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Summary 

 

Post harvest discolouration in lettuce is an increasingly important problem due to the shift in 

the market for prepacked processed salads.  Variation in post harvest discolouration was 

recorded in a lettuce diversity set of 28 accessions representative of the lettuce genepool.  

The parents of the WHRI lettuce mapping population, Saladin and Iceberg were included in 

the diversity set.  They showed significantly different responses for discolouration and the 

difference between them was representative of a major part of the variation seen in the 

diversity set.  F7 RILs derived from a cross between Saladin and Iceberg were suitable for 

genetic analysis of post harvest discolouration.  As a precursor to the genetic analysis, a good 

quality linkage map based on the F7 Sal x Ice population was generated.  Significant genetic 

variation in the post harvest response was demonstrated for these RILs.  Twenty-one 

significant QTL were identified for post harvest discolouration traits, and the markers linked 

to the QTL can be used for marker assisted selection.  Significant but weak correlations were 

recorded between discolouration and important agronomic traits, however as these were not 

highly correlated this means that post harvest discolouration and agronomic traits can 

generally be independently selected for by breeders without having to compromise on other 

traits.  Research was also initiated to understand the metabolic changes underlying the 

phenotype change.  Significant variation in levels of metabolites related to post harvest 

discolouration including phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO) 

and total phenolic content (TPC) was observed in RILs with extreme phenotypes.  The 

differences in metabolite levels were significantly correlated with the discolouration 

phenotypes.  Work was also initiated to identify candidate genes associated with the 

biosynthetic pathway responsible for discolouration (phenylpropanoid pathway) in an 

attempt to identify genes underlying QTL.  Twenty-three genes have been placed on the Sal 

x Ice map using comparative genomic approaches.  Some of these co-locate within the 

region of a discolouration QTL and are therefore candidate genes for the QTL effect.  

Mutants with altered post harvest discolouration phenotypes were also confirmed in this 

study; however the point of mutation could not be identified although it is thought to be 

downstream of PPO.  This indicates that a desired phenotype with reduced levels of post 

harvest discolouration can be achieved by two approaches to breeding; using natural and 

induced variation.  This study has provided the tools and knowledge to do this.   
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1.1. Background 

 

1.1.1. Pre-packed cut salad industry 

In recent years there has been encouragement by governments for consumers to eat 

more healthily. In the UK, this has been encouraged by the Food Standards Agency 

and The Department of Health via the ‗five-a-day‘ initiative relating to servings of 

fruit and vegetables. Ready-to-eat food products provide consumers with a 

convenient way to meet these targets (Masih et al. 2002).  Pre-prepared salad packs 

fit the criteria of being both healthy and convenient with sales reflecting this 

worldwide.   

There is an escalating demand for ‗ready-to-eat‘ salad products with minimal 

preparation times due to the increasingly busy lifestyles of consumers (Soliva-

Fortuny and Martin-Belloso 2003).  In an independent report, MINTeL oxygen 

(2007) conveyed that the UK processed bag and dressed salad sector is worth 

approximately £798 million per annum.  The provisional value of UK lettuce 

production alone marketed for 2008 exceeded £98 million, with imports of lettuce in 

excess of £155 million (Defra 2009).  An annual growth of 15-20% has been 

reported to cater for the increased consumer demand for prepared fresh produce from 

multiple retailers.  Despite a recent levelling of sales in Europe, the European salads 

market has been predicted to reach €7 billion by 2012 (Schene 2007).  The increased 

demand for fresh processed produce has simultaneously led to an increase in quantity 

and variety of produce available to the purchaser (Francis et al. 1999).   
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However, substantial variation in product quality and consequential losses have been 

reported.  In today‘s ever-increasing market of ‗food perfection‘, any alteration to the 

visual characteristics of a product is likely to incite an unfavourable consumer 

response; with a prime example being pre-packed cut salads.  It has recently been 

suggested that almost 50% of salads purchased in the UK are thrown away (WRAP 

2008).  Of this 22% is lettuce and 13% being mixed salads (lettuce is a major 

component of these mixed salads) which are thought to cost £230 million.  The main 

reason for wastage (48%) was that the product had passed its ‗sell by date‘.  Wastage 

levels of up to 30% have been recorded for lettuce during processing of raw material 

due to post harvest discolouration (causing a loss of quality) costing the UK industry 

an estimated £2.5 million per annum.  This does not however include wastage during 

transport, packaging, hosting and service costs (Soliva-Fortuny and Martin-Belloso 

2003; Wurr et al. 2003).  Seed needs to be purchased by growers, the mature crop 

harvested and packaged, transported for sale and then sold.  If the salad pack does 

not last its required shelf life then previous processes have been uneconomical, with 

the cost still needing to be accounted for by the grower.  In addition, fresh cut 

products have a limited life on the shelf before the ‗best before‘ time expires.  Pre-

packed salads generally have a relatively short shelf life of 3-5 days and there is a 

need to extend post harvest quality and the resultant shelf life in order to reduce 

waste and deliver a product of consistently good quality to the consumer. 
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1.1.2. Lettuce as a commercial crop 

Consumer demand 

 In many countries lettuce has become an extremely popular leafy vegetable.  It is 

estimated that lettuce is the most frequently consumed vegetable in America, with 

approximately 37-42% of Americans consuming lettuce within their diet (Johnston et 

al. 2000).   Lettuce is progressively being sold to consumers through retail and/or 

food service either alone or in salad mixes, with consumption increasing due to its 

perception as being amongst healthier foods (Desphande and Salunkhe 1998; Dupont 

et al. 2000).  In particular, minimally processed lettuce has become common due to 

the fast food industry and prepared salads market (Altunkaya and Gökmen 2008).  

The consumption of lettuce is predicted to increase as the adult population aim to 

consume five or more servings of fruit and vegetables per day (Johnston et al. 2000).  

As result of the increased market demand coupled with the restricted shelf life of 

lettuce, post harvest quality (specifically discolouration) of lettuce was selected for 

targeted improvement. 

Processing and handling 

Good quality raw materials are initially required in order to produce a high quality 

prepacked processed product (Sandhya 2010).  The processing operations applied to 

commercial ready to use lettuce generally include cleaning/washing, trimming, 

coring, either cutting (typically to 5-8cm
2
 (Hilton et al. 2009)), slicing or shredding, 

washing (in good quality, in terms of microbial content and pH processing water 

with mild additives (for disinfection and prevention of discolouration)), 

centrifugation and packaging (with the most appropriate materials and conditions) in 

low temperatures and under strict hygiene and good manufacturing practices (King et 
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al. 1991; Sandhya 2010).  The product then needs to be handled carefully under the 

correct temperature and humidity during distribution and retailing (Sandhya 2010).  

Processing can damage lettuce leaves and reduce post harvest quality.  The 

commercial success of the ready-to-eat product industry relies heavily on the ability 

of the lettuce tissue to withstand each process.  From harvest, there is usually a 

period of one to four days for the processing, packaging and transport procedure in 

order to maintain post harvest quality (Wagstaff et al. 2010). 

 

1.1.3. Post harvest quality 

Post harvest quality relates to many aspects including appearance, sensory quality 

(including texture, taste and aroma), nutrient value and shelf life longevity (Kader 

2002).  Appearance is considered as the decisive factor which results in a purchase.  

Product appearance is categorised by numerous factors including size, shape, form, 

colour, condition and presence/absence of defects from the ‗normal‘ perception 

(Kays 1999).  Various pre harvest factors can alter the appearance of a product 

including genetic variation, biological factors, physiological factors, agronomic and 

or environmental factors, extraneous matter and mechanical damage (Kays 1999; 

Hilton et al. 2009). 

Texture is also an extremely important factor for consumer acceptability for any 

fresh produce.  In leafy vegetables a crisp firmness is generally desired.  The texture 

of vegetables can be affected by many parameters including cellular organelles, 

water content or turgor and cell wall composition.  The genetic background of the 

cultivar is the main factor controlling texture, however agronomic and environmental 

factors modify the expression of traits (Sams 1999). 
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Although flavour has no impact on the initial purchase decision, it is the critical 

reason for repeat purchasing (Aked 2002; Kader 2002).  Flavour is an individuals‘ 

response to a product and is a complex mixture of taste (sweetness, bitterness, acidity 

and astringency) and aromatic components (Aked 2002). 

The health promoting benefit of eating particular types of food is becoming 

increasingly important for consumers.  Lettuce differs from other vegetables by its 

content of several types of fibres and micronutrients.  It is a key contributor of 

vitamins and minerals in the human diet, and has been shown to be an important 

source of dietary antioxidants, in addition to having high vitamin A, C and E content 

and high levels of calcium and potassium (Ryder 2002; Caldwell 2003; Nicolle et al. 

2004a).  Lettuce consumption can lead to lowering of cholesterol levels and provide 

protection against cardiovascular disease (Nicolle et al. 2004b).  High folate levels 

have been recorded in romaine lettuce which impact on human diseases such as birth 

defects, cancer and heart disease (Kader 2002). 

Shelf life 

The minimum requirement for the shelf life of prepacked lettuce to the consumer is 

currently five to six days (Wagstaff et al. 2010); although salad packs generally only 

survive three days from time of purchase until ‗end of life‘.  There is therefore a high 

demand from both retailer and consumer for products with longer shelf life.  

Additionally, consumers expect produce to be fresh, visually uniform, without 

detrimental change to organoleptic (sensory) characteristics and to be at the correct 

stage of maturity depending on salad type (Watada and Qi 1999).  Shelf life of salad 

products can be limited by microbial spoilage, discolouration, textural changes and 

the development of ‗off-flavour‘ or ‗off-odour‘ characteristics (Barrett et al. 1998). 
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The Phenylpropanoid Pathway 

Cut salad packs often suffer from discolouration on leaf surfaces within a few days 

after harvest, limiting their shelf life.  Enzymatic and non-enzymatic oxidative 

processes cause ‗browning‘ and ‗pinking‘ which results in the emergence of coloured 

pigments (brown and pink/red respectively) at cut surfaces produced via the 

phenylpropanoid pathway (see figures 1.1. and 1.2. ) (Martinez and Whitaker 1995; 

Payne et al. 2006).  The alteration in visual appearance results in rejection by the 

consumer and quality loss due to a decrease in beneficial phenols (Tomás-Barberán 

and Espín 2001).  The occurrence of enzymatic browning in many food products has 

been reported as a severe problem for the food industry as a whole (Chiesa 2003). 

 

Figure 1.1.  Post harvest browning (a) and pinking (b) of lettuce tissue. 

The phenylpropanoid pathway is a secondary metabolic pathway producing non 

essential metabolites.  Phenylpropanoid plant products are derived from trans-

cinnamic acid formed by the deamination of phenylalanine by phenylalanine 

ammonia-lyase (PAL) (EC 4.3.1.5) (Wanner et al. 1995).  PAL catalyses the 

conversion of phenylalanine to trans-cinnamic acid in the initial and core step of the 

pathway thus controlling the flux of primary metabolites into this secondary 

metabolic pathway (Wanner et al. 1995).  There are subsequent specific branch 

pathways for the formation of all major classes of phenylpropanoid compounds 

including monolignols/lignin, sinapate esters, condensed tannins, anthocyanins, 

coumarins, benzoic acids, flavonoids/isoflavonoids and stilbenes (Dixon et al. 2002).  

b a 
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PAL is normally induced upon plant tissue wounding, increasing activity in vascular 

tissue and therefore increasing downstream biosynthesis of polyphenols for oxidation 

(Nicholas et al. 1993; Lopez-Galvez et al. 1996; Peiser et al. 1998; Hisaminato et al. 

2001).  PAL genes occur in small families of 2-6 members in the majority of plant 

species (Cramer et al. 1989; Lois et al. 1989; Minami et al. 1989; Tanaka et al. 1989; 

Ohl et al. 1990; Frank and Vodkin 1991; Gowrier et al. 1991; Lee et al. 1992; 

Minami et al. 1993; Subramaniam et al. 1993). 

The synthesis of phenolic compounds is associated with the endoplasmic reticulum, 

with the proteins involved in their synthesis either incorporated or loosely associated 

with it.  Once the phenolic compounds have been formed they are glycosylated and 

then transported from the endoplasmic reticulum in transport vesicles formed from 

its membrane.  Phenolic compounds are then transported to the vacuole or into the 

apopolast or cell wall compartment.  Phenolic compounds may be found at low 

levels in chromoplasts, cytoplasm and the mitochondria although these are normally 

associated with specialised functions (Hrazdina and Wagner 1985).   
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Figure 1.2.  The Phenylpropanoid pathway resulting in post harvest pinking and browning.  

Where (ACCase) acetyl CoA carboxylase; (ANS) anthocyanidin synthase; (ANR) anthocyanidin 

reductase; (AS) aureusidin synthase; (DFR) dihydroflavonol 4-reductase; (DMID) 7,2_-dihydroxy, 4_- 

methoxyisoflavanol dehydratase; (F3H) flavanone 3-hydroxylase; (F3_H) flavonoid 3_-hydroxylase; 

(F3_5_H) flavonoid 3_5_ hydroxylase; (FLS) flavonol synthase; (FSI/FS2) flavone synthase; (I2_H) 

isoflavone 2_-hydroxylase; (IFR) isoflavone reductase; (IFS) isoflavone synthase; (IOMT) isoflavone 

O-methyltransferase; (LAR) leucoanthocyanidin reductase; (LDOX) leucoanthocyanidin dioxygenase; 

(OMT) O-methyltransferase; (PAL) phenylalanine ammonia lyase; (RT) rhamnosyl transferase; 

(UFGT) UDP flavonoid glucosyl transferase; (VR) vestitone reductase. Figure from Lepiniec et al. 

(2008). 

PAL 

Pinking and browning 
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Discolouration is initiated by the breakdown of membranes within cells of plant 

tissues (Toivonen 2004).  Upon physical stress cub-cellular compartmentalisation is 

disrupted at the wounded surface.  This results in the mixing of substrates and 

enzymes which are normally separated commencing reactions which would not 

normally occur (see figure 1.3.) (Degl‘Innocenti et al. 2005; Toivonen and Brummell 

2008).  Polyphenol oxidase (PPO) is the main agent responsible for discolouration; 

oxidising polyphenols synthesised via the phenylpropanoid pathway (Hisaminato et 

al. 2001).  However a synergistic effect between PPO and phenol peroxidase (POD) 

(EC 1.11.1.7) is possible (Padiglia et al., 1995; Bouwens et al., 1999; Tomás-

Barberán and Espín 2001).   

 

Figure 1.3.    The internal and external localisation of phenolic compounds and phenolic 

oxidising enzymes.  Where PPO (polyphenols oxidase); POD (phenol peroxidise).  Figure 

from Toivonen and Brummell 2008. 

PPO interacts with phenolic substrates in the presence of oxygen and catalyses 

two reactions; the hydroxylation of monophenols to diphenols via monophenol 

monooxygenase or tyrosinase (EC1.14.18.1) and the oxidation of diphenols to 

quinones via diphenolase (EC1.10.3.1) (Webb 1992; Lopez-Galvez et al. 1996).  

The hydroxylation reaction is slow and results in colourless products, while the 

oxidation reaction is rapid and results in coloured quinones (see figure 1.4.) 
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(Toivonen and Brummell 2008).  Quinones undergo subsequent reactions (non 

enzymatic polymerisation with amino acids or proteins) leading to melanin 

accumulation, these occur as mainly brown pigments but can also occur as red 

pigments which are associated with ‗browning‘ and ‗pinking‘ in plant tissues (the 

formation of black pigments has also been recorded) (Joslin and Pointing 1951; 

Zawistowski et al. 1991; Martinez and Whitaker 1995; Solomon et al. 1996; 

Toivonen and Brummell 2008; Van Vliet et al. 2009).  The reaction resulting in 

the pigments is dependent upon the structure of the phenolic substrate, with 

pinking more susceptible to phenolic composition (Wurr et al. 2003; Toivonen 

and Brummell 2008).  It has also been suggested that pink pigments will 

gradually turn brown after prolonged storage (Van Vliet et al. 2009). 

 

Figure 1.4.    The mechanism for polyphenol oxidase action on monophenols and diphenols.  

The process of hydroxylation is slower than the process of oxidation (see Vmax).  Figure from 

Toivonen and Brummell 2008. 

The role of POD is difficult to define as one of its main substrates; hydrogen 

peroxide (H2O2) is present at low cell concentrations (Veljovic-Jovanovic et al., 

2002).  However H2O2 is associated with oxidative injury and is thus tightly 

regulated within cells (Jiang and Miles 1993; Mittler 2002).  PPO mediated 

production of quinones could lead to H2O2 accumulation, increasing the free radical 

species concentration enabling POD mediated browning (Jiang and Miles 1993).  
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The structure of the phenolic substrate will also affect the potential for POD 

mediated browning due to differences in potential H2O2 yield (Cantos et al. 2002).  

However the mechanism of PPO mediated H2O2 generation has only been recorded 

in vitro (Jiang and Miles 1993).  It has been suggested that POD could enhance 

browning reactions in the presence of PPO mediated browning (Richard-Forget and 

Gauillard 1997).  Although it remains unclear whether POD mediated browning can 

occur in the absence of PPO mediated browning and therefore whether POD is 

actually a significant consistent component in the browning response of fresh 

produce (Toivonen and Brummell 2008).   

Cell disruption leads to de-compartmentalisation involving a cascade of events, 

including PPO activation and promotion of PAL synthesis.  PPO activation and both 

PAL and POD induction has been observed in six lettuce cultivars following cutting.  

However, there appeared to be no simple correlation between browning susceptibility 

and any of the parameters (Cantos et al. 2001).  Although the degree of 

discolouration appears to have a genetic component, with ‗Iceberg‘ types having 

lower documented PAL activity than ‗Butterhead‘ ones, while ‗Romaine‘ green and 

red leaf types appear to have intermediate PAL activity (Lopez-Galvez et al. 1996). 

PPO appears to be constantly present in the cell, compartmentalised within the 

chloroplast and other plastids at supraoptimal levels, only being released upon tissue 

damage.  This suggests that the degree of discolouration observed may be determined 

by absolute substrate availability driven by PAL activity rather than PPO activity 

(Wurr et al. 2003).  Therefore the regulation of polyphenol biosynthesis could be a 

source for effective control of discolouration post processing in lettuce (Hisaminto et 

al. 2001). 
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Understanding the processes which lead to these changes is essential in developing 

better approaches to minimise them, which would result in improved quality and an 

extended shelf life.  The biochemical processes causing changes in appearance and 

texture have generally been studied in the whole plant; the consequences of 

processing cut leaves have not been studied as extensively (Toivonen and Brummell 

2008).  The full determination of the heritability of post harvest discolouration would 

allow development of improved varieties for trait combinations (including 

organoleptic and metabolomic characteristics) by breeders.  Therefore it is important 

to link gene function and gene regulation to phenotype.  Hypothetically it should be 

possible to link metabolomic changes in biochemical pathways to the enzymes 

involved and consequently the underlying genetic variation. 

 

1.1.4. Increasing shelf life 

Pre-harvest factors including climatic conditions, cultural practice, produce maturity, 

harvesting method, storage and processing (see section 1.1.2.) can all affect the shelf 

life of a product (Lee and Kader 2000).  In order to maintain minimally processed 

fresh produce of high organoleptic quality, a variety of post harvest treatments such 

as heating and cooling, dipping preservative chemicals and additives (hormones and 

physiologically active chemical exposure), high pressure and high field electric pulse 

treatments, irradiation and ultrasound treatments, films and edible coatings, 

packaging (moderate vacuum packaging (MVP) and modified atmospheric 

packaging (MAP)) have been developed for individual use or in combination 

(Tomás-Barberán and Espín 2001; Soliva-Fortuny and Martin-Belloso  2003).  
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However, MAP used in conjunction with various other techniques is most commonly 

used for minimally processed fresh vegetables (Sandhya 2010). 

Modified atmospheric packaging (MAP) 

The prevention of post harvest discolouration in pre-packed processed lettuce 

(resulting in prolonged shelf life) is currently achieved by combinations of various 

post harvest treatments, however the most widespread is MAP (Brecht et al. 2003; 

Hilton et al. 2009).  Fresh produce is more susceptible to disease due to an increase 

in respiration rate post harvest.  Respiration and transpiration continue after the 

product has been harvested, however as the product is now isolated from a source of 

water, minerals and photosynthates, it is wholly dependent on its own moisture 

content and food reserves.  Water loss is related to saleable weight, and a loss of 

even 5% weight can result in the produce appearing wilted or shrivelled.  Under 

ambient conditions this can lead to a very limited shelf life (Sandhya 2010).  MAP 

reduces respiration rate and water loss of the enclosed product thus slowing the 

metabolic rate of tissue and delaying postharvest discolouration (Hilton et al. 2008).   

In MAP the air composition surrounding the produce is altered, which can slow the 

natural deterioration of the product.  Oxygen (O2), carbon dioxide (CO2) and 

nitrogen gas (N2) are most commonly used in MAP, and for lettuce 1-3% O2, 0% 

CO2 and 97-99% N2 is the recommended gas mixture.  If the permeability of the 

packaging to O2 and CO2 is adapted to the product respiration, an equilibrium 

modified atmosphere will be created within the package and the shelf life will be 

extended.  MAP can provide control of respiration and ethylene production, in 

addition to the associated visual benefits which can result in a product of high 

organoleptic quality.  However this is dependent on temperature control.  Biological 
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reactions normally increase two to three-fold for each 10ºC temperature rise 

(Sandhya 2010). 

Effectively all fresh processed products are by necessity handled in MAP to receive 

the required commercial post harvest life span (Brecht et al. 2003).  However as soon 

as the packet is opened, oxygen enters and comes into contact with the tissue, and in 

lettuce initiates the phenylpropanoid pathway resulting in discolouration.  A genetic 

engineering approach, via production of genetically improved lines with reduced 

likelihood for discolouration would avoid the need for such treatments (Peiser et al. 

1998; Tomás-Barberán and Espín 2001).  Genetic engineering could be used to 

manipulate the biochemical pathways; however, currently public opinion opposes 

this approach in Europe.  An alternative is to exploit the natural genetic variation in 

lettuce for post harvest discolouration through a conventional breeding approach; this 

is the preferred option for lettuce breeding companies.  The current project aims to 

provide tools and resources for breeding lettuce varieties with improved ‗shelf life‘ 

and an underpinning understanding of the genetics of post harvest browning and 

pinking. 

 

1.2. Lettuce 

 

1.2.1. History  

The recorded history of cultivated lettuce (Lactuca sativa L., of the Asteraceae (or 

Compositae) family) began in Ancient Egypt approximately 2500 BC (Keimer 1924; 

Harlan 1986).  Tomb paintings show lettuce with long, narrow pointed leaves and 
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thick stems (Ryder 1999).  However it is possible that cultivation may have 

originated in the Middle East prior to this (Ryder 2002).  Lettuce appeared in China 

in the 5
th

 century where it was developed in to a different morphotype grown for 

consumption of its stem rather than its leaves.  It was being cultivated in Western 

Europe by the 15
th

 century and was introduced to America by Columbus on his 

second voyage at the end of the 15
th

 century.    

Cultivated lettuce is a diploid species with 9 pairs of chromosomes.  It is a 

preferential inbreeder (with pollination occurring as the capitulum opens), existing as 

a crop as hundreds of uniform varieties (Watts 1980).  Local selection has resulted in 

six edible forms of lettuce in the species L. sativa: crisphead (Batavia and iceberg 

types), butterhead, romaine, leaf, Latin and stem (Ryder 1999).  Although many of 

these types have been cultivated for centuries, the first true iceberg type lettuce, 

‗Great Lakes‘ was not introduced until 1941 (Ryder 2002).   

The wild species L. serriola L. (prickly lettuce) is thought to be the progenitor of L. 

sativa; a close relationship has been shown between the two species with differences 

in morphological traits directly relating to the process of domestication (Kesseli et al. 

1994; Van de Wiel et al. 1998).  L serriola has been used extensively as a source of 

beneficial alleles (particularly disease resistance) in commercial lettuce breeding. 

 

1.2.2. Lettuce breeding 

Traditional selective breeding has resulted in the huge range of inter- and intra- 

specific variation that is observed in lettuce today (Ryder 1999).  Variation within L. 

sativa accessions is principally for leaf morphology although as already mentioned 

stem types exist in Asia.  Cultivars also have different abilities to achieve their 
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desired phenotype under a range of growth and production conditions (Kays 1999).  

Conventionally breeders have looked at characteristics such as disease resistance, 

yield, colour and flavour (Kesseli et al. 1994; Michelmore et al. 1994; Jeuken et al. 

2001; Grube et al. 2005; Syed et al. 2006).  There has been limited research on post 

harvest discolouration of lettuce, and an understanding of the heritability of this trait 

would allow interaction with disease and agronomic traits to be established and 

facilitate breeding of varieties with improved shelf life with already established traits 

for growers. 

Successful cultivars have generally been superseded on the basis of their disease 

resistance, particularly to downy mildew. This is the major disease of lettuce 

worldwide and is caused by the oomycete Bremia lactucae and there exists a gene-

for gene relationship between host and pathogen which has resulted in a ‗boom-bust‘ 

cycle of ‗breakdown of resistance in varieties.  Breeding for resistance to downy 

mildew has been a major priority.  Introduction of new resistance genes into the 

cultivated crop has been achieved through intogression of wild lettuce germplasm, 

largely L. serriola, (Lebeda and Pink 1998) through classical breeding techniques. 

After disease resistance, good ‗field quality‘ characteristics have been focused on. 

However as the market changes to processed lettuce, this means that post harvest 

quality, especially discolouration has increased in importance. 

 

1.2.3. Genetic modification methods 

Plant transformation has become an important approach for crop quality 

improvement (Bhat and Srinivasan 2002).  Genetic transformation is the process of 

introducing foreign DNA into a new host species (Turner et al. 2000), and can be 
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used to broaden the genetic basis of plant germplasm available for conventional 

breeding (Curtis et al. 1994).  It has been shown to be a reliable approach to 

engineering crops with desired traits by the direct introduction of a small number of 

genes (Turner et al. 2000).  It can also reduce the time it takes to introduce single 

gene traits into crop plants (Curtis et al. 1994). 

Lettuce in tissue culture has been shown to be highly responsive to a range of growth 

regulators (Michelmore and Eash 1988).  However, a variation in the responsiveness 

of genotypes to regeneration in tissue culture has been recorded for most plant 

species (including lettuce) (Xinrun and Conner 1992; Curtis et al. 1994). Shoot 

regeneration has been achieved from many cultivars representing diverse genotypes 

(Xinrun and Conner 1992).  The introduction of foreign genes into lettuce has been 

successful using Agrobacterium mediated transformation (Michelmore et al. 1987; 

Torres et al. 1993; Curtis et al. 1994; Dinant et al. 1997). 

A genetic engineering approach would allow regulation of the pathways controlling 

the trait of interest (post harvest discolouration), therefore avoiding treatment use 

(Peiser et al. 1998; Tomás-Barberán and Espín 2001).  However, since current 

widespread public opinion opposes this type of modification in Europe, exploitation 

of natural allelic variation through traditional breeding programmes is the preferred 

option for lettuce breeding companies. However, lettuce breeding programmes are 

costly and time consuming as on average they take 6-8 generations to achieve the 

desired homozygous cultivar.  By using molecular markers it is possible to identify 

the superior genotype for a trait of interest which can be used for marker assisted 

selection to accumulate beneficial alleles independently of phenotype.  Although 

lettuce is not an ideal model crop species, most cultivars are highly inbred and reveal 

extensive genetic homozygosity allowing for genetic studies (Michelmore et al. 
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1994).  Significant progress has recently been made in the identification of genes and 

molecular markers and in their physical and functional relationship to each other.  

Numerous research groups have cooperated to develop an integrated genetic map of 

L. sativa using various phenotypic and molecular markers, including commercially 

important genes potentially useful in breeding (Ryder 1999; Truco et al. 2007).  

High-throughput technologies are concurrently being developed for genomic 

research and will have significant impacts on lettuce breeding for crop improvement 

(Michelmore et al. 2003).  Genomic resources are now becoming available for 

lettuce specifically through ‗The Compositae Genome Project‘ at UC Davis (see 

http://compgenomics.ucdavis.edu), which include the Affymetrix high density 

GeneChip© microarray, a large scale expressed sequence tag (EST) sequencing 

project and most recently a new Illumina OPA (pooled oligo set). 

 

1.3. Lettuce mapping populations and molecular breeding 

 

Genetic mapping is only possible if there is genetic variation for the trait of interest.  

A successful mapping study is fully dependent on the choice of contrasting parental 

lines used to generate the population (Jones et al. 2009).  Genetic variation is 

ultimately due to variation in DNA structure; all types of DNA variation are 

potentially useful as molecular markers (Jones et al. 2009).  Those linked to 

detectable trait variation are useful for marker assisted selection (MAS), while those 

with no phenotypic effect are useful for molecular mapping. 
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1.3.1. Mapping populations 

A number of types of experimental populations exist, which ones are applicable for a 

given crop depends on the mating system of the species.  Mapping populations 

include F2 (2
nd

 generation plants), back cross (BC) (crossed back to a parental line), 

double haploid (DH) (homozygous due to ‗doubling‘ of either male or female 

gametes of an heterozygous, usually an F1 hybrid individual), recombinant inbred 

lines (RILs) (see below) and near isogenic lines (NILs) (genetically identical lines 

which the exception of an introgressed locus or chromosomal segment).  These are 

all derived from the hybridisation of two parental genotypes with significant 

variation for a trait of interest (Kearsey and Pooni 1996; Abdurakhmonov and 

Abdukarimov 2008). 

Recombinant inbred lines (RILs) 

A RIL population contains fully homozygous individuals that are obtained by 

repeated generations of selfing of individual F2 plants derived by selfing an 

individual F1 hybrid.  The population represents ~50% of each parental genome in 

different combinations.  RIL populations are therefore extremely informative in 

terms of gene combinations and recombination events and because they have a high 

degree of homozgosity they can be grown in replicated experiments in different 

environments and across years.  However producing a RIL population is both time 

consuming and costly, as they generally require a minimum of 6-8 generations of 

selfing to reach the required level of homozygosity. 
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1.3.2. Molecular markers 

The first generation of molecular markers included restriction fragment length 

polymorphism (RFLPs), random amplified polymorphic DNA (RAPDs) and simple 

sequence repeats (SSRs).  In the past decade there have been vast developments in 

molecular markers, these reflect advances in technical procedures and are more 

efficient and effective.  Marker technologies do however differ in the information 

they give about inheritance (dominant or co-dominant) and the number of marker 

bands that can be obtained (i.e. AFLPs can produced hundreds of bands while SNPs 

produce one); in addition to having their own technological restraints.  Several 

molecular marker analyses are summarised below (see table 1.1.), with those used in 

this study described in more detail.  In recent years there has also been a surge of 

knowledge and in databases of genomics and bioinformatics (Jones et al. 2009).   
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Table 1.1.  Classification of marker systems.  From Jones et al. 2009 

Marker system Advantages Disadvantages 

First-generation markers based on restriction fragment detection 

Restriction fragment length polymorphism (RFLP) Co-dominant.  Highly reproducible. Low multiplex ratio.  High on time and labour. 

Second-generation markers based on PCR 

Cleavage amplification polymorphism (CAP) 
Insensitive to DNA methylation.  Radioactivity not 

needed. 
Produces informative PCR products. 

Random amplified polymorphic DNA (RAPD)  Medium multiplex ratio.  Low on time and labour.  Dominant information.  Low reproducibility. 

Sequence-specific amplification polymorphism (S-

SAP) 

Can target any gene, transposon or sequence of 

interest. 

Sequence must be known to enable design of specific 

PCR primers. 

Simple sequence repeat (microsatellite) (SSR) 
Co-dominant information.  Highly reproducible.  Low 

on time and labour. 
High cost of development.  Low multiplex ratio. 

Inter-simple sequence repeat (ISSR) 
Technically simple.  No prior genomic information 

needed to reveal both inter- and intraspecific variation. 
Dominant information.  Band staining can be weak. 

Variable number tandem repeat (minisatellite) (VNTR) Numerous multiallelic loci. Low-resolution fingerprints in plants. 

Sequence tagged sites (STS) Co-dominant information. Requires sequence knowledge. 

Sequence characterised amplification region (SCAR) Dominant or co-dominant information.   Difficult to reproduce. 

Sequence amplification of microsatellite polymorphic 

loci (SAMPL) 

High multiplexing.  Co-dominant information.  

Extensive polymorphism. 
Some blurred banding.  Stutter bands. 

Genome scanning for expressed genes 

Sequence-related amplified polymorphism (SRAP) 

Simple.  High throughput.  High reproducibility.  

Targets coding sequences.  Detects multiple loci 

without previous knowledge of sequence information.  

PCR products directly sequenced. 

Detects co-dominant and dominant information.  Null 

alleles detected directly. 

Target recognition amplification protocol (TRAP) 

Simple.  Highly informative.  Produces numerous 

markers by using existing public EST databases.  Uses 

markers targeted to a specific gene. 

Requires cDNA or EST sequence information for 

primer development. 

Markers using array technology 

Microarrays 

Whole-genome scanning.  High-throughput 

technology.  Genotype–phenotype relationship.  

Expression analysis of large numbers of genes. 

Expensive.  Requires gene sequence data.  Technically 

demanding. 
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Table 1.1. continued.   

Marker system Advantages Disadvantages 

Diversity array technology (DArT) 

No sequence data required.  High throughput.  Detects 

single base changes and indels.  Rapid germplasm 

characterization. 

Dominant information.  Technically demanding. 

Other marker systems 

Denaturing gradient gel electrophoresis (DGGE) 
Separates individual sequences from a complex 

mixture of microbes based on sequence differences. 

PCR fragment size limited to about 500 bp.  Difficult 

to resolve fragments that differ by only one or two 

bases. 

Temperature gradient gel electrophoresis (TGGE) 
Almost identical to DGGE.  More reliable.  Uses 

temperature gradient. 
Technically demanding.  Little used in plants. 

Methylation-sensitive PCR Detects sites of methylated DNA. Technically demanding.  Little used in plants. 
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Additional second-generation markers based on PCR include amplified fragment 

length polymorphism (AFLP) and conserved ortholog set (COS).  Third-generation 

markers based on DNA sequencing include single nucleotide polymorphism (SNP) 

and single position polymorphism (SPP) (principally the same) and genome scanning 

for expressed genes to identify expressed sequence tag/s (EST/s).  Other marker 

systems including single-strand conformational polymorphism (SSCP) have been 

used in this study. 

Amplified fragment length polymorphism (AFLP) 

The AFLP method combines the use of restriction enzymes with PCR amplification 

fragments and detects any polymorphisms in fragment length.  The technique 

involves the restriction of genomic DNA with two endonucleases, ligation of 

adapters with known sequence to each end, selective PCR of a subset of fragments 

with fluorescent tagging followed by sequencer analysis of the amplified fragments 

(Vos et al. 1995; Meudt and Clarke 2007).  Although the AFLP system is both labour 

and time intensive, it can detect up to 200 loci in a single reaction (depending on 

genome size, enzyme combination, number of selective nucleotides and resolution of 

output) (Witsenboer et al. 1997; Jones et al. 2009).  AFLP markers are generally 

reliable and efficient; they can also be used for many species (Qi et al. 1998; 

Vuylsteke et al. 2000).  This technology can be used for the construction of high-

density maps which have important applications in genetics and breeding (Jeuken et 

al. 2001; Jones et al. 2009) 

Conserved ortholog set (COS) 

COS markers are evolutionary conserved single copy genes that have been identified 

from large EST databases (Fulton et al. 2002).  They represent orthologous genes in 
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many plant species and are particularly useful for comparative genomics 

(Castelblanco and Fregene 2006).  They are also useful for constructing syntenic 

genetic maps amongst species (Liewlaksaneeyanawin et al. 2009).  There are many 

ways of genotyping COS markers depending on the information requirements and 

resource constraints.   

Single nucleotide polymorphism (SNP) 

SNPs are single base pair variations in genomic DNA at which 2 alleles are usually 

present.  A SNP must be present in at least 1% of individuals from a population to be 

classified as ‗polymorphic‘ (Jones et al. 2009).  SNPs are extremely common 

polymorphisms occurring 1/1000 bp and are generally evenly distributed through the 

genome (Wang et al. 1998).  There are many ways of detecting and genotyping SNPs 

depending on the information requirements and resource constraints (Lörez and 

Wenzel 2005; Gupta et al. 2008).  This technology has many applications including 

the use for the construction of high-density maps, mapping of traits and phylogenetic 

analysis (Rafalski 2002). 

Expressed sequence tag (EST) 

ESTs are short sub-sequences of 200-800 bp of cDNA sequence transcribed from 

mRNA that can be used to tag genes of interest and generate specific markers, 

allowing gene discovery, sequence determination and mapping.  ESTs are generated 

by sequencing a single or both ends of an expressed sequence.  They are 

subsequently used to find the equivalent gene by hybridising to homologous 

sequences from a genomic library.  Identifying genes within genomes of different 

organisms is dependent on genome size, the presence/absence of introns (interrupting 

coding sequences of genes) which can reduce homology between the original gene 
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and EST (as a product of mRNA the intronic regions have been removed) (Jones et 

al. 2009).  There has been rapid progress in EST identification and entries in public 

databases for plant species in recent years; such as the National Centre for 

Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov/dbEST/) 

and the Compositae Genome Project database‘ 

(http://compgenomics.ucdavis.edu/compositae_index.php) (see ‗Genomics and 

bioinformatics‘ below). 

Single-strand conformational polymorphism (SSCP) 

SSCP analysis has been used to identify single nucleotide changes within sequences.  

SSCP gel electrophoresis separates DNA molecules based on their conformation (the 

way in which single stranded DNA will fold into secondary structures) rather than by 

their size (Orita et al. 1989; Sunnucks et al. 2000; Celotto and Gravely 2004).  In this 

method PCR is carried out on the DNA sample, the sample is then heat-denatured 

and cooled to prevent renaturation.  Single-stranded fragments are separated by gel 

electrophoresis and detected with UV light (if fluorescent primers were used) or 

silver staining (Bosari et al. 1995; Jones et al. 2009).  Fragments may differ by as 

little as a single base pair, and mutations can be detected at multiple sites (Jones et 

al. 2009).  It is considered the most suitable method for detecting mutations in short 

DNA sequences although it is temperature and pH dependent (Schwieger and Tebbe 

1998; Jones et al. 2009).  SSCP can be used to profile individuals and populations 

(Jones et al. 2009). 

Genomics and bioinformatics 

‗The Compositae Genome Initiative‘ coordinated by Professor Richard 

Michelmore‘s research group at UC Davis, CA intends to establish tools and 

http://www.ncbi.nlm.nih.gov/dbEST/
http://compgenomics.ucdavis.edu/compositae_index.php
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resources for the Compositae.  The ‗Compositae Genome Project database‘ (CGP) 

(Phase I 2000-2004; Phase II 2004-2009; Phase III 2009-2013) within this initiative 

is developing gene catalogues and genomic sequences for important species in the 

family.  Within the project lettuce EST homologues of Arabidopsis sequences have 

been isolated with the majority of data accessible via CGP2 (at 

http://cgpdb.ucdavis.edu/cgpdb2).  The initial phase of the project generated 

≥132,000 ESTs from sunflower (~64,000) and lettuce (~68,000).  The second phase 

included an additional 160,000 lettuce ESTs which are estimated to represent >80% 

of lettuce genes.  Lettuce EST libraries were produced from 10 pools of RNA 

consisting of diverse tissues, developmental stages and environmental conditions 

from cultivated L. sativa cv Salinas and wild L. serriola (Michelmore 2006). 

 

1.3.3. Genetic linkage maps 

‗The main purpose of genetic mapping is to detect neutrally inherited markers in 

close proximity to the genes controlling complex or quantitative traits‘ 

(Abdurakhmonov and Abdukarimov 2008).  Marker and genotypic data for 

individuals from a mapping population are used to generate a linkage map.  The 

linkage map represents the order and position of markers based on their linkage using 

a relative genetic distance (in cM) along linkage groups; this is achieved via analysis 

of recombination rates between marker loci.  The theory underlying linkage mapping 

of markers was first available in the 1920s (Mather 1938), however slightly different 

algorithms are now used in the final stages of mapping to cope with multiple marker 

data (Lander et al. 1987; Stam et al. 1993).   

http://cgpdb.ucdavis.edu/cgpdb2
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Genetic studies in lettuce have identified genes controlling seed characteristics and 

disease resistance (Witsenboer et al. 1995; Witsenboer et al. 1997; Waycott et al. 

1999; Jeuken and Lindhout 2002) and there has been significant progress in the 

development of lettuce based linkage maps in recent years (see section 4.4.).  Genetic 

maps have been utilised for marker assisted breeding (Dekker and Hospital 2002), 

dissection of quantitative traits (Salvi and Tuberosa 2005) and comparative genomics 

(Paterson et al. 2000).  Maps constructed from an intraspecific cross can be readily 

used for breeding purposes as they contain markers for a related genepool.  Although 

interspecific crosses have a higher level of polymorphism, they often show high 

segregation distortion and access to wild alleles is often limited (Truco et al. 2007). 

 

1.3.4. Phenotypic assessment 

Phenotypic variation can be either continuous or discontinuous.  Continuous 

variation is quantitative while discontinuous variation is qualitative.  Discontinuous 

variation is a characteristic of traits that are controlled by a single or low number of 

genes that behave in a Mendelian fashion.  Variation for mapping is often generated 

experimentally, where crossing lines with contrasting phenotypes results in a 

population segregating for a particular trait (Jones et al. 2009). 

 

1.3.5. Quantitative trait loci (QTL) 

Complex traits are usually influenced by a large number of genes in addition to 

environmental effects (Kearsey and Farquhar 1998).  QTL are chromosomal regions 

of individual or groups of genes which influence complex traits (Paterson 1998).  
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The understanding of the genetic basis of these complex traits is based on the 

separation of phenotypic variation within and among individuals with a known 

degree of relatedness (Lynch and Walsh 1998).  QTL are initially predicted based on 

associations between the quantitative trait and marker alleles segregating in the 

population (Kearsey and Farquhar 1998).  Markers ordered on the linkage map are 

correlated with phenotypic trait data of individuals of the mapping population, 

identifying QTL regions affecting the associated trait with ‗tag‘ markers (that are 

linked to the control of the trait measured) (Abdurakhmonov and Abdukarimov 

2008).  The precision of QTL mapping depends on the genetic variation covered by a 

population, the size of the mapping population and number of marker loci 

(Abdurakhmonov and Abdukarimov 2008). 

QTL mapping methods 

There are many techniques for QTL analysis, however the most widely used method 

is interval mapping (Kearsey and Farquhar 1998), which was developed by Lander 

and Botstein (1989).  The log of the ratio of likelihoods (LOD) (probability) of there 

being a QTL present within a marker interval or not, is calculated by examining 

intervals between adjacent pairs of markers (Lander and Botstein 1989).  When the 

LOD exceeds a predefined significance threshold (at marker intervals) a segregating 

QTL has been detected (Van Ooijen et al. 2002).  However interval mapping is one 

dimensional and does not detect interactions between multiple QTL which are likely 

to be present when analysing quantitative traits.  However multiple QTL models such 

as multiple QTL model (MQM) mapping method developed by Jansen (1993, 1994) 

are an extension of interval mapping that remove any residual variation caused by 

other QTL increasing the power of individual tests (Jansen 1993, 1994; Jansen and 

Stam 1994). 
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Alternative approaches include multiple regression developed by Haley and Knott 

(1992) and marker regression developed by Kearsey and Hyne (1994). 

 

1.3.6. Gene-environment (GXE) interactions 

GXE interactions can occur for QTL where the difference in phenotypic values of an 

allele at a locus is dependent on environmental heterogeneity (Juenger et al. 2005).  

Cultivar performance/phenotype can vary across environments due to different 

response to numerous biotic, climatic and edaphic factors (Dixon et al. 1991).  If 

genes are environmentally sensitive this results in phenotypic plasticity (Maloof 

2003).  While GXE interactions indicate that a QTL is specific to an environment, 

the absence of an interaction would imply the QTL has a general effect independent 

of environment (Maloof 2003).  QTL with GXE interactions are generally QTL with 

small effects (Collard and Mackill 2007).  GXE interactions can limit the progress of 

crop improvement beyond the site of analysis as successful application of QTL 

mapping depends on the robustness of QTL.  It is therefore necessary to separate 

main QTL and environmental QTL effects, and to base genotypic selection on main 

effects (Yang and Zhu 2005; Collard and Mackill 2007).  However, GXE 

interactions can be exploited by plant breeders to benefit agriculture. 

 

1.3.7. Marker assisted selection (MAS)  

MAS is an indirect selection process where a trait of interest is selected for based on 

a QTL ‗tagged‘ marker linked to the QTL (Ribaut and Hoisington 1998; Reynolds et 

al. 2001; Rosyara 2006).  It is assumed that the allele linked to the marker is 
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associated with the QTL or underlying gene of interest.  However, for markers to be 

used for MAS QTL must be confirmed or validated; fine/high resolution mapping 

may also be required (Langridge et al. 2001) in order to have tightly linked markers 

(i.e. to reduce the possibility of recombination between the marker and QTL).  

Desired genotypes can be effectively selected with MAS independent of phenotypic 

selection and hence environmental effects resulting in faster line development and 

therefore variety release (Collard and Mackill 2007).  MAS is particularly useful for 

traits with low heritability and traits that are difficult to quantify or are expressed late 

in development.   

 

1.3.8. Functional genomics to map candidate genes  

The main objective of molecular genetics is to identify and isolate genes relating to 

important traits.  The candidate gene approach is a strategy for identifying 

agronomically important genes controlling qualitative traits.  It hypothesizes that 

genes of known function, previously sequenced and putatively involved in trait 

variation based on biological function may correspond to loci controlling the trait of 

interest.  Validated candidate genes could be used for identification of genotypes in 

addition to marker assisted selection.  The genes would act as efficient markers 

allowing fuller control of the introgressed region, whilst markers based on genes 

underlying QTLs would provide the perfect marker for the QTL with no possibility 

of recombination events between marker and QTL (Pflieger et al. 2001). 
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CHAPTER 2 

 

 

Materials and methods 
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2.1. Plant material 

 

This chapter describes more general materials and methods; materials and methods 

specific to a particular chapter are described within the ‗experimental‘ chapters. 

 

2.1.1. Parents of the Warwick HRI recombinant inbred line mapping 

population 

Crisphead varieties ‗Saladin‘ (syn Salinas) and ‗Iceberg‘ (syn Batavia blonde a bord 

rouge) were used as parents for generation of the WHRI recombinant inbred line 

(RIL) mapping population (see figure 2.1.).  Iceberg is a traditional Batavian variety 

bred in France during the late 1850‘s, it has pale green leaves with variable red edges 

(Rodenberg et al. 1960).  Saladin is an iceberg type and has dark green leaves; it is 

synonymous with cv. Salinas and was bred in the 1970‘s at the United States 

Department of Agriculture, California by Dr Ed Ryder (1979).  The majority of 

modern European iceberg type cultivars are derived from Saladin. 

 

Figure 2.1. Iceberg and Saladin; parents of the Warwick HRI recombinant inbred line mapping 

population.  Where a (Iceberg); b (Saladin). 

 

a                                                                                                    b 
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2.1.2. Saladin x Iceberg recombinant inbred line population 

The F7 mapping population includes 125 recombinant inbred lines (RILs) from the 

Saladin x Iceberg cross with seed produced at Warwick HRI, UK.  Ninety-four 

highly informative lines (based on recombination events) from the population were 

selected for the 2008 field trials and 11 lines which had extreme discolouration 

genotypes (and phenotype in 2008) were selected for the 2009 field trial. All RILs 

were used for agronomic assessment. 

 

2.2. Experimental trials 

 

2.2.1. Plant culture 

Plant raising 

In the UK seeds were planted in FP7 modular trays into a 3:1 mixture of Levington 

M2 compost (Levington Horticulture, UK) with a vermiculite covering (Avon Crop, 

Blacknell, UK).  Germination took place in the dark at 5C and lettuce transplants 

were then raised under the following glasshouse conditions in a randomised 

arrangement.  Seedlings were subjected to a 16 hr day (18C day and 16C night) 

with a light threshold (High pressure sodium 400 W son-t bulbs) of 300 Wm
2
 (when 

outside light levels >300 W/m
2
 the lights turned off and resumed when the outside 

light dropped below the threshold).  Transplants were predominantly watered with 

tap water at the base by hand and when needed with liquid feed Vitax on tap (where 

the concentrated feed was diluted to 1:200).  After 21 days of growth, transplants 

were placed outside in a cold frame to harden off for two weeks prior to 
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transplanting.  Plants grown in the Netherlands were raised by Rijk Zwaan under 

their standard growing procedures. 

Field trials 

Lettuce transplants were raised as described above and randomly selected from the 

pool available for each accession for the field.  Each plot contained 12 plants (4 rows 

x 3 plant arrangement) of the same accession with 35 cm spacing between plants.  

Crops were treated with protective sprays ‗Dovetail‘ lambda-cyhalothrin and 

‗Aphox‘ pirimicarb (1.5 L/ha and repeated as information was released on the 

Horticultural Development Company (HDC) Pest Bulletin 

(www2.warwick.ac.uk/fac/sci/whri/hdcpestbulletin/)).  Plants were irrigated through 

an oscillating line as required for establishment (although no soil moisture deficit 

was recorded the land was irrigated to bring it near field capacity prior to 

transplanting) and irrigation stopped 7 days before harvest.  As above plants grown 

in the Netherlands by Rijk Zwaan were subjected to their standard growing 

procedures. 

. 

2.2.2. Harvest and processing 

Field trials 

On harvest day the central two ‗guarded‘ replicated heads per plot were cut at soil 

level.  Excess material from each head was trimmed by removing the outermost 

exposed wrapper leaves and the trimmed weight recorded.  Heads were processed 

into ~4 cm
2
 pieces by halving the head, removing the core, cutting lengthwise from 

butt to crown and again transversely (see figure 2.2.).   
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Figure 2.2. Processing protocol for lettuce heads.  Each head was halved cutting lengthwise from 

the butt to the crown and again transversely with a sharp stainless steel knife.  The core was removed 

by cutting a V shape, and then each quarter cut in half. 

 

 

 

Figure 2.3. Pre-packed cut lettuce from experimental trials stored either a) hung vertically or b) stored 

vertically in fridge at 5°C.  Bags were hung vertically for the 2007 trials and stored vertically for 2008, 2009 

and 2010 trials. 

Processed material from a single head was separated and mixed thoroughly. 

Approximately 50g (for the 2009/2010 trials), 75g (for the 2007 trial) or 100g (for 

the 2008/2009 trials) of unwashed processed material were sealed (removing any 

excessive air and ensuring the seal was not compromised by material) in a non-

selective permeability film bag (P-PLUS 35PA240; 200 x 250mm; Amcor Flexibles 

P-Plus) with material from one head filling two bags (1 for the glasshouse trial).  The 

use of non-selective film ensured that the atmosphere within the pack did not reduce 

the natural intrinsic rate of discolouration in each product.  Bags were stored at 5 

(see figure 2.3.).    

 

a 

 b 
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2.2.3. Trait measurements 

Phenotypic assessment of discolouration 

On each assessment date bags were removed from storage and arranged under a 

halogen light source for assessment, ensuring that the bags had the same orientation 

on each assessment date.  Material was scored ‗blind‘ (so genotype was unknown at 

time of scoring) as not to bias results.   

 A 12-square 3 x 4 acetate grid (50 mm x 50 mm) was overlaid on the bag and 

arranged so that each square covered a representative sample of material.  

Discolouration in each square was then scored based on a set of photographic 

standards for pink and brown discolouration (Hilton et al. 2009) (see figure 2.4.).  

Pinking and browning were each split into 2 categories of severity, slight and severe.  

When no discolouration was observable, the ‗square‘ was classified as clean.  When 

there was uncertainty about whether the discolouration was brown or pink it was 

classified as visible.  This prevented any missing data and allowed the discolouration 

to be included in the general discolouration classification category for analysis.  As 

time progressed the material became easier to score so the amount of data classified 

as visible decreases.  The different types of discolouration were measured in two 

ways, with mean score discolouration representing the intensity of the discolouration 

while percentage discolouration represented the extent of this discolouration.   
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Figure 2.4. Discolouration scale for lettuce post harvest discolouration assessment.  Based on Hilton et al, (2009). 
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Each grid square was given a single score as a discolouration coordinate at its most 

intense representation, resulting in 12 tallies per scoring grid per bag on each 

assessment day (see table 2.1.). 

Table 2.1. Sample score grid for a single bag of lettuce representing the discolouration.  Where / 

(impossible score); italicised text (output score). 

    PINK 

Bag ID   Clean Visible Slight Intense 

   0 1 50 70 

 
Clean 0 0 / 50 70 

Visible 1 / 1 51 71 

BROWN 
Slight 2 2 12 52 72 

Intense 4 4 14 54 74 

 

The percentage discolouration (= 100 x (number of grid squares with discolouration / 

12)) and the intensity of discolouration (mean discolouration score / number of grid 

squares showing the discolouration) were determined on each assessment day for 

pinking, browning, visible and overall discolouration (i.e the sum of all categories).   

Spectrophotometer readings were taken from tissue samples of cv. Iceberg for 

analysis to ensure the scoring method was consistent.  Fifty readings were taken 

independently from leaf and midrib tissue of an Iceberg lettuce (store brought) using 

a Minolta CM5031 Spectrophotometer (Konica Minolta Sensing Inc.) for scores of 

no and visible discolouration, slight and severe brown, and slight and severe pink 

discolouration.  Additionally, 5 readings were taken for the corresponding 

photographic standards (see figure 2.4.).  Results were analysed via discriminant 

analysis (Burr and Doak 2007); the analysis showed consistency between the 2 

scoring methods.  However, to use the Minolta was time consuming and impractical 

for a large scale trial.  Therefore the visual scoring method was used for all 

assessments. 
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QTL analysis 

The dense molecular marker linkage map for the F7 RILs (see Chapter 4) was used as 

a framework for the QTL analysis.  Interval mapping was conducted using MapQTL 

®4.0 (Van Ooijen et al. 2002; Jansen 1993, 1994 and Jansen and Stam 1994) to 

increase resolution and reduce background marker effects (Zeng 1994).  QTL were 

detected with QTL significance at P <0.05 using a genome wide threshold for 

logarithm of odds (LOD).  QTL were then confirmed by multiple QTL model 

(MQM) mapping to define QTL using MapQTL again with a genome wide 

threshold.  MQM mapping increased robustness of the identification of putative QTL 

(by taking into account the effect of other QTL).  The graphical representation of the 

linkage maps and QTL were prepared using MapChart®2.2 software (Voorrips 

2002).   

 

2.3. Metabolite analysis 

 

2.3.1. Metabolite extraction 

Sample material 

When material was harvested from trials for bagged phenotypic assessment 

(including field trial of extreme discolouration lines and glasshouse trial for wild 

type and mutant lines) tissue was also harvested for metabolite analysis.  Two x 22 

mm cork borer samples were taken from the middle of each lettuce head per plot 

once halved (avoiding core tissue).  Each sample was split where it fell naturally into 
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inner and outer leaf tissue (with inner tissue closest to the core of the head).  One 

sample per plot (from the same extraction) was frozen on the day of harvest.  The 

remaining samples were placed in semi permeable bags as used in all other trials and 

stored as bagged samples for phenotypic assessment; samples were then frozen on 

day 4.  Frozen samples were subsequently freeze dried (Edwards 12K Super 

Modulyo Meadowrose Scientific). 

Enzyme and protein extraction 

Finely ground freeze dried material (0.03g per sample) was added to a pre-cooled 

centrifuge tube and 1 ml phosphate buffer (50 mM pH 6.5 (phosphate buffer 

contained 18.75 ml 0.2 M dibasic sodium phosphate, 31.25 ml 0.2 M monobasic 

sodium phosphate and 50 ml dH2O per 100 ml)) at 4°C was added. 

Total phenolic content extraction 

Finely ground freeze dried material (0.02g per sample) was added to a pre-cooled 

centrifuge tube and 1 ml acetone-water (1:1, v/v) added.  Samples were left at room 

temperature for 15 hr.   

All samples were mixed for 2 min at dial adjusted to 0.25 (Retsch MM300 

Mixermill) and then spun in a centrifuge (Mikro 200R, Hettich Zentrifugen) for 20 

mins at 1800 rpm at 4°C.  The supernatant was removed and stored at -20°C for 

subsequent assays. 

 

  



42 
 

2.3.2. Metabolite identification 

All samples were quantified in 96 well plates (Immuno 96 MicroWell™ plate, with 

MaxiSorp F96 surface, nunc™) using a GENios fluorometer (Genesis workstation 

150, Tecan). 

PAL activity 

PAL activity was measured as developed by H Hilton (personal communication).  

Thirty µl of sample was added to 150 µl L-phenylalanine (10 mM) in borate buffer 

(100 mM, pH 8.6 (Borate buffer was created by adding boric acid (0.2 M) to borax 

(sodium tetraborate) (0.2 M) until pH 8.6 was reached, and diluted to 100 mM using 

dH2O)).  Samples were shaken for 10 s and absorbance quantified immediately at 

280 nm.  Samples and blanks were subsequently incubated for 120 minutes at 35°C 

in dark and re-quantified.   

PPO activity 

PPO activity was measured as developed by Howard Hilton (personal 

communication).  One-hundred and ninety µl catechol mix (10 mM catechol in 50 

mM phosphate buffer at pH 6.5) was added to 10 µl sample.  Samples were shaken 

for 10 s and absorbance quantified immediately at 420 nm.  Samples and blanks were 

incubated for 2 minutes at 35°C in the dark in situ and re-quantified.   

Total phenolic content 

Total phenolic content was analysed by the Folin-Ciocalteu method using gallic acid 

as a standard (Yu et al. 2003; Liu et al. 2007).  Each reaction contained 3 µl of 

sample or gallic acid standard, 134 µl dH2O, 12 µl Folin-Ciocalteu reagent and 34 µl 

of Na2CO3 (20 g / 100 ml).  Samples and blanks were incubated for 120 minutes at 
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35°C in the dark.  Samples were shaken for 10 s and absorbance quantified at 765 

nm.   

Blanks of dH2O and substrate minus extract were also read. 

 

2.4. Statistical analysis 

 

Preliminary statistical analyses for experiments for analysis of post harvest 

discolouration phenotype data (Chapters 3-8) were conducted using GenStat 10
th

 

edition (Payne et al. 2007).  Initially the distribution of the data was plotted to 

determine whether the data were distributed normally.  Data that were normally 

distributed were subjected to further analysis. 

 

2.4.1. Restricted maximum likelihood (REML) analysis  

All experiments for analysis of phenotype data were analysed using Restricted 

Maximum Likelihood (REML) procedure (Patterson and Thompson 1971; 

Thompson and Welham 2000).  REML analysis is a generalised ANOVA which is 

suitable for unbalanced designs for both fixed and random effects.  Due to poor 

weather conditions resulting in little or no material for some bags, balanced designs 

were not always possible.   REML was subsequently used to analyse trial data to 

identify main effects due to variety/genotype; all transformed discolouration 

variables were analysed per day and across days for each trial.  Wald statistics were 

used to ensure that actual and estimated means from the REML analyses were not 

significantly different. 
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2.4.2. T-Test 

For normally distributed data t-tests were conducted using GenStat 10
th

 edition to test 

the null hypothesis that two genotype means corresponding to the two random 

samples were equal (Payne et al. 2007).  F-tests were initially conducted to test for 

equality of variance; t-tests were then altered accordingly.  Estimates for the variance 

were pooled unless there was evidence of unequal variances, separate variances 

would then be used.  Data was transformed as for the associated REML analysis for 

data from each of the field trials.  T-tests were carried out for individual day data for 

each discolouration parameter between accessions of interest. 

 

2.4.3. Analysis of Variance (ANOVA) 

Experiments for analysis of metabolite data (Chapter 7 and Chapter 8) were analysed 

using one-way Analysis of Variance (ANOVA) (no blocking).  ANOVA is suitable 

for balanced designs amongst 2 or more independent groups to identify whether 

means were drawn from the same population (Howell 2002).  Metabolite data was 

analysed by ANOVA across and per days to identify main effects due to genotype.   

 

2.4.4. Correlation analysis 

Correlation matrices were created using GenStat 10
th

 edition (Payne et al. 2007) to 

suggest possible causal or mechanistic relationships between all variables analysed 

within a chapter.  R values were generated for all discolouration variables, 

processing data, metabolite activity and related morphological traits recorded for the 

associated trial which were compared to the relevant p values.  Due to large data sets 
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only P <0.001 were classified as significant enough to present a relationship between 

parameters. 

 

Significant effects are shown as *P <0.05, **P <0.01 and ***P <0.001. 
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CHAPTER 3 

 

 

Diversity for post harvest discolouration within the lettuce 

gene pool 

 

  



47 
 

3.1. Introduction 

 

In order to study the genetics of post harvest discolouration it was necessary to 

establish whether there is genetic variation for the trait.  Previous studies (Wurr et al. 

2003) indicated that the cvs Saladin and Iceberg differed significantly for both the 

degree of post harvest discolouration and its intensity, indicating that the F7 Saladin x 

Iceberg RIL mapping population should be suitable for genetic analysis of post 

harvest discolouration.  However, before embarking on such a genetic analysis it was 

decided to confirm this and to ascertain whether this variation between Iceberg and 

Saladin was representative of the range of natural variation observed in lettuce.  

The aims of this experiment were to 

 Demonstrate genetic variation for post harvest discolouration using a lettuce 

diversity set. 

 Confirm that Saladin and Iceberg differ significantly from one another for 

post harvest discolouration traits and that the Sal x Ice F7 RIL mapping 

population is suitable for genetic analysis of post harvest discolouration. 
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3.2. Material and methods 

 

3.2.1. Warwick HRI lettuce diversity set 

The Warwick HRI lettuce diversity set assembled over the past 10 years consists of 

28 accessions representing cultivars of different crop types and geographic origin and 

accessions of the wild relative Lactuca serriola (see table 2.1.).   

Table 3.1. Accessions of the WHRI lettuce diversity set.   Where L. serriola 005095 and L. serriola 

03050 are accessions of Lactuca serriola. 

Accession name Type Accession name Type 

Adriatica 2 Summer Butterhead Lobjoits Green Cos Summer Cos 

Ambassador Winter Round Lollo Biondo Summer Curly Green 

Batavia Blonde de Paris Summer Batavia Lollo Rossa Summer Curly Red 

Batavia Tezier Summer French Madras Iceberg 

Bloody Warrior Summer Cos Merveille des Quatre Saisons Summer Batavia 

Chinese Stem Lettuce Stem New Chicken Stem 

Cobham Green Summer Round Platinas Iceberg 

Iceberg Summer Batavia Red Grenoble Summer Batavia 

Imagination Batavia Romaine de Benicardo Summer Cos 

Jazzie Batavia Saladin Summer Iceberg 

L. serriola 005095 Summer Wild Type Stoke Summer Cos 

L. serriola 03050 Summer Wild Type Waldmanns Dark Green Summer Leaf 

Lilian Summer Round Webb's Wonderful Summer Crisp 

Little Gem Summer Gem Wunder von Stuttgart Summer Butterhead 
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3.2.2. Field trial and assessment of post harvest discolouration of Warwick HRI 

lettuce diversity set  

Plants for use in the assessment of post harvest discolouration were grown in a 

replicated field trial during the 2007 growing season on the experimental site Sheep 

Pens (west) at Warwick HRI, UK (Latitude: 52.183.  Longitude: 1.583).  Plants were 

raised and maintained as described (see section 2.2.1.), with the trial planted on 1
st
 

May 2007.  The trial was designed in 3 blocks each containing a single plot of the 28 

accessions of the diversity set, randomised in an alpha design to take into account 

any potential environmental gradient (see Appendix A for field plan and 

randomisation).  Crop protection was as described, with the additional use of 

‗Greencrop Saffron FL‘ propyzamide herbicide (3.5 L/ha) according to good 

agricultural practice.  Fencing and flappers also surrounded the land to provide 

protection from the local fauna (see figure 3.1.).  Harvests occurred on 30
th

 May, 5
th

 

June, 12
th

 June and 19
th

 June 2007 with all accessions of a similar type being 

harvested together across all replicates.   

  
 

Figure 3.1. Lettuce diversity set trial at Warwick HRI, UK in 2007. 

Heads were harvested and processed as described (section 2.2.2.) and additional 

processing data including untrimmed weight and head diameter were recorded.  

Approximately ~75g unwashed mixed material was sealed per bag with material 
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from one head filling two bags.  Bags were hung on a racking system at 5 for 

storage (see figure 2.3).  Bags were then phenotypically assessed for post harvest 

discolouration as described (section 2.2.3.) on days 1, 3, 6, 9 and 13. 

 

3.2.3. Statistical analysis 

As the data exhibited a variable mean relationship it was transformed before analysis.  

For the intensity mean score browning, pinking and visible scores the data was 

multiplied by 50 and for mean score overall discolouration scores it was multiplied 

by 2.  This would allow data to be comparable between intensity as they would be on 

a scale of 100.  The percentage scores of extent of pinking, browning, visible and 

overall discolouration were transformed to angles (by multiplying by 90°) prior to 

analysis.  As the field trial produced an unbalanced data set, it was analysed by 

REML with the fixed treatment rep/block/plot/head/bag for days 1, 3, 6, 9 and 13.  

Scores were adjusted through the REML analysis to adjust for block effects which 

may have resulted in negative values for the estimated means (an equivalent could 

also occur with missing values).   

T-tests were carried out for each individual transformed day data for the different 

discolouration measurements between the F7 mapping population parents Saladin and 

Iceberg (as section 2.4.2.).   

Correlation analyses were conducted between all discolouration measures and 

morphological traits (correlations between browning, pinking and overall 

discolouration and between them and processing data (untrimmed/trimmed weight 



51 
 

and trimmed diameters)) (as section 2.4.4.).  R values were generated which were 

then compared to the associated p values (see table 3.2.).  

Table 3.2. Correlation analysis parameters.  Where df (degrees of freedom). 

  Probability (p value) 

Population df 0.05 0.01 0.001 

Lettuce diversity set  25 0.381 0.487 0.597 

 

3.3. Results 

 

Spectrophotomic readings were taken from lettuce leaf and midrib tissue for pinking 

and browning values as a confirmatory measure.  Data suggested all tissue was 

scored consistently and correctly; pink was always scored as pink whilst brown was 

always scored as brown.   

 

3.3.1. Diversity for post harvest discolouration within the WHRI lettuce 

diversity set 

REML analysis of the data sets for each day showed that accessions were 

significantly different (***P <0.001) for all measures of discolouration.   

All post harvest discolouration measures of colour intensity (mean score) 

demonstrated a comparable linear trend over time when meaned across all 

accessions.  Pinking, browning and overall discolouration increased at a similar rate 

over the 5 time points with a crossover of the rate of browning and pinking intensity 

occurring around day 3 (see figure 3.2.a).  Between days 6 and 9 the rates of all 3 

measures plateau but begin to increase again by day 13.   
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The extent of post harvest discolouration (%) gave a curved response over time (see 

figure 3.2.b), with an increase in the extent of discolouration up to day 6 followed by 

a levelling off to day 13.  As with colour intensity, browning appears to be more 

prevalent than pinking in the early stages post harvest.  

 

 

Figure 3.2. Means for a) intensity and b) extent (%) of post harvest pinking, browning and 

overall discolouration over 13 days across all accessions of the WHRI lettuce diversity set.  

Error bars represent se (standard error) from means. Where msb (mean score browning); msp (mean 

score pinking); msd (mean score discolouration); %b (percentage browning); %p (percentage 

pinking); %d (percentage overall discolouration). 

Differences early on are potentially of greater importance to the food processor and 

retailers due to the products limited time on the shelf before the ‗best before‘ time 

expires.  Day 3 is especially important as that is the current threshold level for the 

major retailers; therefore it is appropriate to focus on post harvest performance at 
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days 1 and 3 (DAC Pink personal communication).  From day 6 onwards accessions 

were reaching maximum discolouration scores; the majority of accessions displayed 

maximum tissue coverage by some type of discolouration on day 6 for the extent of 

overall discolouration.  The minimum value was 59.3% for Lollo Rossa and this 

would still be classed as unmarketable by retailers (graphs of discolouration on day 

6, 9 and 13 in Appendix A). 

Post harvest pinking of prepacked leaf tissue 

The lettuce diversity set exhibited significant differences (***P <0.001) between 

accessions for pinking intensity for days 1 (Wald [56] = 130.41) and 3 (Wald [58] = 

223.42), indicating genetic variation for this trait (see figure 3.3a and b).  There were 

a lot of changes in ranking of accessions between days 1 and 3 for pinking intensity.   

Some accessions remained in similar rank positions on day 1 and day 3 while others 

changed considerably.  Madras (-0.4) had the lowest level of pinking intensity on day 

1, although at day 3 it was no longer the best performing accession as it had moved 

within the accession distribution (30.4).  L. serriola 005095, New Chicken and L. 

serriola 03050 were also accessions with low pinking intensity on day 1 and on day 

3, they were therefore ‗good‘ accessions in respect to this post harvest quality.  Little 

Gem and Bloody Warrior were poor performing accessions on day 1 with high 

pinking intensity; they also remained poor performing accessions on day 3.  

Interestingly, Waldmanns Dark Green (5.1) was a mid performing accession for 

pinking intensity on day 1, although by day 3 it had the third highest intensity value 

(47.5).   

The lettuce diversity set also showed significant differences (***P <0.001) between 

accessions for the extent of pinking for days 1 (Wald [56] = 133.09) and 3 (Wald [56] = 
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190.53), signifying genetic variation for this trait (see figure 3.4a and b).  As for 

intensity there were changes in ranking of accessions between days 1 and 3 for the 

extent of pinking.  In a comparable trend to pinking intensity, some accessions 

remained in similar rank positions on day 1 and 3 while others changed considerably.  

Madras, L. serriola 03050 and New Chicken showed no signs of pinking on day 1, 

whilst L. serriola 005095 also revealed low levels of the extent of pinking (0.8%).  L. 

serriola 03050, New Chicken and L. serriola 005095 were good accessions in 

respect to post harvest quality for the extent of pinking, as they were also the best 

performing accessions on day 3.  However, as for intensity Madras was no longer a 

good performing accession for the extent of pinking by day 3 as its score had 

increased significantly it had moved within the distribution of accessions (from -

0.5% to 47.3%).  Little Gem and Bloody Warrior were poor performing accessions 

on both day 1 and day 3, while Merveille des Quatre Saisons was the worst 

performing accession on day 1 (33.5) but by day 3 it was not such a poor performing 

accession.     
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Figure 3.3. Transformed adjusted means (from REML) for lettuce post harvest pinking 

intensity on a) day 1 and b) day 3 for the WHRI lettuce diversity set.  Error bars represent 

sems (standard error of the mean) from REML.  The F7 WHRI mapping population parents are 

highlighted with respective adjusted means (from REML). 
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Figure 3.4. Transformed adjusted means (from REML) for lettuce post harvest extent of 

pinking on a) day 1 and b) day 3 for the WHRI lettuce diversity set.  Error bars represent 

sems (standard error of the mean) from REML.  The F7 WHRI mapping population parents are 

highlighted with respective adjusted means (from REML). 

Post harvest browning of prepacked leaf tissue 

The lettuce diversity set exhibited significant differences (***P <0.001) between 

accessions for browning intensity for days 1 (Wald [59] = 719.55) and 3 (Wald [48] = 

198.96), indicating genetic variation for this trait (see figure 3.5. a and b).  There was 

a change in ranking of accessions between days 1 and 3 for browning intensity as for 
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all measures of pinking.  The majority of accessions changed their ranking position 

for browning intensity, with only a minority remaining in similar rank positions on 

day 1 and day 3.  Madras, Saladin and Lobjoits Green Cos remained good 

performing accessions on days 1 and 3.  Although L. serriola 005095 showed no 

signs of browning on day 1, by day 3 it had moved ranks within the distribution to 

become a ‗poor‘ accession for browning intensity (39.2).  Adriatica 2 and 

Ambassador remained poor performing accessions on days 1 and 3.  New Chicken 

was also a poor performing accession for browning intensity on day 1 (41.9), 

although as no change in its score had occurred between days 1 to 3 it moved to the 

middle of the distribution. 

The lettuce diversity set also showed significant differences (***P <0.001) between 

accessions for extent of browning for days 1 (Wald [58] = 671.9) and 3 (Wald [48] = 

256.49), indicating genetic variation for this trait (see figure 3.6. a and b).  As for 

browning intensity, there were many changes in ranks of accessions between days 1 

and 3 for the extent of browning intensity.  The majority of accessions at the 

extremes of the distribution for the extent of browning stayed in similar rank 

positions on day 1 and 3, whilst the remaining accessions moved considerably.  L. 

serriola 005095, Madras and Romanie de Benicardo were good performing 

accessions on days 1 and 3, and therefore were good accessions in respect to this post 

harvest trait.  Additionally, Madras was constantly a good performing accession for 

all measures of browning on day 1 and day 3, suggesting that it is a good accession 

for post harvest browning.  L. serriola 03050 had low levels for the extent of 

browning on day 1 (6.2%), which had increased by day 3 to be become a poor 

performing accession (59%).  Adriatica 2, Ambassador, Cobham Green and Lilian 

remained poor performing accessions for the extent of browning on days 1 and 3.  
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Figure 3.5. Transformed adjusted means (from REML) for lettuce post harvest browning 

intensity on a) day 1 and b) day 3 for the WHRI lettuce diversity set.  Error bars represent 

sems (standard error of the mean) from REML.  The F7 WHRI mapping population parents are 

highlighted with respective adjusted means (from REML). 
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Figure 3.6. Transformed adjusted means (from REML) for lettuce post harvest extent of 

browning on a) day 1 and b) day 3 for the WHRI lettuce diversity set.  Error bars represent 

sems (standard error of the mean) from REML.  The F7 WHRI mapping population parents are 

highlighted with respective adjusted means (from REML). 
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product less acceptable.  Therefore it is relevant to combine data for all types of 

discolouration including the ‗unclassified‘ scores to give an overall discolouration 

score. 

There were significant differences between accessions (***P <0.001) for 

discolouration intensity on day 1 (Wald [56] = 442.34) and day 3 (Wald [58] = 123.73), 

indicating genetic variation for this trait (see figure 3.7. a and b).  As for pinking and 

browning measures, ranking positions of accessions changed between day 1 and day 

3 for overall discolouration.  All accessions were showing overall discolouration 

intensity on day 1 and day 3 which would suggest that each accession is exhibiting 

pinking, browning or a combination of both types of post harvest discolouration.  

Madras, L. serriola 005095 and L. serriola 03050 were the best performing 

accessions on day 1 and day 3 for overall discolouration intensity, suggesting that 

they were good accessions in respect to this post harvest trait.  Webbs Wonderful 

was also a good performing accession on day 1 (8.2) for overall discolouration 

intensity, however by day 3 it had become a poor accession (36.6).  Ambassador, 

Batavia Tezier and Lilian remained poor performing accessions on day 1 and day 3.  

However, on day 1 New Chicken was also a poor performing accession (27.9) but on 

day 3 it had changed rank to become a best performing accession (27.1), suggesting 

that no additional discolouration had occurred. 

The lettuce diversity set also showed significant differences (***P<0.001) between 

accessions for the extent of overall discolouration for day 1 (Wald [56] = 287) and day 

3 (Wald [58] = 149.91), suggesting genetic variation for this trait (see figure 3.8. a and 

b).  As expected, ranks of accessions changed between day 1 and day 3 for the extent 

of overall discolouration.  All accessions were showing overall discolouration on day 

1 and day 3, with 6 accessions having reached the possible maximum level for the 
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extent of overall discolouration on day 1 and the majority of accessions having done 

so by day 3.  Madras and Lollo Rossa were the best performing accessions on day 1 

and day 3 for the extent of overall discolouration, therefore suggesting that they were 

good accessions in respect to this post harvest quality.  Interestingly Lollo Rossa was 

the only accession to have <50% of the available extent of overall discolouration 

(47%).  Red Grenoble and Chinese Stem Lettuce were mid performing accessions on 

day 1, although on day 3 they were good performing accessions within the diversity 

set.  Wunder von Stuttgart, New Chicken, Ambassador, Adriatica 2, Lilian and 

Cobham Green were all at or extremely near the possible maximum level for the 

extent of overall discolouration on day 1. 
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Figure 3.7. Transformed adjusted means (from REML) for lettuce post harvest overall 

discolouration intensity on a) day 1 and b) day 3 for the WHRI lettuce diversity set.  Error 

bars represent sems (standard error of the mean) from REML.  The F7 WHRI mapping 

population parents are highlighted with respective adjusted means (from REML). 
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Figure 3.8. Transformed adjusted means (from REML) for lettuce post harvest extent of 

overall discolouration on a) day 1 and b) day 3 for the WHRI lettuce diversity set.  Error 

bars represent sems (standard error of the mean) from REML.  The F7 WHRI mapping 

population parents are highlighted with respective adjusted means (from REML). 

 

3.3.2. Performance of the mapping population parents 

The mapping parent‘s cvs Saladin and Iceberg were compared for each measurement 

of discolouration on each day using T-tests.  Different rates of discolouration were 

observed resulting from significant genetic variation between the parents. 

   

46.5

68.6

0
10
20
30
40
50
60
70
80
90

100

L
o
b

jo
it

s 
G

re
en

 C
o
s

M
ad

ra
s

R
o
m

an
ie

 d
e 

B
en

ic
ar

d
o

L
. 

se
rr

io
la

 0
3

0
5

0

L
o
ll

o
 R

o
ss

a

L
. 

se
rr

io
la

 0
0

5
0

9
5

W
al

d
m

an
n

s 
D

ar
k

 G
re

en

P
la

ti
n

as

S
al

ad
in

S
to

k
e

B
lo

o
d

y
 W

ar
ri

o
r

W
eb

b
s 

W
o
n

d
er

fu
l

R
ed

 G
re

n
o
b

le

Ja
zz

ie

Im
ag

in
at

io
n

M
er

v
ei

ll
e 

d
es

 Q
u

at
re

 S
ai

so
n

s

C
h

in
es

e 
S

te
m

 L
et

tu
ce

B
at

av
ia

 B
lo

n
d

e 
d

e 
P

ar
is

L
o
ll

o
 B

io
n

d
o

Ic
eb

er
g

L
it

tl
e 

G
em

B
at

av
ia

 T
ez

ie
r

C
o
b

h
am

 G
re

en

L
il

ia
n

A
d

ri
at

ic
a 

2

A
m

b
as

sa
d

o
r

N
ew

 C
h

ic
k

en

W
u

n
d

er
 v

o
n

 S
tu

tt
g
ar

t

D
a

y
 1

: 
E

x
te

n
t 

o
f 

o
v

er
a

ll
 

d
is

co
lo

u
ra

ti
o

n
 (

%
d

)

83.7 85.7

0
10
20
30
40
50
60
70
80
90

100

L
o
ll

o
 R

o
ss

a

R
ed

 G
re

n
o
b

le

M
ad

ra
s

C
h

in
es

e 
S

te
m

 L
et

tu
ce

Ja
zz

ie

L
o
ll

o
 B

io
n

d
o

Im
ag

in
at

io
n

M
er

v
ei

ll
e 

d
es

 Q
u

at
re

 S
ai

so
n

s

P
la

ti
n

as

R
o
m

an
ie

 d
e 

B
en

ic
ar

d
o

B
at

av
ia

 B
lo

n
d

e 
d

e 
P

ar
is

L
. 

se
rr

io
la

 0
0

5
0

9
5

B
at

av
ia

 T
ez

ie
r

W
al

d
m

an
n

s 
D

ar
k

 G
re

en

Ic
eb

er
g

L
o
b

jo
it

s 
G

re
en

 C
o
s

S
to

k
e

S
al

ad
in

A
m

b
as

sa
d

o
r

L
. 

se
rr

io
la

 0
3

0
5

0

W
eb

b
s 

W
o
n

d
er

fu
l

A
d

ri
at

ic
a 

2

B
lo

o
d

y
 W

ar
ri

o
r

C
o
b

h
am

 G
re

en

L
il

ia
n

L
it

tl
e 

G
em

N
ew

 C
h

ic
k

en

W
u

n
d

er
 v

o
n

 S
tu

tt
g
ar

t

D
a

y
 3

: 
E

x
te

n
t 

o
f 

o
v

er
a

ll
 

d
is

co
lo

u
ra

ti
o

n
 (

%
d

)

a 

b 



64 
 

Pinking 

The parental accessions were significantly different (***P <0.001) for pinking 

intensity on all days (day 1, 3, 6, 9 and 13), however their ranking changed (see 

figure 3.9.a).  The mapping parents also exhibited a linear response to pinking 

intensity.  Saladin was the more resistant parental accession for pink intensity on day 

1, but by day 3 Saladin and Iceberg had reversed rank positions.  A difference in the 

rate of pinking intensity caused Iceberg to become the more resistant parental 

accession to pinking intensity on day 3 and it remained so through to day 13.     

Saladin and Iceberg were also significantly different (***P <0.001) for extent of 

pinking on days 1, 3, 6 and 13 with the exception of day 9 (see figure 3.9.b).  As for 

pinking intensity the ranking changed, however the mapping parents revealed a 

curved response to the extent of pinking.  Saladin had the lowest values for the extent 

of pinking on day 1, but by day 3 Saladin and Iceberg had reversed rank positions.  

Differences in the rate of the extent of pinking resulted in Iceberg being the more 

resistant parental accession on day 3, 6 and 13.  On day 6 Saladin had reached the 

possible maximum level for the extent of pinking, while Iceberg was near causing 

the curved response. 
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Significance level  

 
2 mapping parent accessions Lettuce diversity set accessions 

Pinking 

intensity 

(msp) 

T-test 

Statistic 
df 

T-test P 

value 

REML 

Wald 

Statistic 

ddf 
REML P 

value 

Day 1 3.97 33 ***<0.001 130.41 56 ***<0.001 

Day 3 -3.59 35 ***<0.001 223.42 58 ***<0.001 

Day 6 -6.96 46 ***<0.001 785.05 47 ***<0.001 

Day 9 -8.19 45 ***<0.001 314.05 57 ***<0.001 

Day 13 -8.25 29 ***<0.001 556.67 117 ***<0.001 
 

 
Significance level  

 
2 mapping parent accessions Lettuce diversity set accessions 

Extent of 

pinking 

(%p) 

T-test 

Statistic 
df 

T-test P 

value 

REML 

Wald 

Statistic 

ddf 
REML P 

value 

Day 1 4.51 39 ***<0.001 133.09 56 ***<0.001 

Day 3 -3.86 31 ***<0.001 190.53 56 ***<0.001 

Day 6 -3.80 45 ***<0.001 240.53 46 ***<0.001 

Day 9 -0.96 46 0.344 193.58 58 ***<0.001 

Day 13 -3.59 45 ***0.001 153.41 56 ***<0.001 

 

Figure 3.9. Transformed adjusted means (from REML) for lettuce post harvest a) pinking intensity and b) extent of pinking over 13 days for the WHRI F7 

mapping population parents Saladin and Iceberg.  Error bars represent sems from REML.  REML ndf = 27.  Significant effects shown as *P <0.05, **P <0.01 and ***P 

<0.001.  Where msp (mean score pinking); %p (percentage pinking); df (degrees of freedom); ddf (denominator degrees of freedom); ndf (numerator degrees of freedom). 
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Browning 

As for the pinking response, the mapping parents showed significant differences 

(***P <0.001) for day 1 and day 3 for browning intensity (see figure 3.10a).  Saladin 

was the more resistant parental accession for brown intensity on day 1 and day 3 with 

Iceberg the most susceptible.  Due to lower and higher browning intensity rates for 

Iceberg and Saladin respectively, the accessions had converged by day 6.  The 

mapping parents had similar values for browning intensity day 9 and day 13, 

therefore suggesting similar rates of reaction. 

The mapping parents also showed significant differences (***P <0.001) for day 1 

and day 3 for extent of browning (see figure 3.10.b).  As for browning intensity, 

Iceberg was more susceptible to extent of browning on day 1 with an extremely high 

discolouration score in comparison to Saladin.  Saladin was also more resistant to 

extent of browning on day 3.  As observed for intensity, the accessions converged by 

day 6 due to differences in rates of the extent of browning and remained similar to 

day 13 resulting in a curved response.  Interestingly, there was a significant decrease 

of Iceberg extent of browning on day 9, which may be due to sampling error or a 

change of tissue distribution within the bags.   
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Significance level  

 
2 mapping parent accessions Lettuce diversity set accessions 

Browning 

intensity 

(msb) 

T-test 

Statistic 
df 

T-test P 

value 

REML 

Wald 

Statistic 

ddf 
REML P 

value 

Day 1 5.63 30 ***<0.001 719.55 59 ***<0.001 

Day 3 3.61 46 ***<0.001 198.96 48 ***<0.001 

Day 6 -0.18 39 0.857 131.95 48 ***<0.001 

Day 9 -1.74 45 0.090 245.91 57 ***<0.001 

Day 13 -0.75 45 0.459 107.61 55 ***<0.001 
 

 
Significance level  

 
2 mapping parent accessions Lettuce diversity set accessions 

Extent of 

browning 

(%b) 

T-test 

Statistic 
df 

T-test P 

value 

REML 

Wald 

Statistic 

ddf 
REML P 

value 

Day 1 7.51 39 ***<0.001 671.9 58 ***<0.001 

Day 3 3.82 45 ***<0.001 256.49 48 ***<0.001 

Day 6 0.48 35 0.631 165.69 48 ***<0.001 

Day 9 -3.61 46 ***<0.001 264.83 57 ***<0.001 

Day 13 0.47 45 0.640 131.23 56 ***<0.001 

 

Figure 3.10. Transformed adjusted means (from REML) for lettuce post harvest a) browning intensity and b) extent of browning over 13 days for the WHRI F7 

mapping population parents Saladin and Iceberg.  Error bars represent sems from REML.  REML ndf = 27.  Significant effects shown as *P <0.05, **P <0.01 and 

***P <0.001.  Where msb (mean score browning); %b (percentage browning); df (degrees of freedom); ddf (denominator degrees of freedom); ndf (numerator degrees of 

freedom). 
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Overall discolouration 

The mapping parents showed significant differences for overall discolouration 

intensity on days 1 and 9 (***P <0.001) and days 6 and 13 (**P <0.005) but not on 

day 3 (see figure 3.11.a).  As for all measures of discolouration, Saladin was the most 

resistant mapping parent to overall discolouration intensity on day 1.  The mapping 

parents were not significantly different on day 3, suggesting that the reversal in the 

pinking response counterbalanced the better browning response of Saladin.  Due to a 

difference in rates for overall discolouration intensity, Saladin and Iceberg had 

reversed rank positions by day 6 (which was probably due to differences in pinking).  

Iceberg had the lowest values for intensity which remained on day 13.  

Due to differences in pinking as seen for overall discolouration intensity, Saladin and 

Iceberg were only significantly different (***P <0.001) for extent of overall 

discolouration on day 1 (see figure 3.11.b).     
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Significance level  

 

2 mapping parent 

accessions 

Lettuce diversity set 

accessions 

Overall 

discolouration 

intensity (msd) 

T-test 

Statistic 
df 

T-test P 

value 

REML 

Wald 

Statistic 

ddf 
REML P 

value 

Day 1 6.23 32 ***<0.001 442.34 56 ***<0.001 

Day 3 0.06 46 0.950 123.73 58 ***<0.001 

Day 6 -3.01 36 **0.005 217.02 45 ***<0.001 

Day 9 -6.16 45 ***<0.001 249.91 56 ***<0.001 

Day 13 -3.02 45 **0.004 175.05 56 ***<0.001 
 

 
Significance level  

 

2 mapping parent  

accessions 

Lettuce diversity set 

accessions 

Extent of overall 

discolouration 

(%d) 

T-test 

Statistic 
df 

T-test P 

value 

REML 

Wald 

Statistic 

ddf 
REML P 

value 

Day 1 5.78 46 ***<0.001 287 56 ***<0.001 

Day 3 -0.38 45 0.706 149.91 58 ***<0.001 

Day 6 NA 45 NA 182.3 55 ***<0.001 

Day 9 NA 46 NA 184.94 227 ***<0.001 

Day 13 -0.98 45 0.333 138.42 55 ***<0.001 

 

Figure 3.11. Transformed adjusted means (from REML) for lettuce post harvest a) overall discolouration intensity and b) extent of overall discolouration over 13 

days for the WHRI F7 mapping population parents Saladin and Iceberg.  Error bars represent sems from REML.  REML ndf = 27.  Significant effects shown as *P 

<0.05, **P <0.01 and ***P <0.001.  Where msd (mean score discolouration); %d (percentage discolouration); df (degrees of freedom); ddf (denominator degrees of 

freedom); ndf (numerator degrees of freedom); NA (not applicable). 
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3.3.3. Correlations amongst traits 

All discolouration measures and morphological traits were assessed for potential 

relationships (correlations between browning and pinking and between them and 

morphological traits, (full correlation matrix in Appendix A)).  Only the highly 

significant correlations (***P <0.001) are described below (see table 3.3.). 

The two measures of pinking (intensity and extent) were positively correlated with 

each other over all days (R[25]  ≥0.94).  Similarly measures of browning positively 

correlated with each other, with mean browning intensity and mean extent of 

browning highly correlated (R[25]  ≥0.97).  As for pinking and browning, measures of 

overall discolouration were generally positively correlated with one another.   

While measures of pinking were generally positively correlated with measures of 

browning, negative correlations were also recorded.  Day 1 values for browning 

intensity and extent of browning were both negatively correlated with pinking 

intensity and extent of pinking on day 3 and day 9 (also day 6 for pinking intensity).  

They also demonstrated negative correlations with mean score pinking (across days) 

and mean extent of pinking (across days). 

For morphological traits; weight was negatively correlated with browning intensity 

and extent of browning on days 1 and 3.  However, it was positively correlated with 

pinking intensity on day 6, 9 and 13, in addition to extent of pinking day 3 and day 6.  

Additionally weight was negatively correlated with measures of overall 

discolouration on day 1; however this may be consequential of the strong browning 

relationships recorded on day 1.  Diameter of head was also negatively correlated 

with nearly all measures of pinking, while positively correlating with measures of 

browning. 
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Table 3.3. Correlation matrix from the WHRI lettuce diversity for post harvest discolouration 

and morphological parameters scored in 2007 experimental trial.  Read across then down.  Only 

significant effects are shown and highly significant effects ***P <0.001 are shown bold. Where unt wt 

(untrimmed weight, g); tr wt (trimmed weight, g); tr dia 1 (trimmed diameter 1, mm); tr diam 2 

(trimmed diameter 2), msb (mean score browning); msp (mean score pinking); %b (percentage 

browning); %p (percentage pinking).  Numerical value before discolouration measurement is day. 

Degree of freedom is 25. 

 

 

1msb -0.75 -0.72 0.84 0.86 
  

    
 

  

3msb -0.75 -0.68 0.63 0.61 0.83 
 

    
 

  

msb 
 

-0.49   0.49 0.70 0.77 
 

      

1%b -0.75 -0.73 0.84 0.86 0.99 0.83 0.73 
  

  

3%b -0.79 -0.76 0.66 0.65 0.86 0.96 0.83 0.87 
 

  

6%b 
  

0.40 0.45 0.63 0.70 0.94 0.66 0.78   

%b -0.57 -0.60 0.55 0.61 0.83 0.85 0.97 0.85 0.92   

1msp                     

3msp 0.59 0.55 -0.81 -0.59 -0.67 
 

  -0.65 
 

  

6msp 0.80 0.76 -0.88 -0.75 -0.74 -0.50   -0.73 -0.53   

9msp 0.75 0.65 -0.84 -0.65 -0.69 -0.50   -0.67 -0.50   

13msp 0.67 0.54 -0.65 -0.52             

msp 0.75 0.66 -0.85 -0.66 -0.64 
 

  -0.63 
  

1%p                     

3%p 0.63 0.59 -0.81 -0.58 -0.69 -0.52   -0.67 -0.51 0.89 

6%p 0.72 0.70 -0.74 -0.59 -0.59 
 

  -0.58 
 

0.92 

9%p 
 

0.49 -0.63 -0.56 -0.61     -0.61   0.65 

13%p 
 

                0.71 

%p 0.66 0.62 -0.78 -0.59 -0.62 
 

  -0.61 
 

0.94 

 

 

unt wt tr wt tr dia 1 tr dia 2 1msb 3msb msb 1%b 3%b msp 

 

3.4. Discussion 

 

A retailer and consumer survey conducted through MINTeL (2007) suggested that 

issues with post harvest quality impact on both whole head and processed lettuce 

products.  This would therefore signify that research related to post harvest 

discolouration is required for the current and future salads market supported by a 

continuously increasing demand for fresh salad products (Soliva-Fortuny and Martin-
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Belloso 2003; Schene 2007).  The current study was an initial study into genetic 

variation for post harvest discolouration in lettuce. 

Post harvest discolouration in lettuce accessions was quantified as pinking or 

browning using an adapted visual scoring system developed by Hilton et al. (2009).  

It was also possible to calculate the mean score and percentage of each type of 

discolouration for each accession.  The two measures represented different aspects of 

the discolouration response: with mean score (ms) measuring the production of 

compounds as intensity of colour, whilst percentage (%) related to diffusion of the 

coloured pigments throughout the tissue as the extent of discolouration; both effects 

make the produce unacceptable to the consumer (Tomás-Barberán and Espín 2001). 

Whilst consumer reaction varies for discolouration type neither is commercially 

acceptable as any type of visible discolouration makes the product less desirable.  

Measurements of an overall discolouration response are acceptable for retailers as it 

combines scores for pinking and browning, however it also incorporates data that 

could not be classified (as either pink or brown) so all affects on discolouration are 

included.  The accepted commercial viewpoint is that extent of overall discolouration 

is the best reflection of consumer product acceptance as it reflects presence or 

absence of pigments (Clifford et al. 2001).  However, for genetic studies it is 

important to distinguish between different discolouration responses to determine 

whether they have a different genetic basis. 

Phenotypic variation for all discolouration responses (pinking, browning and overall 

discolouration) was observed in the diversity set representing the primary lettuce 

gene pool.  This was shown to be due to significant genetic variation as shown by 

significant Wald statistics for line effects in the REML analysis.  When meaned 
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across all accessions, the lettuce diversity set were generally more susceptible to 

‗browning‘ in the early stages post harvest and ‗pinking‘ in the later stages post 

harvest.  Accessions were subsequently assessed individually per scoring day which 

revealed that they changed ranks within the distribution.  These changes in rank 

positions across days were indicative of differing rates of discolouration.  There were 

many changes in ranking positions of accessions between days 1 and 3 for all 

measures of discolouration; this would suggest differences between intrinsic rates of 

discolouration.  More changes of rank positions occurred for the browning response 

in comparison to the pinking response which suggests more variation between 

accessions for rate of browning.  For overall discolouration the majority of 

accessions had reached the possible maximum score for the extent of discolouration 

by day 3. 

Intensity and extent of discolouration were positively correlated for all measures of 

pinking, browning and overall discolouration across days (R≥0.9) which suggests 

that although measured as separate traits, intensity and extent may have the same 

genetic basis (see table 3.3.).   

Interestingly browning on day 1 was negatively correlated with pinking on day 3, 6 

and 9 and mean pinking across days (see table 3.3.).  The negative correlation 

implies that that pinking and browning are associated in an antagonistic way.  Higher 

levels of browning on day 1 resulted in lower levels of pinking from day 3 onwards.  

This might be explained if the browning mechanism is a pre-determined protective 

mechanism preventing any further damage to the tissue while the pinking response is 

an alternative response to a stress producing compounds for repair of tissue damage.   
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This agrees with the finding that overall accessions within the lettuce diversity set 

were more susceptible to browning in the early stages post harvest and pinking in the 

later stages.  It is important for breeders to understand the relationship between 

pinking and browning as ‗tradeoffs‘ between the two responses may be needed in 

order find the best response for maximum shelf life.  Similarly it is important for 

breeders to know whether reduced pinking and/or browning is associated with 

changes in other traits of interest as linkage or pleiotropic effects. 

Potentially important correlations for breeders were observed between morphological 

traits and post harvest discolouration for accessions of the diversity set.  Weight was 

negatively correlated with browning on day 1 and day 3 but positively correlated 

with pinking from day 3 onwards and diameter was positively correlated with 

browning on all days and negatively correlated with pinking on all days (see table 

3.3). 

There is a possible explanation of these correlations.  Heavier heads would have 

grown at a quicker rate (as accessions were harvested within a similar time period) 

and therefore would have higher turgor pressure.  Turgor pressure is required for all 

cell expansion and consequently plant growth.  Head diameter is also indirectly 

consequential of stiffness as turgor pressure is required for plants to maintain their 

shape (Haman and Izuno 1993).   Diameter decreases when heads are tighter whereas 

tissue with naturally less stiff leaves or those which have wilted would loosen and 

therefore we would expect to see a larger diameter.  Negative correlations observed 

between weight and diameter measurements of accessions from the diversity set 

would support this idea.  More rigid tissue with higher turgor pressure is more 

susceptible to cracking whilst in the field and/or during processing and storage 

(Newman et al. 2009).  This additional accidental damage would increase the 
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wounding response and thus induce the phenylpropanoid pathway resulting in post 

harvest discolouration.   

The most rigid tissue would potentially have a heavier weight and smaller diameter, 

which correlated with low levels of browning and high levels of pinking for 

accessions within the diversity set. Cell expansion, plant growth and volume 

maintenance would require a higher rate of secondary metabolism (Lynn et al. 1987; 

Haman and Izuno 1993).  Polyphenol production would be increased for PPO 

oxidation where tannins are being used for growth rather than undergoing non 

enzymatic browning, while the pinking response could be initiated due to a weight 

stress for repair.    

There was significant genetic variation for post harvest discolouration (established 

via T-tests) between mapping parents‘ cvs Saladin and Iceberg.  Saladin displayed 

less pinking on day 1, however by day 3 the parents had reversed positions and 

Iceberg showed significantly less pinking than Saladin (see figure 3.9. a and b).  The 

crossover suggests that Saladin may have beneficial alleles for the early stages post 

harvest while Iceberg alleles affect later stages for pinking; therefore both parents 

may potentially have useful alleles operating at different stages post harvest.  Saladin 

was also the most resistant parental accession to both browning responses on day 1 

and day 3 (see figure 3.10. a and b), so may have beneficial alleles post harvest for 

browning. 

In addition to Saladin and Iceberg exhibiting significant genetic variation for post 

harvest discolouration, they were also distributed within the range seen in the 

diversity set (see figures 3.3. to 3.8.).  Therefore the differences observed between 

Saladin and Iceberg is representative of the genetic variation observed in the lettuce 
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diversity set, and a ‗Saladin x Iceberg‘ population would be suitable for genetic 

analysis of post harvest pinking and browning.  The suggestion that both parents may 

possess beneficial alleles for the control of pinking may result in transgressive 

segregation in any subsequent mapping population (Grant 1975; de Vicente and 

Tanksley 1993; Rieseberg et al. 2003).  Furthermore as Saladin and Iceberg are not 

at the extremes of the lettuce diversity set distribution, there may be additional 

genetic variation which could be exploited. 

 

3.5. Conclusions 

 

 There is significant genetic variation for post harvest discolouration between 

accessions of the lettuce diversity set. 

 There is significant genetic variation between the parent‘s of the Warwick 

HRI RIL mapping population, cvs Saladin and Iceberg, for post harvest 

discolouration. 

 The differences for post harvest discolouration between Saladin and Iceberg 

are representative of the genetic variation between accessions of the lettuce 

diversity set. 

 The Warwick HRI Saladin x Iceberg mapping population is suitable for 

studying the genetic basis of post harvest discolouration in lettuce. 
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CHAPTER 4 

 

 

Generation of a Lactuca sativa linkage map as a tool for the 

genetic analysis of reduced post harvest discolouration in a 

lettuce RIL population 
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4.1. Introduction 

 

The intra-specific cross between Saladin and Iceberg is potentially of high 

importance for crop breeding research as it is derived from two lettuce cultivars.  The 

majority of current published linkage maps are based upon populations derived from 

inter-specific crosses between Lactuca sativa and a wild species relative (Johnson et 

al. 2000; Syed et al. 2006; Truco et al. 2007).  Although this means there is a higher 

level of polymorphism between the parents which facilitates construction of a 

linkage map; the majority of polymorphisms observed in such populations have 

generally been ‗bred out‘ of the cultivated crop.  Although the use of two cultivars in 

crossing results in reduced levels of polymorphism the resultant linkage map is of 

more direct application in lettuce breeding.  The F7 Saladin x Iceberg RIL mapping 

population was produced from 130 of the most informative RILs that represented the 

major recombination events found within the population (Pink 2004; Pink 2009).  

The construction of a genetic linkage map for this population would provide a 

valuable resource, allowing the genetic characterisation of economically important 

traits and the development of markers for use in conventional marker assisted 

breeding programmes. 

The aim of this study was to 

 Generate a high density linkage map based on the F7 RIL Saladin x Iceberg 

mapping population. 
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4.2. Material and methods 

 

4.2.1. Genetic mapping 

A genetic linkage map was produced based on 125 (of the 130) of the F7 Saladin x 

Iceberg RILs using a variety of molecular markers. 

DNA extraction 

Genomic DNA of the mapping population parents and 125 F7 RILs were extracted 

using the QIAGEN DNeasy 96 Plant Kit (QIAGEN Ltd., West Sussex, UK; Catalog 

No. 69181).  A disc (10 mm) of leaf material was collected from young leaf from 

each mapping population parent and RILs and frozen in liquid nitrogen. The 

extraction was conducted according to the manufacturers‘ instructions from the 

QIAGEN DNeasy 96 Plant Handbook.  DNA samples were suspended in 1 x TE (10 

x TE: 100 mM Tris HCL pH8.0, 10 mM EDTA).   

Fluorescent label amplified fragment length polymorphisms (AFLPs) 

The AFLP procedure was performed according to the method described by Vos et al. 

1995 using EcoRI/MseI simultaneously (Analysis System I AFLP Starter Primer Kit, 

Catalog No. 10544-103 and 10483-014; Life Technologies, Gibro-BRL, Rockville, 

Md) and according to the manufacturers‘ instructions.  A total of 46 primer 

combinations in lettuce were employed (with 3-base selectivity) and all combinations 

applied to every individual (see table 4.1.).  The subsequent samples were run on an 

ABI DNA Sequencer 3100 in the WHRI Genome Centre. 
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Table 4.1. List of primer combinations used for AFLP analysis.  The name and last three selective 

nucleotides of the primers are shown.  Nomanclature from Vuylsteke et al. 1999. 

Primer   M47 M48 M49 M50 M54 M59 M60 M61 M62 

    CAA CAC CAG CAT CCT CTA CTC CTG CTT 

E33 AAG  X X  X X X X X 

E35 ACA X X X  X X X X X 

E36 ACC  X        

E37 ACG        X  

E38 ACT  X X  X X X  X 

E41 AGG  X X  X X X  X 

E44 ATC  X X X X X X X X 

E45 ATG X X X X X X X X X 

 

The AFLP genotype data was analysed using SoftGenetics GeneMarker: Version 1.6 

software and analysed as described in the software‘s ‗Quick Start Guide‘.  

Polymorphic alleles were scored by the presence/absence of peaks in the 

electropherogram in comparison to the parental genotypes.  AFLP markers were 

designated with the name of the two primers (E#M#) used for amplification, 

followed by the product size in bp from the electropherogram and reference to the 

parent (i is Iceberg and s is Saladin).   

Conserved ortholog set markers (COSs) 

Conserved ortholog set (COS) markers (Fulton et al. 2002) developed through the 

Compositdb project at UCDavis 

 (http://cgpdb.ucdavis.edu/database/genome_viewer/viewer/) were used for PCR 

based genotyping (see table 4.2.). 
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Table 4.2. COS primer combinations for PCR analysis.  Where Chr (Marker chromosome location 

on Map2 JMR3 (http://cgpdb.ucdavis.edu/database/genome_viewer/viewer/) 

Marker Chr Forward primer Reverse primer 

LE9008 1 CGAGAAGCTGCTGAAGTTGATGAG TGGGCCACATATTGTCAATACACG 

LE9212 1 GCCTCTATCAGATGTATGCCAGATG GGAGTGTCTTGCAGACAAATCATC 

LE3023 2 CGACCCTACATGGCTGAACT TGGTACACCTTCCCATTCGT 

LE9016 2 CCGATGTCAATGATGTGCTAGATG AGCATTTCCTCCTCTTTCTTCAGC 

LE9037 2 TGGTCTATCTCTACCTAAGGATGC CTGAACTCACAATGTTGAGACTAG 

LE9050 2 ACTACTTCTTCTGCTATAGAGTCC CTTCTACACCCTCAAACTCCTTATC 

LE3007 3 TCCGTCTCTATTGGGTTTCCT CTCTGGCCTTGCTTGTGATAG 

LE3014 3 GAAAATCGACCAGACCCGTA ACGGGTTCAAAGAATCCACA 

LE9003 4 CAGGAACCGCTGAAGTTGAGGTTG CACAACTGCATTAACAGTATTGAG 

LE9006 4 GTGAGCTTGATCATGCATTCCTGC CCTTGATTGATAGTTTCATTGCCAC 

LE9033 4 TCAATTGTGAAGTTAGATTCACCAG CACTAAGGATTGTTAAACCATCTAG 

LE9039 4 GTTCAGACGATTATTCACCAGATG TTTGGTGATTGCATAACCCCATCC 

LE9015 5 AACTCTTGTGCTTCTACTTGCAGA TCCTTGAGAGAGGTAACTAATCTC 

LE9023 5 GCAGCTTTGCTTACCTCGATTTCC TGTTCTTTAGCTTTCTCAAGCCTC 

LE9048 5 TCAATGCAAGTACATGGTTACGTC TTCTCCAATCTCAACTCTGTATGG 

LE9251 5 CATAAGAGCCTTTAAGTTTGACAT GTTGATGTATGTACGGTAGATGTCG 

LE9030 6 AAGGAGAAGGTGAACCATGGATAG TCTAAACGAGAATCTTCTTGAACC 

LE9018 7 TCTTGCAAAATCTAATGTCACAAG CTGCAACAAGTTCCTTCATTATCC 

LE9019 7 GGCTCAGAAGCGTTGGATTGATTG CTCACCAGAATCAACAGCAGCAAG 

LE9022 7 CTGTAAGGAATAAGAAACGAGTTG GAAAACTCTGCTATATCCAAATTGC 

LE1164 8 AGATCCTTCCATCTTTGCCA AACCAAGGGTGGCTTCAAA 

LE9041 8 CATCGTCTGTAGGAATACTTGGATC GACATATTCCCGATCAGAGATGTTG 

LE9052 8 ACTACTTCTTCTGCTATAGAGTCC CTTCTACACCCTCAAACTCCTTATC 

LE9214 8 CACTGACAGTATTACATTGCAAC CTTCCAAGACTTATGTGAAATTCC 

LE9013 9 AAGTTGGGTGGAGAATCACATTGG GATGCATAGCTCTCCAGGTTGTTC 

LE9038 9 GATGGAGCGTCCGATCAGTGTCTG GGATCACCATCATAGTCAGCTTGT 

 

Polymerase chain reaction (PCR) 

The 10 µl reaction mixture consisted of: 1 µl 10 x PCR reaction buffer, 1 µl forward 

primer (5 mM); 1 µl reverse primer (5 mM); 1 µl template DNA (~10 ng/µl); 4.6 µl 

dH20 and 0.1 µl DNA polymerase (Invitrogen™ Taq DNA polymerase, Invitrogen 

™, UK).  PCR was performed using a thermal cycler, (Applied Biosystems Gene 

Amp® PCR system 9700, Applied Biosystems™, Singapore).  The PCR reaction 

program was: 95C for 5 min, 34 cycles of (94C (30 s); 55C (30 s); 72C (30 s)), 

extended at 72C for 10 min.  The PCR products were determined visually by 

agarose gel electrophoresis (1% gel). 
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Expressed sequence tags (ESTs) 

Expressed sequence tag (EST) markers were developed and genotyped by Rijk 

Zwaan based on the Serriola x Salinas integrated map, which is the current 

‗framework‘ lettuce map (Truco et al. 2007) (see table 4.3.).  Twenty-six EST 

markers were run at Rijk Zwaan Breeding Station, Fijnaart and genotype data scored 

and provided for incorporation into the linkage map.   

Table 4.3. EST marker id’s from Rijk Zwaan.  The primer sequences remain confidential although 

they provide anchor points to the integrated map.  Where Chr (Marker chromosome location on Map2 

JMR3 (http://cgpdb.ucdavis.edu/database/genome_viewer/viewer/) 

Marker Chr Marker Chr Marker Chr Marker Chr Marker Chr 

RZ-A 8 RZ-G 4 RZ-M 4 RZ-S 2 RZ-Y 4 

RZ-B 8 RZ-H 3 RZ-N 8 RZ-T 2 RZ-Z 4 

RZ-C 4 RZ-I 4 RZ-O 2 RZ-U 2   

RZ-D 4 RZ-J 2 RZ-P 2 RZ-V 4   

RZ-E 1 RZ-K 5 RZ-Q 1 RZ-W 8   

RZ-F 3 RZ-L 5 RZ-R 1 RZ-X 4   

 

SNP mapping 

Illumina Golden gate assays OPA3 and 4 

Genomic DNA from the F7 Saladin x Iceberg mapping population was supplied at 

~150 ng/µl to the DNA Technologies Core, UCDavis Genome Center USA, for SNP 

genotyping.  The DNA Technologies Core provided custom high throughput SNP 

genotyping using the Illumina Golden Gate Assay to generate SNP specific PCR 

products.  The third and fourth generation OPA Illumina assay (OPA3/OPA4) each 

consisted of 384 SNPs (768 in total) which were originally developed for the Salinas 

x Serriola mapping population (Truco et al. 2007).  Fluorescent labelled products 

representing the different SNPs were combined with Illumina beads (VeraCode bar-
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coded beads) in solution for the BeadXpress platform.  Each fluorescent signal was 

associated with a particular address, which consequently translated to a particular 

locus where the presence of the signals indicated genotype.  The DNA Technologies 

Core additionally conducted replicates to serve as internal controls for assay 

reproducibility requiring >99.5%   homology. 

BeadStudio software (version 3.1.3.0, Illumina Inc.) was used to analyse the output 

genotype data.  Genotypes segregated into clusters representing homozygotes and 

heterozygotes (where applicable), which could be manually altered through the SNP 

graphs (see figure 4.1.).  Maria Truco at UCDavis provided the initial genotype 

scores for OPA4.    

 

 

Figure 4.1. SNP graphs from Beadstudio 3.1.3.0 scored a) co-dominantly and b) dominantly.  AA 

genotype information (red); BB genotype information (dark blue); AB genotype information (dark 

purple).  Saladin genotype (lime green); Iceberg genotype (turquoise); Salinas genotype (yellow); 

artificial heterozygote (light purple). 
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Single position polymorphism (SPP) genotyping 

The Saladin x Iceberg F7 population mapping output was compared to the MCB19 

10NR map under construction in Prof Richard Michelmores' lab, at the Genome 

Center, UCDavis.  The MCB19 10NR map is based on the Salinas x Serriola 

mapping population (Truco et al. 2007) and was produced using the Affymetrix high 

density GeneChip® microarray designed to detect single feature polymorphisms 

(SFPs) in more than 35,000 lettuce genes.  Primers were derived for every 100 bins 

per chromosome where gaps were present in the current map version based on 

polymorphisms between Saladin and Iceberg.  The primers were specifically 

designed around single position polymorphism (SPP) sites of the associate 

EST/contig which were detected by hybridisation intensity differences from the 

Affymetrix high density GeneChip® microarray data output allowing identification 

of position (see table 4.4.).  Primers were developed using the primer design software 

Primer3 (v. 0.4.0) (Rozen and Skaletsky 2000).  The relevant EST/contig sequence 

was submitted with parameters of product size 200-250 bp and targets as SPP site. 

Single sequence conformation polymorphism (SSCP) analysis 

The mapping parents and the entire F7 population were amplified using the 

associated primers and analysed on SSCP gels.   The notched glass plate of the SSCP 

tank was sequentially cleaned with H2O, EtOH, RAIN-X and H2O.  The un-notched 

glass plate was cleaned with H2O, EtOH, 1 ml binding solution (500 µl ethanol, 500 

µl 10% glacial acetic acid, 50 µl 5% binding silane) and EtOH.  The glass plates 

were clamped together and 80 ml MDE gel (55.2 ml dH2O, 20 ml 2x MDE solution, 

4.8 ml 10x TBE, 400 µl 10% ammonium persulfate, 80 µl temed) poured and 

allowed to polymerize > 1 hr.    
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Table 4.4. SPP markers from map MCB10_10NR_SxI (RW Michelmore personal communication) used to develop markers covering every 100 bins of the lettuce 

genome in order to enable coalescence in the F7 Saladin x Iceberg linkage map.  Where Marker Code (code on original map); Sequence ID (EST/Contig data retrieved 

from http://cgpdb.ucdavis.edu/cgpdb2/CGP_ContigViewer/); Chr (chromosome present on); SPP Position (single positional polymorphism from EST/Contig sequence). 

Marker 

Code 
Sequence ID Chr 

SPP 

Position 

Marker 

Code 
Sequence ID Chr 

SPP 

Position 

Marker 

Code 
Sequence ID Chr 

SPP 

Position 

AZTD CLS_S3_Contig2493 1 531_550 AZAO CLS_S3_Contig2055 4 99_104 AWFJ CLS_S3_Contig10615 8 921_926 

AJDS CLSM16652.b1_H11.ab1 1 127_134 BCHA CLS_S3_Contig4064 4 513_516 AMQR CLSM8885.b1_I13.ab1 8 403_422 

AIMC CLSM13691.b1_E16.ab1 1 493_516 AUIH CLSY8890.b1_C15.ab1 4 241_244 ATJI CLSY3988.b1_H13.ab1 8 513_518 

BGGF CLS_S3_Contig6529 1 113_126 AXJO CLS_S3_Contig11326 4 383_402 BTEH QGB28E23.yg.ab1 8 459_464 

AIKO CLSM13565.b1_J07.ab1 1 67_72 ATRK CLSY4971.b1_F20.ab1 5 289_292 BTUF QGC10O20.yg.ab1 8 219_234 

AYEW CLS_S3_Contig1528 1 349_358 BKJN CLS_S3_Contig9062 5 119_130 ASRF CLSY1344.b1_P23.ab1 8 91_102 

AVGS CLS_S3_Contig10032 2 445_448 BEWJ CLS_S3_Contig5657 5 67_86 AMGU CLSM7725.b1_I11.ab1 8 599_616 

BSOW QGB20I09.yg.ab1 2 287_290 ARFM CLSX2754.b1_C17.ab1 5 351_354 ASUI CLSY1763.b1_E10.ab1 8 105_118 

AZKZ CLS_S3_Contig230 2 357_362 BRZR QGB13D02.yg.ab1 5 85_100 BHCQ CLS_S3_Contig7056 8 791_796 

BKUD CLS_S3_Contig9313 2 339_352 BHAY CLS_S3_Contig7016 5 153_156 AZOT CLS_S3_Contig239 9 75_100 

AREY CLSX2692.b1_G01.ab1 2 253_256 BEVL CLS_S3_Contig5635 5 327_338 BUGI QGC15F13.yg.ab1 9 267_272 

AZVA CLS_S3_Contig2539 2 425_430 AHTB CLSM11856.b1_P12.ab1 5 479_492 

    BHKL CLS_S3_Contig7239 2 875_878 AOVB CLSS2687.b1_N24.ab1 5 597_602 

    ASZZ CLSY2574.b1_K20.ab1 2 95_100 BUZC QGC24H06.yg.ab1 6 111_114 

    AXWL CLS_S3_Contig1329 2 561_564 AWNO CLS_S3_Contig10808 6 201_220 

    BFPJ CLS_S3_Contig6129 2 403_418 BTJM QGB6H05.yg.ab1 6 147_150 

    BCOF CLS_S3_Contig4235 2 277_282 ALGQ CLSM4746.b1_D11.ab1 6 107_124 

    AKLQ CLSM20182.b1_K06.ab1 2 783_788 AIED CLSM1289.b1_B11.ab1 6 49_58 

    BIKC CLS_S3_Contig7846 3 615_636 ALJA CLSM4981.b1_J22.ab1 7 315_320 

    BVZI QGD11G21.yg.ab1 3 269_272 BAIJ CLS_S3_Contig2862 7 129_140 

    BLNH CLS_S3_Contig9764 3 281_286 AOIW CLSS13293.b1_I12.ab1 7 217_226 

    ARTT CLSX5061.b1_I17.ab1 3 227_234 BBRG CLS_S3_Contig3686 7 165_170 

    BLII CLS_S3_Contig9647 4 287_306 BLAG CLS_S3_Contig9458 7 351_364 

    BLTJ CLS_S3_Contig9909 4 87_90 AHEI CLSL2531.b1_E10.ab1 8 223_228 
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Samples were loaded onto the gel with 0.5x formamide loading dye (950 µl 

formamide, 10 µl 1N NaOH, 40 µl 1% dyes) after an initial denature at 98C for 5 

mins and direct cooling on ice.  Gels were ran in 0.6x TBE at 1 W for ~16 hr.  The 

notched glass was removed and the un-notched glass with the adhered gel was placed 

in a shaker for 8 min with fixing solution (10 ml glacial acetic acid, 210 ml 95% 

ethanol, 780 ml H2O, 1.5 g silver nitrate) and rinsed twice with H2O.  The developing 

solution (30 g NaOH, 1 L H2O, 1 ml 37% formaldehyde) was added and shaken for 

8-10 min or until bands appeared which were then scored with the corresponding 

parent. 

All genotype data was scored co-dominantly (A (positive parent 1), B (positive 

parent 2), H (heterozygous) and U (unknown data point)). 

Joinmap®4 analysis 

Linkage analysis for genotype scores for all markers from the mapping population 

was performed using Joinmap® 4 software with default parameters, except for those 

listed below (Stam 1995; Van Ooijen 2006).  The calculations of the linkage maps 

used all pair wise recombination estimates smaller than 0.49, LOD scores higher than 

0.01, a jump of 5 and the regression mapping algorithm.  A RIx (where 

x=generation; 7 in this study) population was used.  Markers were assigned to 

linkage groups by increasing the LOD score for grouping with steps of one LOD 

unit.  Recombination frequencies were converted to map distance in centimorgans 

using Kosambi‘s mapping function (Kosambi 1944).  After an initial generation of a 

‗best fit‘ linkage map with all markers (ignoring anchoring points), markers were 

consequently assigned to a chromosome based on their linkage with anchor markers.  

The map was regenerated as individual linkage groups independently and marker 
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order was forced (as appropriate) during linkage analysis.  The linkage map was 

drawn using the MapChart programme (Voorrips 2002). 

 

4.3. Results 

 

The newly generated F7 Saladin x Iceberg mapping population was screened to 

create a new linkage map for a presumed genetically fixed population.  Genotypic 

data was obtained using 674 polymorphic markers including AFLPs, COSs, ESTs 

OPAs and SPPs (see table 4.5.).  The genetic map was generated using 425 markers 

mapping to 18 linkage groups covering all 9 chromosomes (see figure 4.2. and table 

4.5. and 4.6.).  The map length covered 1039.7 cM, which was 139.7 cM longer than 

the estimated map length of 900 cM.  The smallest and largest linkage groups were 

3.3 cM (LG 6c) and 167.4 cM (LG 2).  The average distance between markers over 

the map is 2.4 cM.  The length of the linkage groups did not correlate with the 

numbers of mapped markers on them.  The largest linkage group (LG 5) had only 41 

markers, while the smallest linkage group (LG 6) had 22 markers.  LG 4 had the 

most markers (86), while LG 9 had the least markers (17) (see table 4.6.).  

Inconsistent marker coverage was also observed on LG 2 which had an average inter-

locus interval of 2.2 cM but an interval of 37.2 cM was observed between 109.4-

146.6 cM for markers BVZJ-OP4 and BDAY-OP4/BHOQ-OP4. 
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Table 4.5.  Marker characteristics of the Saladin x Iceberg genetic map.  Where Sal (Saladin); Ice 

(Iceberg); No (number). 

Marker type Map anchor No. polymorphic 

markers for Sal x Ice 

No. markers mapped 

for Sal x Ice 

AFLP - 335 163 

COS Map2 JMR3 3 2 

EST Map2 JMR3 21 18 

OPA MCB19 JNR3 305 237 

SPP  MCB19 JNR3 9 4 

Morphological - 1 1 

Total - 674 425 

 

Clustering of markers (where markers mapped to the same position) was observed on 

all linkage groups.  Each of the 9 linkage groups had a minimum of 2 clustering 

markers which were either 2 AFLPs or 2 OPAs.  LG 1 had a clustering of 3 and 4 

OPA markers, LG 2 had a cluster of 8 OPA markers, LG 6 had a cluster of 4 OPA 

markers and LG 8 had a cluster of 5 OPA markers.  LG 7 had a clustering of 3 OPA 

markers and 2 additional clusters of 4 markers which included 3 OPA markers and a 

morphological locus for seed colour and 6 markers which included 5 OPA markers 

and 1 SPP marker.    

All linkage groups with the exception of LG 6 contained loci displaying segregation 

distortion (see table 4.7. and Appendix B).  Six of the linkage groups (2, 3, 4, 5, 7 

and 8) had loci showing segregation distortion towards both the Saladin and the 

Iceberg allele.  For LG 3 and LG 4 proportion of loci showing segregation distortion 

towards the Saladin or Iceberg allele were approximately equal; segregation 

distortion at loci on LG 2, 7 and 8 favoured the Iceberg allele, while LG 5 favoured 

the Saladin allele. For LG1 all loci showed segregation distortion for the Saladin 

allele 1 and for LG9 all segregation distortion was for the Iceberg allele. Linkage 

groups 8 and 9 showed distorted segregation for approximately 50% of loci, both in 

favour of the Iceberg allele.   
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Figure 4.2. Linkage map of Lactuca sativa based on the F7 Saladin x Iceberg RIL mapping 

population.  Recombination distances are in Kosambi‘s cM.  Numerical value refers to chromosome 

number, letter refers to linkage group for each chromosome. 

b 

a a 

b 

b 

a 
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Figure 4.2. Continued. 
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Figure 4.2. continued. 

 

The Saladin x Iceberg map was generated with the marker order and placement on 

linkage group based on the MCB10_10NR map currently under construction in Prof 

Richard Michelmores‘ lab at The University of California, Davis, (see Appendix B).  

The component linkage groups for LGs 1, 5 and 7 of the Saladin x Iceberg map are 

positioned in the correct orientation with anchor markers in the right order based on 

their original bin position in the MCB10_10NR map.  Anchor markers for LG 8 are 

also in the correct order and orientation, but there is a single outlier marker AHOJ-

OP4 which is not locating at its estimated position in the MCB10_10NR map.  

Component LGs corresponding to LG 4 are again in the correct orientation, anchor 

markers for LG 4b are in the right order and the majority of anchor markers for LG 

4a are also in the correct order but there are two major outliers not locating at the 

correct estimated positions; BIDO-OP4-2 and BLRO-OP4.   

 

 

a 

b 
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Table 4.6.  Characteristics of linkage groups of Saladin x Iceberg mapping population.  Where LG (linkage group); cLGs (number of component linkage groups); cM 

(centimorgans); Av (average); No (number); Morph (morphological). 

     
No of markers 

LGs cLGs 
Total length 

(cM) 
Markers 

Av. loci interval 

(cM) 
AFLP  COS  EST  OPA  SPP  Morph 

1 2 71.3 30 2.4 5 0 2 23 0 0 

2 1 167.4 77 2.2 32 0 5 40 0 0 

3 2 65.1 12 5.4 6 0 1 5 0 0 

4 2 194.2 86 2.3 32 1 7 46 0 0 

5 3 225.6 41 5.5 18 0 1 21 1 0 

6 4 54.3 22 2.5 3 0 0 17 2 0 

7 1 95.3 85 1.1 26 0 0 57 1 1 

8 1 104.2 55 1.9 39 1 1 14 0 0 

9 2 62.3 17 3.7 2 0 1 13 1 0 

Total 18 1039.7 425 2.4 163 2 18 236 5 1 

 

Table 4.7.  Summary of markers showing segregation distortion for each parental genotype for each chromosome and the number of markers showing significant 

segregation distortions (*P < 0.05).  Where LG (linkage group); No (number); Sal (Saladin); Ice (Iceberg); H (heterozygote); U (unkown). 

      No of distorted markers 

LG % Sal allele % Ice allele % H % U % Non-distorted markers AFLP COS EST OPA SPP Gene 

1 13.3 0 6.6 0 80.1 0 0 0 6 0 0 

2 7.1 16.2 1.3 1.3 74.1 9 0 1 10 0 0 

3 8.3 8.3 0 0 83.4 1 0 0 1 0 0 

4 12.8 10.5 2.3 0 74.4 7 1 2 12 0 0 

5 22 4.9 2.4 0 70.7 3 0 0 9 0 0 

6 0 0 0 0 100 0 0 0 0 0 0 

7 2.4 16.5 1.2 0 79.9 10 0 0 6 0 1 

8 12.7 34.5 1.8 0 51 24 1 0 2 0 0 

9 0 47.1 5.9 0 47 1 0 0 8 0 0 

Total 9.3 15.4 2.1 0.2 73 55 2 3 54 0 1 
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Most of the component linkage groups for LG 3 (LG 3a), LG 6 (LG 6a, 6b and 6c) 

and LG 9 (LG 9a) are positioned in the correct orientation with anchor markers in the 

right order, however the orientation of a single component LG for each linkage group 

(LG 3b, LG 6d and LG 9b) is unknown as each only has a single anchor point 

(ANKW-OP3-1, BLCL-OP3 and AQYG-OP3 respectively).  LG 2 appears in the 

correct orientation with anchor markers in the right order, however a small section 

(encompassing markers BIAS-OP4, AKGO-OP4 and BVZJ-OP4) appears to have 

been ‗inverted‘ and should be positioned within the estimated region of 40 cM (see 

figure 4.3.). 

The SPP markers were specifically designed to provide genome wide coverage for 

Lactuca satvia, as they were derived for every 100 bins per chromosome based on 

the MCB10_10NR map.  However, due to equipment and time constraints the 

mapping population RILs were only genotyped for 9 of the 59 SPP markers (see 

table 4.4.).  Of these 4 were mapped onto LG 5a, LG 6a and c, and LG 9a.  The 

addition of the remaining SPP markers (particularly in conjunction with the 249 

unmapped markers) would be beneficial due to the estimated genome coverage 

which could allow coalescence into 9 linkage groups (see table 4.8.).   

 

 

Figure 4.3. Inverted marker order observed in LG 2. 
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4.4. Discussion 

 

Genetic maps based on crosses between lettuce cultivars have previously been 

reported to have higher numbers of linkage groups than those derived from 

interspecific crosses between lettuce and related wild Lactuca sp.  The high number 

of linkage groups in the Sal x Ice map could be due to low intraspecific 

polymorphism and a high frequency of monomorphic regions between the parental 

lines Saladin and Iceberg (Truco et al. 2007).   

Many lettuce linkage maps often exceed the theoretical estimated length as in this 

study (Kesseli et al. 1994; Syed et al. 2006; Truco et al. 2007).  Error in scoring can 

increase the number of apparent recombinants and thus dramatically inflate map 

distances (Kesseli et al. 1994; Jeuken et al. 2001).  Inflation has been recorded with 

error rates below 2% (Jeuken et al. 2001).  If a locus locates internally it may be 

placed in the correct position however it will cause length expansion as seen in LG 2 

(although this could also be the result of translocation) (Kesseli et al. 1994). 

The majority of the initial mapping studies in lettuce were based on populations 

segregating for disease resistance (Landry et al. 1987; Kesseli et al. 1994; Syed et al. 

2006) and the Sal x Ice RIL population was produced initially to study resistance to 

pests and disease (Myzus persicae and Bremia lactucae) (DAC Pink personal 

communication).  The opportunity to determine the genetic control of discolouration 

in lettuce provided by the Sal x Ice RIL population allows possible interactions 

between disease and agronomic traits to be established, thus allowing breeding to 

combine improved shelf life with already established traits for growers. 
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Kesseli et al. (1994) and Waycott et al. (1999) each constructed linkage maps based 

on populations derived from crosses between cultivars of Lactuca sativa.  Like the 

Sal x Ice map constructed in this study, these maps were fragmented with many 

linkage groups containing many marker types exceeding the chromosomal number of 

lettuce.  Johnson et al. (2000) reviewed an AFLP marker based framework map for 

lettuce QTL analysis of a L. sativa x L. serriola map.  The most recent genetic map 

for a single lettuce population was produced by Syed et al. (2006), which was also 

based on a cross derived from L. sativa and L. serriola.  Both these interspecific 

maps consisted of only 10 linkage groups, including 9 major and 1 minor group.  

More recently integrated maps based on different types of crosses have been aligned 

to produce a more informative map with greater utility.  Jeuken et al. (2001) 

constructed the first integrated map of lettuce.  The map was based on 488 markers 

(using 124 markers for alignment) from 2 populations derived from crosses between 

L. saligna and L. sativa.  Markers coalesced into 9 linkage groups; however they 

only spanned 854 cM with a mean interval of 1.8 cM.  Most recently Truco et al. 

(2007) constructed a high density integrated map of lettuce (Lactuca spp.).  The map 

was based on 2,744 markers (using 560 markers for alignment) from 7 intra and inter 

specific mapping populations.  Markers were assigned to 9 chromosomal linkage 

groups covering a genetic distance of 1505 cM and had a mean interval of 0.7 cM.   

The use of AFLP markers in linkage analysis has been reported as a reliable and 

reproducible procedure for numerous crops as it can cover the entire genome when 

sufficient markers are obtained (Nikaido et al. 1999; Duran et al. 2004).  From the 

markers used for map construction in this study the AFLP markers were more 

informative as 95% of those assigned to a chromosome mapped compared to 77.6% 

for OPA markers.  For the remaining marker sets >55% of assigned markers mapped 
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(see table 4.9.).  However approximately 33% of the AFLP markers showed 

significant segregation distortion, compared to 23% of OPA markers (see table 4.7.). 

The haploid genome of lettuce consists of 9 linkage groups; as the Sal x Ice lettuce 

map consists of 18 linkage groups some of the linkage groups will join once 

additional markers are added, thus forming 9 linkage groups each representing a 

single chromosome.  The addition of new markers (not limited to the un-genotyped 

SPP markers and the current unmapped markers) could aid in coalescence of the 

linkage groups.   

Two-hundred and forty nine markers remained unmapped; the majority of these were 

AFLP markers which could not be assigned to groups (see table 4.8.).  Many formed 

small tight linkage groups within marker type, however as they did not contain 

anchor markers from previous maps their position remains unknown at present so 

they were excluded from the map construction.  Most of the COS, EST, OPA and 

SPP markers were assigned to a LG but a minority did not map.  This could be due to 

high recombination frequencies (‗low linkage‘) between markers, causing excessive 

and un-mappable genetic distances.  

Table 4.8. Mapping of assigned and unassigned markers.  Where No (number). 

Marker 
No. not assigned to 

chromosome 

No. assigned to 

chromosome 

No. assigned 

mapped 

AFLP 162 173 163 

COS 0 3 2 

EST 0 21 18 

OPA 1 304 236 

SPP 0 9 5 

Morphological 0 1 1 

Total 163 511 425 

 

The addition of the SPP markers would be beneficial due to the estimated genome 

coverage which could allow coalescence into 9 linkage groups (see table 4.9.).  The 
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un-genotyped SPP markers for LG 1 could allow length extension of the group at 

both ends in addition to a possible joining of LG 1a and 1b via markers BBGF and 

AIKO.  The 2 genotyped SPP markers (BIKC and BLNH) and the un-genotyped 

marker ARTT would also allow extension in length at both ends of LG 3, while 

BVZI could assist in the coalescence of LG 3a and 3b.  The genotyped SPP marker 

(AXJO) and the un-genotyped markers BLII, BLTJ and AUIH could aid in length 

extension at both ends of LG 4, whilst AZAO and BCHA could aid in linking LG 4a 

and 4b.  For LG 5, the addition of the numerous un-genotyped SPP markers could 

possibly allow coalescence into 1 group via the joining of LG 5a and 5b (BKJN, 

BEWJ, ARFM, BRZR and BHAY) and of LG 5b and 5c (BEVL, AHTB and 

AOVB).  The single SPP marker (BUGI) for LG 9 could also help with the linking of 

LG 9a and 9b.  For LG 6 the addition of the currently un-genotyped marker AWNO 

could link LG 6a and 6b, while ALGO and AIED could not only link LG 6c and 6d 

but aid in the determination of the orientation of LG 6d and extension of the linkage 

group as a whole.  For both LG 7 and LG 8 the addition of genotyped markers (BAIJ 

and AMGU respectively) and numerous un-genotyped SPP markers would increase 

the density of each linkage group, assist in confirming the order of markers and allow 

length extension at the end of the groups (and start for chromosome 7).   Finally, the 

addition of un-genotyped SPP marker AKLQ, could possibly assist in the split of the 

inverted marker order observed in LG 2 (see figure 4.2.), while markers AVGS, 

BSOW, AZKZ, BKUD and AREY could allow their correct positioning.  The 

remaining markers would increase the density of the linkage group and improve the 

correct marker order.  

Markers were generally evenly distributed across linkage groups although a few 

distances exceeded 20 cM (LG 1a, 2, 4b, 5a, 6d and 9a), with the largest distance of 
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37.3 cM recorded on LG 2 (see figure 4.2. and 4.3.).  The maximum number of 

markers mapped at any locus was 8 on LG 2 which were all OPA markers.  There 

were many small clusters of OPA markers distributed across the map, which could 

suggest the markers had been developed from the same/similar sequence IDs.  High 

numbers of double AFLP clusters were also observed, however the majority of these 

appear to be the product of stutter peaks as there is a single base pair difference; 

E41M49_212i and E41M49_213i on LG 1a.  Clustering of AFLP markers has also 

been recorded by Truco et al. (2007) and van Os et al. (2006) in ultra dense maps of 

lettuce and potato respectively.   

Different markers types target different genomic regions and thus reveal dissimilar 

distribution patterns.  Therefore in order to generate a versatile molecular map it is 

beneficial to use a variety of markers during construction (Klein et al. 2000; 

Sebastian et al. 2000; Mei et al. 2004; van der Linden et al. 2004; Syed et al. 2006).  

Accurate high resolution maps act as extremely important tools to detect/locate 

genes/QTL encoding desirable agronomic traits, and versatile markers can be used to 

hasten the improvement of plants (Jeuken et al. 2001; Syed et al. 2006).   
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Table 4.9. Chromosome position of SPP markers (yet to be genotyped) on map MCB10_10NR.  Where Marker Code (code on original map); Sequence ID (EST/Contig 

data retrieved from http://cgpdb.ucdavis.edu/cgpdb2/CGP_ContigViewer/); Chr (chromosome present on); x: x (chromosome: position). 

Marker 

Code 
Sequence ID 

Chr :  

position 

(bin) 

Marker 

Code 
Sequence ID 

Chr : 

position 

(bin) 

Marker 

Code 
Sequence ID 

Chr : 

position 

(bin) 

AZTD CLS_S3_Contig2493 1 : 214 AKLQ CLSM20182.b1_K06.ab1 2 : 2482 ALGQ CLSM4746.b1_D11.ab1 6 : 1688 

AJDS CLSM16652.b1_H11.ab1 1 : 333 BVZI QGD11G21.yg.ab1 3 : 625 AIED CLSM1289.b1_B11.ab1 6 : 1725 

AIMC CLSM13691.b1_E16.ab1 1 : 404 ARTT CLSX5061.b1_I17.ab1 3 : 1424 ALJA CLSM4981.b1_J22.ab1 7 : 27 

BGGF CLS_S3_Contig6529 1 : 1588 BLII CLS_S3_Contig9647 4 : 268 AOIW CLSS13293.b1_I12.ab1 7 : 755 

AIKO CLSM13565.b1_J07.ab1 1 : 1657 BLTJ CLS_S3_Contig9909 4 : 322 BBRG CLS_S3_Contig3686 7 : 861 

AYEW CLS_S3_Contig1528 1 : 2286 AZAO CLS_S3_Contig2055 4 : 550 BLAG CLS_S3_Contig9458 7 : 1637 

AVGS CLS_S3_Contig10032 2 : 409 BCHA CLS_S3_Contig4064 4 : 1242 AHEI CLSL2531.b1_E10.ab1 8 : 379 

BSOW QGB20I09.yg.ab1 2 : 518 AUIH CLSY8890.b1_C15.ab1 4 : 1913 AWFJ CLS_S3_Contig10615 8 : 438 

AZKZ CLS_S3_Contig230 2 : 734 BKJN CLS_S3_Contig9062 5 : 314 AMQR CLSM8885.b1_I13.ab1 8 : 526 

BKUD CLS_S3_Contig9313 2 : 852 BEWJ CLS_S3_Contig5657 5 : 691 ATJI CLSY3988.b1_H13.ab1 8 : 1008 

AREY CLSX2692.b1_G01.ab1 2 : 946 ARFM CLSX2754.b1_C17.ab1 5 : 915 BTEH QGB28E23.yg.ab1 8 : 1074 

AZVA CLS_S3_Contig2539 2 : 1136 BRZR QGB13D02.yg.ab1 5 : 1570 BTUF QGC10O20.yg.ab1 8 : 1410 

BHKL CLS_S3_Contig7239 2 : 1667 BHAY CLS_S3_Contig7016 5 : 1893 ASRF CLSY1344.b1_P23.ab1 8 : 1680 

ASZZ CLSY2574.b1_K20.ab1 2 : 1708 BEVL CLS_S3_Contig5635 5 : 2125 ASUI CLSY1763.b1_E10.ab1 8 : 2505 

AXWL CLS_S3_Contig1329 2 : 1818 AHTB CLSM11856.b1_P12.ab1 5 : 2899 BHCQ CLS_S3_Contig7056 8 : 2775 

BFPJ CLS_S3_Contig6129 2 : 1952 AOVB CLSS2687.b1_N24.ab1 5 : 2911 BUGI QGC15F13.yg.ab1 9 : 459 

BCOF CLS_S3_Contig4235 2 : 2350 AWNO CLS_S3_Contig10808 6 : 696 
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Comparison of the Sal x Ice linkage map to other lettuce maps, to determine the 

linkage group orientation and marker order, suggests it is a good quality map.  All 

the linkage groups with the exception of those with a single anchor marker (LG 3b, 

6d and 9b) are known to be in the correct orientation.  This is specifically due to 237 

OPA and 4 SPP markers that mapped to the same linkage groups (and generally in 

the same order) as for the MCB19 JNR3 map under construction at The University of 

California, Davis.  Additionally 2 Cos and 18 EST markers were mapped to the same 

linkage groups as for Map2 JMR3 (Truco et al. 2007).   

The Sal x Ice map also has 57 and 22 common AFLP markers (within 5 bp) 

respectively with lettuce linkage maps published by Jeuken et al. (2001) and Syed et 

al. (2006) (by implication these will also be ‗anchors‘ with the integrated map of 

Truco et al. 2007).  Common markers for both published maps were present on 

linkage groups 2, 4, 5, 7 and 8 on the Saladin x Iceberg map (see Appendix B).   

The morphological marker for seed colour ‗ w‘ on the Sal x Ice map correlates with 

the mapped position for brown seed ‗br‘ on linkage group 7 as published by Waycott 

et al. (1999).  OPA marker BKVX is of high importance as it co-locates with the 

marker ‗w‘.  Interestingly Waycott et al. (1999) also recorded co-segregation of the 

loci determining plump involucres ‗pl‘ with that for brown seed ‗br‘. 

The large number of common markers with other maps allows accurate cross 

referencing between maps and thus provides the opportunity to utilise larger number 

of assigned markers and integration between maps of different populations.  This 

map contains a variety of molecular markers having anchor points with many other 

maps; it is therefore a valuable resource for lettuce crop improvement. 
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The map produced in this study is based on an intraspecific cross between lettuce 

cultivars.  This can result in the reduction of polymorphism as the genotypic 

variation within the progeny has been established in a narrow genetic background.  

Thus most linkage maps are generally based on interspecific crosses as they contain a 

wide range of genetic variation; however linkage maps based on these types of 

crosses may have limitations for breeders.   

In contrast, maps generated from intraspecific crosses have greater utility for lettuce 

breeders and can be used directly for breeding purposes as they contain informative 

markers within the cultivated gene pool (Kesseli et al. 1994; Truco at el., 2007).  Self 

pollinated species such as lettuce have limited polymorphism within the cultivated 

species (Truco et al. 2007); therefore the development of comprehensive maps from 

intraspecific crosses is frequently limited.  Although, interspecific crosses exhibit 

higher levels of polymorphism, segregation distortion is often more apparent.  

Moreover lower recombination frequencies or segregation distortion towards the 

cultivated allele could limit the access to the wild allele in the genome in 

interspecific crosses (Truco et al. 2007). 

Genetic maps developed using a single population can be of limited use for other 

populations if the markers are not polymorphic in those populations.  Integrated 

maps combining information from several populations can increase the amount of 

markers located within a genomic region and thus increase the chance of obtaining 

polymorphic markers in a desired population (Truco at el., 2007).  Due to the 

limitations observed with intraspecific crosses the most suitable and informative 

alternative could be the production of integrated maps of many populations with both 

common and specific markers (Jeuken et al. 2001; Truco at el., 2007).  Integrated 



102 
 

maps have been developed for several crop species in addition to lettuce including 

melon (Périn et al. 2002) and tomato (Haanstra et al. 1999). 

The Sal x Ice map has common markers for each linkage group with ‗Map2 JMR3‘ 

and/or map ‗MCB19 10NR‘, both developed at The University of California, Davis 

and this allows integration with maps based on different populations.  A linkage map 

based on the F2 and F5 Sal x Ice RIL population was produced previously at Warwick 

HRI, The University of Warwick, and by rescoring of common AFLP primer 

combinations with common panels this could be integrated with the F7 map to 

provide more information on the mapping population as a whole. 

Some segregation distortion from the Mendelian ratio was expected as although 

individuals for the RIL population were not consciously selected for any particular 

traits, there could have been inadvertent selection for traits associated with seed 

production due to the single seed descent (SSD) protocol used to generate the RILs.  

Some RILs were naturally lost while others were excluded due to inadequate seed 

production through re-generation from an F6 to an F7 population.  The linkage maps 

based on the earlier F2 and F5 Saladin x Iceberg generations could be compared with 

the F7 map to test whether segregation distorted has occurred in this population 

during SSD. 

In this study all linkage groups with the exception of LG 6, exhibited segregation 

distortion, with 27% of the loci skewed.  Of that, distortion favouring the Saladin 

alleles accounted for ~34% compared to 57% for the Iceberg allele.  The distorted 

loci favoured one parental allele in 6 out of 8 linkage groups (LGs 1, 5, 7, 8 and 9).  

While 2 linkage groups (LG 1 and LG 9) were completely skewed to a single 

parental allele. The clustering of distorted loci suggested that the distortions were 
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genuine and unlikely to be due to miss scoring of loci which would be expected to be 

more randomly distributed. 

Segregation distortion at 19% of loci was observed in the genetic map constructed by 

Syed et al. (2006).  Distorted loci were observed on all linkage groups with the 

exception of LG 6 as also recorded in this study.  Unlike the current study the 

segregation distortion was evenly distributed between the 2 parental genotypes.  

However similarly to the Sal x Ice F7 map, the map generated by Syed et al. (2006) 

revealed a high number of distorted loci in the lower part of LG 4. 

For the high density integrated lettuce map (Truco et al. 2007), the majority of 

markers segregated close to the Mendelian ratio for intraspecific crosses but a high 

proportion of distorted loci were recorded in the interspecific crosses.  Two types of 

distortion were also observed; distortion of multiple linkage groups within a specific 

population and the distortion of specific regions in multiple populations (Truco et al. 

2007).  Genes of interest can be located in significantly distorted genomic regions 

which has been observed in this study on LG 7 around the markers for seed colour 

‗w‘ which is located within a significantly distorted region spanning 4.4 cM (Truco 

et al. 2007).  

It has been reported that intraspecific crosses have a higher level of distortion in 

comparison to interspecific crosses, which was observed during production of the 

high density lettuce map and for other crops including Brassica rapa (Jenczewski et 

al. 1997; Suwabe et al. 2002; Truco et al. 2007).  It has been postulated that the 

degree of distortion observed within a mapping population should correlate with the 

degree of genomic divergence observed within the parents (Kesseli et al. 1994; 

Taylor and Ingvarsson 2003).   
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The genetic linkage map constructed in this study is of good quality and can be cross 

referenced with many published maps (Waycott et al. 1999; Jeuken et al. 2001; Syed 

et al. 2006; Truco et al. 2007).  However map coverage could be improved by the 

additional screening of the mapping population with more markers and/or by filling 

the ‗unknown‘ data points within the current marker set.  Individually or in 

conjunction these actions may ‗pull in‘ all the unmapped assigned loci and may 

additionally allow the assignment of the remaining AFLP markers.  The advantage of 

the map presented here is that it is based on a cross from within a crop.  Any 

polymorphic markers identified as being linked to agronomically important traits are 

likely to be of direct value to lettuce breeders and could be used for marker assisted 

selection/plant breeding and further genetic studies. 

 

4.5. Conclusions 

 

 A good quality linkage map covering all 9 lettuce linkage groups has been 

generated based on the cross Saladin x Iceberg; the quality of the map makes 

it suitable for QTL analysis. 
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CHAPTER 5 

 

 

Understanding genetic variation for post harvest 

discolouration in a selected RIL population 
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5.1. Introduction 

 

From the preliminary experiments involving the parents of the Warwick HRI 

mapping population (Chapter 3) it was shown that Saladin and Iceberg were 

significantly different for post harvest discolouration traits.  QTL analysis been used 

to understand the genetic variation and control of such complex traits via linkage 

analysis between markers and phenotypic observations (Cichy et al. 2009).  Marker 

assisted selection based on QTL analysis can increase the heritability of a desired 

trait.  Although advances have been made using QTL mapping to improve several 

important crop agronomic traits (Xing et al. 2002; Kelly et al. 2003), QTL studies 

into lettuce and in particular post harvest traits has been minimal (Zhang et al. 2007). 

The aims of this experiment were to 

 Demonstrate genetic variation for post harvest discolouration in the F7 

Saladin x Iceberg mapping population. 

 Identification of significant QTL for post harvest discolouration traits. 

 Demonstrate stability over environments of extreme phenotypes for post 

harvest discolouration in the F7 Saladin x Iceberg mapping population. 
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5.2. Materials and methods 

 

5.2.1. Saladin x Iceberg RIL population 

Ninety-four highly informative lines (based on recombination events) from the 

Saladin x Iceberg F7 population of recombinant inbred lines (RILs) were selected for 

the 2008 field trials (see section 2.1.2.). 

 

5.2.2. Extreme discolouration RIL subset 

Eleven RILs were selected from the 94 F7 Sal x Ice RILs based on their extreme 

phenotypes (observed in the UK and NL for the field trial of selected mapping 

population) for extreme post harvest discolouration (see table 5.1.) and on their 

genotypes at the QTL identified as determining post harvest discolouration in the 

initial study (see section 5.3.3).  These traits were distinct in lines or present in 

combinations.  The selected lines displayed a variety of morphologies (see figure 

5.1.).   

Table 5.1. Saladin x Iceberg F7 RILs with extreme phenotypic post harvest discolouration 

selected for 2009 experimental trial.  Numbers refer to seed numbers as stored in the Warwick HRI 

Genetic Resource Unit (all seed numbers have the prefix LJ).  Where No (number). 

Line No Extreme phenotype Line No Extreme phenotype 

5023 Low pinking 5043 High browning 

5051 Low pinking 5053 High browning 

5045 High pinking 5002 Low discolouration 

5075 High pinking 5042 Low discolouration 

5022 Low browning 5066 High discolouration 

5055 Low browning   
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Figure 5.1. Saladin x Iceberg F7 RILs with both extreme genotypic and phenotypic post harvest discolouration harvested during the 2009 experimental trial.  

Numbers refer to seed numbers as stored in the Warwick HRI Genetic Resource Unit (all seed numbers have the prefix LJ). 
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5.2.3. Field trial and assessment of post harvest discolouration of the F7 Saladin 

x Iceberg mapping population 

The 94 most genetically informative RILs from the F7 mapping population and the 

mapping parents were grown in the UK and The Netherlands in 2008.  The UK site 

was the Big Cherry experimental field at Warwick HRI, Wellesbourne (Latitude: 

52.183.  Longitude: 1.583) while the Netherlands site was the experimental fields at 

Rijk Zwaan breeding station, Fijnaart (Latitude: 51.633.  Longitude: 4.467), (see 

figure 5.2.).  

 

Figure 5.2. Map displaying field trial sites for 2007, 2008 and 2009.  Topography map created 

using Google maps (http://maps.google.com/). Warwick 2007/8/9 and Fijnaart 2008. 

Plants for the UK assessment of post harvest discolouration were grown in a 

replicated field trial, with the two replicates separated with 6 weeks between planting 

dates.  Plants were raised and maintained as previously described (see section 2.2.1.), 

with the trial planted on 28
th

 April and 9
th

 June 2009.  The trial replicates were 

designed in 4 blocks, with each containing a single plot (of 12 plants) for each of the 

Fijnaart 
(latitude 51.633, 

longitude 4.467) 

 
Warwick  
(latitude 52.183, 

longitude 1.583) 

 

http://maps.google.com/
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96 lines (94 F7 RILs and the 2 mapping parents), randomised in a column/row design 

so all treatments occurred equally in each row and column (see appendix C for field 

plan and randomisation).  Crop protection was as previously described, with the 

additional use of Quavor flo‘ and ‗Roviral‘ (1.5 L/ha) and slug pellets according to 

good agricultural practice.  Fencing and netting also surrounded and covered the trial 

plots to provide protection from the local fauna (see figure 5.3.a.).  Harvests occurred 

on 24
th

 June, 26
th

 June, 1
st
 July, 8

th
 July, 15

th
 July, 5

th
 August, 12

th
 August and 20

th
 

August 2008 when >50% of heads reached maturity level for harvest. 

Plants for the NL assessment of post harvest discolouration were grown in a 

replicated field trial, with the two replicates run concurrently.  The trial was designed 

in 2 blocks, with each containing a single plot of each of the 96 lines (94 F7 RILs and 

the 2 mapping parents), again randomised in a column/row design (see appendix C 

for field plan and randomisation).  Plants grown in The Netherlands were grown 

under Rijk Zwaan growing, transplanting and maintenance procedures (see figure 

5.3.b.).  The plant arrangement was as for the associated UK trial (see section 2.2.1.), 

with 30 x 36 cm spacing between plants.  Harvests occurred on 15
th

 September, 17
th

 

September, 22
nd

 September and 24
th

 September 2008 in numerical plot order 

following the standard procedure for Rijk Zwaan breeding trials.   

  

Figure 5.3. Field sites a) UK and b) NL of the selected mapping population trials in 2008.  

a b 
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Heads were harvested and processed as previously described (see section 2.2.2.).  

Approximately ~100g unwashed mixed material was sealed per bag with material 

from one head filling two bags.  Bags were stored vertically at 5 for storage (see 

figure 2.3.).  Bags were then phenotypically assessed for post harvest discolouration 

as described (see section 2.2.3.) on days 1 and 3.  The ‗visible‘ score classification 

was removed from the scoring protocol, with tissue discolouration classified as either 

clean, pink or brown.  In the event of no classification the tissue was kept and 

discolouration back dated.   

 

5.2.4. Field trial of extreme discolouration lines 

Plants of the subset of RILs for assessment of post harvest discolouration were 

grown in a replicated field trial during the 2009 growing season on the experimental 

site Pump Ground at Warwick HRI, UK (Latitude: 52.183.  Longitude: 1.583).  After 

germination plants were raised and maintained as previously described (see section 

2.2.1.), with the trial planted on 22
nd

 April 2009.  The trial was designed in 3 blocks 

each containing 2 plots of each of the extreme RILs and Saladin and Iceberg, 

randomised in a column/row design so all treatments occurred equally in each row 

and column (see appendix C for field plan and randomisation).  Crop protection was 

as described, with the additional use of Quavor flo‘ and ‗Roviral‘ (1.5 L/ha).  

Fencing and flappers also surrounded the land to provide protection from the local 

fauna (see figure 5.4.).  Harvests occurred on 27
th

 and 28
th

 July 2009 with RILs being 

harvested in numerical plot order. 
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Figure 5.4. Lettuce RILs with extreme discolouration genotypes at Warwick HRI, UK in 2009. 

 

Heads were harvested and processed as described (see section 2.2.2.).  

Approximately ~100g unwashed mixed material was sealed per bag with material 

from one head filling two bags.  Bags were stored vertically at 5 for storage (see 

figure 2.3.).  Bagged leaves were then phenotypically assessed for post harvest 

discolouration as previously described (see section 2.2.3.) with the amendments as 

for the 94 RILs described above on days 1, 2, 3 and 4.   

 

5.2.5. QTL analysis 

The phenotypic data from the 94 most informative RILs were combined with their 

genotype data and used for QTL analysis as previously described (see section 2.2.3.).  

All quantitative traits measured used adjusted means from REML. 

 

5.2.6. Statistical analysis 

REML analysis 

Trial data for the 94 RILs were analysed for each site singly and across sites.  As the 

data exhibited a variable mean relationship it was transformed before analysis.  For 
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the intensity mean score browning and pinking scores the data were multiplied by 50 

and for mean score overall discolouration scores they were multiplied by 25.  This 

allowed data to be compared more easily between traits as they were all transformed 

to a 100 point scale.  The percentage scores of extent of pinking, browning and 

overall discolouration were transformed to angles (by multiplying by 90°) prior to 

analysis.  As the field trial produced an unbalanced data set (due to missing values) it 

was analysed by REML.  For the UK trial data the fixed treatment was 

block/rep/plot/head/bag for days 1 and 3, and day/plot/treat/rep/head/bag for across 

days.  For the NL trial data the fixed treatment was rep/block/plot/head/bag for days 

1 and 3, and day/treat/rep/head/bag for across days.  For the trial data across sites the 

fixed treatment were weighted for each site for days 1 and 3.  Scores were adjusted 

through the REML analysis to take account of possible block effects; in some cases 

this resulted in negative values for the estimated means (a similar situation occurred 

with some missing values).   

The data from the trial re-assessing the extreme discolouration lines also exhibited a 

variable mean relationship; it was therefore transformed before analysis.  Angular 

transformation was used for percentage scores, while for mean score browning and 

pinking scores the data were transformed to a 100 point scale by multiplication by 50 

or 25 as described above.  As the field trial produced an unbalanced data set, it was 

also analysed by REML with the fixed treatment rep/bed/plot/head/bag for days 1, 2, 

3 and 4.  Scores were adjusted through the REML analysis to adjust for block effects 

again this resulted in negative values for some of the estimated means or missing 

values.    
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Correlation analysis 

Correlation analyses were conducted between all measures of post harvest 

discolouration for 94 RILs (as section 2.4.4.).  R values were generated which were 

then compared to the R values expected for different levels of probability to assess 

their significance (see table 5.2.).  

Table 5.2. Correlation analysis parameters.  Where df (degrees of freedom). 

  Probability (p value) 

Population df 0.05 0.01 0.001 

F7 Saladin x Iceberg RIL mapping population 70 0.205 0.267 0.381 

 

5.3. Results  

 

5.3.1. Variation for discolouration within the RIL mapping population 

REML analysis of the data sets for each day showed that RILs from the mapping 

population were significantly different (*P ≤0.05) for all measures of discolouration, 

however some measures were dependent on site.   

When meaned across all the RILs; the levels of pinking and browning measured by 

‗intensity and extent‘ were similar on day 1.  However, by day 3 there was 

significantly less browning in the population than pinking. 
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Figure 5.5. Means for a) intensity and b) extent of post harvest pinking and browning over 3 

days across all RILs from the mapping population.  Error bars represent se (standard error) from 

means. Where msb (mean score browning); msp (mean score pinking); %b (percentage browning); 

%p (percentage pinking). 

 

Post harvest pinking of prepacked leaf tissue 

Although the trials carried out in the UK and NL showed different levels of pinking 

(both intensity and extent) there were consistent effects over both trials.  Generally 

on day 1 the parents were significantly different from each other (see table 5.3.) and 

distributed towards the extremes of the distribution of the RILs.  But by day 3 they 

had converged towards the middle of the distribution and were generally not 

significantly different.  However, even when the differences between the parents 

were not significant Iceberg was always the poorer performing parent.  Generally 

lower scores were recorded for intensity than extent in both trials for each day. 

The REML analysis showed significant differences (**P <0.01) between the 94 RILs 

for intensity for day 1 in both the UK and NL trials and for day 3 in the NL trial and 

when analysed across both sites.  Significant differences (**P <0.01) were also 
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recorded between RILs for extent for both days in both trials.  The REML analyses 

therefore indicated the existence of genetic variation for pinking.   

Table 5.3. Differences between parents Saladin and Iceberg for post harvest pinking.  Where S 

(significant differences); NS (not significant differences). 

 Pinking intensity Extent of pinking 

Site Day 1 Day 3 Day 1 Day 3 

UK S NS S NS 

NL NS S NS NS 

Across sites S S S NS 

 

There was also a highly significant site effect for both intensity and extent on day 1 

indicating that the plants‘ growing environment significantly  influences their post 

harvest performance (see table 5.4. a and b).  Day was also a highly significant (***P 

<0.001) factor for both measures of pinking in both trials this was due to a significant  

increase in mean levels of pinking in the RILs over time (see figure 5.6. (a-d) and 

figure 5.7. (a-d)).  There was also a significant interaction between day and genotype 

for intensity and extent indicating differences between the RILs in the rate of 

increase in pinking over time (see Appendix C).  

All the RILs showed pink discolouration by day 1 in both trials as measured by 

intensity and extent (see figure 5.6. (a-d) and figure 5.7. (a-d)).  As stated above 

pinking increased at different rates for different RILs and rank orders changed over 

days; the changes in rank orders also differed between trials again indicating that the 

growing conditions of the plants influences their post harvest performance.   
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Table 5.4.  REML significance level of pinking a) intensity and b) extent for the RIL mapping 

population in both the UK and NL.  Significant effects shown as *P <0.05, **P <0.01 and ***P 

<0.001.  Where ndf (numerator degrees of freedom); ddf (denominator degrees of freedom): F pr 

(probability); Line (genotype/RIL); x (interaction). 

 

Site Day Fixed term 
Wald 

statistic 
ndf F statistic ddf F pr 

UK 
1 Line  198.19 95 2.11 34.5 **0.007 

3 Line 121.82 95 1.29 37.2 0.194 

NL 
1 Line 209.04 95 2.2 66.9 ***<0.001 

3 Line 179.94 95 1.91 53.5 **0.005 

Across sites 

1 Site 29.43 1 29.43 22.5 ***<0.001 

1 Line 294.91 95 3.1 107.1 ***<0.001 

1 Site x Line 112.32 95 1.18 112.3 0.199 

3 Site 1.59 1 1.59 1.4 0.378 

3 Line 201.1 95 2.11 117.5 ***<0.001 

3 Site x Line 100.65 95 1.05 112 0.395 

 

Site Day Fixed term 
Wald 

statistic 
ndf F statistic ddf F pr 

UK 
1 Line  186.29 95 2.11 34.9 **0.01 

3 Line 132.4 95 1.29 1.39 **0.007 

NL 
1 Line 212.13 95 2.2 67.3 ***<0.001 

3 Line 153.54 95 1.91 94.8 **0.01 

Across sites 

1 Site 31.2 1 29.43 22.1 ***<0.001 

1 Line 288.47 95 3.1 107.1 ***<0.001 

1 Site x Line 109.95 95 1.18 112.9 0.23 

3 Site 17.68 1 1.59 1.4 0.094 

3 Line 185.24 95 2.11 163 ***<0.001 

3 Site x Line 100.7 95 1.05 153.6 0.37 
 

 

The range of variation seen in the RILs for intensity in both trials on each day was 

similar (~40).  Similarities were also observed for the extreme values of the 

distribution.  The range of variation for extent in the RILs on both trials for day 1 

was also similar (~55).  However by day 3 the range had decreased (particularly in 

the NL trial) as the majority of the RILs were reaching the possible maximum score 

for discolouration (see figure 5.6. b and d and figure 5.7. b and d).  Some RILs 

significantly outperformed the better parent (Saladin) for pinking although no one 

RIL consistently outperformed Saladin on all days and at both sites (see table 5.5.). 

a 

b 
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Figure 5.6. Transformed adjusted means (from REML) for lettuce post harvest pinking intensity from the UK trial on a) day 1 and b) day 3 and extent of pinking 

on c) day 1 and d) day 3 for the F7 mapping population.  Error bars represent sems (standard error of the mean) from REML.  The F7 WHRI population parents are 

highlighted with respective adjusted means (from REML). 
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Figure 5.7. Transformed adjusted means (from REML) for lettuce post harvest pinking intensity from the NL trial on a) day 1 and b) day 3 and extent of pinking on 

c) day 1 and d) day 3 for the F7 mapping population.  Error bars represent sems (standard error of the mean) from REML.  The F7 WHRI population parents are highlighted 

with respective adjusted means (from REML). 
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Table 5.5.  RILs performing significantly better than the best parent Saladin for post harvest 

pinking.  Where  (the line is performing significantly better than Saladin);  (the line is not 

performing significantly better than Saladin). 

 
UK trial NL trial Across site analysis 

 

Pinking 

intensity 

Extent of 

pinking 

Pinking 

intensity 

Extent of 

pinking 

Pinking 

intensity 

Extent of 

pinking 

RIL \ Day  1 3 1 3 1 3 1 3 1 3 1 3 

5002            

5010            

5017            

5019            

5022            

5023            

5024            

5031            

5032            

5035            

5042            

5051            

5056            

5057            

5059            

5063            

5066            

5068            

5071            

5072            

5074            

5075            

5081            

5082            

5085            

5086            

5095            

5098            

5106            

5110            

5121            

5123            

 

When the data from the two sites were combined in a weighted analysis the mapping 

parents were shown to be significantly different for intensity on both days but only 

on day 1 for extent (see table 5.3.).  For intensity the lowest extreme scores were 

always higher than for either trial individually while the highest extreme scores were 

always lower than that recorded for the individual trials for each day.  The range for 
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intensity of the RILs was therefore slightly lower than for the individual trials for 

each day.  The parental scores on day 1 for intensity were an average across the two 

sites.  However on day 3, while the score for Saladin was similar to that for both 

trials, the Iceberg score was an average across sites (see figure 5.8. a and b).  For 

extent the lowest extreme scores were similar to that for the NL trial on day 1 but 

higher than both trials on day 3.  The highest extreme scores were an average of both 

trials for day 1 but were equal to both trials on day 3.  The range for extent of the 

RILs was an average for both trials for day 1 but it was less than both trials for day 3 

as RILs were reaching the possible maximum score for discolouration.  The parental 

scores on both days were an average across the two sites (see figure 5.8. c and d).  

The means of all RILs for pinking across sites were averages of both trials. As 

recorded for both trials, some RILs had significantly outperformed the better parent 

(Saladin) for pinking (see table 5.5.), although no one RIL consistently outperformed 

Saladin.   

RILs 5002, 5022, 5023, 5042, 5043, 5051, 5066 and 5075 were also selected for 

inclusion in the ‗extreme discolouration subset‘ for later experiments to examine 

stability of phenotypes over environments/years (as they showed consistent 

transgressive segregation) (see section 5.3.4.).  
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Figure 5.8. Transformed adjusted means (from REML) for lettuce post harvest pinking intensity across sties on a) day 1 and b) day 3 and extent of pinking on c) 

day 1 and d) day 3 for the F7 mapping population.  Error bars represent sems (standard error of the mean) from REML.  The F7 WHRI population parents are highlighted 

with respective adjusted means (from REML). 
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Post harvest browning of prepacked leaf tissue 

The trials carried out in the UK and NL showed different levels of both intensity and 

extent of browning but as with pinking some effects were consistent over both trials.  

Generally for the UK trial the parents were not significantly different (see table 5.6.); 

and were both positioned at the middle of the distribution of the scores for the RILS 

on day 1. For the NL trial the parents were generally significantly different on day 1 

(see table 5.6.); distributed more towards the extremes of the RIL distribution.  

Although the differences between parents were not always significant; as with 

pinking Iceberg was the poorer performing parent at all times.  The scores for 

browning intensity were generally lower than the scores for extent of browning in 

both trials for each day. 

Table 5.6. Differences between parents Saladin and Iceberg for post harvest browning.  Where S 

(significant differences); NS (not significant differences). 

 Browning intensity Extent of browning 

Site Day 1 Day 3 Day 1 Day 3 

UK NS NS NS NS 

NL S NS S NS 

Across sites NS NS NS NS 

 

The REML analysis did not show significant differences between RILs for intensity, 

however significant differences were recorded for extent for day 3 in the NL trial and 

when analysed across both sites.  Therefore, although there was less conclusive 

evidence for genetic variation for browning than for pinking nevertheless the REML 

analyses did indicate genetic variation for browning.   

There was also a highly significant site effect for browning (extent only) on day 3, 

again indicating that the growing environment of the plants influences their post 
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harvest performance (see table 5.7. a and b).  Day was also a highly significant (***P 

<0.001) factor for browning (both intensity and extent) in both trials again due to an 

increase in levels across the RILs over time (see figure 5.9. (a-d) and figure 5.10. (a-

d)).  As with pinking a significant interaction was observed between day and 

genotype for both measures of browning indicating differences between the RILs in 

the rate of increase of browning over time (see Appendix C).  

 Table 5.7.  REML significance level of browning a) intensity and b) extent for the RIL mapping 

population in both the UK and NL.  Significant effects shown as *P <0.05, **P <0.01 and ***P 

<0.001.  Where ndf (numerator degrees of freedom); ddf (denominator degrees of freedom): F pr 

(probability); Line (genotype/RIL) ; x (interaction). 

 

Site Day Fixed term 
Wald 

statistic 
ndf F statistic ddf F pr 

UK 
1 Line  67.8 95 chi 0.71 0.984 

3 Line 100.39 95 1.06 87.6 0.397 

NL 
1 Line 119.23 95 1.26 60.4 0.166 

3 Line 132.53 95 1.4 58.7 0.081 

Across sites 

1 Site 2.66 1 2.66 1.9 0.249 

1 Line 105.28 95 1.11 119.9 0.295 

1 Site x Line 81.76 95 0.86 140.8 0.782 

3 Site 13.86 1 13.86 2 0.066 

3 Line 139.57 95 1.47 140 *0.019 

3 Site x Line 93.36 95 0.98 152.1 0.531 

 

Site Day Fixed term 
Wald 

statistic 
ndf F statistic ddf F pr 

UK 
1 Line  69.47 95 chi 0.73 0.977 

3 Line 86.13 95 0.91 87.6 0.681 

NL 
1 Line 116.22 95 1.23 59.8 0.195 

3 Line 139.96 95 1.48 58.5 *0.05 

Across sites 

1 Site 6.31 1 6.31 1.5 0.164 

1 Line 103.17 95 1.09 107 0.336 

1 Site x Line 82.51 95 0.87 130.8 0.765 

3 Site 20.79 1 20.79 2 *0.047 

3 Line 132.81 95 1.4 119.3 *0.041 

3 Site x Line 93.28 95 0.98 140.2 0.533 
 

 

All of the RILs showed brown discolouration by day 1 for both trials as measured by 

intensity and extent, however,  lower scores were recorded in the NL trial (see figure 

a 

b 
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5.9. (a-d) and figure 5.10. (a-d)).  As indicated by the REML analysis, scores for 

browning increased at different rates for different RILs and by day 3 the rank order 

had changed from day 1. The changes in rank order differed between the trials 

agreeing with the finding from the REML analysis that growing environment 

significantly influences post harvest performance.  The range of variation for all 

RILs for intensity in both trials for each day was similar (~23 for day 1 and ~33 for 

day 3).  Some RILs performed significantly worse than the worse parent (Iceberg) 

for browning and although no one RIL consistently performed poorer than Iceberg 

(see table 5.8.), this did provide some evidence for transgressive segregation. 
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Figure 5.9. Transformed adjusted means (from REML) for lettuce post harvest browning intensity from the UK trial on a) day 1 and b) day 3 and extent of 

browning on c) day 1 and d) day 3 for the F7 mapping population.  Error bars represent sems (standard error of the mean) from REML.  The F7 WHRI population parents 

are highlighted with respective adjusted means (from REML). 
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Figure 5.10. Transformed adjusted means (from REML) for lettuce post harvest browning intensity from the NL trial on a) day 1 and b) day 3 and extent of 

browning on c) day 1 and d) day 3 for the F7 mapping population.  Error bars represent sems (standard error of the mean) from REML.  The F7 WHRI population parents 

are highlighted with respective adjusted means (from REML). 
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Table 5.8.  RILs performing significantly worse than the poor parent Iceberg for post harvest 

browning.  Where  (the line is performing significantly worse than Iceberg);  (the line is not 

performing significantly worse than Iceberg). 

 
UK NL Across site 

 

Browning 

intensity 

Extent of 

browning 

Browning 

intensity 

Extent of 

browning 

Browning 

intensity 

Extent of 

browning 

RIL \ Day  1 3 1 3 1 3 1 3 1 3 1 3 

5043            

5053            

5096            

5101            

5102            

 

When the data from the two sites were combined in a weighted analysis the mapping 

parents were not significantly different for browning (see table 5.6.).  The range of 

browning for the RILs was lower than for either trial for each day.  The lowest 

extreme scores for browning (both intensity and extent) were always higher than for 

each trial for day 1, but were similar to the UK trial for day 3.  For intensity the 

highest extreme scores were similar to that for the UK trial on day 1 and were an 

average across sites for day 3.  For extent the highest extreme scores were similar to 

that for the NL trial on both days.  The parental scores for browning were averages of 

both trials (see figure 5.11. a - d). Again there was some evidence of transgressive 

segregation with some RILs  having  significantly worse scores  compared to the 

worse parent (Iceberg) for browning (see table 5.8.).  Although no one RIL always 

performed poorer than Iceberg, RIL 5053 performed the worst for most measures of 

browning for both trials and across sites. 

RILs 5043 and 5053 were also selected for inclusion in the ‗extreme discolouration 

subset‘ for later experiments (as they showed consistent transgressive segregation) 

(see section 5.3.4.).  
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Figure 5.11. Transformed adjusted means (from REML) for lettuce post harvest browning intensity across sties on a) day 1 and b) day 3 and extent of browning on 

c) day 1 and d) day 3 for the F7 mapping population.  Error bars represent sems (standard error of the mean) from REML.  The F7 WHRI population parents are highlighted 

with respective adjusted means (from REML). 
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Post harvest overall discolouration of prepacked leaf tissue 

Trials carried out in the UK and NL showed different levels of overall discolouration 

(both intensity and extent) but again some effects were consistent over both trials. 

Generally the mapping parents were not significantly different on either day (table 

5.9.).  Although on day 1 they were distributed towards the extreme of the 

distribution of the RILs (towards the high discolouration scores).  Although the 

differences between parents were not always significant at all times, as for pinking 

and browning Iceberg was the poorer performing parent.  Scores for overall 

discolouration intensity were generally lower than scores for extent of overall 

discolouration in both trials for each day. 

Table 5.9. Differences between parents Saladin and Iceberg for post harvest overall 

discolouration.  Where S (significant differences); NS (not significant differences). 

 
Overall discolour 

intensity 

Extent of overall 

discolour 

Site Day 1 Day 3 Day 1 Day 3 

UK NS NS NS NS 

NL S NS NS NS 

Across sites S NS S NS 

 

The REML analysis showed significant differences (*P <0.05) between RILs for 

intensity and extent on day 1 and day 3 in the NL trial and also when the data from 

UK and NL were combined for analysis across sites indicating genetic variation for 

overall discolouration.  There was also a highly significant site effect for overall 

discolouration (both for intensity and extent) on day 1 again providing evidence that 

the growing environment of the plant influences post harvest performance (see table 

5.10. a and b).  Day was also a highly significant (***P <0.001) factor for both 

measures of overall discolouration in both trials due to an increase in levels of 

discolouration across the RILs over time (see figure 5.12. (a-d) and figure 5.13. (a-
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d)).  Again a significant interaction was observed between day and genotype 

indicating differences between the RILs in the rate of increase of overall 

discolouration over time (see Appendix C).  

Table 5.10.  REML significance level of overall discolouration a) intensity and b) extent for the 

RIL mapping population in both the UK and NL.  Significant effects shown as *P <0.05, **P 

<0.01 and ***P <0.001.  Where ndf (numerator degrees of freedom); ddf (denominator degrees of 

freedom): F pr (probability); Line (genotype/RIL) ; x (interaction). 

 

Site Day Fixed term 
Wald 

statistic 
ndf F statistic ddf F pr 

UK 
1 Line  103.79 95 1.1 48 0.363 

3 Line 96.46 95 1.02 87.3 0.472 

NL 
1 Line 170.17 95 1.79 67.1 **0.006 

3 Line 152.79 95 1.62 61.7 *0.022 

Across sites 

1 Site 13.37 1 13.37 15.9 **0.002 

1 Line 174.99 95 1.84 111.4 ***<0.001 

1 Site x Line 98.97 95 1.04 109.3 0.419 

3 Site 2.88 1 2.88 1.7 0.25 

3 Line 145.97 95 1.54 113.8 **0.01 

3 Site x Line 103.28 95 1.09 137.8 0.324 

 

Site Day Fixed term 
Wald 

statistic 
ndf F statistic ddf F pr 

UK 
1 Line  107.69 95 1.14 56.4 0.298 

3 Line 98.32 95 chi 1.03 0.387 

NL 
1 Line 196.44 95 2.07 68.4 ***<0.001 

3 Line 205.9 95 2.17 95.8 ***<0.001 

Across sites 

1 Site 11.68 1 11.68 17.3 ***0.003 

1 Line 207.23 95 2.18 123.7 ***<0.001 

1 Site x Line 96.89 95 1.02 123.8 0.456 

3 Site 8.42 1 8.42 1.1 0.193 

3 Line 201.56 95 2.12 144.2 ***<0.001 

3 Site x Line 102.66 95 1.08 133.8 0.337 
 

 

All RILs showed overall discolouration by day 1 in both trials as measured by 

intensity and extent (see figure 5.12. (a-d) and figure 5.13. (a-d)).  As indicated in the 

REML analysis, Scores for overall discolouration increased at different rates for 

different RILs by day 3 and the rank order of lines changed over time; the changes in 

rank orders also differed per trial as found for both pinking and browning.  The range 

a 

b 
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of variation observed in the RILs for intensity in both trials for each day was 20-30.  

Similarities were also observed for the extreme values of the distribution.  The range 

of variation observed in the RILs for extent in both trials for day 1 was also similar 

(~50).  However by day 3 the range had decreased in both trials as the majority of the 

RILs were reaching the possible maximum score for discolouration. There was some 

evidence of transgressive segregation as some RILs significantly outperformed the 

better parent (Saladin) and others were significantly worse  than  the worse parent 

(Iceberg) for overall discolouration, (see table 5.11. and table 5.12.).  
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Figure 5.12. Transformed adjusted means (from REML) for lettuce post harvest overall discolouration intensity from the UK trial on a) day 1 and b) day 3 and 

extent of pinking on c) day 1 and d) day 3 for the F7 mapping population.  Error bars represent sems (standard error of the mean) from REML.  The F7 WHRI population 

parents are highlighted with respective adjusted means (from REML). 
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Figure 5.13. Transformed adjusted means (from REML) for lettuce post harvest overall discolouration intensity from the NL trial on a) day 1 and b) day 3 and 

extent of pinking on c) day 1 and d) day 3 for the F7 mapping population.  Error bars represent sems (standard error of the mean) from REML.  The F7 WHRI population 

parents are highlighted with respective adjusted means (from REML). 
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Table 5.11.  RILs performing significantly better than the best parent Saladin for post harvest 

overall discolouration.  Where  (the line is performing significantly better than Saladin);  (the line 

is not performing significantly better than Saladin). 

 
UK NL Across site 

 

Overall 

discolour 

intensity 

Extent of 

overall 

discolour  

Overall 

discolour 

intensity 

Extent of 

overall 

discolour 

Overall 

discolour 

intensity 

Extent of 

overall 

discolour 

RIL \ Day  1 3 1 3 1 3 1 3 1 3 1 3 

5002            

5008            

5014            

5017            

5018            

5019            

5022            

5023            

5024            

5027            

5031            

5032            

5035            

5042            

5051            

5056            

5057            

5059            

5062            

5063            

5066            

5071            

5072            

5073            

5074            

5075            

5076            

5080            

5081            

5082            

5085            

5086            

5091            

5095            

5098            

5103            

5106            

5107            

5121            

5123            
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Table 5.12.  RILs performing significantly worse than the poor parent Iceberg for post harvest 

overall discolouration.  Where  (the line is performing significantly worse than Iceberg);  (the 

line is not performing significantly worse than Iceberg). 

 
UK NL Across site 

 

Overall 

discolour 

intensity 

Extent of 

overall 

discolour  

Overall 

discolour 

intensity 

Extent of 

overall 

discolour  

Overall 

discolour 

intensity 

Extent of 

overall 

discolour  

RIL \ Day  1 3 1 3 1 3 1 3 1 3 1 3 

5019            

5053            

5068            

5095            

5096            

5102            

5104            

5120            

 

When the data from the two sites were combined in a weighted analysis the mapping 

parents were significantly different for intensity on day 1 (see table 5.9.).  For overall 

discolouration intensity the extreme scores for the RILs on day 1 were similar to 

those in the individual  trials, however on day 3 the lowest extreme score was higher 

than for both trials and the highest extreme score was similar to the NL trial.  For 

extent the extreme scores for day 1 were similar to that for the NL trial, but higher 

than that of either trial for day 3.  The range for extent was similar to that observed in 

the individual trials for each day.  The parental scores for overall discolouration 

(both intensity and extent) on both days were an average across the two sites (see 

figure 5.14. a-d).  The means of all RILs for overall discolouration across sites were 

averages of both trials.  Again some RILs significantly outperformed the better 

parent (Saladin) for overall discolouration (see table 5.11.).  RILs 5023 and 5063 

performed significantly better than the best parent (Saladin) both trials. RILs 5081 

and 5082 performed significantly better than Saladin only in the NL trial reflecting 

the influence of growing conditions on the trait.  RILs 5072, 5074, 5075 and 5076 
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only out performed Saladin when the data were analysed across sites.  No one RIL 

consistently performed poorer than Iceberg.  Several RILs scored significantly lower 

than Iceberg for overall discolouration (see table 5.12.).  RILs 5019, 5068 and 5095 

only performed significantly poorer than Iceberg in the UK trial.   

RILs 5002, 5022, 5023, 5042, 5051, 5053, 5066 and 5075 were also selected for 

inclusion in the ‗extreme discolouration subset‘ for later experiments (as they 

showed consistent transgressive segregation) (see section 5.3.4.).  
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Figure 5.14. Transformed adjusted means (from REML) for lettuce post harvest overall discolouration intensity across sties on a) day 1 and b) day 3 and extent of 

overall discolouration on c) day 1 and d) day 3 for the F7 mapping population.  Error bars represent sems (standard error of the mean) from REML.  The F7 WHRI 

population parents are highlighted with respective adjusted means (from REML). 
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5.3.2. Correlations amongst traits assessed on the 94 RILs 

The post harvest discolouration traits scored on the 94 RILs were analysed for 

potential relationships by testing for correlations between browning and pinking 

measurements within and across sites, (full correlation matrix in Appendix C).  Only 

the highly significant correlations (***P <0.001) are described below (see table 

5.13.). 

The two measures of pinking (intensity and extent) were highly positively correlated 

with each other both within and across days (mean UK site R[90]  ≥0.95, mean NL site 

R[90]  ≥0.94 and mean across sites R[90] ≥0.95).  Similarly the measures of browning 

were highly positively correlated with each other (mean UK site R[90]  ≥0.96, mean 

NL site R[90]  ≥0.96 and mean across sites R[90]  ≥0.95).  However, only data collected 

in the NL trial showed a positive correlation between the measures of overall 

discolouration within and across days (mean NL site R[90]  ≥0.85).   

Post harvest discolouration scores form the UK and NL trials were not correlated; 

however positive correlations were recorded between specific sites and across site 

data.  Across site pinking was generally positively correlated for all days and across 

days with both UK and NL pinking and UK and NL overall discolouration measures, 

but not browning.  Whilst across site browning was generally positively correlated 

for all days and across days with both UK and NL browning.  The intensity of overall 

discolouration across sites did not reveal any correlations with any other measures of 

discolouration.  Although the across site extent of overall discolouration was 

positively correlated with pinking measures in both the UK and NL, but only UK 

browning measures.   
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Table 5.13. Correlation matrix from the WHRI Saladin x Iceberg mapping population for post 

harvest discolouration and morphological parameters scored in 2008 experimental trial.  Read 

across then down.  Only significant effects are shown and highly significant effects ***P <0.001 are 

shown bold. Where msb (browning intensity); msp (pinking intensity); msd (overall discolouration 

intensity); %b (extent of browning); %p (extent of pinking); %d (extent of overall discolouration); UK 

(UK site); NL (Netherlands site).  Degree of freedom is 90. 

 

%p 0.95 

 

    

         %b 

 
0.95 

 

    

        %d 0.89 

 
0.92 0.23     

       UK msp 0.73 

 
0.67 0.27 0.68     

      UK msb 

 
0.83 

 
0.82 0.27 0.38     

     UK %p 0.76 

 
0.77 

 
0.75 0.95 0.29     

    UK %b 

 
0.74 

 
0.81 0.37 0.48 0.96 0.40     

   NL msp 0.82 -0.25 0.80 

 
0.71 0.23 

 

0.30 

 

    

  NL msb -0.32 0.67 -0.32 0.57 

 

-0.28 

 

-0.31 

 

-0.21     

 NL msd 0.62 

 
0.59 

 
0.58 

    
0.85 0.35 

 NL %p 0.76 -0.26 0.82 

 
0.72 

  

0.28 

 
0.94 

 

    

NL %b -0.26 0.61 -0.25 0.56 

 

-0.23 

 

-0.26 

  
0.96 

 NL %d 0.71 

 
0.77 

 
0.73 

  

0.23 

 
0.90 

 
0.95 

 
msp msb %p %b %d 

UK 

msp 

UK 

msb 

UK 

%p 

UK 

%b 

NL 

msp 

NL 

msb 

NL 

%p 

 

5.3.3. QTL analysis 

The REML analyses demonstrated significant variation between the RILs for post 

harvest discolouration traits (section 5.3.1.) indicating genetic variation for these 

traits.  The adjusted means from the REML analyses were combined with the linkage 

map (Chapter 4) to carry out QTL analysis on all traits in order to investigate the 

genetic control of this variation further. 

The QTL analysis was performed separately on the data for each of the phenotypic 

post harvest discolouration traits: pinking (intensity and extent), browning (intensity 

and extent) and overall discolouration (intensity and extent) for day 1 and day 3 in 

addition to an analysis carried out using data summarised across days.  For each 

assessment day the data were analysed for the UK and NL trial separately and a 

weighted across site analysis, to identify if putative QTL were environmentally 

stable or environment specific.  
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Interval mapping using MapQTL ®4.0 software identified 80 putative QTL for post 

harvest discolouration traits (see appendix C), while the subsequent MQM increased 

robustness of the identification of putative QTL (by taking into account the effect of 

other QTL) and reduced the number of putative QTL to 56 (see table 5.15. and figure 

5.15.).  

 

The 56 putative QTL (*P <0.05) were detected with LOD significance threshold 

greater than 1.95; the LOD significance threshold of 1.95 was based on the 

simulation study based on an F7 RIL experimental population (Van Ooijen 1999) 

(see table 5.15).  Individual putative QTL accounted for between 6.1-22.6% of the 

phenotypic variation in this population and QTL were identified on all the linkage 

groups except LG 1, with the highest number of QTL being mapped on LG 7 (23).  

The highest number of putative QTL (20) were detected for browning traits (10 for 

intensity and 10 for extent), followed by 19 putative QTL for pinking traits (11 for 

intensity and 8 for extent) and then 17 for overall discolouration traits (10 for 

intensity and 7 for extent) (see table 5.14. table 5.15.).  Thirty-one putative QTL 

related to assessment of discolouration on day 1 which was expected as a result of 

greater variation observed between the parents on day 1 in the preliminary trial (see 

Chapter 3).  Eleven putative QTL were identified for day 3 and a similar number (14) 

from the analysis across days.  The number of putative QTL identified for both trials 

and across sites (20 for UK trial; 17 for NL trial; 19 for across site) was similar.  

However there were different numbers of putative QTL per trait between sites (see 

table 5.14.). 
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Table 5.14. Summary table for putative QTL for QTL impacting on post harvest discolouration 

traits in a Saladin x Iceberg RIL population.   Where UK (United Kingdom); NL (The 

Netherlands). 

Trait 
Data set 

Total 
UK NL Across sites 

Pinking intensity 7 0 4 11 
19 

Extent of pinking 3 3 2 8 

Browning intensity 2 3 5 10 
20 

Extent of browning 3 3 4 10 

Overall discolouration intensity 4 5 1 10 
17 

Extent of overall discolouration 1 3 3 7 

Total 20 17 19 56 56 

 

Many of the putative QTL co-located to the same position and are therefore most 

likely to be identifying the same underlying genetic factor (i.e. QTL). It was 

therefore possible to consolidate the large number of putative QTL down to a smaller 

number of QTL for post harvest discolouration.  The 56 putative QTL were then 

reduced to 21 QTL based on their co-location on the map (see figure 5.15.). 

  



143 
 

 

Figure 5.15.  Putative QTL impacting on post harvest discolouration of lettuce tissue from the 

Saladin x Iceberg RIL population grown in 2 sites: UK and NL.  Where UK (United Kingdom); 

NL (The Netherlands), msb (browning intensity); %b (extent of browning); msp (pinking intensity); 

%p (extent of pinking); msd (overall discolouration intensity); %d (extent of overall discolouration) ; 

Br (browning); Pink (pinking); Dis (overall discolouration).  Number before discolouration parameter 

refers to day.  Box encloses putative QTL forming significant QTL.  Number after discolouration 

parameter refers to QTL number. 

  

Br1 

Pink1 

Br2 
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Figure 5.15. continued. 
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Figure 5.15. continued. 
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Figure 5.15. continued. 
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Table 5.15.  Putative MQM QTL impacting on post harvest discolouration of lettuce tissue from the Saladin x Iceberg RIL population grown in 2 sites: UK and NL.  

Additive effect equals half the difference between homozygous alleles at the QTL: positive number indicates an additive allelic effect of Saladin; negative number indicates a 

negative allelic effect of Saladin.  Confidence interval was based on a 2 LOD support interval with a significant LOD value of 1.95.  Where UK (United Kingdom); NL (The 

Netherlands), LG (linkage group from F7 Saladin x Iceberg linkage map (see Chapter 4)); LOD (logarithm of odds), cM (centimorgans); msb (browning intensity); %b (extent 

of browning); msp (pinking intensity); %p (extent of pinking); msd (overall discolouration intensity); %d (extent of overall discolouration).  Number before discolouration 

parameter refers to day. 

Trait LG 
Location 

(cM) 
LOD peak 

Confidence 

interval (cM) 
Nearest Locus 

Additive 

effect 

Genetic variation 

explained by QTL (%) 
Allelic contribution 

3msb_UK 4a 25.5 2.26 11.6 RZ-D 2.50 10.5 Saladin 

msb_UK 4a 25.5 2.77 11.6 RZ-D 2.06 12.8 Saladin 

1%b_UK 4a 25.5 2.29 11.6 RZ-D 2.06 10.7 Saladin 

3%b_UK 3a 21.5 1.98 9 E35M47_333s  -3.27 9.8 Iceberg 

%b_UK 4a 25.5 2.85 11.6 RZ-D 3.00 13.2 Saladin 

1msp_UK 7 2.3 3.63 0.7 BLJI-OP4  3.18 16.3 Saladin 

3msp_UK_1 4a 83.1 2.28 8.2 RZ-I 2.57 9.6 Saladin 

3msp_UK_2 8 104.2 2.24 4.2 E41M59_238s  -2.66 9.7 Iceberg 

msp_UK_1 3b 10.4 2.05 11.3 RZ-H 2.10 7.8 Saladin 

msp_UK_2 7 2.3 2.48 0.7 BLJI-OP4  2.29 9.5 Saladin 

msp_UK_3 8 30.7 2.19 5.7 E35M59_332i -2.53 8.4 Iceberg 

msp_UK_4 9b 0 3.16 3.5 RZ-A 2.52 11.3 Saladin 

1%p_UK 7 2.3 3.8 0.7 BLJI-OP4  4.86 17 Saladin 

3%p_UK 7 2.3 2.08 0.7 BLJI-OP4  2.92 9.7 Saladin 

%p_UK 7 2.3 2.08 0.7 BLJI-OP4  8.78 8.6 Saladin 

1msd_UK 7 2.3 2.73 0.7 BLJI-OP4  1.87 12.6 Saladin 

3msd_UK_1 3a 21.5 2.05 9 E35M47_333s  -1.62 8.3 Iceberg 

3msd_UK_2 4a 83.1 4.07 6.8 RZ-I 2.54 17 Saladin 

msd_UK 4a 83.1 2.48 8.2 RZ-I 1.67 11.7 Saladin 

1%d_UK 7 2.3 2.51 0.7 BLJI-OP4  3.86 11.6 Saladin 
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Table 5.15. continued. 

Trait LG 
Location 

(cM) 
LOD peak 

Confidence 

interval (cM) 
Nearest Locus 

Additive 

effect 

Genetic variation 

explained by QTL (%) 
Allelic contribution 

1msb_NL_1 2 97.9 1.97 18.2 AVZX-OP4 -1.37 8.2 Iceberg 

1msb_NL_2 7 49.4 3.41 9.8 QGE10B18-OP3-1  1.85 14.8 Saladin 

3msb_NL 4a 6 2.35 4 BFYG-OP3 -2.57 10.9 Iceberg 

1%b_NL_1 6a 4.6 2.04 5.8 AWTX-OP4 -1.66 7.9 Iceberg 

1%b_NL_2 7 38 2.33 5.5 BETN-OP4 5.48 8.1 Saladin 

3%b_NL 4a 6 2.35 4 BFYG-OP3 -3.08 10.9 Iceberg 

1%p_NL_1 4a 8.6 2.3 0.4 RZ-X 4.47 9.3 Saladin 

1%p_NL_2 7 21.3 4.66 2.4 E33M59_204s  -8.07 22.6 Iceberg 

1%p_NL_3 7 47.1 2.53 9.8 E35M62_99s 4.96 12 Saladin 

1msd_NL_1 4a 8.6 4.77 0.4 RZ-X 1.96 15.4 Saladin 

1msd_NL_2 5a 84.6 2.63 4.8 ASAP-OP4 1.29 7.7 Saladin 

1msd_NL_3 7 19.7 4 2.2 E44M59_205s  -1.93 13.3 Iceberg 

1msd_NL_4 7 31.6 2.11 4.4 BFQX-OP4 -1.49 6.1 Iceberg 

1msd_NL_5 7 49.4 5.19 9.8 QGE10B18-OP3-1  2.30 17.4 Saladin 

1%d_NL_1 4a 0 3.21 4.4 E37M61_83s  4.39 13.1 Saladin 

1%d_NL_2 5a 84.6 2.35 3.6 ASAP-OP4 3.49 9.2 Saladin 

1%d_NL_3 7 25.2 2.01 6.5 E38M49_116s  -3.19 7.8 Iceberg 

1msb_1 2 98.6 2.71 0.7 BLJA-OP4 / BDBK-OP4 -1.20 10.8 Iceberg 

1msb_2 4a 58.5 2.67 9.1 BLRO-OP4 -2.30 10.1 Iceberg 

1msb_3 5b 25.1 2.49 25.2 BFXY-OP4 1.65 9.6 Saladin 

3msb 7 21.7 1.97 6 E33M59_205s  1.98 11 Saladin 

msb 4a 25.5 2.12 11.6 RZ-D 1.29 9.9 Saladin 

1%b_1 2 98.6 2.51 0.7 BLJA-OP4 / BDBK-OP4 -1.61 10.2 Iceberg 

1%b_2 4a 58.5 2.22 8.9 BLRO-OP4 -2.94 8.1 Iceberg 

1%b_3 5b 25.1 2.79 25.2 BFXY-OP4 2.54 11.8 Saladin 
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Table 5.15. continued. 

Trait LG 
Location 

(cM) 
LOD peak 

Confidence 

interval (cM) 
Nearest Locus 

Additive 

effect 

Genetic variation 

explained by QTL (%) 
Allelic contribution 

%b 4a 25.5 2.18 11.6 RZ-D 1.67 10.2 Saladin 

1msp 7 2.3 3.53 0.7 BLJI-OP4 2.74 15.9 Saladin 

3msp 3b 10.4 2.55 11.3 RZ-H 2.14 11.8 Saladin 

msp_1 3b 10.4 2.16 11.3 RZ-H 1.81 8.9 Saladin 

msp_2 7 2.3 2.28 0.7 BLJI-OP4 1.88 9.5 Saladin 

1%p 7 2.3 3.6 0.7 BLJI-OP4 4.37 16.2 Saladin 

%p 7 2.3 3.37 0.7 BLJI-OP4 3.14 15.2 Saladin 

1msd 7 2.3 4.25 0.7 BLJI-OP4 1.63 16.9 Saladin 

1%d_1 4a 8.6 2.13 0.4 RZ-X 2.97 8.8 Saladin 

1%d_2 7 1.7 2.84 0.5 BBPV-OP4 3.16 12 Saladin 

%d 7 2.3 2.33 0.7 BLJI-OP4 2.05 10.8 Saladin 
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Significant QTL for post harvest pinking traits 

The 19 putative QTL (*P <0.05) for post harvest pinking traits could be reduced to 9 

QTL positions based on their co-location on the map; they were identified on 5 

linkage groups (LGs 3b (Pink1), 4a (Pink2 and Pink3), 7 (Pink4, Pink5 and Pink6), 8 

(Pink7 and Pink8) and 9b (Pink9)) (see figure 5.15, table 5.15. and table 5.16.). The 

total phenotypic variation explained by all putative QTL for pinking traits was 

between 7.8-22.6%, with 9.3-22.6% explaining phenotypic variation on day 1 and 

9.6-11.8% explaining phenotypic variation on day 3.  The largest amount of genetic 

variation explained by a putative QTL was for ‗1%p_NL_2‘ at 22.6%.  Ten putative 

QTL were identified for pinking traits measured in the UK trial, 3 were identified for 

pinking traits measured in the NL trial and 6 were identified through a weighted 

analysis across sites (see table 5.14.).  Twelve putative QTL located to 2 overlapping 

regions on separate linkage groups forming 2 significant QTL.  Of these, 3 putative 

QTL co-localised on LG 3b (5-16.3 cM) for pinking intensity from the UK trial and 

across site analysis for day 3 and across day data forming QTL Pink1, while 9 

putative QTL co-localised on LG 7 (1.7-2.4 cM) for pinking (both intensity and 

extent) for the UK trial and across site for both days and across days forming QTL 

Pink4.  The remaining QTL were identified by a single locating putative QTL for 

pinking (Pink2, Pink3, Pink5, and Pink6, Pink7, Pink8 and Pink9).  The Saladin 

marker allele resulted in 16 putative QTL for pinking traits while the Iceberg marker 

allele resulted in 3; this translated into 7 QTL linked to the Saladin marker allele and 

3 QTL with the Iceberg marker allele. 

Significant QTL for post harvest browning traits 

The 20 putative QTL (*P <0.05) for post harvest browning traits could be reduced to 

10 QTL positions based on their co-location on the map; they were identified on 6 
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linkage groups (LGs 2 (Br1), 3 (Br2), 4a (Br3, Br4 and Br5), 5b (Br6), 6a (Br7) and 

7 (Br8, Br9 and Br10)) (see figure 5.15., table 5.15. and table 5.16.).  The total 

phenotypic variation explained by all putative QTL for browning traits was between 

7.9-14.8%, with 8.1-10.8% explaining phenotypic variation on day 1 and 10.9-12.8% 

explaining phenotypic variation on day 3.  The largest amount of genetic variation 

explained by a putative QTL was for ‗1msb_NL_2‘ at 14.8%.  Five putative QTL 

were identified for browning traits measured in the UK trial, 6 were identified for 

browning traits measured in the NL trial and 9 were identified through a weighted 

analysis across sites (see table 5.14.).  Fifteen putative QTL located to 5 overlapping 

regions on different linkage groups forming 5 significant QTL.  Three putative QTL 

co-localised on LG 2 (80.1-98.3 cM) for all measurements of browning from the NL 

trial and across sites for day 1 forming QTL Br1.  Three clusters of peaks were 

present on LG 4a for browning traits.  Two putative QTL co-localised (4.4-8.4 cM) 

for browning (both intensity and extent) from the NL trial for day 3 forming QTL 

Br3.  Six putative QTL co-localised (18.9-30.5 cM) for browning (both intensity and 

extent) for the UK trial and across site and for both days and across days forming 

QTL Br4.  Two putative QTL co-localised (54.6-63.5 cM) for browning (both 

intensity and extent) across sites for day 1 forming Br5.  Two putative QTL co-

localised on LG 5b (14.4-39.6 cM) for browning (both intensity and extent) across 

sites for day 1 forming Br6.  The remaining QTL were identified by a single locating 

putative QTL for browning (Br7, Br8, Br9 and Br10).  The Saladin marker allele 

resulted in 11 putative QTL for browning traits while the Iceberg marker allele 

resulted in 9; this translated into 5 QTL linked to the Saladin marker allele and 5 

QTL linked to the Iceberg marker allele.   
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Significant QTL for post harvest overall discolouration traits 

The 17 putative QTL (*P <0.05) for post harvest overall discolouration traits could 

be reduced to 2 QTL positions based on their co-location on the map; they were 

identified on 2 linkage groups (including LGs 5a (Dis1) and 7 (Dis2)) (see figure 

5.15., table 5.15. and table 5.16.).  The total phenotypic variation explained by all 

identified peaks for overall discolouration traits was between 6.1-17.4%, with 7.7-

15.4% explaining phenotypic variation on day 1 and 8.3-17% explaining phenotypic 

variation on day 3.  The largest amount of genetic variation explained by a putative 

QTL was for ‗1msd_NL_‘5 at 17.4%.  Five putative QTL were identified for overall 

discolouration traits measured in the UK trial, 8 were identified for overall 

discolouration traits measured in the NL trial and 4 were identified through a 

weighted analysis across sites (see table 5.14.).  Four putative QTL located to 2 

overlapping regions on different linkage groups forming 2 significant QTL.  Two 

putative QTL co-localised on LG 5a (82.4-87.7 cM) for overall discolouration (both 

intensity and extent) from the NL trial for day 1 forming QTL Dis1.  Two putative 

QTL also co-localised on LG 7 (24-32.2 cM) for overall discolouration (both 

intensity and extent) for the NL trial for day 1 forming QTL Dis2.  The remaining 

putative QTL for overall discolouration measurements localised with either pink or 

brown measurements and were thus treated as a specific colour; putative QTL were 

included as pink on LGs 4a and 7, as brown on LG 3a and as both pink and brown on 

LG 7.  The Saladin marker allele resulted in 13 putative QTL for overall 

discolouration traits while the Iceberg marker allele resulted in 5; this translated into 

1 QTL linked to the Saladin marker allele and 1 QTL linked to the Iceberg marker 

allele.   
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Table 5.16.  Significant QTL summary based on MQM mapping impacting on post harvest discolouration of lettuce tissue  from the Saladin x Iceberg RIL 

population Confidence interval was based on a 2 LOD support interval with a significant LOD value of 1.95.  Where LG (linkage group from F7 Saladin x Iceberg linkage 

map (see Chapter 4)); cM (centimorgans); Br (post harvest browning); Pink (post harvest pinking); Dis (post harvest overall discolouration).  

QTL LG 
Confidence 

Interval (cM) 
Underlying locus 

Allelic 

contribution 

Br1 2 18.2 ATHI-OP3-1 / E35M60_88s / E35M48_206i / BDKV-OP4 / AVZX-OP4 / BLJA-OP4 Iceberg 

Br2 3a 9 AVSI-OP3 / BFVX-OP3 / E35M47_333s Iceberg 

Br3 4a 4 BILE-OP4 / BFYG-OP3 / BQOS-OP4 / BDPH-OP4 Iceberg 

Br4 4a 11.6 BQOS-OP4 / BDPH-OP4 / RZ-X / BIKK-OP4 Saladin 

Br5 4a 8.9 BIDO-OP4-2 / BLRO-OP4 Iceberg 

Br6 5b 25.2 CAMY-OP3 / BFXY-OP4 / BAMG-OP3-1 Saladin 

Br7 6a 5.8 BUZC-OP4 / AWTX-OP4 / BLBO-OP4 Iceberg 

Br8 7 6 
E33M48_300i / BTGH-OP4 / E44M59_204s / E44M59_205s / E33M59_204s / E33M59_205s / w / 

BKVX-OP4-2 / AOUA-OP4-2 / BATO-OP4-2 
Saladin 

Br9 7 5.5 
E38M54_122i / E45M47_124i / BETN-OP4 / BXNV-OP3-1 / E38M49_248i / E38M49_249i / 

E35M47_244i 
Saladin 

Br10 7 9.8 E38M54_152i / E35M62_99s / QGE10B18-OP3-1 / E37M61_116s Saladin 

Pink1 3b 11.3 E45M62_240s / RZ-H / E41M59_99s Saladin 

Pink2 4a 0.4 BQOS-OP4 / BDPH-OP4 / RZ-X / BIKK-OP4 Saladin 

Pink3 4a 8.2 BSCC-OP3-1 / RZ-I / E45M49_93s Saladin 

Pink4 7 0.7 BBPV-OP4 / BBIK-OP4 / AWBE-OP4 / BLJI-OP4 / E38M54_76s Saladin 

Pink5 7 2.4 E44M59_204s / E44M59_205s / E33M59_204s / E33M59_205s  Iceberg 

Pink6 7 9.8 E38M54_152i / E35M62_99s / QGE10B18-OP3-1 / E37M61_116s Saladin 

Pink7 8 5.7 E41M59_134s / E35M59_332i Iceberg 

Pink8 8 4.2 AHOJ-OP4 / E41M59_237s / E41M59_238s Iceberg 

Pink9 9b 3.5 RZ-A / AQYG-OP3 Saladin 

Dis1 5a 5.3 AWEQ-OP4 / BRUO-OP4 / BDDO-OP4 / ASAP-OP4 / QGB20O22-OP4 / BEIH-OP4 Saladin 

Dis2 7 8.2 
BCHL-OP4-2 / BIVP-OP4-1 / E38M49_116s / AYHP-OP3-2 / QGCA_6226-OP3 / E45M59_151i / 

E35M61_325i / BFQX-OP4 / E38M54_256s 
Iceberg 
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5.3.4. Stability of discolouration phenotype for the extreme phenotype RILs 

From the REML analyses (section 5.3.1.) it was found that the plant‘s growing 

environment has a significant effect on the post harvest discolouration traits.  This 

has implications for lettuce breeders as if the phenotype is largely determined by 

environmental factors selection in the field will be difficult.  Marker assisted 

selection of genotypes offers a way of overcoming this.  In order to show whether the 

post harvest traits were sufficiently heritable to select, RILs were selected from the 

population that had the beneficial marker alleles from an initial QTL analysis and 

that were showing significant transgressive segregation for at least one trait (pinking, 

browning or overall discolouration). 

Post harvest pinking of prepacked leaf tissue 

There were significant differences (***P <0.001) between the selected RILs for 

pinking (both intensity and extent) for days 1, 2 and 3 confirming genetic variation 

for this trait (see table 5.17. a and b, figure 5.16. (a-d) and figure 5.17. (a-d)).  

However by day 4 RILs were only significantly different for pinking intensity, but 

not for extent of pinking as the majority had reached the possible maximum score for 

the extent of pinking.  There was little movement in ranking of RILs between days 

for pinking (both intensity and extent), which would be expected if the phenotypes 

were largely determined by genotype and not by environment.     
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Table 5.17.  REML significance level of a) pinking intensity and b) extent of pinking over 4 days 

for the extreme RIL set.  Significant effects shown as *P <0.05, **P <0.01 and ***P <0.001.  

Where ddf (denominator degrees of freedom): P (probability). 

 

 
Significance level 

Pinking intensity REML Wald Statistic ddf REML P value 

Day 1 77.61 23.2 ***<0.001 

Day 2 62.56 20.7 ***<0.001 

Day 3 82.6 21.5 ***<0.001 

Day 4 85.81 22.3 ***<0.001 

 

 
Significance level 

Extent of pinking REML Wald Statistic ddf REML P value 

Day 1 80.12 22.3 ***<0.001 

Day 2 54.89 21.2 ***0.001 

Day 3 60 20.3 ***<0.001 

Day 4 18.24 23.2 0.189 

 

The mapping parents Saladin and Iceberg were significantly different for pinking 

(both intensity and extent) on day 1 and day 3.  Saladin was the best performing 

parent for pinking.  Low pinking (LP) RILs 5023 and 5051 (initially selected for low 

pinking scores) performed significantly better than Saladin on all days (except RIL 

5023 on day 4 for extent of pinking).  RILs 5002 and 5042 also performed 

significantly better than Saladin on all days but these were selected for low browning 

and low overall discolouration respectively.  Generally RILs 5055 and 5066 selected 

for low browning and high overall discolouration respectively, had significantly 

higher scores of pinking (both intensity and extent) than the high pinking (HP) RILs 

(selected for high pinking scores) on all days.  The most extreme ‗extreme pinking‘ 

RILs, LP RIL 5051 and HP RIL 5045 also revealed significant differences for 

pinking (both intensity and extent) on all days.  The extreme RIL set demonstrated a 

pattern for rate of pinking; with those exhibiting a high pinking score early on 

revealing lower rates of discolouration to those with an initially low pinking score.   

 

b 

a 
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Post harvest browning of prepacked leaf tissue 

There were significant differences (*P <0.05) between the selected RILs for 

browning intensity for days 1, 2 and 3 and for extent of browning for days 1 and 3, 

confirming genetic variation for this trait (see table 5.18. a and b, figure 5.18. (a-d) 

and figure 5.19. (a-d)).  As for measurements of pinking, there was little movement 

in ranking of RILs between days for browning.    

Table 5.18.  REML significance level of a) browning intensity and b) extent of browning over 4 

days for the extreme RIL set.  Significant effects shown as *P <0.05, **P <0.01 and ***P <0.001.  

Where ddf (denominator degrees of freedom): P (probability). 

 

 
Significance level 

Browning intensity REML Wald Statistic ddf REML P value 

Day 1 30.37 26.6 *0.023 

Day 2 29.03 26.2 *0.029 

Day 3 42.19 26.9 **0.003 

Day 4 21.51 30.8 0.095 

 

 
Significance level 

Extent of browning REML Wald Statistic ddf REML P value 

Day 1 29.92 26.4 *0.024 

Day 2 23.17 26.5 0.077 

Day 3 33.3 26.9 *0.014 

Day 4 18.82 31 0.154 

 

The mapping parents Saladin and Iceberg were significantly different for browning 

(both intensity and extent) on day 3 and day 4.  Iceberg was the best performing 

parent for browning.  No RILs including low browning (LB) RILs 5022 and 5055 

(selected for low browning scores) performed significantly better than Iceberg.  

Generally high browning (HB) RILs 5043 and 5053 (selected for high browning 

scores) performed worse than poorest performing parent Saladin.  Significant 

variation was observed between LB and HB RILs for browning on all days (except 

day 4 for intensity).  In addition there were no RILs which showed browning scores 

b 

a 
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above 60% of possible maximum scores.  In contrast to the pinking response, the two 

browning scores were at similar levels and also showed similar rates of increase. 

Post harvest overall discolouration of prepacked leaf tissue 

There were significant differences (*P <0.05 and **P <0.01) between the selected 

RILs for overall discolouration (for intensity and extent) for days 1, 2 and 3 

confirming genetic variation for this trait (see table 5.19. a and b, figure 5.20. (a-d) 

and figure 5.21. (a-d)).  By day 2 approximately half of the RILs were nearing the 

possible maximum score for the extent of overall discolouration.   

Table 5.19.  REML significance level of a) overall discolouration intensity and b) extent of 

overall discolouration over 4 days for the extreme RIL set.  Significant effects shown as *P <0.05, 

**P <0.01 and ***P <0.001.  Where ddf (denominator degrees of freedom): P (probability). 

 

 
Significance level 

Overall discolouration 

intensity  
REML Wald Statistic ddf REML P value 

Day 1 54.52 28 ***<0.001 

Day 2 32.23 27.4 *0.019 

Day 3 43.87 26.4 **0.003 

Day 4 17.85 28 0.188 

 

 
Significance level 

Extent of overall 

discolouration 
REML Wald Statistic ddf REML P value 

Day 1 64.97 29.6 ***<0.001 

Day 2 60.98 25.8 ***<0.001 

Day 3 44.56 20.9 **0.005 

Day 4 17 26.4 0.22 

 

The mapping parents Saladin and Iceberg were not significantly different for overall 

discolouration (both intensity and extent) until day 4.  Iceberg was the best 

performing parent for overall discolouration intensity while Saladin was the best 

performing parent for extent of overall discolouration.  Low overall discolouration 

(LD) RILs 5002 and 5042 (selected for low overall discolouration scores) showed 

similar scores of overall discolouration intensity on all days and they performed 

b 

a 
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significantly better than both parents on day 1 for overall discolouration intensity and 

on all days for the extent of overall discolouration.  A range of RILs from the 

extreme set selected for other phenotypes also performed significantly better than 

both parents (and LD RILs for overall discolouration intensity) until day 3 (including 

RILs 5023, 5051 and 5075).  Although it was not the most susceptible RIL to overall 

discolouration and did not perform significantly worse than the poorest parent the 

RIL 5066 selected for high overall discolouration scores, was amongst the poorest 

performing RILs from within the extreme RIL set. Significant variation was 

observed between LD and HD RILs for overall discolouration (both intensity and 

extent) on days 1 and 2, and for extent of overall discolouration on days 3 and 4.  A 

similar pattern for rate of overall discolouration intensity was recorded as for pinking 

intensity; with those initially displaying low levels of overall discolouration intensity 

demonstrating higher rates of reaction to those with a primarily high overall 

discolouration intensity score (with RILs not reaching the possible maximum score 

for overall discolouration intensity). 
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Fig.5.16. Transformed adjusted means (from REML) for lettuce post harvest pinking intensity on a) day 1, b) day 2, c) day 3 and d) day 4 for the F7 mapping 

population discolouration extreme RILs.    Error bars represent sems (standard error of the mean) from REML.  The extreme RILs for pinking intensity are highlighted with 

respective adjusted means (from REML).  Where LP (low pinking RIL); HP (high pinking RIL). 
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Fig.5.17. Transformed adjusted means (from REML) for extent of lettuce post harvest pinking on a) day 1, b) day 2, c) day 3 and d) day 4 for the F7 mapping 

population discolouration extreme RILs.    Error bars represent sems (standard error of the mean) from REML.  The extreme RILs for pinking intensity are highlighted with 

respective adjusted means (from REML).  Where LP (low pinking RIL); HP (high pinking RIL). 
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Figure 5.18. Transformed adjusted means (from REML) for lettuce post harvest browning intensity on a) day 1, b) day 2, c) day 3 and d) day 4 for the F7 mapping 

population discolouration extreme RILs.    Error bars represent sems (standard error of the mean) from REML.  The F7 WHRI mapping population parents are highlighted 

with respective adjusted means (from REML).  Where LH (low browning RIL); HB (high browning RIL). 
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Figure 5.19. Transformed adjusted means (from REML) for extent of lettuce post harvest browning on a) day 1, b) day 2, c) day 3 and d) day 4 for the F7 mapping 

population discolouration extreme RILs.    Error bars represent sems (standard error of the mean) from REML.  The F7 WHRI mapping population parents are highlighted 

with respective adjusted means (from REML).  Where LH (low browning RIL); HB (high browning RIL). 
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Figure 5.20. Transformed adjusted means (from REML) for lettuce post harvest overall discolouration intensity on a) day 1, b) day 2, c) day 3 and d) day 4 for the 

F7 mapping population discolouration extreme RILs.    Error bars represent sems (standard error of the mean) from REML.  The F7 WHRI mapping population parents are 

highlighted with respective adjusted means (from REML).  Where LD (low overall discolouration RIL); HD (high overall discolouration RIL). 
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Figure 5.21. Transformed adjusted means (from REML) for extent of lettuce post harvest overall discolour on a) day 1, b) day 2, c) day 3 and d) day 4 for the F7 

mapping population discolouration extreme RILs.    Error bars represent sems (standard error of the mean) from REML.  The F7 WHRI mapping population parents are 

highlighted with respective adjusted means (from REML).  Where LH (low browning RIL); HB (high browning RIL). 
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5.4. Discussion  

 

Significant phenotypic variation for all measures of post harvest discolouration was 

observed in the Saladin x Iceberg RIL population, with a wide range of phenotypes 

recorded when assessed in different environments (UK and NL).  When meaned 

across all RILs, the level of pinking and browning was similar on day 1 but in the 

later stages post harvest ‗pinking‘ generally became the more important form of 

discolouration.  This agrees with the findings for the lettuce diversity set reported in 

Chapter 3. 

The parents of the RIL population, Saladin and Iceberg were generally significantly 

different for all measures of discolouration on day 1 and pinking on day 3.  Although 

the parents were not always significantly different, Saladin was always the best 

performing parent.  Saladin and Iceberg are both cultivars of lettuce and therefore an 

inbred population resulting from a cross between them might be expected to show 

high levels of transgressive segregation (Rieseberg et al. 1999, 2003).  Transgressive 

segregation was observed in the RIL population for each discolouration response.  

For pinking, there were RILs which performed better than the best parent Saladin.  In 

contrast, for browning, transgressive segregation was recorded for RILs which 

performed worse than the poorest parent Iceberg.  For overall discolouration there 

were RILs which performed either better or worse than the best or poorest parent 

which is not unexpected given the results for the individual discolouration responses. 

However, no one RIL consistently showed transgressive segregation.  Quantitative 

genetic studies suggest that the accumulation of complementary genes is the 

principal cause of transgression, although epistasis, overdominance and a high 
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mutation rate have also been reported as having a possible role (Rieseberg et al. 

1999, 2003). 

The partitioning of the phenotypic variation by REML analysis showed that the 

effect of line (i.e. genotype) was consistent across sites for pinking and overall 

discolouration.  However, significant variation between RILs for browning was site 

specific and only recorded in the NL trial. There were also significant site effects:  

for pinking for day 1 and for browning for day 3, indicating that the plants‘ growing 

environment significantly influences their post harvest performance. This is in 

agreement with Hilton et al. (2009) who showed that post harvest discolouration of 

lettuce could be manipulated by changes in growing conditions.    The trials in the 

UK and NL were designed for genetic analysis with the aim to provide robust 

phenotypes for QTL analysis and to determine whether there was any phenotypic 

plasticity (Gurganus et al. 1999) over environments, which was achieved.  

Post harvest discolouration is a complex trait and therefore each type of 

discolouration is likely to be controlled by many QTL with small effect (Zhang et al. 

2007).  The QTL analysis carried out in this study identified 21 QTL for post harvest 

discolouration traits; 10 QTL for browning, 9 QTL for pinking and 2 QTL which 

were identified as influencing overall discolouration.  These were identified by the 

co-location of many putative QTL for the same response (see figure 5.15.). The 

putative QTL all had relatively low effects and ‗explained‘ low levels of the 

observed genetic variation (for pinking the highest was 22.6% and the lowest was 

7.8%, for browning the highest was 14.8% and the lowest was 7.9%, and for overall 

discolouration the highest was 17.4% and the lowest was 6.1%) and much of the 

observed variation was left unexplained by the QTL analysis suggesting that there 

are probably other QTL for each trait that were not detected in this experiment 
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(Zhang et al. 2007).  False negative QTL errors (Type II QTL errors) are determined 

by the experimental set-up and the size of the genetic effect of QTL (Van Ooijen 

1999).  More replicates of discolouration data (including plot, rep and site) may have 

allowed more QTL to be identified.  A few significant QTL were based on single 

putative QTL (Br7, Br9, Pink7, Pink8 and Pink9) which could be an example of 

Type I errors (false positives), which are determined by the significance threshold 

(Van Ooijen 1999).  However the possibilities of these errors have been minimised 

by using the MQM approach. 

The marker alleles for significant QTL were from both mapping parents, Saladin and 

Iceberg; this can be explained as the parents were not significantly different for all 

measures of discolouration.  Of the 21 QTL, 12 QTL were linked to the best 

performing parental marker allele, Saladin (6 for pinking, 5 for browning, and 1 for 

overall discolouration) and  9 QTL were linked to the poorest performing parental 

marker allele, Iceberg (3 for pinking, 5 for browning, and 1 for overall 

discolouration). Thus some beneficial alleles were derived from the poorer 

performing parent Iceberg. This provides an explanation of the transgressive 

segregation observed in the RILs (see tables 5.5., 5.8., 5.11. and 5.12.) as beneficial 

alleles from the two parents can accumulate in RILs to give genotypes with 

better/worse phenotypes than the parents.  Some of the RILs which had significantly 

improved phenotypes in comparison to the best performing parent Saladin possessed 

beneficial alleles from Iceberg. 

Three clusters of QTL determining post harvest discolouration were recorded on LG 

4 and LG 7 (see figure 5.22.).  Three QTL for browning were loosely clustered on 

LG 4 (Br3, Br4, Br5; 4.4-63.5 cM) and 3 QTL for browning were also loosely 

clustered on LG 7 (Br8, Br9, Br10; 17.7-54.2 cM). Three QTL for pinking were 
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loosely clustered on LG 7 (Pink4, Pink5 and Pink6; 1.7-54.2 cM).  These three 

regions could in fact be the manifestation of 3 larger single QTL, or they could be 

linked.  Br3 and Pink2 are closely clustered on LG 4 (4.4-8.8 cM), while Br8 and 

Pink5 (19.3-21.7 cM), and Br10 and Pink6 (44.4-54.2 cM) were co located 

separately on LG 7.  This would suggest that although there were no highly 

significant phenotypic correlations (see table 5.13.) between pinking and browning, 

the two responses do have some common underlying genetic basis which may impact 

on the efficiency of a purely phenotypic selection process in a breeding programme. 

The nearest markers associated with the  QTL could be exploited  by breeders using 

marker assisted selection (MAS) to breed for reduced post harvest discolouration (by 

selecting for beneficial alleles) and therefore extend the shelf life of salad products 

(see table 5.16.).  However before going to the expense of applying MAS, it would 

be useful to gain an understanding of the stability of phenotype over environment 

and years; this was tested through the field trial of RILs with extreme phenotypes. 
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Figure 5.22.  QTL impacting on post harvest discolouration of lettuce tissue from the Saladin x 

Iceberg RIL population.   Where Br (browning); Pink (pinking); Dis (overall discolouration).  

Number after discolouration parameter refers to QTL number for that specific trait.
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 Figure 5.22.  continued  
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Figure 5.22.  continued 
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Although some RILs performed significantly better or worse than the RILs selected 

for a specific type of discolouration, RILs generally performed as they did in the 

2008 trial; those selected for an extreme discolouration type (i.e. pink, brown or 

overall discolouration) showed the same phenotype in the 2009 trial.  This would 

suggest that although a site effect was observed in the 2008 trial and the extreme 

discolouration subset RILs were only tested in a UK trial in 2009 (see table 5.4.) the 

phenotypes of these RILs were largely determined by genotype and not environment.   

Certain RILs from the extreme subset showed significantly lower levels of post 

harvest discolouration in comparison to the best parent Saladin.  Saladin is an iceberg 

type lettuce; it is accepted by consumers as a high quality lettuce and has been 

widely used in breeding of modern cultivars.  The results therefore indicate that it 

would be possible to extend the shelf life of lettuce as a component of bagged salads 

by accumulating naturally occurring alleles that give a good phenotype.  An increase 

of the shelf life would have great financial benefit to the cut salad industry and it 

therefore may be beneficial to exploit the commercial potential of RILs showing 

reduced discolouration through breeding.  However, before selecting for significantly 

reduced post harvest discolouration it would be useful for lettuce breeders to have 

some understanding of any possible relationship between post harvest discolouration 

and agronomic traits, in order to be able to optimise shelf life while still being able to 

select for different quality traits (this is addressed in Chapter 6). 
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5.5. Conclusions 

 

 There was significant genetic variation for post harvest discolouration in the 

F7 Saladin x Iceberg RIL mapping population. 

 Twenty-one significant QTL for post harvest discolouration traits have been 

identified.   

o 9 QTL for pinking. 

o 10 QTL for browning. 

o 2 QTL for overall discolouration. 

 Post harvest discolouration quality traits can be selected for by lettuce 

breeders; markers for use in MAS have been identified for each QTL. 

 Phenotypes for post harvest discolouration in the F7 Saladin x Iceberg RILs 

demonstrated stability over environments. 
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CHAPTER 6 

 

 

Assessing agronomic traits and their potential influence on post 

harvest discolouration in lettuce 
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6.1. Introduction 

 

Agronomic traits determine the acceptance of the product in the market; however 

there have been limited QTL studies into agronomic traits of lettuce.   For breeders it 

is important to understand the relationship between agronomic traits and post harvest 

discolouration as changes in other traits of interest may have pleiotropic effects. In 

Chapter 3 significant correlations were found between head diameter or weight and 

post harvest discolouration which were hypothesised to be due to water relations in 

the leaf.  

Breeders need to understand the relationship between agronomic traits and post 

harvest discolouration in order to optimise shelf life while still selecting for different 

quality traits.  QTL analysis can allow the assessment of linkage (i.e. co location) of 

QTL determining different traits.  It can also provide DNA markers linked to 

agronomic traits for marker assisted selection and also to select for recombinants to 

break any undesirable linkages between traits. 

The aims of this experiment were to 

 Identify significant QTL for a range of important agronomic traits. 

 Determine whether QTL for agronomic traits were co-located with any post 

harvest QTL identified in Chapter 5. 
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6.2. Materials and methods 

 

6.2.1. Field trial of pre harvest agronomic traits of the F7 Saladin x Iceberg 

mapping population  

The F7 Saladin x Iceberg mapping population (125 lines) were grown for 

observational purposes in a replicated field trial during the 2007 growing season on 

the experimental site Sheep Pens (west) at Warwick HRI, UK (Latitude: 52.183.  

Longitude: 1.583).  Plants were raised and maintained as previously described 

(section 2.2.1.), with the trial planted on 1
st
 May 2007.  The trial was designed in 4 

blocks, containing a single plot (of 12 plants) of the 125 lines in numerical order (see 

appendix D for field plan).  Crop protection was as previously described (see section 

2.2.1.) with the additional use of ‗Greencrop Saffron FL‘ propyzamide herbicide (3.5 

L/ha) according to good agricultural practice.  Fencing and flappers also surrounded 

the experimental plot to provide protection from the local fauna (figure 3.1.).   

 

6.2.2. Assessment of pre harvest agronomic traits  

The F7 RILs and the mapping population parents were scored prior to sowing on a 

two-point scale for seed colour (brown/white).  Morphological traits were then 

assessed in the field on an ordinal scale when >50% of heads of each line reached 

maturity level.  The RILs were scored on a two-point scale for whether they were 

heading or non-heading (yes/no).  They were also scored on a three-point scale per 

trait for green pigmentation, anthocyanin pigmentation, indented leaf edges, 

savoy/blistering of leaves and plant diameter (small/medium/large) (see figure 6.1.).    
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Green pigmentation (1/2/3) 

   

Anthocyanin pigmentation (1/2/3) 

   

Indented leaf  edges (0/1/2) 

   

Savoy/blistering of leaves (0/1/2) 

 
 

 
 

 
 

 

Figure 6.1. Ordinal scale for morphological trait scoring for the F7 Saladin x Iceberg mapping 

population.  Where number (trait score). 

 

 

No anthocyanin 

pigmentation, therefore leaf 

as green pigmentation (1/2/3) 

from above. 

1 2 3 

1 2 3 

1 2 0 

0 1 2 
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When the line appeared to be segregating all phenotypes were noted and the 

genotype was excluded from the analysis.  RILs were scored for days to harvest and 

days to bolting and were subsequently also classified on a three point scale as 

early/mid/late.   

 

6.2.3. Statistical analysis 

Histograms were produced for all agronomic traits scored on 2 or 3 point scales (see 

section 6.2.2.) and for the different measures relating to head weight of plants using 

data gathered from the field trials of the RIL population described in Chapter 5.  The 

histograms (see figure 6.2. a-n) were used to assess the distribution of the trait data.  

For traits measured on a two point scale chi square tests were carried out to 

determine if the numbers in each class were equal.   

Chi Square analyses 

Chi square tests were conducted to see if the distribution for traits with 2 categories 

were significantly different from 1:1, with 1 degree of freedom. 

Correlation analysis 

Correlation analyses were conducted between measures of agronomic traits and all 

measures of post harvest discolouration for RILs (see section 2.4.4.).  R values were 

generated which were then compared to the R values expected for different levels of 

probability to assess their significance (see table 5.2.).  
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6.2.4. QTL analysis 

One hundred and twenty-five RILs used to develop the genetic linkage map (see 

Chapter 4) were used for QTL analysis as previously described (see section 2.2.3.) 

using phenotype data scored on each RIL as described above.   

 

6.3. Results 

 

6.3.1. Variation for morphological traits 

For the trait of heading and non-heading of the plant, the observed numbers of RILs 

for each category are not significantly different from that expected for equal 

frequencies (X
2

[1] =0.17), while for head diameter the middle category of ‗medium 

size‘ was dominant (see figure 6.2. a and b).  For both untrimmed and trimmed head 

weights recorded in the UK trial, frequencies were skewed towards lower weights, 

while the frequency distribution for trimmed weight in the NL trial and for trimmed 

weight across sites formed bell shaped normal distributions (see figure 6.2. k-n).  For 

leaf morphology, the frequency distribution of savoy/blistering of leaves was skewed 

towards leaves with sever blistering, while the central category of slight indentation 

was dominant for leaf indented edges (see figure 6.2. c and d).  For leaf 

pigmentation, the central category of medium greenness was dominant for greenness 

of leaf; while the frequency distribution of red anthocyanin pigmentation was 

severely skewed to no pigmentation (see figure 6.2. e and f).  For seed colour (brown 

and white) the observed numbers of RILs for each category are not significantly 

different from that expected for equal frequencies (X
2

[1] =2.72).   



180 

 

   

   

Figure 6.2. Distributions of selected traits in the RIL population for a) production of a head, b) head diameter, c) savoy/blistering of the leaf, d) indentation of leaf 

edges, e) green pigmentation of leaf, f) anthocyanin pigmentation of leaf, g) seed colour before sowing, h) days to ready for harvest, i) days to plant has bolted, j) 

bolting type, k) untrimmed weight of head in UK trial, l) trimmed weight of plant head in UK trial, m) trimmed weight of plant head in NL trial, n) trimmed weight 

of plant head across sites.  Saladin is  and Iceberg is .  Where wt (weight); g (grams).   
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  Figure 6.2. continued. 
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For life cycle related traits, the distribution frequencies of the RIL population were 

severely skewed.  The frequency distribution for days to harvest was skewed to 

fewer days until harvest, while for days to bolting the distribution frequency was bi-

modal but for general bolting time the distribution was skewed to early bolters (see 

figure 6.2. h-j).  

 

6.3.2. Correlations amongst traits 

Morphological traits (from the observational trial above) and all measures of post 

harvest discolouration between and across sites (recorded in Chapter 5) were 

assessed for potential relationships (correlations between morphological traits and 

between them and browning and pinking for each trial and across sites (the full 

correlation matrix is given in Appendix D)).  Only the highly significant correlations 

(***P <0.001) are described below (see table 6.1.).  Although there were significant 

correlations, many of them had relatively low values for the coefficient of correlation 

‗r; rather than give all values of r for the different data sets ( i.e within site and across 

sites) only the highest value is given to illustrate the degree of correlation (all of the 

coefficients of correlation are given in Appendix D).  

Plant weights (trimmed and untrimmed) were positively correlated with each for the 

UK trial and across site data.  The highest correlation was plant trimmed and 

untrimmed weight in the UK (R[90]  ≥ 0.72).  However plant weight (trimmed) 

recorded in the NL trial did not correlate with measures from the UK trial or the 

across site data.  This is likely to be due to the fact that plants grown in the NL trial 

were more severely trimmed following Rijk Zwaan standard procedures, than the 

plants grown at Wellesbourne.  Measures of plant weight (trimmed and untrimmed in 
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both trials) were positively correlated with diameter (the highest correlation was with 

untrimmed weight (R[90]  ≥ 0.41)) but negatively correlated with head production (the 

highest correlation was with untrimmed weight (R[90]  ≥ -0.38)).  While diameter was 

negatively correlated with head production (R[90]  ≥ -0.58).  Head production was 

highly correlated with indented leaf edges (R[90]  ≥ 0.72), while both were positively 

correlated with days to bolting (R[90]  ≥ 0.36 and R[90]  ≥ 0.53).  Savoy/blistering of 

the leaves was also positively correlated with both production of a head (R[90]  ≥ 0.39) 

and indented leaf edges (R[90]  ≥ 0.34).  Greenness of leaf and leaf anthocyanin 

pigmentation were also positively correlated (R[90]  ≥ 0.35). 

Plant weight measurements (trimmed and untrimmed) were positively correlated 

with browning on day 3 in the UK trial (the highest correlation was between trimmed 

weight and extent of browning (R[90]  ≥ 0.37)) and  positively correlated with pinking 

on day 3 in the NL trial (the highest correlation was between trimmed weight and 

extent of pinking (R[90]  ≥ 0.35)).  Head diameter was generally negatively correlated 

with pinking in both trials and across sites (the highest correlation was with pinking 

intensity on day 1 in the UK trial (R[90]  ≥ -0.31)) and was positively correlated with 

browning on day 3 in both trials and across sites (the highest correlation was with 

browning intensity in the UK trial (R[90]  ≥ 0.35)).  Head production was positively 

correlated with pinking in both trials and across sites (the highest correlation was 

with extent of pinking on day 3 across sites (R[90]  ≥ 0.55)) and  was generally 

negatively correlated with browning in both trials and across sites (the highest 

correlation was with browning intensity on day 3 across sites (R[90]  ≥ -0.45)).   
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Table 6.1. Correlation matrix from the WHRI Saladin x Iceberg mapping population for post harvest discolouration and morphological parameters scored in 2008 

experimental trials.  Read across then down.  Only significant effects are shown and highly significant effects ***P <0.001 are shown bold. Where unt wt (untrimmed 

weight, g); tr wt (trimmed weight, g); dia (diameter); head (production of head); indnt (indented leaf edges); sav (savoy leaves); grn (green); anth (anthocyanin pigmentation); 

dharv (days to harvest); dbolt (days to bolt); msb (mean score browning); msp (mean score pinking); msd (mean score overall discolouration); %b (percentage browning); %p 

(percentage pinking); %d (percentage overall discolouration); UK (UK site); NL (Netherlands site).  Degree of freedom is 90. 
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Leaf indentation and savoy/blistering of leaves both showed positive correlations 

with pinking.  Savoy/blistering of leaves was generally positively correlated with 

pinking for both trials and across sites trial (the highest correlation was with extent of 

pinking on day 1 across sites (R[90]  ≥ 0.38)).  Leaf indentation was positively 

correlated with pinking for both trials and across sites (the highest correlation was 

with extent of pinking on day 1 across sites (R[90]  ≥ 0.34) and pinking intensity on 

day 1 across sites (R[90]  ≥ 0.34)).  Seed colour was generally positively correlated 

with pinking from both trials and across site (the highest correlation was with extent 

of pinking on day 1 across sites (R[90]  ≥ 0.31)). 

 

6.3.3. QTL mapping for agronomic traits 

Correlation analysis demonstrated there were significant relationships between the 

different agronomic traits and between agronomic traits and post harvest 

discolouration traits (see section 6.3.1 and Chapter 5).  Histograms also showed bell 

shaped normal distributions for most traits, relating to normal distributions.  Scores 

(see figure 6.1.) and means were subsequently combined with the linkage map (see 

Chapter 4) to carry out a QTL analysis for all agronomic traits to investigate the 

genetics of each trait. 

QTL analysis was performed separately on agronomic trait data and weight-based 

data from both trials in addition to data summarised across sites.  Interval mapping 

using MapQTL ®4.0 software identified a total of 48 putative QTL for agronomic 

traits (see appendix D), while the subsequent multiple QTL model mapping (MQM) 

increased accuracy of the identification of QTL (by taking into account the effect of 

other QTL) and reduced the number of QTL to 20 (see figure 6.3. and table 6.2.).    
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The 20 QTL (*P <0.05) were detected with LOD significance threshold greater than 

1.95 which was based on the simulation study based on an F7 RIL experimental 

population (Van Ooijen 1999) (see table 6.2.).  Individual putative QTL accounted 

for between 6.2-98.6% of the recorded variation for individual traits scored in this 

population and were located on 6 linkage groups (LGs 2, 4a and b, 5a, b and c, 7, 8 

and 9) with highest number being mapped on LG 7 (see figure 6.3. and table 6.2.).  

Fourteen QTL were detected for morphological traits (2 for savoying, 3 for 

indentation, 4 for heading, 1 for diameter and 4 for plant weight), 5 QTL were 

detected for leaf pigmentation traits (4 for anthocyanin and 1 for greenness ) and 1 

for bolting) (see figure 6.3. and table 6.2.).  A QTL was identified for seed colour; 

this was subsequently mapped onto LG 7 at 23.7 cM corresponding to the previously 

identified major gene for seed colour (Waycott et al. 1999).  The Saladin marker 

allele was linked to 11 QTL for agronomic traits while the Iceberg marker allele was 

linked to 9 QTL for agronomic traits. 

QTL clustering 

Eight QTL for agronomic traits located to 4 overlapping regions on 2 separate 

linkage groups; other QTL although not overlapping were clustered close together 

with these co-localising QTL (figure 6.3.).  Two QTL co-localised on LG 7 (2.4-4.7 

cM) for head diameter (Diameter) and untrimmed weight from the UK trial 

(Untr_UK_wt); a QTL for leaf indentation (Indentation_2) was also tightly clustered 

with the co-localised QTL (spanning 1.7-2.4 cM).  Two QTL for production of a 

head (Heading_1) and trimmed weight from the UK trial (Tr_UK_wt) co-localised 

on LG 7 (19.7-23.4 cM).  Two QTL also co-localised on LG 7 (29-79 cM) for 

production of a head (Heading_3) and savoy/blistering of leaves (Savoy_2).  There 

was also a tight cluster of 3 weight related QTL on LG 7 (19.7-33.9 cM; Tr-UK_wt, 
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Tr_wt and Tr_NL_wt), while the remaining weight related QTL (Untr_UK_wt) was 

located in the same region (15 cM distance).  Three QTL for production of a head 

loosely clustered on LG 7 (spanning 16.1-79 cM; Heading_1, Heading_2 and 

Heading_3).  Two QTL co-localised on LG 8 (30-40.7 cM) for production of a head 

(Heading_4) and indented leaf edges (Indentation_3).  
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Table 6.2.  MQM QTL impacting on agricultural traits of individuals from the Saladin x Iceberg RIL population.  Additive effect equals half the difference between 

homozygous alleles at the QTL: positive number indicates an additive allelic effect of Saladin; negative number indicates a negative allelic effect of Saladin.  Confidence 

interval was based on a 2 LOD support interval with a significant LOD value of 1.95.  Where LG (linkage group from F7 Saladin x Iceberg linkage map (see Chapter 4)); LOD 

(logarithm of odds), cM (centimorgans); heading (production of an enclosed head); diameter (head diameter (cm)); green (of leaf); anthocyanin (pigmentation on leaf); 

indentation (on leaf edges); savoy (blistering of leaf) Untr (untrimmed head); Tr (trimmed head); wt (weight (g)); UK (United kingdom); NL (the Netherlands). 

Trait LG 
Location 

(cM) 

LOD 

peak 

Confidence 

interval 

(cM) 

Nearest Locus 
Additive 

effect 

Genetic 

variation 

explained by 

QTL (%) 

Allelic 

contribution 

Heading_1 7 23.7 2.05 9.1 BKVX-OP4-2 / AOUA-OP4-2 / BATO-OP4-2 / BCHL-OP4-2 -0.16 6.5 Iceberg 

Heading_2 7 49.4 2.25 17.1 QGE10B18-OP3-1 0.16 6.8 Saladin 

Heading_3 7 74 13.25 10 ATPH-OP4 / BIVH-OP3-1 0.01 63.8 Saladin 

Heading_4 8 30.7 2.43 10.7 E35M59_332i  -0.19 9.6 Iceberg 

Diameter 7 2.9 3.79 2.3 BSQZ-OP4 -0.30 17 Iceberg 

Green 4a 6 6.52 4 BFYG-OP3 -0.41 20.5 Iceberg 

Anthocyanin_1 2 82.3 3.66 12.2 E35M60_88s 0.20 6.2 Saladin 

Anthocyanin_2 4a 73.5 5.68 7.5 E45M47_256i -0.25 10 Iceberg 

Anthocyanin_3 5c 26.9 18.8 12.3 AFPZ-OP3 0.56 45.2 Saladin 

Anthocyanin_4 9a 28.9 15.5 10 BIAE-OP4 -0.66 44.1 Iceberg 

Indentation_1 5b 47.7 3.53 9.1 E38M54_270i 0.28 12.4 Saladin 

Indentation_2 7 2.3 4.56 0.7 BLJI-OP4 0.32 15.4 Saladin 

Indentation_3 8 30.7 2.59 10.7 E35M59_332i -0.29 9.1 Iceberg 

Savoy_1 5a 78 47.48 8.5 E35M49_145i / QGA18I02-OP4 1.00 98.5 Saladin 

Savoy_2 7 74 1378.7 10.2 ATPH-OP4  / BIVH-OP3-1 1.00 88.3 Saladin 

Bolting 4b 94.2 2.16 11.8 CLXS3_3835-OP3-2 -12.57 11.6 Iceberg 

Untr UK wt 7 2.9 2.21 2.3 BSQZ-OP4 -68.13 8.4 Iceberg 

Tr UK wt 7 21.7 2.25 4 E33M59_205s  55.64 11.6 Saladin 

Tr NL wt 7 33.5 2.15 3.4 QGJ17A06_2-OP3-1 30.10 10 Saladin 

Tr wt 7 26.4 2.99 5.3 QGCA_6226-OP3 28.23 13.7 Saladin 



189 

 

 

 

 

Figure 6.3.  MQM QTL impacting on agricultural traits of lettuce tissue of individuals from the 

Saladin x Iceberg RIL population.  Where heading (production of an enclosed head); diameter (of head 

(cm)); green (of leaf); anthocyanin (pigmentation on leaf); indentation (on leaf edges); savoy (blistering of 

leaf) Untr (untrimmed head); Tr (trimmed head); wt (weight (g)); Red are morphological QTL; black are 

life cycle QTL; green are pigmentation QTL. 
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Figure 6.3.  continued. 
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Figure 6.3.  continued. 
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Clustering of agronomic and post harvest discolouration QTL  

Ten QTL for agronomic traits and 10 QTL for post harvest discolouration traits 

(identified in Chapter 5) (located to 6 overlapping regions on 4 separate linkage 

groups (see figure 6.4.), other QTL for both types of traits were also clustered 

independently and with these co-locating QTL (see figure 6.4.).  Two QTL co-

localised on LG 2 (80.1-92.3 cM) for anthocyanin pigmentation of leaf 

(Anthocyanin_1) and post harvest browning (Br1). Two QTL co-localised on LG 4a 

(4.4-8.4 cM) for greenness of leaf (Green) and post harvest browning (Br3), a QTL 

for post harvest pinking (Pink2) was also tightly clustered with these co-localised 

QTL (spanning 8.4-8.8 cM).  Two QTL for anthocyanin pigmentation of leaf 

(Anthocyanin_2) and post harvest pinking (Pink3) loosely clustered on LG 4a 

(spanning 71-86.7 cM).  Two QTL for savoy/blistering of leaf (Savoy_1) and post 

harvest overall discolouration (Dis1) loosely clustered on LG 5a (spanning 73-87.7 

cM).  Two QTL for indentation of leaf edges (Indentation_2) and post harvest 

pinking (Pink4) co-localised on LG 7 (1.7-2.4 cM); 2 QTL for agronomic traits 

(Diameter and Untri_UK_wt) were also tightly clustered with the co-localised QTL 

(as above).  Seven QTL were co-located on LG 7 within the region of 16.1-33.9 cM; 

1 QTL for production of a head (Heading_1), 3 QTL for weight based traits 

(Tr_UK_wt, Tr_wt and Tr_NL_wt) and 3 QTL for post harvest discolouration (Br8, 

Pink5 and Dis2).  Four QTL for production of a head (Heading_2), post harvest 

browning (Br9 and Br10) and pinking (Pink6) co-located and are tightly clustered to 

this large set of co-localised QTL within the region of 35.3-55.1 cM.  Three QTL, 1 

for indentation of leaf edges (Indentation_3), 1 for production of a head (Heading_4) 

and 1 for post harvest pinking (Pink7) co-located on LG 8 (30-40.7 cM).    
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Figure 6.4.  MQM QTL impacting on agricultural traits or on post harvest discolouration of lettuce 

tissue of individuals from the Saladin x Iceberg RIL population.  Where heading (production of an 

enclosed head); diameter (of head (cm)); green (of leaf); anthocyanin (pigmentation on leaf); indentation 

(on leaf edges); savoy (blistering of leaf) Untr (untrimmed head); Tr (trimmed head); wt (weight (g)); 

Browning  (post harvest browning); pinking (post harvest pinking); discolouration (post harvest overall 

discolouration); Red are morphological QTL; black are life cycle QTL; green are pigmentation QTL; pink 

are pinking QTL; brown are browning QTL; blue are overall discolouration QTL. 
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Figure 6.4.  continued. 
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Figure 6.4.  continued. 
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6.4. Discussion 

 

Phenotypic variation for all discolouration traits was observed in the Saladin x 

Iceberg population (see Chapter 5).  Additionally the parents of this population are 

known to vary for a number of other traits; they have different morphologies and 

have been shown to have significantly different levels of resistance to downy mildew 

(Bremia lactucae) and Myzus persicae (DAC Pink personal communication).  A 

wide range of phenotypes were recorded in the RIL population, with most agronomic 

traits showing a normal probability distribution.  Correlations between some 

agronomic traits and post harvest quality had previously been recorded for the lettuce 

diversity set representing the primary lettuce genepool (see Chapter 3).  Correlations 

between morphological and post harvest discolouration traits are potentially of high 

importance for breeders as they may be due to pleiotropic effects or tightly linked 

loci.  Therefore information about the associations between traits and any possible 

genetic linkages between them is important to lettuce breeders as they need to know 

if selection for one trait is affecting other economically important traits. 

Although a large number of significant correlations were found (table 6.1.) many of 

these had low values for the coefficient of correlation ‗r‘.  The r value for a 

correlation can be used to calculate the variation in common between traits which is 

given as r
2
.  Thus for higher r values, the greater the variation in common between 

the traits and greater the potential problem might be for breeders.  The highest r 

value found was for the correlation between an agronomic trait and a post harvest 

discolouration trait was between head production and extent of pinking (on day 3 

across sites) with a value for R[90]   ≥ 0.55; this gives an r
2 

value of 0.30 i.e. only 30% 

of the variation is in common.  The highest r value recorded between agronomic 
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traits was between head production and indented leaf edges (R[90]  ≥ 0.72); giving an 

r
2 

value of 0.52 i.e. 52% of the variation in common.  In general, the r
2 

values for the 

significant correlations are low indicating that the variation in common between 

traits is low (~<20%) and in general it is not anticipated that the correlated effects 

would cause any major problems for breeders.  However, there are significant 

correlations and these may still limit the progress breeders can make by phenotypic 

selection; information on the genetic basis of the correlations would be of value. 

This study reports QTL for agronomic traits and links between certain pre harvest 

traits to post harvest spoilage due to discolouration.  As discussed in Chapter 3, some 

‗head‘ traits appear to influence the susceptibility of lettuce tissue to post harvest 

discolouration possibly through alterations in the water relationships within the plant 

tissue.  The correlations observed between head type, diameter and weight for the 

RIL population also supports this idea.   

Leaves with severe savoying/blistering are more three-dimensional and less compact, 

and are therefore more susceptible to damage during handling.  This could explain 

why this trait showed a highly significant positive correlation with post harvest 

pinking (the highest correlation was with extent of pinking on day 1 across sites 

(R[90]  ≥ 0.38)) (see table 6.1.).   

Indentation of leaf edges was also correlated with pinking.  It is difficult to see a 

physiological reason for this relationship, and the significant correlation could be due 

to linkage. 

 In Arabidopsis, seed coat pigments are predominantly flavonoids (specifically 

condensed tannins of the cyanidin type and flavonols of the quercetin type) which are 

an end product of phenylpropanoid metabolism (Chapple et al. 1994).  Condensed 
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tannins undergo oxidative reactions which give seeds their brown pigmentation 

(Debeaujon et al. 2000); this reaction also results in post harvest browning in 

vegetative tissue (Lopez-Galvez et al. 1996).  RILs with brown seeds generally 

showed increased scores for post harvest discolouration which could be explained by 

these lines having higher levels of polyphenols. 

In addition to affecting post harvest discolouration traits, selection based on a 

particular morphological trait may have indirect effects on other morphological traits.  

Head type has been shown to significantly influence post harvest quality and 

significant correlations were also found with days to bolting; a possible explanation 

is that heads which are more tightly closed take longer for the lettuce flowering stalk 

to break through the head tissue.  This is an important trait for growers as it reflects 

‘holding ability‘ in the field and thus saleability.   

Leaf indentation is also positively correlated to days to bolting; however it is also 

correlated to head production so it may be due to linkage.  The same may be 

suggested for savoy/blistering of leaves as it is positively correlated with indented 

leaves and head production, although blistering of the leaves can reduce compactness 

of the head making it appear larger and looser. 

Twenty QTL were identified for agronomic traits and 21 QTL were identified for 

post harvest discolouration.  The correlations between the phenotypic scores for the 

traits can be explained by the co-location of QTL for the different traits on the map 

(see figure 6.4.).   

Clusters of QTL determining both agronomic (head and leaf morphology based) and 

post harvest discolouration traits were recorded on LG 7 (1.7-55.1 cM) and LG 8 

(30-40.7 cM) (see figure 6.4.).  This could explain the correlations observed between 
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the traits of a head production, head diameter, plant weight (trimmed and untrimmed) 

and leaf indentation with all 3 measures of post harvest discolouration.  QTL for 

head production, diameter and weight were co-located on LG 7 in two regions (2.4-

2.7 cM and 19.7-23.4 cM).  These data along with the consistent phenotypic 

correlations suggest that the QTL in these two regions have a ‗general‘ effect on 

head development.  The QTL for post harvest discolouration in this region may also 

have the same genetic basis and be a reflection of the susceptibility of the head to 

damage which then induces a discolouration response. 

The clustering of the 4 QTL related to head weight on LG 7 (2.4-33.9 cM) would be 

expected as the phenotypic data that they are based on are directly and indirectly 

measuring the same trait either in different environments or in some cases were 

measurements made on the same head (see figure 6.3.).  The 2 QTL for head 

production (Heading_2 and Heading_3) which loosely clustered with the above two 

regions (including QTL Heading_1 (spanning 16.1-79 cM)) could also be the 

manifestation of 1 larger single QTL.  A larger data set would increase the LOD 

accuracy provided for each marker under the QTL potentially refining QTL length.   

QTL for leaf indentation (Indentation_2; 1.7-2.4 cM) and savoy/blistering of leaves 

(Savoy_2; 29-79 cM) also clustered with the above regions and go some way to 

explaining the observed phenotypic correlations (see figure 6.3.). The co-location of 

these two QTL indicate that this is a region which influences leaf morphology  QTL 

for head production and indented leaves also co-localised on LG 8 (30-40.7 cM) 

again suggesting possible linkage of genes influencing these 2 traits.   

There were also overlapping QTL regions for traits which did not show a significant 

phenotypic correlation.  QTL for anthocyanin pigmentation co-localised and 
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clustered with both QTL for post harvest browning (on LG 2; 80.1-92.3 cM) and post 

harvest pinking (on LG 4a; 71-86.7 cM) (see figure 6.4.).  Anthocyanins and the 

metabolites involved in post harvest discolouration are both produced via the 

phenylpropanoid pathway and are initially regulated by a common enzyme PAL.  If 

polyphenols are being sequestered to the anthocyanin pathway this might result in 

there being less available for the oxidative reactions causing post harvest 

discolouration upon wounding.   

QTL for greenness leaf, post harvest browning and pinking co-localised and 

clustered within LG 4a (4.4-8.8 cM) (see figure 6.4.).  It is difficult to see a 

physiological basis for this but it could simply be due to the darkness of the leaf and 

how this influences how discolouration is perceived by eye, although it may be due 

to linkage of genes influencing these two traits.  

The agronomic traits investigated in this trial are generally complex traits likely to be 

controlled by many QTL with small effect.  For some traits such as head diameter, 

greenness of leaf, leaf indentation and days to bolting, much of the observed 

variation was left unexplained by the QTL analysis suggesting that there are 

probably QTL with smaller effects that could not be detected (Zhang et al. 2007).  

Type II QTL errors (false negative) are determined by the experimental set-up and 

the size of the genetic effect of QTL (Van Ooijen 1999).  This trial was designed for 

observational purposes, so with an improved design and more a quantitative scoring 

method for some traits additional QTL may have been identified. 

Where QTL for different traits are co-located or clustered and the traits they 

determine are positively correlated, selection of the ideal genotype could improve 

several traits at the same time.  However when QTL for desirable and undesirable 

traits map together, it is necessary to determine whether there are in fact multiple 



201 

 

QTL or a single QTL with pleiotropic effects.  This can be determined via fine 

mapping and analysis of near-isogenic substitution lines.  If QTL for both desirable 

and undesirable traits are actually a single QTL with pleiotropic effects, selecting for 

an improved genotype would be extremely difficult (Zhang et al. 2007) and would 

require fine mapping to identify whether the pleiotropic effect is due to closely 

linked genes, markers could then be used to select for recombination to break the 

linkage.   

In this study it is apparent that although QTL for some agronomic traits occur 

independently of QTL for post harvest discolouration, some co-localise and could 

result in the need for ‗trade offs‘ by breeders during selection.  By combining 

information on QTL for agronomic traits with the information on QTL for post 

harvest discolouration it may be possible to identify the degree of linkage between 

desirable traits in different lettuce types and undesirable post harvest discolouration, 

therefore adding value to the salads marketing by increasing the resources available 

for breeding. 

This study has provided the basis for breeders to understand the relationships 

between agronomic traits and post harvest discolouration responses so that they can 

now carry out selection in a more informed manner.  If there are still genetic linkages 

between important QTL then this genetic analysis is also the first step in trying to 

fine map the QTL and to identify markers to allow selection for recombination to 

break the linkage or to show that the correlated effects are due to pleiotropic effects 

(i.e. the same gene, which means they are stuck with it). 
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6.5. Conclusions 

 

 Twenty significant QTL for a range of important agronomic traits have been 

identified, providing markers for MAS of these traits 

 There were significant correlations between agronomic traits and post harvest 

discolouration traits, however, traits were generally not highly correlated. 

 Some QTL for agronomic traits were linked to QTL for post harvest 

discolouration explaining the associations between traits. 

 Post harvest discolouration and agronomic traits can generally be 

independently selected for by breeders, however in some cases pleiotropic 

effects may occur. 
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CHAPTER 7 

 

 

Explaining the genetic variation causing post harvest 

discolouration 
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7.1. Introduction 

QTL for post harvest discolouration in lettuce were identified in Chapter 5.  The full 

determination of the heritability of post harvest discolouration would allow 

development of improved varieties for trait combinations (including organoleptic and 

metabolomic characteristics) by breeders.  Therefore, it is important to attempt to 

link gene function and gene regulation to phenotype.  Hypothetically, it should be 

possible to link metabolomic changes in biochemical pathways to the enzymes 

involved and consequently the underlying genetic adjustment that lead to a specific 

phenotype (Fiehn 2002).  By comparing the post harvest discolouration phenotype 

with the levels of key metabolites in the phenylpropanoid pathway, it may be 

possible to identify which genes are controlling the biosynthesis of these metabolites.  

Mapping of ESTs derived from genes known to be involved in the phenylpropanoid 

pathway is a complementary approach to attempt to identify the genetic basis of any 

co locating QTL (Zhang et al. 2005) and provide further information about the genes 

underlying the post harvest discolouration phenotype. 

The aims of this experiment were to 

 Demonstrate variation in levels of metabolites related to post harvest 

discolouration in the F7 Saladin x Iceberg mapping population. 

 Identification of putative candidate genes involved in post harvest 

discolouration for SNP detection. 

 Detect SNPs for candidate genes and map on the Sal x Ice linkage map. 
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7.2. Material and methods 

 

7.2.1. Saladin x Iceberg RIL population 

All 125 RILs from the Saladin x Iceberg F7 population were used for candidate gene 

mapping (see section 2.1.2.). 

 

7.2.2. Extreme discolouration RIL subset 

All 11 RILs from the extreme discolouration RIL subset (see section 5.2.2.) were 

used for metabolite analysis. 

 

7.2.3. Metabolite analysis 

When material was harvested from the first rep of the field trial of extreme 

discolouration lines for bagged phenotypic assessment (see section 5.2.4.), tissue was 

also harvested for metabolite analysis (see section 2.3.1.).  Extraction and 

identification for PAL activity, PPO activity and total phenolic content was as stated 

(see sections 2.3.1. and 2.3.2.).   
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7.2.4. Statistical analysis 

ANOVA 

Data from each metabolite analysis were analysed using general ANOVA with 

comparison contrasts (see table 7.1.).  Metabolite activity was analysed by day and 

for differences across days for all lines and between comparison contrasts to identify 

main effects due to genotype.   

Table 7.1. Comparison contrasts of RILs for ANOVA.  For RIL number relating to extreme 

discolouration phenotype see sections 5.2.2. and 5.3.4.  Where v (comparison); L (low); H (high); P 

(pinking); B (browning); D (overall discolouration). 

 

 

 

 

Correlation analysis  

Correlation analyses were conducted between all discolouration measures and 

metabolite activity (correlations between browning, pinking and overall 

discolouration and between them and PAL activity, PPO activity, TPC and protein 

levels (as section 2.4.4.)).  R values were generated which were then compared to the 

associated p values (see table 7.2.).  

  

Groupings of RILs 
Comparison against 

Saladin 

Comparison against 

Iceberg 

Saladin v Iceberg Saladin v LP RILs Iceberg v LP RILs 

LP RILs v HP RILs Saladin v HP RILs Iceberg v HP RILs 

LB RILs v HB RILs Saladin v LB RILs Iceberg v LB RILs 

LD RILs v HD RILs Saladin v HB RILs Iceberg v HB RILs 

 Saladin v LD RILs Iceberg v LDRILs 

 Saladin v HD RILs Iceberg v HD RILs 
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Table 7.2. Correlation analysis parameters.  Where df (degrees of freedom). 

  Probability (p value) 

Population df 0.05 0.01 0.001 

F7 extreme RILs trial 11 0.553 0.684 0.801 

 

7.2.5. EST data mining 

Candidate genes were selected from the phenylpropanoid pathway for potential SNP 

mapping (see table 7.3.).  The TAIR database was searched by gene product name 

(i.e. CHS/chalcone synthase) for locus number and protein sequence in Arabidopsis 

(http://www.arabidopsis.org/).  

The searched Arabidopsis gene protein sequences were ‗BLAST‘ed against lettuce 

ESTs (http://cgpdb.ucdavis.edu/cgpdb2/blast_search/) using the CLS_S3_Sat.assembly 

database (L.sativa | CAP3: 100/95) and tblastn (protein vs DNA) programme.  The 

contig/EST with the highest identity to the candidate gene was selected and the 

sequence retrieved from the CLS_S3_ESTs_Sat.assembly file 

(http://cgpdb.ucdavis.edu/cgpdb2/est_info_assembly.php).  

http://www.arabidopsis.org/
http://cgpdb.ucdavis.edu/cgpdb2/blast_search/
http://cgpdb.ucdavis.edu/cgpdb2/est_info_assembly.php
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Table 7.3. Candidate gene information relating to the phenylpropanoid pathway.  Information from candidate genes in Arabidopsis thaliana from the TAIR 

database (www.arabidopsis.org).  More gene information in appendix. 

Gene Name Annotation 
TAIR 

Accession 
Locus Other names 

Acetyl CoA carboxylase ACCase / / / 

Acetyl-coenzyme A carboxylase 

carboxyl transferase subunit beta 
ACCD 504954673 ATCG00500  / 

Anthocyanidin synthase ANS 2127218 AT4G22880 
F7H19.60, LDOX, LEUCOANTHOCYANIDIN DIOXYGENASE, 

TANNIN DEFICIENT SEED 4, TT18 

Anthocyanin reductase ANR 2195733 AT1G61720 BAN, BANYULS, T13M11.8, T13M11_8 

Anthocyaninless 2 ANL2 2127008 
AT4G00730 

  

AHDP, ARABIDOPSIS THALIANA HOMEODOMAIN PROTEIN, 

F6N23.10 

Arabidopsis reductase 1 AR1 2121894 AT4G24520 
ARABIDOPSIS CYTOCHROME REDUCTASE, ARABIDOPSIS 

P450 REDUCTASE 1,, F22K18.280 

Arabidopsis reductase 2 AR2 2128951 AT4G30210 ARABIDOPSIS P450 REDUCTASE 2, F9N11.60 

Aureusidin synthase AS / / / 

Chalcone flavanone isomerise CFI 2097228 AT3G55120 A11, T15C9.120, TT5 

Chalcone isomerise CHI 2156957 AT5G66220 K2A18.30 

Chalcone reductase CHR / / / 

Chalcone synthase CHS 2159098 AT5G13930 MAC12.28, TT4 

Cytochrome P450 CYP98A3 2058440 AT2G40890 FAMILY 98, SUBFAMILY A, POLYPEPTIDE 3, T20B5.9 

Dihydroflavonal 4-reductase DFR 2165427 AT5G42800 M318, MJB21.18, TT3 

Enhancer of glabra 3 EGL3 2026629 AT1G63650 ATMYC-2, EGL1, F24D7.16 

Flavanone 3'5' hydroxylase F3'5'H / / / 

Flavanone 3 5 hydroxylase F35H / / / 

Flavanone 3'-hydroxylase F3'H 2142878 AT5G07990 CYP75B1, CYTOCHROME P450 75B1, D501, F13G24.190, TT7 

Flavanone 3-hydroxylase F3H 2081008 AT3G51240  F24M12.280, F3'H, TT6 

Flavone synthase FSI/ FS2 / / / 

http://www.arabidopsis.org/
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Table 7.3. continued.  

Gene Name Annotation 
TAIR 

Accession 
Locus Other names 

Flavonol 7-O-rhamnosyl transferase F7ORT 2198791 AT1G06000 T21E18.5 

Flavonol synthase 1 FLS1 2159542 AT5G08640. T2K12.5 

Flavonol synthase 2 FLS2 2160564 AT5G63580  MBK5.4 

Flavonol synthase 3 FLS3 2160589 AT5G63590 MBK5.5 

Flavonol synthase 4 FLS4 504954954 AT5G63595 / 

Flavonol synthase 5 FLS5 2160594 AT5G63600  MBK5.7 

Flavonol synthase 6 FLS6 504954874 AT5G43935 / 

Glutathione S-transferase GST 2167215 
AT5G17220 

  

GLUTATHIONE S-TRANSFERASE PHI 12, GLUTATHIONE S-

TRANSFERASE 26, MKP11.22,  TT19 

Hydroxycinnamoyl-coa shikimate 

transferase 
COA 2154334 AT5G48930 

HCT, HYDROXYCINNAMOYL-COA QUINATE 

HYDROXYCINNAMOYL TRANSFERASE, K19E20.4 

Isoflavone 2-hydroxylase   I2_H / / / 

Isoflavone reductase IFR 2025192 AT1G75280 F22H5.17 

Isoflavone synthase  IFS / / / 

Leucoanthocyanidin dioxygenase / 

Anthocyanidin synthase 
LDOX/ANS 2127218 AT4G22880  F7H19.60, TANNIN DEFICIENT SEED 4, TT18 

Leucoanthocyanidin reductase LCR/ LAR / / / 

Malonyl-CoA:anthocyanidin 5-O-

glucoside-6"-O-malonyltransferase 
5MAT 2093620 AT3G29590 MTO24.5 

MYB domain protein 3 MYB3 2009452 AT1G22640 T22J18.19 

MYB domain protein 4 MYB4 2121259 AT4G38620 T9A14.11 

O-methyltransferase OMT1 2153423 AT5G54160  K18G13.3 

Phenylammonia lyase 1 PAL1 2057981 AT2G37040  CI0004,  T1J8.22 

Phenylammonia lyase 2 PAL2 2101958 AT3G53260  T4D2.190 

Phenylammonia lyase 3 PAL3 2146708 AT5G04230  F21E1.150 
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Table 7.3. continued.  

Gene Name Annotation 
TAIR 

Accession 
Locus Other names 

Phenylammonia lyase 4 PAL4 2076244 AT3G10340 F14P13.6 

Polyphenol oxidase PPO 2162677 AT5G48100  LAC15, LACCASE-LIKE 15, MDN11.18, TT10 

Production of anthocyanin 1 PAP1 2027523 AT1G56650 
ATMYB75, F25P12.92, MYB DOMAIN PROTEIN 75, 

MYELOBLASTOSIS PROTEIN 75, SIAA1,  

Production of anthocyanin 2 PAP2 2201532 AT1G66390 ATMYB90, MYB DOMAIN PROTEIN 90, MYB90, T27F4.14 

Transparent testa 1 TT1 2008386 AT1G34790 F11O6.15 

Transparent testa 12 TT12 2077725 AT3G59030 F17J16.80 

Transparent testa 15 TT15 / / / 

Transparent testa 16 TT16 2166766 AT5G23260 
ABS, AGAMOUS-LIKE 32, AGL32, ARABIDOPSIS BSISTER, 

AT5G23260.1, MKD15.12 

Transparent testa 19 TT19 2167215 
AT5G17220 

  

ARABIDOPSIS THALIANA GLUTATHIONE S-TRANSFERASE 

PHI 12, GLUTATHIONE S-TRANSFERASE 26, GST26, MKP11.22 

Transparent testa 2 TT2 2169538 AT5G35550   ATMYB123, MOK9.18, MYB DOMAIN PROTEIN 123,  

Transparent testa 8 TT8 2118524 AT4G09820 F17A8.170 

Transparent testa glabra 1 TTG1 2153914 AT5G24520 K18P6.4, , UNARMED 23 

Transparent testa glabra 2 TTG2 2049852 AT2G37260 ATWRKY44, DR. STRANGELOVE 1, DSL1, F3G5.5, WRKY44 

UDP flavonoid glucosyl transferase UF3GT/3GT 2166552 AT5G54060 MJP23.2 

Vestitone reductase VR / / / 

72_-dihydroxy 4_-methoxyisoflavanol 

dehydratase 
DMID / / / 

4-coumarate:CoA ligase 1 4CL1 2017602 AT1G51680 F19C24.11 

4-coumarate:CoA ligase 2 4CL2 2094716 AT3G21240 MXL8.10 

4-coumarate:CoA ligase 3 4CL3 2015003 AT1G65060 F16G16.6 

4-coumarate:CoA ligase 5 4CL5 2094771 AT3G21230  MXL8.9 
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A reciprocal blast of the lettuce EST/contig sequence was also conducted against the 

NCBI Arabidopsis thaliana sequences database, using the RefSeq protein database 

and BLASTX (nucleotide vs protein) programme to ensure the correct candidate 

gene would be amplified 

(http://www.ncbi.nlm.nih.gov/genome/seq/BlastGen/BlastGen.cgi?taxid=3702).  If 

the highest hit was the correct Arabidopsis candidate gene primers were designed for 

the lettuce sequence.  Using the contig viewer, information regarding intron structure 

for each candidate gene was utilised to design primers to regions of the lettuce 

sequence avoiding possible conserved splice sites 

(http://cgpdb.ucdavis.edu/cgpdb2/CGP_ContigViewer/). 

 

7.2.6. SNP detection 

Parental screen 

The parents of the WHRI mapping population, Saladin and Iceberg were screened for 

polymorphism for the candidate genes. 

Primer design 

Primers for the candidate genes were developed using the primer design software 

Primer3 (v. 0.4.0) (Rozen and Skaletsky 2000).  The relevant EST/contig sequence 

was submitted with parameters of product size 100-300 bp and targets as intron site 

plus 12 bp (the aim was to include a single intron within a small product).  Where no 

intron site was present, the whole sequence was amplified. 

  

http://www.ncbi.nlm.nih.gov/genome/seq/BlastGen/BlastGen.cgi?taxid=3702
http://cgpdb.ucdavis.edu/cgpdb2/CGP_ContigViewer/
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Polymerase chain reaction (PCR) 

The 20 µl reaction mixture consisted of: 4 µl 5 x iProof HF buffer; 0.4 µl forward 

primer (10 mM); 0.4 µl reverse primer (10 mM); 2 µl template DNA (~10 ng/µl); 

12.4 µl dH20 and 0.2 µl iProof DNA polymerase.  PCR was performed using a PTC-

225 Peltier thermal cycler, DNA engine tetrad (MJ Research, USA).  The PCR 

reaction program was: 98C for 30 s, 40 cycles of (98C (5 s); 57C (10 s); 72C (25 

s)), extended at 72C for 5 min.  The PCR products were determined visually by 

agarose gel electrophoresis (1% gel). 

Single sequence conformation polymorphism (SSCP) analysis 

Parental samples for each candidate gene amplification were run on SSCP gels to see 

if any SNPs were present between DNA sequences of Saladin and Iceberg (as for 

Chapter 4).  When a polymorphism for a candidate gene was recorded between the 

parents, the entire F7 population was amplified using the associated primers and 

analysed on SSCP gels as the parents (see figure 7.1.).  If no polymorphism was 

observed then the PCR products for the parental DNA were sequenced.  

 

Figure 7.1. SSCP gel showing polymorphic candidate gene PPO PCR products.  Where S 

(Saladin); I (Iceberg); H (heterozygote); A (A/Iceberg genotype); B (B/Saladin genotype); U 

(unknown genotype). 

  

I   S 

 A  B A A A B  B  A A A U  U H  H  U H A  A A A B A  H  B H H A B B B A A H A B A A 
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DNA purification and sequencing  

The PCR products were purified to remove free primers and nucleotides before 

sequencing.  For 20 µl PCR product, 0.5 µl of usb exonuclease 1 10 un/µl and 0.5 µl 

usb shrimp alkaline phosphatase (SAP) 1 un/µl was added.  Samples were incubated 

at 37C for 30 min, then 80C for 15 min.  DNA was diluted to 2ng/µl per 100 bases 

of PCR product length and the associated forward primers were diluted to 3 µM.  

Eight µl of each DNA sample and associated primers were sent for sequencing at 

Davis Sequencing, USA. 

Joinmap®4 analysis  

Linkage analysis for genotype scores for putative gene specific markers from the 

mapping population was performed using Joinmap®4 software as described (section 

4.2.1.). 

 

7.3. Results 

 

7.3.1. Metabolite profiling 

PAL activity 

ANOVA revealed significant variation (**P <0.004) between lines for PAL activity 

when expressed as absorbance per gram of dry weight of lettuce (abs/g dwt) for day 

4 post storage and for the differences of PAL activity across days (***P <0.001) (see 

table 7.4.).    
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PAL activity of the 13 lines varied from 0.099 abs/g dwt to 0.161 abs/g dwt for 

harvest day and from 0.089 abs/g dwt to 0.579 abs/g dwt on day 4 (see figure 7.2. (a-

c)).  All RILs had similar levels of PAL activity on harvest day.  Generally PAL 

activity increased from harvest day to day 4.  Mean PAL activity was 0.13 abs/g dwt 

and 0.32 abs/g dwt respectively for harvest day and day 4.  Saladin had one of the 

lowest PAL activities on both days.  Significant differences were seen between the 

mapping parents Saladin and Iceberg (**P <0.029) for PAL activity on day 4.  Low 

discolouration RILs generally had lower PAL activity than high discolouration RILs.  

LB 5055 had significantly lower PAL activity than both HBs 5043 and 5053, while 

LD 5022 had significantly lower PAL activity than HD 5066.  No RIL had 

significantly lower PAL activity than Saladin or significantly higher PAL activity 

than Iceberg.  However, LB 5055 and LD 5002 showed similar PAL activity to 

Saladin and all three lines had significantly lower PAL activity than Iceberg.  HP 

5045, HB 5043, HB 5053 and LB 5022 all showed similar PAL activity to Iceberg; 

all had significantly higher PAL activity than Saladin.  Saladin PAL activity 

remained constant post harvest while PAL activity decreased for LB 5055 (-0.04 

abs/g dwt) and LD 5002 (-0.08 abs/g dwt).   Transgressive segregation was observed 

with HB 5043 PAL activity increasing at a higher rate across days than Iceberg and 

all RILs (0.645 abs/g dwt).   
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Table 7.4. PAL activity for RILs from the extreme discolouration subset over 4 days.  ANOVA GT df = 12.  ANOVA comparison df = 1.  Significant effects shown as 

*P <0.05, **P <0.01 and ***P <0.001.  Where PAL (phenylalanine ammonia lyase); GT (genotype/accession); RIL; (recombinant inbred line); v (comparison); vr (variance 

ratio); prob (ANOVA probability). 

 

PAL activity 

 

Day harvest Day 4 Across days 

Variation vr 
ANOVA F 

prob 
vr 

ANOVA F 

prob 
vr 

ANOVA F 

prob 

GT 0.35 0.974 2.85 **0.004 4.47 ***<0.001 

Saladin v Iceberg 0.19 0.662 5 *0.029 2.67 0.109 

Low pinking RILs v High pinking RILs 1.32 0.255 0.74 0.394 0.01 0.919 

Low browning RILs v High browning RILs 0.23 0.63 9.15 **0.004 10.92 **0.002 

Low overall discolouration RILs v High overall discolouration RILs 0.13 0.72 6.38 *0.014 5.73 *0.021 

Saladin v Low pinking RILs 0.06 0.807 1.59 0.212 0.68 0.415 

Saladin v High pinking RILs 1.4 0.241 3.85 *0.05 0.82 0.37 

Saladin v Low browning RILs 0.58 0.451 1.97 0.166 1.42 0.239 

Saladin v High browning RILs 0.13 0.717 14.99 ***<0.001 15.14 ***<0.001 

Saladin v Low overall discolouration RILs 0.31 0.58 0.8 0.374 0.05 0.824 

Saladin v High overall discolouration RILs 0.63 0.431 8.79 **0.004 5.14 *0.028 

Iceberg v Low pinking RILs 0.33 0.568 1.11 0.297 0.35 0.558 

Iceberg v High pinking RILs 0.46 0.501 0.38 0.538 0.96 0.333 

Iceberg v Low browning RILs 0.06 0.802 1.39 0.243 0.48 0.492 

Iceberg v High browning RILs 0.02 0.887 1.66 0.202 4.02 *0.051 

Iceberg v Low overall discolouration RILs 0 0.961 2.84 0.097 2.76 0.103 

Iceberg v High overall discolouration RILs 0.13 0.724 0.53 0.47 0.4 0.529 
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Figure 7.2. Mean PAL (phenylalanine ammonia lyase) activity for RILs from the extreme 

discolouration subset on a) harvest day, b) 4 days after storage and c) the difference between 

PAL activity levels across the 4 days.  PAL activity measured as absorbance per gram of dry weight 

of lettuce (abs/g dwt).  Error bar represents seds (standard error of differences of the mean) from 

ANOVA.  Where dwt (dry weight); g (gram). 
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PPO activity 

ANOVA revealed significant variation (**P <0.003) between lines for PPO activity 

at 4 days post storage (see table 7.5.).    

PPO activity of the 13 lines varied from 1.13 abs/g dwt to 3.85 abs/g dwt for harvest 

day and from 0.94 abs/g dwt to 4.7 abs/g dwt on day 4 (see figure 7.3. (a-c)).  

Generally, low discolouration RILs had higher PPO activity than high discolouration 

RILs on harvest day.  LB 5022 had significantly higher PPO activity than HB 5043, 

while LDs 5022 and 5042 had significantly higher PPO activity than HD 5066 (*P 

<0.026).  Generally, PPO activity increased from harvest day to day 4. Mean PPO 

activity was 2.18 abs/g dwt and 2.508 abs/g dwt respectively for harvest day and day 

4.  LB 5055 had significantly higher PPO activity than HB 5043 and Saladin.  

Saladin and Iceberg PPO activity increased at similar rates post harvest.  Generally 

PPO for low discolouration RILs increased at higher rates across days than for high 

discolouration RILs.   
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Table 7.5. PPO activity for RILs from the extreme discolouration subset over 4 days.  ANOVA GT df = 12.  ANOVA comparison df = 1.  Significant effects shown as 

*P <0.05, **P <0.01 and ***P <0.001.  Where PPO (polyphenol oxidase); GT (genotype/accession); RIL; (recombinant inbred line); v (comparison); vr (variance ratio); prob 

(ANOVA probability). 

 

PPO activity 

 

Day harvest Day 4 Across days 

Variation vr 
ANOVA F 

prob 
vr 

ANOVA F 

prob 
vr 

ANOVA F 

prob 

GT 1.63 0.111 3.11 **0.003 1.69 0.11 

Saladin v Iceberg 0.58 0.45 0.73 0.399 0 0.995 

Low pinking RILs v High pinking RILs 0.44 0.511 1.05 0.311 0.34 0.564 

Low browning RILs v High browning RILs 0.1 0.757 1.01 0.32 2.39 0.131 

Low overall discolouration RILs v High overall discolouration RILs 5.21 *0.026 0.32 0.575 0.62 0.437 

Saladin v Low pinking RILs 0.04 0.841 0.14 0.708 0.66 0.422 

Saladin v High pinking RILs 0.55 0.462 0.21 0.648 1.66 0.206 

Saladin v Low browning RILs 0.73 0.397 5.27 *0.026 1.58 0.217 

Saladin v High browning RILs 0.36 0.551 2.17 0.147 0 0.996 

Saladin v Low overall discolouration RILs 1.92 0.172 0.13 0.719 1.24 0.272 

Saladin v High overall discolouration RILs 0.61 0.44 0.64 0.426 2.71 0.108 

Iceberg v Low pinking RILs 0.46 0.501 0.37 0.547 0.65 0.426 

Iceberg v High pinking RILs 0.02 0.892 2.08 0.156 1.64 0.209 

Iceberg v Low browning RILs 3 0.089 1.72 0.196 1.6 0.214 

Iceberg v High browning RILs 2.19 0.145 0.24 0.627 0 0.998 

Iceberg v Low overall discolouration RILs 5.12 *0.028 1.81 0.185 1.22 0.276 

Iceberg v High overall discolouration RILs 0 0.986 2.74 0.105 2.69 0.11 
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Figure 7.3. Mean PPO (polyphenol oxidase) activity for RILs from the extreme discolouration 

subset on a) harvest day, b) 4 days after storage and c) the difference between PPO activity 

levels across the 4 days.  PPO activity measured as absorbance per gram of dry weight abs/g dwt.  

Error bar represents seds (standard error of differences of the mean) from ANOVA.  Where dwt (dry 

weight); g (gram). 
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Total phenolic content 

ANOVA revealed significant variation between lines for total phenolic content 

(TPC) when expressed as gallic acid equivalents per gram of dry mass of lettuce 

(GAE/g dwt) for harvest day (***P <0.001),  day 4 post storage (**P <0.003) and 

for the difference of TPC across days (**P <0.002) (see table 7.6.).    

TPC of the 13 lines varied from 58.8 mg GAE/g dwt to 150.7 mg GAE/g dwt for 

harvest day and from 77.8 mg GAE/g dwt to 170.3 mg GAE/g dwt on day 4 (see 

figure 7.4. (a-c)).  Generally, low discolouration RILs had higher TPCs than high 

discolouration RILs on harvest day; the mean TPC of LP RILs was significantly 

higher than for HP RILs (**P < 0.002), the mean TPC of LB RILs was significantly 

higher than for HB RILs (*P < 0.05) and the mean TPC of LD RILs was 

significantly lower than for HD RILs (*P < 0.038).  Generally, TPC increased from 

harvest day to day 4.  Mean TPC was 95.4 mg GAE/g dwt and 106.8 mg GAE/g dwt 

respectively for harvest day and day 4.  As for harvest day, low discolouration RILs 

generally had higher TPCs than high discolouration RILs.  LP 5051 had significantly 

higher TPC than both HPs 5045 and 5075, while LD 5022 had significantly higher 

TPC than HD 5066.  HB 5053 had significantly higher TPC than both LBs 5022 and 

5055.  Generally, TPC for low discolouration RILs decreased across days, while it 

increased across days for high discolouration RILs.  Saladin and Iceberg showed an 

increase in TPC across days.  Transgressive segregation was recorded; HB 5053 TPC 

increased at a higher rate across days than Iceberg and all RILs (87.2 mg GAE/g 

dwt) and LP 5023 TPC increased at a lower rate across days than Saladin and all 

RILs (87.2 mg GAE/g dwt).   
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Table 7.6. Total phenolic content (TPC) for RILs from the extreme discolouration subset over 4 days.  ANOVA GT df = 12.  ANOVA comparison df = 1.  Significant 

effects shown as *P <0.05, **P <0.01 and ***P <0.001.  Where TPC (total phenolic content); GT (genotype/accession); RIL; (recombinant inbred line); v (comparison); vr 

(variance ratio); prob (ANOVA probability). 

 

TPC 

 

Day harvest Day 4 Across days 

Variation vr 
ANOVA F 

prob 
vr 

ANOVA F 

prob 
vr 

ANOVA F 

prob 

GT 4.52 ***<0.001 2.93 **0.003 3.22 **0.002 

Saladin v Iceberg 0.2 0.656 2.01 0.161 0.04 0.836 

Low pinking RILs v High pinking RILs 10.99 **0.002 1.04 0.313 5.03 *0.03 

Low browning RILs v High browning RILs 4.01 *0.05 6.46 **0.01 7.37 **0.009 

Low overall discolouration RILs v High overall discolouration RILs 4.55 *0.038 3.29 0.075 0.11 0.745 

Saladin v Low pinking RILs 1.15 0.288 0 0.957 3.48 0.068 

Saladin v High pinking RILs 1.96 0.168 0.48 0.49 0.02 0.879 

Saladin v Low browning RILs 0.28 0.602 0.5 0.48 1.2 0.278 

Saladin v High browning RILs 1.1 0.299 1.65 0.203 1.04 0.314 

Saladin v Low overall discolouration RILs 0.84 0.364 0.43 0.515 0.01 0.926 

Saladin v High overall discolouration RILs 1.02 0.317 0.93 0.34 0.04 0.847 

Iceberg v Low pinking RILs 0.28 0.601 2.82 0.098 4.5 *0.039 

Iceberg v High pinking RILs 3.71 0.059 5.61 *0.021 0.16 0.691 

Iceberg v Low browning RILs 0 0.994 5.52 *0.022 1.79 0.187 

Iceberg v High browning RILs 2.53 0.118 0.18 0.672 0.59 0.447 

Iceberg v Low overall discolouration RILs 0.14 0.708 1.11 0.297 0.02 0.875 

Iceberg v High overall discolouration RILs 2.13 0.151 5.67 *0.02 0.16 0.689 
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Figure 7.4. Mean TPC (total phenolic content) for RILs from the extreme discolouration subset 

on a) harvest day, b) 4 days after storage and c) the difference between TPC levels across the 4 

days.  TPC expressed as gallic acid equivalents (GAE) per gram of dry mass of lettuce.  Error bar 

represents seds (standard error of differences of the mean) from ANOVA.  Where dwt (dry weight); g 

(gram). 
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7.3.2. Correlation amongst traits  

All discolouration measures (browning and pinking), morphological traits (plant 

weight) and metabolite activity were assessed for potential relationships (full 

correlation matrix in Appendix E) (see table 7.7.).  The relationships recorded 

between discolouration parameters and between them and any morphological traits 

has been discussed in Chapter 5.  

PAL activity on day 4 and PAL differences in activity across days were positively 

correlated (R[11]  ≥0.91).  Both of these parameters were generally positively 

correlated with browning (intensity and extent) and overall discolouration (intensity) 

on days 1 and 2 post harvest.  The highest correlation for PAL activity on day 4 was 

with overall discolouration intensity on day 2 (R[11]  ≥0.66) and the highest 

correlation for the difference between PAL activity across days was with browning 

intensity on day 1(R[11]  ≥0.66). 

PPO activity on day 4 and PPO differences in activity across days were positively 

correlated (R[11]  ≥0.84).  The differences between PPO activity across days was 

positively correlated with extent of overall discolouration on day 3 (R[11]  ≥0.6). 

TPC on harvest day and differences in TPCs across days were negatively correlated 

(R[11]  ≥-0.7).  The difference between TPC across days was generally positively 

correlated with overall discolouration (intensity) on days 3 and 4 post harvest (the 

highest correlation was with overall discolouration intensity on day 4 (R[11]  ≥0.69)).  

TPC on harvest day was negatively correlated with PAL activity on day 4 (R[11]  

≥0.59). 

Protein level differences across days were negatively correlated with protein levels 

on harvest day (R[11]  ≥-0.67) and positively correlated with protein levels on day 4 
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(R[11]  ≥0.89).  Protein levels on harvest day generally negatively correlated with 

browning post harvest (the highest correlation was with browning intensity on day 2 

(R[11]  ≥0.59)).  It was also positively correlated with pinking (intensity and extent) on 

day 4 (R[11]  ≥0.62 and R[11]  ≥0.74 respectively).  

Table 7.7. Correlation matrix from the RILs from the extreme discolouration RIL subset for 

post harvest discolouration and metabolite activity.  Read across then down.  Only significant 

effects are shown and highly significant effects ***P <0.001 are shown bold, **P <0.01 are shown 

italics. Where msb (mean score browning); msp (mean score pinking); msd (mean score overall 

discolouration); %b (percentage browning); %p (percentage pinking); %d (percentage overall 

discolouration); H (harvest day); Ac (across days).  Numerical value before measurement is day. 

Degree of freedom is 11. 
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7.3.3. Candidate gene mapping 

EST data mining for putative candidate genes 

For each candidate gene, the locus number and protein sequence in Arabidopsis (see 

table 7.3.) was retrieved from the TAIR database (see table 7.8).  Of the 61 potential 

candidate genes there were 13 for which a locus could not be identified from the 

database (Acetyl CoA carboxylase (ACCase), Aureusidin synthase (AS), Chalcone 

reductase (CHR), 72_-dihydroxy 4_-methoxyisoflavanol dehydratase (DMID), 

Flavanone 35 hydroxylase (F35H), Flavanone 3'5' hydroxylase  (F3‘5‘H), Flavone 

synthase  (FS1/FS2), Isoflavone 2-hydroxylase (I2_H), Isoflavone synthase (IFS), 

Leucoanthocyanidin reductase (LAR/ LCR), Transparent testa 15 (TT15) and 

Vestitone reductase (VR)). 

The contig/EST with the highest identity to each of the remaining 48 candidate gene 

protein sequence was selected (see table 7.8).  One gene (Acetyl-coenzyme A 

carboxylase carboxyl transferase subunit beta (ACCD)) did not generate any hits 

against the associated contig/EST database.  To ensure that the contig/EST had its 

highest identity to the associated gene a reciprocal blast was conducted against an 

Arabidopsis database.  Of the 4 copies of the 4-coumarate:CoA ligase (4CL) gene, 

the sequences were associated with 2 contigs, however only one of these was for 

4CL.  Of the 6 copies of the Flavonol synthase (FLS) gene, the sequences were all 

associated with 1 contig that was for FLS.  Of the 4 copies of the Phenylammonia 

lyase (PAL) gene, the sequences were all associated with 1 contig that was for PAL2.  

Of the 2 copies of the Production of anthocyanin (PAP) gene, the sequences were all 

associated with 1 contig that was for PAP2.  Of the 2 copies of the Arabidopsis 

reductase (AR) gene, the sequences were associated with 2 contigs, however only 
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one of these was for AR2.  When there were a number of gene copies in Arabidopsis, 

which all aligned to the same lettuce contig/EST, then all copies may not have not 

have been found in lettuce or the extra copies may not exist in lettuce.  If there were 

1 or 2 copies such as for AR and PAP then both reasons are possible, however with 

increased copies such as for 4CL, FLS and PAL the latter is more possible.  This 

resulted in 17 unique potential candidate genes suitable for analysis.   
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Table 7.8. EST data mining results for candidate genes relating to the phenylpropanoid pathway.  Information from candidate genes in Arabidopsis thaliana from the 

TAIR database (www.arabidopsis.org).  Where  (suitable);  (not suitable); NA (not applicable).  

Gene 

annotation 
Locus Contig from assembly Reciprocal blast protein 

Suitable for 

candidate gene  
No. 

introns 

4CL1 AT1G51680 CLS_S3_Contig7103 4CL1  0 

4CL2 AT3G21240 CLS_S3_Contig2246 ACYL-COA SYNTHETASE 5  NA 

4CL3 AT1G65060 CLS_S3_Contig2246 ACYL-COA SYNTHETASE 5  NA 

4CL5 AT3G21230  CLS_S3_Contig2246 ACYL-COA SYNTHETASE 5  NA 

5MAT AT3G29590 CLS_S3_Contig8439 transferase family protein   NA 

ACCase / / /  NA 

ACCD ATCG00500  / /  NA 

ANL2 AT4G00730   CLSM11952.b1_O11.ab1 ATML1  NA 

ANR AT1G61720 CLS_S3_Contig4844 dihydroflavonol 4-reductase family / dihydrokaempferol 4-reductase family  NA 

ANS AT4G22880 CLS_S3_Contig4920 FLS  NA 

AR1 AT4G24520 CLS_S3_Contig7982 AR2  NA 

AR2 AT4G30210 CLS_S3_Contig7982 AR2  15 

AS / / /  NA 

CFI/CHI AT3G55120  CLS_S3_Contig3861 CFI/CHI  3 

CHR / / /  NA 

CHS AT5G13930 CLSM3570.b1_D05.ab1 CHS  1 

COA AT5G48930 CLS_S3_Contig8834 COA  1 

CYP98A3 AT2G40890 CLS_S3_Contig1544 CYP98A3  2 

DFR AT5G42800  CLS_S3_Contig9432 cinnamoyl-CoA reductase 1  NA 

DMID / / /  NA 

http://www.arabidopsis.org/
http://www.arabidopsis.org/servlets/TairObject?id=28261&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=39171&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=27973&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=39006&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=128298&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=128337&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=127580&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=128581&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=131950&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=34317&type=locus
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Table 7.8. continued. 

Gene 

annotation 
Locus Contig from assembly Reciprocal blast protein 

Suitable for 

candidate gene  
No. 

introns 

EGL3 AT1G63650 CLS_S3_Contig2106 MYC2  NA 

F35H / / /  NA 

F3'5'H / / /  NA 

F3H AT3G51240  CLS_S3_Contig3385 F3H  4 

F3'H AT5G07990 CLS_S3_Contig9541 F3'H  3 

F7ORT AT1G06000  CLS_S3_Contig7415 UDP-glucoronosyl/UDP-glucosyl transferase family protein  NA 

FLS1 AT5G08640 CLS_S3_Contig4920 FLS  2 

FLS2 AT5G63580 CLS_S3_Contig4920 FLS  2 

FLS3 AT5G63590  CLS_S3_Contig4920 FLS  2 

FLS4 AT5G63595  CLS_S3_Contig4920 FLS  2 

FLS5 AT5G63600  CLS_S3_Contig4920 FLS  2 

FLS6 AT5G43935 CLS_S3_Contig4920 FLS  2 

FSI/FS2 / / /  NA 

GST AT5G17220 CLS_S3_Contig2862 GST  2 

I2_H / / /  NA 

IFR AT1G75280 CLS_S3_Contig11204 IFR  4 

IFS / / /  NA 

LAR / / /  NA 

LCR/LAR / / /  NA 

LDOX/ANS AT4G22880  CLS_S3_Contig4920 FLS  NA 

MYB3 AT1G22640 CLS_S3_Contig10237 MYB4  NA 

http://www.arabidopsis.org/servlets/TairObject?id=29351&type=locus
http://www.arabidopsis.org/servlets/TairObject?type=gene&id=30418
http://www.arabidopsis.org/servlets/TairObject?id=27053&type=locus
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Table 7.8. continued. 

Gene 

annotation 
Locus Contig from assembly Reciprocal blast protein 

Suitable for 

candidate gene  
No. 

introns 

MYB4 AT4G38620 CLS_S3_Contig10237 MYB4  1 

OMT1 AT5G54160  CLS_S3_Contig7929 OMT1  3 

PAL1 AT2G37040  CLS_S3_Contig2068 PAL2  1 

PAL2 AT3G53260  CLS_S3_Contig2068 PAL2  1 

PAL3 AT5G04230  CLS_S3_Contig2068 PAL2  1 

PAL4 AT3G10340  CLS_S3_Contig2068 PAL2  1 

PAP1 AT1G56650 CLSS2363.b1_E15.ab1 PAP2  NA 

PAP2 AT1G66390 CLSS2363.b1_E15.ab1 PAP2  2 

PPO AT5G48100  CLS_S3_Contig4395 PPO  4 

TT1 AT1G34790 CLSM13222.b1_L17.ab1 JKD  NA 

TT12 AT3G59030 CLS_S3_Contig7142 MATE efflux family protein  NA 

TT14/TT19 AT5G17220 CLS_S3_Contig2862 GST  NA 

TT15 / / /  NA 

TT16 AT5G23260 CLS_S3_Contig4782 AP1  NA 

TT2 AT5G35550   CLS_S3_Contig1853 MYB111  NA 

TT8 AT4G09820 CLS_S3_Contig2106 MYC2  NA 

TTG1 AT5G24520 CLS_S3_Contig4839 TTG1  0 

TTG2 AT2G37260 CLS_S3_Contig4165 WRKY33  NA 

UF3GT/3GT AT5G54060 CLSM17476.b1_G02.ab1 glycosyltransferase family protein  NA 

VR / / /  NA 

http://www.arabidopsis.org/servlets/TairObject?id=29514&type=locus
http://www.arabidopsis.org/servlets/TairObject?type=gene&id=28195
http://www.arabidopsis.org/servlets/TairObject?id=36205&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=133655&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=136515&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=127104&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=131897&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=32935&type=locus
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SNP detection  

Of the 17 candidate genes, 2 of these had no introns (4CL1 and Transparent testa 

glabra 1 (TTG1)) so primers were designed for the entire sequence (see table 7.9).  

For the remaining candidate genes, primers were designed around each intron.  Most 

primers were designed to include a single intron within a small product (250-300 bp), 

however when they were close together they were included within a primer pair (see 

table 7.8 and 7.6).  Of the 40 primer pairs, 8 did not produce PCR products for 

Saladin and Iceberg.  However, there were still alternative primers for each gene (see 

table 7.9).  All PCR products were then run on an SSCP gel.  Of the PCR products 

for 32 primer pairs, 13 produced polymorphic bands between Saladin and Iceberg.  

Some of these were for the same gene which resulted in 10 candidate genes for 

analysis (AR2), Chalcone isomerise (CHI), Chalcone synthase (CHS), 

Hydroxycinnamoyl-coa shikimate transferase (COA), Flavanone 3-hydroxylase 

(F3H), Flavanone 3‘-hydroxylase (F3‘H), Glutathione S-transferase (GST), 

Isoflavone reductase (IFR), Polyphenol oxidase (PPO) and 4CL1. 

For the primers that produced a PCR product that was not polymorphic between 

Saladin and Iceberg on an SSCP gel, products were sequenced.  Polymorphisms were 

found for Cytochrome P450 (CYP98A3) and PAL2 (see table 7.10.).  Monomorphic 

sequence was confirmed between the parental lines for O-methyltransferase (OMT) 

(primer pairs 1 and 2) and PAP2 (primer pair 2).  The other sequences were not 

reproducible.    
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Table 7.9. Candidate gene primers and PCR product information for agarose and SSCP gel. 

Forward 

primer 
Sequence 

Reverse 

primer 
Sequence 

Estimated 

product 

size 

Introns 

included 

PCR 

product 

SSCP 

polymorphism 

AR2_f1 TTTTCTTCGGAACGCAGACT AR2_r1 AGTTGGCTCACCATCTCCAT 203 521, 582, 659  

AR2_f2 TACGCTGTTGATGACGAGGA AR2_r2 CCTGATCTGCAAGACCATCA 247 659, 717, 801  

AR2_f3 TGATGGTCTTGCAGATCAGG AR2_r3 ATCTGCATGGATGTTGAGCA 278 838, 908  

AR2_f4 TGCTCAACATCCATGCAGAT AR2_r4 AATGAGGATCCAGCATTTGG 261 110, 1193  

AR2_f5 ACACCAAATGCTGGATCCTC AR2_r5 AAGTGGAGGTTTGGCTGATG 267 1416, 1501  

AR2_f6 CATCAGCCAAACCTCCACTT AR2_r6 CAGGCCCAATCATGATAACC 285 1652, 1749  

AR2_f7 GTCCCGGTTATCATGATTGG AR2_r7 ATACGCTCCCTCAGAAAGCA 300 1977, 2100  

CHI_f1 AATCCGTCGTATTTCCACCA CHI_r1 CAGCAGCAGTTTTTCCCTTC 186 166  

CHI_f2 AAGGGAAAAACTGCTGCTGA CHI_r2 CAAACACCAACGCACATTTC 155 323  

CHI_f3 GAAATGTGCGTTGGTGTTTG CHI_r3 TGCCCCAATTTCTCATTCTC 221 546  

CHS_f AGAGAAGTTCCAGCGCATGT CHS_r GGGGACTTCGACAACTACCA 151 265  

COA_f CCCTTTGCTGGTCGATTAAG COA_r AATCCATCGGCGAGAGTATG 272 524  

CYP98A3_f1 AAGGATTTGATCTGGGCTGA CYP98A3_r1 CGCTTCCCAAATGTCAATCT 248 1107  

CYP98A3_f2 CCTTAGCGACGACACAATCA CYP98A3_r2 GTTTGCATTGGCTTTGTGTG 277 1503  

F3H_f1 ATCTCGTAGGGCGGAGATTT F3H_r1 TATCGGGCCACCTTGAGTAG 296 416  

F3H_f2 GATGGTGGCAAGAGTTGGA F3H_r2 ATGGATAGCCGACTGGTTGT 148 844  

F3H_f3 AAATCTCGTAGGGCGGAGAT F3H_r3 TATCGGGCCACCTTGAGTAG 298 416  

F3H_f4 CCTCAACCCGATCTCACATT F3H_r4 ATGGATAGCCGACTGGTTGT 247 844  

F3'H_f1 TGCTCAGTGCACCTGTTTTC F3'H_r1 GAATTCTCCGGCTAACACCA 267 508  

F3'H_f2 AGAGGGAGGGAAGCTTTCAG F3'H_r2 CCATTTCTTGTTGGGCTTGT 152 950  

F3'H_f3 ACAAGCCCAACAAGAAATGG F3'H_r3 AAGGAGAGTGGTGTGGATGG 135 1120  
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Table 7.9. continued. 

Forward 

primer 
Sequence 

Reverse 

primer 
Sequence 

Product 

size 

Introns 

included 

PCR 

product 

SSCP 

polymorphism 

FLS_f1 ATAGGGTTTGGCCACCTTCT FLS_r1 GAGGTACAACCCCAAGAGCA 258 478  

FLS_f2 TGCTCTTGGGGTTGTACCTC FLS_r2 TTGGTCCGACCTCAAACTCT 272 807  

GST_f TCCCGAGTTCCTGAAGTTACA GST_r  GCCTCGACTTCTAGCCATTG 260 292/340  

IFR_f1/2 AAGTCCGGCCATCCTACTTT 
IFR_r1 TGTGTGACCTACCGTGGAGA 186 284  

IFR_r2 GATCCACATCGTTTCCGAAC 280 417  

IFR_f3 CTGGCTATTTCCTCCCAACA IFR_r3 CCGATCTTCTTCTCCCACAA 238 654  

IFR_f4 GACGGAAATGCAAAAGTGGT IFR_r4 CGTTCAACGGAACTGGAGAT 241 855  

OMT_f1 CGCCTCTCCTGCTTATGAAC OMT_r1 GGCCATTGAACCCATCATAC 228 492  

OMT_f2 ATTTTGATTTGCCCCATGTC OMT_r2 ATTCGGCCACAATCACTTTC 207 803  

OMT_f3 ATGTTGGTGGGGACATGTTT OMT_r3 ATTCGGCCACAATCACTTTC 153 869  

PAL2_f CTCCACCCCTCAAGATTCTG PAL2_r GCGATTCTTACACCCTCGAC 254 1402  

PAP2_f1/2 GCATGGACTGCTGATGAAGA 
PAP2_r1 TTCTCCCCGCTATCAATGAC 241 249  

PAP2_r2 CATTGGCAGTTCTTCCAGGT 262 379  

PPO_f1 TCCATTCACAAGCTGCTGTC PPO_r1 ATCGGAAAGCAAAACCCTTT 299 243  

PPO_f2 TCCATTCACAAGCTGCTGTC PPO_r2 ATCGGAAAGCAAAACCCTTT 299 393  

PPO_f3 ATGAAGAGGGGACATTGTGG PPO_r3 ACCAGGCTGACCGTTGATAG 242 635  

PPO_f4 CTATCAACGGTCAGCCTGGT PPO_r4 GGAGGAGGTCTAGGGTTTGG 237 762  

TTG1_f TTCTACCACCACCGTCTTCC TTG1_r AAAGCAATGGCAATCCAATC 1034 /  

4CL1_f CCGACGCCTATTTCTCTCTC 4CL1_r CCACCAATTCCTCGTTGTTC 912 /  
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Table 7.10.  SNPs in candidate genes for the phenylpropanoid pathway.  Where number following 

_ refers to primer pair numbers. 

Gene SNP position 

CYP98A3_1 291, 386 

CYP98A3_2 283 

PAL2 50-51, 93, 115 

 

SNP mapping 

The Saladin x Iceberg RILs were screened with primers for candidate genes GST and 

PPO, and the markers were mapped as described in Chapter 4.  GST mapped on LG 

7 as on the MCB10_10NR map and to its estimated position at 8.9 cM.  GST also co-

located with markers BAIJ-OP4 and BAAZ-OP4 (see figure 7.4).  The marker for 

GST mapped in a ‗hot spot‘ for discolouration QTL (1.7 – 54.2 cM) (identified in 

Chapter 5).  It did not extend the length of the group and all other characteristics of 

the LG and map remained constant; the average loci interval of LG 7 and the map 

respectively was still 1.1 cM and 2.4 cM.  The marker did not show segregation 

distortion (X
2

[2]=2.07.)  PPO did not map on LG 9b as expected, as there was not 

enough linkage between the few markers on that LG.  The marker for PPO showed 

highly significant (***P <0.001) segregation distortion (X
2

[2]=38.83). 
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Figure 7.5.  Candidate genes and QTL impacting on post harvest discolouration of lettuce tissue 

from the Saladin x Iceberg RIL population.   Green bars represent candidate gene placed positions.  

Red marker and arrow represents mapped marker.  Number after _ refers to number of gene positions 

for a candidate gene.  Where a and b represent the potential area for candidate gene to map which is 

split across component linkage groups.  Full colour blocks represent QTL.  Where Br (browning); 

Pink (pinking); Dis (overall discolouration).  Number after discolouration parameter refers to QTL 

number for that specific trait.
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Figure 7.5.  continued. 
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Figure 7.5.  continued. 

 

Comparative studies of the MCB19_10NR_map with the Sal x Ice map allowed map 

positions of candidate genes to be estimated (see table 7.11. and 7.9. and figure 7.5.).  

The MCB19_10NR_map was searched for the contig/EST from the assembly for the 
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associated candidate gene (see table 7.11.)  and the Arabidopsis locus (see table 

7.12.).  Contig/EST data was then cross-referenced to identify markers and their 

positions on the MCB19_10NR_map, and if any of these were present in the Sal x 

Ice map.  Some candidate genes were placed to an exact position on the Sal x Ice 

map, while for other genes only a position within an area on the map could be 

identified (see figure 7.5.). 

Table 7.11. Candidate gene map positions for the phenylpropanoid pathway on map 

MCB19_10NR_map based on contig.  Where LG (linkage group). 

Gene 

annotation 
Contig from assembly LG Order 

Origin 

marker code 

Gene for contig 

from map 

4CL1 CLS_S3_Contig7103 4 
1064, 1065, 

1083 
BHER 4CL 

AR2 CLS_S3_Contig7982 8 1739, 1740 BIPX AR2 

CYP98A3 CLS_S3_Contig1544 4 2604 AYFM CYP98A3 

F3H CLS_S3_Contig3385 3 1135, 1136 BBEO F3H 

FLS CLS_S3_Contig4920 8 887, 916 BDRC FLS 

PPO CLS_S3_Contig4395 9 1015 BCUX PPO 
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Table 7.12. Candidate gene map positions for the phenylpropanoid pathway on map MCB19_10NR_map based on locus.  Where LG (linkage group); order (marker 

order number on map). 

Gene 

annotation 
Locus Contig from map LG Order 

Origin marker 

code 
Gene for contig from map 

AR1 AT4G24520 CLSZ1307.b1_F15.ab1 7 813, 815, 819, 821, 822, 823 AUOP 
NADPH-ferrihemoprotein reductase (NADPH-cytochrome 

p450 reductase) 

CHS AT5G13930 CLSM403.b2_E05.ab1 4 
2124, 2125, 2136, 2139, 2140, 

2147, 2157, 2158, 2159 
ALBH CHS 

COA AT5G48930 QGC3a03.yg.ab1 4 1090 BVIT anthranilate N-hydroxycinnamoyl/benzoyltransferase family 

  
QGA10I08.yg.ab1 4 1123 BQHX anthranilate N-hydroxycinnamoyl/benzoyltransferase family 

  
CLS_S3_Contig8847 5 137 BKAJ anthranilate N-hydroxycinnamoyl/benzoyltransferase family 

  
CLS_S3_Contig6733 7 732 BGOW anthranilate N-hydroxycinnamoyl/benzoyltransferase family 

  
CLSZ1823.b1_M24.ab1 7 738 AURU anthranilate N-hydroxycinnamoyl/benzoyltransferase family 

CYP98A3 AT2G40890 CLS_S3_Contig186 5 963 AYSM CYP98A3 

F3'H AT5G07990 QGC7D22.yg.ab1 5 257, 258 BVNU F3'H and F3'5'H 

F7ORT AT1G06000  QGB12K08.yg.ab1 1 2028 BRYX glycosyltransferase family  

IFR AT1G75280 CLSY3307.b1_E12.ab1 1 1950, 1952, 1959, 1960 ATEW IFR 

  
CLSM11379.b2_E14.ab1 4 

2027, 2048, 2078, 2086, 2094, 

2095 
AHOL IFR 

PAL AT2G37040  CLSL2456.b1_P13.ab1 2 2243, 2250, 2255 AHDU PAL1 

  
CLS_S3_Contig2329 6 402, 405, 406, 407, 409 AZME PAL1 

PAP2 AT1G66390 CLSS6254.b1_L03.ab1 3 1270, 1271, 1272, 1273 APZN myb family transcription factor  

TT8 AT4G09820 QGG26L04.yg.ab1 5 2974 BZKG bHLH protein 

TTG2 AT2G37260 CLLX3544.b1_O21.ab1 4 633 AALQ WRKY family transcription factor 

http://www.arabidopsis.org/servlets/TairObject?id=127580&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=131950&type=locus
http://www.arabidopsis.org/servlets/TairObject?type=gene&id=30418
http://www.arabidopsis.org/servlets/TairObject?id=127104&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=32935&type=locus
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7.4. Discussion 

 

Metabolite levels in food are becoming increasingly important in today‘s market of 

health and ‗superfoods‘.  Natural antioxidants, principally phenolic substances, are 

thought to have both nutraceutical and health benefits (Fan et al. 2007; Siddhuraju 

and Becker 2007).  Epidemiological studies have also revealed an inverse 

relationship between flavonoid dietary intake (resulting from the phenylpropanoid 

pathway) and the risk of some cancers and coronary heart disease (Duthie and 

Crozier 2000; Puupponen-Pimia et al. 2001; Hung et al. 2004; Tripoli et al. 2007).  

In addition, changes in these compounds may alter the plant‘s defence against pest 

and diseases.  It is therefore important to monitor any affect on the metabolome that 

may occur when breeding for new varieties with improved phenotypes.   

All lines showed similar PAL activity on harvest day; however activity generally 

increased across days at different rates (rank positions within the distribution of lines 

across days were reflected to differing rates of discolouration), (with the exception of 

LB 5055 and LD 5002 which showed a decrease in PAL activity across days).  PAL 

activity on day 4 was positively correlated with browning (intensity and extent) and 

overall discolouration (intensity) on days 1 and 2 post harvest (see table 7.12.).  An 

increase in post harvest discolouration would be expected for RILs with higher PAL 

activity as PAL is the rate limiting enzyme of the pathway controlling the flux of 

substrates into the pathway, thus affecting the degree of post harvest discolouration 

(Wanner et al. 1995).  PAL activity on day 4 was also negatively correlated with 

TPC on harvest day (see table 7.12) which would confirm that as PAL activity 

increases total phenolics decrease, as the plant contains a finite amount of substrate 
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for the biosynthesis of polyphenols which are metabolised through the 

phenylpropanoid pathway.  PAL activity has previously been shown to affect post 

harvest browning of cut salads (Clifford et al. 2001).  The level of browning and 

overall discolouration observed in the field trials was related to an increased PAL 

activity, which would suggest that the level of discolouration of a line is under 

genetic control and is influenced by the availability of phenolic substrates for the 

phenylpropanoid pathway following tissue wounding.  The relationship between 

discolouration and PAL activity, coupled with increased PAL transcripts observed in 

Nicotiana following wounding, supports the idea that an effective control of post 

harvest discolouration could be manipulated or controlled for reduced polyphenol 

biosynthesis (Fukasawa-Akada et al. 1996; Hisaminato et al. 2001).  The first gene 

copy of PAL1 (PAL_1) was placed to an estimated position (using comparative 

genomics) on LG 2 (64.5-80.1 cM) of the Sal x Ice map, which was close to Br1 (see 

figure 7.5.).  The second gene copy of PAL1 (PAL_2) was placed on LG 6a (4.6-5.8 

cM), which co-located with Br7, providing initial evidence that these genes may 

underlie the two QTL.   

All lines of the subset showed similar PPO activity on harvest day; however, activity 

generally increased across days at different rates.  PPO activity on day 4 was 

positively correlated with overall discolouration (intensity) on day 3 (see table 8.10).  

PPO oxidises phenolic substrates from the phenylpropanoid pathway, which leads to 

the development of coloured pigments causing discolouration spoilage (Joslin and 

Pointing 1951; Zawistowski et al. 1991; Martinez and Whitaker 1995; Solomon et al. 

1996; Lopez-Galvez et al. 1996; Toivonen and Brummell 2008; Van Vliet et al. 

2009).  PPO is reported to be positioned on LG 9b (RW Michelmore personal 

communication) which also contains a QTL for pinking (Pink9), however as there is 
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only a small number of markers on this group it was hard to define its position in the 

Sal x Ice map (see figure 7.5.).  PPO is compartmentalised and thus always present in 

cells at supraoptimal levels and released upon cell damage (Degl‘Innocenti et al. 

2005; Toivonen and Brummell 2008).  It has been suggested that the degree of 

discolouration observed is due to substrate availability (driven by PAL activity) 

rather than PPO activity (Vaughn et al. 1988; Clifford et al. 2001).  The absence of 

correlations between discolouration phenotypes and PPO activity and the presence of 

correlations with PAL activity supports this. 

Other candidate genes thought to be involved in the discolouration were also 

investigated for polymorphisms between the mapping parents, with the aim to see if 

they could explain the genetic basis of the discolouration QTL.  

GST was mapped on the Sal x Ice linkage map to LG 7 at 8.86 cM.  This was in a hot 

spot region for 7 discolouration QTL (Pink4, Pink5, Pink6, Br8, Br9, Br10 and 

Dis2).  GST has been shown to be involved in the accumulation of both anthocyanins 

and proanthocyanidins.  Arabidopsis mutants lacking GST (TT19) have displayed no 

pigments on leaves and stems (Kitamura et al. 2004).  Potential map positions for 

genes AR1, COA_4 and COA_5 were also identified in this region co locating with 

Br9 (35.3–38.7 cM).  AR controls the conversion of 3-OH-anthocyanins to epi-

flavan-3-ols that upon condensation become condensed tanins, which are the 

precursors to post harvest browning (see figure 1.2.) (Lepiniec et al. 2008).  COA 

synthesises substrates for the phenylpropanoid pathway that influences the 

accumulation of flavonoids (Li et al. 2010).  The potential co-location of these many 

candidate genes with Br9 and close proximity to other discolouration QTL suggests 

that the candidate genes could be the genetic basis controlling the QTL and hence the 

phenotype. 
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Seven candidate genes were identified as being positioned on LG 4 (4 on LG 4a and 

3 on LG 4b).  The potential map position of TTG2 was located on LG 4a (12.3-18.9 

cM) which was loosely clustered with Pink2, Br3 and Br4.  TTG2 has been shown to 

be involved in proanthocyanidin synthesis.  Arabidopsis mutants have displayed loss 

of seed pigmentation due to loss of tannin accumulation (Smyth et al. 2002).  This 

reaction also results in post harvest browning in vegetative tissue (Lopez-Galvez et 

al. 1996).  COA_1, COA_2 and 4CL1 were positioned on LG 4a (71-79.9 cM), co-

locating with Pink3 (78.5-79.9 cM) and close to Br5.  COA has been shown to 

synthesise substrates for the pathway (as above (Li et al. 2010)) as does 4CL1, which 

both indirectly regulate production of post harvest discolouration pigments (see 

figure 1.2. and appendix E).  The positions of IFR_2, CHS and CYP98A3_1 were 

co-located on LG 4b (70.3-107.4 cM).  IFR is involved in isoflavonoid production 

while CYP98A3 is involved in flavonoid biosynthesis; both occur via a side branch 

of the main pathway (see figure 1.2.).  CHS is one of the first enzymes involved in 

the pathway and therefore could indirectly affect the activity of IFR and CYP98A3. 

Four candidate genes (COA_3, F3‘H, CYP98A3 and TT8) were placed on LG 5.  

F3‘H and CYP98A3 could occur somewhere over two component linkage groups (5 

a and b).   F3‘H, CYP98A3 and COA_3 are tightly clustered between 2 

discolouration QTL (Dis1 and Br6).  COA, F3‘H and CYP98A3 function at the same 

level of the pathway but on different branches; all regulating flavonoid biosynthesis 

(see above and figure 1.2.). 

PAP2 and F3H were placed on LG 3b (28.3-43.6 cM) and were loosely clustered 

with Pink1.  PAP2 is involved in the production of anthocyanin pigments while F3H 

converts flavanones to 3‘-OH-flavanones; both genes function at the start of the 

phenylpropanoid pathway and indirectly affect the level of discolouration. 
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FLS and AR2 were positioned on LG 8 (100.6-104.2 cM) which co-locates with 

Pink8.    FLS controls the conversion of dihydroflavonols to flavonols that occurs 

upstream of AR on the same branch of the pathway leading to condensed tannins, 

which eventually become the discolouration pigments (see figure 1.2.) (Lepiniec et 

al. 2008).   

The candidate genes IFR and F7ORT were both placed on the map by a comparative 

approach on LG 1 at 2.33 cM and are thought to respectively affect isoflavonoid and 

flavonol production.  These genes could not be placed in the region of any 

discolouration QTL, however LG 1b is small (9.4 cM) and with extension of group 

length QTL could be discovered; as QTL identified only accounts for a proportion of 

genetic variation and polymorphism may not translate to a phenotypic effect. 

By using direct genetic analysis and comparative genomics this study has gone some 

way to explain the genetic basis of QTL causing the discolouration phenotypes 

observed in the Sal x Ice RIL population.  However further research is needed to 

investigate the roles of candidate genes (particularly PAL and PPO) and their 

relationship to the QTL identified in chapter 5 and the desired phenotype for new 

lettuce varieties.  Markers could then be developed to select for optimal PAL and/or 

PPO activities to give the desired phenotype. 
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7.5. Conclusions 

 

 Significant variation in levels of metabolites related to post harvest 

discolouration has been observed in RILs from the extreme discolouration 

RIL subset. 

o Significant variation was recorded for PAL on day 4 post harvest and 

for the differences in PAL activities across days. 

o Significant variation was recorded for PPO on day 4 post harvest. 

o Significant variation was recorded for TPC on harvest day, day 4 post 

harvest and for the differences in TPCs across days. 

 Polymorphisms between the mapping parents Saladin and Iceberg have been 

identified for 12 candidate genes involved in post harvest discolouration 

including, AR2, CHI, CHS, COA, CYP98A3, F3H, F3‘H, GST, IFR, PAL, 

PPO and 4CL1. 

 Three candidate genes (GST, IFR and F7ORT) have been mapped on the Sal 

x Ice linkage map. 

 Potential map positions of 20 candidate genes and/or gene copies have been 

identified on the Sal x Ice linkage map by comparative genomics for AR1, 

AR2, CHS, COA, CYP98A3, F3H, F3‘H, FLS, PAL, PAP2, PPO, TT8,  

TTG2 and 4CL. 

 Several candidate genes are positioned in the same map area as QTL for post 

harvest discolouration identified in Chapter 5, providing initial evidence that 

they may be the underlying genetic basis for the QTL. 
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CHAPTER 8 

 

 

Assessing induced genetic variation for post harvest 

discolouration 
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8.1. Introduction 

 

The forward genetics approach embraces various means of identifying a single or 

sets of genes which are responsible for a particular phenotype.  Rijk Zwaan, a world 

leading company in breeding and supplying vegetable seed for commercial 

cultivation, has developed mutants from various lettuce cultivars (via random 

mutagenesis using EMS (ethylmethane sulphonate)) which have produced offspring 

displaying reduced post harvest discolouration (JW Schut personal communication).  

However the genetic basis of these interesting and potentially beneficial phenotypes 

is unknown.  A first step in gaining information about the genetic changes brought in 

these mutant lines is to analyse the post harvest discolouration phenotype and the 

level of key metabolites in the phenylpropanoid pathway associated with the 

discolouration response, in order to attempt to identify lesions in the pathway which 

may indicate mutations in genes controlling the biosynthesis of these metabolites. 

The aims of this experiment were to 

 Demonstrate phenotypic variation for post harvest discolouration in mutant 

lines. 

 Associate variation in metabolite levels to post harvest discolouration in the 

mutant lines. 
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8.2. Material and methods 

 

8.2.1. Rijk Zwaan discolouration mutants and wild type 

Dr Johan Schut, from the Rijk Zwaan breeding station in Fijnaart, Netherlands 

supplied two ‗discolouration mutants‘.  Mutant genotype ‗TroubaLessOxida‘ has 

reportedly shown resistance to pinking post processing and was developed from wild 

type variety Troubadour 4250, which was also provided as a control.  Mutant 

09R.9511 has reportedly shown resistance to browning post processing, however as 

the original parent was an individual F2 plant with parents Silvinas and Bedford 

(common outdoor iceberg lettuce varieties) which were not available for these 

experiments; the iceberg variety Saladin was used for comparisons as this is the 

pedigree of both of these lines. 

The cv. Iceberg and the gene bank accession L. serriola 03050 were also included in 

some experiments.  These are parents with Saladin of the WHRI and the UC Davis 

mapping population respectively.  However the aim of these experiments was to 

investigate the mutants by comparing them with wild type controls and this is the 

focus of this chapter; discussion of the natural variation between Iceberg and Saladin 

was covered in Chapter 7. 

 

8.2.2. Leaf disc trial 

The 6 lines were assessed during autumn 2008 and 2009.  Three seeds of each line 

were planted in 5 inch pots into Levington M2 compost.  Germination occurred 

under cool glasshouse conditions at ambient temperature in a genotype grouped 
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arrangement.  Seedlings were subjected to glasshouse raising conditions as described 

(see section 2.2.1.).  The 5
th

, 10
th

, 15
th

 and 20
th

 leaf (in emergence order) was 

removed from each plant when fully expanded to provide 8 x 5mm leaf disc samples 

(avoiding all major veins and leaf tip).   

Leaf discs were cut from each leaf with a sterile cork borer avoiding all major veins 

and the leaf tip/edges.  Four leaf discs were placed between 90 mm filter papers 

(Whatman® Schleicher & Schuell qualitative circles, catalogue number 1001 090, 

Whatman International Ltd) saturated in 50 mM MES (2-(N-morpholino) 

ethanesulfonic acid) buffer solution at pH 5.8 in parafilm sealed or unsealed Petri 

dishes (see figure 8.1.).  The leaf orientation remained constant with the upper leaf 

surface facing down.  Samples were stored at 4°C with the discolouration at wound 

surface position on the underside of the filter paper scored daily until day 10.  

 
 

Figure 8.1. Example of lettuce leaf discs between 50 mM mes buffer soaked filter paper in sealed 

Petri dishes. 

On each assessment date (days 1 through to 10) Petri dishes were removed from 

storage and arranged under a halogen light source for assessment.  The intensity of 

pinking was scored as 3 categories including visible, slight and severe (see figure 

8.2.).  When no discolouration was recorded, data was classified as clean.  The 

spread of discolouration onto the filter paper was split into 5 categories spanning 0.5 
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mm until 2.5 mm.  There was a small amount of browning however it was not 

possible to score it in a meaningful way. 

Visible pink / 1 Slight pink / 2 Severe pink / 3 

   

 

Figure 8.2. Discolouration scale for leaf disc pinking.   

Each leaf disc was given a single score as a discolouration coordinate of its most 

intense representation and spread, resulting in 4 tallies per score sheet per Petri dish 

on each assessment day (see table 8.1.). 

Table 8.1. Sample score grid for a single Petri dish representing the discolouration.  Where / 

represents discs impossible to score.  Italicised text is output score. 

   
Discolouration Intensity 

(PINK) 

S
p

re
a

d
 

  
Clean Visible Slight Severe 

  
0 1 2 3 

0 ≤ 0.5 mm 0 0 10 20 30 

0.5 ≤ 1 mm 1 / 11 21 31 

1 ≤ 1.5 mm 2 / 12 22 32 

1.5 ≤ 2 mm 3 / 13 23 33 

2 ≤ 2.5 mm 4 / 14 24 34 

 

8.2.3. Field trial 

The mutant TroubaLessOxida and wild type Troubadour 4250 were grown in the 

replicated field trial with the F7 RIL mapping population (09R.9511 was not 

available at this time) for the use in the assessment of post harvest discolouration 

during the 2008 growing season on the UK experimental site Big Cherry, Warwick 

HRI, Wellesbourne (Latitude: 52.183.  Longitude: 1.583) and the Netherlands 
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experimental site at Rijk Zwaan breeding station, Fijnaart (Latitude: 51.633.  

Longitude: 4.467).  Transplants were raised, maintained, harvested, processed and 

scored as previously described (as section 5.2.1.). 

 

8.2.4. Glasshouse trial 

The 6 lines were grown for phenotypic post harvest discolouration assessment (see 

figure 8.3.).  Plants were grown during the 2009 autumn to 2010 spring period in 

glasshouse 16 compartment 46 at Warwick HRI, UK (Latitude: 52.183.  Longitude: 

1.583).  The trial was designed in a Latin square with a 6 x 6 single plant 

randomisation (with 2 replicates separated by 3 months), ensuring that each 

accession occurred equally in each row and in each column (see appendix F for field 

plan and randomisation).  The reps were planted on 1
st
 September 2009 and 14

th
 

January 2010.  Seeds were sown in 5 inch pots into Levington M2 compost with 40 

mm spacers between plots.  Germination and plant raising took place in the 

glasshouse compartment with plants arranged according to the randomisation.  Plants 

were subjected to the ‗natural‘ day cycle, temperature and light threshold of the 

compartment.  Plants were predominantly watered with tap water at the base by hand 

when needed (following an initial watering upon sowing with liquid feed Vitax 2:1:4 

on tap (where the concentrated feed was diluted to 1:200)).  Harvests occurred on 

14
th

 December 2009, 4
th

 January, 11
th

 January and 19
th

 April 2010 with all accessions 

of a similar type being harvested together across replicates upon maturity.  
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Figure 8.3. Lettuce wild types and discolouration mutant lines at Warwick HRI, 

UK in 2009. 

Heads were harvested and processed as described (section 2.2.2.).  Approximately 

50g unwashed mixed material was sealed per bag with material from one head filling 

one bag.  Bags were stored vertically at 5C (see figure 2.3.).  Bags were then 

phenotypically assessed for post harvest discolouration as previously described 

(section 2.2.3. with amendments as described in section 5.2.2.) on days 1, 2, 3 and 4. 

 

8.2.5. Metabolite analysis 

When material was harvested from the first rep of the glasshouse trial for bagged 

phenotypic assessment, tissue was also harvested for metabolite analysis (see section 

2.3.1.).  Extraction and identification for PAL activity, PPO activity and total 

phenolic content was as previously described (see sections 2.3.1. and 2.3.2.).    

 

8.2.6. Statistical analysis 

ANOVA analysis 

The leaf disc data was transformed to counts for each eventuality given in table 8.1. 

based on the restrictions within the scoring system.  Data were analysed using 
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general ANOVA for severity and spread for main effects (line, leaf number, day and 

condition) and all possible interactions. 

Data from each metabolite analysis were analysed using general ANOVA with 

comparison contrasts (Troubadour 4250 v TroubaLessOxida and Saladin v 

09R.0511).  Metabolite activity was analysed by day and for differences across days 

for 5 lines (L. serriola 03050 was excluded due to limited amounts of leaf material) 

and between comparison contrasts to identify main effects due to genotype. 

REML analysis 

The data from the field trial of the pinking mutant and wild type exhibited a variable 

mean relationship so it was transformed before analysis as described previously 

(section 5.2.5.).  As the field trial produced an unbalanced data set, it was analysed 

by REML.  The REML fixed treatment was day*GT for site with the random 

variables browning intensity, pinking intensity, overall discolouration intensity, 

extent of browning, extent of pinking, extent of overall discolouration for days 1 and 

3.  Scores were adjusted through the REML analysis to adjust for block effects which 

in some cases could result in negative values for the estimated means (this could also 

occur with estimates for missing values).  Standard errors of differences of means 

(sems) were also calculated. 

Data for the glasshouse trial of the mutant subset also revealed a variable mean 

relationship and was transformed before analysis as above.  The REML fixed 

treatment was rep/bed/plot/head/bag, with the random variables browning intensity, 

pinking intensity, overall discolouration intensity, extent of browning, extent of 

pinking, extent of overall discolouration for days 1, 2, 3 and 4.  As above, scores 

were adjusted through the REML analysis.  
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Correlation analysis 

Correlation coefficients were calculated for all pair wise combinations of 

discolouration measures, morphological traits and metabolite levels (browning, 

pinking and overall discolouration, PAL activity, PPO activity and total phenolic 

content and between them and morphological traits (trimmed weight)).  R values 

were generated which were then compared to the associated p values (see table 8.2.).  

Table 8.2. Correlation analysis parameters.  Where df (degrees of freedom). 

  Probability (p value) 

Population df 0.05 0.01 0.001 

Wild type and mutant lines  4 0.811 0.917 0.974 

 

8.3. Results 

 

8.3.1. Phenotypic variation for post harvest discolouration in mutant lines. 

Leaf disc assessment   

The ANOVA showed significant variation (***P <0.001) between lines, leaf number 

and days for pinking (for both severity and spread).  A significant interaction (***P 

<0.001) was also recorded between leaf number, line and day for pinking (severity 

and spread) confirming genetic variation for this trait (see table 8.3. a, figure 8.4. (a-

f) and figure 8.5. (a-f)).  There were also significant interactions (**P <0.005) 

between line and leaf number with condition across days for pinking spread. 
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Table 8.3. Mean pinking (severity and spread) of lettuce lines for the 5
th

, 10
th

, 15
th

 and 20
th

 leaf 

over 10 days.  Significant effects shown as *P <0.05, **P <0.01 and ***P <0.001.  Where no 

(number), condition (sealed or non sealed samples); x (interaction); df (degrees of freedom); vr 

(variance ratio); prob (probability). 

 
Pinking severity Pinking spread 

Variation df Vr 
ANOVA 

F prob 
df vr 

ANOVA 

F prob 

Line 5 130.02 ***<.001 5 170.63 ***<.001 

Leaf no 3 9.54 ***<.001 3 7.91 ***<.001 

Line  x Leaf no 15 3.16 **0.003 15 7.45 ***<.001 

Condition 1 1.39 0.245 1 3.65 0.063 

Line  x Condition 5 0.26 0.931 5 0.46 0.803 

Leaf no  x Condition 3 1.48 0.232 3 1.85 0.152 

Line  x Leaf no  x Condition 14 0.92 0.541 14 0.55 0.887 

Day no 9 407.08 ***<.001 9 591.43 ***<.001 

Line  x Day no 45 39.5 ***<.001 45 57.73 ***<.001 

Leaf no  x Day no 27 5.44 ***<.001 27 3.89 ***<.001 

Condition  x Day no 9 0.44 0.915 9 1.5 0.144 

Line  x Leaf no  x Day no 133 2.84 ***<.001 133 3.01 ***<.001 

Line  x Condition  x Day no 45 1.14 0.252 45 1.67 **0.005 

Leaf no  x Condition  x Day no 27 1.04 0.406 27 2.44 ***<.001 

Line  x Leaf no  x Condition  x Day no 124 0.92 0.707 124 0.98 0.533 

 

 

‗Browning mutant‘ 09R.9511 showed similar pinking severity to Saladin for leaf 5 

and leaf 20 (see figure 8.4. c and d).  Pinking severity of leaf 10 remained extremely 

similar to leaf 5 for 09R.9511; there was then a significant drop in the scores for 

pinking severity for leaf 15 followed by a significant rise in pinking severity for leaf 

20.  ‗Pinking mutant‘ TroubaLessOxida showed extremely low levels of pinking 

severity for each leaf (see figure 8.4. b).  TroubaLessOxida showed significantly 

lower levels of pinking severity than the wild type Troubadour 4250 for leaf 5 and 

leaf 10 (see figure 8.4. a and b).   

 ‗Browning mutant‘ 09R.9511 showed a similar response in terms of development of 

both pinking severity and spread (with a significant decrease in scores for pinking 

spread for leaf 15 followed by a significant rise for leaf 20).  This resulted in 

significant differences between 09R.9511 and Saladin for pinking spread for leaves 

5, 10 and 15 (see figure 8.5. c and d).  ‗Pinking mutant‘ TroubaLessOxida showed 
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extremely low levels of pinking spread for each leaf (see figure 8.5. b).  

TroubaLessOxida showed significantly lower levels of pinking severity than the wild 

type Troubadour 4250 for each leaf (see figure 8.5. a and b).   
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Figure 8.4.  Mean pinking severity of lettuce lines for the 5

th
, 10

th
, 15

th
 and 20

th
 leaf (in emergence 

order) for a) Troubadour 4250, b) TroubaLessOxida, c) Saladin, d) 09R.9511, e) Iceberg and f) L. 

serriola 03050.  Error bars represent sems from ANOVA.   
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Figure 8.5.  Mean pinking spread of lettuce lines for the 5

th
, 10

th
, 15

th
 and 20

th
 leaf (in emergence 

order) for a) Troubadour 4250, b) TroubaLessOxida, c) Saladin, d) 09R.9511, e) Iceberg and f) L. 

serriola 03050.  Error bars represent sems from ANOVA.   
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Field trial of pinking mutant and wild type 

Pinking 

REML analysis of the ‗Pinking mutant‘ TroubaLessOxida and wild type variety 

Troubadour 4250 showed significant differences (***P <0.001) between lines for all 

measures of pinking on day 1 and day 3.  The pinking responses demonstrated 

similar trends.  However, extent of pinking always had higher scores than pinking 

intensity for each line per day. 

TroubaLessOxida and Troubadour 4250 were significantly different for pinking 

(both intensity (Wald [33.9] = 200.65) and extent (Wald [32.9] = 136.14)) and for 

pinking across days (intensity (Wald [34.7] = 26.8) and extent (Wald [34.4] = 11.7)), 

indicating genetic variation for this trait (see figure 8.6. a and b).  TroubaLessOxida 

had significantly lower levels of pinking than Troubadour 4250 on day 1 and 3.  

TroubaLessOxida pinking on day 3 (intensity (12.2) and extent (24.3)) was lower 

than pinking for Troubadour 4250 on day 1 (intensity (43.7) and extent (69.4)).   

Browning 

REML analysis of the ‗Pinking mutant‘ TroubaLessOxida and wild type variety 

Troubadour 4250 showed significant differences between lines for all measures of 

browning on day 1.  The browning responses demonstrated similar trends.  However, 

the extent of browning was always relatively higher than browning intensity for each 

accession per day.   

TroubaLessOxida and Troubadour 4250 were significantly different for browning 

intensity (Wald [34.9] = 10.56) and browning across days (both intensity (Wald [35.9] = 

5.38) and extent (Wald [34.4] = 10.45), indicating genetic variation for this trait (see 

figure 8.7. a and b).  TroubaLessOxida had significantly lower levels of browning 
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than Troubadour 4250 on day 1.  However due to varying rates of browning the lines 

revealed similar scores for browning on day 3.     

Overall discolouration 

REML analysis of the ‗Pinking mutant‘ TroubaLessOxida and wild type variety 

Troubadour 4250 revealed significant differences (***P <0.001) between  lines for 

all measures of overall discolouration on day 1 and day 3.  The overall discolouration 

responses demonstrated similar trends however the extent of overall discolouration 

was always higher than overall discolouration intensity for each accession per day 

(as recorded for both pinking and browning).   

TroubaLessOxida and Troubadour 4250 were significantly different for overall 

discolouration (both intensity (Wald [82.83] = 82.83) and extent (Wald [36] = 70.53)) 

and overall discolouration across days (intensity (Wald [28.14] = 28.14) and extent 

(Wald [36] = 17.88), indicating genetic variation for this trait (see figure 8.8. a and b).  

TroubaLessOxida had significantly lower levels of overall discolouration than 

Troubadour 4250 on days 1 and 3.  TroubaLessOxida showed approximately a 

quarter of the amount of overall discolouration intensity showed by Troubadour 4250 

on day 1, and approximately half of that observed on day 3.  The extent of overall 

discolouration for TroubaLessOxida approximately increased twofold from day 1 to 

day 3, however for Troubadour 4250 it increased by ~10 as it was near the possible 

maximum level for the extent of overall discolouration score possible on day 1 which 

it reached by day 3.  TroubaLessOxida overall discolouration intensity on day 3 

(intensity (26.7) and extent (58.8)) was lower than that observed for Troubadour 

4250 on day 1 (intensity (39.8) and extent (80.2)). 
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Significance level of Troubadour 

wild type and pinking mutant 

Pinking intensity 

(msp) 

REML Wald 

Statistic 
ddf 

REML P 

value 

Day 26.8 34.7 ***<0.001 

GT 200.65 33.9 ***<0.001 
 

 

Significance level of Troubadour 

wild type and pinking mutant 

Extent of pinking 

(%p) 

REML Wald 

Statistic 
ddf 

REML P 

value 

Day 11.7 34.4 **0.002 

GT 136.14 32.9 ***<0.001 
 

Figure 8.6.  Transformed adjusted means (from REML) for lettuce post harvest a) pinking intensity and b) extent of pinking on days 1 and 3 for the Rijk Zwaan wild 

type breeding line Troubadour 4250 and respective ‘pinking mutant’ TroubaLessOxida.  Error bars represent seds from REML.  Significant effects shown as *P <0.05, **P 

<0.01 and ***P <0.001.  REML ndf = 1. Where msp (mean score pinking); %p (percentage pinking); ddf (denominator degrees of freedom); ndf (numerator degrees of freedom); 

GT (genotype); x (interaction); Mu (mutant: TroubaLessOxida); WT (wild type: Troubadour 4250).  
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Significance level of Troubadour wild 

type and pinking mutant 

Browning intensity 

(msb) 

REML Wald 

Statistic 
ddf 

REML P 

value 

Day 10.56 34.9 **0.003 

GT 5.38 35.9 *0.026 
 

 

Significance level of Troubadour 

wild type and pinking mutant 

Extent of browning 

(%b) 

REML Wald 

Statistic 
ddf 

REML P 

value 

Day 10.45 34.4 **0.003 

GT 3.39 33.9 0.074 
 

 

Figure 8.7. Transformed adjusted means (from REML) for lettuce post harvest a) browning intensity and b) extent of browning on 3 days for the Rijk Zwaan wild type 

breeding line Troubadour 4250 and respective ‘pinking mutant’ TroubaLessOxida.  Error bars represent seds from REML.  Significant effects shown as *P <0.05, **P 

<0.01 and ***P <0.001.  REML ndf = 1. Where msp (mean score pinking); %p (percentage pinking); ddf (denominator degrees of freedom); ndf (numerator degrees of freedom); 

GT (genotype); x (interaction); Mu (mutant: TroubaLessOxida); WT (wild type: Troubadour 4250). 
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Significance level of Troubadour wild 

type and pinking mutant 

Overall 

discolouration 

intensity (msd) 

REML Wald 

Statistic 
ddf 

REML P 

value 

Day 28.14 28.14 ***<0.001 

GT 82.83 82.83 ***<0.001 
 

 

Significance level of Troubadour 

wild type and pinking mutant 

Extent of overall 

discolouration 

(%d) 

REML Wald 

Statistic 
ddf 

REML P 

value 

Day 17.88 36 ***<0.001 

GT 70.53 36 ***<0.001 

 

 
Figure 8.8.  Transformed adjusted means (from REML) for lettuce post harvest a) overall discolouration intensity and b) extent of overall discolouration on 3 days for 

the Rijk Zwaan wild type breeding line Troubadour 4250 and respective ‘pinking mutant’ TroubaLessOxida.  Error bars represent seds from REML.  Significant effects 

shown as *P <0.05, **P <0.01 and ***P <0.001.  REML ndf = 1. Where msp (mean score pinking); %p (percentage pinking); ddf (denominator degrees of freedom); ndf 

(numerator degrees of freedom); GT (genotype); x (interaction); Mu (mutant: TroubaLessOxida); WT (wild type: Troubadour 4250). 
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Glasshouse trial 

Pinking 

REML analysis revealed there was significant variation (***P <0.001) between lines 

for pinking (both intensity and extent) and for day (see table 8.4. a and b).  There was 

also a significant interaction between line and day indicating differences in rate of 

development of pinking intensity (see table 8.4. a).  The rates for pinking of lines 

remained constant across the 4 days as there was minimal changing in the ranking of 

the lines (see figure 8.9. (a-d) and figure 8.10. (a-d)).   

Table 8.4.  Lettuce post harvest pinking a) intensity and b) extent of lettuce lines from REML. 

Significant effects shown as *P <0.05, **P <0.01 and ***P <0.001.  Where GT (genotype); x 

(interaction); df (degrees of freedom); Ch (Chi-squared).  

a 
Significance level of lettuce lines 

Pinking intensity (msp) REML Wald Statistic df Wald df Chi P value 

GT 379.23 5 75.85 ***<0.001 

Day 149.6 3 49.87 ***<0.001 

GT x Day 30.1 15 2.01 **0.01 

 

b 
Significance level of lettuce lines 

Extent of pinking (%p) REML Wald Statistic df Wald df Chi P value 

GT 300.81 5 60.16 ***<0.001 

Day 70.04 3 23.35 ***<0.001 

GT x Day 15.33 15 1.02 0.428 

 

The pinking mutant TroubaLessOxida and its wild type Troubadour 4250 were 

significantly different for pinking on each day, indicating genetic variation for this 

trait.  Troubadour 4250 had low levels of pinking intensity and median levels of 

extent of pinking in comparison to the other lines.  The level of pinking for 

TroubaLessOxida was constant on day 1 and day 2, after which it increased 2 fold by 

day 3 and remained constant on day 4.  Scores for pinking for Troubadour 4250 were 
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high on day 1 and then increased steadily to day 4.  Saladin and 09R.9511 were not 

significantly different for any type of pinking.  

Browning 

REML analysis revealed significant variation (***P <0.001) between lines for 

browning and day (see table 8.5. a and b).  A significant interaction was recorded 

between line and day, indicating differences in rate of development of browning 

intensity (see table 8.5. a).  There were varying intrinsic rates for browning (both 

intensity and extent) for lines as rank orders changed across days (see figure 8.11. 

and figure 8.12.).  The browning mutant 09R.9511 was always the best performing 

line for browning, followed by Saladin.  Although 09R.9511 was the most resistant 

line, it still displayed browning on each day.  Various lines performed the worst 

depending on day post harvest.   

Table 8.5.  Lettuce post harvest browning a) intensity and b) extent of lettuce lines from REML.  

Significant effects shown as *P <0.05, **P <0.01 and ***P <0.001.  Where GT (genotype); x 

(interaction); df (degrees of freedom); Ch (Chi-squared).  

a 
Significance level of lettuce lines 

Browning intensity (msb) REML Wald Statistic df Wald df Chi P value 

GT 182.26 5 36.45 ***<0.001 

Day 49.77 3 16.59 ***<0.001 

GT x Day 29.09 15 1.94 *0.016 

  

b 
Significance level of lettuce lines 

Extent of browning (%b) REML Wald Statistic df Wald df Chi P value 

GT 157.57 5 31.51 ***<0.001 

Day 14.77 3 4.92 **0.002 

GT x Day 20.74 15 1.38 0.145 
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The browning mutant 09R.9511 and Saladin were significantly different for 

browning (intensity on days 3 and 4 and extent on day 1, 3 and 4) indicating genetic 

variation for this trait.  Mutant 09R.9511 had increased 2 fold by day 2, and after 

which browning intensity remained constant.  Troubadour 4250 and 

TroubaLessOxida were not significantly different for any type of browning.  

Overall discolouration 

REML analysis revealed there was significant variation between lines for overall 

discolouration (both intensity and extent) and for day (see table 8.6. a and b).  There 

was also a significant interaction between line and day indicating differences in rate 

of development of extent of overall discolouration (see table 8.6. b).  There were 

varying intrinsic rates for overall discolouration for lines as rank orders changed 

across days (see figure 8.11. (a-d) and figure 8.12. (a-d)).  Various lines performed 

the best for overall discolouration depending on day post harvest; this included the 

two mutant lines.   

Table 8.6.  Lettuce post harvest overall discolouration  a) intensity and b) extent of lettuce lines 

from REML.  Significant effects shown as *P <0.05, **P <0.01 and ***P <0.001.  Where GT 

(genotype); x (interaction); df (degrees of freedom); Ch (Chi-squared).  

a 
Significance level of lettuce lines 

Overall discolouration  

intensity (msd) 
REML Wald Statistic df Wald df Chi P value 

GT 238.93 5 47.79 ***<0.001 

Day 183.51 3 61.17 ***<0.001 

GT x Day 20.11 15 1.34 0.168 

 

b 
Significance level of lettuce lines 

Extent of overall 

discolouration (%d) 
REML Wald Statistic df Wald df Chi P value 

GT 107.86 5 21.57 ***<0.001 

Day 106.97 3 35.66 ***<0.001 

GT x Day 38.1 15 2.54 ***<0.001 
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The pinking mutant TroubaLessOxida and its wild type Troubadour 4250 were 

significantly different for overall discolouration (for intensity on all days and extent 

on days 2, 3 and 4) indicating genetic variation for this trait.  The level of overall 

discolouration for both TroubaLessOxida and Troubadour 4250 increased steadily 

across all days; however this occurred for the wild type at a quicker rate.  The level 

of overall discolouration intensity recorded for TroubaLessOxida and Troubadour 

4250 on day 1 was relatively high in comparison to the other accessions; although by 

day 3 they were low and high respectively.   

The browning mutant 09R.9511 and Saladin were only significantly different for 

overall discolouration for intensity on days 3 and 4 and for extent on day 2, 

indicating genetic variation for this trait later in the post harvest period.  The level of 

overall discolouration for 09R.9511 increased at a high rate between day 1 and day 2 

and then slowed to become steady.  The level of overall discolouration intensity for 

Saladin steadily increased across all days.   
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Figure 8.9. Transformed adjusted means (from REML) for lettuce post harvest pinking intensity on a) day 1, b) day 2, c) day 3 and d) day 4 for lettuce lines.  

Error bars represent sems from REML. 
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Figure 8.10.  Transformed adjusted means (from REML) for lettuce post harvest extent of pinking on a) day 1, b) day 2, c) day 3 and d) day 4 for lettuce lines.  

Error bars represent sems from REML. 
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Figure 8.11. Transformed adjusted means (from REML) for lettuce post harvest browning intensity on a) day 1, b) day 2, c) day 3 and d) day 4 for lettuce lines.  

Error bars represent sems from REML. 
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Figure 8.12. Transformed adjusted means (from REML) for lettuce post harvest extent of browning on a) day 1, b) day 2, c) day 3 and d) day 4 for lettuce lines.  

Error bars represent sems from REML. 
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Figure 8.13. Transformed adjusted means (from REML) for lettuce post harvest overall discolouration intensity on a) day 1, b) day 2, c) day 3 and d) day 4 for 

lettuce lines.  Error bars represent sems from REML. 
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Figure 8.14. Transformed adjusted means (from REML) for lettuce post harvest extent of overall discolouration on a) day 1, b) day 2, c) day 3 and d) day 4 for 

lettuce lines.  Error bars represent sems from REML. 
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8.3.2. Metabolite profiling  

PAL activity 

ANOVA revealed significant variation (***P <0.001) between lines for PAL activity 

when expressed as absorbance per gram of dry weight of lettuce (abs/g dwt), for day 

4 post storage and for the differences of PAL activity across days (*P <0.017) (see 

table 8.7.).    

Table 8.7. PAL activity for lettuce lines over 4 days.  ANOVA GT df = 4.  ANOVA comparison df 

= 1.  Significant effects shown as *P <0.05, **P <0.01 and ***P <0.001.  Where PAL (phenylalanine 

ammonia lease); GT (genotype/accession); v (comparison); vr (variance ratio); prob (ANOVA 

probability). 

 
 

PAL Activity 

 
Harvest day Day 4 

Difference across 

days 

Variation vr 
ANOVA 

F prob 
vr 

ANOVA 

F prob 
vr 

ANOVA 

F prob 

GT 2.41 0.074 11.92 ***<0.001 5.04 *0.017 

TroubaLessOxida v Troubadour 4250 3.57 0.07 35.6 ***<0.001 5.4 *0.042 

09R.9511 v Saladin 0.06 0.805 3.47 0.082 0.06 0.807 

 

PAL activity of the 5 lines varied from 0.113 abs/g dwt to 0.434 abs/g dwt for 

harvest day and from 0.159 abs/g dwt to 0.466 abs/g dwt on day 4 (see figure 8.15. 

(a-c)).  TroubaLessOxida always had the highest levels of PAL activity on both days.  

Generally PAL activity increased from harvest day to day 4.  Significant differences 

were seen between ‗pinking mutant‘ TroubaLessOxida and wild type Troubadour 

4250 (***P <0.001) for PAL activity on day 4.  Mean PAL activity was 0.2393 

abs/g dwt on day 4.  However Troubadour 4250 PAL activity decreased across days 

(-0.073 abs/g dwt).  Significant differences were recorded between TroubaLessOxida 

and Troubadour 4250 (*P <0.042) for the difference in PAL activity across days.   
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Figure 8.15. Mean PAL (phenylalanine ammonia lyase) activity for lettuce lines on a) harvest 

day, b) 4 days after storage and c) the difference between PAL activity levels across the 4 days.  

PAL activity measured as absorbance per gram of dry lettuce weight (abs/g dwt).  Error bar represents 

seds (standard error of differences of the mean) from ANOVA.  Where dwt (dry weight); g (gram). 

 

PPO activity 

 

ANOVA revealed significant variation (***P <0.001) between lines for PPO activity 

on harvest day and day 4, and for the differences between PPO activities across days 

(**P <0.009) (see table 8.8.).    
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Table 8.8. PPO activity for lettuce lines over 4 days.  ANOVA GT df = 4.  ANOVA comparison df 

= 1.  Significant effects shown as *P <0.05, **P <0.01 and ***P <0.001.  Where PPO (polyphenol 

oxidase); GT (genotype/accession); v (comparison); vr (variance ratio); prob (ANOVA probability). 

 

 
PPO activity 

 
Harvest day Day 4 

Difference across 

days 

Variation vr 
ANOVA 

F prob 
vr 

ANOVA 

F prob 
vr 

ANOVA 

F prob 

GT 6.21 ***<0.001 18.79 ***<0.001 4.26 **0.009 

TroubaLessOxida v Troubadour 4250 0.05 0.817 0.06 0.809 0.09 0.768 

09R.9511 v Saladin 2.26 0.142 2.05 0.163 2.06 0.163 

 

PPO activity of the 5 lines varied from 0.78 abs/g dwt to 2.04 absorbance abs/g dwt 

for harvest day, and from 0.92 abs/g dwt to 3.6 abs/g dwt on day 4 (see figure 8.16. 

(a-c)).  Troubadour 4250 always had the lowest levels of PPO activity on both days 

while Saladin and 09R.9511 respectively had the highest levels of PPO activity on 

harvest day and day 4.  PPO activity increased from harvest day to day 4 for all lines.  

Mean PPO activity was 1.36 abs/g dwt and 2.07 abs/g dwt respectively for harvest 

day and day 4.  Troubadour 4250 and TroubaLessOxida showed similar levels of 

PPO activity for all days as did Saladin and 09R.9511.  However Troubadour 4250 

and TroubaLessOxida had significantly lower levels of PPO activity on both days 

than Saladin and 09R.9511.  All lines showed an increase in PPO activity across 

days; 09R.9511 recorded the highest increase in PPO activity across days (2.05 abs/g 

dwt).   
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Figure 8.16. Mean PPO (polyphenol oxidase) activity for lettuce lines on a) harvest day, b) 4 

days after storage and c) the difference between PPO activity levels across the 4 days.  PPO 

activity measured as absorbance per gram of dry weight (abs/g dwt).  Error bar represents seds 

(standard error of differences of the mean) from ANOVA.    Where dwt (dry weight); g (gram). 

 

Total phenolic content 

ANOVA revealed significant variation (**P <0.009) between lines for total phenolic 

content (TPC) when expressed as gallic acid equivalents per gram of dry weight of 

lettuce (GAE/g dwt) for the differences of TPC across days (see table 8.9.).    
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Table 8.9. Mean total phenolic content (TPC) of lettuce lines over 4 days.  ANOVA GT df = 4.  

ANOVA comparison df = 1.  Significant effects shown as *P <0.05, **P <0.01 and ***P <0.001.  

Where TPC (total phenolic content); GT (genotype/accession); v (comparison); vr (variance ratio); 

prob (ANOVA probability). 

 

 
TPC 

 
Harvest day Day 4 

Difference across 

days 

Variation vr 
ANOVA 

F prob 
vr 

ANOVA 

F prob 
vr 

ANOVA 

F prob 

GT 0.8 0.532 1.65 0.18 3.9 **0.009 

TroubaLessOxida v Troubadour 4250 2.9 0.096 0.57 0.457 1.46 0.234 

09R.9511 v Saladin 0.13 0.722 2.73 0.106 7.92 **0.007 

 

TPCs in the 5 lines varied from 48.7 mg GAE/g dwt to 69.9 mg GAE/g dwt for 

harvest day, and from 43.9 mg GAE/g dwt to 78.6 mg GAE/g dwt on day 4 (see 

figure 8.17. (a-c)).  Generally TPC decreases across days; mean TPC was 60.98 mg 

GAE/g dwt on harvest day and 57.58 mg GAE/g dwt on day 4.  However 

Troubadour 4250 TPC remained constant and ‗browning mutant‘ 09R.9511 TPC 

increased (19.2 mg GAE/g dwt) across days.  Significant differences were recorded 

between 09R.9511 and Saladin for the difference in TPC across days (**P <0.007).   
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Figure 8.17. Mean TPC (total phenolic content) of lettuce lines on a) harvest day, b) 4 days after 

storage and c) the difference between TPC levels across the 4 days.  TPC expressed as gallic acid 

equivalents (GAE) per gram of dry mass of lettuce.  Error bar represents seds (standard error of 

differences of the mean) from ANOVA.  Where dwt (dry weight); mg (milligram); g (gram). 
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8.3.3. Correlations amongst traits 

All discolouration measures (browning and pinking), morphological traits (plant 

weight) and metabolite activity were assessed for potential relationships (full 

correlation matrix in Appendix F) (see table 8.10.). 

The two measures of pinking (intensity and extent) were positively correlated with 

each other over all days, with mean pinking intensity and mean extent of pinking 

highly correlated (R[3]  ≥0.98).  Similarly measures of browning positively correlated 

with each other, with mean browning intensity and mean extent of browning 

perfectly correlated (R[3]  =1).  As for pinking and browning, measures of overall 

discolouration were generally positively correlated with one another.  No highly 

significant correlations were recorded between pinking and browning. 

For metabolite related traits; PPO activity on day 4 and PPO differences in activity 

across days were positively correlated (R[3]  ≥0.98).  PPO activity on day 4 was 

negatively correlated with browning (intensity and extent) for all days (the highest 

correlation was with extent of browning on day 4 (R[3]  ≥-0.98)).  PPO activity on 

harvest day was positively correlated with trimmed weight (R[3]  ≥0.95).  TPC was 

negatively correlated with overall discolouration intensity on day 1 and day 4 (R[3]  ≥-

0.89 and R[3]  ≥-0.91 respectively).     
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Table 8.10. Correlation matrix from the mutant lines for post harvest discolouration, plant 

weight and metabolite activity.  Read across then down.  Only significant effects are shown and 

highly significant effects ***P <0.001 are shown bold, **P <0.01 are shown italics. Where tr wt 

(trimmed weight, g); msb (mean score browning); msd (mean score overall discolouration); %b 

(percentage browning); H (harvest day); Ac (across days).  Numerical value before measurement is 

day. Degree of freedom is 3. 

H PPO                   0.95   

4 PPO -0.97 -0.96 -0.98 -0.98 -0.97 -0.97 -0.98     0.95   

Ac  PPO -0.97 -0.96 -0.98 -0.98 -0.97 -0.98 -0.98       0.98 

H TPC                       

4 TPC               -0.89 -0.91     

  msb 1msb 4msb %b 1%b 3%b 4%b 1msd 4msd tr wt 4 PPO 

 

 

8.4. Discussion 

 

Mutations can be induced by methods such as using EMS or RNAi gene silencing 

(e.g. Hammond et al. 2000; Lu et al. 2003).  In lettuce, chemical mutagenesis has 

been conducted in both the scientific community and industry showing the high 

potential of this method for breeding (JW Schut personal communication; A Abbott 

personal communication; Robinson 1986).  However the technology has limitations 

as it generates mutations in many genes and may result in only moderate or weak 

phenotypes (Lee et al. 2010). 

Chemical mutagenesis using EMS has been used at Rijk Zwaan to generate two 

mutant lines, TroubaLessOxida and 09R.9511, which have previously been recorded 

to display lower levels of post harvest discolouration (pinking and browning 

respectively).  Pinking mutant TroubaLessOxida has shown significantly lower 

scores for pinking than wild type Troubadour 4250 for day‘s 1-4 post harvest across 

different environments and years, suggesting genetic stability for this trait.  It has 
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also shown significantly lower scores for browning than Troubadour 4250, for 

browning for day 1, although this variation was specific to NL suggesting phenotypic 

plasticity (Gurganus et al. 1999) for this trait.  Significant differences were also 

recorded between the mutant and wild type for overall discolouration for day‘s 1-4 

post harvest but this difference can be explained by the significant differences in 

pinking.  Browning mutant 09R.9511 showed significantly lower scores for 

browning than Saladin for day‘s 1-4 post harvest across different environments and 

years, suggesting genetic stability for this trait.  Lines were not significantly different 

for pinking and were generally not significantly different for overall discolouration.   

Intensity and extent of discolouration were generally positively correlated for all 

measures of pinking, browning and overall discolouration across days (see table 

8.10.) which suggest that although measured as separate traits, intensity and extent 

may have the same genetic basis as discussed in Chapter 3.   

The mutants, Troubadour 4250 and Saladin, were generally situated between L. 

serriola 03050 and Iceberg for each discolouration trait for each day.  Iceberg 

showed high scores for all measures of discolouration in comparison to all other 

lines.  L. serriola 03050 showed extremely low levels of post harvest discolouration 

similar to that of TroubaLessOxida for pinking and 09R.9511 for browning, which 

were all generally significantly lower than recorded for all commercial breeding lines 

(including Saladin, Troubadour 4250 and Iceberg).  Iceberg and L. serriola 03050 are 

lines with naturally occurring alleles showing extreme phenotypes compared to the 

other lines tested.  L. serriola 03050 contains alleles giving as good a phenotype as 

the mutated lines (for the respective type of discolouration), this provides the option 

of alternative routes to achieve the same phenotype via exploitation of naturally 

occurring alleles through breeding. 
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The mutant lines had significantly higher levels of PAL activity than their 

comparative wild type control.  Troubadour 4250 and TroubaLessOxida were 

significantly different for PAL activity on harvest day and day 4 post harvest, but 

also for the difference between activity levels across days.  As the lines were 

significantly different on harvest day it would suggest that the higher levels of PAL 

activity in the mutant are largely predetermined.  Saladin and 09R.9511 were only 

significantly different for PAL activity on day 4 post harvest, suggesting that 

increased PAL activity was induced at higher levels in the mutant upon wounding.  

Higher levels of PAL activity was recorded in the mutant lines which also 

demonstrated reduced discolouration phenotypes.  However lines with increased 

PAL activity would be expected to show higher levels of post harvest discolouration 

as biosynthesis of polyphenols for oxidation would be expected to increase leading to 

the formation of coloured pigments (Joslin and Pointing 1951; Zawistowski et al. 

1991; Martinez and Whitaker 1995; Lopez-Galvez et al. 1996; Solomon et al. 1996; 

Peiser et al. 1998; Hisaminato et al. 2001; Toivonen and Brummell 2008; Van Vliet 

et al. 2009).   

All lines showed similar levels for total phenolic content (TPC) on harvest day; 

however levels generally decreased across days at different rates (rank positions 

within the distribution of lines across days were reflected to differing rates of 

discolouration), (with the exception of 09R.9511 which showed an increase in TPC 

across days).  A decrease in TPC would be expected as once the plant has been 

removed from its nutrient and water supply it contains a finite amount of substrate 

for the biosynthesis of polyphenols.  TPCs of lettuce have also been known to be 

altered by cultivar, type and colour, in addition to growing environment (Liu et al. 

2007). 
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PPO activity on day 4 was negatively correlated with browning (intensity and extent) 

for all days (see table 8.10).  The negative correlation implies that PPO activity on 

day 4 and browning are associated in an antagonistic way.  Higher levels of PPO on 

day 4 resulted in lower levels of browning.  TPC was negatively correlated with 

overall discolouration intensity on day 1 and day 4 (see table 8.10.).  Higher TPCs 

resulted in lower levels of overall discolouration.  However the mutant lines have 

strong phenotypes giving extreme scores which would have affected the correlation 

analysis.   

The results obtained in this study suggest that the mutations are not directly affecting 

PAL or PPO levels (as lower enzyme activity would be expected for phenotypes with 

reduced discolouration).  As the mutants have higher levels of PAL, PPO and TPC a 

worse phenotype than the wild type would be expected.  The fact that better 

phenotypes have been observed, means that mutations must have occurred 

somewhere within the phenylpropanoid pathway downstream from PPO to stop the 

phenotype developing (see figure 1.2. and 8.18.).   The mapping parents Saladin and 

Iceberg did follow the predicted pattern (see Chapter 7).  The mutation may be novel 

and therefore if combined with naturally occurring beneficial alleles could produce 

an even better phenotype.  However, although this mutation cannot be explained 

simply in terms of the biosynthetic pathway, the phenotypes have been confirmed in 

this study. 

PPO activity on day 4 and PPO differences in activity across days were positively 

correlated (R[3]  ≥0.98).  PPO activity increased across days from time of wounding 

which occurred at different rates depending on the line.  PPO activity for Troubadour 

4250, TroubaLessOxida and Iceberg remained unchanged however there was a ~50% 

increase in activity for Saladin and >100% increase in activity for 09R.9511.   
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Figure 8.18.  Section of the phenylpropanoid pathway and affect of enzyme regulation. 

PPO activity on harvest day was also positively correlated with trimmed weight (R[3]  

≥0.95).  Greater plant weight has been associated with higher enzyme activities in 

central and secondary metabolism in Arabidopsis (Mitchell-Olds and Pedersen 

1998).  It has been reported that plant growth is not directly related to absolute levels 

of amino acids, sugars and starch, but is in fact related to flux which is indicated by 

the capacity of enzymes to use resources (Cross et al. 2006). 

This study indicates that a desired phenotype with reduced levels of post harvest 

discolouration can be achieved by two approaches to breeding.  The induced 

variation observed in TroubaLessOxida and 09R.9511 has shown phenotypes with 

reduced pinking and browning respectively.  By a balanced amount of backcrossing 

rounds of the mutants, the many randomly induced point mutations in the genome 

induced by EMS can be removed so they do not affect any other properties of the 

line.  However mutation breeding is still not acceptable for some markets such as for 

‗organic products‘.  As current public opinion in the EU opposes any type of genetic 

engineering in food products, the use of natural alleles could be beneficial.  L. 

serriola 03050 contains natural alleles which have given as good a phenotype as 

TroubaLessOxida and 09R.9511 for post harvest discolouration which could used in 
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classical breeding.  L. serriola has been used extensively in lettuce breeding as a 

source of several disease resistance genes (Crute 1988).  However, L. serriola 03050 

will have many ‗background‘ deleterious alleles which will also require a backcross 

programme to remove.  MAS using markers identified by approaches described in 

Chapter 5 would be helpful in this. 

 

8.5. Conclusions 

 

 Mutation using EMS produced a line ‗TroubaLessOxida‘ with an improved 

phenotype for pinking and significantly increased PAL activities. 

 Mutation using EMS produced a line ‗09R.9511‘ with an improved 

phenotype for browning with significantly increased TPC in the later stages 

post harvest. 

 L. serriola 03050 contains naturally occurring alleles giving as good a 

phenotype as the mutated lines (for the respective type of discolouration), 

which gives an alternative route to achieve the same phenotype. 
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CHAPTER 9 

 

 

General Discussion 
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In today‘s increasing market of ―food perfection‖, any detrimental change to the 

visual characteristics of a product is likely to incite an unfavourable consumer 

response.  A prime example of this is pre-packed cut salads.  There is an escalating 

demand for this product due to the increasingly busy lifestyles of (time poor/cash 

rich) consumers, however, the limited shelf life of fresh processed lettuce primarily 

due to post harvest spoilage is a major food industry concern with losses entering the 

£millions per annum (Martinez and Whitaker 1995; Soliva-Fortuny and Martin-

Belloso 2003).   

This study has significantly improved the understanding of post harvest 

discolouration in lettuce. The emphasis has been to investigate the genetic control of 

post harvest discolouration and to provide the tools and knowledge for breeding: 

however, work to understand the metabolic causes of post harvest discolouration in 

lettuce has also been in initiated. 

Genetic variation in the degree of post harvest discolouration was observed in a 

lettuce diversity set (of 28 lines) that represents the wider plant genetic resource 

collection of the lettuce genepool held in the Warwick genetic resources unit (see 

section 3.3.1.). Diversity sets which are chosen to represent the primary and 

secondary crop genepool provide a tool to assess whether significant genetic 

variation exists for a given trait. The lettuce diversity set is available to study other 

traits and has now been extended to 96 accessions to provide an increased 

representation of the crop diversity. 

The parents of the WHRI lettuce mapping population, Saladin and Iceberg were 

included in the diversity set.  They showed significantly different responses for post 

harvest discolouration and the difference between them was representative of a major 
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part of the variation seen in the diversity set.  Saladin had significantly lower levels 

of post harvest discolouration (pinking, browning and overall discolouration) 

compared to Iceberg (see sections 3.3.2.).  This meant that the existing population of 

F7 recombinant inbred lines (RILs) derived from a cross between Saladin and Iceberg 

was suitable for genetic analysis of post harvest discolouration traits. 

As a precursor to the genetic analysis, a good quality linkage map was generated 

based on the F7 Saladin x Iceberg population (Sal x Ice map).  It covers all 9 LGs 

with most component LGs in the correct orientation and marker order.  It was of 

sufficient quality to use for QTL analyses in the present study (see Chapter 5 and 6), 

and is a valuable resource for future genetic studies in lettuce. As it was derived from 

a lettuce x lettuce cross it has direct application to the cultivated genepool (compared 

to intraspecific crosses between lettuce and wild species relatives) and is therefore 

valuable resource for lettuce breeding.  The map has been integrated with the 

genechip map MCB10_10NR map created by Michelmore‘s group in UC Davis, 

based on marker positions, and can therefore be used for comparative genomic 

approaches (as in section 7.3.3.), increasing the value of the map for genetic studies.  

Due to common markers, the Sal x Ice map was also anchored to other published 

lettuce linkage maps published by Jeuken et al. (2001) and Syed et al. (2006).  

However, although the Sal x Ice map is of good quality it could still be improved.  

Future work to add new markers would help coalesce the map into 9 linkage groups 

and fill gaps; the addition of markers in key positions  may also allow the inclusion 

of the markers which have been scored on the population during this study (249 un-

mapped markers) but which currently do not map to any linkage group. 

Significant genetic variation in the post harvest discolouration response was 

demonstrated for the RILs from the mapping population. In addition environmental 
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variation was found in the form of a site effect for browning, although none were 

recorded for pinking or overall discolouration. Hilton et al. (2009) found that the 

majority of agronomic factors did not have a major impact on post harvest 

discolouration on lettuce.  However, preliminary investigations of meteorological 

data suggested that rainfall could affect post harvest discolouration (Hilton et al. 

2009).  Both irrigation methods and rainfall have been shown to affect general 

lettuce post harvest visual quality (Fonseca 2006).  No effect of weather was 

recorded for any trials in this study.  Although lines for each trial were transplanted 

on the same day and harvested within a restricted period, time of transplanting, 

timing of harvest and crop maturity has also been shown to have an effect on post 

harvest discolouration (Beverley et al. 1993; Bergquist et al. 2005; Hilton et al. 

2009).   As the environment cannot be controlled in the field in the UK, it would be 

beneficial to attempt to produce genotypes with stable phenotypes over 

environments.  RILs with extreme phenotypes demonstrated stability over 

environments, therefore showing that it was possible to select lines showing 

phenotypic stability opening up the possibility of breeding varieties which do not 

develop post harvest discolouration. 

QTL analysis is the first step in providing tools for efficient breeding of quantitative 

traits which are influenced by the environment.  Although the QTL identified in this 

study accounted for a proportion of the genetic variation observed in the RILs, the 

remaining variation is unexplained.  The genetic basis of discolouration can be begun 

to be understood based on phenotypic correlations between discolouration responses.  

The markers linked to the 21 significant QTL identified for discolouration can be 

used for MAS (section 5.3.3.), therefore making it possible to select for genotypes 

showing less post harvest discolouration, because this selection can be carried out on 
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genotypes it is independent of the environment.  A possible strategy for MAS would 

be to first select for beneficial alleles at QTL found in all environments.  Secondly, 

deleterious alleles at QTL would be selected against or this could also be achieved by 

trialling lines in different environments to give as much environmental stability of 

the trait as possible. 

Although, this study has provided breeders with the tools to breed for reduced 

discolouration in lettuce, it is also important for them to understand what effect this 

may have on other important agronomic traits.  Correlations between important 

agronomic traits and post harvest discolouration traits were recorded, but generally 

these were not highly correlated (see section 6.3.2.).  Twenty significant QTL were 

identified for a range of important agronomic traits, and markers linked to them can 

be also be used for MAS (see section 6.3.3.).  Some QTL for agronomic traits were 

linked to QTL for post harvest discolouration which explains the weak correlations 

between the traits at the phenotypic level (see section 6.3.3.).  However, because the 

correlations are weak, post harvest discolouration and agronomic traits can generally 

be independently selected for by breeders without having to compromise on traits.  

However, linkage between QTL means that there is a chance pleiotrophic effects 

may occur, therefore future work to fine map of the QTL would provide for more 

informed breeding. 

Another approach to provide more information is to identify the metabolic effect of 

QTL. This research has also initiated studies to understand the metabolic changes 

underlying the phenotype change.  Significant variation in levels of metabolites 

related to post harvest discolouration, including PAL, PPO and TPC, was observed in 

the extreme RILs (see section 7.3.1.).  The differences in metabolite levels were 

correlated with the discolouration phenotype (see section 7.3.2.).  Therefore, it would 
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be beneficial in future work to assess the entire RIL population for these metabolites 

and conduct a QTL analysis on the data to see if QTL for metabolites co-locate with 

discolouration QTL. 

Another approach to providing more genetic information is to attempt to identify the 

genes underlying QTL. This study has initiated work to identify associated candidate 

genes. Twenty-three genes associated with the biosynthetic pathway responsible for 

discolouration (the phenylpropanoid pathway) have been placed on the Sal x Ice map 

using comparative genomic approaches (see section 7.3.3.).  Some of these co-locate 

within the region of a discolouration QTL and are therefore candidate genes for the 

QTL effect.  There are a number of future studies that could be carried out to further 

the understanding of the genetics of the discolouration response. It would be valuable 

to accurately map all candidate genes on the Sal x Ice map by directly mapping the 

genes in the Sal x Ice RILs.  It would also be useful to determine the expression of 

candidate genes associated with discolouration QTL firstly in the parental lines and 

then if significant differences are found in the RILs to map expression QTL and see 

if they co locate to the QTL identified in this study. Natural allelic variation for 

candidate genes could be assessed in a wider lettuce diversity set (the diversity set at 

WHRI has now been increased to 96) and induced variation could be searched for in 

a Saladin TILLING population which has been produced at Warwick HRI (at 

WHRI). 

Rijk Zwaan have induced phenotypic variation via mutagenesis leading to mutants 

with reduced post harvest browning and pinking.  The phenotype was confirmed for 

both mutants in this study; although the point of mutation could not be identified the 

data indicated it to be downstream of PPO for both lines (see section 8.4.).  Another 

approach to help characterise the mutants would be to cross the mutants and look at 
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complementation.  It would be beneficial to look at the offspring‘s post harvest 

discolouration phenotype and see if it is reflected in the metabolome.  The mutants 

could also be crossed with the best performing RILs or RILs with beneficial alleles at 

all identified QTL to combine the QTL and mutation/s for breeding.   

However, the lettuce primary and secondary genepool contains naturally occurring 

alleles, which give as good a phenotype (e.g. the phenotype of L. serriola 03050) as 

the mutated lines (see section 8.3.1.).  This gives an alternative route to producing a 

desired phenotype using natural allelic variation. 

However, it is necessary to approach breeding for reduced post harvest 

discolouration with a note of caution.  During this study, there was insufficient time 

to look at the potential impact reducing post harvest discolouration may have on 

other abiotic and biotic stress responses, particularly pest and disease resistance.   

Browning is thought to be a wound response which deters pests, if lines were bred 

for reduced discolouration it is important to ensure that resistance to pests and/or 

disease is not compromised.  These factors must be looked into so that breeders can 

take a balanced approach. 

Nevertheless, this study indicates that a desired phenotype with reduced levels of 

post harvest discolouration can be achieved and has provided the tools and 

knowledge to do this. 
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Appendix A 

 

Additional information from Chapter 3 

 

Field trial plan and randomisation 

Plants were transplanted to the field into 3 x 1.83 m wide beds with a plot length of 

1.05 and spacing distance of 35 cm (see figure A.1.a).  Beds were marked using a 

tractor with a wheel base of 1.83 m and plots were then individually marked using a 

‗Wolf Garten‘ row marker.  A plot configuration of 12 plants per plot and rep (4 

rows x 3 plant arrangement) of the same accession was used, creating a formation of 

two central heads surrounded by guard plants.  The plant material was randomised 

within a rep by an alpha design (see figure A.1.b). 
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rep 1 ------------------------ 

   plot   1   2   3   4   5   6 

block+----------------------- 

  1   |  28  13   9  14   1  30 

  2   |  27  29  21   8  15  19 

  3   |  12  20   4  11   6  24 

  4   |  18  17  22   7  10   2 

  5   |  23  25   5   3  26  16 

rep 2 ------------------------ 

   plot   1   2   3   4   5   6 

block+----------------------- 

  1   |  11  22  25  16  18  29 

  2   |  20   3  10  24   2  14 

  3   |   5  19  17  13  21  26 

  4   |  27  28  12  15  23   9 

  5   |   1  30   8   7   4   6 

rep 3 ------------------------ 

   plot   1   2   3   4   5   6 

block+----------------------- 

  1   |  23   5  20   6  21   7 

  2   |   9  12   1  18  17  16 

  3   |   3  10  15   8  28  22 

  4   |  14  29  25   4  30  26 

  5   |  11  27   2  13  19  24 

 

 

Figure A.1.  Field trial plan (a) and randomised alpha design for field plan (b). 

  

b a 
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Post harvest discolouration of prepacked leaf tissue on days 6, 9 and 13. 

REML analysis was conducted for each measure of pinking, browning and overall 

discolouration on days 6, 9 and 13 (see figures A.3. - A.8.).   

 

 

 
Figure A.2. Transformed adjusted means (from REML) for lettuce post harvest pinking 

intensity on a) day 6, b) day 9 and c) day 13 for the WHRI lettuce diversity set.  Error bars 

represent sems (standard error of the mean) from REML.  The F7 WHRI mapping population 

parents are highlighted with respective adjusted means (from REML).  Where Batavia Blonde 

de.. (Batavia Blonde de Paris); Merveille des.. (Merveille des Quatre Saisons); Waldmans Dark.. 

(Waldmans Dark Green). 
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Figure A.3. Transformed adjusted means (from REML) for lettuce post harvest extent of 

pinking on a) day 6, b) day 9 and c) day 13 for the WHRI lettuce diversity set.  Error bars 

represent sems (standard error of the mean) from REML.  The F7 WHRI mapping population 

parents are highlighted with respective adjusted means (from REML). Where Batavia Blonde 

de.. (Batavia Blonde de Paris); Merveille des.. (Merveille des Quatre Saisons); Waldmans Dark.. 

(Waldmans Dark Green). 
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Figure A.4. Transformed adjusted means (from REML) for lettuce post harvest browning 

intensity on a) day 6, b) day 9 and c) day 13 for the WHRI lettuce diversity set.  Error bars 

represent sems (standard error of the mean) from REML.  The F7 WHRI mapping population 

parents are highlighted with respective adjusted means (from REML).  Where Batavia Blonde 

de.. (Batavia Blonde de Paris); Merveille des.. (Merveille des Quatre Saisons); Waldmans 

Dark.. (Waldmans Dark Green). 
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Figure A.5. Transformed adjusted means (from REML) for lettuce post harvest extent of 

browning on a) day 1 and b) day 3 for the WHRI lettuce diversity set.  Error bars represent 

sems (standard error of the mean) from REML.  The F7 WHRI mapping population parents are 

highlighted with respective adjusted means (from REML).  Where Batavia Blonde de.. (Batavia 

Blonde de Paris); Merveille des.. (Merveille des Quatre Saisons); Waldmans Dark.. (Waldmans 

Dark Green). 
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Figure A.6. Transformed adjusted means (from REML) for lettuce post harvest overall 

discolouration intensity on a) day 6, b) day 9 and c) day 13 for the WHRI lettuce diversity 

set.  Error bars represent sems (standard error of the mean) from REML.  The F7 WHRI 

mapping population parents are highlighted with respective adjusted means (from REML).  

Where Batavia Blonde de.. (Batavia Blonde de Paris); Merveille des.. (Merveille des Quatre 

Saisons); Waldmans Dark. (Waldmans Dark Green). 
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Figure A.7. Transformed adjusted means (from REML) for lettuce post harvest overall 

discolouration intensity on a) day 6, b) day 9 and c) day 13 for the WHRI lettuce diversity 

set.  Error bars represent sems (standard error of the mean) from REML.  The F7 WHRI 

mapping population parents are highlighted with respective adjusted means (from REML).  

Where Batavia Blonde de.. (Batavia Blonde de Paris); Merveille des.. (Merveille des Quatre 

Saisons); Waldmans Dark.. (Waldmans Dark Green). 
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Correlations amongst traits 

Table A.1. Correlation matrix for the WHRI lettuce diversity between post harvest discolouration measurements and morphological parameters.  Read across then 

down.  Only significant effects shown with ***P <0.001 in bold, **P<0.01 in italics and *P<0.05 in regular font. Where unt wt (untrimmed weight, g); tr wt (trimmed 

weight, g); tr dia1 (trimmed diameter 1, mm); tr diam2 (trimmed diameter 2), msb (mean score browning); msp (mean score pinking); msd (mean score overall 

discolouration); msv (mean score visible discolouration); %b (percentage browning); %p (percentage pinking); %d (percentage overall discolouration); %v (percentage 

visible discolouration).  Numerical value before discolouration measurement is day. 

 

unt wt 
                        

tr wt 0.95 
                       

tr dia1 -0.76 -0.66 
                      

tr dia2 -0.72 -0.67 0.82 
                     

1msb -0.75 -0.72 0.84 0.86 
                    

3msb -0.75 -0.68 0.63 0.61 0.83 
                   

6msb 
    

0.46 0.59 
                  

9msb 
    

0.45 0.50 0.85 
                 

13msb 
    

0.37 0.58 0.87 0.83 
                

msb -0.44 -0.49 0.38 0.49 0.70 0.77 0.92 0.89 0.89 
               

1%b -0.75 -0.73 0.84 0.86 0.99 0.83 0.47 0.48 0.40 0.73 
              

3%b -0.79 -0.76 0.66 0.65 0.86 0.96 0.64 0.57 0.63 0.83 0.87 
             

6%b -0.40 -0.41 0.40 0.45 0.63 0.70 0.93 0.77 0.83 0.94 0.66 0.78 
            

9%b 
    

0.38 0.40 0.83 0.97 0.82 0.85 0.41 0.48 0.75 
           

13%b 
   

0.30 0.53 0.70 0.86 0.77 0.95 0.92 0.56 0.77 0.90 0.74 
          

%b -0.57 -0.60 0.55 0.61 0.83 0.85 0.82 0.79 0.79 0.97 0.85 0.92 0.93 0.74 0.89 
         

1msp 
                        

3msp 0.59 0.55 -0.81 -0.59 -0.67 -0.43 
    

-0.65 -0.45 
    

0.34 
       

6msp 0.80 0.76 -0.88 -0.75 -0.74 -0.50 
    

-0.73 -0.53 
     

0.87 
      

9msp 0.75 0.65 -0.84 -0.65 -0.69 -0.50 
    

-0.67 -0.50 
     

0.85 0.92 
     

 
unt wt tr wt tr dia1 tr dia2 1msb 3msb 6msb 9msb 13msb msb 1%b 3%b 6%b 9%b 13%b %b 1msp 3msp 6msp 9msp 
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Table A.1. continued. 

13msp 0.67 0.54 -0.65 -0.52 
  

0.29 0.41 0.44 
    

0.54 0.32 
  

0.66 0.80 0.78 
 

    

msp 0.75 0.66 -0.85 -0.66 -0.64 -0.45 
    

-0.63 -0.44 
 

0.30 
   

0.90 0.97 0.94 0.87 
   

1%p 
                

0.95 0.34 
      

3%p 0.63 0.59 -0.81 -0.58 -0.69 -0.52 
    

-0.67 -0.51 
     

0.97 0.86 0.87 0.65 0.89 
  

6%p 0.72 0.70 0.74 0.59 -0.59 -0.39 
   

-0.58 -0.40 
      

0.77 0.92 0.87 0.77 0.92 
 

0.82 

9%p 0.46 0.49 -0.63 -0.56 -0.61 
    

-0.61 
     

-0.39 
 

0.61 0.68 0.74 0.36 0.65 
 

0.67 

13%p 0.44 0.36 
    

0.41 0.43 0.55 0.36 
  

0.39 0.55 0.54 0.31 
 

0.46 0.62 0.59 0.88 0.71 
 

0.48 

%p 0.66 0.62 -0.78 -0.59 -0.62 -0.42 
    

-0.61 -0.42 
    

0.28 0.89 0.91 0.90 0.73 0.94 0.28 0.93 

1msd -0.78 -0.73 0.79 0.83 0.97 0.84 0.48 0.47 0.38 0.71 0.96 0.87 0.64 0.39 0.52 0.82 
 

-0.55 -0.68 -0.66 
 

-0.58 
 

-0.59 

3msd 
     

0.42 0.62 0.53 0.66 0.53 
 

0.38 0.47 0.50 0.62 0.41 0.43 0.63 0.45 0.44 0.43 0.52 0.36 0.53 

6msd 0.49 0.42 -0.61 -0.44 
  

0.61 0.54 0.66 0.39 
  

0.42 0.62 0.52 
  

0.75 0.81 0.77 0.82 0.85 
 

0.70 

9msd 0.35 
 

-0.44 
   

0.68 0.78 0.73 0.57 
  

0.50 0.84 0.58 0.39 
 

0.61 0.62 0.68 0.80 0.73 
 

0.54 

13msd 
      

0.72 0.76 0.88 0.67 
 

0.30 0.63 0.82 0.79 0.55 
 

0.45 0.53 0.52 0.81 0.64 
 

0.40 

msd 
      

0.79 0.78 0.86 0.70 
 

0.32 0.66 0.83 0.76 0.56 
 

0.56 0.56 0.57 0.75 0.67 
 

0.48 

1%d -0.78 -0.73 0.73 0.72 0.90 0.89 0.58 0.50 0.50 0.76 0.90 0.92 0.75 0.41 0.65 0.87 
 

-0.46 -0.58 -0.55 
 

-0.47 
 

-0.53 

3%d 
     

0.35 0.64 0.65 0.74 0.66 0.29 0.41 0.64 0.72 0.75 0.61 
 

0.34 0.34 0.31 0.68 0.46 
 

0.32 

6%d 0.30 0.30 
    

0.56 0.52 0.64 0.53 
  

0.61 0.61 0.65 0.49 
 

0.28 0.44 0.41 0.70 0.51 
  

9%d 
     

0.30 0.55 0.50 0.63 0.55 
 

0.33 0.62 0.57 0.69 0.53 
  

0.36 0.37 0.62 0.44 
  

13%d 0.31 0.30 
    

0.55 0.51 0.63 0.52 
  

0.58 0.60 0.65 0.48 
 

0.29 0.45 0.40 0.72 0.52 
 

0.28 

%d 
  

0.37 0.41 0.66 0.70 0.73 0.66 0.74 0.83 0.68 0.75 0.85 0.66 0.84 0.87 
    

0.30 
   

1msv 
  

-0.41 -0.47 
             

0.43 0.46 0.50 0.36 0.48 
 

0.39 

3msv 
  

0.52 0.29 0.34 
     

0.32 
     

-0.38 -0.77 -0.53 -0.55 -0.43 -0.59 -0.41 -0.75 

6msv -0.54 -0.42 0.42 0.33 
  

-0.51 -0.55 -0.55 
   

-0.39 -0.67 -0.46 
  

-0.54 -0.64 -0.65 -0.90 -0.74 
 

-0.53 

9msv 0.76 0.68 -0.55 -0.54 -0.59 -0.65 -0.53 -0.47 -0.39 -0.60 -0.60 -0.68 -0.59 
 

-0.48 -0.62 
  

0.48 0.45 0.43 0.41 
  

13msv 
  

0.29 
   

-0.55 -0.67 -0.68 -0.55 
  

-0.47 -0.78 -0.60 -0.45 
  

-0.46 -0.45 -0.84 -0.57 0.33 
 

msv 
      

-0.73 -0.77 -0.71 -0.68 
 

-0.38 -0.62 -0.78 -0.66 -0.58 
    

-0.53 -0.40 
  

1%v 
  

-0.43 -0.53 -0.39 
   

0.29 
 

-0.38 
      

0.46 0.49 0.48 0.35 0.50 
 

0.40 

3%v 
  

0.57 0.35 0.39 
     

0.38 
     

-0.44 -0.77 -0.57 -0.53 -0.40 -0.59 -0.46 -0.76 

6%v -0.55 -0.43 0.39 
   

-0.53 -0.57 -0.56 -0.40 
  

-0.43 -0.69 -0.48 
  

-0.53 -0.64 -0.63 -0.88 -0.73 
 

-0.51 

9%v 0.75 0.64 -0.59 -0.57 -0.64 -0.73 -0.54 -0.51 -0.43 -0.65 -0.65 -0.75 -0.64 
 

-0.53 -0.69 
  

0.45 0.48 0.38 0.40 
 

0.32 

13%v -0.38 
 

0.32 
   

-0.54 -0.66 -0.69 -0.53 
  

-0.47 -0.77 -0.60 -0.43 
  

-0.50 -0.50 -0.86 -0.60 0.34 
 

%v 
      

-0.67 -0.78 -0.69 -0.63 
  

-0.57 -0.86 -0.61 -0.52 
 

-0.42 -0.43 -0.41 -0.73 -0.54 
 

-0.40 

 
unt wt tr wt tr dia1 tr dia2 1msb 3msb 6msb 9msb 13msb msb 1%b 3%b 6%b 9%b 13%b %b 1msp 3msp 6msp 9msp 13msp msp 1%p 3%p 
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Table A.1. continued. 

 
13%p 

0.73 0.35 
            

3%v 
        

%p 0.94 0.79 0.67 
           

6%v 0.33 
       

1msd -0.54 -0.55 
 

-0.52 
          

9%v 
        

3msd 0.45 0.37 0.50 0.56 
          

13%v 
 

0.90 
      

6msd 0.78 0.46 0.76 0.77 
 

0.71 
        

%v 0.46 0.85 
 

0.86 
    

9msd 0.57 
 

0.70 0.57 
 

0.65 0.89 
        

3%v 6%v 9%v 13%v %v 
   

13msd 0.53 
 

0.82 0.49 
 

0.66 0.86 0.89 
               

msd 0.56 
 

0.78 0.56 
 

0.80 0.91 0.94 0.95 
              

1%d -0.43 -0.43 
 

-0.42 0.93 0.29 
                 

3%d 0.43 
 

0.83 0.42 0.29 0.65 0.67 0.68 0.84 0.82 0.39 
            

6%d 0.59 
 

0.87 0.48 
 

0.46 0.69 0.66 0.78 0.75 
 

0.84 
           

9%d 0.52 
 

0.83 0.44 
 

0.52 0.62 0.60 0.74 0.72 0.32 0.86 0.96 
          

13%d 0.59 
 

0.92 0.49 
 

0.46 0.70 0.64 0.79 0.76 
 

0.85 0.98 0.94 
         

%d 
  

0.61 
 

0.69 0.51 0.37 0.44 0.64 0.65 0.80 0.83 0.76 0.80 0.76 
        

1msv 0.55 0.62 0.37 0.52 
 

0.42 0.45 
 

0.35 0.34 
  

0.30 0.29 
         

3msv -0.48 -0.42 
 

-0.65 
 

-0.66 -0.60 -0.51 -0.38 -0.51 
             

6msv -0.69 
 

-0.86 -0.63 
 

-0.44 -0.82 -0.82 -0.82 -0.80 
 

-0.73 -0.79 -0.67 -0.78 -0.46 
 

0.43 
     

9msv 0.44 0.30 
 

0.34 -0.66 
     

-0.66 
    

-0.41 
       

13msv -0.47 
 

-0.84 
  

-0.40 -0.70 -0.79 -0.88 -0.80 
 

-0.77 -0.73 -0.63 -0.76 -0.56 
  

0.89 
    

msv 
  

-0.58 
  

-0.64 -0.64 -0.76 -0.74 -0.79 
 

-0.70 -0.56 -0.52 -0.56 -0.56 
 

0.56 0.68 0.38 0.68 
  

1%v 0.55 0.59 0.37 0.53 
 

0.45 0.51 
 

0.37 0.37 
  

0.33 0.31 0.31 
 

0.95 
      

3%v -0.48 -0.43 
 

-0.65 
 

-0.61 -0.60 -0.46 
 

-0.47 
       

0.97 0.39 
  

0.50 
 

6%v -0.69 
 

-0.85 -0.60 
 

-0.42 -0.82 -0.83 -0.82 -0.80 
 

-0.71 -0.82 -0.70 -0.81 -0.47 
 

0.38 0.98 
 

0.87 0.64 
 

9%v 0.40 0.30 
 

0.33 -0.72 
     

-0.71 
    

-0.51 
   

0.95 
 

0.39 
 

13%v -0.52 
 

-0.86 -0.42 
 

-0.41 -0.73 -0.81 -0.89 -0.81 
 

-0.78 -0.76 -0.67 -0.79 -0.56 
  

0.90 
 

0.99 0.68 
 

%v -0.43 
 

-0.73 -0.42 
 

-0.52 -0.74 -0.85 -0.83 -0.84 
 

-0.78 -0.69 -0.61 -0.70 -0.56 
 

0.49 0.84 
 

0.86 0.86 
 

 
6%p 9%p 13%p %p 1msd 3msd 6msd 9msd 13msd msd 1%d 3%d 6%d 9%d 13%d %d 1msv 3msv 6msv 9msv 13msv msv 1%v 
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Appendix B 

 

Additional information from Chapter 4 

 

Table B.1.  Summary of markers showing significant (*P < 0.05) segregation distortion for each 

parental genotype.  Where Chr (chromosome); a (Saladin allele); b (Iceberg allele); h (heterozygote); 

u (unkown); P (probability). 

Table B.1. Where df=2 

Chr Locus Marker a h b u X2 value P value 

1 ANWE-OP4 OPA 0 67 58 0 2228.05 ***P < 0.001 

1 BKOL-OP3 OPA 60 8 57 0 19.09 ***P < 0.001 

1 BUPG-OP4 OPA 0 90 28 7 4288.72 ***P < 0.001 

1 CLRY2600-OP3 OPA 62 8 55 0 19.42 ***P < 0.001 

1 AQXR-OP3 OPA 62 6 57 0 8.72 *P < 0.05 

1 BFUZ-OP4 OPA 62 6 55 2 9.2 *P < 0.05 

2 BEFF-OP4 OPA 24 101 0 0 5107.27 ***P < 0.001 

2 BJLL-OP4 OPA 39 7 48 31 22.04 ***P < 0.001 

2 E41M49_238s AFLP 17 0 69 39 33.31 ***P < 0.001 

2 E41M49_240s AFLP 21 0 65 39 24.23 ***P < 0.001 

2 E41M59_277i AFLP 25 0 65 35 19.49 ***P < 0.001 

2 E41M59_278i AFLP 25 0 65 35 19.49 ***P < 0.001 

2 BKUA-OP4 OPA 64 7 54 0 14.06 ***P < 0.001 

2 ATHI-OP3-1 OPA 60 7 58 0 13.28 **P < 0.01 

2 CLXS3_851-OP3 OPA 58 7 58 2 13.63 **P < 0.01 

2 BDAY-OP4 OPA 64 6 54 1 9.47 **P < 0.01 

2 BHOQ-OP4 OPA 64 6 53 2 9.79 **P < 0.01 

2 BHWC-OP4 OPA 64 6 52 3 10.13 **P < 0.01 

2 E35M60_88s AFLP 32 0 60 33 10.12 **P < 0.01 

2 E41M59_273s AFLP 58 0 30 37 10.45 **P < 0.01 

2 RZ-J EST 53 6 61 5 9.76 **P < 0.01 

2 AVZX-OP4 OPA 60 6 57 2 8.87 *P < 0.05 

2 BIAS-OP4 OPA 45 1 23 56 7.13 *P < 0.05 

2 E35M47_70s AFLP 35 0 58 32 7.25 *P < 0.05 

2 E38M49_89s AFLP 33 0 57 35 7.93 *P < 0.05 

2 E41M59_268s AFLP 55 0 34 36 6.45 *P < 0.05 

3 AVSI-OP3 OPA 65 6 54 0 9.5 **P < 0.01 

3 E41M59_99s AFLP 31 0 52 42 6.72 *P < 0.05 

4 AKHB-OP4 OPA 3 0 59 63 52.37 ***P < 0.001 

4 BFYG-OP3 OPA 33 2 90 0 26.41 ***P < 0.001 

4 BHYM-OP4 OPA 50 71 0 4 2587.29 ***P < 0.001 

4 BIDO-OP4-2 OPA 0 61 63 1 1861.55 ***P < 0.001 

4 BLRO-OP4 OPA 0 76 49 0 2871.34 ***P < 0.001 

4 BVVP-OP4 OPA 0 60 63 2 1815.73 ***P < 0.001 

4 E45M60_119i AFLP 67 0 20 38 27.17 ***P < 0.001 

4 LE9003s COS 26 0 68 31 20.56 ***P < 0.001 

4 RZ-X EST 32 1 87 5 26.02 ***P < 0.001 

4 CLXS3_3835-OP3-1 OPA 83 1 41 0 14.81 ***P < 0.001 

4 CLXS3_3835-OP3-2 OPA 83 1 41 0 14.81 ***P < 0.001 

4 QGCA_6151_2-OP3-1 OPA 83 2 40 0 15.03 ***P < 0.001 

4 QGCA_6151_2-OP3-2 OPA 83 2 40 0 15.03 ***P < 0.001 

4 AVPF-OP3 OPA 42 4 79 0 13.31 **P < 0.01 

4 E37M61_83s AFLP 31 0 61 33 11.4 **P < 0.01 

4 E41M49_133s AFLP 57 0 28 40 11.4 **P < 0.01 

4 E41M49_133s AFLP 57 0 28 40 11.4 **P < 0.01 

4 RZ-M EST 72 5 43 5 12.41 **P < 0.01 

4 E44M49_140i AFLP 61 0 33 31 9.96 **P < 0.01 

4 E35M60_383s AFLP 58 0 34 33 7.82 *P < 0.05 

4 E41M62_353s AFLP 57 0 35 33 6.8 *P < 0.05 

4 E45M49_280s AFLP 56 0 33 36 7.45 *P < 0.05 

4 RZ-D EST 45 2 72 6 6.23 *P < 0.05 

5 BFXY-OP4 OPA 63 47 0 15 1248.55 ***P < 0.001 
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Table B.1. continued. 

Chr Locus Marker a h b u X2 value P value 

5 E35M49_145i AFLP 26 0 66 33 19.13 ***P < 0.001 

5 BCPA-OP3 OPA 60 7 55 3 14.04 ***P < 0.001 

5 E35M62_308s AFLP 62 0 31 32 11.97 **P < 0.01 

5 ASAP-OP4 OPA 77 0 48 0 8.82 *P < 0.05 

5 AWEQ-OP4 OPA 74 0 48 3 7.57 *P < 0.05 

5 BAXS-OP4 OPA 77 0 48 0 8.82 *P < 0.05 

5 BDDO-OP4 OPA 75 0 49 1 7.51 *P < 0.05 

5 BHQP-OP3 OPA 52 5 68 0 6.91 *P < 0.05 

5 BRUO-OP4 OPA 74 0 49 2 7.11 *P < 0.05 

5 E35M60_261s AFLP 56 0 34 35 6.89 *P < 0.05 

5 QGA18I02-OP4 OPA 75 0 49 1 7.51 *P < 0.05 

7 AWMX-OP4 OPA 0 18 69 38 262.53 ***P < 0.001 

7 BETN-OP4 OPA 0 87 38 0 3773.8 ***P < 0.001 

7 BFQX-OP4 OPA 4 0 57 64 47.75 ***P < 0.001 

7 QGD14K20-OP4 OPA 66 59 0 0 1728.07 ***P < 0.001 

7 E33M59_205s AFLP 26 0 62 37 16.36 ***P < 0.001 

7 E33M59_204s AFLP 27 0 61 37 14.74 ***P < 0.001 

7 E38M54_76s AFLP 30 0 59 36 11.01 **P < 0.01 

7 QGE10B18-OP3-1 OPA 60 7 57 1 13.51 **P < 0.01 

7 E44M59_205s AFLP 31 0 59 35 10.28 **P < 0.01 

7 w Gene 47 0 78 0 9.79 **P < 0.01 

7 AIQW-OP3 OPA 59 6 60 0 8.53 *P < 0.05 

7 E33M48_300i AFLP 33 0 56 36 7.45 *P < 0.05 

7 E35M59_187i AFLP 34 0 58 33 7.82 *P < 0.05 

7 E35M61_325i AFLP 36 0 58 31 6.72 *P < 0.05 

7 E44M54_105s AFLP 35 0 57 33 6.8 *P < 0.05 

7 E44M59_204s AFLP 32 0 57 36 8.55 *P < 0.05 

7 E45M59_151i AFLP 34 0 57 34 7.35 *P < 0.05 

8 BWSH-OP4 OPA 0 62 61 2 1938.59 ***P < 0.001 

8 E35M47_114s AFLP 23 0 70 32 25.61 ***P < 0.001 

8 E35M47_298i AFLP 16 0 77 32 42.12 ***P < 0.001 

8 E35M48_183i AFLP 24 0 70 31 24.36 ***P < 0.001 

8 E35M48_359s AFLP 25 0 69 31 22.41 ***P < 0.001 

8 E35M59_183i AFLP 21 0 71 33 29.07 ***P < 0.001 

8 E35M59_332i AFLP 74 0 18 33 36.09 ***P < 0.001 

8 E38M49_213i AFLP 21 0 66 38 25.03 ***P < 0.001 

8 E38M54_208s AFLP 14 0 75 36 43.89 ***P < 0.001 

8 E38M54_209i AFLP 13 0 75 37 45.77 ***P < 0.001 

8 E44M54_449i AFLP 18 0 74 33 36.09 ***P < 0.001 

8 E45M47_279s AFLP 25 0 67 33 20.94 ***P < 0.001 

8 E45M59_160i AFLP 65 0 26 34 18.42 ***P < 0.001 

8 LE9041s COS 12 0 80 33 52.52 ***P < 0.001 

8 E35M62_220i AFLP 28 0 65 32 16.43 ***P < 0.001 

8 E45M48_301i AFLP 27 0 66 32 18.09 ***P < 0.001 

8 E45M47_259s AFLP 29 0 63 33 14.22 ***P < 0.001 

8 E45M50_219i AFLP 41 0 80 4 14.69 ***P < 0.001 

8 E35M49_267s AFLP 61 0 31 33 11.4 **P < 0.01 

8 E41M59_237s AFLP 59 0 29 37 11.79 **P < 0.01 

8 E41M59_238s AFLP 60 0 29 36 12.38 **P < 0.01 

8 E33M60_150s AFLP 58 0 31 36 9.73 **P < 0.01 

8 E38M54_258s AFLP 31 0 58 36 9.73 **P < 0.01 

8 AZQR-OP3 OPA 59 6 60 0 8.53 *P < 0.05 

9 AHTV-OP4 OPA 0 52 72 1 1356.55 ***P < 0.001 

9 BEFF-OP4 OPA 24 101 0 0 5107.27 ***P < 0.001 

9 BHWB-OP4 OPA 0 61 64 0 1846.73 ***P < 0.001 

9 BJJK-OP4 OPA 46 6 73 0 14.44 ***P < 0.001 

8 AZQR-OP3 OPA 59 6 60 0 8.53 *P < 0.05 

8 E33M60_149s AFLP 57 0 32 36 8.55 *P < 0.05 

8 E35M49_91s AFLP 34 0 58 33 7.82 *P < 0.05 

8 E41M59_134s AFLP 33 0 57 35 7.93 *P < 0.05 

9 AHLI-OP4 OPA 47 6 71 1 13.37 **P < 0.01 

9 BIAE-OP4 OPA 46 6 67 6 13.13 **P < 0.01 

9 ATNJ-OP4 OPA 47 5 73 0 10.32 **P < 0.01 

9 BEMX-OP4 OPA 48 4 73 0 7.26 *P < 0.05 
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Table B.1. continued. 

Chr Locus Marker a h b u X2 value P value 

9 E37M61_144i AFLP 35 0 57 33 6.8 *P < 0.05 

 

Table B.2.  Map alignment of the F7 Sal x Ice map and the MCB19 10NR map.  Where LG 

(linkage group); cM (centimorgan). 

Marker order LG Marker Map position (cM) 
Chromosome position on 

MCB19 10NR map (bin) 

1 1a ANWE-OP4 0 917 

2 1a AQXR-OP3 13.246 942 

3 1a BKOL-OP3 13.322 947 

14 1b BFOH-OP4 1.128 1590 

16 1b BBCU-OP4 1.61 1630 

19 1b BVDO-OP4 2.068 1632 

20 1b AYRY-OP4 2.331 1682 

21 1b AVKT-OP4 2.332 1633 

22 1b AZUN-OP4 2.332 2320 

23 1b AYUO-OP4 2.332 1669 

53 2 ANAQ-OP3 28.035 889 

57 2 AAAH-OP3 32.331 810 

58 2 AOGA-OP3 32.689 778 

59 2 AOXR-OP3 33.679 862 

66 2 BGPD-OP4 64.513 1864 

67 2 BHXM-OP3 69.295 357 

68 2 BJLL-OP4 71.496 2461 

72 2 ATHI-OP3-1 80.138 2314 

75 2 BDKV-OP4 97.064 2385 

79 2 BJZY-OP4 98.577 2388 

84 2 BKHE-OP4 102.151 2403 

85 2 BKUA-OP4 102.592 2394 

89 2 BHWC-OP4 109.271 2485 

90 2 BHOQ-OP4 109.393 2483 

92 2 BVZJ-OP4 146.635 964 

93 2 AKGO-OP4 148.603 954 

94 2 BIAS-OP4 150.588 913 

108 3a CBXN-OP3 0 485 

109 3a BFDT2-OP3 0 601 

110 3a AVSI-OP3 12.467 648 

118 3b ANKW-OP3-1 28.326 725 

123 4a BQOS-OP4 8.446 394 

124 4a BDPH-OP4 8.446 418 

126 4a BIKK-OP4 8.789 421 

132 4a BVZM-OP4 10.467 423 

134 4a AKVV-OP4 10.617 427 

135 4a BEEF-OP4 10.617 440 

136 4a BTJR-OP4 11.425 461 

137 4a BEUC-OP4 12.285 563 

143 4a BDWF-OP4 14.06 418 

144 4a AVPF-OP3 18.881 762 

150 4a BHYM-OP4 52.721 720 

152 4a BIDO-OP4-2 54.554 2471 

153 4a BLRO-OP4 58.532 369 

155 4a AIUK-OP3 70.985 451 

157 4a BSCC-OP3-1 79.909 1175 
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Table B.2. continued. 

Marker order LG Marker Map position (cM) 
Chromosome position on 

MCB19 10NR map (bin) 

158 4a RZ-I 83.066 1199 

162 4b BCMZ-OP4 1.528 1314 

163 4b AQQD-OP4 1.528 1199 

166 4b AVZB-OP4 16.39 1314 

171 4b BDLF-OP3-1 48.091 1833 

172 4b AQOZ-OP3 50.792 1488 

175 4b AWHP-OP3 54.519 1498 

178 4b BJBO-OP3 57.656 1538 

187 4b AKWZ-OP3 70.057 1638 

213 5a BCEL-OP3-1 52.212 127 

214 5a BHQP-OP3 64.289 39 

223 5a BEIH-OP4 87.696 96 

225 5a BKSN-OP4 96.14 130 

226 5a BEBN-OP4 115.249 245 

227 5a BKMO-OP4 115.249 244 

228 5a ATRK-OP4 115.255 250 

231 5b BCUM-OP3 12.319 1603 

232 5b CAMY-OP3 14.358 1612 

233 5b BFXY-OP4 25.138 1918 

234 5b BAMG-OP3-1 39.592 1955 

243 5c BCPA-OP3 21.942 2812 

244 5c AFPZ-OP3 29.197 2841 

247 6a BUZC-OP4 0 258 

248 6a AWTX-OP4 4.623 338 

251 6b BTNO-OP3 9.414 740 

252 6b ATSV-OP3 16.847 832 

253 6b BCDA-OP3-2 21.726 918 

254 6c BBQZ-OP4 0 938 

258 6c AXJF-OP4 0.825 899 

259 6c BCDA-OP3-1 0.827 918 

263 6c BGBG-OP4 2.195 909 

264 6c BTJM-OP4 2.938 940 

265 6c BJQT-OP4 3.299 943 

266 6d BLCL-OP3 0 1454 

286 7 BUAF-OP1 8.488 388 

288 7 AXAS-OP4 8.859 394 

291 7 BAIJ-OP4 8.868 411 

292 7 BAAZ-OP4 8.868 412 

295 7 BEYE-OP4 11.958 478 

297 7 AWMX-OP4 13 444 

299 7 BHVY-OP4 15.622 533 

300 7 BJBG-OP4 15.715 511 

301 7 BHRR-OP4 15.806 521 

302 7 BEZB-OP4 16.131 529 

303 7 BICL-OP2 16.131 531 

304 7 BLCN-OP4 16.131 517 

305 7 AVRC-OP4 16.296 518 

315 7 AOUA-OP4-2 23.7 645 

316 7 BATO-OP4-2 23.719 647 

319 7 E38M49_116s 25.229 677 
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Table B.2. continued. 

Marker order LG Marker Map position (cM) 
Chromosome position on 

MCB19 10NR map (bin) 

320 7 AYHP-OP3-2 25.328 649 

327 7 BKBM2-OP3 33.901 636 

332 7 BXNV-OP3-1 38.707 971 

343 7 BTVQ-OP4 57.823 1023 

344 7 AIQW-OP3 58.56 905 

348 7 AVHI-OP4 61.677 1071 

349 7 ALCE-OP4 62.055 1070 

351 7 ATPH-OP4 68.982 1111 

352 7 BIVH-OP3-1 79.174 1131 

378 8 BWSH-OP4 60.608 318 

384 8 AXXF-OP3 72.686 281 

393 8 AMZR-OP4 78.603 273 

404 8 BEAO-OP4 97.721 559 

406 8 AHOJ-OP4 100.57 591 

409 9a BFSF-OP4 0 231 

410 9a AZOT-OP4 0.119 223 

411 9a AVSN-OP4 1.027 231 

412 9a BEMX-OP4 22.209 458 

413 9a ATNJ-OP4 23.091 474 

415 9a AHLI-OP4 23.919 483 

416 9a BIAE-OP4 23.934 484 

417 9a AHTV-OP4 35.447 466 

419 9a BHWB-OP4 50.872 217 

421 9b AQYG-OP3 3.495 1011 

 

 

Table B.3.  Common markers (+/- 5bp) between the Saladin x Iceberg genetic map and the 

lettuce map constructed by Syed et al., (2006).  Where LG (linkage group); cM (centimorgan). 

Marker from Syed et al., 

(2006). 

LG present on from 

Syed et al., (2006). 

Marker from Saladin 

x Iceberg F7 map 

LG present on from 

Saladin x Iceberg F7 map 

E35/M59-F-190-SER 1 E35M59_187i 7 

E45/M48-F-070-SAT 1 E45M48_47s 2 

E45/M48-F-297-SAT 1 E45M48_301i 8 

E35/M48-F-293-SER 2 E35M48_288i 8 

E35/M48-F-364-SAT 3 E35M48_371i 5a 

E35/M49-F0096-SAT 3 E35M49_100i 5b 

E35/M59-F-187-SER 3 E35M59_187i 7 

E35/M59-F-220-SAT 4 E35M59_225s 2 

E35/M49-F-268-SAT 4 E35M49_267s 8 

E44/M48-F-223-SER 5 E44M48_266s 2 

E35/M59-F-361-SER 5 E35M59_359s 8 

E45/M48-F-075-SER 5 E45M48_74s 2 

E45/M48-F-365-SAT 5 E45M48_361s 4b 

E35/M48-F-376-SAT 5 E35M48_371i 5a 

E35/M48-F-288-SER 5 E35M48_288i 8 

E35/M59-F-182-SAT 5 E35M59_183i 8 

E35/M48-F-204-SAT 7 E35M48_206i 2 

E35/M48-F-188-SAT 7 E35M48_187i 7 

E35/M49-F-146-SER 7 E35M49_145i 5a 

E35/M48-F-290-SAT 8 E35M48_288i 8 

E35/M59-F-183-SAT 9 E35M59_183i 8 

E45/M48-F-079-SER 10 E45M48_74s 2 
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Table B.4.  Common markers (+/- 5bp) between the Saladin x Iceberg genetic map and the 

lettuce map constructed by Jeuken et al., (2001).  Where LG (linkage group); cM (centimorgan). 

Marker from Jeuken et al., 

(2001) 

LG present on from 

Jeuken et al., (2001) 

Marker from Saladin x 

Iceberg F7 map 

LG present on from 

Saladin x Iceberg F7 

map 

E35M48-288sal 1 E35M48_288i 8 

E38M54-189! 1 E38M54_192s 2 

E35M48-206 1 E35M48_206i 2 

E38M54-123 1 E38M54_122i 7 

E35M59-354 2 E35M59_359s 8 

E45M49-128 2 E45M49_129s 4b 

E35M59-328 2 E35M59_332i 8 

E44M49-144sal 2 E44M49_140i 4b 

E45M48-72sal 3 E45M48_74s 2 

E44M49-136 3 E44M49_140i 4b 

E38M54-149! 3 E38M54_152i 7 

E35M60-180 3 E35M60_178i 4b 

E35M48-182 3 E35M48_183i 8 

E35M60-85 4 E35M60_88s 2 

E35M60-84 4 E35M60_88s 2 

E45M49-92sal 4 E45M49_93s 4a 

E45M49-282 4 E45M49_280s 4b 

E38M54-157sal 4 E38M54_152i 7 

E45M49-276salA 4 E45M49_280s 4b 

E45M49-97sal 4 E45M49_93s 4a 

E35M60-259 4 E35M60_261s 5c 

E45M49-278salB 4 E45M49_280s 4b 

E35M49-143 4 E35M49_145i 5a 

E35M60-90sal 5 E35M60_88s 2 

E44M49-145sal 5 E44M49_140i 4b 

E35M48-374salA 5 E35M48_371i 5a 

E35M48-376 5 E35M48_371i 5a 

E38M54-253sal 5 E38M54_256s 7 

E35M59-333sal 5 E35M59_332i 8 

E35M49-89! 5 E35M49_87i 8 

E45M48-70sal 6 E45M48_74s 2 

E38M54-269satA 6 E38M54_266s 8 

E35M48-354sal 6 E35M48_359s 8 

E35M60-288sal 6 E35M60_290s 2 

E35M49-87sal 6 E35M49_87i 8 

E35M49-84 6 E35M49_87i 8 

E35M48-187sal 6 E35M48_187i 7 

E35M59-369sal 6 E35M59_371i 5a 

E35M60-92 6 E35M60_88s 2 

E45M48-300 6 E45M48_301i 8 

E35M49-140 7 E35M49_145i 5a 

E35M49-91! 7 E35M49_91s 8 

E38M54-187salB 8 E38M54_192s 2 

E38M54-208 8 E38M54_208s 8 

E35M49-96! 8 E35M49_91s 8 

E38M54-258 8 E38M54_258s 8 

E38M54-210 8 E38M54_209i 8 

E35M48-364 8 E35M48_359s 8 

E35M49-142 8 E35M49_145i 5a 

E45M48-301sal 8 E45M48_301i 8 

E45M48-77sal 9 E45M48_74s 2 

E35M59-361sal 9 E35M59_359s 8 

E35M48-192 9 E35M48_187i 7 

E38M54-127 9 E38M54_122i 7 

E38M54-127 9 E38M54_124s 7 

E35M48-371 9 E35M48_371i 5a 

E35M59-227sal 9 E35M59_225s 2 
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Appendix C 

 

Additional information from Chapter 5 

 

Field trial plan and randomisation for UK site for selected F7 Saladin x Iceberg 

mapping population 

Plants were transplanted to the field into 8 x 1.83 m wide beds with a plot length of 

1.05 and spacing distance of 35 cm (see figure C.1.).   

 

 Guard Guard Guard Guard   Guard Guard Guard Guard  

 24 48 72 96   24 48 72 96  

 23 47 71 95   23 47 71 95  

 22 46 70 94   22 46 70 94  

 21 45 69 93   21 45 69 93  

 20 44 68 92   20 44 68 92  

 19 43 67 91   19 43 67 91 

2
7

.3
 m

 

lo
n
g
 

 18 42 66 90   18 42 66 90 

 

- - - -   - - - - 

 10 34 58 82   10 34 58 82 

 9 33 57 81   9 33 57 81 

 8 32 56 80   8 32 56 80 

 7 31 55 79   7 31 55 79 

 6 30 54 78   6 30 54 78  

 5 29 53 77   5 29 53 77  

 4 28 52 76   4 28 52 76  

 3 27 51 75   3 27 51 75  

 2 26 50 74   2 26 50 74  

 1 25 49 73   1 25 49 73  

 Guard Guard Guard Guard   Guard Guard Guard Guard Baseline 

 Bed Bed Bed Bed   Bed Bed Bed Bed  

 1 2 3 4   5 6 7 8  

 7.32 m 5.49 m 7.32 m  

 Rep 1 

Tractor 

path Rep 2  

 

 

Overall width 20.3 m and overall area 549.6 m
2 

  

Figure C.1.  Field trial plan for UK site. 

 

Beds were marked using a tractor with a wheel base of 1.83 m and plots were then 

individually marked using a ‗Wolf Garten‘ row marker.  A plot configuration of 12 

plants per plot and rep (4 rows x 3 plant arrangement) of the same accession was 
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used, creating a formation of two central heads surrounded by guard plants.  The 

plant material was randomised within a rep by a column/row design (see figure C.2.). 

 

rep 1 ------------------------ 

plot  1   2   3   4   5   6 

block+------------------------ 

1     12  90  58   8  24  67 

2     39  71  62  19  18  23 

3     84  78  61  56  60  73 

4      6  87  70  64  15  96 

5     92  14  81  21  29  49 

6     83  68  26  57  31  89 

7     74   2  38  86   3  34 

8     51  36  55  10  20  77 

9     44  94  85  80  45  27 

10    22  75  32  48  40  88 

11     5  11  25   4  13   9 

12    37  95  33  35  91  54 

13    76  16  53  43  17  30 

14    69  65  66  63  41   1 

15    72  79  46  59   7  42 

16    47  52  93  82  28  50 

rep 2 ------------------------ 

plot  1   2   3   4   5   6 

block+------------------------ 

1     28   5  66  72  22  17 

2     76  55  69  21  37  78 

3     93  20  24  96  56  25 

4     44  81  53   4   2  70 

5     91  67  75   7  51  16 

6     92  88  95  38  73  64 

7     94  65  87  10  32  19 

8     54  68  52   6  30  18 

9     29  11  23  59  36  31 

10    46  62  33  74  85  13 

11    12  40  86  41  26   9 

12    27  48  60  71  83  43 

13    45  50  57  35   8  49 

14    58  84  42  63  80  15 

1     39  90   1  34  14  47 

16    82  79  89  77   3  61 

 

Figure C.2. Randomised column/row design for field plan for UK site. 

 

Field trial plan and randomisation for NL site for selected F7 Saladin x Iceberg 

mapping population 

Plants were transplanted to the field into 2 x 1.5 m wide beds with a plot length of 

1.09 and spacing distance of 36 cm (see figure C.3.a.).  Beds and plots were marked 

according to Rijk Zwaan procedures.  The plot configuration and field plan design 

type used were as the UK site (see figure C.3.b.). 
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 Rep 1 Rep 2  

 Guard Guard  

 1 96  

 2 95  

 3 94  

 4 93 

1
0

5
.8

 m
 

lo
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P
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m
b

er
 1

-9
6
 

5 92 

6 91 

7 90 

8 89 

9 88 

10 87 

11 86 

- - 

86 11 

87 10 

88 9 

 89 8 

 90 7  

 91 6  

 92 5  

 93 4  

 94 3  

 95 2  

 96 1  

 Guard Guard Baseline 

 Bed Bed  

 1 2  

3 m wide 

Overall area 317.4 m2 

 

Rep 1  Rep 1 cont Rep 2  Rep 2 cont 

69 44 31 89 

74 73 18 76 

56 52 83 56 

10 62 34 8 

93 59 96 86 

61 1 95 24 

85 30 84 92 

65 63 58 48 

31 92 63 35 

76 66 42 72 

4 88 29 23 

51 33 17 79 

47 7 44 81 

5 34 68 71 

43 2 69 90 

16 36 94 67 

89 68 22 27 

58 25 37 45 

54 86 88 43 

75 81 21 80 

53 49 46 54 

8 84 74 87 

22 79 9 52 

39 17 82 15 

40 13 25 40 

29 90 13 12 

23 78 55 38 

38 57 19 4 

72 35 6 77 

94 9 47 73 

55 14 10 57 

95 45 41 60 

24 3 49 26 

26 37 70 61 

64 18 93 16 

11 27 7 53 

80 28 30 33 

32 15 75 3 

41 91 14 64 

82 70 78 62 

42 67 20 51 

46 87 85 91 

48 60 32 39 

77 50 11 5 

21 6 50 65 

83 71 36 1 

19 96 59 66 

12 20 28 2 
 

 

Figure C.3.  Field trial plan for NL site (a) and randomised column/row design for field 

plan for NL site (b).  Where cont  is rep continued. 

a 

b 
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Field trial plan and randomisation for extreme discolouration RIL set 

Plants were transplanted to the field into 4 x 1.83 m wide beds with a plot length of 

1.05 and spacing distance of 35 cm (see figure C.4.a.).  Beds were marked using a 

tractor with a wheel base of 1.83 m and plots were then individually marked using a 

‗Wolf Garten‘ row marker.  The plot configuration and field plan design type used 

were as the UK site (see figure C.4.b.). 
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13 14 15 16 
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2
 5 6 7 8 

9 10 11 12 

13 14 15 16 

1 2 3 4 

1
 5 6 7 8 

9 10 11 12 

13 14 15 16 

G G G G 

  
 

Bed Bed Bed Bed 

   

 

1 2 3 4 

   

        7.32 m wide 

  
Overall area 107.6 m

2
 

  

rep 1 ---------------- 

plot   1   2   3   4 

block+--------------- 

1   |  14   2  16   9 

2   |  13   4   8   5 

3   |  11  10   7  12 

4   |   3   1   6  15 

rep 2 ---------------- 

plot   1   2   3   4 

block+--------------- 

1   |   1  11   4  16 

2   |   8  12   3   2 

3   |   5   7  14  15 

4   |   9  13  10   6 

rep 3 ---------------- 

plot   1   2   3   4 

block+--------------- 

1   |   7   1   2   5 

2   |   9   6  12   4 

3   |   3  10   8  14 

4   |  15  16  11  13 

 

 

Figure C.4.  Field trial plan for extreme discolouration RIL set (a) and Randomised column/row 

design for field plan (b).  Where G (guard plant; either Saladin or Iceberg). 

 

  

b a 
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 REML analysis output across days data for the selected RILs. 

Table C.1. REML analysis of discolouration across days within the selected RIL mapping 

population.  Where df (degrees of freedom); chi (chi squared probability); Line (genotype/RIL). 

 

Site 
Discolouration 

measure 
Fixed term 

Wald 

statistic 
df Wald/df chi pr 

UK 

Browning intensity  Line 79.27 95 0.83 0.877 

(msb) Day 1585.54 1 1585.54 ***<0.001 

  Line x Day 168.14 95 1.77 ***<0.001 

Pinking intensity (msp) Line 154.81 95 1.63 ***<0.001 

  Day 4715.69 1 4715.69 ***<0.001 

  Line x Day 148.87 95 1.57 ***<0.001 

Overall discolouration  Line 94.41 95 0.99 0.498 

intensity (msd) Day 5564.58 1 5564.58 ***<0.001 

  Line x Day 186.66 95 1.96 ***<0.001 

Extent of browning  Line 73.35 95 0.77 0.952 

(%b) Day 1346.53 1 1346.53 ***<0.001 

  Line x Day 153.92 95 1.62 ***<0.001 

Extent of pinking (%p) Line 183.28 95 1.93 ***<0.001 

  Day 4916.7 1 4916.7 ***<0.001 

  Line x Day 153.63 95 1.62 ***<0.001 

Extent of overall  Line 111.57 95 1.17 0.118 

discolouration (%d) Day 4403.34 1 4403.34 ***<0.001 

  Line x Day 211.83 95 2.23 ***<0.001 

NL 

Browning intensity  Line 139.06 95 1.46 **0.002 

(msb)  Day 356.74 1 356.74 ***<0.001 

  Line x Day 154.23 95 1.62 ***<0.001 

Pinking intensity (msp) Line 218.32 95 2.3 ***<0.001 

  Day 5148.7 1 5148.7 ***<0.001 

  Line x Day 309.82 95 3.26 ***<0.001 

Overall discolouration  Line 174.55 95 1.84 ***<0.001 

intensity (msd) Day 4863.58 1 4863.58 ***<0.001 

  Line x Day 293.73 95 3.09 ***<0.001 

Extent of browning  Line 139.74 95 1.47 **0.002 

(%b) Day 285.66 1 285.66 ***<0.001 

  Line x Day 165.42 95 1.74 ***<0.001 

Extent of pinking (%p) Line 232.91 95 2.45 ***<0.001 

  Day 4266.27 1 4266.27 ***<0.001 

  Line x Day 407.52 95 4.29 ***<0.001 

Extent of overall  Line 237.73 95 2.5 ***<0.001 

discolouration (%d) Day 4411.12 1 4411.12 ***<0.001 

  Line x Day 353.46 95 3.72 ***<0.001 
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Quantitative trait loci from interval mapping 

Table C.2. QTL impacting on post harvest discolouration of lettuce tissue  from the Saladin x Iceberg RIL population grown in 2 sites: UK and NL.  Additive effect 

equals half the difference between homozygous alleles at the QTL: positive number indicates an additive allelic effect of Saladin; negative number indicates a negative allelic 

effect of Saladin.  Confidence interval was based on a 2 LOD support interval with a significant LOD value of 1.95.  Where UK (United Kingdom); NL (The Netherlands), LG 

(linkage group from F7 Saladin x Iceberg linkage map (see Chapter 4)); LOD (logarithm of odds), cM (centimorgans); msb (browning intensity); %b (extent of browning); 

msp (pinking intensity); %p (extent of pinking); msd (overall discolouration intensity); %d (extent of overall discolouration).  Number before discolouration parameter refers 

to day. 

Trait LG 
Location 

(cM) 

LOD 

peak 

Confidence 

interval (cM) 
Nearest Locus 

Additive 

effect 

Genetic variation 

explained by QTL (%) 
Allelic contribution 

3msb_UK 4a 25.5 2.25 16.4 RZ-D 2.51 10.6 Saladin 

msb_UK 4a 25.5 2.76 11.6 RZ-D 2.07 12.9 Saladin 

1%b_UK 4a 25.5 2.29 12.6 RZ-D 2.84 10.9 Saladin 

3%b_UK 3a 21.5 2.14 21.5 E35M47_333s -3.55 12 Iceberg 

%b_UK_1 4a 25.5 2.85 11.6 RZ-D 3.01 13.3 Saladin 

%b_UK_2 4a 58.5 2.14 8.9 BLRO-OP4 -5.04 9.9 Iceberg 

1msp_UK_1 7 2.3 3.62 2.4 BLJI-OP4 3.18 16.3 Saladin 

1msp_UK_2 7 2.9 2.48 4.6 BSQZ-OP4 2.65 11.5 Saladin 

1msp_UK_3 7 7.8 2.26 3.2 AZTI-OP4 2.53 10.5 Saladin 

1msp_UK_4 7 16.5 2.47 3.5 BXJC-OP3 -2.65 11.4 Iceberg 

3msp_UK_1 4a 83.1 2.14 13.2 RZ-I 2.61 10.1 Saladin 

3msp_UK_2 8 104.2 2.11 3.6 E41M59_238s -2.8 11 Iceberg 

msp_UK 7 2.3 2.09 2.4 BLJI-OP4 2.3 9.7 Saladin 

1%p_UK_1 7 2.3 3.79 2.4 BLJI-OP4 4.85 17 Saladin 

1%p_UK_2 7 2.9 2.61 4.6 BSQZ-OP4 4.05 12 Saladin 

1%p_UK_3 7 7.8 2.51 3.2 AZTI-OP4 3.96 11.6 Saladin 

1%p_UK_4 7 16.5 2.72 7.2 BXJC-OP3 -4.14 12.5 Iceberg 

1%p_UK_5 7 23.7 2.11 4.7 w -3.67 9.8 Iceberg 

3%p_UK 7 2.3 2.07 2.4 BLJI-OP4 2.92 9.7 Saladin 
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Table C.2. continued. 

Trait LG 
Location 

(cM) 

LOD 

peak 

Confidence 

interval (cM) 
Nearest Locus 

Additive 

effect 

Genetic variation 

explained by QTL (%) 
Allelic contribution 

%p_UK_1 7 2.3 3.5 2.4 BLJI-OP4 3.88 15.8 Saladin 

%p_UK_2 7 2.9 2.25 4.6 BSQZ-OP4 3.14 10.5 Saladin 

%p_UK_3 7 4.9 2.22 4.6 AICW-OP4 / AZDK-OP4 3.12 10.3 Saladin 

%p_UK_4 7 8.2 2.11 3.2 AQTU-OP4 3.06 9.8 Saladin 

%p_UK_5 7 12 1.96 7.2 BEYE-OP4 2.92 9.2 Saladin 

%p_UK_6 7 16.5 2.19 7.4 BXJC-OP3 -3.1 10.2 Iceberg 

%p_UK_7 7 23.7 2.18 5.9 w -3.1 10.1 Iceberg 

1msd_UK 7 2.3 2.73 2.4 BLJI-OP4 1.87 12.6 Saladin 

3msd_UK 4a 83.1 2.33 13.2 RZ-I 1.87 11.1 Saladin 

msd_UK 4a 83.1 2.5 13.2 RZ-I 1.69 12 Saladin 

1%d_UK 7 2.3 2.51 2.4 BLJI-OP4 3.86 11.6 Saladin 

1msb_NL_1 7 0.9 2.55 2.4 ARZI-OP4 -1.56 11.8 Iceberg 

1msb_NL_2 7 4.8 2.68 4.6 AVQK-OP4 -1.6 12.3 Iceberg 

1msb_NL_3 7 49.4 2.24 15.5 QGE10B18-OP3-1 1.5 10.4 Saladin 

3msb_NL 4a 6 2.35 4 BFRY-OP3 -2.57 10.9 Iceberg 

1%b_NL_1 7 0.9 2.37 2.4 ARZI-OP4 -1.9 11 Iceberg 

1%b_NL_2 7 4.8 2.42 4.6 AVQK-OP4 -1.92 11.2 Iceberg 

1%b_NL_3 7 49.4 2.25 16.2 QGE10B18-OP3-1 1.89 10.4 Saladin 

3%b_NL 4a 6 2.35 4 BFRY-OP3 -3.08 10.9 Iceberg 

1%p_NL 7 21.3 1.96 23.9 E33M59_204s -4.86 11.5 Iceberg 

%p_NL 7 13 2.01 3.4 AWMX-OP4 -4.39 12.7 Iceberg 

1msd_NL_1 5a 57.2 2.06 86.8 BCEL-OP3-1 / BHQP-OP3 -1.63 12.6 Iceberg 

1msd_NL_2 5a 84.6 2.18 38.1 ASAP-OP4 1.46 10.1 Saladin 

1%d_NL 4a 0 1.98 8.4 E37M61_83s 3.8 10.3 Saladin 

1msb_1 4a 25.5 2.91 11.6 E45M59_248s / RZ-D 1.36 13.4 Saladin 

1msb_2 4a 52.7 2.75 10.3 BHYM-OP4 2.31 12.7 Saladin 

1msb_3 4a 58.5 3.01 8.9 BLRO-OP4 -2.68 13.7 Iceberg 

3msb 7 21.7 2.08 6.2 E33M59_205s 2.04 13.2 Saladin 

msb 4a 25.5 2.1 16.4 RZ-D 1.28 9.8 Saladin 

1%b_1 4a 25.5 3.14 11.6 E45M59_248s / RZ-D 1.95 14.4 Saladin 

  



332 
 

Table C.2. continued. 

Trait LG 
Location 

(cM) 

LOD 

peak 

Confidence 

interval (cM) 
Nearest Locus 

Additive 

effect 

Genetic variation 

explained by QTL (%) 
Allelic contribution 

1%b_2 4a 52.7 2.87 10.3 BHYM-OP4 3.29 13.5 Saladin 

1%b_3 4a 58.5 3.28 8.9 BLRO-OP4 -3.84 14.8 Iceberg 

%b_1 4a 25.5 2.16 11.6 RZ-D 1.66 10.1 Saladin 

%b_2 4a 58.5 2 14.1 BLRO-OP4 -3.1 9.3 Iceberg 

1msp_1 7 2.3 3.54 2.4 BLJI-OP4 2.74 16 Saladin 

1msp_2 7 4.9 2.96 4.6 AICW-OP4 / AZDK-OP4 2.51 13.5 Saladin 

1msp_3 7 7.8 2.43 5 AZTI-OP4 2.28 11.2 Saladin 

1msp_4 7 8.9 2.33 3 

BWYR-OP4 / AXAS-OP4 / AISE-OP4 / 

BATK-OP4 / BAIJ-OP4 / BAAZ-OP4 2.23 10.8 Saladin 

1msp_5 7 13 2.36 6 AWMX-OP4 -3.28 13.2 Iceberg 

1msp_6 7 16.5 2.57 3 BXJC-OP3 -2.35 11.8 Iceberg 

1msp_7 7 21.7 2.05 5 E33M59_205s -2.81 11.6 Iceberg 

3msp 1 10.4 2.56 16.3 RZ-H 2.14 11.8 Saladin 

msp_1 3b 10.4 2.31 16 RZ-H 1.98 10.8 Saladin 

msp_2 7 2.3 2.43 2.4 BLJI-OP4 2.03 11.3 Saladin 

msp_3 7 4.9 2.01 4.6 AICW-OP4 / AZDK-OP4 1.85 9.4 Saladin 

1%p_1 7 1.75 3.29 2.4 BBPV-OP4 / BBIK-OP4 / AWBE-OP4 4.15 14.9 Saladin 

1%p_2 7 4.9 3.05 4.6 AICW-OP4 / AZDK-OP4 4.02 13.9 Saladin 

1%p_3 7 7.8 2.71 3 AZTI-OP4 3.78 12.4 Saladin 

1%p_4 7 13 2.49 4 AWMX-OP4 -5.31 13.9 Iceberg 

1%p_5 7 16.5 2.85 3 BXJC-OP3 -3.9 13 Iceberg 

1%p_6 7 21.3 2.23 5 E33M59_205s -4 12.6 Iceberg 

%p_1 7 2.3 3.37 2.4 BLJI-OP4 3.14 15.3 Saladin 

%p_2 7 4.9 2.47 4.6 AICW-OP4 / AZDK-OP4 2.7 11.4 Saladin 

%p_3 7 8.9 2.07 5 BAIJ-OP4 / BAAZ-OP4 2.45 9.6 Saladin 

%p_4 7 13 2.31 4 AWMX-OP4 -3.84 13.2 Iceberg 

%p_5 7 16.5 2.18 3 BXJC-OP3 -2.55 10.1 Iceberg 

%p_6 7 21.7 2.09 5 E33M59_205s -2.85 11.8 Iceberg 

1msd 7 2.3 2.39 2.4 BLJI-OP4 1.27 11.2 Saladin 

1%d_1 7 1.75 2.39 2.4 BBPV-OP4 / BBIK-OP4 / AWBE-OP4 3.03 11.1 Saladin 

1%d_2 7 4.9 2.12 4.6 AICW-OP4 / AZDK-OP4 2.87 9.9 Saladin 

%d 7 2.3 2.33 2.4 BLJI-OP4 2.06 10.9 Saladin 
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Correlations amongst traits 

All discolouration measures and morphological traits were assessed for potential relationships (correlations between browning, pinking and 

overall discolouration traits per and across trial sites (see table C.3.). 

Table C.3. Correlation matrix for the Saladin x Iceberg lettuce RIL population between post harvest discolouration measurements and morphological parameters 

within and across sites.  Read across then down.  Only significant effects shown with ***P <0.001 in bold, **P<0.01 in italics and *P<0.05 in regular font.  Where UK 

(UK trial site); NL (NL trial site); msb (browning intensity); msp (pinking intensity); msd (overall discolouration intensity); %b (extent of  browning); %p (extent of  pinking); 

%d (extent of  overall discolouration).  Numerical value before discolouration measurement is day. 

1msp 

               3msp 0.682 

              msp 0.900 0.931 

             1msb 

               3msb -0.242 

  

0.542 

           msb 

   

0.782 0.948 

          1msd 0.889 0.648 0.825 0.458 

           3msd 0.219 

 

0.209 

            msd 0.224 

 

0.213 

    

1.000 

       1%p 0.995 0.673 0.892 

 

-0.242 

 

0.882 0.221 0.225 

          3%p 0.631 0.864 0.830 

   

0.605 

  

0.636 

         %p 0.955 0.802 0.951 

 

-0.225 

 

0.861 0.206 0.210 0.960 0.825 

        1%b 

   

0.963 0.497 0.735 0.514 

   

0.209 

        3%b 

   

0.518 0.939 0.893 

      

0.490 

      %b 

   

0.820 0.864 0.952 0.317 

     

0.820 0.901 

     1%d 0.898 0.678 0.848 0.359 

  

0.963 

  

0.905 0.647 0.894 0.448 

 

0.221 

    3%d 0.563 0.789 0.747 

   

0.566 

  

0.568 0.879 0.730 0.232 

  

0.606 

   %d 0.884 0.761 0.890 0.332 

  

0.937 

  

0.890 0.760 0.924 0.428 

 

0.230 0.979 0.755 

  UK 1msp 0.654 0.605 0.681 0.251 

  

0.695 0.215 0.218 0.644 0.618 0.692 0.349 

 

0.205 0.682 0.492 0.688 

 UK 3msp 

   

0.489 0.822 0.795 

      

0.498 0.762 0.747 

 

0.246 

  UK msp 0.560 0.767 0.733 0.285 

  

0.628 

  

0.552 0.755 0.674 0.384 

 

0.274 0.629 0.627 0.679 0.859 

UK 1msb 

 

0.297 0.247 0.817 0.405 0.610 0.501 

   

0.347 0.221 0.865 0.412 0.700 0.468 0.362 0.478 0.455 

UK 3msb 

   

0.489 0.822 0.795 

      

0.498 0.762 0.747 

 

0.246 

  UK msb 

   

0.680 0.765 0.825 0.279 

     

0.705 0.722 0.825 0.223 0.319 0.266 0.256 

UK 1msd 0.499 0.547 0.571 0.588 

 

0.368 0.713 

  

0.488 0.582 0.564 0.677 0.248 0.498 0.687 0.508 0.696 0.886 

UK 3msd 0.218 

 

0.207 

    

1.000 1.000 0.219 

        

0.214 

UK msd 0.220 

 

0.209 

    

1.000 1.000 0.221 

 

0.206 

      

0.217 

UK 1%p 0.666 0.610 0.690 0.239 

  

0.701 0.225 0.228 0.661 0.634 0.711 0.339 

  

0.696 0.502 0.702 0.993 

UK 3%p 0.502 0.758 0.700 0.224 

  

0.548 

  

0.506 0.866 0.680 0.322 

  

0.578 0.713 0.660 0.646 

  1msp 3msp msp 1msb 3msb msb 1msd 3msd msd 1%p 3%p %p 1%b 3%b %b 1%d 3%d %d UK 1msp 
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Table C.3. continued. 
      

          
UK %p 0.651 0.738 0.760 0.254 

  

0.694 

  

0.651 0.806 0.765 0.363 

  

0.707 0.651 0.750 0.925 

UK 1%b 

 

0.330 0.284 0.778 0.367 0.567 0.512 

   

0.398 0.264 0.865 0.377 0.677 0.493 0.390 0.506 0.498 

UK 3%b 

   

0.452 0.730 0.712 

      

0.468 0.770 0.739 

 

0.317 

  UK %b 

 

0.264 

 

0.690 0.642 0.738 0.369 

   

0.280 

 

0.745 0.674 0.814 0.327 0.398 0.373 0.345 

UK 1%d 0.518 0.577 0.599 0.548 

 

0.282 0.711 

  

0.516 0.618 0.598 0.657 

 

0.421 0.736 0.544 0.746 0.861 

UK 3%d 0.395 0.626 0.565 0.279 

 

0.225 0.479 

  

0.395 0.673 0.529 0.341 0.222 0.312 0.503 0.801 0.618 0.488 

UK %d 0.525 0.641 0.640 0.515 

 

0.289 0.702 

  

0.524 0.689 0.630 0.619 

 

0.425 0.730 0.669 0.773 0.824 

NL 1msp 0.869 0.492 0.724 

 

-0.280 -0.271 0.700 

  

0.869 0.414 0.785 

 

-0.212 

 

0.716 0.404 0.693 0.207 

NL 3msp 0.621 0.772 0.767 

   

0.498 

  

0.616 0.590 0.663 

   

0.534 0.579 0.589 0.257 

NL msp 0.824 0.692 0.821 

 

-0.254 -0.250 0.660 

  

0.821 0.552 0.800 

 

-0.215 

 

0.689 0.539 0.706 0.252 

NL 1msb 

 

-0.253 -0.249 0.633 0.398 0.536 

    

-0.314 -0.259 0.501 0.345 0.478 

 

-0.243 

  NL 3msb -0.254 -0.285 -0.297 0.320 0.684 0.629 

   

-0.252 -0.314 -0.300 0.223 0.636 0.528 

    NL msb -0.265 -0.309 -0.315 0.479 0.655 0.668 

   

-0.262 -0.353 -0.322 0.356 0.600 0.572 

 

-0.240 

 

-0.218 

NL 1msd 0.772 0.384 0.612 

   

0.724 

  

0.773 0.285 0.668 

   

0.692 0.303 0.647 

 NL 3msd 0.362 0.470 0.458 

 

0.306 0.267 0.372 

  

0.359 0.295 0.367 

 

0.273 0.225 0.339 0.364 0.371 

 NL msd 0.646 0.496 0.615 

   

0.624 

  

0.644 

 

0.592 

   

0.586 0.386 0.581 

 NL 1%p 0.860 0.481 0.713 

 

-0.264 -0.260 0.690 

  

0.870 0.411 0.785 

   

0.719 0.406 0.696 

 NL 3%p 0.498 0.578 0.596 

   

0.377 

  

0.503 0.674 0.613 

   

0.414 0.658 0.513 0.248 

NL %p 0.854 0.558 0.757 

 

-0.262 -0.263 0.678 

  

0.864 0.524 0.822 

   

0.712 0.514 0.720 0.231 

NL 1%b 

 

-0.212 

 

0.574 0.357 0.484 

    

-0.282 

 

0.496 0.322 0.460 

 

-0.215 

  NL 3%b 

 

-0.258 -0.248 0.273 0.612 0.558 

   
 

-0.248 -0.231 
 

0.633 0.514 
    

NL %b 

 

-0.276 -0.262 0.441 0.589 0.605 

   
 

-0.299 -0.252 0.355 0.589 0.564 
 

-0.227 
  

NL 1%d 0.816 0.437 0.665 

   

0.724 

  

0.827 0.348 0.731 
   

0.752 0.359 0.711 
 

NL 3%d 0.457 0.531 0.545 

   

0.359 

  

0.465 0.597 0.557 
   

0.395 0.650 0.494 0.205 

NL %d 0.816 0.504 0.706 

   

0.713 

  

0.828 0.440 0.766 
   

0.745 0.460 0.733 
 

NL 3%b 

 

-0.258 -0.248 0.273 0.612 0.558 

   
 

-0.248 -0.231 
 

0.633 0.514 
    

NL %b 

 

-0.276 -0.262 0.441 0.589 0.605 

   
 

-0.299 -0.252 0.355 0.589 0.564 
 

-0.227 
  

NL 3%b 

 

-0.258 -0.248 0.273 0.612 0.558 

   
 

-0.248 -0.231 
 

0.633 0.514 
    

NL %b 

 

-0.276 -0.262 0.441 0.589 0.605 

   
 

-0.299 -0.252 0.355 0.589 0.564 
 

-0.227 
  

NL 1%d 0.816 0.437 0.665 

   

0.724 

  

0.827 0.348 0.731 
   

0.752 0.359 0.711 
 

NL 3%b 

 

-0.258 -0.248 0.273 0.612 0.558 

   
 

-0.248 -0.231 
 

0.633 0.514 
    

NL %b 

 

-0.276 -0.262 0.441 0.589 0.605 

   
 

-0.299 -0.252 0.355 0.589 0.564 
 

-0.227 
  

NL 1%d 0.816 0.437 0.665 

   

0.724 

  

0.827 0.348 0.731 
   

0.752 0.359 0.711 
 

NL 3%d 0.457 0.531 0.545 

   

0.359 

  

0.465 0.597 0.557 
   

0.395 0.650 0.494 0.205 

NL %d 0.816 0.504 0.706 

   

0.713 

  

0.828 0.440 0.766 
   

0.745 0.460 0.733 
 

  1msp 3msp msp 1msb 3msb msb 1msd 3msd msd 1%p 3%p %p 1%b 3%b %b 1%d 3%d %d UK 1msp 
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Table C.3. continued. 
      

          

 
         

          

 
               

 

UK msp 0.243 

              

 

UK 1msb 0.530 0.529 

             

 

UK 3msb 1.000 0.243 0.530 

            

 

UK msb 0.942 0.382 0.782 0.942 

           

 

UK 1msd 0.349 0.833 0.816 0.349 0.573 

          

 

UK 3msd 

               

 

UK msd 

      

1.000 

        

 

UK 1%p 

 

0.852 0.431 

 

0.227 0.869 0.224 0.227 

       

 

UK 3%p 

 

0.875 0.488 

 

0.308 0.674 

  

0.655 

      

 

UK %p 

 

0.945 0.500 

 

0.289 0.861 

  

0.933 0.882 

     

 

UK 1%b 0.527 0.559 0.978 0.527 0.772 0.832 

  

0.478 0.523 0.546 

    

 

UK 3%b 0.938 0.303 0.520 0.938 0.891 0.361 

   

0.247 

 

0.521 

   

 

UK %b 0.857 0.481 0.836 0.857 0.957 0.659 

  

0.319 0.427 0.404 0.848 0.893 

  

 

UK 1%d 0.289 0.817 0.783 0.289 0.518 0.966 

  

0.860 0.688 0.862 0.820 0.305 0.618 

 

 

UK 3%d 0.425 0.689 0.495 0.425 0.503 0.575 

  

0.495 0.771 0.674 0.514 0.508 0.581 0.610  

UK %d 0.355 0.851 0.766 0.355 0.559 0.934 

  

0.826 0.774 0.882 0.801 0.394 0.663 0.972 0.780 

NL 1msp -0.221 

  

-0.221 -0.211 

   

0.224 0.236 0.250 

    

 

NL 3msp 

 

0.240 

      

0.270 0.284 0.300 

    

0.237 

NL msp 
 

0.229 
      

0.269 0.285 0.301 
    

0.235 

NL 1msb 
 

-0.226 
       

-0.269 -0.250 
    

 

NL 3msb 
 

-0.257 
      

-0.207 -0.332 -0.289 
    

-0.230 

NL msb 
 

-0.278 
      

-0.228 -0.349 -0.310 
    

-0.243 

NL 1msd 
               

 

NL 3msd 
               

 

NL msd 
               

 

NL 1%p -0.212 
  

-0.212 
    

0.217 0.236 0.246 
    

 

NL 3%p 
 

0.205 
      

0.264 0.237 0.278 
    

 

NL %p -0.214 
  

-0.214 
    

0.250 0.260 0.278 
    

0.207 

NL 1%b 
 

-0.218 
       

-0.269 -0.242 
    

-0.212 

NL 3%b 
         

-0.267 -0.212 
    

-0.234 

NL %b 
 

-0.235 
       

-0.307 -0.257 
    

-0.260 

NL 1%d 
          

0.207 
    

 

NL 3%d 
        

0.214 
 

0.228 
    

 

NL %d 
        

0.216 0.206 0.230 
    

 

  UK 3msb UK msp UK 1msb UK 3msb UK msb UK 1msd UK 3msd UK msd UK 1%p UK 3%p UK %p UK 1%b UK 3%b UK %b UK 1%d UK 3%d 
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Table C.3. continued. 
      

          

 
      

                    

NL 3msp 0.221 0.641 

    

                    

NL msp 

 

0.910 0.901 

   

                    

NL 1msb 

      

                    

NL 3msb -0.230 

   

0.548 

 

                    

NL msb -0.231 

  

-0.205 0.790 0.946                       

NL 1msd 

 

0.928 0.562 0.827 0.253 

 

                    

  UK %d NL 1msp NL 3msp NL msp NL 1msb NL 3msb 

          
 

                NL 3msd 

 

0.415 0.755 0.640 0.222 0.536 0.479 0.488 

        NL msd 

 

0.766 0.769 0.847 0.276 0.327 0.347 0.851 0.873 

       NL 1%p 

 

0.994 0.631 0.901 

   

0.921 0.416 0.762 

      NL 3%p 

 

0.490 0.754 0.686 

   

0.402 0.574 0.574 0.492 

     NL %p 

 

0.967 0.732 0.942 

   

0.882 0.500 0.794 0.972 0.680 

    NL 1%b 

    

0.950 0.557 0.778 0.304 0.291 0.346 

      NL 3%b 

    

0.460 0.947 0.873 

 

0.494 0.301 

   

0.498 

  NL %b -0.210 

   

0.738 0.914 0.957 

 

0.477 0.364 

   

0.787 0.927 

 NL 1%d 

 

0.950 0.600 0.859 

   

0.963 0.476 0.822 0.957 0.442 0.923 

   NL 3%d 

 

0.463 0.702 0.641 

   

0.404 0.589 0.583 0.469 0.904 0.635 

   NL %d 

 

0.936 0.687 0.900 

   

0.935 0.550 0.853 0.943 0.596 0.953 

   tr wt 

                
 

UK %d NL 1msp NL 3msp NL msp NL 1msb NL 3msb NL msb NL 1msd NL 3msd NL msd NL 1%p NL 3%p NL %p NL 1%b NL 3%b NL %b 
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Appendix D 

 

Additional information from Chapter 6 

 

Field trial plan and randomisation 

Plants were transplanted to the field into 4 x 1.83 m wide beds with a plot length of 

1.05 and spacing distance of 35 cm (see figure D.1.).  Beds were marked using a 

tractor with a wheel base of 1.83 m and plots were then individually marked using a 

‗Wolf Garten‘ row marker.  Plots were marked in numerical order.  The trial 

randomisation was also in numerical order (see figure D.2.).   

  Guard Guard Guard Guard  

 32 64 96 128  

 31 63 95 127  

P
lo

t 
n

u
m

b
er

 

30 62 94 126 

3
5

.7
 m

 l
o

n
g

 

29 61 93 125 

28 60 92 124 

27 59 91 123 

26 58 90 122 

25 57 89 121 

- - - - 

8 40 72 104 

7 39 71 103 

6 38 70 102 

5 37 69 101 

4 36 68 100 

3 35 67 99 

 2 34 66 98  

 1 33 65 97  

 Guard Guard Guard Guard  

 Bed  

 1 2 3 4  

 7.32 m wide  

 
Overall area 261.3 m

2
 

  
 

Figure D.1. Field trial plan. 
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Guard Guard Guard Guard 

5033 5064 5095 1003 

5032 5063 5094 1004 

5031 5062 5093 5125 

5030 1004 5092 5124 

5029 5061 5091 5123 

5028 5060 5090 5122 

6027 5059 5089 5121 

5026 5058 5088 5120 

5025 5057 5087 5119 

5024 5056 5086 5118 

5023 5055 5085 5117 

5022 5054 5084 5116 

5021 5053 5083 5115 

5020 5052 5082 5114 

5019 5051 5081 5113 

5018 5050 5080 5112 

5017 5049 5079 5111 

5016 5048 5078 5110 

5015 5047 5077 5109 

5014 5046 5076 5108 

5013 5045 5075 5107 

5012 5044 5074 5106 

5011 5043 5073 5105 

5010 5042 5072 5104 

5009 5041 5071 5103 

5008 5040 1003 5102 

5007 5039 5070 5101 

5006 5038 5069 5100 

5005 5037 5068 5099 

5004 5036 5067 5097 

5003 5035 5066 5097 

5002 5034 5065 5096 

Guard Guard Guard Guard 

Bed 

1 2 3 4 
 

Figure D.2. Randomised design for field plan.  Number refers to LJ seed number from the WHRI 

GRU for plot.  Guard plants were either Saladin or Iceberg.
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Correlations amongst traits 

All discolouration measures and morphological traits were assessed for potential relationships (correlations between browning, pinking and 

overall discolouration and between them and morphological traits per and across trial sites (see table D.1.).   

Table D.1. Correlation matrix for the Saladin x Iceberg lettuce RIL population between post harvest discolouration measurements and morphological parameters 

within and across sites.  Read across then down.  Only significant effects shown with ***P <0.001 in bold, **P<0.01 in italics and *P<0.05 in regular font.  Where UK 

(UK trial site); NL (NL trial site); msb (browning intensity); msp (pinking intensity); msd (overall discolouration intensity); %b (extent of  browning); %p (extent of  pinking); 

%d (extent of  overall discolouration) unt wt (untrimmed weight, g); tr wt (trimmed weight, g); dia (head diameter); head (heading); indt (indented leaf edges); sav 

(savoy/blistering of leaves); grn (leaf green colour); anth (leaf anthocyanins); dharv (days to harvest); dbolt (days to bolting); seed (seed colour).  Numerical value before 

discolouration measurement is day. 

1msp 

           

anth 

 

0.355 

 

   

3msp 0.682 

          

dharv 

   

   

msp 0.900 0.931 

         

dbolt 

   

   

1msb 

           

seed 0.273 

  

   

3msb -0.242 

  

0.542 

       
 

sav grn anth dharv dbolt seed 

msb 

   

0.782 0.948 

          1msd 0.889 0.648 0.825 0.458 

           3msd 0.219 

 

0.209 

            msd 0.224 

 

0.213 

    

1.000 

       1%p 0.995 0.673 0.892 

 

-0.242 

 

0.882 0.221 0.225 

          3%p 0.631 0.864 0.830 

   

0.605 

  

0.636 

         %p 0.955 0.802 0.951 

 

-0.225 

 

0.861 0.206 0.210 0.960 0.825 

        1%b 

   

0.963 0.497 0.735 0.514 

   

0.209 

        3%b 

   

0.518 0.939 0.893 

      

0.490 

      %b 

   

0.820 0.864 0.952 0.317 

     

0.820 0.901 

     1%d 0.898 0.678 0.848 0.359 

  

0.963 

  

0.905 0.647 0.894 0.448 

 

0.221 

    3%d 0.563 0.789 0.747 

   

0.566 

  

0.568 0.879 0.730 0.232 

  

0.606 

   %d 0.884 0.761 0.890 0.332 

  

0.937 

  

0.890 0.760 0.924 0.428 

 

0.230 0.979 0.755 

  UK 1msp 0.654 0.605 0.681 0.251 

  

0.695 0.215 0.218 0.644 0.618 0.692 0.349 

 

0.205 0.682 0.492 0.688 

 UK 3msb 

   

0.489 0.822 0.795 

      

0.498 0.762 0.747 

 

0.246 

  UK msp 0.560 0.767 0.733 0.285 

  

0.628 

  

0.552 0.755 0.674 0.384 

 

0.274 0.629 0.627 0.679 0.859 

UK 1msb 

 

0.297 0.247 0.817 0.405 0.610 0.501 

   

0.347 0.221 0.865 0.412 0.700 0.468 0.362 0.478 0.455 

UK 3msb 

   

0.489 0.822 0.795 

      

0.498 0.762 0.747 

 

0.246 

  UK msb 

   

0.680 0.765 0.825 0.279 

     

0.705 0.722 0.825 0.223 0.319 0.266 0.256 

UK 1msd 0.499 0.547 0.571 0.588 

 

0.368 0.713 

  

0.488 0.582 0.564 0.677 0.248 0.498 0.687 0.508 0.696 0.886 

UK 3msd 0.218 

 

0.207 

    

1.000 1.000 0.219 

        

0.214 

UK msd 0.220 

 

0.209 

    

1.000 1.000 0.221 

 

0.206 

      

0.217 

UK 1%p 0.666 0.610 0.690 0.239 

  

0.701 0.225 0.228 0.661 0.634 0.711 0.339 

  

0.696 0.502 0.702 0.993 

UK 3%p 0.502 0.758 0.700 0.224 

  

0.548 

  

0.506 0.866 0.680 0.322 

  

0.578 0.713 0.660 0.646 

 
1msp 3msp msp 1msb 3msb msb 1msd 3msd msd 1%p 3%p %p 1%b 3%b %b 1%d 3%d %d UK 1msp 
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Table D.1. continued. 
                UK %p 0.651 0.738 0.760 0.254 

  

0.694 

  

0.651 0.806 0.765 0.363 

  

0.707 0.651 0.750 0.925 

UK 1%b 

 

0.330 0.284 0.778 0.367 0.567 0.512 

   

0.398 0.264 0.865 0.377 0.677 0.493 0.390 0.506 0.498 

UK 3%b 

   

0.452 0.730 0.712 

      

0.468 0.770 0.739 

 

0.317 

  UK %b 

 

0.264 

 

0.690 0.642 0.738 0.369 

   

0.280 

 

0.745 0.674 0.814 0.327 0.398 0.373 0.345 

UK 1%d 0.518 0.577 0.599 0.548 

 

0.282 0.711 

  

0.516 0.618 0.598 0.657 

 

0.421 0.736 0.544 0.746 0.861 

UK 3%d 0.395 0.626 0.565 0.279 

 

0.225 0.479 

  

0.395 0.673 0.529 0.341 0.222 0.312 0.503 0.801 0.618 0.488 

UK %d 0.525 0.641 0.640 0.515 

 

0.289 0.702 

  

0.524 0.689 0.630 0.619 

 

0.425 0.730 0.669 0.773 0.824 

NL 1msp 0.869 0.492 0.724 

 

-0.280 -0.271 0.700 

  

0.869 0.414 0.785 

 

-0.212 

 

0.716 0.404 0.693 0.207 

NL 3msp 0.621 0.772 0.767 

   

0.498 

  

0.616 0.590 0.663 

   

0.534 0.579 0.589 0.257 

NL msp 0.824 0.692 0.821 

 

-0.254 -0.250 0.660 

  

0.821 0.552 0.800 

 

-0.215 

 

0.689 0.539 0.706 0.252 

NL 1msb 

 

-0.253 -0.249 0.633 0.398 0.536 

    

-0.314 -0.259 0.501 0.345 0.478 

 

-0.243 

  NL 3msb -0.254 -0.285 -0.297 0.320 0.684 0.629 

   

-0.252 -0.314 -0.300 0.223 0.636 0.528 

    NL msb -0.265 -0.309 -0.315 0.479 0.655 0.668 

   

-0.262 -0.353 -0.322 0.356 0.600 0.572 

 

-0.240 

 

-0.218 

NL 1msd 0.772 0.384 0.612 

   

0.724 

  

0.773 0.285 0.668 

   

0.692 0.303 0.647 

 NL 3msd 0.362 0.470 0.458 

 

0.306 0.267 0.372 

  

0.359 0.295 0.367 

 

0.273 0.225 0.339 0.364 0.371 

 NL msd 0.646 0.496 0.615 

   

0.624 

  

0.644 

 

0.592 

   

0.586 0.386 0.581 

 NL 1%p 0.860 0.481 0.713 

 

-0.264 -0.260 0.690 

  

0.870 0.411 0.785 

   

0.719 0.406 0.696 

 NL 3%p 0.498 0.578 0.596 

   

0.377 

  

0.503 0.674 0.613 

   

0.414 0.658 0.513 0.248 

NL %p 0.854 0.558 0.757 

 

-0.262 -0.263 0.678 

  

0.864 0.524 0.822 

   

0.712 0.514 0.720 0.231 

NL 1%b 

 

-0.212 

 

0.574 0.357 0.484 

    

-0.282 

 

0.496 0.322 0.460 

 

-0.215 

  
 

1msp 3msp msp 1msb 3msb msb 1msd 3msd msd 1%p 3%p %p 1%b 3%b %b 1%d 3%d %d UK 1msp 

 

NL 3%b 

 

-0.258 -0.248 0.273 0.612 0.558 

   

 
-0.248 -0.231 

 
0.633 0.514 

    

NL %b 

 

-0.276 -0.262 0.441 0.589 0.605 

   
 

-0.299 -0.252 0.355 0.589 0.564 
 

-0.227 
  

NL 1%d 0.816 0.437 0.665 

   

0.724 

  

0.827 0.348 0.731 
   

0.752 0.359 0.711 
 

NL 3%d 0.457 0.531 0.545 

   

0.359 

  

0.465 0.597 0.557 
   

0.395 0.650 0.494 0.205 

NL %d 0.816 0.504 0.706 

   

0.713 

  

0.828 0.440 0.766 
   

0.745 0.460 0.733 
 

trim_wt 

    

0.236 

    
          

NL tr wt 

         
          

UK tr wt 

    

0.337 0.303 

   
    

0.314 0.280 
    

UK  unt wt -0.236 

  

0.226 0.448 0.416 

   

-0.239 
  

0.222 0.433 0.394 
    

dia -0.290 -0.232 -0.282 

 

0.339 0.309 

   

-0.291 -0.238 -0.297 
 

0.292 0.232 -0.261 
 

-0.252 -0.314 

head 0.541 0.530 0.583 -0.261 -0.453 -0.437 0.361 

  

0.538 0.550 0.589 
 

-0.341 -0.316 0.419 0.415 0.448 0.443 

indt 0.340 0.326 0.361 

 

-0.250 -0.213 0.271 

  

0.341 0.312 0.359 
   

0.287 
 

0.284 0.305 

sav 0.375 

 

0.296 

 

-0.335 -0.208 0.383 

  

0.377 
 

0.322 
 

-0.349 
 

0.381 
 

0.323 
 

grn 

 

-0.213 -0.223 

   

-0.249 

  
 

-0.280 -0.246 -0.212 
  

-0.295 
 

-0.292 -0.245 

anth 

         
          

dharv 

   

-0.243 

     
   

-0.223 
  

-0.236 
 

-0.209 
 

dbolt 

 

0.245 0.236 

      
 

0.240 0.208 
       

seed 0.300 0.295 0.324 

 

-0.259 -0.215 0.238 

  

0.317 0.303 0.343 
   

0.287 0.205 0.291 0.236 

  1msp 3msp msp 1msb 3msb msb 1msd 3msd msd 1%p 3%p %p 1%b 3%b %b 1%d 3%d %d UK 1msp 

 

UK msp 0.243 

              

 

UK 1msb 0.530 0.529 

             

 

UK 3msb 1.000 0.243 0.530 

            

 

  UK 3msb UK msp UK 1msb UK 3msb 
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Table D.1. continued. 
                UK msb 0.942 0.382 0.782 0.942 

           

 

UK 1msd 0.349 0.833 0.816 0.349 0.573 

          

 

UK 3msd 

               

 

UK msd 

      

1.000 

        

 

UK 1%p 

 

0.852 0.431 

 

0.227 0.869 0.224 0.227 

       

 

UK 3%p 

 

0.875 0.488 

 

0.308 0.674 

  

0.655 

      

 

UK %p 

 

0.945 0.500 

 

0.289 0.861 

  

0.933 0.882 

     

 

UK 1%b 0.527 0.559 0.978 0.527 0.772 0.832 

  

0.478 0.523 0.546 

    

 

UK 3%b 0.938 0.303 0.520 0.938 0.891 0.361 

   

0.247 

 

0.521 

   

 

UK %b 0.857 0.481 0.836 0.857 0.957 0.659 

  

0.319 0.427 0.404 0.848 0.893 

  

 

UK 1%d 0.289 0.817 0.783 0.289 0.518 0.966 

  

0.860 0.688 0.862 0.820 0.305 0.618 

 

 

UK 3%d 0.425 0.689 0.495 0.425 0.503 0.575 

  

0.495 0.771 0.674 0.514 0.508 0.581 0.610  

UK %d 0.355 0.851 0.766 0.355 0.559 0.934 

  

0.826 0.774 0.882 0.801 0.394 0.663 0.972 0.780 

NL 1msp -0.221 

  

-0.221 -0.211 

   

0.224 0.236 0.250 

    

 

NL 3msp 

 

0.240 

      

0.270 0.284 0.300 

    

0.237 

NL msp 
 

0.229 
      

0.269 0.285 0.301 
    

0.235 

NL 1msb 
 

-0.226 
       

-0.269 -0.250 
    

 

NL 3msb 
 

-0.257 
      

-0.207 -0.332 -0.289 
    

-0.230 

NL msb 
 

-0.278 
      

-0.228 -0.349 -0.310 
    

-0.243 

NL 1msd 
               

 

NL 3msd 
               

 

NL msd 
               

 

NL 1%p -0.212 
  

-0.212 
    

0.217 0.236 0.246 
    

 

NL 3%p 
 

0.205 
      

0.264 0.237 0.278 
    

 

NL %p -0.214 
  

-0.214 
    

0.250 0.260 0.278 
    

0.207 

NL 1%b 
 

-0.218 
       

-0.269 -0.242 
    

-0.212 

NL 3%b 
         

-0.267 -0.212 
    

-0.234 

NL %b 
 

-0.235 
       

-0.307 -0.257 
    

-0.260 

NL 1%d 
          

0.207 
    

 

NL 3%d 
        

0.214 
 

0.228 
    

 

NL %d 
        

0.216 0.206 0.230 
    

 

trim_wt 0.305 
  

0.305 0.237 
       

0.264 
  

 

NL tr wt 
               

 

UK tr wt 0.361 
  

0.361 0.339 
       

0.373 0.327 
 

 

UK  unt wt 0.363 
  

0.363 0.337 
       

0.360 0.309 
 

 

dia 0.348 -0.211 
 

0.348 0.299 
   

-0.344 
 

-0.297 
 

0.325 0.232 -0.234  

head -0.404 0.395 
 

-0.404 -0.330 0.246 
  

0.461 0.388 0.469 
 

-0.355 -0.246 0.304 0.238 

indt -0.311 0.274 
 

-0.311 -0.224 
   

0.311 0.230 0.303 
 

-0.244 
 

0.209  

sav 
    

-0.246 
   

0.208 
   

-0.343 -0.216 
 

 

grn 
 

-0.254 -0.253 
  

-0.291 
  

-0.248 -0.246 -0.274 -0.287 
  

-0.353  

anth 
               

 

dharv 
  

-0.244 
  

-0.224 
     

-0.235 
 

-0.206 -0.240  

dbolt 
 

0.234 
       

0.245 0.239 
    

 

seed 
 

0.264 
      

0.258 0.301 0.305 
   

0.227  

  UK 3msb UK msp UK 1msb UK 3msb UK msb UK 1msd UK 3msd UK msd UK 1%p UK 3%p UK %p UK 1%b UK 3%b UK %b UK 1%d UK 3%d 
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Table D.1. continued. 
                NL 3msp 0.221 0.641 

    

                    

NL msp 

 

0.910 0.901 

   

                    

NL 1msb 

      

                    

NL 3msb -0.230 

   

0.548 

 

                    

NL msb -0.231 

  

-0.205 0.790 0.946                       

NL 1msd 

 

0.928 0.562 0.827 0.253 

 

                    

NL 3msd 

 

0.415 0.755 0.640 0.222 0.536 0.479 0.488 

        NL msd 

 

0.766 0.769 0.847 0.276 0.327 0.347 0.851 0.873 

       NL 1%p 

 

0.994 0.631 0.901 

   

0.921 0.416 0.762 

      NL 3%p 

 

0.490 0.754 0.686 

   

0.402 0.574 0.574 0.492 

     NL %p 

 

0.967 0.732 0.942 

   

0.882 0.500 0.794 0.972 0.680 

    NL 1%b 

    

0.950 0.557 0.778 0.304 0.291 0.346 

      NL 3%b 

    

0.460 0.947 0.873 

 

0.494 0.301 

   

0.498 

  NL %b -0.210 

   

0.738 0.914 0.957 

 

0.477 0.364 

   

0.787 0.927 

 NL 1%d 

 

0.950 0.600 0.859 

   

0.963 0.476 0.822 0.957 0.442 0.923 

   NL 3%d 

 

0.463 0.702 0.641 

   

0.404 0.589 0.583 0.469 0.904 0.635 

   NL %d 

 

0.936 0.687 0.900 

   

0.935 0.550 0.853 0.943 0.596 0.953 

   tr wt 

                NL tr wt 

  

0.343 0.252 

    

0.214 

  

0.348 

    UK tr wt 

                UK  unt wt 

 

-0.209 

 

-0.228 

 

0.241 0.235 

         dia -0.207 

               head 0.309 0.409 0.489 0.491 -0.355 -0.280 -0.344 0.265 0.232 0.284 0.397 0.493 0.460 -0.281 

 

-0.206 

indt 

 

0.242 0.285 0.285 

    

0.215 0.228 0.241 0.284 0.272 

   sav 

 

0.344 0.215 0.305 

   

0.406 

 

0.289 0.329 

 

0.310 0.227 

  grn -0.324 

    

0.257 0.206 

       

0.245 

 anth 

                dharv -0.226 

               dbolt 

                seed 0.235 0.214 

 

0.222 

 

-0.222 -0.228 

   

0.220 

 

0.218 

   
 

UK %d NL 1msp NL 3msp NL msp NL 1msb NL 3msb NL msb NL 1msd NL 3msd NL msd NL 1%p NL 3%p NL %p NL 1%b NL 3%b NL %b 

 

NL tr wt 

 

0.666 

     

  
 

       

 
UK tr wt 

 

0.765 

     

  

 

anth   -0.211     

 UK  unt wt 

 

0.615 

 

0.778 

   

  dharv        

 dia 

    

0.413 

  

  dbolt       0.362 0.530 

head 0.357 

   

-0.381 -0.583 

 

  seed  -0.333 -0.281   -0.270 0.283 0.240 

indt 0.229 

    

-0.322 0.716   grn        -0.234 

sav 0.314 -0.232 

 

-0.299 -0.303 -0.284 0.385 0.342   NL %d tr wt NL tr wt UK tr wt UK  unt wt dia head indt 

  NL %d tr wt NL tr wt UK tr wt UK  unt wt dia head indt          

  

  



343 
 

Quantitative trait loci from interval mapping 

Table D.2.  MQM QTL impacting on agricultural traits of individuals from the Saladin x Iceberg RIL population.  Additive effect equals half the difference between 

homozygous alleles at the QTL: positive number indicates an additive allelic effect of Saladin; negative number indicates a negative allelic effect of Saladin.  Confidence 

interval was based on a 2 LOD support interval with a significant LOD value of 1.95.  Where LG (linkage group from F7 Saladin x Iceberg linkage map (see Chapter 4)); LOD 

(logarithm of odds), cM (centimorgans); heading (production of an enclosed head); diameter (head diameter (cm)); green (of leaf); anthocyanin (pigmentation on leaf); 

indentation (on leaf edges); savoy (blistering of leaf) Untr (untrimmed head); Tr (trimmed head); wt (weight (g)); UK (United kingdom); NL (the Netherlands). 

Trait LG 
Location 

(cM) 

LOD 

peak 

Confidence 

interval (cM) 
Nearest Locus 

Additive 

effect 

Genetic variation 

explained by QTL (%) 

Allelic 

contribution 

Heading_1 7 1.2 5.47 2.4 AYBP-OP4 0.24 23.5 Saladin 

Heading_2 7 2.9 4.43 3.6 BSQZ-OP4 0.22 19.6 Saladin 

Heading_3 7 7.8 2.77 4.9 AZTI-OP4 0.18 12.7 Saladin 

Heading_4 7 12 2.09 7.2 BEYE-OP4 0.16 9.7 Saladin 

Heading_5 7 17.7 2.87 7.2 E33M48_300i -0.22 18.1 Iceberg 

Heading_6 7 23.7 2.38 4 w -0.17 11 Iceberg 

Heading_7 7 74 perfect fit 10.2 ATPH-OP4 / BIVH-OP3-1 0.50 100 Saladin 

Heading_8 8 35.7 perfect fit 10.7 E35M59_332i / E35M59_359s -0.50 100 Iceberg 

Diameter_1 7 1.2 3.07 2.4 AYBP-OP4 -0.27 14 Iceberg 

Diameter_2 7 2.9 3.8 4.6 BSQZ-OP4 -0.30 17.1 Iceberg 

Diameter_3 7 7.8 3.07 3.2 AZTI-OP4 -0.27 14 Iceberg 

Diameter_4 7 16.5 3.16 5.8 BXJC-OP3 0.27 14.3 Saladin 

Green_1 4a 6 9.94 4 BFYG-OP3 -0.49 38.6 Iceberg 

Green_2 4a 18.9 4.5 7.4 AVPF-OP3 -0.33 19.8 Iceberg 

Green_3 4a 44.1 5.21 17.1 AYTT-OP3 / BHYM-OP4 -0.48 39.9 Iceberg 

Green_4 4a 58.5 2.21 63.5 BLRO-OP4 0.46 10.3 Saladin 

Anthocyanin_1 5c 29.2 6.67 12.7 AFPZ-OP3 0.40 27.9 Saladin 

Anthocyanin_2 9a 35.4 4.61 35.6 AHTV-OP4 -0.69 20.2 Iceberg 

Indentation_1 5b 47.7 2.35 58 E38M54_270i 0.28 12.9 Saladin 

Indentation_2 7 2.3 3.77 2.4 BLJI-OP4 0.33 17 Saladin 

Indentation_3 7 2.9 2.69 4.6 BSQZ-OP4 0.28 12.5 Saladin 
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Table D.2. continued. 

Trait LG 
Location 

(cM) 

LOD 

peak 

Confidence 

interval (cM) 
Nearest Locus 

Additive 

effect 

Genetic variation 

explained by QTL (%) 

Allelic 

contribution 

Indentation_4 8 35.7 2.76 10.7 E35M59_332i -0.58 48.4 Iceberg 

Savoy_1 5a 78 5.8 8.5 E35M49_145i / QGA18I02-OP4 0.67 67.5 Saladin 

Savoy_2 7 74 3.19 10.2 ATPH-OP4 / BIVH-OP3-1 0.67 65.4 Saladin 

Bolting_1 4b 94.2 3.42 11.9 CLXS3_3835-OP3-2 / CLXS3_3835-OP3-1 -16.58 26.2 Iceberg 

Bolting_2 4b 107.5 2.73 2.7 E45M60_119i -13.76 16.3 Iceberg 

Bolting_3 5a 78 47.58 8.5 E35M49_145i / QGA18I02-OP4 -30.93 99 Iceberg 

Bolting_4 7 74 51.21 10.2 ATPH-OP4 / BIVH-OP3-1 -30.93 99 Iceberg 

Bolting_5 8 35.7 45.72 10.7 E35M59_332i / E35M59_359s -30.93 99 Iceberg 

Untr UK wt_1 4a 58.5 2.09 13.9 BLRO-OP4 -144.15 9.7 Iceberg 

Untr UK wt_2 5b 39.6 2.52 33.3 BAMG-OP3-1 78.12 11.6 Saladin 

Untr UK wt_3 7 0.9 2.58 2.4 ARZI-OP4 -78.70 11.9 Iceberg 

Untr UK wt_4 7 2.9 2.99 4.6 BSQZ-OP4 -84.66 13.7 Iceberg 

Untr UK wt_5 7 7.8 2.11 19.3 AZTI-OP4 -71.47 9.8 Iceberg 

Untr UK wt_6 7 8.9 2.02 19.3 

BWYR-OP4 / AXAS-OP4 / AISE-OP4 / BATK-OP4 

/ BAIJ-OP4 / BAAZ-OP4 -70.04 9.4 Iceberg 

Untr UK wt_7 7 23.7 2.24 5.6 w 74.07 10.4 Saladin 

Tr UK wt_1 4a 58.5 2.38 8.9 BLRO-OP4 -99.49 11 Iceberg 

Tr UK wt_2 7 21.7 2.18 24 E33M59_205s 53.78 12.2 Saladin 

Tr NL wt_1 7 19.1 2.02 1.6 BTGH-OP4 -29.32 9.4 Iceberg 

Tr NL wt_2 7 23.7 1.96 12.3 

BKVX-OP4-2 / AOUA-OP4-2 / BATO-OP4-2 / 

BCHL-OP4-2 / BIVP-OP4-1 -28.64 9.2 Iceberg 

Tr NL wt_3 7 33.5 2.15 26.2 QGJ17A06_2-OP3-1 / BKBM2_OP3 30.10 10 Saladin 

Tr wt_1 7 8.2 2.17 3.2 AQTU-OP4 -23.87 10.1 Iceberg 

Tr wt_2 7 12.2 2.26 1.4 AXMT-OP1 -24.16 10.7 Iceberg 

Tr wt_3 7 15.6 3.16 4.4 BHVY-OP4 -28.86 14.4 Iceberg 

Tr wt_4 7 19.1 2.37 19.3 BTGH-OP4 -24.96 11 Iceberg 

Tr wt_5 7 23.7 2.38 5.5 w 24.91 11 Saladin 

Tr wt_6 7 26.4 3 5.3 QGCA_6226-OP3 28.23 13.7 Saladin 

Tr wt_7 7 38.7 2.25 14.9 BXNV-OP3-1 24.36 10.4 Saladin 
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Appendix E 

 

Additional information from Chapter 7 

    
Table E.1.  Candidate gene information relating to the phenylpropanoid pathway.  Information from candidate genes in Arabidopsis thaliana from the TAIR 

database (www.arabidopsis.org). 

Gene 

Name 
Biological process Cellular component Molecular function 

ACCase / / / 

ACCD Fatty acid biosynthetic process 
Chloroplast, membrane, 

chloroplast envelope 
Acetyl-CoA carboxylase activity 

ANS 

Response to wounding, vacuole organization, anthocyanin 

biosynthetic process, response to jasmonic acid stimulus, 

proanthocyanidin biosynthetic process 

Unknown Leucocyanidin oxygenase activity 

ANR Negative regulation of flavonoid biosynthetic process / Oxidoreductase activity  

ANL2 
Root development, anthocyanin accumulation in tissues in response 

to UV light  
Nucleus 

Transcription factor activity, transcription 

regulator activity 

AR1 Response to oxidative stress, phenylpropanoid metabolic process Endoplasmic reticulum NADPH-hemoprotein reductase activity 

AR2 Phenylpropanoid metabolic process  

Chloroplast, endoplasmic 

reticulum 
NADPH-hemoprotein reductase activity 

AS / / / 

CFI Response to UV and UV-B, flavonoid biosynthetic process 
Endoplasmic reticulum, nucleus, 

plant-type vacuole membrane 
Chalcone isomerase activity  

CHI Flavonoid biosynthetic process  / Chalcone isomerase activity  

CHR / / / 

CHS 

Flavonoid biosynthetic process, response to; oxidative stress, 

gravity and wounding, chalcone biosynthetic process, response to 

jasmonic acid stimulus, auxin polar transport, response to UV-B, 

regulation of anthocyanin biosynthetic process  

Endoplasmic reticulum, nucleus, 

plant-type vacuole membrane  
Naringenin-chalcone synthase activity  

CYP98A3 
Lignin biosynthetic process, positive regulation of flavonoid 

biosynthetic process, auxin homeostasis 

Mitochrondrian, plasma 

membrane, endoplasmic 

reticulum, microsome 

Monooxygenase activity, p-coumarate 3-

hydroxylase activity 

http://www.arabidopsis.org/
http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6712
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Table E.1. continued. 

DFR Anthocyanin biosynthetic process  
Endoplasmic reticulum 

membrane  
Dihydrokaempferol 4-reductase activity  

EGL3 Regulation of transcription, epidermal cell fate specification Nucleus DNA binding 

F3'5'H / / / 

F35H / / / 

F3'H Response to UV, flavonoid biosynthetic process  / 
Functions in oxygen binding, flavonoid 3'-

monooxygenase activity   

F3H Flavonoid biosynthetic process, response to UV-B  Unknown Naringenin 3-dioxygenase activity  

FSI/ FS2 / / / 

F7ORT Flavonol biosynthetic process  Unknown 
UDP-glycosyltransferase activity, transferase 

activity, transferring glycosyl groups  

FLS1 Flavonoid biosynthetic process  Unknown Flavonol synthase activity  

FLS2 Flavonoid biosynthetic process  Unknown Flavonol synthase activity  

FLS3 Flavonoid biosynthetic process  Unknown Flavonol synthase activity  

FLS4 Flavonoid biosynthetic process  Unknown Flavonol synthase activity  

FLS5 Flavonoid biosynthetic process  Unknown Flavonol synthase activity  

FLS6 Unknown Unknown Flavonol synthase activity  

GST Toxin catabolic process Cytoplasm Glutathione transferase activity 

COA 
Lignin biosynthetic process, positive regulation of flavonoid 

biosynthetic process, auxin homeostasis 
Unknown 

Transferase activity, quinate O-

hydroxycinnamoyltransferase activity, shikimate 

O-hydroxycinnamoyltransferase activity 

I2_H / / / 

IFR Response to oxidative stress and cadmium ion Plasma membrane 
Catalytic activity, binding, transcription repressor 

activity 

IFS / / / 

LDOX/AN

S 

Response to wounding, vacuole organization, anthocyanin 

biosynthetic process, response to jasmonic acid stimulus, 

proanthocyanidin biosynthetic process  

Unknown Leucocyanidin oxygenase activity  

LCR/ LAR / / / 

5MAT Anthocyanin biosynthetic process Unknown 
Transferase activity, O-malonyltransferase 

activity 
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Table E.1. continued. 

MYB3 

Cinnamic acid biosynthetic process, response to wounding, 

response to salt stress, regulation of transcription, DNA-dependent, 

response to abscisic acid stimulus, response to auxin stimulus, 

response to ethylene stimulus, response to gibberellin stimulus, 

response to jasmonic acid stimulus, response to salicylic acid 

stimulus, negative regulation of metabolic process, response to 

cadmium ion 

/ DNA binding, has transcription factor activity 

MYB4 

Negative regulation of transcription, response to salt stress, 

response to abscisic acid stimulus, response to auxin stimulus, 

response to ethylene stimulus, response to gibberellin stimulus, 

response to jasmonic acid stimulus, response to salicylic acid 

stimulus, response to cadmium ion, response to UV-B 

/ DNA binding, has transcription factor activity 

OMT1 Lignin biosynthetic process, flavonol biosynthetic process  
Cytoplasm, cytosol, nucleus, 

plasma membrane  

O-methyltransferase activity, caffeate O-

methyltransferase activity  

PAL1 
Defense response, response to oxidative stress, phenylpropanoid 

biosynthetic process, response to wounding  
Cytoplasm Phenylalanine ammonia-lyase activity  

PAL2 
Defense response, response to oxidative stress, phenylpropanoid 

biosynthetic process, response to wounding  
Cytoplasm Phenylalanine ammonia-lyase activity  

PAL3 Defense response, response to wounding  Cytoplasm Phenylalanine ammonia-lyase activity  

PAL4 Biosynthetic process, L-phenylalanine catabolic process  Cytoplasm 
Ammonia ligase activity, ammonia-lyase activity, 

catalytic activity  

PPO 
Lignin biosynthetic process , related to flavonoid biosynthetic 

process  
Endomembrane system  Functions in copper ion binding, laccase activity  

PAP1 

Response to salt stress, regulation of transcription, DNA-dependent, 

removal of superoxide radicals, anthocyanin biosynthetic process, 

sucrose mediated signaling, response to jasmonic acid stimulus, 

anthocyanin metabolic process, regulation of anthocyanin 

biosynthetic process 

/ DNA binding 

PAP2 Regulation of transcription / DNA binding, has transcription factor activity  

TT1 Flavonoid biosynthetic process Nucleus Transcription factor activity 

TT12 
Proanthocyanidin biosynthetic process, maintenance of seed 

dormancy 

Membrane, plant-type vacuole 

membrane 

Antiporter activity, solute:hydrogen antiporter 

activity, transporter activity, transmembrane 

transporter activity 
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Table E.1. continued. 

TT16 
Regulation of cell shape, seed development, ovule development, 

regulates ptoanthocyanidin biosynthetic process 
Nucleus Transcription factor activity 

TT19 Toxin catabolic process Cytoplasm Glutathione transferase activity 

TT2 
Regulation of transcription, DNA-dependent, proanthocyanidin 

biosynthetic process 
Nucleus DNA binding 

TT8 
Trichome differentiation, regulates flavonoid biosynthetic process, 

proanthocyanidin biosynthetic process  
Nucleus DNA binding, has transcription factor activity  

TTG1 
Cell fate commitment, epidermal cell fate specification, trichome 

differentiation, regulation of protein localization 
Cytoplasm, nucleus DNA binding, nucleotide binding, protein binding 

TTG2 
Regulation of transcription, DNA-dependent, epidermal cell fate 

specification, seed coat development 
Nucleus Transcription factor activity 

UF3GT/3G

T 
N-terminal protein myristoylation Unknown Transferase activity, transferring glycosyl groups 

VR / / / 

4CL1 
Response to UV, phenylpropanoid metabolic process, response to 

fungus, response to wounding 
Unknown 4-coumarate-CoA ligase activity 

4CL2 
Response to UV, phenylpropanoid metabolic process, response to 

fungus, response to wounding 
Unknown 4-coumarate-CoA ligase activity 

4CL3 

Response to UV, phenylpropanoid metabolic process, pollen exine 

formation, not involved with response to wounding, defense 

response to fungus  

Unknown 4-coumarate-CoA ligase activity 

4CL5 Phenylpropanoid biosynthetic process  Unknown 4-coumarate-CoA ligase activity 

ACCase / / / 

 

 

http://www.arabidopsis.org/servlets/TairObject?type=keyword&id=6711
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Correlations amongst traits 

All discolouration measures, morphological traits and metabolite profiles were assessed for potential relationships (correlations between 

browning, pinking and overall discolouration and between them and morphological traits and PPO activity, PAL activity and TPC per and across 

trial sites (see table E.2.).   

Table E.2.  Correlation matrix for the Saladin x Iceberg lettuce RIL population between post harvest discolouration measurements, morphological traits and 

metabolite activity  within and across sites.  Read across then down.  Only significant effects shown with ***P <0.001 in bold, **P<0.01 in italics and *P<0.05 in regular 

font.  Where msb (browning intensity); msp (pinking intensity); msd (overall discolouration intensity); %b (extent of  browning); %p (extent of  pinking); %d (extent of  

overall discolouration)); tr wt (trimmed weight, g); Acr (across days); DH (harvest day); D4 (day 4); PPO (polyphenols oxidase activity); PAL (phenylalanine ammonia lyase 

activity); TPC (total phenolic content);.  Numerical value before discolouration measurement is day. 

PAL_DH 

                         PAL_D4 0.610 

                        PAL_AD 0.702 

    

0.630 

                   PPO_DH 

                         PPO_D4 

                         PPO_AD 

                         TPC_DH 

                         TPC_D4 

                         TPC_AD 

                         

Pro_DH 

 

-

0.592 

-

0.567 

 

-

0.557 

 

-

0.576 

      

0.615 

    

0.743 

      Pro_D4 

                         Pro_AD 

                         tr_wt 

                         

 

msb1 

 

msb2 

 

msb3 

 

msb4  msb 

 

b%1 

 

b%2 b%3 

 

b%4 

 

b% 

 

msp1 

 

msp2 

 

msp3 

 

msp4 msp 

 

p%1 

 

p%2 

 

p%3 

 

p%4 

 

p% 
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Table E.2. continued. 

PAL_DH 

          

    

         PAL_D4 

 

0.661 

  

0.558 

      

    

        PAL_AD 

 

0.642 

         
0.906     

       PPO_DH 

                    PPO_D4 

              

    

     PPO_AD 

       

0.596 

      
0.837 

     TPC_DH 

           

-0.588 

        TPC_D4 

                    TPC_AD 

  

0.581 0.688 0.560 

               Pro_DH 

                    Pro_D4 

                    Pro_AD 

                    tr_wt 

                    

 

 

msd1 msd2 

 

msd3 

 

msd4  msd 

 

d%1 

 

d%2 

 

d%3 d%4 

 

d% 

 

PAL_DH 

 

PAL_D4 

 

PAL_AD 

 

PPO_DH 

 

PPO_D4 PPO_AD 

     

PAL_DH 

       PAL_D4 

       PAL_AD 

       PPO_DH 

       PPO_D4 

       PPO_AD 

       TPC_DH     

      TPC_D4 

 

    

     TPC_AD -0.700 

 

    

    Pro_DH 

   

    

   Pro_D4 

    

    

  Pro_AD 

   

-0.667 0.894     

 tr_wt 

       

 

 

TPC_DH 

 

TPC_D4 

 

TPC_AD 

 

Pro_DH 

 

Pro_D4 

 

Pro_AD tr_wt 
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Appendix F 

 

Additional information from Chapter 8 

 

Field trial plan and randomisation 

Plants were grown in 5 inch pots into with 40 mm spacers between plots.  The trial 

randomisation was designed in a 6x6 Latin square (see figure F.1.).   

                    row             column              Plant 

                      1                     1                     6 

                      1                     2                     3 

                      1                     3                     4 

                      1                     4                     1 

                      1                     5                     5 

                      1                     6                     2 

                      2                     1                     5 

                      2                     2                     2 

                      2                     3                     3 

                      2                     4                     6 

                      2                     5                     4 

                      2                     6                     1 

                      3                     1                     3 

                      3                     2                     6 

                      3                     3                     1 

                      3                     4                     4 

                      3                     5                     2 

                      3                     6                     5 

 

 

                   row              column             Plant 

                      4                     1                     4 

                      4                     2                     1 

                      4                     3                     2 

                      4                     4                     5 

                      4                     5                     3 

                      4                     6                     6 

                      5                     1                     2 

                      5                     2                     5 

                      5                     3                     6 

                      5                     4                     3 

                      5                     5                     1 

                      5                     6                     4 

                      6                     1                     1 

                      6                     2                     4 

                      6                     3                     5 

                      6                     4                     2 

                      6                     5                     6 

                      6                     6                     3 

 

Figure D.2. Latin square design for glasshouse plan.  Plant refers to line id, where Saladin is 1, 

Iceberg is 2, Troubadour 4250 is 3, TroubaLessOxida is 4, 09R.9511 is 5 and L. serriola 03050 is 6.   
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Correlations amongst traits 

All discolouration measures, morphological traits and metabolite profiles were assessed for potential relationships (correlations between 

browning, pinking and overall discolouration and between them and morphological traits and PPO activity, PAL activity and TPC per and across 

trial sites (see table F.1.).   

Table F.1. Correlation matrix for the Saladin x Iceberg lettuce RIL population between post harvest discolouration measurements, morphological traits and 

metabolite activity  within and across sites.  Read across then down.  Only significant effects shown with ***P <0.001 in bold, **P<0.01 in italics and *P<0.05 in regular 

font.  Where msb (browning intensity); msp (pinking intensity); msd (overall discolouration intensity); %b (extent of  browning); %p (extent of  pinking); %d (extent of  

overall discolouration)); tr wt (trimmed weight, g); Acr (across days); DH (harvest day); D4 (day 4); PPO (polyphenols oxidase activity); PAL (phenylalanine ammonia lyase 

activity); TPC (total phenolic content);.  Numerical value before discolouration measurement is day. 

msb     

         

msd3 0.929     

         
msb1 0.999 

         

msd4 0.899 0.988     
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b%3 
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 msd2  msd3  msd4  d%  d%1  d%2 d%3  d%4  tr wt 

  
b%4 0.993 0.991 

 

0.994 0.999 0.998 0.997 

 

0.999     

            
msp 

          

    

           
msp1 

          

0.879     

          
msp2 

          

0.998 0.899     
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0.999 0.898 1     
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0.989 

 

0.979 0.982     
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0.964 0.968 0.997     

      
p%1 

          

0.921 0.995 0.938 0.937 

  

    

     
p%2 

          

0.988 

 

0.971 0.973 0.998 0.996 

 

    

    
p%3 

          

0.944 

 

0.922 0.93 0.976 0.989 
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0.977 
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Table F.1. continued. 

msd1 

  

0.940 

                 

0.912     

msd2 

          

0.915 0.986 0.928 0.931 

  

0.986 

   

0.937 

 
msd3 

           

0.9399 

    

0.911 

   

0.998 0.912 
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0.992 0.93 
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0.952 0.883 0.886 
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0.965 

 
d%1 
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0.987 

d%2 

          

0.929 0.885 0.933 0.939 0.909 0.89 0.903 0.905 

    
d%3 

          

0.978 

 

0.97 0.976 0.982 0.976 

 

0.981 0.957 0.945 

  PPO_
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-0.971 -0.979 
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