the pore location x1 and consider the tensor estimate S̃(xn) based on
the pore locations {x2, . . . , xn}. Let θ1 be the orientation of the line segment
connecting x1 with xn and d1 = exp(−R2

1/σ2). Set Σ̃ = (n − 2)S̃(xn) and
consider the matrix δΣ defined as

δΣ := Σ − Σ̃ =

(

2d1 cos2(θ1) 2d1 cos(θ1) sin(θ1)
2d1 cos(θ1) sin(θ1) 2d1 sin2(θ1)

)

.

Using the Frobenius norm to define a distance measure between Σ and Σ̃ we
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have

d(Σ, Σ̃) =

√

trace
(

δΣ
)2

= d1

√

cos2(θ1) + sin2(θ1) = d1.

The above shows that the further a pore location is from xn the less influence it
has on the principal eigenvector of the tensor estimate at xn. The rate at which
this influence reduces is dependent on the smoothing parameter σ.

More specifically, we can use eigenvector perturbation theory to bound the
influence of the pore location x1 on the orientation of the major eigenvector of
S(xn). A more general version of the following theorem and corollary is derived
in [7]:

Theorem 1 Let Σ and Σ̃ be symmetric, positive definite 2-by-2 matrices with

their respective eigendecompositions:

Σ = UΛUT and Σ̃ = V ΓV T .

where Λ =diag(λ1, λ2) and Γ = diag(γ1, γ2). Assume Σ̃ = Σ + δΣ and set

S = UT V . Further assume that λ1 ≤ λ2 and γ1 ≤ γ2. If

η = ||Σ− 1

2 δΣΣ− 1

2 || < 1

then the elements of S are bounded by

|sij | ≤
√

λiγj

|λi − γj |
η√

1 − η
i, j ∈ {1, 2}.

The above theorem together with the fact that

λi(1 − η) ≤ γi ≤ λi(1 + η)

implies the following corollary.

Corollary 1 Under the assumption of Theorem 1 let u1 and v1 be the major

eigenvectors of Σ and Σ̃ respectively, then

||v1 − u1|| ≤
√

2η√
1 − η

√
λ1γ2

|λ1 − γ2|
<

√
2

η

(1 − η)

√
γ1γ2

γ1 − γ2
.

Let us examine η in our setting. As before we have Σ = (n− 1)S(xn), based on
the full point pattern, and Σ̃ = (n − 2)S̃(xn), produced by removing the pore
at location x1. Set D =

√

diag(Σ) and A = D−1ΣD−1. Then it can be shown
[17] that

η ≤
√

2κ(A)ǫ ≤
√

8ǫ
λ1

λ2

where κ(A) is the condition number of A and ǫ > 0 is such that

|δΣij | ≤ ǫ|Σij |.

We have |δΣij | ≤ exp(−R2
1/σ2) and |Σij | ≥ min{Σ̃11, Σ̃22} and so we can set

ǫ = exp(−R2
1/σ2)max{Σ̃−1

11 , Σ̃−1
22 }.
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This again illustrates that for small σ pore locations that lie far from xn have
little influence on the first eigenvector of S(xn).

To examine the effect of removing more than one pore location we performed
the following numerical experiment. When estimating the tensor at a pore
location xn we only consider pores xk, . . . , xn−1 that lie at a distance less than
2σ units from xn. Figure 6 shows the major eigenvectors of the tensors derived
with this method in yellow and the the ones estimated the full pore pattern in
red. As can be seen, the red arrows are almost completely covered by yellow
arrows illustrating there is very little difference in the local orientation estimates.

Figure 3: Major eigenvectors of the estimated tensor field for fingerprint a002 05.
Red arrows show the the estimates based on the full pore pattern whereas yellow
arrows show the the estimates based on the pore pattern within a local 2σ
window. There is virtually no difference between the estimates and so the red
arrows can hardly be seen.

7 Rice’s formula for the expected number of sin-

gularities in the random field

The major eigenvector field derived from the tensor field provides estimates of
the local ridge flow direction. However, at isolated points within the sampling
window the tensor may be such that it has equal eigenvalues. In this case the
definition of major versus minor eigenvector is arbitrary. The degenerate points
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of a tensor field play an analogous role to critical points in vector fields and so
determine the topology of the tensor field. As discussed in [5] the basic patterns
at degenerate points are trisectors and wedges. At trisectors three hyperbolic
sectors occur where streamlines sweep past the degenerate point. At wedges
there is only one hyperbolic sector. Thus, trisectors and wedges correspond
roughly to bifurcations and ridge endings. The two types of degenerate points
can be distinguished using a tensor index, see [5]. However, in this paper we do
not consider this distinction any further.

In the following we model the tensor field as a Gaussian field and derive
the expected number of degenerate points. We then compare the theoretically
derived number with the manually identified rate of level two features. Recall
that for x ∈ W we have

S(x) =

(

S11(x) S12(x)
S21(x) S22(x)

)

=

(

a c
c b

)

a, b > 0, c ∈ R,

which will have equal eigenvalues if a = b and c = 0. We define the random
field Z as

Z(x) =

(

Z1(x)
Z2(x)

)

=

(

(S11(x) − S22(x))/s1(x)
S12(x)/s2(x)

)

x ∈ W,

where s2
1(x) = Var(S11(x) − S22(x)) and s2

2(x) = Var(S12(x)).
In order to obtain an indicative result we assume that Z is a smooth, zero

mean Gaussian field with independent components that have a Gaussian covari-
ance function, that is

Cov
(

Z1(x), Z1(y)
)

= exp
(

− 1

2α2
||x − y||22

)

, α > 0

Cov
(

Z2(x), Z2(y)
)

= exp
(

− 1

2β2
||x − y||22

)

, β > 0

Cov
(

Z1(x), Z2(y)
)

= 0.

We can now use an extension of Rice’s formula to examine the zeros of the
Gaussian field Z. Rice’s original formula [11, 12] gives an expression for the
expected number of upcrossings by a stochastic process Z(t). It provides a
formula for a stationary process Z(t) with parameter t ∈ R. In Theorem 2.1 of
[3] the result is extended to x ∈ R

d as follows.

Theorem 2 Let I be an open subset of R
d, let Z : I → R

d and let u ∈ R
d

be a fixed point in the codomain. Let Nu(B) denote the number of roots of the

equation Z(x) = u on the Borel set B contained in I. Assume that

1. Z is a Gaussian random field;

2. x → Z(x) is almost surely of class C1.

3. For each x ∈ I the random variable Z(x) has a non-degenerate distribu-

tion;

4. P

(

∃x ∈ I, Z(x) = u, det(Z ′(x)) = 0
)

= 0;
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Then, for every Borel set B in I

E(Nu(B)) =

∫

B

E

(

| det(Z ′(x))|
∣

∣

∣
Z(x) = u

)

pZ(x)(u)dx,

where pZ(x) is the density of Z(x).

Corollary 2 Additional to the assumptions in Theorem 1, suppose Z is a sta-

tionary Gaussian field on R
2, u = 0 is the origin in R2 and B = [0, 1]2 is the

unit square. Then

E(N0([0, 1]2)) = pZ(0)(0) E

(

| det(Z ′0)|
∣

∣

∣
Z(0) = 0

)

.

For the random field Z defined earlier we have pZ(0)(0) = 1/(2π). Furthermore,
from the covariance assumptions we can deduce that Z and all partial derivatives
at 0 are independent and Normally distributed. We have

L
(∂Z1

∂t1
(0)

)

= L
(∂Z1

∂t2
(0)

)

= N (0,
1

α2
)

L
(∂Z2

∂t1
(0)

)

= L
(∂Z2

∂t2
(0)

)

= N (0,
1

β2
).

Now define the following random variables:

A =
√

2
(∂Z1

∂t1
(0) +

β

α

∂Z2

∂t2
(0)

)

B =
√

2
(∂Z1

∂t1
(0) − β

α

∂Z2

∂t2
(0)

)

C =
√

2
(∂Z1

∂t2
(0) +

β

α

∂Z2

∂t1
(0)

)

D =
√

2
(∂Z1

∂t2
(0) − β

α

∂Z2

∂t1
(0)

)

Then

det Z ′(0) =
∂Z1

∂t1
(0)

∂Z2

∂t2
(0) − ∂Z1

∂t2
(0)

∂Z2

∂t1
(0)

=
α

2β

[

(A + B)(A − B) − (C + D)(C − D)
]

=
α

2β

[

(A2 + D2) − (B2 + C2)
]

The variables R = A2 + D2 and S = B2 + C2 are independent and identically
Exponentially distributed with rate α2/2. Hence

E

(

| detZ ′(0)|
∣

∣

∣
Z(0) = 0

)

=
α

2β
E(|R − S|) =

1

αβ
.

We now use the above theoretical result to compute an estimate for the
intensity of singularities in the tensor field of the fingerprint in Figure 1(a).
We then compare the estimated result with the intensity of level two features
obtained via visual inspection. We can use sample variograms to estimate the
parameters α and β. After interpolating the tensor field on a regular grid and
assuming isotropy we obtain the sample variogram for Zi, i = 1, 2 as

γi(s) =
1

n(s)

∑

||xk−xj ||

(

Zi(xk) − Zi(xj)
)2

9
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where n(s) is the number of grid point pairs (xk, xj) that are separated by
distance s. Recall that

V
(

Z1(x) − Z1(y)
)

= 2
(

1 − exp(−||x − y||22
2α2

)
)

and so we estimate α by fitting a straight line as + b to − log(1− 1
2 γ̂1(s)) where

γ̂1(s) is the sample variogram of Z1. Given the fitted slope a our estimate for
α is α̂ = 1/

√
2a. Using the same estimation procedure for β based on the

variogram of Z2 we obtain as an estimated intensity of zeros for Z:

1

2πα̂β̂
= 0.0018.

For comparison we manually identified the number of level 2 features in the
fingerprint in Figure 1(a). The number of level 2 features per unit area in this
fingerprint is 0.0046. While this is roughly of the same order of magnitude, it is
somewhat lower than the intensity estimated using the Gaussian model. This is
not surprising as not only genuine minutiae will cause singularities in the tensor
field but also artifacts such as missed pores or features that were erroneously
identified as pores.

8 Conclusions

In this paper we examined a point process observed on an (unobserved) reference
structure. We developed a computationally efficient method that estimates
a tensor field and so provides local orientation estimates for the underlying
reference structure. We illustrated the method on the example of determining
local ridge orientation from a pore pattern in a fingerprint. Furthermore, the
tensor field provides more information than just a local orientation estimate.
Its degenerate points can be related to singularities in the ridge flow pattern,
thus providing an explicit relation between pores and minutiae. By assuming
a simple Gaussian field we were able to provide an analytic formula for the
intensity of level two features. While this paper has focussed on the interesting
example of pore patterns from fingerprints, it should be noted that the method
is a general tool for the analysis of local anisotropy in point pattern.
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