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First CLADAG Data Mining Prize: Data Mining
for Longitudinal Data with Different Marketing
Campaigns

Mouna Akacha, Thaı́s C. O. Fonseca and Silvia Liverani

Abstract The CLAssification and Data Analysis Group (CLADAG) of the Italian
Statistical Society recently organised a competition, the ‘Young Researcher Data
Mining Prize’ sponsored by the SAS Institute. This paper was the winning entry
and in it we detail our approach to the problem proposed and our results. The main
methods used are linear regression, mixture models, Bayesian autoregressive and
Bayesian dynamic models.

1 Introduction

Recently the CLAssification and Data Analysis Group (CLADAG) of the Italian Sta-
tistical Society organised a competition on a data mining problem. Given the sales
of nine products over seven time periods, five structural variables and a marketing
campaign treatment for 4517 sales points, the competitors are asked to

1. evaluate the marketing campaign impact on the economic return in the first time
period,

2. and forecast the economic return for the seventh time period.

The first question may be seen as a problem studied in regression analysis, whilst
the second problem is widely studied in time series forecasting. However, the pres-
ence of several covariates with non-linear and co-dependent features requires both
questions to be addressed with ad hoc methods. The main statistical method we use
to address the first question is a mixture of regression models, while we fit autore-
gressive and dynamic models for the forecasting problem.
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warwick.ac.uk · Thais C. O. Fonseca e-mail: t.c.o.fonseca@warwick.ac.uk · Sil-
via Liverani e-mail: s.liverani@warwick.ac.uk. The three authors contributed equally to
this project and should be considered co-first authors.
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This paper is organised as follows. In Section 2 we describe the data and perform
exploratory tests and analysis. In Section 3 we detail the mixture model and our
results to answer the first question asked by the organisers. In Section 4 we introduce
the autoregressive and dynamic models for prediction and present our results for the
second question.

2 The Data

The data provided in this competition was collected by sales points over seven time
periods. The outcome variable yit is an unknown function of the income of the sales
point i during time period t, with t = 1, . . . ,7 and i = 1, . . . ,n where n = 4517. We
define yt = (y1t , . . . ,ynt)′. Five structural variables are available for each sales point,
x1i, . . . ,x5i. They are time invariant and they have 2, 3, 4, 2 and 3 levels respectively.
For each time period t the sales for nine products are available. The nine product
sales are defined as s(i)

jt where j = 1, . . . ,9 is the product index, t is the time period
and i is the unit. For simplicity, we refer to the product j at time t for all units as
the vector s jt = (s(1)

jt , . . . ,s(n)
jt ). Finally, only some of the sales point have received

a certain marketing campaign during the first time period. The marketing campaign
indicator zi = 0 if the sales point i is in the control group, and one otherwise. We
will use the terms marketing campaign and treatment interchangeably.

From now on, to simplify the notation, we will use xk, for k = 1, . . . ,5 to represent
the 4517-dimensional vector of the values of the kth structural variable. We will use
an analogous notation for z. Like for most data mining tasks, we now have to explore
the data before fitting any model.

Fig. 1(a) shows y1 against s11. Note the shrinkage of s11 towards the left due
to the large range of its tails. Analogous plots for variables s j1, for j = 2, . . . ,9,
omitted here, show similar patterns. In order to improve the spread of the data, we
use the log transformation on the product sales s jt . This is common practice in the
context of sales and prices. For example, Fig. 1(b)-(c) show the result of the log
transformation of s11 against y1. Note the strong pattern formed by the marketing
treatment z and structural variable x3 as shown in these plots. Note that there are
clusters of sales points that have similar outcomes, similar sales of product 1 and
the same value of the structural variable x3 too. Similar plots, omitted here, can be
obtained by conditioning on the levels of other structural variables and marketing
campaign, so the data seems highly structured.

However, an issue arises when we apply the log transformation: there are several
products with zero sales observed. For example, during the first time period there
are 609 sales points that have zero sales for at least one product. Table 1 shows
the number of units with product sales equal to zero for t = 1. For plotting we
assigned logs(i)

jt = −1 when s(i)
jt = 0. Due to the high frequency of such cases we

will propose a model that accommodates this feature in Section 3. Moreover, note
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the highly skewed distribution of the product sales sit for the sales points that do not
sell all of the nine products in a time period, for example, for s51 in Fig. 2(a).

Table 1 Number of units with product sales equal to zero observed for t = 1.

s11 s21 s31 s41 s51 s61 s71 s81 s91 total
Counts 134 37 0 0 43 150 142 115 96 717

(a) (b) (c)

Fig. 1 Scatter plots for the outcome and the product sales. The units are coloured in different
colours in plot (b) depending on the treatment z and in plot (c) depending on the levels the structural
variable x3.

The plots above revealed the presence of an association between the sales y1, the
treatment campaign z and the structural variables x’s, but note also the association
between the sales of two different products during the same time period, shown in
Fig. 2(b) for the first time period. This relation is reasonably linear, even though
clusters generated by the structural variables are still very clear.

The scenario changes dramatically when we move from the first time period,
which seems strongly affected by the marketing campaign, to the other time peri-
ods. Fig. 1(c) and Fig. 2(c) represent yt against log(s1t) for t = 1 and t = 2 respec-
tively: the structure, clearly visible in Fig. 1(c), is not apparent anymore in Fig. 2(c).
Analogously, the association between product sales s j1 shown in Fig. 2(b) for the
first time period is retained by the product sales s j2, as shown in Fig. 2(d), but the
pattern defined by structural variable x3 for the first time period in Fig. 2(b) is not
present anymore for the second time period in Fig. 2(d).

A strong correlation is also apparent for the outcome at sequential time periods.
See, for example, the plots of y2 against y1 and y3 against y2, as shown in Fig. 2(e)-
(f), conditionally on the marketing campaign in Fig. 2(e) and on x3 in Fig. 2(f).
A similar behaviour is apparent for the product sales. See Fig. 2(g) for s13 against
s12. A different outlook on this strong autoregressive component over time, and the
dependence of the product sales and outcome on structural variables, is also given
by the plots of the time series for 50 sales of product s1t against time t in Fig. 2(h)
and for the outcome yt of 50 sales points against time in Fig. 2(i).
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The boxplots in Fig. 2(j)-(l) show the time dependence of the impact of the mar-
keting campaign z and structural variables x1 and x4 respectively on the outcome yt .
The effect of z and x1 on y show a strong time dependence while this is not apparent
for the other structural variables x2, . . . , x5, as shown by Fig. 2(l) and other plots
omitted here.

One of the main issues with the dataset is due to the design of the marketing
campaign: for the sales points in the control group not all the possible configurations
of the structural variables xi have been observed. In particular, there are 61 (out
of 144) combinations of the categories of the structural variables x for which we
have no information for z = 0. This accounts for more than a third of the possible
configurations and it will affect our results by restricting our ability to test for the
effect of some factors on the impact of the marketing campaign. Moreover, it should
be noted that there are also over 25 configurations of the structural variables that had
only 3 or less observations. Table 2 shows, for example, five of the configurations
with low counts.

Table 2 Examples of configurations of the structural variables and their counts for different values
of z.

z = 0 z = 1
x1 = 1,x2 = 1,x3 = 2,x4 = 2,x5 = 1 0 29
x1 = 1,x2 = 1,x3 = 2,x4 = 2,x5 = 2 0 50
x1 = 1,x2 = 2 0 834
x1 = 1,x3 = 2 0 607
x1 = 2,x2 = 1,x3 = 3,x4 = 1,x5 = 2 9 1

Another important feature of the data is the strong association between the struc-
tural variables. The null hypothesis of independence between pairs of structural vari-
ables is strongly rejected for certain pairs. The results of the χ2 contingency test for
the pairs (xi,x j), where

H0 : xi ⊥ x j, for i, j = 1, . . . ,5 and i 6= j,

are shown in Table 3. In order to reduce the complexity of the model, we choose
the significance level 0.01. The result leads us to believe that a dependence structure
between the structural variables exists and it is represented in Fig. 3.

Table 3 Approximated p-values for the χ2 contingency test for H0: xi ⊥ x j , for i, j = 1, . . . ,5.

⊥ x2 x3 x4 x5
x1 0.26 0.33 0.02 0.02
x2 ≤ 0.0001 ≤ 0.0001 0.69
x3 ≤ 0.0001 ≤ 0.0001
x4 0.08
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) yt |z (k) yt |x1 (l) yt |x4

Fig. 2 Histogram (a) shows the distribution of s51 for the sales points that have zero sales for at
least one of the products. Plots (b)-(g) are scatter plots and time series plots for the outcome and
the product sales. The colours depend on the levels of z, x3, x5, z, x3, x1, x5 and x5 respectively.
The last time point in (i) has to be predicted. The boxplots in (j)-(l) show the evolution in time of
the distribution of yt |z, yt |x1 and yt |x4 respectively.
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x1 x2 x3

x4 x5

Fig. 3 Undirected graphical model to summarise the dependence structure obtained by the χ2

contingency test shown in Table 3. The absence of an edge between two variables represents the
lack of association between them.

Analogously, the product sales are also highly correlated. See Fig. 2(b) and (d).
This does not allow us to include these covariates directly in the model matrix as we
need it to be full rank. Thus we choose to use Principal Component Analysis (PCA),
a dimensionality reduction method that transforms correlated continuous variables
into a possibly smaller number of uncorrelated variables called principal compo-
nents. In particular, here we implement the ‘projection pursuit’ method developed
by [5] and based on robust estimation of covariance matrices. This method is espe-
cially useful for high dimensional data as ours. We apply PCA to the product sales
s jt and identify the principal components ckt for k = 1, . . . ,9.

The exploratory analysis of the data provided by the organisers uncovered the
presence of a structure between the covariates and the outcome variable, and this
structure provides us with the empirical motivation for the assumptions of the mod-
els proposed in Sections 3 and 4. However, it also uncovered issues that require
careful consideration in the modeling stage, such as an unbalanced design and a
strong association between some of the covariates.

3 The Impact of the Marketing Campaign on Outcome at Time
Period 1

The first question asked by the organisers is to evaluate the impact of the marketing
campaign z on the outcome y1. As this question involves only the data for the first
time period, in this Section we drop the subscript t and use the notation s1,. . . ,s9 and
y instead of s11,. . . ,s91 and y1.

Regression models provide us with tools to identify and estimate the impact of
treatment, that is,

yi = α0 +α1zi + errori, (1)

where zi is the factor indicating 1 for treatment and 0 for control for unit i. In particu-
lar, this model states that there is a change of magnitude α1 in the mean outcome due
to the marketing campaign. Fitting this linear model following the linear model pro-
posed by [3] gave us the following estimates: yi = 32.0950+33.8743 zi. The effect
of treatment is highly significant with a p-value smaller than 0.0001 and adjusted
R2 = 0.7742. The coefficient of determination, R2, is the proportion of variability
in a data set that is accounted for by the statistical model. It provides a measure of
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how well future outcomes are likely to be predicted by the model. The adjusted R2

is a modification of the coefficient of determination that adjusts for the number of
explanatory terms in a model.

Although the residual analysis for this model seems reasonable, the availability
of many covariates, as usual in a data mining problem such as this one, allows us
to study the impact of the marketing campaign once the confounding effect of the
other covariates has been removed.

The structural variables are potential covariates of interest, as shown in Section
2. Interaction terms will also need to be included in our model fit. However, the
existence of empty cells in the design of the experiment on the marketing campaign
(see Table 2) restricts the inclusion of all the possible interactions.

The product sales are potential covariates of interest as well. However, there is a
high frequency of units with product sales equal to zero, as discussed in Section 2.
For example, for the first time period, as shown in Table 1, there are 717 zero cells.
This motivates our proposal of a mixture model, given by

yi = ξ g1i +(1−ξ )g2i with ξ ∈ [0,1], (2)

where

g1i =

{
µ1i + ε1 with ε1 ∼N (0,σ2

1 ), if s(i)
j > 0,∀ j = 1, . . . ,9,

0 otherwise,
(3)

and

g2i =

{
µ2i + ε2 with ε2 ∼N (0,σ2

2 ), if ∃ s(i)
j = 0, j = 1, . . . ,9,

0 otherwise.
(4)

The MLE estimate of the proportion of products that are not sold during the first
time period is given by ξ̂ = 0.1348 (with SE(ξ̂ ) = 0.0051), a proportion of the
data that cannot be ignored. Therefore, we propose different models for g1 and g2,
to which we will refer as group 1 and group 2 respectively from now on. Further
analysis, not included here, also confirmed a different variance between the two
groups, justifying σ2

1 6= σ2
2 .

In the next subsections we perform stepwise model selection by AIC [8] to pro-
vide a measure of how well future outcomes are likely to be predicted by the model
and to fit models to exclude non significant variables and interactions. .

3.1 Model for Group 2

The unbalanced design of the marketing campaign imposes restrictions on the in-
teraction terms that can be included in the model for group 2. For instance, the
interaction between x1, x2 and z cannot be included in the model as all the observed
units with x1 = 1 and x2 = 2 were in the control group z = 0.
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Note that the chi-square test performed in Section 2 brought to our attention the
possibility of a presence of multicollinearity between several pairs of structural vari-
ables. It would be possible to check for collinearity by investigating the condition
index [1], and then use e.g. correspondence analysis [2]. However, [9] argues that
multicollinearity does not actually bias results, it just produces large standard errors
in the related independent variables. With enough data, these errors will be reduced,
and given the size of the dataset we therefore refrain from doing additional analyses.
Moreover, an additional advantage of using raw data in the regression model is the
easy interpretability of the parameter estimates.

Fitting models using a stepwise model selection by AIC to exclude non signif-
icant variables and interactions yields the final model which includes: z, x1, . . . ,
x5, the interaction term (x1,x4), 7 indicator functions for the product sales s j with
j = 1,2,5,6,7,8,9 (the indicator is equal to 1 when products of that category have
been sold in the first time period), log(s3), log(s4) and two indicator functions for
s5 > 75 and for s7 > 75. Note that all the sales points sold a positive amount of
products j for j = 3,4. Also, note that product sales s5 and s7 have a highly skewed
distribution for the observations in group 2, motivating the use of an additional in-
dicator function to differentiate the tails from the main body of their distribution.
Fig. 2(a) shows this feature for s5. Therefore, the regression equation fitted for sales
point i is given by

E(g2i) = α0 +αzI(zi = 1)+α1(2)I(x1i = 2)+ . . .+α5(3)I(x5i = 3)
+α1,4(2,2)I(x1i = 2,x4i = 2)

+β1I(s(i)
1 = 0)+β2I(s(i)

2 = 0)+β5I(s(i)
5 = 0)+ . . .+β9I(s(i)

9 = 0)

+β3 log(s(i)
3 )+β4 log(s(i)

4 )+ γ5I(s(i)
5 > 75)+ γ7I(s(i)

7 > 75)

where I(.) is the indicator function, αk( j) is the parameter corresponding to I(xki =
j) and αk,l( j,h) is the parameter corresponding to I(xki = j,xli = h). See Table 4 for
the estimates of the regression parameters, their standard errors and p-values. The
resulting model has 23 significant coefficients, with adjusted R2 = 0.9929 and an
overall treatment effect of 32.74.
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Fig. 4 Residual analysis for group 2: qq-plot of the observed quantiles against the theoretical
quantiles, the distribution of the residuals and the observed values against the fitted values of y.
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Table 4 Estimates of the regression parameters, their standard errors and associated p-values for
group 2.

Estimate SE P-value
α0 51.79 0.96 < 0.0001
αz 32.74 0.17 < 0.0001
α1 -8.46 0.62 < 0.0001

α2(2) -1.71 0.58 0.003
α2(3) -5.95 1.07 < 0.0001
α3(2) -19.19 1.17 < 0.0001
α3(3) -4.95 1.17 < 0.0001
α3(4) -27.05 1.13 < 0.0001

α4 15.86 2.40 < 0.0001
α5(2) 5.40 0.86 < 0.0001
α5(3) -6.44 0.39 < 0.0001

α1,4(2,2) -11.13 0.84 < 0.0001

Estimate SE P-value
β1 4.70 1.78 0.008
β2 -19.65 3.76 < 0.0001
β3 2.81 0.20 < 0.0001
β4 -1.46 0.57 0.01
β5 -33.48 2.11 < 0.0001
β6 5.85 0.98 < 0.0001
β7 25.49 0.58 < 0.0001
β8 -10.06 3.73 < 0.0001
β9 -37.13 3.63 < 0.0001
γ5 4.29 0.93 < 0.0001
γ7 10.73 0.98 0.005

The exploratory analysis performed in Section 2 and the residual analysis shown
in Fig. 4 support our proposed model for group 2 that states that, for the sales points
that do not sell all the products, the marketing campaign has an average effect of
increasing the outcome by e32.74 million.

3.2 Model for Group 1

The covariates s j for j = 1, . . . ,9 are all strictly positive for group 1. However, as
discussed in Section 2, the presence of a strong dependence between them encour-
ages the use of PCA to extract from the product sales s j a subset of orthogonal
continuous covariates c j (see Table 5 for the loadings). Based on the adjusted R2 in-
crease and standard deviation decrease per number of principal component included
in the model, as shown by the plots in Fig. 5, it is apparent that at least the first
six principal components should be included in the model, and we find that the first
eight principal components give us the best fit.

Table 5 Loadings l1,. . . ,l9 for the PCA by [5].

l1 l2 l3 l4 l5 l6 l7 l8 l9
log(s1) 0.371 0.135 0.204 0.239 -0.261 -0.504 -0.609 0.230
log(s2) 0.310 -0.283 0.265 -0.454 0.269 0.653 -0.200
log(s3) 0.165 0.430 -0.125 -0.414 0.107 -0.298 -0.159 -0.684
log(s4) 0.448 -0.218 -0.796 0.185 0.206 0.155
log(s5) 0.397 0.366 0.182 0.350 -0.393 0.502 -0.374
log(s6) 0.258 0.297 0.292 0.391 0.387 0.602 -0.301
log(s7) 0.264 0.340 0.217 -0.286 0.230 -0.350 0.504 0.503
log(s8) 0.327 0.391 -0.691 -0.300 0.304 0.262
log(s9) 0.370 -0.572 0.180 -0.671 -0.195 0.114
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Fig. 5 Adjusted R2 increase and standard deviation decrease per number of principal component
included in the model for group 1.

Following the same arguments regarding multicollinearity as in Section 3.1 and
fitting models using a stepwise model selection by AIC to exclude non significant
variables and interactions yields the final model which includes: z, x1, x2, x3, x4, x5,
several interactions terms and the principal components ck for k = 1, . . . ,8. For sales
point i the regression equation is given by

E(g1i) = α0 +αzI(zi = 1)+α1I(x1i = 1)+ . . .+α5(3)I(x5i = 3)
+α1,2(2,2)I(x1i = 2,x2i = 2)+ . . .+αz,5(1,3)I(zi = 1,x5i = 3)
+α1,2,3(2,2,2)I(x1i = 2,x2i = 2,x3i = 2)+ . . .

+α2,3,4,5(2,3,1,2)I(x2i = 2,x3i = 3,x4i = 1,x5i = 2)+ γ1c(i)
1 + . . .+ γ8c(i)

8

where I(.) is the indicator function, αk( j) is the parameter corresponding to I(xki =
j) and αk,l( j,h) is the parameter corresponding to I(xki = j,xli = h) and so on. See
Tables 6 and 7 for the estimates of the regression parameters, their standard errors
and p-values. The model’s fit was checked by the residual analysis shown in Fig. 6.
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Fig. 6 Residual analysis for group 1: qq-plot of the observed quantiles against the theoretical
quantiles, the distribution of the residuals and the observed values against the fitted values of y.

The adjusted R2 for this model is 0.9980 and the standard error of the outcome
for group 1 is 0.8709. The impact of the treatment campaign is significant with an
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Table 6 Estimates of the regression parameters, their standard errors and associated p-values for
group 1 (part 1, continued in Table 7).

Estimate SE P-value
α0 32.44 0.09 < 0.0001
αz 33.97 0.37 < 0.0001
α1 5.23 0.41 < 0.0001

α2(2) 7.61 0.26 < 0.0001
α2(3) 7.83 0.65 < 0.0001
α3(2) 13.36 0.47 < 0.0001
α3(3) 0.76 0.35 0.03
α3(4) 3.11 0.39 < 0.0001

α4 8.90 0.49 < 0.0001
α5(2) 41.31 0.97 < 0.0001
α5(3) 10.30 0.45 < 0.0001

α1,2(2,2) 4.47 0.33 < 0.0001
α1,2(2,3) -2.35 0.66 < 0.0001
α1,3(2,2) -7.41 0.63 < 0.0001
α1,3(2,3) -5.79 0.33 < 0.0001
α1,3(2,4) -3.97 0.68 < 0.0001
α1,4(2,2) -6.96 0.38 < 0.0001
α1,5(2,2) -20.33 0.81 < 0.0001
α1,5(2,3) -1.12 0.65 0.08
α2,3(2,2) -22.63 0.62 < 0.0001
α2,3(3,2) -16.42 0.62 < 0.0001
α2,3(2,3) 4.95 0.62 < 0.0001
α2,3(3,3) 2.17 0.79 < 0.0001
α2,3(2,4) -4.92 0.72 < 0.0001
α2,3(3,4) 1.08 0.64 0.0926
α2,4(2,2) -2.35 0.51 < 0.0001
α2,4(3,2) -1.37 0.55 0.0127
α2,5(2,2) -49.20 1.17 < 0.0001
α2,5(3,2) -41.72 1.17 < 0.0001
α2,5(2,3) -10.99 0.50 0.1333
α2,5(3,3) -0.30 0.91 < 0.0001
α3,4(2,2) 4.20 0.61 < 0.0001
α3,4(3,2) -5.64 0.58 < 0.0001

Estimate SE P-value
α3,4(4,2) 0.89 0.59 0.1333
α3,5(2,2) -8.30 0.54 < 0.0001
α3,5(3,2) -0.92 0.52 0.0746
α3,5(4,2) 0.64 0.58 0.2703
α3,5(2,3) -6.52 0.67 < 0.0001
α3,5(3,3) -0.07 0.56 0.9065
α3,5(4,3) 8.60 0.68 < 0.0001
α4,5(2,2) -27.21 0.82 0.9065
α4,5(2,3) -22.03 0.87 < 0.0001
αz,3(1,2) 0.36 0.13 < 0.0001
αz,3(1,3) 0.24 0.12 0.05
αz,3(1,4) 0.34 0.14 0.01

α1,2,3(2,2,2) 9.89 0.64 < 0.0001
α1,2,3(2,3,2) 16.66 0.72 < 0.0001
α1,2,3(2,2,3) -12.03 0.76 < 0.0001
α1,2,3(2,3,3) 10.06 0.89 < 0.0001
α1,2,3(2,2,4) -14.62 0.63 < 0.0001
α1,2,3(2,3,4) -5.52 0.84 < 0.0001
α1,2,4(2,2,2) -0.66 0.32 < 0.0001
α1,2,4(2,3,2) -4.80 0.43 < 0.0001
α1,2,5(2,2,2) 15.68 1.00 < 0.0001
α1,2,5(2,3,2) 12.05 0.92 < 0.0001
α1,2,5(2,2,3) -9.14 0.47 < 0.0001
α1,2,5(2,3,3) -12.35 0.81 < 0.0001
α2,3,4(2,2,2) -1.01 0.74 0.1709
α2,3,4(3,2,2) 0.83 0.83 0.3190
α2,3,4(2,3,2) 5.16 0.72 < 0.0001
α2,3,4(3,3,2) 13.00 0.87 < 0.0001
α2,3,4(2,4,2) 9.62 0.79 < 0.0001
α2,3,4(3,4,2) 6.32 0.73 < 0.0001
α2,3,5(2,2,1) 9.58 0.58 < 0.0001
α2,3,5(3,2,1) 8.64 0.64 < 0.0001
α2,3,5(2,3,1) -6.63 0.59 < 0.0001

average effect of increasing the outcome by around e32.4 million with the presence
of the significant interaction term for (z,x3), causing an increase on the impact of
the marketing campaign when this is combined with certain values of the structural
variable x3.

The results presented above, for group 1, are based on the log-transformed prod-
uct sales. The adjusted R2 and standard error for the same model with and without
the log transformation for the product sales s and outcome y are given in Table 8.
This validates our choice, suggested by the plots in Section 2, of taking the loga-
rithm of the product sales while keeping the outcome y on its original scale: this
model has the greatest adjusted R2 and higher precision.
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Table 7 Estimates of the regression parameters, their standard errors and associated p-values for
group 1 (part 2, continued from Table 6).

Estimate SE P-value
α2,3,5(3,3,1) -6.20 0.65 < 0.0001
α2,3,5(2,4,1) 0.69 0.67 0.2998
α2,3,5(3,4,1) -3.77 0.64 < 0.0001
α2,3,5(2,2,2) 7.27 0.68 < 0.0001
α2,3,5(3,2,2) 10.28 0.74 < 0.0001
α2,3,5(2,3,2) -7.88 0.64 < 0.0001
α2,3,5(3,3,2) -2.65 1.07 0.0137
α2,3,5(2,4,2) -9.75 0.74 < 0.0001
α2,3,5(3,4,2) -9.68 0.66 < 0.0001
α3,4,5(2,2,2) 0.38 0.52 0.4639
α3,4,5(3,2,2) 6.12 0.50 < 0.0001
α3,4,5(4,2,2) 0.73 0.50 0.1442
α3,4,5(2,2,3) -2.33 0.60 < 0.0001
α3,4,5(3,2,3) 8.88 0.59 < 0.0001
α3,4,5(4,2,3) -2.23 0.54 < 0.0001
α1,3,4(2,2,2) 7.64 0.59 < 0.0001
α1,3,4(2,3,2) 17.41 0.49 < 0.0001
α1,3,4(2,4,2) 8.45 0.54 < 0.0001
α1,3,5(2,2,2) 28.75 1.24 < 0.0001
α1,3,5(2,3,2) 14.91 0.74 < 0.0001
α1,3,5(2,4,2) 20.61 1.30 < 0.0001
α1,3,5(2,2,3) -14.79 1.81 < 0.0001
α1,3,5(2,3,3) 5.54 0.62 < 0.0001
α1,3,5(2,4,3) 12.50 1.56 < 0.0001
α1,4,5(2,2,2) 9.80 0.73 < 0.0001
α1,4,5(2,2,3) 14.70 0.70 < 0.0001
α2,4,5(2,2,2) 35.22 1.13 < 0.0001
α2,4,5(3,2,2) 27.89 0.86 < 0.0001
α2,4,5(2,2,3) 21.86 0.69 < 0.0001
α2,4,5(3,2,3) 13.39 0.80 < 0.0001

α1,2,3,4(2,2,2,2) -32.64 1.12 < 0.0001
α1,2,3,4(2,3,2,2) -34.55 1.32 < 0.0001

Estimate SE P-value
α1,2,3,4(2,2,3,2) 7.41 1.51 < 0.0001
α1,2,3,4(2,3,3,2) 6.59 1.59 < 0.0001
α1,2,3,4(2,2,4,2) -1.48 1.94 0.44
α1,2,3,4(2,3,4,2) -17.28 1.47 < 0.0001
α1,2,3,4(2,2,2,3) 16.39 1.66 < 0.0001
α1,2,3,4(2,2,3,3) 17.36 0.78 < 0.0001
α1,2,3,4(2,2,4,3) 2.04 0.82 0.01
α1,3,4,5(2,2,2,2) -10.76 1.22 < 0.0001
α1,3,4,5(2,3,2,2) -29.91 0.92 < 0.0001
α1,3,4,5(2,4,2,2) 5.38 0.87 < 0.0001
α1,3,4,5(2,2,2,3) 7.51 1.84 < 0.0001
α1,3,4,5(2,3,2,3) -23.15 0.90 < 0.0001
α1,3,4,5(2,4,2,3) -7.42 0.98 < 0.0001
α2,3,4,5(2,2,2,2) -40.27 1.13 < 0.0001
α2,3,4,5(3,2,2,2) -4.96 1.08 < 0.0001
α2,3,4,5(2,3,2,2) -34.48 1.39 < 0.0001
α2,3,4,5(3,3,2,2) -47.94 1.25 < 0.0001
α2,3,4,5(2,4,2,2) -40.22 1.48 < 0.0001
α2,3,4,5(3,4,2,2) -28.73 0.87 < 0.0001
α2,3,4,5(2,2,2,3) -45.58 0.94 < 0.0001
α2,3,4,5(3,3,2,3) -15.24 1.02 < 0.0001
α2,3,4,5(2,4,2,3) -26.40 0.99 < 0.0001
α2,3,4,5(3,4,2,3) -12.55 0.90 < 0.0001

γ1 0.72 0.03 < 0.0001
γ2 -2.28 0.07 < 0.0001
γ3 3.69 0.15 < 0.0001
γ4 0.64 0.08 < 0.0001
γ5 4.60 0.11 < 0.0001
γ6 6.35 0.11 < 0.0001
γ7 3.50 0.11 < 0.0001
γ8 -3.93 0.12 < 0.0001

Table 8 Comparison of several transformations of the outcome y and product sales s for the model
for group 1.

Adjusted R2 SE
log(s), log(y) 0.9907 not comparable

log(s), y 0.9987 0.7062
s, y 0.9941 1.49

4 Forecasting the Outcome for the Seventh Time Period

The second question asked by the organisers of the competition is to forecast the
economic return for the seventh time period y7. In general, a forecast is a statement
about the likely course of future events, based on the existing state of knowledge.
The most commonly used and natural approach for forecasting of time series is
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based on the Bayesian paradigm [10]. Statements about the uncertain future are
formulated as probabilities conditioned on the available information. However, the
first step in a forecasting problem is the construction of a suitable model based on
analysis of the known development of the time series. See, for example, [10].

Therefore, we propose here an extension to the regression model we introduced
in question one in order to include a time evolution that allows us to forecast.

The organisers of the competition did not specify whether the time periods have
constant length, whether they overlap and whether they are strictly sequential, that
is, there are no gaps between them. Note that the availability of additional data in
this context would have a strong impact on the models we propose below and our
predictions. However, in the absence of such information, we assume here that the
time periods have constant length, do not overlap and are strictly sequential.

We propose below two models and we use validation tools to choose the most
appropriate model for forecasting in our context [7]. We choose to hold out the
last available time period, the sixth, for validation. The data which are not held out
are used to estimate the parameters of the model, the model is then tested on data
in the validation period, and finally forecasts are generated beyond the end of the
estimation and validation periods. The outcome y has been observed for the sixth
time period, so we can compare the predicted data with the observed data. We will
then use the best model selected with the method above to forecast the outcome for
the seventh time period. Of course, when we finally forecast the outcome for the
seventh time period we use all the available data for estimation, that is, we also use
the data available for the sixth time period.

We compare observed data with the predictions for different models by measur-
ing the uncertainty using the Mean Squared Error for the predictions (MSE), the
Mean Range of the 95% interval for the predictions (MR), and the Mean Interval
Score (MIS). The latter is the mean of the Interval Scores (ISi). The ISi for unit i
is the score assigned to the prediction interval (q0.025,q0.975) when yi6 materializes.
Reversing the sign of the scoring rule above, we get the negatively oriented interval
score,

ISi(0.95;yi6) = (q0.975−q0.025)

+
2
ψ

(q0.025− yi6)I(yi6 < q0.025)+
2
ψ

(yi6−q0.975)I(yi6 > q0.975),

where ψ = 0.05. This score rewards narrow prediction intervals and penalizes (de-
pending on ψ) if the observation misses the interval. The smaller ISi is, the greater
is our forecasting precision.

After describing the validation measures above, in Sections 4.1 and 4.2 below
we propose two models and estimate their parameters using the data available for
the first five time periods only. The first model that we propose is an autoregres-
sive model AR(1) [4] whereas the second model is a dynamic linear model [10]. A
dynamic model allows the inclusion of time-dependent parameters, a realistic as-
sumption in our context. A Bayesian approach was used for both models proposed.
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In this approach, in addition to specifying the model f (y|θ) for the observed data y
given a vector of unknown parameters θ , we also assume that θ is a random quantity
with prior distribution p(θ |λ ), where λ is a vector of hyperparameters to be spec-
ified by the modeller. Inference concerning θ is based on its posterior distribution,
p(θ |y,λ ), that is,

p(θ |y,λ ) =
f (y|θ)π(θ |λ )∫
f (y|θ)π(θ |λ )dθ

. (5)

4.1 Autoregressive Model

The first model we consider is a first-order autoregressive model [4], usually re-
ferred to as AR(1), where the current outcome yt depends on the previous outcome
yt−1 for t = 2,3,4,5. This model is motivated by the strong correlation between
adjacent outcomes as shown inFig. 2(e)-(f). The AR(1) model, for t = 2, . . . ,5 and
i = 1, . . . ,4517 is given by

yit = φyi,t−1 + v, where v∼N (0,σ2).

Moreover, we propose to include in the AR(1) model the marketing campaign z for
the first time period, as we have shown in the previous Section its strong impact on
outcome for the first time period (see Fig. 2(j)). This gives us

yi1 = β0 +β1zi + v1, where v1 ∼N (0,σ2
1 )

with the prior distributions given by

φ ∼ Gamma(1,1),
σ
−2
1 ∼ Gamma(0.1,0.01),

σ−2 ∼ Gamma(0.1,0.01),

β0 ∼ N (30,10),
β1 ∼ N (40,10).

The integrations required to do inference under (5) for this model are not tractable
in closed form, thus we approximated it numerically using a Markov chain Monte
Carlo (MCMC) integration algorithm such as Gibbs Sampler [6]. The basic Gibbs
Sampler is given by the following. For θ = (θ1, . . . ,θp) and k from 1 to M repeat:

Step 1 Draw θ
(k)
1 from p(θ1|θ (k−1)

2 , . . . ,θ
(k−1)
p ,y)

Step 2 Draw θ
(k)
2 from p(θ2|θ (k)

1 ,θ
(k−1)
3 , . . . ,θ

(k−1)
p ,y)

. . .
Step p Draw θ

(k)
p from p(θp|θ (k)

1 , . . . ,θ
(k)
p−1,y)

Note that for the AR(1) model proposed here θ = (φ ,σ2,σ2
1 ,β0,β1). If the con-

ditional distribution is not known in closed form then a Metropolis algorithm is
required.

The need for different within-sales point variances for the first time period and
the remaining times intervals is confirmed by the results as σ and σ1 are estimated
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to be significantly different with CI(95%;σ) = (12.17,12.43) and CI(95%;σ1) =
(8.91,9.31). The parameter φ that controls the autoregressive evolution over time is
estimated by CI(95%;φ) = (0.98,0.99).

4.2 Dynamic Model

The second model we propose is a dynamic linear mixed model which combines
sales point-specific random effects with explanatory variables whose coefficients
may vary over time.

In the context of the first question we replaced the product sales by their log-
transformations. We refrain from performing a transformation in this case as it
would confront us with a mixture model and a complex fitting procedure for dy-
namic models. The natural choice would be to include the product sales or their
corresponding principal components. We investigated these options but such mod-
els gave poor fitting. However, modeling of group 2 in question 1 revealed that the
use of indicator functions such as I(s jt > 75) is relevant for the description of the
outcome of interest.

Fig. 2(k)-(l) show the association between outcome and the structural variables
over time. It appears that only the effect of x1 on yt varies as time passes, therefore
we choose the corresponding parameter of x1 to vary over time while the parameters
of the remaining structural variables remain constant. We also decided to include au-
toregressive sales point-specific random effects αit in order to quantify the variation
between different sales points. This is an important component of the model as it
aims to capture the effect of unit specific variables that we did not include in the
model.

In summary, we propose the following model:

yit = β0t +β1tzi +β2t I(s
(i)
2t > 75)+β3t I(s

(i)
3t > 75)+β4t I(s

(i)
5t > 75) (6)

+ β5t I(s
(i)
6t > 75)+δ1t I(x1i = 2)+δXi +αit + vt ,

where

vt |σ2
t ∼ N (0,σ2

t ),
αit |αi,t−1,w2 ∼ N (αi,t−1,w2),

δ1t |δ1,t−1 ∼ N (δ1,t−1,w2
δ1

)
βkt |βk,t−1 ∼ N (βk,t−1,w2

k) for k = {0,1, . . . ,5},

with σ2
1 6= σ2

2 = . . . = σ2
6 = σ2, δ = (δ2, . . . ,δ9)′ and Xi = I(x2i = 2), I(x2i =

3), I(x3i = 2), I(x3i = 3), I(x3i = 4), I(x4i = 2), I(x5i = 2), I(x5i = 3)′ for t = 2, . . . ,5
and i = 1, . . . ,4517. Furthermore, wδ1 = wk = 1 for k = {0,1, . . . ,5}. The prior dis-
tributions used are given by
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model MSE MIS MR
1 145.50 57.00 48.14
2 119.88 51.85 43.10

Table 9 MSE, MIS and MR for the validation dataset and the prediction of y6.

w−2 ∼ Gamma(1,1),
σ
−2
1 ∼ Gamma(0.1,0.01),

σ−2 ∼ Gamma(0.1,0.01),
β01 ∼ N (40,1),
β11 ∼ N (30,1),

βk1 ∼ N (0,1), for k = 2,3,4,5,
αi1 ∼ N (0,w2),
δk ∼ N (0,10), for k = 2, . . . ,9,
δ11 ∼ N (0,1).

Samples may be generated from the model described using a Markov chain
Monte Carlo (MCMC) algorithm [6] as described in Section 4.1.

The assumption of different within-sales point variances in model 2 is confirmed
by the model fitting as the standard deviations of the response, for the model ob-
tained by integrating out the sales point specific random term, are

CI(95%;
√

σ2
1 +w2) = (7.35,7.57)

and
CI(95%;

√
σ2 +w2) = (9.47,9.80).

Moreover, the results show that the dynamics in the coefficients are very important
for some of the parameters, as shown in Fig. 7. We observe that the overall mean
is monotonically increasing over time (Fig. 7(a)), whereas the treatment effect de-
creases as time passes (Fig. 7(b)). This is in line with the time evolution shown in
Fig. 2(j).

Moreover, it appears that the parameters associated with the indicators of the tails
for the product sales s2t ,s3t ,s5t and s6t , shown in Fig. 7(c)-(f), vary substantially over
time. Note the larger credible intervals due to the small number of sales point with
extreme values. The time varying effect of xi on the outcome, observed in Fig. 2(k),
is also confirmed by Fig. 7(g). Furthermore, the coefficients that do not vary over
time (δk; k = 2, . . . ,9) are significant except for δ9, corresponding to the effect of
I(x5i = 3).

4.3 Validation Results

We now compare observed data with the predictions obtained for the sixth time
period from the two models proposed by measuring their uncertainty and precision.
The validation measures for both models are summarized in Table 9 and we observe
that model 2 is superior to model 1 using any of the three criteria.
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Fig. 7 Median (solid line) and 95% credible intervals (dashed line)for the mean parameters in-
volved in model (6) using the validation dataset, that is, the data for the first five time periods.

Furthermore, Fig. 8(a) shows that the predicted values are reasonable, and that
the range of the 95% credible intervals for the predictions obtained for the autore-
gressive model is larger than the range obtained for the dynamic model.

From this validation analysis we conclude that the dynamic model gives better
predictions and represents well the variability of the data. Thus, we proceed to pre-
dict data for the seventh time period using all the available data provided by the
organisers.
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(a) AR(1) model (b) Dynamic model

Fig. 8 Plots of the predicted values against the corresponding observed outcomes yi6 for the first
model, AR(1), and the dynamic model fitted, respectively. The red dots represent the mean of the
predicted values and the smaller black dots represent the limits of the credible interval. The interval
is highlighted with grey.

4.4 Predictions

Following our results above, we fit the observation equation (6) to predict the eco-
nomic return during the seventh time period using all the data provided by the or-
ganisers. Thus, taking into account the uncertainty in the estimation of all time-
dependent parameters, i.e. w2

k (k = 0, ...,5) and w2
δ1

, but also the within-sales point
variance σ2 and the between-sales point variance w2 the distribution for the predic-
tions is given by:

yi7|β06, . . . ,β56,δ16,δ ,αi6,σ
2,w2 ∼N (µi7,σ

2
i7)

with

µi7 = β06 +β16zi +β26I(s(i)
27 > 75)+β36I(s(i)

37 > 75)

+β46I(s(i)
57 > 75)+β56I(s(i)

67 > 75)+δ16I(x1i = 2)+δXi +αi6,

σ
2
i7 = w2

0 +w2
1 zi +w2

2 I(s(i)
27 > 75)+w2

3 I(s(i)
37 > 75)+w2

4 I(s(i)
57 > 75)

+w2
5 I(s(i)

67 > 75)+w2
δ1

I(xi = 2)+σ
2 +w2.

Fitting the model in equation (6) for the first six time periods and drawing from
the above distributions yields the predictions summarized in Fig. 9. Note that the
model captures very different behaviors in the evolution of the parameters over time.
The overall mean (β0), shown in Fig. 9(a), increases over time while the effect of
treatment (β1) decreases (Fig. 9(b)). In addition, the intervals for β1 are very nar-
row suggesting that the effect of treatment on outcome is precisely estimated. The
variable I(s2t > 75) seems to be very influential on the outcome with an effect that
increases over time as we see in Fig. 9(c). The effects of I(s3t > 75) is also increas-
ing with time but it is non-significantly different from zero for t = 3,4,5 (Fig. 9(d)).
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Fig. 9 95% credible intervals (dashed line) and median (solid line) for the mean parameters of
model (6) using all the data available y1, . . . ,y6.

The effect of I(s5t > 75) and I(s6t > 75) on outcome seem non-linear (Fig. 9(e)-(f).
The uncertainty in the estimation of the effect of x1 over time is rather large, but the
effect seems to be positive for t > 1 as we can see in Fig. 9(g). Fig. 9(h) shows the
effect of the other structural variables that are all significant except for one level of
x5 (x5i = 2). The standard deviations for the model obtained by integrating out the
sales point specific random term are

CI(95%;
√

σ2
1 +w2) = (7.15,7.37)

and
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CI(95%;
√

σ2 +w2) = (9.47,9.80).

Finally, we predict the outcome for the seventh time period and we include plots
for the time series of the outcome for a selection of the sales points in Fig. 10. Note
the different shapes of such time series, and how the dynamic model that we propose
captures the variability. Also, see in Fig. 11 the prediction of the seventh time period
for some values of the structural variables.
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Fig. 10 Time series for y with the prediction for the seventh time period with its credible interval
for sales points 1 (a), 1058 (b), 1102 (c), 1204 (d), 1851 (e), 2168 (f), 3112 (g), 848 (h), 862 (i).
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(a) x1 = 1 (b) x1 = 2 (c) x1 = 2,z = 1

Fig. 11 Prediction of y7 for some of the sales points with x1 = 1 (a), x1 = 2 (b) and x1 = 2, z = 1
(c).

5 Discussion

We have analysed the data provided by the organisers of the competition and pro-
posed an approach to answer the two questions.

For the first question, that required the evaluation of the impact of the treat-
ment campaign on the outcome, we proposed a mixture of regression models. Our
results show a good fit and the residual analysis confirmed the plausibility of our as-
sumptions. Moreover, our model was able to extrapolate the additional effect of the
marketing campaign when it is associated with certain values of the other available
covariates, that is, many interaction terms were highly significant. We have pre-
sented here an extensive analysis of the relationship between the outcome variable
and the other covariates for the first time period.

The second question asked by the organisers of the competition is to forecast
the economic return for the seventh time period. We performed this task within the
Bayesian paradigm and proposed autoregressive and dynamic models. We tested our
model on its prediction of the sixth time period using several validation measures.
Our tests showed that the Bayesian dynamic model was the most accurate while still
capturing the variability of the data and avoiding overfitting. Hence, we selected this
model to predict the economic return for the seventh time period, the task required
by the competition. We believe that our Bayesian dynamic model incorporates the
main features of the data provided but it is also easy to adapt to the arrival of new
information in real time, by updating the prior distributions or by including new
covariates.
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