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Parameter Estimation for Rough Differential
Equations
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Abstract

We construct an estimator based on “signature matching” for differential
equations driven by rough paths and we prove its consistency and asymptotic
normality. Note that the the Moment Matching estimator is a special case of
this estimator.

Key words: Rough paths, Diffusions, Generalized Moment Matching, Parameter
Estimation.

1 Motivation

Consider the following system:

dY 1,ε
t =

1

ε
f(Y 1,ε

t )Y 2,ε
t dt, Y 1,ε

0 = y (1)

dY 2,ε
t = −1

ε
Y 2,ε

t dt +
1√
ε
dWt, Y 2,ε

0 = y′ (2)

and the process
dȲt = f(Ȳt)dWt, Ȳ0 = y. (3)

defined on a probability space (Ω, (Ft)t, P) where W is Brownian motion and t ∈ [0, T ].
Under certain assumptions on f , it is possible to show that Y 1,ε converges to Ȳ in
distribution as ε → 0 (see [2]). We call Ȳ the homogenization limit of Y 1,ε.

Suppose that we know that f is a smooth function (f ∈ C(R)) and we are asked to
estimate it. What we have available is a “black box”, which is usually some compli-
cated computer program or, possibly, a lab experiment, whose output is {Y 1,ε

t }t∈[0,T ].
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We input the initial conditions and we get realizations of Y 1,ε corresponding to the
unknown f and the given initial conditions. However, because of the multiscale struc-
ture of the model, simulating long paths is computationally very demanding. Such
situations often arise in molecular dynamics or atmospheric sciences. The problem
we just posed is a simplified version of problems arising in these fields. Recently, a
number of algorithms have been developed to deal with such problems. They come
under the title of “equation-free” (see [1] and references within). The main idea is
to use short simulations of the microscale model (1) in order to locally estimate the
macroscale model (3). Applying this idea to the example described above, we get the
following algorithm:

(i) Initialization: For n = 0 (first loop), set Y 1,ε
0 = y0 for some arbitrary y0.

Otherwise, for n > 0, set Y 1,ε
0 = yn.

(ii) Estimation: Run several independent copies of the system initialized according
to step (i). Fit the data {Y 1,ε

t (ωi)}t∈[0,T ] where for i = 1, . . . , N these are
independent realizations of Y 1,ε, to the following model:

Y 1,ε
t =

1

ε

(
p∑

k=0

ak

k!
(Y 1,ε

t − Y 1,ε
0 )k

)
Y 2,ε

t dt

derived from (1) by replacing f by a polynomial approximation of some degree
p. If âk are the estimates of the parameters of the polynomial, approximate
f (k)(Y 1,ε

0 ) by âk, where f (k)(Y 1,ε
0 ) is the kth derivative of f at Y 1,ε

0 .

(iii) Taking a step: If p = 0, set yn+1 = yn + δ for some δ > 0. Otherwise set
yn+1 = f̂n,p(δ), where f̂n,p is the local polynomial approximation around yn that
corresponds to the estimated first p derivatives of f at yn. For example, for
p = 1, yn+1 = yn + â1δ. After taking the step, go to (i).

We repeat this algorithm several times, until we have enough information about f .
We do a polynomial fit, using all estimated derivatives.

In the rest of the paper, we focus on how to do the estimation required in step (ii)
above. The exact mathematical question that we will try to answer is described in
the following section.

2 Setting

2.1 Some basic results from the theory of Rough Paths

In this section, we review some of the basic results from the theory of rough paths.
For more details, see [3] and references within.

Consider the following differential equation

dYt = f(Yt) · dXt, Y0 = y0. (4)
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We think of X and Y as paths on a Euclidean space: X : I → Rn and Y : I → Rm

for I := [0, T ], so Xt ∈ Rn and Yt ∈ Rm for each t ∈ I. Also, f : Rm → L(Rn, Rm),
where L(Rn, Rm) is the space of linear functions from Rn to Rm which is isomorphic
to the space of n ×m matrices. We will assume that f(y) is a polynomial in y. We
will also assume that X is a path of finite p-variation, meaning that

sup
D⊂[0,T ]

(∑
`

‖Xt` −Xt`−1
‖p

) 1
p

< ∞,

where D = {t`}` goes through all possible partitions of [0, T ] and ‖·‖ is the Euclidean
norm. Note that we will later define finite p-variation for multiplicative functionals.

What is the meaning of (4) when p ≥ 2? In order to answer this question, we first
need to give some definitions:

Definition 2.1. Let ∆T := {(s, t); 0 ≤ s ≤ t ≤ T}. Let p ≥ 1 be a real number. We
denote by T (k)(Rn) the kth truncated tensor algebra

T (k)(Rn) := R⊕ Rn ⊕ Rn⊗2 ⊕ · · · ⊕ Rn⊗k.

(1) Let X : ∆T → T (k)(Rn) be a continuous map. For each (s, t) ∈ ∆T , denote by
Xs,t the image of (s, t) through X and write

Xs,t =
(
X0

s,t,X
1
s,t, . . . ,X

k
s,t

)
∈ T (k)(Rn), where Xj

s,t =
{
X

(i1,...,ij)
s,t

}n

i1,...,ij=1
.

The function X is called a multiplicative functional of degree k in Rn if
X0

s,t = 1 for all (s, t) ∈ ∆T and

Xs,u ⊗Xu,t = Xs,t ∀s, u, t satisfying 0 ≤ s ≤ u ≤ t ≤ T,

i.e. for every (i1, . . . , i`) ∈ {1, . . . , n}` and ` = 1, . . . , k:

(Xs,u ⊗Xu,t)
(i1,...,i`) =

∑̀
j=0

X(i1,...,ij)
s,u X

(ij+1,...,i`)
u,t

(2) A p-rough path X in Rn is a multiplicative functional of degree bpc in Rn

that has finite p-variation, i.e. ∀i = 1, . . . , bpc and (s, t) ∈ ∆T , it satisfies

‖Xi
s,t‖ ≤

(M(t− s))
i
p

β
(

i
p

)
!

,

where ‖ · ‖ is the Euclidean norm in the appropriate dimension and β a real
number depending only on p and M is a fixed constant. The space of p-rough
paths in Rn is denoted by Ωp(Rn).
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(3) A geometric p-rough path is a p-rough path that can be expressed as a limit
of 1-rough paths in the p-variation distance dp, defined as follows: for any X,Y
continuous functions from ∆T to T (bpc)(Rn),

dp(X,Y) = max
1≤i≤bpc

sup
D⊂[0,T ]

(∑
`

‖Xi
t`−1,t`

−Yi
t`−1,t`

‖
p
i

) i
p

,

where D = {t`}` goes through all possible partitions of [0, T ]. The space of
geometric p-rough paths in Rn is denoted by GΩp(Rn).

One of the main results of the theory of rough paths is the following, called the
“extension theorem”:

Theorem 2.2 (Theorem 3.7, [3]). Let p ≥ 1 be a real number and k ≥ 1 be an
integer. Let X : ∆T → T (k)(Rn) be a multiplicative functional with finite p-variation.
Assume that k ≥ bpc. Then there exists a unique extension of X to a multiplicative
functional X̂ : ∆T → T (k+1)(Rn).

Let X : [0, T ] → Rn be an n-dimensional path of finite p-variation for n > 1. One
way of constructing a p-rough path is by considering the set of all iterated integrals

of degree up to bpc. If Xt =
(
X

(1)
t , . . . , X

(n)
t

)
, we define X : ∆T → T (bpc) as follows:

X0 ≡ 1 ∈ R and Xk
s,t =

{∫
. . .

∫
s<u1<···<uk<t

dX(i1)
u1

. . . dX(ik)
uk

}
(i1,...,ik)∈{1,...,n}k

∈ Rn⊗k

When p ∈ [1, 2), the iterated integrals are well defined. However, when p ≥ 2 there
will be more than one way of defining them. For example, if X in an n-dimensional
Brownian motion, the second iterated integrals would be different, depending on
whether we use the Itô, the Stratonovich or some other rule. What the extension
theorem says is that if the path has finite p-variation and we define the first bpc
iterated integrals, the rest will be uniquely defined. So, if the path is of bounded
variation (p = 1) we only need to know its increments, while for an n-dimensional
Brownian path, we need to define the second iterated integrals by specifying the rules
on how to construct them. In general, we can think of a p-rough path as a path
X : [0, T ] → Rn of finite p-variation, together with a set of rules on how to define the
first bpc iterated integrals. Once we know how to construct the first bpc, we know
how to construct all of them.

Definition 2.3. Let X : [0, T ] → Rn be a path. The set of all iterated integrals is
called the signature of the path and is denoted by S(X).

Let’s go back to equation (4). When X is a path of finite p-variation for 1 ≤ p < 2,
then Y is a solution of (4) if

Yt = y0 +

∫ t

0

f(Ys; θ) · dXs, ∀t ∈ I. (5)
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However, when p ≥ 2, it is not clear how to define the integral. We will see that
in order to uniquely define the integral, we will need to know the first bpc iterated
integrals of X. That is, equation (4) can only make sense if we know the p-rough
path X that corresponds to the path X with finite p-variation. We say that equation
(4) is driven by the p-rough path X.

Suppose that Z is a p-rough path in R`1 . We will first define
∫

f(Z)dZ where
f : R`1 → L(R`1 , R`2). We will assume that f is a polynomial of degree q – however,
it is possible to define the integral for any f ∈ Lip(γ − 1) for γ > p (see [3]). Since f
is a polynomial, its Taylor expansion will be a finite sum:

f(z2) =

q∑
k=0

fk(z1)
(z2 − z1)

⊗k

k!
, ∀z1, z2 ∈ R`1

where f0 = f and fk : R`1 → L(R`1⊗k
, L(R`1 , R`2)) and for all z ∈ R`1 , fk(z) is a

symmetric k-linear mapping from R`1 to L(R`1 , R`2), for k ≥ 1. If Z is a 1-rough
path, then

f(Zu) =

q∑
k=0

fk(Zs)Z
k
s,u, ∀(s, u) ∈ ∆T

and

Z̃s,t :=

∫ t

s

f(Zu)dZu =

q∑
k=0

fk(Zs)Z
k+1
s,t ∀(s, t) ∈ ∆T .

Note that Z̃ :=
∫

f(Z)dZ defined above is also a 1-rough path in R`2 and thus, its
higher iterated integrals are uniquely defined. It is possible to show that the mapping∫

f : Ω1(R`1) → Ω1(R`2) sending Z to Z̃ is continuous in the p-variation topology.

Remark 2.4. We say that a sequence Z(r) of p-rough paths converges to a p-rough
path Z in p-variation topology if there exists an M ∈ R and a sequence a(r) converging
to zero when r →∞, such that

‖Z(r)i
s,t‖, ‖Z

i
s,t‖ ≤ (M(t− s))

i
p , and

‖Z(r)i
s,t − Zi

s,t‖ ≤ a(r)(M(t− s))
i
p

for i = 1, . . . , bpc and (s, t) ∈ ∆T . Note that this is not exactly equivalent to conver-
gence in dp: while convergence in dp implies convergence in the p-variation topology,
the opposite is not exactly true. Convergence in the p-variation topology implies that
there is a subsequence that converges in dp.

Now suppose that Z is a geometric p-rough path, i.e. Z ∈ GΩp(R`1). By definition,
there exists a sequence Z(r) ∈ Ω1(R`1) such that dp(Z(r),Z) → 0 as r → ∞. We

define Z̃ :=
∫

f(Z)dZ as the limit of Z̃(r) :=
∫

f(Z(r))dZ(r) with respect to dp – this
is will also be a geometric p-rough path. In other words, the continuous map

∫
f can

be extended to a continuous map from GΩp(R`1) to GΩp(R`2), which are the closures
of Ω1(R`1) and Ω1(R`2) respectively (see Theorem 4.12, [3]).

We can now give the precise meaning of the solution of (4):



CRiSM Paper No. 09-01, www.warwick.ac.uk/go/crism

6

Definition 2.5. Consider X ∈ GΩp(Rn) and y0 ∈ Rm. Set fy0(·) := f(·+y0). Define
h : Rn ⊕ Rm → End(Rn ⊕ Rm) by

h(x, y) :=

(
In×n 0n×m

fy0(y) 0m×m

)
. (6)

We call Z ∈ GΩp(Rn ⊕ Rm) a solution of (4) if the following two conditions hold:

(i) Z =
∫

h(Z)dZ.

(ii) πRn(Z) = X, where by πRn we denote the projection of Z to Rn.

As in the case of ordinary differential equations (p = 1), it is possible to construct
the solution using Picard iterations: we define Z(0) := (X, e), where by e we denote
the trivial rough path e = (1,0Rn ,0Rn⊗2 , . . . ). Then, for every r ≥ 1, we define
Z(r) =

∫
h(Z(r− 1))dZ(r− 1). The following theorem, called the “Universal Limit

Theorem”, gives the conditions for the existence and uniqueness of the solution to
(4). The theorem holds for any f ∈ Lip(γ) for γ > p but we will assume that f is a
polynomial. The proof is based on the convergence of the Picard iterations.

Theorem 2.6 (Theorem 5.3, [3]). Let p ≥ 1. For all X ∈ GΩp(Rn) and all y0 ∈ Rm,
equation (4) admits a unique solution Z = (X,Y) ∈ GΩp(Rn ⊕ Rm), in the sense
of definition 2.5. This solution depends continuously on X and y0 and the mapping
If : GΩp(Rn) → GΩp(Rm) which sends (X, y0) to Y is continuous in the p-variation
topology.

The rough path Y is the limit of the sequence Y(r), where Y(r) is the projection of
the rth Picard iteration Z(r) to Rm. For all ρ > 1, there exists Tρ ∈ (0, T ] such that

‖Y(r)i
s,t −Y(r + 1)i

s,t‖ ≤ 2iρ−r (M(t− s))
i
p

β
(

i
p

)
!

, ∀(s, t) ∈ ∆Tρ , ∀i = 0, . . . , bpc.

The constant Tρ depends only on f and p.

2.2 The problem

We now describe the problem that we are going to study in the rest of the paper. Let
(Ω,F , P) be a probability space and X : Ω → GΩp(Rn) a random variable, taking
values in the space of geometric p-rough paths endowed with the p-variation topology.
For each ω ∈ Ω, the rough path X(ω) drives the following differential equation

dYt(ω) = f(Yt(ω); θ) · dXt(ω), Y0 = y0 (7)

where θ ∈ Θ ⊆ Rd, Θ being the parameter space and for each θ ∈ Θ. As before,
f : Rm × Θ → L(Rn, Rm) and fθ(y) := f(y; θ) is a polynomial on y for each θ ∈ Θ.
According to theorem 2.6, we can think of equation (7) as a map

Ifθ,y0 : GΩp(Rn) → GΩp(Rm), (8)
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sending a geometric p-rough path X to a geometric p-rough path Y and is continuous
with respect to the p-variation topology. Consequently,

Y := Ifθ,y0 ◦X : Ω → GΩp(Rm)

is also a random variable, taking values in GΩp(Rm) and if PT is the distribution of
X0,T , the distribution of Y0,T will be QT

θ = PT ◦ I−1
fθ,y0

.
Suppose that the know the expected signature of X at [0, T ], i.e. we know

E
(
X

(i1,...,ik)
0,T

)
:= E

(∫
· · ·
∫

0<u1<···<uk<T

dX(i1)
u1

· · · dX(ik)
uk

)
,

for all ij ∈ {1, . . . , n} where j = 1, . . . , k and k ≥ 1. Our goal will be to estimate θ,
given several realizations of Y0,T , i.e. {Y0,T (ωi)}N

i=1.

3 Method

In order to estimate θ, we are going to use a method that is similar to the “Method
of Moments”. The idea is simple: we will try to (partially) match the empirical
signature of the observed p-rough path with the theoretical one, which is a function
of the unknown parameters. Remember that the data we have available is several
realizations of the p-rough path Y0,T described in section 2.2. To make this more
precise, let us introduce some notation: let

Eτ (θ) := Eθ(Y
τ
0,T )

be the theoretical signature corresponding to parameter value θ and word τ and

M τ
N :=

1

N

N∑
i=1

Yτ
0,T (ωi) (9)

be the empirical signature, which is a Monte Carlo approximation of the actual one.
The word τ is constructed from the alphabet {1, . . . ,m}, i.e. τ ∈ Wm where Wm :=⋃

k≥0{1, . . . ,m}k. The idea is to find θ̂ such that

Eτ (θ̂) = M τ
N , ∀τ ∈ V ⊂ Wm

for some choice of a set of words V . Then, θ̂ will be our estimate.

Remark 3.1. When m = 1, the expected signature of Y is equivalent to its moments,
since

Y

m︷ ︸︸ ︷
(1, . . . , 1)
0,T =

1

m!
(YT − Y0)

m.

Several questions arise:

(i) How can we get an analytic expression for Eτ (θ) as a function of θ?
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(ii) What is a good choice for V or, for m = 1, how do we choose which moments
to match?

(iii) How good is θ̂ as an estimate?

We will try to answer these questions below.

3.1 Computing the Theoretical Signature

We need to get an analytic expression for the expected signature of the p-rough path
Y at (0, T ), where Y is the solution of (7) in the sense described above. We are given
the expected signature of the p-rough path X which is driving the equation, again at
(0, T ). Unfortunately, we need to make one more approximation since the solution
Y will not usually be available: we will approximate the solution by the rth Picard
iteration Y(r), described in the Universal Limit Theorem (Theorem 2.6). Finally,
we will approximate the expected signature of the solution corresponding to a word
τ , Eτ (θ), by the expected signature of the rth Picard iteration at τ , which we will
denote by Eτ

r (θ):
Eτ

r (θ) := Eθ(Y(r)τ
0,T ). (10)

The good news is that when fθ is a polynomial of degree q on y, for any q ∈ N,
the rth Picard iteration of the solution is a linear combination of iterated integrals
of the driving force X. More specifically, for any realization ω and any time interval
(s, t) ∈ ∆T , we can write:

Y(r)τ
s,t =

∑
|σ|≤|τ | qr−1

q−1

ατ
r,σ(y0, s; θ)X

σ
s,t, (11)

where ατ
r,σ(y; θ) is a polynomial in y of degree qr and | · | gives the length of a word.

We will prove this claim, first for p = 1 and then for any p ≥ 1 by taking limits
with respect to dp. We will need the following lemma.

Lemma 3.2. Suppose that X ∈ GΩ1(Rn), Y ∈ GΩ1(Rm) and it is possible to write

Y
(j)
s,t =

∑
σ∈Wn, q1≤|σ|≤q2

α(j)
σ (ys)X

σ
s,t, ∀(s, t) ∈ ∆T and ∀j = 1, . . . ,m (12)

where α
(j)
σ : Rm → L(R, R) is a polynomial of degree q and q, q1, q2 ∈ N and q1 ≥ 1.

Then,

Yτ
s,t =

∑
σ∈Wn, |τ |q1≤|σ|≤|τ |q2

ατ
σ(ys)X

σ
s,t, (13)

for all (s, t) ∈ ∆T and τ ∈ Wm. ατ
σ : Rm → L(R, R) are polynomials of degree ≤ q|τ |.

Proof. We will prove (13) by induction on |τ |, i.e. the length of the word. By
hypothesis, it is true when |τ | = 1. Suppose that it is true for any τ ∈ Wm such that
|τ | = k ≥ 1. First, note that from (12), we get that

dY (j)
u =

∑
σ∈Wn, q1≤|σ|≤q2

α(j)
σ (ys)X

σ−
s,udXσ`

u , ∀u ∈ [s, t]
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where σ− is the word σ without the last letter and σ` is the last letter. For example,
if σ = (i1, . . . , ib−1, ib), then σ− = (i1, . . . , ib−1) and σ` = ib. Note that this cannot
be defined when σ is the empty word ∅ (b = 0). Now suppose that |τ | = k + 1, so
τ = (j1, . . . , jk, jk+1) for some j1, . . . , jk+1 ∈ {1, . . . ,m}. Then

Yτ
s,t =

∫ t

s

Yτ−
s,udY (jk+1)

u =

=

∫ t

s

 ∑
kq1≤|σ1|≤kq2

ατ−
σ1

(ys)X
σ1
s,u

 ∑
q1≤|σ2|≤q2

α(jk+1)
σ2

(ys)X
σ2−
s,u dX

σ2`
u =

=
∑

kq1≤|σ1|≤kq2, q1≤|σ2|≤q2

(
ατ−

σ1
(ys)α

(jk+1)
σ2

(ys)
) ∫ t

s

Xσ1
s,uX

σ2−
s,u dX

σ2`
u .

Now we use the fact that for any geometric rough path X and any (s, u) ∈ ∆T , we
can write

Xσ1
s,uX

σ2−
s,u =

∑
σ∈σ1t(σ2−)

Xσ
s,u, (14)

where σ1 t (σ2−) is the shuffle product between the words σ1 and σ2−, i.e. it
is the set of all words that we can create by mixing up the letters of σ1 and σ2−
without changing the order of letters within each word. For example, (1, 2) t (1) =
{(1, 2, 2), (1, 2, 2), (2, 1, 2)} (see [3]). Applying (14) above, we get

Yτ
s,t =

∑
σ∈Wn, (k+1)q1≤|σ|≤(k+1)q2

ατ
σ(ys)X

σ
s,t,

where
ατ

σ(ys) =
∑

(σ1tσ2−)3σ−, σ`=σ2`

ατ−
σ1

(ys)α
τ`
σ2

(ys)

is a polynomial of degree ≤ kq + q = (k + 1)q. Note that the above sum is over all
σ1, σ2 ∈ Wn such that kq1 ≤ |σ1| ≤ kq2 and q1 ≤ |σ1| ≤ q2

We now prove (11) for p = 1.

Lemma 3.3. Suppose that X ∈ GΩ1(Rn) is driving system (4), where f : Rm →
L(Rn, Rm) is a polynomial of degree q. Let Y(r) be the projection of the rth Picard
iteration Z(r) to Rm, as described above. Then, Y(r) ∈ GΩ1(Rm) and it satisfies

Y(r)τ
s,t =

∑
|σ|≤|τ | qr−1

q−1

ατ
r,σ(y0, s)X

σ
s,t, (15)

for all (s, t) ∈ ∆T and τ ∈ Wm. ατ
r,σ(y, s) is a polynomial of degree ≤ |τ |qr in y.

Proof. For every r ≥ 0, Z(r) ∈ GΩ1(Rn+m) since Z(0) := (X, e), X ∈ GΩ1(Rn) and
integrals preserve the roughness of the integrator. So, Y(r) ∈ GΩ1(Rm). We will
prove the claim by induction on r.
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For r = 0, Y(0) = e and thus (15) becomes

Y(0)τ
s,t = ατ

0,∅(y0, s)

and it is true for α∅0,∅ ≡ 1 and ατ
0,∅ ≡ 0 for every τ ∈ Wm such that |τ | > 0.

Now suppose it is true for some r ≥ 0. Remember that Z(r) = (X,Y(r)) and that
Z(r + 1) is defined by

Z(r + 1) =

∫
h(Z(r))dZ(r)

where h is defined in (6) and fy0(y) = f(y0 + y). Since f is a polynomial of degree q,
h is also a polynomial of degree q and, thus, it is possible to write

h(z2) =

q∑
k=0

hk(z1)
(z2 − z1)

⊗k

k!
, ∀z1, z2 ∈ R`, (16)

where ` = n + m. Then, the integral is defined to be

Z(r + 1)s,t :=

∫ t

s

h(Z(r))dZ(r) =

q∑
k=0

hk (Z(r)s)Z(r)k+1
s,t ∀(s, t) ∈ ∆T .

Let’s take a closer look at functions hk : R` → L
(
R`⊗k

, L(R`, R`)
)
. Since (16) is the

Taylor expansion for polynomial h, hk is the kth derivative of h. So, for every work
β ∈ W` such that |β| = k and every z = (x, y) ∈ R`, (hk(z))β = ∂βh(z) ∈ L(R`, R`).
By definition, h is independent of x and thus the derivative will always be zero if β
contains any letters in {1, . . . , n}.

Remember that Y(r + 1) is the projection of Z(r + 1) onto Rm. So, for each
j ∈ {1, . . . ,m},

Y(r + 1)(j)
s,t = Z(r + 1)(n+j)

s,t =

q∑
k=0

(
hk (Z(r)s)Z(r)k+1

s,t

)(n+j)

=

=

q∑
k=0

∑̀
i=1

∑
τ∈Wm,|τ |=k

∂τ+nhn+j,i (Z(r)s)Z(r)(τ+n,i)
s,t =

=

q∑
k=0

n∑
i=1

∑
τ∈Wm,|τ |=k

∂τfj,i (y0 + Y (r)s)Z(r)(τ+n,i)
s,t .

By the induction hypothesis, we know that for every τ ∈ Wm,

Z(r)τ+n
s,t = Y(r)τ

s,t =
∑

|σ|≤|τ | qr−1
q−1

ατ
r,σ(y0, s)X

σ
s,t

and thus, for every i = 1, . . . , n,

Z(r)(τ+n,i)
s,t =

∑
|σ|≤|τ | qr−1

q−1

ατ
r,σ(y0, s)X

(σ,i)
s,t .
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Putting this back to the equation above, we get

Y(r + 1)(j)
s,t =

n∑
i=1

∑
|τ |≤q

∂τfj,i (y0 + Y (r)s)
∑

|σ|≤|τ | qr−1
q−1

ατ
r,σ(y0, s)X

(σ,i)
s,t

and by re-organizing the sums, we get

Y(r + 1)(j)
s,t =

∑
|σ|≤q qr−1

q−1
+1= qr+1−1

q−1

α
(j)
r+1,σ(y0, s)X

σ
s,t,

where α
(j)
r+1,∅ ≡ 0 and for every σ ∈ Wn − ∅,

α
(j)
r+1,σ(y0, s) =

∑
|σ−|(q−1)

qr−1
≤|τ |≤q

∂τfj,σ`
(y0 + Y (r)s)α

τ
r,σ−(y0, s).

If ατ
r,σ are polynomials of degree ≤ |τ |qr, then α

(j)
r,σ are polynomials of degree ≤ qr.

The result follow by applying lemma 3.2. Notice that (in the notation of lemma 3.2)

q1 ≥ 1 since α
(j)
r+1,∅ ≡ 0.

We will now prove (11) for any p ≥ 1.

Theorem 3.4. The result of lemma 3.3 still holds when X ∈ GΩp(Rn), for any p ≥ 1.

Proof. Since X ∈ GΩp(Rn), there exists a sequence {X(k)}k≥0 in GΩ1(Rn), such that

X(k)
k→∞→ X in the p-variation topology. We denote by Z(k, r) and Z(r) the rth

Picard iteration corresponding to equation (4) driven by X(k) and X respectively.

First, we show that Z(k, r)
k→∞→ Z(r) and consequently Y(k, r)

k→∞→ Y(r) in the
p-variation topology, for every r ≥ 0. It is clearly true for r = 0. Now suppose
that it is true for some r ≥ 0. By definition, Z(r + 1) =

∫
h(Z(r))dZ(r). Remember

that the integral is defined as the limit in the p-variation topology of the integrals
corresponding to a sequence of 1-rough paths that converge to Z(r) in the p-variation
topology. By the induction hypothesis, this sequence can be Z(k, r). It follows that
Z(k, r + 1) =

∫
h(Z(k, r))dZ(k, r) converges to Z(r + 1), which proves the claim.

Convergence of the rough paths in p-variation topology implies convergence of each
of the iterated integrals, i.e.

Y(k, r)τ
s,t

k→∞→ Y(r)τ
s,t

for all r ≥ 0, (s, t) ∈ ∆T and τ ∈ Wm.
By lemma 3.3, since X(k) ∈ GΩ1(Rn) for every k ≥ 1, we can write

Y(k, r)τ
s,t =

∑
|σ|≤|τ | qr−1

q−1

ατ
r,σ(y0, s)X(k)σ

s,t,
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for every τ ∈ Wm, (s, t) ∈ ∆T and k ≥ 1. Since X(k)
k→∞→ X in the p-variation

topology and the sum is finite, it follows that

Y(k, r)τ
s,t

k→∞→
∑

|σ|≤|τ | qr−1
q−1

ατ
r,σ(y0, s)X

σ
s,t.

The statement of the theorem follows.

3.2 The Signature Matching Estimator

We can now give a precise definition of the estimator, which we will formally call the
Signature Matching Estimator (SME): suppose that we are in the setting of the
problem described in section 2.2 and M τ

N and Eτ
r (θ) are defined as in (9) and (10)

respectively, for every τ ∈ Wm. Let V ⊂ Wm be a set of d words constructed from
the alphabet {1, . . . ,m}. For each such V , we define the SME θ̂V

r,N as the solution to

Eτ
r (θ) = M τ

N , ∀τ ∈ V. (17)

This definition requires that (17) has a unique solution. This will not be true in
general. Let Vr be the set of all V such that Eτ

r (θ) = M, ∀τ ∈ V has a unique
solution for all M ∈ Sτ ⊆ R where Sτ is the set of all possible values of M τ

N , for any
N ≥ 1. We will assume the following:

Assumption 1 (Observability). The set Vr is non-empty and known (at least up to
a non-empty subset).

Then, θ̂V
r,N can be defined for every V ∈ Vr.

Remark 3.5. In order to achieve uniqueness of the estimator, we might need some
extra information that we could get by looking at time correlations. We can fit this
into our framework by considering scaled versions of (7) together with the original
one: for example consider the equation

dYt(ω) = f(Yt(ω); θ) · dXt(ω), Y0 = y0

dY (c)t(ω) = f(Y (c)t(ω); θ) · dXct(ω), Y (c)0 = y0

for some appropriate constant c. Then, Y (c)t = Yct and the expected signature at

[0, T ] will also contain information about E
(
Y

(j1)
T Y

(j2)
cT

)
for any j1, j2 = 1, . . . ,m.

It is very difficult to say anything about the solutions of system (17), as it is very
general. However, if we assume that f is also a polynomial in θ, then (17) becomes
a system of polynomial equations. In the appendix, we study this system in more
detail for the general case where θ are the coefficients of the Taylor expansion of
f(y; θ) around y0, which corresponds to the case were we know nothing about the
polynomials f except their degree.

Note that one can also create a Generalized Signature Matching Estimator as the
solution of

Pα (Eτ
r (θ)) = Pα (M τ

N) , for α ∈ A
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where Pα are polynomials of (empirical or theoretical) expected values of iterated
integrals corresponding to words τ and A an appropriate index set.

Remark 3.6. In the case where yt is a Markov process, the Generalized Moment
Matching Estimator can be seen as a special case of the Generalized Signature Match-
ing Estimator. In that case, the question of identifiability has been studied in detail
(see [5]), but without considering the extra approximation of the theoretical moments
by Picard iteration.

3.3 Properties of the SME

It is possible to show that the SME defined as the solution of (17) will converge to the
true value of the parameter and will have the asymptotic normality property. More
precisely, the following holds:

Theorem 3.7. Let θ̂V
r,N be the Signature Matching Estimator for the system described

in section 2.2 and V ∈ Vr. Assume that f(y; θ) is a polynomial of degree q with respect
to y and twice differentiable with respect to θ and θ0 is the ‘true’ parameter value,
meaning that the distribution of the observed signature Y0,T is QT

θ0
. Set

DV
r (θ)i,τ =

∂

∂θi

Eτ
r (θ) and ΣV (θ0)τ,τ ′ = cov

(
Yτ

0,T ,Yτ ′

0,T

)
and assume that infr>0,θ∈Θ ‖DV

r (θ)‖ > 0, i.e. DV
r (θ) is uniformly non-degenerate with

respect to r and θ. Then, for r ∝ log N and T are sufficiently small,

θ̂V
r,N → θ0, with probability 1, (18)

and √
NΦV (θ0)

−1
(
θ̂V

r,N − θ0

)
L→ N (0, I) (19)

as N →∞, where
ΦV (θ0) = DV

r (θ0)
−1ΣV (θ0).

Proof. By theorem 3.4 and the definition of Eτ
r (θ),

Eτ
r (θ) =

∑
|σ|≤|τ | qr−1

q−1

ατ
r,σ(y0; θ)E

(
Xσ

0,T

)
where functions ατ

r,σ(y0; θ) are constructed recursively, as in lemmas 3.2 and 3.3. Since
f is twice differentiable with respect to θ, functions α and consequently Eτ

r will also
be twice differentiable with respect to θ. Thus, we can write

Eτ
r (θ)− Eτ

r (θ0) = DV
r (θ̃)·,τ (θ − θ0) , ∀θ ∈ Θ ⊆ Rd

for some θ̃ within a ball of center θ0 and radius ‖θ − θ0‖ and the function DV
r (θ) is

continuous. By inverting DV
r and for θ = θ̂V

r,N , we get(
θ̂V

r,N − θ0

)
= DV

r (θ̃V
r,N)−1

(
EV

r (θ̂V
r,N)− EV

r (θ0)
)

(20)
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where EV
r (θ) = {Eτ

r (θ)}τ∈V . By definition

EV
r (θ̂V

r,N) = {M τ
N}τ∈V = { 1

N

N∑
i=1

Yτ
0,T (ωi)}τ∈V (21)

where Y0,T (ωi) are independent realizations of the random variable Y0,T . Suppose
that T is small enough, so that the above Monte-Carlo approximation satisfies both
the Law of Large Numbers and the Central Limit Theorem, i.e. the covariance matrix
satisfies 0 < ‖ΣV (θ0)‖ < ∞. Then, for N →∞

Eτ
r (θ̂V

r,N) → Eτ (θ0) = E
(
Yτ

0,T

)
, ∀τ ∈ V

with probability 1. Note that the convergence does not depend on r. Also, for r →∞

Eτ
r (θ0) → Eτ (θ0)

as a result of theorem 2.6. Thus, for r ∝ log N

‖Eτ
r (θ̂V

r,N)− Eτ
r (θ)‖ → 0, with probability 1.

Combining this with (20) and the uniform non-degeneracy of DV
r , we get (18). From

(18) and the continuity and uniform non-degeneracy of DV
r , we conclude that

DV
r (θ0)D

V
r (θ̃V

r,N)−1 → I, with probability 1

provided that T is small enough, so that EV (θ0) < ∞. Now, since

ΦV (θ0)
−1
(
θ̂V

r,N − θ0

)
= ΣV (θ0)

−1
(
DV

r (θ0)D
V
r (θ̃V

r,N)−1
)(

EV
r (θ̂V

r,N)− EV
r (θ0)

)
to prove (19) it is sufficient to prove that

√
NΣV (θ0)

−1
(
EV

r (θ̂V
r,N)− EV

r (θ0)
)

L→ N (0, I)

It follows directly from (21) that

√
NΣV (θ0)

−1
(
EV

r (θ̂V
r,N)− EV (θ0)

)
L→ N (0, I) .

It remains to show that
√

NΣV (θ0)
−1
(
EV

r (θ0)− EV (θ0)
)
→ 0.

It follows from theorem 2.6 that

‖EV
r (θ0)− EV (θ0)‖ ≤ Cρ−r

for any ρ > 1 and sufficiently small T . The constant C depends on V, p and T .
Suppose that r = a log N for some a > 0 and choose ρ > exp ( 1

2c
). Then

√
N‖
(
EV

r (θ0)− EV (θ0)
)
‖ ≤ CN( 1

2
−c log ρ)

which proves the claim.
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Remark 3.8. We have now completed the discussion of the questions set in remark
3.1: we provided a way for getting an analytic expression for an approximation of
Eτ (θ). Also, the asymptotic variance of the estimator can be used to compare different
choices of V and to assess the quality of the estimator.

In the case of diffusions and the GMM estimator, a discussion on how to optimally
choose which moments to work on can be found in [6].
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