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SUMMARY

In longitudinal and multivariate settings incomplete data, due to missed visits, dropouts or non-return of

questionnaires are quite common.

A longitudinal trial in which potentially informative missingness occurs is the Collaborative Ankle Support

Trial (CAST). The aim of this study is to estimate the clinical effectiveness of four different methods of

mechanical support after severe ankle sprain. The clinical status of multiple subjects was measured at four

points in time via a questionnaire and, based on this, a continuous and bounded outcome score was calculated.

Motivated by this study, a model is proposed for continuous longitudinal data with non-ignorable or

informative missingness, taking into account the number of attempts made to contact initial non-responders.

The model combines a non-linear mixed model for the underlying response model with a logistic regression

model for the reminder process.

The outcome model enables us to analyze the rate of improvement including the dependence on explanatory

variables. The non-linear mixed model is derived under the assumption that the rate of improvement in a given

time interval is proportional to the current score and the still achievable score. Based on this assumption a

differential equation is solved in order to obtain the model of interest.

The response model relates the probability of response at each contact attempt and point in time to

covariates and to observed and missing outcomes.

Using this model the impact of missingness on the rate of improvement is evaluated for different missingness

processes.

1. INTRODUCTION

In clinical trials it is very common for sets of repeated measurements to be incomplete. Missingness

usually occurs for reasons outside of the control of the investigators and may be related to the outcome

measurement of interest, hence complicating the data analysis. In general there are three potential

problems that arise with missing data: loss of efficiency, complication in data handling and analysis,

and bias due to differences between the observed and unobserved data, [1].

Data from such trials can be analysed in four ways:

1. Perform the analysis only on those subjects who complete the trial;

2. Analyse only the available data;

3. Use a single or multiple imputation technique to replace the missing observations with plausible

values, then analyse the completed data set(s); and

4. Model the repeated data and missingness process jointly, [2].
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The first option yields a complete case analysis. In contrast, the second option can be realised through

the direct likelihood approach, which is the likelihood-based way of using available information only,

[3]. Other, mostly nonparametric, methods of using observed data only are available, [4]. Single and

multiple imputation techniques are well known, [1, 4, 5, 6, 7, 8]. Comparisons of different missing

data methods with the main focus on repeated measurement studies are given in [2, 3, 9]. We focus

on the fourth approach. This option is usually the most complex computationally, but it is also the

most useful, as it elucidates the often unexpectedly subtle assumptions behind the others, and allows

the sensitivity of the conclusions to assumptions about the missing data mechanism to be assessed, [2].

According to the taxonomy of Little and Rubin [10], we distinguish between three missing data

mechanisms, which concern the relation between the missingness process and the outcome variable.

These are given by the missing completely at random (MCAR), the missing at random (MAR) and

the missing not at random (MNAR) mechanisms.

A missingness process is said to be MCAR, when missingness is not related to any measurements,

observed or missing in the study. In particular, the incomplete data set can be seen as a

random subsample of the complete data set, which would have been observed without missingness.

Furthermore, it is not necessary to construct a model for the missingness process. A missingness

process which uses less restrictive assumptions is the MAR mechanism. In this case, missingness

depends on observed quantities, which include outcomes and explanatory variables, but not on the

missing components. If, in addition to MAR, the parameter vectors associated with the measurement

and missingness process are disjoint, in the sense that the joint parameter space is the product of the

single parameter spaces (separability or distinctness condition), the missing data mechanism is termed

ignorable. Likelihood-based or Bayesian inference for the measurement parameter of interest can then

be based on the observed data likelihood while ignoring the missing data mechanism, [4]. Finally, if

the missingness probability depends on unknown quantities the missingness process is termed MNAR

or informative. In the case of non-ignorability and MNAR, we need to model the measurement and

missingness process jointly. Methods, such as pattern-mixture models, shared parameter models and

selection models have been proposed for this case. In a pattern-mixture model the joint density of the

full data is factorised into the marginal response density and the outcome density, conditional on the

missingness pattern. In a shared parameter model, the density of the full data is modelled through the

incorporation of random effects, which drive both the outcome and the response process. A selection

model factorises the joint density of the outcome and response mechanism into the marginal outcome

density and the response density, conditional on the measurements.

Although the assumption of ignorability can be realistic for certain settings, in most applications it

is impossible to exclude the possibility of MNAR or non-ignorability. In particular, we cannot test for

MAR itself, [11]. Therefore, many researchers recommend performing a sensitivity analysis in order

to explore the stability of the conclusions across a range of different MAR and MNAR models.

We will focus on studies where a large number of patients drop out throughout the study, and where

the reasons for dropout are expected to be related to the outcome of interest. Within a sensitivity

analysis, we aim to account for informative missingness through selection models, in line with the

fourth analysis option above.

In order to fit a selection model, we need to formulate models for the marginal measurement

process and the conditional missingness process. Assuming a monotone missingness pattern, a logistic

model for the drop-out process in combination with a multivariate normal linear model for the

measurement process was proposed, [12]. The assumption of monotone missingness has been relaxed,

[13, 14]. However, in [13] models for repeated binary data are discussed and the main challenge of

selection models - the integration over the missing data - reduces to feasible sums. In contrast, in [14]
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continuous longitudinal data are analyzed. A logistic and probit model for the missingness process

and a multivariate normal linear model for the outcome of interest are proposed. As in [12] and [13],

the missing data model allows the probability of non-response to depend on current and previous

outcomes. However, in order to facilitate the integration and the construction of the likelihood a first-

order Markov dependence structure for the measurement vecotor is chosen.

We extend these models in three ways. Firstly, none of the abovementioned approaches includes

additional information about the missingness process, which can be very helpful in obtaining a

better understanding of the missing data mechanism, [15]. This information usually consists of proxy

outcomes [16], follow-up studies on a sample of non-responders [17], collection of the reasons for drop-

out or extended retrieval efforts. The additional information we will be using is of the last type. More

precisely, we use the number and nature of attempts made to contact initial non-responders. Following

ideas in [15, 18] we will use a multinomial model for the reminder process. The paper [18] focuses

on studies with a single time point and uses logistic regression to model the response probabilities

at each contact attempt. Based on these probabilities, a Horvitz-Thompson type estimator for the

sample moments is proposed. The same assumptions are made in [15], but different fitting procedures

and estimators are discussed: conditional likelihood method; EM algorithm and a Bayesian approach

using MCMC methods. These approaches will be extended for the longitudinal case.

Secondly, instead of a multivariate linear model, which generally models the overall mean, we will be

fitting a non-linear mixed model that focuses on the rate of improvement. Furthermore, this model

will partly account for the bounded nature of our score data.

Thirdly, we will begin with discussing our approach for the case of monotone missingness patterns,

but relax this assumption later on.

The paper is arranged as follows. The CAST study which motivated the presented work is introduced

in Section 2. In Section 3 we present the selection model framework where we use the missingness

indicator or the number of attempts to account for non-ignorable or informative missingness. Using

this model the impact of missingness on the rate of improvement is evaluated for different missingness

processes in Section 4. Concluding remarks are given in Section 5.

2. THE COLLABORATE ANKLE SUPPORT TRIAL (CAST)

The aim of the Collaborative Ankle Support Trial was to estimate the clinical and cost effectiveness

of three different methods of mechanical support after severe ankle sprain compared to a standard

treatment, [17, 19, 20].

The data for this trial were obtained from a randomised, multicentre study conducted by the

Warwick Medical School. Within this trial patients with a severe sprain of the lateral ligament complex

of the ankle and aged 16 years or older were randomised in one of the four treatment groups –Tubigrip

(standard treatment), Plaster of Paris (PoP), Aircast brace and Bledsoe boot. The clinical status of

these patients was measured at four points in time (baseline and follow-up: 4 weeks, 12 weeks and 9

months) via the Foot and Ankle Outcome Score (FAOS), which is a valid and reliable questionnaire

of 42 items and 5 subscales that ascertains functional limitations and the severity of other symptoms

after ligament sprains, [21].

This analysis will concentrate on 553 patients and the symptoms-subscale which will be referred to as

FAOSS-scale (FAOS-symptoms subscale).

A continuous score, with 100 indicating no symptoms and 0 indicating extreme symptoms, was

calculated for each subscale.
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Boxplot of FAOSS data

Figure 1. Boxplots of mean measures for the four randomisation groups: Tubigrip (left), PoP-
cast (mid-left), Aircast brace (mid-right), Bledsoe boot (right).

For initial exploratory analysis, side-by-side boxplots of the observations for each point in time and

each randomisation group are displayed in Figure 1. We use the explanatory variable randomisation

group rather than the treatment group because the analysis will be performed on an intention-to-treat

basis, i.e. all participants were analysed in the groups to which they were randomised, regardless of

the treatment that they received. Postal questionnaires were used in an attempt to minimise loss

to follow-up, and a system of reminder letters and telephone calls was instituted to follow up those

who did not return their questionnaire. We distinguish between the following ‘reminder categories’

z ∈ {0, 1, 2, 3, 4, 5}:

• z = 0: questionnaire returned - no chasing;

• z = 1: questionnaire returned after telephone chase;

• z = 2: questionnaire returned after 2nd copy sent with no further telephone chasing;

• z = 3: questionnaire returned after 2nd copy sent with further telephone chasing;

• z = 4: core outcomes obtained over the telephone;

• z = 5: non responder.

The frequency for each category and time point is displayed in Table I. For further details concerning

CAST and its design refer to [17, 19, 20].

3. MODEL

In the following subsections, we propose a selection model to adjust for non-ignorable or informative

missingness in the case of a longitudinal study with continuous data.

3.1. Notation

Let yi = (yi,0; yi,4; yi,12; yi,39)
⊤ denote the response vector of subject i ∈ {1, ..., 553}, where yi is a

realisation of the random vector Yi. We assume that Yi is multivariate normal distributed and denote

the joint outcome vector for all subjects by Y = (Y ⊤

1 , ..., Y ⊤

553)
⊤.

Furthermore, let Xi = (xi,0;xi,4;xi,12;xi,39)
⊤ be the matrix of explanatory variables (e.g. time,

gender and age (log-transformed)) for subject i ∈ {1, ..., 553}. The randomisation group is denoted by

trti ∈ {1, 2, 3, 4}, where trti = 1 corresponds to Tubigrip, trti = 2 to PoP-cast, trti = 3 to Aircast
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# of attempts

time point 0 1 2 3 4 5

baseline 553 (100%) 0 0 0 0 0

4 weeks 187 (33.8%) 152 (27.5%) 53 (9.6%) 40 (7.2%) 35 (6.3%) 86 (15.6%)

12 weeks 146 (26.4%) 141 (25.5%) 46 (8.3%) 48 (8.7%) 78 (14.1%) 94 (16.7%)

39 weeks 124 (22.4%) 117 (21.3%) 42 (7.6%) 59 (10.7%) 81 (14.7%) 130 (23.5%)

# Total quest.
1010 410 141 147 194 310

returned

Table I. Overview of the number of reminders needed to retrieve a questionnaire. In brackets the
percentage of the returned questionnaires per attempt category is given for each time.

brace and finally trti = 4 to Bledsoe boot.

The indicator rij is a realisation of the random variable Rij which denotes whether yij was observed,

rij = 1, or missing, rij = 0. We summarize the missingness information for subject i through

Ri = (Ri,0, Ri,4, Ri,12, Ri,39)
⊤ and for all subjects through R = (R⊤

1 , ..., R
⊤

553)
⊤. Moreover, zij

represents the number of reminders needed and is a realisation of the random variable Zij .

We aim to analyse the relationship between the response variable Yi and the explanatory variables

Xi for all i ∈ {1, ..., 553}, taking into account the missingness process and the number of reminders

needed to retrieve a questionnaire.

3.2. Selection Models

Suppose the complete data Y follows the parametric model P(θ) and R follows the parametric model

P(φ). We partition the vector Y into the observed, Yobs, and unobserved part, Ymis. If the missingness

process is non-ignorable or informative we need to base inference for θ on the joint likelihood of

Yobs and the missingness indicator R. A selection model factorises the joint model of the measurement

process and the response mechanism into the marginal measurement process and the response process,

conditional on the measurements. Thus, the joint likelihood for Yobs and R is given by

LYobs,R (θ, φ) =

553∏

i=1

∫

f (yi,obs, yi,mis, ri|Xi, θ, φ) dyi,mis (1)

=

553∏

i=1

∫

f (yi,obs, yi,mis|Xi, θ) f (ri|Xi, yi,obs, yi,mis, φ) dyi,mis.

As zij ∈ {0, 1, 2, 3, 4} ⇔ rij = 1 and zij = 5 ⇔ rij = 0 we can extend the selection model by adjusting

for non-response through zij rather than rij . The motivation for this approach lies in the hypothesis

that subjects who reply after several reminders might be more similar to non-responders, than those

who reply at the very first attempt. Note that this is not an assumption. Our modelling strategy is

flexible enough to explore the plausibility of this hypothesis.

The extension of model (1) is straightforward. Let Z follow the parametric model P(ψ) then

LYobs,Z (θ, ψ) =
553∏

i=1

∫

f (yi,obs, yi,mis|Xi, θ) f (zi|Xi, yi,obs, yi,mis, ψ) dyi,mis. (2)

Fitting the model in equation (1) requires a marginal model for the outcome vector Yi and a model

for the missingness process, conditional on the outcome. Similarly, we need to formulate models for

the outcome process and the conditional reminder process when focusing on model (2). We propose

a non-linear mixed model for the marginal outcome process with a logistic regression model for the

conditional response and the conditional reminder process.
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3.3. Outcome Model

The FAOSS score is observed repeatedly over time. Hence, we are confronted with longitudinal data.

In this context, classical assumptions - especially independence - are not satisfied. As soon as more

than one observation of a characteristic is made for each subject, we have to distinguish carefully

between the different sources of variation. Neglecting the correlation between the measurements of

each subject is inadvisable as the precision of the results and thereby their significance is usually

overestimated, [22].

The most commonly used approaches for analysing continuous longitudinal data are multivariate

linear models and marginal or random effect models. The multivariate linear model formulates a

linear model for each component of the observation vector with correlated errors. In marginal models,

the regression between the marginal mean of the response vector Yi and the explanatory matrix Xi

is modelled through a linear model; the dependence structure across the entries of Yi is modelled

separately. In contrast, random effect models formulate a mixed model; additional modelling of the

intra-individual variation is not necessary.

If we assume normality, these models fit a linear regression, taking into account the intra-individual

variation. In general, a linear change with time is assumed. However, due to the bounded nature of

the outcome, we expect the score to increase faster at the beginning of the study and to move slowly

towards the end. Based on exploratory analysis, see Figure 1, we propose a non-linear mixed model

that models the rate of improvement in dependence of explanatory variables and which takes the

bounded nature of the score into account.

We propose the following mixed model for the marginal outcome process

Yi|Ui
ind.
∼ N4

(
ηi, σ

2I4
)
;

Ui
iid
∼ N (0, D2);

ηij = g(xij , θi) for j ∈ {0, 4, 12, 39},

where g is the non-linear model function and the parameter vector θi varies across subjects. For

convenience we omit the i-subscript for θi in the derivation of the non-linear model.

The FAOSS score is bounded, therefore we expect the rate of improvement in a given time

interval, g′(xij , θ), to be proportional to the current score, g(xij , θ), and the still achievable score

[max{g(xij , θ)} − g(xij , θ)]. Thus, we are interested in solving the differential equation

g′(xij , θ) = κtrti
g(xij , θ) [max{g(xij , θ)} − g(xij , θ)]

where κtrti
for trti ∈ {1, 2, 3, 4} is the treatment-specific proportion-factor. Reducing the problem to

xij = tj ∈ {0, 4, 12, 39} yields the solution

g(xij , θ) =
β1

e−β2,trti
tj

(
β1

β0
− 1

)

+ 1
,

where

• β0 = g(0, θ) describes the intercept;

• β1 = max{g(tj, θ)} describes the maximum score and

• β2,trti
= β1 · κtrti

describes the acceleration of the non-linear function g.

Incorporating the explanatory variable age (log-transformed) is straightforward:

g(xij , θ) =
β1 + α1 · age

exp(−[β2,trti
+ α2 · age] · tj)

(
β1 + α1 · age

β0 + α0 · age
− 1

)

+ 1
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and in order to capture the inter-individual variation, we extend this model to a mixed model:

g(xij , θi) =
β1 + α1 · age

exp(−[β2,trti
+ α2 · age] · tj)

(
β1 + α1 · age

β0 + α0 · age
− 1

)

+ 1

+ Ui. (3)

Further explanatory variables can be included in the same fashion. Analyses based on the assumption

of ignorability lead us to use model (3) without any age-effect on the intercept. Hence, θi = (θ⊤, Ui)
⊤

with θ = (β0, β1, β21, β22, β23, β24, α1, α2, σ,D)⊤. This model can easily be reformulated in terms of

the multivariate normal model with a compound symmetry covariance structure:

Yi ∼ N4 (µi,Σ) , (4)

where

µij =
β1 + α1 · agei

exp {−(β2,trti
+ α2 · agei) tj}

(
β1 + α1 · agei

β0

− 1

)

+ 1

and

Σ =








σ2 +D2 D2 D2 D2

D2 σ2 +D2 D2 D2

D2 D2 σ2 +D2 D2

D2 D2 D2 σ2 +D2







.

3.4. Missingness Process Model

We now consider modelling the missingness process, conditional on the outcome of interest. In the

spirit of regression modelling, we propose the following logistic linear model for all i ∈ {1, ..., 553},

j ∈ {4, 12, 39}:

Rij = 1|Yi, Xij ∼ Bernoulli(ρij), where

logit(ρij) = φ0 + φ1 agei + φ2 tj + φ3 yi,j−1 + φ4 yij (5)

where tj ∈ {4, 12, 39}, yj−1 is the previous outcome and yj the current score. This model corresponds to

MNAR if φ3 6= 0 6= φ4. The special cases of model (5) corresponding to MAR and MCAR (conditioned

on covariates) are obtained from setting φ4 = 0 or φ3 = 0 = φ4, respectively.

Fitting the following model

logit(ρij) = φ0 + φ1 agei + φ2 tj + φ3 yi,j−1 + φ4 yij + φ5,trti
,

which allows dropout rates to differ by treatment unfortunately does not result in a positive definite

Hessian matrix, even when assuming φ4 = 0.

3.5. Reminder Process Model

At first glance the geometric and Poisson model seem realistic to capture the characteristics of the

attempt process. However, the lack of monotonic frequencies in the reminder categories discourages

use of these models (see Table I). Following ideas in [15, 18] we will therefore focus on a multinomial

model for the attempt process.

We develop a model for a single subject. In view of the assumed independence between subjects, it is

then easy to build the complete model.

For the time points j ∈ {4, 12, 39} let pj0 be the probability of responding at the very first attempt.

For k ∈ {1, 2, 3, 4} let pjk denote the probability of responding at the k-th attempt, given that the

subject has not responded earlier. According to the study design we know that the probability of
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responding at the first attempt at baseline, i.e. p00, is one.

The unconditional probabilities µjk of replying at attempt k and time point j are then given by:

µj0 = pj0;

µj1 = pj1 (1 − pj0);

...

µj4 = pj4

3∏

k=0

(1 − pjk).

Furthermore, we define µj5 = 1 −
∑4

k=0
µjk as the probability of not replying at time point

j ∈ {4, 12, 39}, i.e. zj = 5. Corresponding to these probabilities we redefine the random variable

Zj in terms of an indicator random vector. Let Vj be a six-dimensional random vector, where

Vjℓ =

{

1, if attempt Zj = ℓ− 1;

0, otherwise

for ℓ ∈ {1, ..., 6}. Thus, for a certain subject all information about Z is now captured through the

indicator matrix V = (V4, V12, V39)
⊤ and the model in (2) can be reformulated as

LYobs,V (θ, ψ) =

553∏

i=1

∫

f (yi,obs, yi,mis|Xi, θ) f (vi|Xi, yi,obs, yi,mis, ψ) dyi,mis. (6)

We assume

Vj ∼ Multinomial (1, µj0, ..., µj5) . (7)

Dependent on the required inference, a generalized linear model for µjk or pjk can be formulated.

The marginal probability µjk determines the chance of replying at the k-th attempt. In contrast,

formulating a model for the conditional probability pjk investigates the effect of covariates on replying

at the k-th attempt, given the previous attempts were unsuccessful. Given that the attempt process

evolves over time it is sensible to explore the latter case. Nevertheless, we will explore both modelling

approaches and compare the inference.

3.5.1. Modelling pjk The generalized linear model we propose for pjk and j ∈ {4, 12, 39}, k ∈

{1, 2, 3, 4} is given by

logit(pjk) = ψ0k + ψ1 age+ ψ2,trt tj + ψ3 yj−1 + ψ4 yj + ψ5,trt (8)

where yj−1 is the previous outcome and yj the current score. This general model allows for different

missingness mechanisms; MAR is implied by ψ4 ≡ 0 and, conditioned on covariates, MCAR is implied

by ψ3 ≡ 0 ≡ ψ4. Fitting this model to the complete cases only, using the SAS-procedure NLMIXED,

showed a high negative correlation for the parameter estimates ψ̂0k and ψ̂1. We therefore excluded ψ1

from the model. After refitting the model, the corresponding p-values suggested setting ψ00 ≡ 0 ≡ ψ02.

Furthermore, there were no significant differences for the time to treatment interactions and solely

ψ5,4, i.e. an effect of the treatment Bledsoe boot was shown to be significant. Thus, we replace ψ2,trt

by ψ2 and ψ5,trt by ψ5 1 (trt = 4). The model of interest is then

logit(pjk) = ψ0k + ψ2 tj + ψ3 yj−1 + ψ4 yj + ψ5 1 (trt = 4) . (9)

In spite of a high negative correlation between the parameters ψ3 and ψ4 we keep both parameters in

the model. Also, following [12], we consider a slightly different model:

logit(pjk) = ψ0k + ψ2 tj + ψ∗

3 [yj−1 + yj ] + ψ∗

4 [yj−1 − yj] + ψ5 1 (trt = 4) (10)

where ψ∗

3 and ψ∗

4 are usually less correlated.
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3.5.2. Modelling µjk When modelling the unconditional probabilities of the multinomial distribution

given in equation (7), we took the non-responders as the reference category for the dependent variable

Vij . Thus we are interested in the odds of being in an attempt category zij ∈ {0, 1, 2, 3, 4} versus

observing zij = 5. Let µj,ref denote the probability of not replying at time point j. We propose the

following generalized linear model for j ∈ {4, 12, 39} and k ∈ {0, 1, 2, 3, 4}:

mjk := log

(
µjk

µj,ref

)

= λ0 + λ1,k age+ λ2 tj + λ3 yj−1 + λ4 yj , (11)

with

λ3 = 0 = λ4 ⇒ MCAR;

λ4 = 0 ⇒ MAR; and

λ4 6= 0 ⇒ MNAR.

Moreoever, we obtain

µj,ref =
1

1 + exp(mj0) + exp(mj1) + exp(mj2) + exp(mj3) + exp(mj4)
.

Allowing the reminder probabilities to differ by randomisation groups results in a non-positive definite

Hessian matrix. This might be due to the sparse attempt-by-randomisation group data matrix.

3.6. Full Model for Monotone Missingness

Using these models, we can construct the likelihood in the case of monotone missingness. The

derivations will be shown for a selection model that uses the reminder process (via Vij) to account for

missingness. The likelihood using the missingness indicator process Rij can be derived by replacing

Vij by Rij in all the following equations.

The selection model is given by

f (yi, vi|Xi, θ, ψ) = f (yi|Xi, θ) f (vi|Xi, yi, ψ) .

Let the available data for subject i be denoted by Yi,obs, the missing information be summarized in

Yi,mis and Vi = (V ⊤

i,0, ..., V
⊤

i,39)
⊤ be the attempt data. The observed data likelihood contribution of a

certain subject is then given by:

f (yi,obs, vi|Xi, θ, ψ) =

∫

f (yi|Xi, θ) f (vi|Xi, yi, ψ) dyi,mis (12)

=

∫

f (yi,obs, yi,mis|Xi, θ) f (vi|Xi, yi,obs, yi,mis, ψ) dyi,mis.

Now assume that dropout for the subject of interest occurs after the second measurement time, i.e.

Yi,obs = (Yi,0, Yi,4)
⊤, then

f (yi,obs, vi|Xi, θ, ψ) =

∫

f (yi,obs, yi,mis|Xi, θ) f (vi|Xi, yi,obs, yi,mis, ψ) dyi,mis

=

∫ ∫

f (yi,39|yi,12, yi,4, yi,0, Xi, θ) f (yi,12|yi,4, yi,0, Xi, θ) f (yi,4|yi,0, Xi, θ) f (yi0|Xi, θ)

×f (vi,39|vi,12, vi,4, vi,0, Xi, yi, ψ) f (vi,12|vi,4, vi,0, Xi, yi, ψ)

×f (vi,4|vi,0, Xi, yi, ψ) dyi,39 dyi,12.

In the case of monotone missingness we observe

vtj
= (0, 0, 0, 0, 0, 1) =⇒ vtj+1

= (0, 0, 0, 0, 0, 1) (13)

for tj ∈ {4, 12, 39} and tj+1 ∈ {12, 39}. Therefore,

f {vi,39 = (0, 0, 0, 0, 0, 1)|vi,12 = (0, 0, 0, 0, 0, 1), vi,4, vi,0, Xi, yi} = 1.
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Rearranging the observed likelihood yields

f (yi,obs, vi|Xi, θ, ψ) = f (yi,4|yi,0, Xi, θ) f (yi,0|Xi, θ) f (vi,4|vi,0, Xi, yi,4, yi,0, ψ)

×

∫

f (yi,12|yi,4, yi,0, Xi, θ) f (vi,12|vi,4, vi,0, Xi, yi,12, yi,4, ψ)

×

∫

f (yi,39|yi,12, yi,4, yi,0, Xi, θ) dyi,39

︸ ︷︷ ︸

=1

dyi,12.

= f (yi,4|yi,0, X, θ) f (yi,0|Xi, θ) f (vi,4|vi,0, Xi, yi,4, yi,0, ψ)

×

∫

f (yi,12|yi,4, yi,0, Xi, θ) f (vi,12|vi,4, vi,0, Xi, yi,12, yi,4, ψ) dyi,12.

Furthermore, we assume that the components of the random vector Vi are independent, given the

previous or current outcome and covariates, unless a scenario like in equation (13) holds. Thus,

f (yi,obs, vi|Xi, θ, ψ) = f (yi,4|yi,0, Xi, θ) f (yi,0|Xi, θ) f (vi,4|X1, yi,4, yi,0, ψ)

×

∫

f (yi,12|yi,4, yi,0, Xi, θ) f (vi,12|Xi, yi,12, yi,4, ψ) dyi,12,

i.e. the integrals reduce to one-dimensional integrals for i ∈ {1, ..., 553}. These integrals can be

solved through an adaptive Romberg-type integration technique. This approach produces a quick,

rough estimate of the integration result and then refines the estimate until achieving the prescribed

accuracy, [23, 24]. It is implemented in call quad within the proc IML environment in SAS. The

maximum likelihood estimates for θ and ψ can then be calculated through the Newton-Raphson ridge

optimization method (e.g. call nlpnrr in proc IML). Corresponding macros are available from the

authors.

3.7. Full Model for Non-Monotone Missingness

As soon as we relax the assumption of monotone missingness, we are confronted with multidimensional

integrals, because condition (13) not longer holds. Attempts to run the SAS code which accounts for

non-monotone missingness failed, because every iteration step required the calculation of 331 integrals

and several hours of computing time.

Therefore, we decided to integrate over the missing data within the Bayesian paradigm using WinBUGS

which carries out the Gibbs sampling algorithm, [25]. However, due to the complexity of the model and

convergence problems of the Monte Carlo Markov Chains produced by WinBUGS, we had to simplify

the outcome model given in equation (4). Instead, we are considering an outcome model where no age

effect is incorporated, i.e. α1 = α2 = 0.

Furthermore, we focus on the reminder process given in equation (10) and the missingness process

MNARr-2, Section 3.4. Attempts to extend the model in Section 3.5.2 to account for non-monotone

missingness failed due to convergence problems of the corresponding Markov chains. We chose

vague priors influenced by the likelihood-based estimates obtained under the monotone missingness
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assumption:

β0 ∼ N (40, 100) ;

β1 ∼ N (100, 100) ;

β2,trti
∼ N (0, 10) forC ∈ {1, 2, 3, 4};

ψ0,k ∼ N (0, 10) for k ∈ {1, 3, 4};

ψj ∼ N (0, 100) for j ∈ {1, 3};

ψ∗

j ∼ N (0, 100) for j ∈ {4, 5};

φj ∼ N (0, 10) for j ∈ {0, 1, 2, 3, 4};

1

σ
∼ Γ (0.1, 0.001) and

1

D
∼ Γ (0.1, 0.001) .

A burn in of 100,000 and a further 100,000 iterations were performed to make inference. Furthermore,

we used the option of over-relaxation which generates several samples at each iteration and then selects

one that is negatively correlated to the current state of the chain, [26]. The traces of all simulated

variables were examined and different starting values were used in order to verify convergence of the

chains. The means of the resulting posterior distributions are used as estimates.

4. RESULTS

In this section we compare the results for the proposed selection models under different assumptions

for the missingness mechanism and missingness pattern. In the case of a monotone missingness pattern,

we use the outcome model given in equation (4), whereas in the case of non-monotone missingness we

remove the age effect. Note that we originally observe a non-monotone missingness pattern in the data

set. In order to be able to use our model for monotone missingness, we deleted all those observations

that were made after a patient failed to return a previous questionnaire.

The results for the monotone and non-monotone case will be compared with those obtained based on

the assumption of ignorability, see Table II and Table VI.

4.1. Results using the Missingness Process Model

When adjusting for missingness through the missingness indicator Rij , we explore the impact of

missingness on the rate of improvement for the following missingness processes:

• MCARr : logit(ρij) = φ0 + φ1agei + φ2tj ;

• MARr : logit(ρij) = φ0 + φ1agei + φ2tj + φ3yi,j−1;

• MNARr-1: logit(ρij) = φ0 + φ1agei + φ2tj + φ4yij ; and

• MNARr-2: logit(ρij) = φ0 + φ1agei + φ2tj + φ3yi,j−1 + φ4yij .

Note that here MCAR denotes a mechanism where missingness is allowed to depend on covariates but

not on the outcome of interest. Monotone missingness results are given in Table III.

The results of the measurement model are identical under the MCAR and the MAR missing data

assumptions. The estimated intercept β̂0 is the same under all missing data assumptions.

In contrast, the parameter estimates β̂1 and α̂1 are slightly smaller when adjusting for MNAR

processes. Our intuition that older participants achieve a lower maximum score than younger

participants is confirmed. Furthermore, all models confirm that older participants recover less fast
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Monotone Missingness

Parameter Est. SE p-val.

β0 41.04 0.77 < 0.0001

β1 110.29 6.79 < 0.0001

β21 0.950 0.14 < 0.0001

β22 1.069 0.13 < 0.0001

β23 1.001 0.13 < 0.0001

β24 0.962 0.13 < 0.0001

α1 -9.292 2.05 < 0.0001

α2 -0.208 0.04 < 0.0001

σ2 186.63 7.35 < 0.0001

D2 144.79 12.32 < 0.0001

β21 − β22 -0.119 0.04 0.0054

β21 − β23 -0.056 0.04 0.1383

β21 − β24 -0.012 0.03 0.7217

Table II. Overview of the parameter estimates, standard errors and p-values for the outcome model
(4) based on the assumptions of an ignorable missingness process.

View 1
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c
o
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Figure 2. Fitted non-linear mixed model based on the assumption of ignorability and the
Tubigrip group. The left view focuses on the development over time, whereas the right view

concentrates on the age effect.

than younger patients, see Figure 2.

The treatment effects are marginally smaller for the MNAR processes than for the MCAR and the

MAR process. The treatment differences are essentially unchanged. All approaches detect that PoP-

cast is significantly better than Tubigrip. Aircast is marginally better and Bledsoe is not measurably

different from Tubigrip.

The parameters modelling the asymptote of the non-linear curve, i.e. β1 and α1, are different under

the assumption of ignorability (Table II) from those obtained in Table III. However, the average age of

30 years leads to approximately the same maximum value. Under ignorability, a significant treatment

difference is only observed between PoP-cast and Tubigrip. The inter- and intra-individual variance

parameters and their standard deviations are nearly identical under all models.

All models show increasing probabilities of replying with age. The effect for MNAR models is largest

and smallest for MCAR model. No time effect is found for any missing data models. Furthermore, the

MAR model suggests that patients with high score at the previous occasion are more likely to return

their questionnaire (p-value is 0.06). The MNARr-1 model finds a significant effect of the current
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Parameter MCARr MARr MNARr-1 MNARr-2

Est. SE p-val. Est. SE p-val. Est. SE p-val. Est. SE p-val.

β0 41.04 0.77 < 0.0001 41.04 0.77 < 0.0001 41.03 0.78 < 0.0001 41.03 0.78 < 0.0001

β1 106.89 6.77 < 0.0001 106.89 6.82 < 0.0001 105.57 6.69 < 0.0001 105.70 6.91 < 0.0001

β21 0.968 0.13 < 0.0001 0.968 0.14 < 0.0001 0.939 0.13 < 0.0001 0.942 0.14 < 0.0001

β22 1.087 0.13 < 0.0001 1.087 0.13 < 0.0001 1.059 0.13 < 0.0001 1.061 0.13 < 0.0001

β23 1.024 0.13 < 0.0001 1.024 0.13 < 0.0001 0.994 0.13 < 0.0001 0.997 0.13 < 0.0001

β24 0.979 0.12 < 0.0001 0.979 0.13 < 0.0001 0.952 0.12 < 0.0001 0.955 0.13 < 0.0001

α1 -8.276 2.03 < 0.0001 -8.276 2.05 < 0.0001 -7.997 2.00 < 0.0001 -8.023 2.06 < 0.0001

α2 -0.213 0.04 < 0.0001 -0.213 0.04 < 0.0001 -0.207 0.04 < 0.0001 -0.207 0.04 < 0.0001

σ2 186.27 7.32 < 0.0001 186.27 7.32 < 0.0001 186.53 7.35 < 0.0001 186.47 7.32 < 0.0001

D2 147.52 12.61 < 0.0001 147.52 12.60 < 0.0001 148.06 12.66 < 0.0001 148.00 12.69 < 0.0001

β21 − β22 -0.118 0.04 0.0028 -0.118 0.04 0.0028 -0.120 0.04 0.0023 -0.120 0.04 0.0024

β21 − β23 -0.055 0.04 0.0720 -0.055 0.04 0.0721 -0.055 0.04 0.0685 -0.055 0.04 0.0689

β21 − β24 -0.011 0.03 0.3771 -0.011 0.03 0.3771 -0.011 0.03 0.3433 -0.013 0.03 0.3469

φ0 -0.707 0.77 0.1784 -1.150 0.85 0.0879 -1.874 1.02 0.0328 -1.827 1.15 0.0560

φ1 0.772 0.23 0.0005 0.824 0.24 0.0004 0.914 0.25 0.0001 0.907 0.27 0.0005

φ2 0.007 0.01 0.1120 0.001 0.01 0.4274 0.002 0.006 0.4037 0.001 0.01 0.4263

φ3 0.006 0.004 0.0613 0.001 0.01 0.4453

φ4 0.011 0.006 0.0315 0.010 0.01 0.1629

−2ℓ 16421.06 16418.64 16417.62 16417.60

Table III. Parameter estimates, standard errors, p-values and deviances for the outcome model (4),
the response model given in equation 5 and different missing data mechanisms.
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score on the missingness probabilities: as the score increases, the probability of being a non-responder

decreases. This result is counter-intuitive and does not correspond with quantitative findings [27],

which suggest that patients who considered themselves to have made fully recovery, did not return

their subsequent questionnaire. We will scrutinize this observation in the next subsection. For the

MNARr-2 model, no significant effect of current or previous score is found. This might be partly due

to the high correlation of scores at adjacent occasions.

4.2. Results using the Reminder Process Model via pjk

Using the notation in Subsection 3.5.1 we will investigate the following logistic regression models for

the conditional reminder process probabilties pjk:

• MCARp : logit(pjk) = ψ0k + ψ2 tj + ψ5,trt 1 (trt = 4) ;

• MARp : logit(pjk) = ψ0k + ψ2 tj + ψ3 yj−1 + ψ5,trt 1 (trt = 4) ;

• MNARp-1: logit(pjk) = ψ0k + ψ2 tj + ψ3 yj−1 + ψ4 yj + ψ5,trt 1 (trt = 4) ;

• MNARp-2: logit(pjk) = ψ0k + ψ2 tj + ψ4 yj + ψ5,trt 1 (trt = 4) ; and

• MNARp-3: logit(pjk) = ψ0k + ψ2 tj + ψ∗

3 [yj−1 + yj ] + ψ∗

4 [yj−1 − yj] + ψ5 1 (trt = 4) .

where k ∈ {0, 1, 2, 3, 4} and ψ00 ≡ ψ02 = ψ04 ≡ 0. The reasons for removing ψ00 = ψ02 from the

reminder process were discussed in Section 3. We set ψ04 = 0, because fitting some of the above

models in the presence of ψ04 lead to identifiability problems. The results for the case of monotone

missingness are shown in Table IV.

The estimates for the outcome model are practically identical for all reminder processes investigated,

and differ from those of the informative missingness processes just by slightly smaller treatment effects.

Thus, the conclusions for the outcome model are as discussed in Section 4.1. The treatment effects

are slightly larger across all models than under the ignorability assumption (Table II).

For the reminder process z, given the outcome y, we estimate a positive effect of phone calls on the

retrieval of questionnaires, although only ψ01 is shown to be significant. Furthermore, the probability

of replying at a certain attempt decreases as time passes under every reminder mechanism investigated.

This effect was not observed in the response models (Section 4.1). Patients allocated to Bledsoe boot

are more likely to reply, this effect is only borderline under MCAR.

The MAR results confirm that the reminder process, and therefore the missingness process, depend

on the outcome of interest. The probability of returning a questionnaire decreases with the score at

the prior occasion: patients with a high score tend to return the questionnaires only after several

attempts or not at all. These results are the reverse of those shown in Section 4.1, perhaps due to

the incorporated age-effect in Section 4.1. We omitted this effect due to the models’ complexity and

failed attempts to fit the model with added age-effect. These contradicting results might be explained

through the negative dependence of the age of patients and their score. In Section 4.1, we found an

increasing probability of replying with increasing age. Thus, the age of patients or their corresponding

score might partially adjust for missingness. Nevertheless, the score itself is shown to have a significant

effect on the response probabilities, even when an age-effect is included, see Section 4.1, model MNARr-

1; only the conclusion changes.

The probability of replying at a certain time also decreases with the score at that time in case

of MNARr-2, but including both previous and current score is not informative. The alternative

parametrization introduced in equation (10) shows the reminder process depends on the mean score,

not the difference or improvement. The high correlation between the scores at adjacent occasions

means that either score can be used, i.e. an MAR model is adequate. In general, unless the rate of

improvement, not the actual health, drives the response process an MAR will be adequate.
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Parameter MCARp MARp MNARp-1 MNARp-2 MNARp-3

Est. SE p-val. Est. SE p-val. Est. SE p-val. Est. SE p-val. Est. SE p-val.

β0 41.04 0.78 < 0.0001 41.04 0.77 < 0.0001 41.04 0.77 < 0.0001 41.04 0.78 < 0.0001 41.04 0.78 < 0.0001

β1 106.89 6.79 < 0.0001 106.89 6.89 < 0.0001 106.82 6.79 < 0.0001 106.78 6.77 < 0.0001 106.82 7.12 < 0.0001

β21 0.968 0.14 < 0.0001 0.968 0.14 < 0.0001 0.966 0.14 < 0.0001 0.965 0.13 < 0.0001 0.966 0.14 < 0.0001

β22 1.087 0.13 < 0.0001 1.087 0.13 < 0.0001 1.084 0.13 < 0.0001 1.083 0.13 < 0.0001 1.084 0.13 < 0.0001

β23 1.024 0.13 < 0.0001 1.024 0.13 < 0.0001 1.021 0.13 < 0.0001 1.020 0.13 < 0.0001 1.021 0.13 < 0.0001

β24 0.979 0.13 < 0.0001 0.979 0.13 < 0.0001 0.977 0.13 < 0.0001 0.976 0.12 < 0.0001 0.977 0.13 < 0.0001

α1 -8.276 2.05 < 0.0001 -8.276 2.07 < 0.0001 -8.261 2.04 < 0.0001 -8.252 2.03 < 0.0001 -8.261 2.14 < 0.0001

α2 -0.213 0.04 < 0.0001 -0.213 0.04 < 0.0001 -0.213 0.04 < 0.0001 -0.213 0.04 < 0.0001 -0.213 0.04 < 0.0001

σ2 186.27 7.33 < 0.0001 186.27 7.33 < 0.0001 186.25 7.33 < 0.0001 186.26 7.32 < 0.0001 186.25 7.33 < 0.0001

D2 147.53 12.65 < 0.0001 147.52 12.65 < 0.0001 147.59 12.67 < 0.0001 147.61 12.64 < 0.0001 147.59 12.71 < 0.0001

β21 − β22 -0.118 0.04 0.0028 -0.118 0.04 0.0028 -0.118 0.04 0.0028 -0.118 0.04 0.0027 -0.118 0.04 0.0028

β21 − β23 -0.055 0.04 0.0720 -0.055 0.04 0.0721 -0.055 0.04 0.0717 -0.055 0.04 0.0716 -0.055 0.04 0.0718

β21 − β24 -0.011 0.03 0.3771 -0.011 0.03 0.3772 -0.011 0.03 0.3752 0.011 0.03 0.3743 0.011 0.03 0.3753

ψ01 0.124 0.08 0.0560 0.194 0.08 0.0086 0.205 0.08 0.0062 0.204 0.08 0.0065 0.205 0.08 0.0063

ψ03 0.045 0.12 0.3595 0.107 0.13 0.1971 0.115 0.13 0.1890 0.112 0.13 0.1861 0.115 0.13 0.1814

ψ2 -0.012 0.002 < 0.0001 -0.006 0.003 0.0383 -0.006 0.003 0.0367 -0.006 0.003 0.0119 -0.006 0.003 0.0367

ψ3 -0.004 0.001 0.0016 -0.002 0.002 0.1615

ψ4 -0.002 0.002 0.2500 -0.003 0.001 0.0012

ψ∗

3 -0.002 0.001 0.0034

ψ∗

4 -0.0001 0.002 0.4818

ψ5 0.133 0.08 0.05730 0.212 0.09 0.0083 0.218 0.09 0.0070 0.213 0.09 0.0080 0.218 0.09 0.0070

−2ℓ 19577.16 19568.3 19567.32 19567.78 19567.32

Table IV. Parameter estimates, standard errors, p-values and deviances for the outcome model (4),
the reminder models defined in equations (8) and (10) and the different missing data mechanisms.
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4.3. Results using the Reminder Process Model via µjk

The following missingness processes will be investigated under the model for the unconditional

probabilities with the non-responders as reference category:

• MCARµ : log
(

µjk

µj,ref

)

= λ0 + λ1,k age+ λ2 tj

• MARµ : log
(

µjk

µj,ref

)

= λ0 + λ1,k age+ λ2 tj + λ3 yj−1;

• MNARµ-1: log
(

µjk

µj,ref

)

= λ0 + λ1,k age+ λ2 tj + λ4 yj ; and

• MNARµ-2: log
(

µjk

µj,ref

)

= λ0 + λ2,k age+ λ2 tj + λ3 yj−1 + λ4 yj

where k ∈ {0, 1, 2, 3, 4}. The results are presented in Table V.

The estimated outcome parameters are consistent with those obtained by modelling the missingness

process in Section 4.1. Regarding the reminder process modelled, we observe that the intercept varies

substantially across the assumed missingness processes. This is not surprising, as we include more

covariates to explain the reminder process. Furthermore, we find a non-significant time effect for all

models investigated.

There is an increasing probability of replying with age, which interacts with attempt in all models.

This age effect is larger for patients who return their questionnaire after a single telephone reminder

or without any chasing, with largest estimates under the MNAR models.

The score has a positive effect on the probability of replying at a certain attempt. As in Section 4.1, we

observe a borderline significance of the previous score (i.e. MAR, p-value= 0.06) and a stronger effect

with the current score. Once again, an effect of the outcome of interest on the response probabilities

could not be verified when incorporating the current and previous score in the reminder process.

4.4. Results for Non-Monotone Missingness

The estimates under the assumption of ignorability, MNARp-3 and MNARr-2 for the non-monotone

case are summarized in Table VI.

The estimates for the mean parameters under ignorability are usually smaller than under the MNARp-3

missing data assumption, but larger under MNARr-2. The treatment differences under ignorability and

MNARr-2 are practically identical, but smaller for the MNARp-3 process. In all models, both Aircast

and PoP-cast are significantly better than Tubigrip. Note that the significant difference between

Aircast and Tubigrip is due to the removal of the significant age effect, see Table II.

Similar to the monotone case, Section 4.2, the first telephone call (z = 1) significantly increases

the response probabilities under MNARp-3. Furthermore, time has a negative effect on the response

probabilities. In contrast to the monotone case, we observe a borderline non-significant effect of the

Bledsoe treatment. The estimates for ψ∗
3 and ψ∗

4 are both significantly different from zero. The reminder

process depends not only on the actual score at the previous or current time point, but also on the

improvement between two time points. In contrast to previous models (Section 4.1 and Section 4.3),

the probability of replying decreases with the average score, but increases with improvement.

In comparison with the results for monotone missingness patterns and MNARr-2, Section 4.1, we

observe a smaller intercept and an existing time effect. As time passes the probability of replying

decreases. Further, a positive effect of the current score on the missingness process is shown. This

effect was not observed in the monotone case.

Note that in all approaches the inter- and intra-individual variations are inflated due to the removed

age-effect.

For illustration, we show the probabilities of not replying for different age groups and low/high scores

under the MNARr-2 and the MNARp-3 model, see Table VII.



CRiSM Paper No. 09-42, www.warwick.ac.uk/go/crism

A
N

A
L
Y

S
IN

G
A

L
O

N
G

IT
U

D
IN

A
L

S
T

U
D

Y
W

IT
H

M
IS

S
IN

G
D

A
T
A

1
7

Parameter MCARµ MARµ MNARµ-1 MNARµ-2

Est. SE p-val. Est. SE p-val. Est. SE p-val. Est. SE p-val.

β0 41.04 0.78 < 0.0001 41.04 0.78 < 0.0001 41.03 0.78 < 0.0001 41.03 0.78 < 0.0001

β1 106.89 6.86 < 0.0001 106.89 6.87 < 0.0001 105.57 6.72 < 0.0001 105.70 7.09 < 0.0001

β21 0.968 0.14 < 0.0001 0.968 0.14 < 0.0001 0.939 0.13 < 0.0001 0.942 0.14 < 0.0001

β22 1.087 0.13 < 0.0001 1.087 0.13 < 0.0001 1.059 0.13 < 0.0001 1.061 0.13 < 0.0001

β23 1.024 0.13 < 0.0001 1.024 0.13 < 0.0001 0.994 0.13 < 0.0001 0.997 0.13 < 0.0001

β24 0.979 0.13 < 0.0001 0.979 0.13 < 0.0001 0.951 0.12 < 0.0001 0.955 0.13 < 0.0001

α1 -8.276 2.06 < 0.0001 -8.275 2.06 < 0.0001 -7.997 2.01 < 0.0001 -8.023 2.12 < 0.0001

α2 -0.213 0.04 < 0.0001 -0.213 0.04 < 0.0001 -0.207 0.04 < 0.0001 -0.207 0.04 < 0.0001

σ2 186.27 7.33 < 0.0001 186.27 7.33 < 0.0001 186.53 7.35 < 0.0001 186.47 7.36 < 0.0001

D2 147.52 12.68 < 0.0001 147.52 12.66 < 0.0001 148.06 12.65 < 0.0001 148.00 12.69 < 0.0001

β21 − β22 -0.118 0.04 0.0028 -0.118 0.04 0.0028 -0.120 0.04 0.0023 0.120 0.04 0.0024

β21 − β23 -0.055 0.04 0.0720 -0.055 0.04 0.0721 -0.055 0.04 0.0685 -0.055 0.04 0.0688

β21 − β24 -0.011 0.03 0.3771 -0.011 0.03 0.3772 -0.013 0.03 0.3433 -0.013 0.03 0.3468

λ0 -2.166 0.75 0.0021 -2.610 0.85 0.0011 -3.335 0.92 0.001 -3.288 0.96 0.0003

λ1,0 0.899 0.23 0.0001 0.951 0.25 0.0001 1.041 0.23 < 0.0001 1.035 0.23 < 0.0001

λ1,1 0.863 0.23 0.0001 0.915 0.25 0.0001 1.005 0.23 < 0.0001 0.999 0.23 < 0.0001

λ1,2 0.538 0.23 0.0099 0.590 0.25 0.0085 0.680 0.23 0.0016 0.673 0.23 0.0019

λ1,3 0.539 0.23 0.0097 0.591 0.25 0.0084 0.681 0.23 0.0015 0.675 0.23 0.0019

λ1,4 0.562 0.23 0.0074 0.614 0.25 0.0065 0.704 0.23 0.0011 0.698 0.23 0.0014

λ2 0.007 0.01 0.1120 0.001 0.01 0.4273 0.002 0.01 0.4035 0.001 0.01 0.4263

λ3 0.006 0.004 0.0605 0.001 0.01 0.4437

λ4 0.011 0.01 0.0277 0.010 0.01 0.1439

−2ℓ 20101.72 20099.30 20098.28 20098.26

Table V. Parameter estimates, standard errors, p-values and deviances for the outcome model (4),
the reminder model given in equation (11) and the different missing data mechanisms.
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Ignorable MNARp-3 MNARr-2

Parameter Est. SE p-val. Est. 95% CI Parameter Est. 95% CI

β0 41.16 0.80 < 0.0001 41.15 [39.55,42.73] β0 41.70 [40.19,43.22]

β1 79.29 0.83 < 0.0001 80.35 [78.71,81.98] β1 79.44 [77.67,81.25]

β21 0.215 0.03 < 0.0001 0.238 [0.18,0.31] β21 0.216 [0.16,0.26]

β22 0.379 0.04 < 0.0001 0.394 [0.32,0.47] β22 0.367 [0.30,0.45]

β23 0.312 0.03 < 0.0001 0.330 [0.27,0.40] β23 0.296 [0.24,0.36]

β24 0.270 0.03 < 0.0001 0.288 [0.24,0.35] β24 0.258 [0.21,0.31]

σ2 192.1 7.37 < 0.0001 196.1 [181.8,211.6] σ2 194.8 [180.3,210.5]

D2 155.8 13.05 < 0.0001 156.2 [131.9,183.4] D2 159.1 [134.0,187.0]

β21 − β22 -0.164 0.04 0.0002 -0.156 [-0.25,-0.06] β21 − β22 -0.165 [-0.25,-0.08]

β21 − β23 -0.098 0.04 0.0169 -0.091 [-0.18,-0.003] β21 − β23 -0.094 [-0.17,-0.02]

β21 − β24 -0.056 0.04 0.1299 -0.049 [-0.13,0.03] β21 − β24 -0.057 [-0.12,0.01]

ψ01 0.341 [0.20,0.49] φ0 -2.143 [-3.60,-0.61]

ψ03 -0.188 [-0.39,0.02] φ1 0.882 [0.54,1.22]

ψ2 -0.006 [-0.011,-0.001] φ2 -0.020 [-0.03,-0.01]

ψ∗
3 -0.006 [-0.007,-0.005] φ3 -0.005 [-0.01,0.01]

ψ∗

4 0.004 [0.001,0.008] φ4 0.019 [0.002,0.03]

ψ5 0.144 [-0.003,0.29]

Table VI. Overview of the parameter estimates, standard errors and p-values under non-monotone
missingness and the assumption of an ignorable missingness mechanism. Further, the means of
the posterior distributions and the 95% credible intervals (CI) for the MNARp-3 and MNARr-2

missingness processes are shown.

MNARp-3

current score previous score
µj5

j = 12 j = 39

low
low 0.13 0.21

high 0.15 0.23

high
low 0.22 0.28

high 0.23 0.30

MNARr-2

age current score
1 − ρj

j = 12 j = 39

Young
low 0.20 0.29

high 0.11 0.18

Middle-Aged
low 0.16 0.24

high 0.09 0.15

Old
low 0.12 0.20

high 0.07 0.12

Table VII. Overview of the probabilities of not replying for different age groups and previous /
current scores based on the point estimates obtained from fitting the MNARp-3 and the MNARr-2
model under non-monotone missingness, see Table VI. Low and high scores denote the first and third
quantiles, respectively. The age groups were classified according to the first, second (median) and third

quantile.

5. CONCLUSIONS

We have proposed a selection model framework for continuous longitudinal data to adjust for non-

ignorable or informative missingness when initial non-responders are reapproached several times. The

model presented combines a non-linear mixed model for the underlying outcome model with a logistic

regression model for the missingness and the reminder process.

The non-linear mixed model is derived under the assumption that the rate of improvement in a given

time interval is proportional to the current score and the still achievable score. For the reminder

process, we model the probability of replying at a certain attempt, given not having replied earlier,
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dependent on covariates and the outcome score itself.

We investigate the impact of missingness on the rate of improvement for different missingness

processes. We distinguish the case of monotone missingness patterns from the case of non-monotone

missingness. While we approach the monotone case through likelihood based inference, we estimate

the parameters of interest within the Bayesian paradigm for non-monotone missingness patterns.

The conclusions that recovery is slower, and less satisfactory with age, and more rapid with PoP-cast

than Tubigrip do not alter materially across models with monotone missingness. The superiority of

Aircast brace over Tubigrip is shown to be borderline significant with monotone missingness modelled.

Depending on whether the reminder process or the missingness process is explored, and on whether

conditional or unconditional reminder probabilities are modelled, we find that the probabilities of

replying decrease or increase with the observed outcome at the current or previous occasions. We

argue that these results are due to the inconsistent incorporation of an age effect in the missingness

process and reminder process models. We conclude that the age of patients or their corresponding score

might be used to adjust for missingness as these are negatively associated. Nevertheless, the score itself

is shown to have a significant effect on the response probabilities, even when an age-effect is included,

see Section 4.1 and Section 4.3. It would be desirable to include an age-effect when modelling the

conditional attempt probabilities in Section 4.2. However, the computational complexity prevented us

from doing so.

Furthermore, we observe that as time passes the probability of replying decreases for every attempt

category with the conditional reminder probabilities modelled. This effect is not verified for monotone

missingenss patterns when the unconditional reminder probabilities or the missingness process are

modelled. However, a negative effect of time is observed for MNARr-2 and non-monotone missingness.

The results also suggest that phone calls are effective in retrieving questionnaires.

Only about 10% of missingness is non-monotone, so we observe similar results for the non-monotone

case. However, the borderline significance of Aircast brace over Tubigrip with monotone missingness

modelled becomes significant when we account for non-monotone missingness patterns. Note that

these results have to be treated with caution as we are excluding the age-effect in order to reduce the

model complexity.

We believe that the selection models presented are valuable for understanding treatment and covariate

effects on the outcome and the inclination to reply. More efficient algorithms would facilitate extensions

to non-monotone missingness patterns and wider use of these models.
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