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Abstract

This paper considers ergodicity properties of certain adaptive Markov chain Monte Carlo
(MCMC) algorithms for multidimensional target distributions, in particular Adaptive Metropo-
lis and Adaptive Metropolis-within-Gibbs. It was previously shown (Roberts and Rosenthal [21])
that Diminishing Adaptation and Containment imply ergodicity of adaptive MCMC. We de-
rive various sufficient conditions to ensure Containment, and connect the convergence rates of
algorithms with the tail properties of the corresponding target distributions. An example is
given to show that Diminishing Adaptation alone does not imply ergodicity. We also present a
Summable Adaptive Condition which, when satisfied, proves ergodicity more easily.

1 Introduction

Markov chain Monte Carlo algorithms are widely used for approximately sampling from com-
plicated probability distributions. However, it is often necessary to tune the scaling and other
parameters before the algorithm will converge efficiently. Adaptive MCMC algorithms modify their
transitions on the fly, in an effort to automatically tune the parameters and improve convergence.

Some adaptive MCMC methods use regeneration times and other somewhat complicated con-
structions, see [10] and [5]. However, Haario et al. [11] proposed an adaptive Metropolis algorithm
attempting to optimise the proposal distribution, and proved that a particular version of this al-
gorithm correctly converges strongly to the target distribution. The algorithm can be viewed as a
version of the Robbins-Monro stochastic control algorithm, see [2] and [16]. The results were then
generalized proving convergence of more general adaptive MCMC algorithms, see [3] and [1].

It was proved by Roberts and Rosenthal (RR) [21] that Diminishing Adaptation and Con-
tainment imply that adaptive MCMC converges to the target distribution. When designing the
algorithm, it is not difficult to ensure that Diminishing Adaptation holds. However, Containment
may be more challenging, which raises two questions. First, is Containment really necessary. Sec-
ond, how can Containment be verified in specific examples. RR prove that an adaptive MCMC
satisfying Diminishing Adaptation satisfies Containment if the family {Pγ}γ∈Y is simultaneously
strongly aperiodically geometrically ergodic, but this may be difficult to check in practice. In this
paper, we give some simpler criteria related to proposals to check Containment, more easily.
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After introducing our notation and terminology in Section 2, we present a counter example in
Section 3, which demonstrates that Diminishing Adaptation alone is not sufficient for the ergodicity
of adaptive MCMC. However, we show in Section 4 that a stronger version of the Diminishing
Adaptation alone implies ergodicity of adaptive algorithm. We then give some results which ensure
ergodicity for certain adaptive Metropolis algorithms in Section 5 and adaptive Metropolis-within-
Gibbs algorithms in Section 6.

2 Preliminaries

We let π(·) be a fixed ‘target’ probability distribution. on a state space X with σ-field F . The
goal of MCMC is to approximately sample from π(·) through the use of Markov chains, particularly
when π(·) is too complicated and multidimensional to facilitate more direct sampling.

We let {Pγ}γ∈Y be a family of Markov chain kernels on X , each of which has π(·) as the unique
stationary distribution, i.e. πPγ(·) = π(·) for all γ ∈ Y.

Assuming that Pγ is φ-irreducible and aperiodic, this implies that Pγ is ergodic for π(·), i.e.
limn→∞

∥∥Pn
γ (·) − π(·)∥∥ = 0, for all x, where ‖μ(·) − ν(·)‖ = supA∈F |μ(A) − ν(A)| is the total

variation norm. So, if γ is fixed, we know that Pγ will eventually converge to π(·).
However, some choices of γ may lead to far less efficient algorithms than others, and it may be

difficult to know in advance which choices of γ are preferable. To deal with this, adaptive MCMC
proposes that at each time n we let the choice of γ be given by a Y-valued random variable Γn,
updated according to specified rules.

Formally, for n = 0, 1, 2, . . ., we have an Y-valued random variable Γn, representing the choice
of transition kernel to be used when updating from Xn to Xn+1. We let

Gn := σ (X0, . . . ,Xn,Γ0, . . . ,Γn)

be the filtration generated by {(Xn,Γn)}. Thus,

P [Xn+1 ∈ B|Xn = x,Γn = γ,Gn−1] = Pγ(x,B), x ∈ X , γ ∈ Y, B ∈ F , (1)

while the conditional distribution of Γn+1 given Gn is to be specified by the particular adaptive
algorithm being used. We let

A(n)((x, γ), B) = P[Xn ∈ B|X0 = x,Γ0 = γ], B ∈ F ,

record the conditional probabilities for Xn for the adaptive algorithm, given the initial conditions
X0 = x and Γ0 = γ. We let

T (x, γ, n) =
∥∥∥A(n)((x, γ), ·) − π(·)

∥∥∥
denote the total variation distance between the distribution of our adaptive algorithm at time n
and the target distribution π(·). We call the adaptive algorithm ergodic if limn→∞ T (x, γ, n) = 0
for all x ∈ X and γ ∈ Y.

Containment and Diminishing Adaptation ensure ergodicity and weak law of large number of
adaptive MCMC, see [21].

Definition 2.1 (Containment). for all ε > 0, the sequence {Mε(Xn,Γn)}∞n=0 is bounded in proba-
bility conditioned on X0 = x∗ and Γ0 = γ∗, where

Mε(x, γ) = inf
n

{
n ≥ 1 :

∥∥Pn
γ (x, ·) − π(·)∥∥ ≤ ε

}
is the “ε-convergence function”.

2



CRiSM Paper No. 09-15, www.warwick.ac.uk/go/crism

Definition 2.2 (Diminishing Adaptation). limn→∞ Dn = 0 in probability, where

Dn = sup
x∈X

∥∥PΓn+1(x, ·) − PΓn(x, ·)∥∥
is a Gn+1 measurable random variable representing the amount of adapting done between iterations
n and n + 1.

Theorem 2.1 (RR [21]). Consider an adaptive MCMC algorithm on a state space X , with adap-
tation index Y, so π(·) is stationary for each kernel Pγ for γ ∈ Y. Assuming Containment and
Diminishing Adaption, the adaptive algorithm is ergodic.

Following standard results about geometric ergodicity and polynomial ergodicity, RR also con-
sidered certain “simultaneous” ergodicity conditions, as follows, see [22], [12], [6], [13], [9], [8],
[1].

Definition 2.3 (simultaneously strongly aperiodically geometrically ergodic). Suppose that there
is C ∈ F , V : X → [1,∞) , δ > 0, λ < 1, and b < ∞, such that supC V = v < ∞, and
(i) ∃ a probability measure ν(·) on C with P(x, ·) ≥ δν(·) for all x ∈ C; and
(ii) PV ≤ λV + b1C .

Theorem 2.2 (RR [21]). Consider an adaptive MCMC algorithm with Diminishing Adaptation,
such that the family {Pγ}γ∈Y is simultaneously strongly aperiodically geometrically ergodic. Then
the adaptive algorithm is ergodic.

Results involving geometric convergence are well established, see [15], [14], [22], [12], [9]. The
main method in these papers is to utilise Foster-Liapounov drift condition. From Theorem 2.1, we
have the following:

Proposition 2.3. Consider {Pγ}γ∈Y a family of Markov chains on X . Suppose that all compact
sets are small for Pγ , γ ∈ Y and there exists a function V with V > 1 and supx∈C,γ∈Y PγV (x) < ∞
for all compact sets C:

lim sup
|x|→∞

sup
γ∈Y

PγV (x)
V (x)

< 1. (2)

Then for any adaptive strategy using only {Pγ}γ∈Y , Containment holds.

Proof: From Equation (2), letting λ = lim sup|x|→∞ supγ∈Y
PγV (x)
V (x) < 1, there exists some

positive constant K such that supγ∈Y
PγV (x)
V (x) < λ+1

2 for |x| > K. By V > 1, PγV (x) < λV (x) for
|x| > K. Since supx∈C,γ∈Y PγV (x) < ∞ for all compact sets, for any γ ∈ Y, there exists a positive
constant b > 0 such that PγV (x) ≤ λ+1

2 V (x) + b1C for γ ∈ Y.

Convergence with sub-geometric rates is studied using a sequence of drift conditions in [24]. It
was shown by Jarner and Roberts in [13] that if there exist a test function V ≥ 1, positive constants
c and b, a petite set C and 0 ≤ α < 1 such that

PV ≤ V − cV α + b1C , (3)

then Markov chain converges to stationary distribution with a polynomial rate.
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Proposition 2.4. Consider an adaptive MCMC algorithm on a state space X . Suppose that there
is a set C ⊂ X with π(C) > 0, some integer m ∈ N

+, some constant δ > 0, and some probability
measure νγ(·) on X such that Pm

γ (x, ·) ≥ δ1C(x)νγ(·) for γ ∈ Y. Suppose that there are some
constants α ∈ (0, 1), β ∈ (0, 1], b > 0, c > 0, and some measurable function V (x) : X → [1,∞)
with cV (x) > b on Cc, supx∈C V (x) < ∞ and π(V β) < ∞ such that

PγV ≤ V − cV α + b1C , ∀γ ∈ Y. (4)

Then for any adaptive strategy using {Pγ}γ∈Y Containment holds.

Proof: see [4].

3 Counter Example

In this section, we introduce an example which shows that Diminishing Adaptation alone does
not ensure ergodicity of adaptive MCMC. In fact, the example has |Y| = 2, i.e. there are only
finitely many different kernels Pγ .

Example 3.1. Consider the Metropolis-Hastings algorithm with state space X = (0,∞) and adap-
tive parameter space Y = {−1, 1}, with the target density π(x) ∝ 1(x≥0)

1+x2 . Let {Zn} be i.i.d.

standard normal. The proposal values are given by Y
Γn−1
n = X

Γn−1

n−1 + Zn, i.e. if Γn−1 = 1
then Yn = Xn−1 + Zn, while if Γn−1 = −1 then Yn = 1

(1/Xn−1)+Zn
. The adaption is defined by

Γn = −Γn−11(XΓn−1
n < 1

n) + Γn−11(XΓn−1
n ≥ 1

n), i.e. we change Γ from 1 to −1 when X < 1/n,
and change Γ from −1 to 1 when X > n, otherwise we do not change Γ.

Proposition 3.2. The adaptive algorithm of Example 3.1 is not ergodic, i.e. Xn does not converge
to the target distribution π.

Proof: Assume that Xn converges to π. Define the hitting times:

σ1 = inf
n

{Γn �= Γn−1} and σk = inf
n

{n > σk−1 : Γn �= Γn−1} ;

τ1 = inf
n

{n > σ1 : Xn ∈ (1/c, c)} ∧ σ2 and τk = inf
n

{n > σk : Xn ∈ (1/c, c)} ∧ σk+1.

Clearly, σk < τk ≤ σk+1.
First, we want to show that for any k, P [σk < ∞] = 1 implied by E [

∑∞
i=1 1(Γi �= Γi−1)] = ∞.

Assume that there is some m > 0 such that P [σm < ∞] ≤ ε < 1. So, P [
∑∞

i=1 1(Γi �= Γi−1) ≥ m] ≤
ε. By induction we have that

P

[ ∞∑
i=1

1(Γi �= Γi−1) ≥ m(k + 1)

]

=
∫

[Γn �=Γn−1]∩[
Pn

i=1 1(Γi �=Γi−1)=mk]
P [Xn ∈ dy] Py

[ ∞∑
i=1

1(Γi �= Γi−1) ≥ m

]

≤ εP

[ ∞∑
i=1

1(Γi �= Γi−1) ≥ mk

]

≤ εk+1.
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Hence,

E

[ ∞∑
i=1

1(Γi �= Γi−1)

]
=

∞∑
n=1

P

[ ∞∑
i=1

1(Γi �= Γi−1) ≥ n

]

≤ m

∞∑
k=1

P

[ ∞∑
i=1

1(Γi �= Γi−1) > km

]

≤ m

1 − ε
.

On the other hand, by assumption, as n is large enough, P [Xn ∈ A] ≈ π(A) for any A ∈ F with
π(A) > 0. So,

P [Γn �= Γn−1] =
∫

P [Γn �= Γn−1 | Xn−1 = x]P [Xn−1 ∈ dx]

≈
∫ +∞

0

∫ 1/n−1/x

−1/x
ϕ(z)dz

2
3.14(1 + x2)

dx

≈ 1
n

∫ ∞

0
ϕ(−1/x)

2
3.14(1 + x2)

dx = O

(
1
n

)
.

Hence, E [
∑∞

i=1 1(Γi �= Γi−1)] = ∞. Therefore, for any k, P [σk < ∞] = 1.
Second, we consider the ratio of hitting the interval (1/c, c) between σk and σk+1:

E
[∑σk+1

n=σk
1(Xn ∈ (1/c, c)) | σk

]
E [σk+1 − σk | σk]

≤ E [σk+1 − τk | σk]
E [σk+1 − σk | σk]

=
E [σk+1 − σk | σk] − E [τk − σk | σk]

E [σk+1 − σk | σk]

≤ E [σk+1 − σk | σk] − E [τk − σk | σk]
E [τk − σk | σk]

.

Because the acceptance rate α(x, y) > 1 if 0 < y < x under the adaptation γ = 1; α(x, y) > 1 if
x < y under the adaptation γ = −1, the average time between σk and σk+1 is less than the average
time that one random-walk process hits to zero from above. So,

E [σk+1 − σk | σk] ≤ σ2
k.

Taking enough large c, we can view the process Xn as random walk during the period n ∈ (σk, τk),
because α(x, y) ≈ 1 when c is quite large. So,

E [τk − σk | σk] ≈ (σk − c)2 .

Hence,
E
[∑σk+1

n=σk
1(Xn ∈ (1/c, c)) | σk

]
E [σk+1 − σk | σk]

≤ σ2
k − (σk − c)2

(σk − c)2
=

2cσk − c2

(σk − c)2
.

Finally, as k goes to ∞, σk and σk+1 − σk go to ∞, because n − 1/n is increasing. So, the ratio of
hitting (1/c, c) between σk and σk+1 should approximate to π(1/c, c). However, 2cσk−c2

(σk−c)2
tends to

zero. Contradiction.

Remark 3.1. From the proof, Diminishing Adaptation is satisfied. The algorithm is not ergodic so
that Containment is not satisfied.
Remark 3.2. If the probability P [σk = ∞] > 0 for some k, the time that adaptation stays in one
state is equal to infinity which leads the ergodicity of the algorithm, see the next section.
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4 Summable Adaptive Condition

From the previous section, we know that Diminishing Adaptation is not sufficient for ergodicity.
It was proved by Yang [25] that Adaptive MCMC is ergodic (and WLLN) assuming the conditions
of Simultaneous Uniform Ergodicity and Summable Adaptive condition. Here, we will prove that a
single Summable Diminishing Adaptation implies ergodicity of adaptive MCMC (without assuming
Simultaneous Uniform Ergodicity). We also will present a modification of Example 3.1 which is
ergodic.

Lemma 4.1. Assume that Y is finite, and each Pγ is ergodic for π(·), and
∑∞

n=1 P (Γn �= Γn−1) <
∞. Then the adaptive algorithm is ergodic (i.e., converges to π).

Proof: Fix x0 ∈ X , γ0 ∈ Y. By the Borel-Cantelli Lemma, ∀ε > 0, ∃N0(ε) = N0 > 0 such that
∀n > N0,

P (Γn = Γn+1 = · · · ) > 1 − ε/2. (5)

Let με := Pγ0PΓ1 · · ·PΓN0
(x0, ·). Since Y is finite, ∃N1(ε) = N1, such that ∀γ ∈ Y, ∀n > N1,∥∥μεP

n
γ (x0, ·) − π(·)∥∥ < ε/2. (6)

Taking N = N0 + N1, ∀n > N , we have that

‖L(Xn) − π‖ ≤ supA∈F
∣∣∣E [μεPΓN0+1

· · ·PΓn−1(x0, A) − μεP
n−N0
ΓN0

(x0, A) | X0 = x0,Γ0 = γ0

]∣∣∣+
supA∈F

∣∣∣E [μεP
n−N0
ΓN0

(x0, A) − π(A) | X0 = x0,Γ0 = γ0

]∣∣∣ .
Since n − N0 > N1 and Equation (5),∣∣∣E [μεPΓN0+1

· · ·PΓn−1(x0, A) − μεP
n−N0
ΓN0

(x0, A) | X0 = x0,Γ0 = γ0

]∣∣∣ < ε/2 ∗ 2 = ε.

By Equation (6), ∣∣∣E [μεP
n−N0
ΓN0

(x0, A) − π(A) | X0 = x0,Γ0 = γ0

]∣∣∣ < ε/2.

Therefore, ‖L(Xn) − π‖ < 3ε/2.

Remark 4.1. The ergodicity assumption in Lemma 4.1 is not assumed to be uniformly bounded
over choice of γ ∈ Y.

Example 4.2. Consider again the Metropolis-Hastings algorithm of Example 3.1, with X = (0,∞)
and Y = {−1, 1}, and π(x) ∝ 1(x≥0)

1+x2 , and is Y
Γn−1
n = X

Γn−1

n−1 + Zn where {Zn} are i.i.d. stan-
dard normal. Assume now that the adaptive parameters {Γn} are updated according to Γn =
−Γn−11(XΓn−1

n < 1
n1+r ) + Γn−11(XΓn−1

n ≥ 1
n1+r ) for some r ≥ 0, so the case r = 0 corresponds to

Example 3.1 (which was shown to be non-ergodic), while the case r > 0 is new.

Proposition 4.3. If r > 0, then the adaptive algorithm of Example 4.2 is ergodic, i.e. Xn converges
to π.

Proof: From the calculation in Example 3.1, we have that P (Γn �= Γn−1 | Xn−1 = x) =∫ 1
n1+r − 1

x

− 1
x

1√
2π

exp(− z2

2 )dz = O( 1
n1+r ). Therefore,

∑∞
n=1 P [Γn �= Γn−1] < ∞. So with σk in Example

3.1, we have P [σk = ∞] > 0 for some k. Hence, from Lemma 4.1, the adaptive algorithm is ergodic
to π.

6
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Corollary 4.4. Assume that each Pγ is ergodic for π(·), and that Y is compact in some topology
with respect to which the mappings (γ1, · · · , γk) �→ ‖Pγ1Pγ2 · · ·Pγk

(x, ·) − π(·)‖ are all continuous
for any fixed x ∈ X and γ1, . . . , γk ∈ Y. If

∑∞
n=1 P (Γn �= Γn−1) < ∞ then adaptive algorithm is

ergodic to π.

Proof: We again follow the proof of Lemma 4.1. The only place where we used that Y was
finite was to find N1 such that Equation (6) holds for all n > N1. But under the conditions of this
corollary, we can use compactness to again find such N1.

5 Adaptive Metropolis Algorithms

The target density π(·) is defined on the state space X ⊆ R
d.

Assumption 5.1 (Target’s Regularity). The target distribution is absolutely continuous w.r.t.
Lebesgue measure μd with a density π bounded away from zero and infinity on compact sets.

In what follows, we shall write 〈·, ·〉 for the usual scalar product on R
d, |·| for the Euclidean and

the operator norm, n(z) := z/ |z|, and ∇ for the usual differential (gradient) operator.

Assumption 5.2 (Target’s Strong Decrease). The target density π has continuous first derivatives
and satisfies

lim sup
|x|
→∞

〈n(x),m(x)〉 < 0, (7)

where m(x) := ∇π(x)/ |∇π(x)|.
Say adaptive MCMC is adaptive Metropolis-Hastings algorithm if for each γ ∈ Y,

Pγ(x, dy) = α(x, y)Qγ(x, dy) + [1 − α(x, y)] δx(dy) (8)

represents a Hastings algorithm with proposal measure Qγ(x, dy) = qγ(x, y)μd(dy), where α(x, y) :=
π(y)qγ (y,x)
π(x)qγ(x,y) , and μd is Lebesgue measure.

Hastings algorithms are aperiodic and every compact set C with μd(C) > 0 is small if target
densities and the proposal densities are positive and continuous at very point, see [14]. This result
was extend by Roberts and Tweedie in [22] that the Hastings Chain with proposal density qγ(x, y)
is μd-irreducible and aperiodic, and every nonempty compact is small if the proposal density qγ is
locally positive.

Assumption 5.3 (Proposal’s Local Positivity). There exist δγ > 0 and εγ > 0 such that

qγ(x) ≥ εγ, for |x| ≤ δγ , for γ ∈ Y. (9)

Assumption 5.4 (Proposal’s Symmetry). Each proposal density in the proposal family has the
form

qγ(x, y) = qγ(x − y) = qγ(y − x), for γ ∈ Y. (10)

Say adaptive Metropolis-Hastings algorithm is adaptive Metropolis algorithm under Assump-
tion 5.4. For each x in X , define the acceptance region to be

A(x) = {y ∈ X|π(y) ≥ π(x)} , (11)

and the potential rejection region to be

R(x) = {y ∈ X|π(y) < π(x)} . (12)

7
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5.1 Target densities with light tails

For non-adaptive random-walk Metropolis algorithms, much is known about the connection between
the tail behavior of the target density, and ergodicity properties of the algorithm. On R, geometric
convergence occurs essentially if and only if target density has geometric tails, see [14]. Some
curvature conditions can be utilized to prove geometric ergodicity for a general class of target
densities on R

d with tails at least as light as multivariate Gaussian, see [22]. Geometric ergodicity is
equivalent to the acceptance probability being uniformly bounded away from zero, and if the target
density is lighter-than-exponentially tailed and satisfies Assumption 5.2, then any random-walk-
based Metropolis algorithm is geometrically ergodic, see [12]. In this section, we shall next consider
how the tail property of target density affects Containment for adaptive Metropolis algorithms.
We begin by considering target densities lighter-than-exponentially tailed. This class includes all
multi-variate normal distributions. We begin with a definition.

Definition 5.1 (Lighter-than-exponential tail). The density f(·) on R
d is lighter-than-exponentially

tailed if it is positive and has continuous first derivatives such that

lim sup
|x|
→∞

〈n(x),∇ log f(x)〉 = −∞. (13)

Remark 5.1. The definition implies that for any r > 0, there exists R > 0 such that

π(x + αn(x)) − π(x)
π(x)

≤ −αr, for |x| ≥ R,α > 0.

It means that π(x) is exponentially decaying along any ray, but with the rate r tending to infinity
as x goes to infinity.
Remark 5.2. The normed gradient m(x) will point towards the origin, while the direction n(x)
points away from the origin. For Definition 5.1, 〈n(x),∇ log π(x)〉 = |∇π(x)|

π(x) 〈n(x),m(x)〉. Even
if Assumption 5.2 holds, Equation (13) might not be true. E.g. π(x) ∝ 1

1+x2 , x ∈ R. m(x) =

−n(x) |∇π| so that 〈n(x),m(x)〉 = −1. 〈n(x),∇ log π(x)〉 = − 2|x|
1+x2 so lim

|x|
→∞
〈n(x),∇ log π(x)〉 = 0.

Proposition 5.1. If the target density π on R
d is normal (i.e. N(μ,Σ), Σ is positive definite),

then π is strongly decreasing and lighter-than-exponentially tailed.

Proof: Without loss of generalization, assume that μ = 0.

Since π(x) =
(

1√
2π

)d
1

|Σ|1/2 exp(−x�Σ−1x/2),

〈n(x),m(x)〉 =
〈

x

|x| ,
−Σ−1x

|Σ−1x|
〉

= − x�Σ−1x

|x| |Σ−1x| .

Since Σ is a real symmetric and positive definite matrix, suppose that Σ = A�DA where A is
orthogonal, and D is diagonal with positive diagonal elements. Hence,

x�Σ−1x

|x| |Σ−1x| =
yD−1y

|y| |D−1y| =
∑d

i=1 y2
i d

−1
i√∑d

i=1 y2
i

∑d
i=1 d−2

i y2
i

≥ min
(
d−1

i

)
max

(
d−1

i

) .
where y = Ax.

〈n(x),∇ log π(x)〉 =
|∇π(x)|

π(x)

〈
x

|x| ,
−Σ−1x

|Σ−1x|
〉

= −xD−1x

|x| →
|x|→∞

−∞.

So, the result holds.

8
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We now consider target densities with exponential tails. We shall show under some conditions
that for target densities exponentially tailed on R

d, adaptive Metropolis algorithm is ergodic.

Definition 5.2 (Exponential tail). The density function f(·) on R
d is exponentially tailed if it is

a positive, continuously differentiable function on R
d, and

lim sup
|x|→∞

〈n(x),∇ log f(x)〉 < 0. (14)

Remark 5.3. There exists β > 0 such that for x sufficiently large,

〈n(x),∇ log f(x)〉 = 〈n(x), n(∇f(x))〉 |∇ log f(x)| ≤ −β.

Further, if 0 < −〈n(x), n(∇f(x))〉 ≤ 1, then |∇ log f(x)| ≥ β.

Before giving our result, we state Lemma 4.2 in [12].

Lemma 5.2. Let x and z be two distinct points in R
d, and let ξ = n(x − z). If

〈ξ,m(y)〉 �= 0

for all y on the line from x to z, then z does not belong to
{
y ∈ R

d : π(y) = π(x)
}
.

Assumption 5.5. Suppose the target density π is exponentially tailed and strongly decreasing
(Assumption 5.2), and each proposal distribution Qγ(·, ·) for γ ∈ Y is symmetric (Assumption 5.4).
Define η1 := − lim sup|x|→∞ 〈n(x),m(x)〉 and η2 := − lim sup|x|→∞ 〈n(x),∇ log π(x)〉.
Assume that there are ε ∈ (0, η1), β ∈ (0, η2), δ, and Δ with 0 < 3

βε ≤ δ < Δ ≤ ∞ such that for any
sequence {(xn, γn)} with |xn| → +∞ and {γn} ⊂ Y, ∃ subsequence {(xnk

, γnk
)} with |xnk

| → ∞
such that

lim
k→∞

∫
{z=aξ | δ≤a≤Δ, ξ∈Sd−1, |ξ−n(xnk

)|<ε/3}
|z| qγnk

(z)μd(dz) >
3

βε(e − 1)
, (15)

where Sd−1 be the unit hypersphere in R
d, and aξ represents the scalar multiple of the vector ξ ∈ R

d

by a ∈ R.

Remark 5.4. Since the integral in Equation (15) depends on the direction n(x) of x, not on the
length |x|. The criteria in the assumption is equivalent to

inf
(u,γ)∈Sd−1×Y

∫
{z=aξ | δ≤a≤Δ, ξ∈Sd−1, |ξ−u|<ε/3}

|z| qγ(z)μd(dz) >
3

βε(e − 1)
. (16)

Lemma 5.3. Suppose that the target density π is exponentially tailed and smooth enough with
η1 := − lim sup|x|→∞ 〈n(x),m(x)〉 and η2 := − lim sup|x|→∞ 〈n(x),∇ log π(x)〉; the proposal family
{Qγ(·)}γ∈Y is symmetric; there is a function q−(z) := g(|z|), q−(·) : X → R

+ and g(·) : R
+ → R

+,
such that there is M ≥ 0, for |z| ≥ M , qγ(z) ≥ q−(z) for γ ∈ Y.
If there are ε ∈ (0, η1) and 1

η2
∨ M < δ < Δ such that

(d − 1)π
d−1
2

2Γ(d+1
2 )

Br2

(
d − 1

2
,
1
2

)∫ Δ

δ
g(t)tddt >

3
η1η2(e − 1)

, (17)

where r := ε
6

√
36 − ε2, and the incomplete beta function Bx(α, β) :=

∫ x
0 tα−1(1 − t)β−1dt, then

Assumption 5.5 holds.

9



CRiSM Paper No. 09-15, www.warwick.ac.uk/go/crism

Proof: For u ∈ Sd−1,
∫
{z=aξ | δ≤a≤Δ, ξ∈Sd−1, |ξ−u|<ε/3}

|z| g(|z|)μd(dz) =
∫ Δ

δ
g(t)tddt

∫
{ξ∈Sd−1 : |ξ−u|<ε/3}

ω(dξ).

where ω(·) denotes the surface measure on Sd−1.
By the symmetry of u ∈ Sd−1, let u = ed. So, the projection from the piece

{
ξ ∈ Sd−1 : |ξ − u| < ε/3

}
of the hypersphere Sd−1 to the subspace R

d−1 generated by the first d−1 coordinates is d−1 hyper-
ball V d−1(0, r) with the center 0 and the radius r = ε

6

√
36 − ε2. Define f(z) =

√
1 − (z2

1 + · · · + z2
d−1).

ω
({

ξ ∈ Sd−1 : |ξ − u| < ε/3
})

=
∫

V d−1(0,r)

√
1 + |∇f |2dz1 · · · dzd−1

=
(d − 1)π

d−1
2

Γ(d+1
2 )

∫ r

0

ρd−2√
1 − ρ2

dρ =
(d − 1)π

d−1
2

2Γ(d+1
2 )

Br2

(
d − 1

2
,
1
2

)
.

Hence,

∫
{z=aξ | δ≤a≤Δ, ξ∈Sd−1, |ξ−u|<ε/3}

|z| g(|z|)μd(dz) =
(d − 1)π

d−1
2

2Γ(d+1
2 )

Br2

(
d − 1

2
,
1
2

)∫ Δ

δ
g(t)tddt. (18)

Therefore, the result holds.

Consider the test function Vs(x) = cπ−s(x) for some c > 0 and s ∈ (0, 1) such that V (x) ≥ 1.
By some algebras,

PγVs(x)/Vs(x) =
∫

A(x)−x

(
πs(x)

πs(x + z)

)
qγ(z)μd(dz) +

∫
R(x)−x

(
1 − π(x + z)

π(x)
+

π1−s(x + z)
π1−s(x)

)
qγ(z)μd(dz).

From Proposition 3 in RR [18], we have PγVs(x)/Vs(x) ≤ r(s)Vs(x) where r(s) := 1+ s(1− s)1/s−1.

Proposition 5.4 (Exponential tail). Suppose that the target density π is exponentially tailed, reg-
ular (Assumption 5.1), and strongly decreasing (Assumption 5.2). Consider an adaptive Metropolis
algorithm (Assumption 5.4) with the proposal family {Qγ(·, ·)}γ∈Y of which each proposal density
is locally positive (Assumption 5.3). If Assumption 5.5 holds, then Containment holds.

Proof: Consider the measurable function V (x) := cπ−s(x) for s ∈ (0, 1). By Assumption 5.1,
V (x) ≥ 1 for some constant c, and for any compact set C ⊂ X , supx∈C V (x) < ∞ so that
supx∈C,γ∈Y PγV (x) < ∞. Since PγV (x)

V (x) = Pγπ−s(x)
π−s(x) and Proposition 2.3, it is sufficient to show that

lim sup|x|→∞ supγ∈Y
Pγπ−s(x)
π−s(x) < 1.

Assume that lim sup|x|→∞ supγ∈Y
Pγπ−s(x)
π−s(x)

≥ 1. So, there exists a sequence {(xn, γn)} with |xn| →
∞ and {γn} ⊂ Y such that limn→∞

Pγnπ−s(xn)
π−s(xn)

≥ 1.
From Assumption 5.5, there exist ε ∈ (0, η1), β ∈ (0, η2) (η1 and η2 are defined in the assumption), δ,
and Δ such that there exists a subsequence {xnk

} with limk→∞ |xnk
| = ∞ such that the properties

in the assumption are satisfied, and limk→∞
Pγnk

π−s(xnk
)

π−s(xnk
) ≥ 1.

10
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We denote the cones by

C(xnk
) := Cnk

:=
{

xnk
− aξ | δ ≤ a ≤ Δ, ξ ∈ Sd−1, |ξ − n(xnk

)| ≤ ε/3
}

. (19)

Denote the set of points of Cnk
rotated 180◦ degrees about xnk

by

Cr(xnk
) : Cr

nk
:=
{
xnk

+ aξ | δ ≤ a ≤ Δ, ξ ∈ Sd−1, |ξ − n(xnk
)| ≤ ε/3

}
. (20)

There exists N1 > 0 such that ∀k > N1, |xnk
| > 2Δ. So, for y ∈ Cnk

∪ Cr
nk

(i.e. y = xnk
± aξ for

some ξ ∈ Sd−1 and some a ∈ (δ,Δ)), |y| ≥ |xnk
| − Δ > Δ so that

|n(y) − n(xnk
)| < |ξ − n(xnk

)| ≤ ε/3.

From Definition 5.2, there exists K1 > 0 such that |x| > K1, 〈n(x),∇ log π(x)〉 ≤ −β. So, there
exists N2 ∈ N

+, for k > N2, |xnk
| > K1.

From Assumption 5.2, there exists K2 > K1 such that |x| > K2, 〈n(x),m(x)〉 ≤ −ε. So, there
exists N3 ∈ N

+, for k > N3, Cnk
∪ Cr

nk
⊂ {z ∈ R

d : |z| > K}, so that 〈n(y),m(y)〉 ≤ −ε, for
y ∈ Cnk

∪ Cr
nk

.
Then, for k > N1 ∨ N2 ∨ N3 and y ∈ Cnk

∪ Cr
nk

,

〈ξ,m(y)〉 = 〈ξ − n(xnk
),m(y)〉 + 〈n(xnk

) − n(y),m(y)〉 + 〈n(y),m(y)〉 < −ε/3, (21)

and
|∇ log π(y)| =

〈n(y),∇ log π(y)〉
〈n(y),m(y)〉 > β. (22)

Hence, by Lemma 5.2,

Cnk
∩
{

y ∈ R
d : π(y) = π(xnk

)
}

= ∅ and Cr
nk

∩
{

y ∈ R
d : π(y) = π(xnk

)
}

= ∅.

For y = xnk
− aξ ∈ Cnk

,

π(y) − π(xnk
)

=
∫ a

0
〈n(xnk

− tξ) + ξ − n(xnk
) + n(xnk

) − n(x − tξ), n(∇π(x − tξ))〉 |∇π(x − tξ)| dt

< (−ε + ε/3 + ε/3)
∫ a

0
|∇π(x − tξ)| dt ≤ 0.

So, Cnk
⊂ A(xnk

). By similar technique, Cr
nk

⊂ R(xnk
).

Consider the test function Vs(x) = π−s(x). We have

Pγnk
Vs(xnk

)/Vs(xnk
) =

∫
{Cnk

−xnk}∪
n

Cr
nk

−xnk

o Ixnk
,s(z)qγnk

(z)μd(dz) +

∫
{Cnk

−xnk}c∩
n

Cr
nk

−xnk

oc
Ixnk

,s(z)qγnk
(z)μd(dz),

where

Ixnk
,s(z) =

⎧⎨
⎩

πs(xnk
)

πs(xnk
+z) , z ∈ A(xnk

) − xnk
,

1 − π(xnk
+z)

π(xnk
) + π1−s(xnk

+z)

π1−s(xnk
)

, z ∈ R(xnk
) − xnk

.
(23)

11
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For z = aξ ∈ Cr
nk

− xnk
, by Definition 5.2, Equations (21) and (22),

〈ξ,∇ log π(xnk
+ tξ)〉 = 〈ξ,m(xnk

+ tξ)〉 |∇ log π(xnk
+ tξ)| < −εβ/3.

So, by Assumption 5.5,

π(xnk
+ z)

π(xnk
)

= elog π(xnk
+z)−log π(xnk

) = e
R |z|
0 〈ξ,∇ log π(xnk

+tξ)〉dt ≤ e−βε|z|/3 ≤ e−βεδ/3 ≤ e−1.

Similarly, for z = −aξ ∈ Cnk
− xnk

,

π(xnk
)

π(xnk
+ z)

≤ e−βε|z|/3 ≤ e−1.

Since t1−s − t is an increasing function on [0, 1/e] for s ∈ (0, 1),∫
{Cnk

−xnk}∪
n

Cr
nk

−xnk

o Ixnk
,s(z)qγnk

(z)μd(dz)

=
∫

Cnk
−xnk

πs(xnk
)

πs(xnk
+ z)

qγnk
(z)μd(dz) +

∫
Cr

nk
−xnk

(
1 − π(xnk

+ z)
π(xnk

)
+

π1−s(xnk
+ z)

π1−s(xnk
)

)
qγnk

(z)μd(dz)

≤
∫

Cnk
−xnk

e−sβε|z|/3qγnk
(z)μd(dz) +

∫
Cr

nk
−xnk

(
1 − e−βε|z|/3 + e−(1−s)βε|z|/3

)
qγnk

(z)μd(dz).

Since supt∈(0,1)

(
1 − t + t1−s

) ≤ 1 + s(1 − s)1/s−1 ≤ 1 + se−1+s, 0 ≤ Ixnk
,s(z) ≤ 1 + se−1+s.

∫
{Cnk

−xnk}c∩
n

Cr
nk

−xnk

oc
Ixnk

,s(z)qγnk
(z)μd(dz)

≤ (
1 + se−1+s

)
Qγnk

({Cnk
− xnk

}c ∩ {Cr
nk

− xnk

}c)
.

Define Kx,γ(t) :=
∫
C(x)−x e−t|z|qγ(z)μd(dz) =

∫
Cr(x)−x e−t|z|qγ(z)μd(dz), and

Hx,γ(θ, s) := Kx,γ(sθ) + Kx,γ(0) − Kx,γ(θ) + Kx,γ((1 − s)θ) +
(
1 + se−1+s

)
(1 − 2Kx,γ(0)). (24)

So,
Pγnk

Vs(xnk
)/Vs(xnk

) ≤ Hxnk
,γnk

(βε/3, s).

Thus, by simple algebra, we have that

Hxnk
,γnk

(βε/3, 0) = 1,

∂Hxnk
,γnk

(βε/3, 0)
∂s

= e−1(1 − 2Kxnk
,γnk

(0)) − βε

3

∫
Cnk

−xnk

|z| qγnk
(z)μd(dz) +

βε

3

∫
Cnk

−xnk

|z| e−βε|z|/3qγnk
(z)μd(dz)

≤ e−1 − βε

3
(
1 − e−1

) ∫
Cnk

−xnk

|z| qγnk
(z)μd(dz).

12
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The cone Cnk
− xnk

is only dependent on the unit vector n(xnk
) and the angle degree ε.

From Assumption 5.5,

lim sup
k→∞

∂Hxnk
,γnk

(βε/3, 0)
∂s

< 0.

So, there exists s ∈ (0, 1) such that limk→∞ Pγnk
Vs(xnk

)/Vs(xnk
) < 1, which leads to contradiction.

By Proposition 2.3, Containment holds.

Theorem 5.5. Under the conditions described either in Proposition 5.4, if Diminishing Adaptation
holds then the adaptive Metropolis algorithm is ergodic.

Proof: By Theorem 2.1, the result holds.

When a target density is lighter-than-exponentially tailed, it is also exponentially tailed. Here
we present one relatively relaxed assumption for target with lighter-than-exponentially tailed den-
sity. For Assumption 5.5, we need to find two finite positive value δ and Δ greater than 3

βε .
However, for density lighter-than-exponentially tailed, β can be arbitrary large positive value even
infinity so δ can be taken as arbitrarily small positive value even zero.

Assumption 5.6. Suppose the target density π is lighter-than-exponentially tailed and strongly
decreasing (Assumption 5.2), and each proposal distribution Qγ(·, ·) for γ ∈ Y is symmetric (As-
sumption 5.4). Define η := − lim sup|x|→∞ 〈n(x),m(x)〉.
Assume that there are ε ∈ (0, η), 0 < δ < Δ ≤ ∞ such that for any sequence {(xn, γn)} with
|xn| → +∞ and {γn} ⊂ Y, ∃ subsequence {(xnk

, γnk
)} with |xnk

| → ∞ such that

lim inf
k→∞

∫
{z=aξ | δ<a<Δ, ξ∈Sd−1, |ξ−n(xnk

)|<ε/3}
qγnk

(z)μd(dz) > 0, (25)

where Sd−1 be the unit hypersphere in R
d, and aξ represents the scalar multiple of the vector ξ ∈ R

d

by a ∈ R.

Remark 5.5. Since the integral in Equation (25) depends on the direction n(x) of x, not on the
length |x|. The criteria in the assumption is equivalent to

inf
(u,γ)∈Sd−1×Y

∫
{z=aξ | δ<a<Δ, ξ∈Sd−1, |ξ−u|<ε/3}

qγ(z)μd(dz) > 0. (26)

Lemma 5.6. Suppose that the target density π is lighter-than-exponentially tailed, and strongly
decreasing (Assumption 5.2). Consider an adaptive Metropolis algorithm (Assumption 5.4) with the
proposal family {Qγ(·, ·)}γ∈Y . Suppose further that there exists M > 0 such that for |z| > M , there
exists a positive function q−(·) such that for any γ ∈ Y, qγ(z)1(|z| > M) ≥ q−(z)1(|z| > M) > 0.
Then Assumption 5.6 holds.

Proof: Let δ = M . ∫
{z=aξ | δ<a<∞, ξ∈Sd−1, |ξ−u|<ε/3}

qγ(z)μd(dz)

> Q−
({

aξ | M < a < ∞, ξ ∈ Sd−1. |ξ − u| < ε/3
})

> 0,

So, Assumption 5.6 holds.

13
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Theorem 5.7 (Lighter-than-exponential tail). Suppose that the target density π is lighter-than-
exponentially tailed, regular (Assumption 5.1), and strongly decreasing (Assumption 5.2). Consider
an adaptive Metropolis algorithm (Assumption 5.4) with the proposal family {Qγ(·, ·)}γ∈Y of which
each proposal density is locally positive (Assumption 5.3). If Assumption 5.6 and Diminishing
Adaptation holds, then the algorithm is ergodic.

Proof: Consider the measurable function V (x) := cπ−s(x) for s ∈ (0, 1). By Assumption 5.1,
V (x) ≥ 1 for some constant c, and for any compact set C ⊂ X , supx∈C V (x) < ∞ so that
supx∈C,γ∈Y PγV (x) < ∞. Since PγV (x)

V (x) = Pγπ−s(x)
π−s(x)

and Proposition 2.3, it is sufficient to show that

lim sup|x|→∞ supγ∈Y
Pγπ−s(x)
π−s(x) < 1.

Assume that lim sup|x|→∞ supγ∈Y
Pγπ−s(x)
π−s(x) ≥ 1. So, there exists a sequence {(xn, γn)} with |xn| →

∞ and {γn} ⊂ Y such that limn→∞
Pγnπ−s(xn)

π−s(xn) ≥ 1.
From Assumption 5.6, there exists ε ∈ (0, η), 0 < δ < Δ ≤ ∞ such that there exists a subsequence
{(xnk

, γnk
)} with lim

k→∞
|xnk

| = ∞ such that the properties in the assumption are satisfied, and

lim
k→∞

Pγnk
π−s(xnk

)

π−s(xnk
)

≥ 1.

Since π is lighter-than-exponentially tailed, for any β > 0, there exists K > 0 such that |x| > K,
〈n(x),∇ log π(x)〉 < −β. Using the similar technique in the proof of Proposition 5.4, for sufficiently
large k(β), δ ≥ 3

ε
√

β
,

π(xnk
+ z)

π(xnk
)

≤ e−βε|z|/3 ≤ e−
√

β for z ∈ Cr
nk

− xnk
, and

π(xnk
)

π(xnk
+ z)

≤ e−βε|z|/3 ≤ e−
√

β for z ∈ Cnk
− xnk

,

where Cnk
and Cr

nk
are defined in Equations (19) and (20), and depend on δ and Δ.

Consider the sequence βj with lim
j→+∞

βj = +∞. So, there is a subsequence {(xnkj
, γnkj

)} such that

the above equations hold. However,∫
Cnkj

−xnkj

e−sβjε|z|/3qγnkj
(z)μd(dz) ≤ e−s

√
βj ,

∫
Cr

nkj
−xnkj

e−(1−s)βjε|z|/3qγnkj
(z)μd(dz) ≤ e−(1−s)

√
βj .

Hence,
lim

j→∞
Kxnkj

,γnkj
(sβjε/3) = 0, and lim

j→∞
Kxnkj

,γnkj
((1 − s)βjε/3) = 0,

where Kx,γ(·) is defined in the proof of Proposition 5.4.
So,

lim
j→∞

Pγnkj
Vs(xnkj

)/Vs(xnk
) < 1 + se−1+s − (1 + 2se−1+s) lim inf

j→∞
Kxnkj

,γnkj
(0).

From Assumption 5.6, for some s ∈ (0, 1), limj→∞ Pγnkj
Vs(xnkj

)/Vs(xnk
) < 1. Therefore, by

Proposition 2.3, Containment holds. By Theorem 2.1, the result holds.

14
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Here we discuss two examples. The first one (Example 5.8) is from RR [20] where the proposal
density is a fixed distribution of two multivariate normal distributions, one with fixed small variance,
another using the estimate of empirical covariance matrix from historical information as its variance.
It is a slight variant of the famous adaptive Metropolis algorithm of Haario et al. [11]. In the
example, the target density has lighter-than-exponential tails. The second (Example 5.11) concerns
with target densities with truly exponential tails.

Example 5.8. Consider a d-dimensional target distribution π(·) which is regular, strongly de-
creasing and lighter-than-exponentially tailed. We perform a Metropolis algorithm with proposal
distribution given at the nth iteration by Qn(x, ·) = N(x, (0.1)2Id/d) for n ≤ 2d; For n > 2d,

Qn(x, ·) =
{

(1 − θ)N(x, (2.38)2Σn/d) + θN(x, (0.1)2Id/d), Σn is positive definite,
N(x, (0.1)2Id/d), Σn is not positive definite,

(27)

for some fixed θ ∈ (0, 1), and the empirical covariance matrix

Σn =
1
n

(
n∑

i=0

XiX
�
i − (n + 1)XnX

�
n

)
, (28)

where Xn = 1
n+1

∑n
i=0 Xi, is the current modified empirical estimate of the covariance structure of

the target distribution based on the run so far.

Remark 5.6. The proposal N(x, (2.38)2Σ/d) is optimal in a particular large-dimensional context,
see [17] and [19]. Thus the proposal N(x, (2.38)2Σn/d) is an effort to approximate this.

Remark 5.7. Commonly, the iterative form of Equation (28) is more useful,

Σn =
n − 1

n
Σn−1 +

1
n + 1

(
Xn − X̄n−1

) (
Xn − X̄n−1

)�
. (29)

Proposition 5.9. Consider an adaptive Metropolis algorithm (Assumption 5.4) with the proposal
family {Qγ(·, ·)}γ∈Y of which each proposal density is locally positive (Assumption 5.3).

Suppose that the target density π is exponentially tailed, regular (Assumption 5.1), and strongly
decreasing (Assumption 5.2).

If Assumption 5.5 is satisfied and the algorithm’s adaptive scheme is defined as that in Exam-
ple 5.8, then Diminishing Adaptation holds.

Proof: From Proposition 5.4, the family {Pγ}γ∈Y is simultaneously strongly aperiodically geo-
metrically ergodic with the test function V (x) = cπ−s(x) for some s ∈ (0, 1) and some c > 0. So,
it is sufficient to check that both ‖Σn − Σn−1‖M and

∣∣Xn − Xn−1

∣∣ converge to zero in probability
where ‖·‖M is matrix norm.
By some algebras,

Σn − Σn−1

=
1

n + 1
XnX�

n − 1
n − 1

(
1
n

n−1∑
i=0

XiX
�
i

)
+

2
n

n − 1
n + 1

Xn−1X
�
n−1 −

1
n + 1

(
XnX

�
n−1 + Xn−1X

�
n

)
.

Hence,
‖Σn − Σn−1‖M

≤ 1
n+1

∥∥XnX�
n

∥∥
M

+ 1
n−1

∥∥∥ 1
n

∑n−1
i=0 XiX

�
i

∥∥∥
M

+ 2
n

∥∥∥Xn−1X
�
n−1

∥∥∥
M

+
1

n+1

∥∥∥XnX
�
n−1 + Xn−1X

�
n

∥∥∥
M

.

(30)
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To prove Σn − Σn−1 converges to zero in probability, it is sufficient to check that
∥∥XnX�

n

∥∥
M

,∥∥∥ 1
n

∑n−1
i=0 XiX

�
i

∥∥∥
M

,
∥∥∥Xn−1X

�
n−1

∥∥∥
M

and
∥∥∥XnX

�
n−1 + Xn−1X

�
n

∥∥∥
M

are bounded in probability.

Since lim sup
|x|→∞

〈n(x),∇ log π(x)〉 < 0, there exist some K > 0 and some β > 0 such that

sup
|x|≥K

〈n(x),∇ log π(x)〉 ≤ −β.

For |x| ≥ K, log π(y)−log π(x)
(r−1)|x| ≤ −β where r > 1 and y = rx, i.e.

(
π(y)
π(x)

)−s ≥ esβ r−1
r

|y|. Taking

x0 ∈ R
d with |x0| = K, V (x) = cπ−s(x0)

(
π(x)
π(x0)

)−s ≥ caesβ r−1
r

|x| for x = rx0, r > 1, and

a := inf
|y|≤K

π−s(y) > 0, because of Assumption 5.1. If r ≥ 2 then r−1
r ≥ 0.5. Therefore, as |x| is

extremely large, V (x) ≥ |x|2.
Since

∥∥XnX�
n

∥∥
M

:= sup
|u|=1

u�XnX�
n u ≤ sup

|u|=1
|u|2 |Xn|2 ≤ |Xn|2,

∥∥XnX�
n

∥∥
M

is bounded in probabil-

ity.
Obviously, ∥∥∥∥∥ 1

n

n−1∑
i=0

XiX
�
i

∥∥∥∥∥
M

≤ 1
n

n−1∑
i=0

∥∥∥XiX
�
i

∥∥∥
M

.

Then, for K > 0,

P

(
1
n

n−1∑
i=0

∥∥∥XiX
�
i

∥∥∥
M

> K

)
≤ 1

K

1
n

n−1∑
i=0

E
[∥∥∥XiX

�
i

∥∥∥
M

]
≤ 1

K

1
n

n−1∑
i=0

E
[
|Xi|2

]
≤ 1

K
sup

n
E[V (Xn)].

We know that supn E[V (Xn)] < ∞ (See Theorem 18 in [21]). Hence,
∥∥∥ 1

n

∑n−1
i=0 XiX

�
i

∥∥∥
M

is bounded
in probability.∣∣Xn

∣∣ ≤ 1
n+1

∑n
i=0 |Xi|. So,

P (
∣∣Xn

∣∣ > K) ≤ 1
K

1
n + 1

n∑
i=0

E[|Xi|] ≤ 1
K

sup
n

E[V (Xn)].

∣∣Xn

∣∣ is bounded in probability. Hence,
∥∥∥Xn−1X

�
n−1

∥∥∥
M

is bounded in probability.
Finally, ∥∥∥XnX

�
n−1 + Xn−1X

�
n

∥∥∥
M

≤ 2 |Xn|
∣∣Xn−1

∣∣ .
Therefore,

∥∥∥XnX
�
n−1 + Xn−1X

�
n

∥∥∥
M

is bounded in probability.

Theorem 5.10. The algorithm of Example 5.8 is ergodic.

Proof: Obviously, the proposal densities has uniformly lower bound function. From the proof of
Lemma 5.6, Assumption 5.6 holds. By Theorem 5.7 and Proposition 5.9, the adaptive Metropolis
algorithm is ergodic.
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Example 5.11. Consider the standard multivariate double exponential distribution π(x) = c exp(−λ |x|)
on R

d where λ > 0. We perform a Metropolis algorithm with proposal distribution in the family
{Qγ(·)}γ∈Y at the nth iteration where

Qn(x, ·) =
{

Unif
(
V d(x,Δ)

)
, n ≤ 2d, or Σn is nonsingular,

(1 − θ)N(x, (2.38)2Σn/d) + θ Unif
(
V d(x,Δ)

)
, n > 2d, and Σn is singular,

(31)
for θ ∈ (0, 1), Unif

(
V d(x,Δ)

)
is an uniform distribution on the hyperball V d(x,Δ) with the center

x and the radius Δ, and Σn is as defined in Equation (28). The problem is: how to choose Δ such
that the adaptive Metropolis algorithm is ergodic?

Proposition 5.12. There exists a large enough Δ > 0 such that the adaptive Metropolis algorithm
of Example 5.11 is ergodic.

Proof: We compute that ∇π(x) = −λn(x)π(x). So, 〈n(x),∇ log π(x)〉 = −λ and 〈n(x),m(x)〉 =
−1. So, the target density is regular, exponentially tailed, and strongly decreasing. Obviously, each
proposal density is locally positive. Now, let us check Assumption 5.5 by using Lemma 5.3. Because

V ol(V d(x,Δ)) =
Δdπ

d
2

dΓ(d
2 + 1)

,

the function g(t) defined in Lemma 5.3 is equal to 1
V ol(V d(x,Δ))

. The parameters η1 and η2 defined

in Lemma 5.3 are respectively λ and 1. Now, fix any ε ∈ (0, 1) and any δ ∈ ( 1
λ ,∞). The left hand

side of Equation (17) is

(d − 1)π
d−1
2

2Γ(d+1
2 )

Br2

(
d − 1

2
,
1
2

)∫ Δ

δ
g(t)tddt =

d(d − 1)
2(d + 1)B(d+1

2 , 1/2)
·Br2

(
d − 1

2
,
1
2

)
·Δ
(

1 − δd+1

Δd+1

)
,

where B(x, y) and Br(x, y) are beta function and incomplete beta function, r is a function of ε
defined in Lemma 5.3.
Once fixed ε and δ, the first two terms in the right hand side of the above equation is fixed. Then,
as Δ goes to infinity, the whole equation tends to infinity. So, there exists a large enough Δ > 0
such that Equation (17) holds. By Lemma 5.3, Assumption 5.5 holds. Then, by Proposition 5.4,
Containment holds. By Proposition 5.9, Diminishing Adaptation holds. By Theorem 2.1, the
adaptive Metropolis algorithm is ergodic.

5.2 Target densities with heavy tails

Now, we consider a particular class of target densities with tails which are heavier than exponential.
It was previously shown by Fort and Moulines [7] that the Metropolis algorithm converges at any
polynomial rate when proposal distribution is compact supported and the log density decreases
hyperbolically at infinity, log π(x) ∼ − |x|s, for 0 < s < 1, as |x| → ∞.

Definition 5.3 (Hyperbolic tail). The density function f(·) is twice continuously differentiable,
and there exist 0 < m < 1 and some finite positive constants di,Di, i = 1, 2 such that for large
enough |x|,

0 < d0 |x|m ≤ − log f(x) ≤ D0 |x|m;
0 < d1 |x|m−1 ≤ |∇ log f(x)| ≤ D1 |x|m−1;
0 < d2 |x|m−2 ≤ ∣∣∇2 log f(x)

∣∣ ≤ D2 |x|m−2.
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Assumption 5.7 (Proposal’s Uniform Compact Support). There exists a M > 0 such that for any
γ ∈ Y and |z| > M , qγ (z) = 0.

Say that the proposal family has Uniform Upper Bound density if there is a positive func-
tion q+(·) with

∫
q+(z)μd(dz) < ∞, such that for any γ ∈ Y, qγ(·) ≤ q+(·). Denote Q+(dz) =

q+(z)μd(dz).

Theorem 5.13. Suppose that the target density π is hyperbolically tailed, regular (Assumption 5.1),
and strongly decreasing (Assumption 5.2). Consider an adaptive Metropolis algorithm (Assump-
tion 5.4) with the proposal family {Qγ(·, ·)}γ∈Y of which each proposal density is locally positive
(Assumption 5.3), and has Uniform Upper Bound function and Uniform Compact Support (As-
sumption 5.7). If Diminishing Adaptation holds, the adaptive algorithm is ergodic.

Proof: From Assumptions 5.1, 5.4, and 5.7, each Pγ is ergodic to π. By the definition of
Uniform Upper Bounded density, we can first find D > 0 such that

∫
|x|>D q+(x)dx < 1 and then

let q∗(x) = q+(x) for |x| > D, and define q∗(x) for |x| < D as necessary to make q∗ have integral
1. Then q∗ is a density, and qγ(x) ≤ q∗(x) for all γ and all |x| > D. Denote Q∗(dz) = q∗(z)μd(dz).
Since qγ has uniform bounded support, we can assume q∗ with bounded support.
We consider the test function Vs(x) = (− log π(x))s:

PγVs(x) − Vs(x) =
∫

[Vs(x + z)α(x, x + z) + Vs(x)(1 − α(x, x + z))] qγ(z)μd(dy) − Vs(x)

≤
∫
|z|<D

[Vs(x + z)α(x, x + z) + Vs(x)(1 − α(x, x + z))] (qγ − q∗) (z)μd(dy) +

P ∗Vs(x) − Vs(x)
≤ Q∗(|z| ≥ D)Vs(x) +∫

|z|<D
[Vs(x + z) − Vs(x)] α(x, x + z) (qγ − q∗) (z)μd(dz) +

P ∗Vs(x) − Vs(x).

On the other hand, ∇Vs(x) = sVs−1∇V1(x). Letting

R(s, x, z) = Vs(x + z) − Vs(x) − sVs−1(x) 〈∇V1(x), z〉 ,

sup
|z|<M∧δγ

|R(s, x, z)| |z|−2 ≤ sup
|z|<M∧δγ

∣∣∇2Vs(z)
∣∣

≤ s sup
|z|<M∧δγ

Vs−2(z)
∣∣∣(s − 1)∇V1(z)∇V1(z)� + V1(z)∇2V1(z)

∣∣∣ .
Since the target density is hyperbolic tailed,

lim sup
|x|→∞

|x|2−sm sup
|z|<M∧δγ

|R(s, x, z)| |z|−2 < ∞, (32)

So, by Assumption 5.7,∫
|z|<D

|R(s, x, z)| qγ(z)μd(dz) ≤
∫
|z|<D∧M

|R(s, x, z)| q+(z)μd(dz) = O
(
|x|ms−2

)
.
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By the symmetry of qγ(·) and q∗(·),∫
|z|<D

sVs−1(x) 〈∇V1(x), z〉 (qγ − q∗) (z)μd(dz) = 0.

Hence, ∫
|z|<D

[Vs(x + z) − Vs(x)] α(x, x + z) (qγ − q∗) (z)μd(dz)

≤
∫
|z|<D∧M

|R(s, x, z)| (q+ + q∗
)
(z)μd(dz) = O

(
|x|ms−2

)
.

Thus, taking s < (2 − m)/m,

lim sup
|x|→∞

sup
γ∈Y

lim
D→∞

∫
|z|<D

[Vs(x + z) − Vs(x)] α(x, x + z) (qγ − q∗) (z)μd(dz) = 0.

Since δγ ≤ M where δγ is defined in Assumption 5.7, letting that D goes to infinity,

lim
D→∞

Q∗(|z| ≥ D)Vs(x) = 0.

Therefore,
PγVs(x) − Vs(x) ≤ P ∗Vs(x) − Vs(x).

Since the proposal distribution Q∗ satisfies the property in Assumption 5.7, P ∗ is ergodic, converg-
ing to π. By Proposition 2.4, Containment holds. Hence, by Theorem 2.1, the adaptive Metropolis
algorithm is ergodic.

6 Adaptive Metropolis-within-Gibbs Algorithms

We now consider so-called Metropolis-within-Gibbs algorithms, which update each of the d
coordinates separately according to its own Metropolis algorithm.

For γ ∈ Y, let (P1,γ , . . . , Pd,γ) be any collection of Markov kernels on the state space X =
X1 × · · · × Xd ⊆ R

d. The adaptive random scan hybrid sampler for the collection is the sampler
PRS,γ defined by

PRS,γ := d−1 (P1,γ + · · · + Pd,γ) ,

where each Pi,γ arises from a symmetric random-walk Metropolis algorithm on the ith coordinate
with the proposal distribution Qi,γ(x, dy) = qi,γ(x, y)μ(dy). We require various assumptions.

Assumption 6.1 (Local Positivity). There exist δi,γ > 0 and εi,γ > 0 such that

qi,γ(z) ≥ εi,γ, for |z| ≤ δi,γ . (33)

Assumption 6.2 (Symmetry). For each coordinate i, qi,γ(x, x + zei) = qi,γ(x, x − zei) := qi,γ(z)
for γ ∈ Y where ei is the unit vector of the coordinate i.

The transition kernels Pi,γ , i ∈ {1, . . . , d}, on
(
R

d,B (Rd
))

are defined as follows: for x =
(x1, . . . , xd) ∈ R

d, A = A1 × · · · × Ad ∈ B (Rd
)
, z ∈ R,

Pi,γ(x,A) :=
∏

k �=i δxk
(Ak)

∫
Ai−xi

α(x, x + zei)qi,γ(z)μ(dz)

+δx(A)
∫

(1 − α(x, x + zei)) qi,γ(z)μ(dz),
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where Ai − xi := {z ∈ R, xi + z ∈ Ai} and α(x, x + zei) := 1 ∧ π(x+zei)
π(x) . Let A(x, i) and R(x, i) be

the acceptance region and potential rejection region respectively in the ith direction:

A(x, i) = {z ∈ R : π(x + zei) ≥ π(x)} ,

R(x, i) = {z ∈ R : π(x + zei) < π(x)} .

For adaptive Metropolis-within-Gibbs algorithms, we mainly adapt the method of Fort et al. [9].
First, we restate Proposition 2 in Fort et al. [9]:

Proposition 6.1. Under Assumptions 5.4 and 5.1, let Vs(x) = π−s(x) for s ∈ (0, 1). For all
x ∈ R

d,
Pi,γVs(x) ≤ r(s)Vs(x), (34)

where
r(s) := 1 + s(1 − s)1/s−1.

It can also be shown that

Pi,γVs(x)
Vs(x)

=
∫

I(z, x, i, s)qi,γ(z)μ(dz),

where

I(z, x, i, s) :=

⎧⎪⎪⎨
⎪⎪⎩

(
π(x̃j)

π(x̃j+z ei)

)s

, z ∈ A(x, i),

1 − π(x̃j+z ei)
π(x̃j)

+
(

π(x̃j+z ei)
π(x̃j)

)1−s

, z ∈ R(x, i).
(35)

Assumption 6.3. There is an β > 0 and a δ such that 1/β ≤ δ < Δ ≤ ∞, for any sequence
(xj , γj) with limj = |xj | = +∞ and {γj} ⊂ Y, we may extract a subsequence (x̃j, γ̃j) with the
property that, for some i ∈ {1, . . . , d}, we have for all z ∈ [δ,Δ],

lim
j

π(x̃j)

π(x̃j − sign(x̃j
i )zei)

≤ exp(−βz) and lim
j

π(x̃j + sign(x̃j
i )zei)

π(x̃j)
≤ exp(−βz); (36)

Moreover,

lim inf
j→∞

inf
i∈{1,...,d}

∫ Δ

δ
zqi,γ̃j (z)μ(dz) >

d

β(e − 1)
. (37)

Remark 6.1. Equation (36) means that on each coordinate, the tail of the target density π decays
exponentially. Equation (37) represents the relationship of the first moment of proposal density
and the decaying rate of the target density tails. The property in Equation (37) is equivalent to

inf
γ∈Y

inf
i∈{1,...,d}

∫ Δ

δ
zqi,γ(z)μ(dz) >

d

β(e − 1)
.

These two equations are not difficult to check, see Examples 6.4 and 6.6. Furthermore, there are
some similarities between this assumption and Assumption 5.5.

Adapting the procedure of Theorem 3 in Fort et al. [9], we have the following result for adaptive
Metropolis-within-Gibbs algorithms applied to exponentially tailed target distributions.
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Theorem 6.2 (Exponential tail). Suppose that the target density π is regular (Assumption 5.1).
Consider a random-walk based Metropolis-within-Gibbs algorithm with the family of proposal dis-
tributions {Qi,γ(·, ·)}i=1,··· ,d;γ∈Y where all proposal densities are symmetric (Assumption 6.2) and
locally positive (Assumption 6.1). If Assumption 6.3 holds, the adaptive algorithm with Diminishing
Adaptation is ergodic.

Proof: Assume that for any s ∈ (0, 1), lim sup|x|→∞ supγ∈Y PRS,γVs(x)/Vs(x) ≥ 1. Then, there
exists a sequence pair {(xj , γj)} with limj→∞

∣∣xj
∣∣→ ∞ and {γj} ⊂∈ Y such that

limj→∞ PRS,γjVs(xj)/Vs(xj) ≥ 1.
Under Assumption 6.3, we may extract from the sequence (xj , γj) a subsequence (x̃j , γ̃j) such

that for some i ∈ {1, . . . , d}, Equations (36) and (37) are satisfied. Without loss of generality,
assume sign(x̃j

i ) = 1. Let J(δ,Δ) = [−Δ,−δ] ∪ [δ,Δ]. It is easy to prove that

lim
j

R(x̃j, i) ∩ J(δ,Δ) = [δ,Δ] and lim
j

A(x̃j , i) ∩ J(δ,Δ) = [−Δ,−δ].

So, since u1−s − u is an increasing function on [0, 1/e] for s ∈ (0, 1), by Assumption 6.3,∫
J(δ,Δ)

I(z, x̃j , i, s)qi,γ̃j (z)μ(dz)

=
∫
{A(x̃j ,i)∩J(δ,Δ)}

(
π
(
x̃j
)

π (x̃j + z ei)

)s

qi,γ̃j(z)μ(dz) +

∫
{R(x̃j ,i)∩J(δ,Δ)}

⎡
⎣1 +

(
π
(
x̃j + z ei

)
π (x̃j)

)1−s

− π
(
x̃j + z ei

)
π (x̃j)

⎤
⎦ qi,γ̃j(z)μ(dz)

≤ Ki,γ̃j (βs) + Ki,γ̃j (0) + Ki,γ̃j (β(1 − s)) − Ki,γ̃j(β)

where Ki,γ(t) =
∫Δ
δ∨1/β e−tzqi,γ(z)μ(dz). Hence,

PRS,γ̃jVs(x̃j)/Vs(x̃j)

≤ 1
d
(Ki,γ̃j (βs) + Ki,γ̃j (0) + Ki,γ̃j (β(1 − s)) − Ki,γ̃j (β) + r(s)(1 − 2Ki,γ̃j (0))) +

d − 1
d

r(s)

≤ 1 + se−1+s

d
(d − 2Ki,γ̃j (0)) +

1
d
(Ki,γ̃j (βs) + Ki,γ̃j (0) + Ki,γ̃j (β(1 − s)) − Ki,γ̃j (β))

= Hi,γ̃j(β, s)

where Hi,γ(β, s) = 1+se−1+s

d (d − 2Ki,γ(0)) + 1
d (Ki,γ(βs) + Ki,γ(0) + Ki,γ(β(1 − s)) − Ki,γ(β)).

By simple algebra, we know the following things:

Hi,γ̃j(β, 0) = 1;

∂Hi,γ̃j

∂s
(β, 0) = (d − 2Ki,γ̃j (0))e−1 − β

∫ Δ

δ
zqi,γ̃j(z)μ(dz) + β

∫ Δ

δ
ze−βzqi,γ̃j(z)μ(dz)

≤ d/e − β(1 − 1/e)
∫ Δ

δ
zqi,γ̃j(z)μ(dz).

By Assumption 6.3,

lim sup
j→∞

∂Hi,γ̃j

∂s
(β, 0) < 0.

Therefore, lim supj Hi,γ̃j(β, s) < 1 for some s ∈ (0, 1), which leads to a contradiction.
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Continuing Assumption 6.3, whenever the coordinate tails of a target density decay lighter-
than-exponentially, i.e. β in Assumption 6.3 is equal to infinity, the δ can be arbitrarily small
positive value even zero, and the Δ can be arbitrarily large positive value even infinity. Moreover,
the left hand side of Equation (37) is obviously great than zero, because each proposal has density
and the density is symmetric. Hence, we have the following assumption and result.

Assumption 6.4. There exist 0 ≤ δ < Δ ≤ ∞ such that for any sequence (xj , γj) with limj→∞|xj| =
+∞ and {γj} ∈ Y, we may extract a subsequence (x̃j , γ̃j) with the property that, for some i ∈
{1, . . . , d} and all z ∈ (0,∞),

lim
j→∞

π(x̃j)

π(x̃j − sign(x̃j
i )zei)

= 0 and lim
j→∞

π(x̃j + sign(x̃j
i )zei)

π(x̃j)
= 0. (38)

Moreover,

lim inf
j→∞

inf
i∈{1,...,d}

∫ Δ

δ
qi,γ̃j(z)μ(dz) > 0. (39)

Theorem 6.3 (Lighter-than-exponential tails). Suppose that the target density π is regular (As-
sumption 5.1). Consider a random-walk based Metropolis-within-Gibbs algorithm with the family of
proposal distributions {Qi,γ(·, ·)}i=1,··· ,d;γ∈Y where all proposal densities are symmetric (Assump-
tion 6.2) and locally positive (Assumption 6.1). If Assumption 6.4 holds, the adaptive algorithm
with Diminishing Adaptation is ergodic.

Proof: Assume that for any s ∈ (0, 1), lim sup|x|→∞ supγ∈Y PRS,γVs(x)/Vs(x) ≥ 1. Then, there
exists a sequence pair {(xj , γj)} with limj→∞

∣∣xj
∣∣→ ∞ and {γj} ⊂∈ Y such that

limj→∞ PRS,γjVs(xj)/Vs(xj) ≥ 1.
Consider βj ↑ +∞. From Assumption 6.4, we may extract from the sequence (xj , γj) a subse-

quence (x̃j, γ̃j) such that for all z ∈ (0,∞),

π(x̃j)

π(x̃j − sign(x̃j
i )zei)

< e−
√

βj and lim
j→∞

π(x̃j + sign(x̃j
i )zei)

π(x̃j)
< e−

√
βj .

Hence,
lim

j→∞
Ki,γ̃j(βjs) = 0, and lim

j→∞
Ki,γ̃j(βj(1 − s)) = 0,

where Ki,γ(t) is defined in the proof of Theorem 6.2.
So,

lim
j→∞

PRS,γ̃jVs(x̃j)/Vs(x̃j) ≤ 1 + se−1+s − 1 + 2se−1+s

d
lim inf
j→∞

Ki,γ̃j (0).

As s goes to zero, se−1+s goes to zero. By Equation (39), for s ∈ (0, 1), limj→∞ PRS,γ̃jVs(x̃j)/Vs(x̃j) <
1. By Proposition 2.3, Containment holds. By Theorem 2.1, the result holds.

Example 6.4. We consider the mixed Gaussian density on R2. Define

π(x) = β exp(−(x2
1 + x2

2)) + (1 − β)exp(−(x2
1 + x2

1x
2
2 + x2

2)),

where β ∈ [0, 1]. Consider random-walk based adaptive Metropolis-within-Gibbs algorithm with
proposal family Qi,γ(·, ·) where on each coordinate, the proposal density is normal, and their minimal
variance is ε > 0. Assume that Diminishing Adaptation is satisfied.
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Proposition 6.5. The algorithm of Example 6.4 is ergodic.

Proof: We have that

∇1 log π(x)
−2x1

=
β exp(−(x2

1 + x2
2)) + (1 + x2

2)(1 − β) exp(−(x2
1 + x2

1x
2
2 + x2

2))
π(x)

∈ [1, 1 + x2
2

]
,

∇2 log π(x)
−2x2

=
β exp(−(x2

1 + x2
2)) + (1 + x2

1)(1 − β) exp(−(x2
1 + x2

1x
2
2 + x2

2))
π(x)

∈ [1, 1 + x2
1

]
.

Clearly, ∇i log π(x)/(−2xi) is positive bounded. So, Equation (38) is satisfied. The target density
is lighter-than-exponentially tailed on each coordinate.∫ ∞

ε

z√
2πσ2

exp(−z2/2σ2)dz = σ

∫ ∞

ε/σ

z√
2π

exp(−z2/2)dz ≥ ε

∫ ∞

1

z√
2π

exp(−z2/2)dz.

Since, all density has minimal variance ε, Equation (39) holds. Thus, by Theorem 6.3, the algorithm
is ergodic.

Finally, we consider the target density of Example 8 in [9], a mixture of two exponential distri-
butions.

Example 6.6. For some a > 1, define

π(x) ∝ 0.5e−|x1|−a|x2| + 0.5e−a|x1|−|x2|, x = (x1, x2).

Consider random-walk based adaptive Metropolis-within-Gibbs algorithm with proposal family Qi,γ(·, ·)
where on each coordinate i, the proposal distribution is a mixed distribution of Uniform(−b, b) and
N(0, σ2

i ) respectively with weights ε and 1 − ε. Assume that Diminishing Adaptation is satisfied.
Then, for sufficient large b > 0, the adaptive algorithm is ergodic.

Proposition 6.7. For sufficiently large b > 0, the algorithm of Example 6.6 is ergodic.

Proof: It is sufficient to check Containment. The β defined in Assumption 6.3 is a. It is easy
to check that Equations (36) holds.

ε

∫ b

δ

z

2b
dz =

ε(b2 − δ2)
4b

.

Let δ = 1 ∈ (0, a). So, we only need to take suitable b such that

ε(b2 − δ2)
4b

>
2

a(e − 1)
.

Then Equation (37) holds so Assumption 6.3 holds.

7 Conclusions and Discussions

For adaptive Metropolis and adaptive Metropolis-within-Gibbs algorithms, we provide some con-
ditions only related to properties of the target density and the proposal family. Under these
conditions, the adaptive algorithms converge in the fast sense (simultaneously strongly aperiodi-
cally geometrically ergodic). Generally speaking, target densities is required to be regular, strongly
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decreasing, and at least exponentially tailed. However, for adaptive Metropolis-within-Gibbs algo-
rithms, the target density is only required to be exponentially tailed on the direction of coordinates,
and strong decrease is not needed. For truly exponentially tailed target densities, we found that
ergodicity of adaptive algorithms is related to the dimensions of the state space. Especially, for
adaptive Metropolis algorithms, if proposal densities have uniform lower bound function, then
ergodicity of algorithms is connected to the dth moment of the function on some hypercone on R

d.
Recently, there also is some results about this topic, see Saksman and Vihola [23]. They show

that if the target density is regular, strongly decreasing, and strongly lighter-than-exponentially
tailed (lim sup|x|→∞ 〈n(x),∇ log π(x)〉 / |x|ρ−1 = −∞ for some ρ > 1) which is used to keep the
convexity of outside manifold contour of target densities, then SLLN for symmetric random-walk
based adaptive Metropolis algorithms holds. Compared with our results, although our conditions
do not require that the target density is strongly lighter-than-exponentially tailed, one restriction
on proposal density is needed. On the other hand, RR [21] give one example (Example 24) that
shows that for some adaptive chain, SLLN does not hold, but ergodicity of the chain holds.

Jarner and Hansen [12] show that if target density is lighter-than-exponential tailed and strongly
decreasing then random-walk-based Metropolis algorithm is geometrically ergodic. The technique in
Proposition 5.4 can be also applied to MCMC. So, even if target density is exponentially tailed under
some moment condition similar as Equation (15), any random-walk-based Metropolis algorithm is
still geometrically ergodic. Careful readers may mention that our symmetry assumption (q(x, y) =
q(x−y) = q(y−x)) is different from the assumption (q(x, y) = q(|x − y|)) of Jarner and Hansen [12].
Our assumption generalizes theirs.
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