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Chaos Communication Performance: Theory and Computation 
 

 

G Kaddoum, A J Lawrance, P Chargé, and D Roviras 

 

 

Abstract   

 

In this paper new and existing approaches are developed to compute the bit error rate for 

chaos-based communication systems. The multi-user coherent antipodal chaos shift key-

ing system is studied and evaluated in its coherent form, in the sense of perfect synchro-

nization between transmitted and received chaotic sequences. Transmission is through an 

additive white Gaussian noise channel. Four methods are interrelated in the paper, three 

approximate ones and an exact one. The least accurate but most well known is based on 

simple Gaussian approximation; this is generalized to better reveal its structure. Two ac-

curate and computationally efficient approximate methods are based on conditional Gaus-

sian approximation and the statistical distribution of the typically non-constant bit energy.  

The most insightful but computationally expensive one is based on exact theory and rests 

on explicit mathematical results for particular chaotic maps used to spread binary mes-

sages. Both upper and lower bounds to the bit error rate are suggested. The relative ad-

vantages of the different approaches are illustrated with plots of bit error rate against sig-

nal to noise ratio. 
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1. Introduction 
 

  The chaotic signal is a relatively new field in communication systems.  Motivation de-

rives from the advantages offered by chaotic signals, such as spread spectrum, robustness 

in multipath environments and resistance to jamming. Chaotic signals are non-periodic, 

broadband, and difficult to predict and to reconstruct; they may be generated by mathe-

matical map functions, electronic circuits or laser optics. Their properties coincide with 

requirements for signals used in communication systems, in particular for spread-

spectrum communication and secure communication systems. The possibilities to gener-

ate an infinite number of sequences make for easy modelling and application of these sig-

nals in the single and multi-user cases. A wide overview of the general area can be ob-

tained from the monographs [9], [15], [23], [14] and [27], although not yet reaching work 

in laser optics [28], [2]. The paper focuses on the multi-user chaos shift-keying system of 

communication with chaotic map spreading, emerging from [6], [11], [12] and [24]. The 

main concern here is the theory and computation of bit error rate (BER), the primary 

measure of performance for many types of system. The three approximate methods for its 

calculation are considered, simple Gaussian approximation (SGA), which is inaccurate 

but indicative of the main influences on bit error and two forms of conditional Gaussian 

approximation, CGA-Simulation (CGA-S) and CGA-Analytical (CGA-A), which can be 

very accurate. These are followed by emphasis on an exact Gaussian theory (EGT) 

method which is insightful and either perfectly exact or nearly exact, but is much more 

demanding in computational terms. The paper thus sets out the choices of approximation 

and exact results, with illustrations.   

  The organization of the paper is as follows. Section 2 introduces multi-user CSK sys-

tems and their correlator demodulation.  Sections 3 and 4 give accounts of  SGA and 

CGA which newly emphasize the effect of autocorrelation in chaotic spreading on BER.  

Section 5 mentions three differing chaotic maps and their bit energy distributions.  Sec-

tion 6 links bit energy and CGA to give a very effective simulation-based method of cal-

culating BER, CGA-Simulation.  This method is further developed in Section 7 to the 

CGA-Analytical method which avoids numerical integration in obtaining BER.  In Sec-

tions 8-9 EGT methods are newly developed for multi-user systems, allowing insights 

computations for the effects of multi-users and autocorrelated spreading on BER compu-

tations.  Finally Section 10 shows that a previously developed likelihood-based general-

ized correlation decoder is effective in reducing BER in multi-user systems. 

 

2  Multi-user Antipodal CSK Communication 
 

In this section, the multi-user antipodal coherent chaos-shift-keying (CSK) communica-

tion system is described. A block diagram of this system is shown in Fig. 1. 

CSK Transmission scheme  

The CSK system in Fig. 1 has L  users.  A stream of binary bit data symbols from ac-

tive-user l ( , 1, 1, 2,...l ib i= ± = ) with bit period bT  is spread by a chaotic signal generated 

at the transmitter. Symbol bits of different users are independent of each another. The 

spreading factor ( )N  is the number of chaotic samples in a bit duration and these consti-

tute a chaotic segment;  
cT  is the time between each chaotic sample (chip), so 

b cT NT= . 
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  The chaotic segments of all users are generated by the same chaotic map ( ),τ ⋅  of speci-

fied form. Early communication uses of such maps include [10] and [4]. For the  l
th

 user, 

the chaotic segment { }lx  is assumed to have been started with a random initial sample 

value ,0lx  from the natural invariant distribution of ( ).τ ⋅  As random variables, the chaotic 

samples of the l
th

 spreading segment are assumed to have zero mean which has no effect 

on the dynamical properties, and the common variance is denoted by 2

X
σ . The output of 

the chaotic signal generator used by the l
th

 user is thus given by  

                                             
1

,

0

( ) ( )
c

N

l l i T c

i

u t x g t iT
−

=

= −∑ .                (1) 

 

 
Fig. 1.  Block diagram of a multi-user coherent antipodal CSK communication system. 

 

The function ( )
cT

g t  is a rectangular pulse of unit amplitude and width 
c

T  given by 

             
1 0

( )
0 .c

c

T

t T
g t

elsewhere

≤ ≤
= 


                (2) 

In the antipodal CSK system, the modulation of a typical bit 1lb = ± , say the j
th

 in the 

bit stream of the l
th

 user, takes the form l lb x . The transmitted signal of the l
th

 user is thus 

            ( )
1

,

0

( ) ( )
c

N

l l l i T c

i

s t b x g t iT
−

=

= −∑ .                 (3) 

The energy of a typical bit of the  l
th

 user is given by  

  
1

( ) 2

,

0

N
l

bc c l i

i

E T x
−

=

= ∑                    (4) 

and is thus seen not to be constant, in contrast to conventional systems, such as binary 

phase shift-keying (BPSK).  
  

Channel model 

An additive white Gaussian noise (AWGN) channel is assumed; ( )n t is the Gaussian 

noise affecting reception by the lth user and has a two-sided power spectral density given 
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by 

  0( ) 2nS f N= .                (5) 

Let ( )tn t′  be the equivalent noise source of ( )ln t specified as   

               
,

0

( ) ( )
cl i T c

i

n t g t iTε
∞

=

′ = −∑                 (6) 

where { },l i
ε  are independent Gaussian random variables with zero mean and variance  

         2

0 2
n c

N Tσ = .                (7)  

The channel is taken as flat and slow fading for all users; therefore all frequency 

components of the signal will experience the same magnitude of fading. This means that 

amplitude and phase changes imposed by the channel can be considered reasonably 

constant over a long sequence of transmitted symbols. Furthermore, all users are 

asynchronous and the received signal ( )
l

r t  of user l at time t includes the sum of L-1 

interference signals from the other users and the system’s AWG noise, and so is given by  

          
1,

( ) ( ) ( ) ( )
L

l l k

k k l

r t s t s t n t
= ≠

′= + +∑ .            (8) 

By substituting (3) and (6) into (8) there is  

 

1

, ,

0 1,

1

,

0

( ) ( )

( )

c

c

N L

l l l i k k i i T c

i k k l

N

l i T c

i

r t b x b x g t iT

z g t iT

ε
−

= = ≠

−

=

 
= + + − 

 

= −

∑ ∑

∑
            (9) 

in terms of the received samples ,l iz  of a typical bit of the l
th

 user, where         

               
, , ,

1,

, 0,1,..., 1
L

l i l l i k k i i

k k l

z b x b x i Nε
= ≠

= + + = −∑ .           (10) 

This can be written more concisely as    

         
1,

L

l l l k l

k l

z b x b x ε
= ≠

= + +∑                 (11) 

where 
lz , 

lx  and ε  are column vectors with entries 
,l i

z , 
,l i

x  and , 0,1,..., 1i i Nε = − , re-

spectively. 
 

CSK Demodulation scheme 

In coherent CSK communication systems perfect synchronization is assumed at the re-

ceiver side. The demodulator can reproduce a reference sequence which is the exact repli-

ca of the chaotic samples used at the transmitter to spread the bit information. In order to 

demodulate the transmitted signal of the l
th

 user, the l
th

 receiver only knows the l
th

  chaotic 

reference sequence, ( )lu t , and no information from of the other users. 
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  The conventional correlator, used as a demodulator, takes the form 

            ,
0

( ) ( )
cNT

r u l lC r t u t dt= ∫ .                  (12) 

By placing (1) and (9) in (12), the correlator becomes 

                                           
1

, ,

0

( , ) ( , )
N

l l c l i l i c l l

i

C z x T z x T Cs z x
−

=

= =∑                (13) 

where ( , )l lCs z x  is the decision variable and is the discrete covariance sum from ( , )l lz x . 

To demodulate the received signal the correlator first calculates the covariance between 

( )lr t  and ( )lu t  for each bit of duration cNT . The transmitted bit lb  is demodulated as ˆ
lb  

where in terms of the decision variable 

        
1 ( , ) 0

ˆ
1 ( , ) 0.

l l

l

l l

if Cs z x
b

if Cs z x

+ ≥
= 

− <
                (14) 

Examination of the covariance sum ( ),l lCs z x shows that it can be split into the  three 

expressions , ,l l lΩ Ψ Θ , as 

           ( ),l l l l lCs z x = Ω + Ψ + Θ                  (15) 

where  

             
1

, ,
L

T T T

l l l l l k k l l l

k l

b x x b x x x ε
= ≠

Ω = Ψ = Θ =∑ .          (16) 

In (16), lΩ  is the information variable for the bit lb  to be demodulated and its value also 

depends on the magnitudes in the chaotic spreading segment lx  of the l
th

  user; lΨ  is the 

interference variable due to the existence of other users and depends both on their bit val-

ues and the chaotic spreading segments of all users; lΘ  is the noise variable of the l
th

 user 

and its value depends on the AWGN noise and chaotic spreading segment of the l
th

 user.  

 For good performance of the communication system, the interference and noise variable 

l lΨ + Θ  must be considerably smaller than the message bit variable 
lΩ . With many users 

the effect of the 
lΨ  may be large in comparison 

lΘ . 

Overall performance will be assessed through bit error rate (BER) on the basis of (13)-

(16); this is the main accepted performance measure for many types of communication 

system and has been the focus of attention in CSK systems. Its computation presents both 

theoretical and practical difficulties.   

Four main approaches have evolved and will be treated in the rest of the paper. The first 

and poorest approximate approach uses a simple Gaussian approximation (SGA) for the 

distribution of the covariance sum ( , ),l lCs z x  the second and third involve a conditional 

Gaussian approximation (CGA) which can be very accurate, and the fourth is an exact 

Gaussian approach (EGA) which is insightful but presents computational challenges. All 

four approaches assume an AWGN channel. 

 

3 Theory for BER by Simple Gaussian Approximation 
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  The SGA approach has its roots in binary phase shift keying (BPSK), [21], in which the 

bit energy is constant, unlike CSK, and going back at least to [13] and earlier conference 

presentations. In [16] an SGA expression was derived specifically for the BER of single-

user CSK taking into account its non-constant bit energy; in [15] and also in related earli-

er work, [25], [26], many complex SGA expressions for the BERs of multi-user CSK 

were given.  The aim here is to gain theoretical intuition from generalization and mathe-

matical conciseness in the statistical aspects of SGA results, rather than to advocate their 

practical use. 

The overall bit error rate (BER) requires the conditional error probabilities 

ˆ( 1| 1)P b b= ± = m .  These are equal by symmetry and thus the overall BER does not de-

pend on the proportions of  the transmitted ±  values, and so  

    { }( , ) 0 | 1 .l l lBER P Cs z x b= < =               (17) 

The SGA approximation to the BER probability in (17) is based on the assumption that  

( , )l lCs z x  has a Gaussian distribution over the chaotic spreading, and so is  

                               { } 2
( ) var( )

1
, ( ) exp( 2)

2x

Q E Cs Cs Q x u du
π

+∞

= −∫             (18) 

where ( )E Cs  and var( )Cs  are the mean and variance of ( , )
l l

Cs z x . There is no justifica-

tion for the Gaussian distribution of Cs , except for its summation structure.  From (15) 

 ( ){ }, ( ) ( ) ( )
l l l l l

E Cs z x E E E= Ω + Ψ + Θ            (19) 

where the second and third expectations are zero and thus 

               ( ){ } 2,
l l X

E Cs z x Nσ= .               (20) 

The variance expression for ( , )
l l

Cs z x  is more complicated but there are no covariances 

between , ,
l l l

Ω Ψ Θ , and so only the sum of their variances is required.  Individually, 

these require autocovariance terms within each of the chaotic spreading sequences.  The 

final result, informative in regard to its constituent terms, is as follows  

( ){ },
l l

Var Cs z x =                                 (21) 

2

2

2 1 1
2 2 2 2 2

2
1 1

( 1) 1 2 1 ( ) 2( 1) 1 ( ) .
N N

X
X X n X XX

k kX

k k
N L k L k

N N

σ
σ σ σ ρ σ ρ

σ

− −

= =

        − + + + − + − −            
∑ ∑  

Here 2

2

X
σ  denotes the variance of 2X , and ( )X kρ , 2 ( )

X
kρ  are the autocorrelations of X  

and 2
X , respectively.   

The SGA method for calculating BER is given by applying (18) with (20) and (21) to 

yield 

2

2

2 1
1

4
1

1 1
1 2 1 ( )

N
X

X
kX

k
BER Q N k

SNR SOR N

σ
ρ

σ

−
−

=

    
+ + + − +   

  
∑�  
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1
21

2

1

2
1 { ( )}

N

X

k

k
k

SOR N
ρ

−
−

=

  
−   

   
∑ .     (22) 

The notation 2 2

X nSNR Nσ σ= , equivalently 0bE N , has been used to define the signal-

to-noise-ratio of the system and SOR  defines the quantity ( 1)N L −  which will be called 

the spreading-to-other-user-interference ratio. The result (22) is a more general and re-

vealing form than found in earlier use.  The first and the third terms refer to the active l
th 

user while the second and fourth terms are due to the interfering other users. The autocor-

relations suggest there is advantage in negative quadratic dependency and zero linear au-

tocorrelations.   The ratio term is actually the kurtosis of the spreading distribution. Each 

of these properties of the spreading may be obtained explicitly for some chaotic maps and 

by simulation for others. The accuracy of (22) can, however, be poor, as evident from the 

single-user case where it is evident that the BER does not even tend to one-half as the 

spreading extend tends to infinity. This comment is supported by Fig. 3 and Fig. 4. 

It is of interest to compare the SGA method (22) with the constant bit energy case of 

BPSK, equivalently,  antipodal DS-CDMA, for which the BER, from [21] for instance, is 

                    ( )
1

1 2
BPSKBER Q SNR

−− 
=  

 
.                  (23) 

This result is evident in the first term of (22) applied to the single-user case, emphasis-

ing that it is the simplest of approximations.  Actually, as shown in [17], (23) is the  lower 

bound for single-user CSK communication systems. 

 

4  Theory for BER by Conditional Gaussian Approximation 
 

Since the SGA method is very crude in its Gaussian assumption, a possibly better ap-

proach is to apply the Gaussian approximation conditionally on the chaotic spreading 

samples of the active user, and subsequently average over all chaotic spreading samples 

which the active user might employ. Thus ( )E Cs  and var( )Cs  are now considered condi-

tionally on 
lx  and denoted by ( | )lE Cs x  and var( | ).lCs x  Following on from (18), the 

CGA to the BER probability thus becomes 

   { }( | ) var( | )
jx l lE Q E Cs x Cs x 
 

.              (24) 

The required calculations of the conditional quantities yield the results  

   

1
2
,

0

( | ) ,
N

l l i
i

E Cs x x
−

=

=∑                          (25) 

var( | )lCs x =   

                    

1 1 1
2 2 2 2 1

, , ,
0 1 0

( 1) .2 ( 1) ( )
N N N k

nX X Xl i l i l i k
i k i

L x N L N x x kσ σ σ ρ
− − − −

−
+

= = =

 
 −   

 
+ + + −∑ ∑ ∑     (26) 

Hence, using (24), the CGA result for BER becomes  
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11
1 1 1 1 22

2 2 2

, , , ,

0 1 0 0

1 1 2
( )

l

N N N k N

x l i X l i l i k l i X

i k i i

BER

E Q x N x x x k
SNR SOR SOR

σ ρ

−
− − − − −

+
= = = =


    × + +            

∑ ∑ ∑ ∑

�

 (27) 

where the sum of squares term is the standardized chaotic bit energy for the typical  j
th

 bit.   

The expression (27) facilitates CGA comparison with the SGA formula (22); for instance, 

the empirical and theoretical autocorrelations align with the squared autocorrelations. 

With uncorrelated spreading there is the much simpler result without the autocorrelations. 

With extensive enough spreading, the empirical autocorrelations can be replaced by the 

corresponding theoretical ones, to yield the simpler general result  

         

11
1 1 22

2 2 2

,

0 1

1 1 2
1 { ( )}

l

N N

x l i X X

i k

k
BER E Q x N k

SNR SOR SOR N
σ ρ

−
− −

= =


      + + −          

 

∑ ∑�    (28) 

Ignoring the terms involving SOR, the single-user exact result [17] is seen here.  

 

5  Chaotic Maps in CSK 
 

In order to better understand the effect of chaotic maps ( )xτ  on the distribution of bit 

energy, three cases have been chosen, two giving linearly uncorrelated spreading and one 

giving both linearly and quadraticly autocorrelated spreading. The first linearly uncorre-

lated one is the well known logistic map with    

       2( ) 2 1, 1 1x x xτ = − − < < ,                (29) 

and which has a particular beta invariant distribution.  The second is the PWL map, so-

named in [3] and illustrated in Figure 2.  Its defining equation is  

                     ( )( ){ }( ) ( ) 2( ) mod1 1 , 1 1x sign x K x xτ ϕ=  +  − − < <  .           (30) 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
τ(x)

x

 
Fig. 2 . The PWL map with 3, 0.1K φ= = . 

 

This is a generalized shift map with 2 2K +  branches of slope 2K ; the first, last and 

middle two of which are not complete and so represent deviations from a standard shift 
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map; the parameter ϕ  ( 0 1ϕ< < ) controls the incomplete branches. In [3] it is shown to 

have a uniform invariant distribution; it can be both linearly and quadraticly autocorre-

lated, but in the case used throughout this paper, 3, 0.1K ϕ= = , these autocorrelations are 

very small or effectively zero. The third map to be used is the well known Bernoulli-shift 

map,  

          
2 1 1 1

( )
2 1 0 1

x x
x

x x
τ

+ − < ≤
= 

− < <
                      (31) 

which has a uniform invariant distribution and is geometrically linearly and quadraticly 

autocorrelated with parameters one-half and one-quarter, respectively. The three contrast-

ing maps (29), (30) and (31) are each used to generate one million chaotic segments of 10  

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

p
d

f(
x

)

 

 
PWL map

Logistic map

Bernoulli-shift map

 
Fig. 3: Simulated distributions of bit energy for a spreading factor of 10 from chaotic sequences generated 

by logistic, PWL and Bernoulli-shift maps. 

 

samples, that is a spreading factor of 10. Fig. 3 shows the simulated distributions of bit 

energy where it can be seen that the logistic one is the narrowest. Thus, the logistic map 

will give the best results in terms of BER, although its multimodal shape can be a disad-

vantage in subsequent BER calculation. This shape appears to be a consequence of the 

beta invariant distribution of the logistic map being u-shaped and thus having most of its 

values towards the 1±  boundaries. 

Although the logistic map is the best of those mentioned, theoretically optimal spreading 

in which the variability of bit energy is minimised has been developed in [29], [18] and 

leads to so-called circular and deformed-circular maps; this topic will not be expounded 

here.  

 

6  BER by CGA and Simulation of Bit Energy 
 

In this section the use of the CGA result (28) involving the distribution of bit energy in 

calculating BER is developed.  It can be applied whether the chaotic samples are linearly 

uncorrelated or not. Two approaches to the distribution of bit energy are considered. Both 

require the simulation of the bit energy distribution, the first (CGA-Simulation) employs 

the simulated histogram directly in a numerical integration, while the second (CGA-
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Analytical) fits a particular probability density to the histogram and uses this in an analyt-

ical integration. These two methods are explained in this and the following Section 7. The 

methods lead to a highly accurate performance prediction with low computing charge, as 

evident in [8] for uncorrelated spreading, and here for autocorrelated spreading as well. 
 

Now, according to the CGA result (28), the BER result can be written as the integral  

       
1

2

10

1 1 2
1 { ( )} ( )

N

csk bc X bc bc

k

k
BER Q e k f e de

SNR SOR SOR N
ρ

+∞ −

=

    
= + + −   

    
∑∫        (32) 

where bce  is the standardized chaotic bit energy variable for the typical  j
th

 bit and ( )bcf e  

is its probability density function. However, an analytical expression for ( )bcf e  is diffi-

cult because the chaotic samples are not statistically independent, rather they are func-

tionally dependent.  One easier solution is to simulate bit energy and so obtain an accurate 

probability density function representation as in Fig. 3  and then numerically integrate 

(32). A comment based on (32) is that BER is not zero even for a noise-free channel (in-

finite SNR) because of the interference effect of other-users represented by SOR terms. 
 

The CGA-Simulation Method  

The CGA-simulation method takes the formula (32) and converts the analytical integra-

tion to numerical integration as  

      
1

( ) 2 ( )

1 1

1 1 2
1 { ( )} ( )

m N
j j

csk bc X bc

j k

k
BER Q E k P E

SNR SOR SOR N
ρ

−

= =

     
+ + −    

     
∑ ∑�  (33) 

where m  is the number of histogram classes created from the simulated spreading seg-

ments and ( )( )j

bcP E  is the fraction of the 1 million segments having the energy in the in-

terval centered on ( )j

bcE . 

The strength of the CGA-Simulation method is that it can be applied very simply for 

any type of uncorrelated chaotic sequence, needing only a simulated distribution of the bit 

energy and an easy subsequent a numerical integration.  With autocorrelated spreading, 

additionally, the sums of squares of autocorrelations are required but can be obtained 

from known analytical results or simulation. Extensive and fast computing enables these 

simulation results to be obtained with high accuracy, which then allow accurate numerical 

integration, even in multi-modal cases. Moreover, due to its low computational charge, 

the method can be implemented for realistic sized systems. A theoretical strength is that 

by invoking chaotic map simulations, the chaotic dynamics of the map are properly uti-

lized and allow comparisons between different types of chaotic spreading.   
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Fig. 4. BER for single-user CSK with logistic, Bernoulli-shift and PWL spreading, 5N = . CGA-Simulation 

(CGA-S) and Simulation-Only (S-Only) methods.  Also shown is the BPSK lower bound curve. 

 

 

For single-user CSK, in which the terms involving SOR in (33) are omitted, Fig. 4 

gives simulation-only BER results, together with the CGA-Simulation method of calcula-

tion. BER spreading is by the uncorrelated logistic and PWL maps and the autocorrelated 

Bernoulli-shift map, each with spreading factor 5N = . Also shown is the lower bound 

corresponding to the BPSK system. The near-perfect match between the simulation-only 

results and the CGA-Simulation method confirms the accuracy of this approach. It can be 

seen that logistic spreading is superior to PWL and Bernoulli-shift spreading, but that the 

spreading factor of 5N =  is not large enough to give BER performance close to that of 

BPSK. The larger the spreading factor, the less variable is the standardized bit energy and 

so closer to the constant bit energy of BPSK, as previously illustrated in Fig. 3. 
 

Fig. 5 gives a comparison of the SGA method (22) and the CGA-Simulation method 

(33) in calculating BER for single-user CSK with the uncorrelated logistic spreading,  

5N =  and 100N = . The upper-most curve gives the inaccurate SGA results.  The lowest 

group of curves consists of the BPSK lower bound, the CGA-Simulation curve and the 

Simulation-only curve; the closeness of these illustrates the excellent accuracy of CGA-

Simulation for high spreading.  The middle group of two curves compare the CGA-

Simulation results with those of the Simulation-only values.  The close agreement here 

attests to the high accuracy of the CGA-simulation method for spreading as low as 5N = . 
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Fig. 5. BER for  single-user CSK with logistic spreading, 5,100.N =   SGA, CGA-Simulation (CGA-S) and 

Simulation-Only (S-Only) methods.  Also shown is the BPSK lower bound curve. 

 

Continuing to multi-user CSK and the further use of (22) and (33), Fig. 6 illustrates the 

high accuracy of the CGA-Simulation method for the uncorrelated logistic spreading with 

10N =  and 3L =  users, and for 2L =  users with the uncorrelated PWL spreading, 

30N = . Fig. 7 is concerned with the autocorrelated Bernoulli-shift spreading and with 

the need for autocorrelation in the CGA-Simulation formula (33). The lower group of 

three curves refers to ( 2, 20)L N= =  while the upper group refers to ( 2, 10)L N= = .  In 

each group, there is a separation of the curve corresponding to the omission of autocorre-

lation in (33) from the CGA-Simulation and Simulation-only curves. This is convincing 

evidence of autocorrelation terms being needed in (33) for accurate results. Figure 8 con-

tinues the illustrations in Fig. 7 with Bernoulli-shift spreading to the higher number of  
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Fig. 6. BER for multi-user ( 2,3)L =  CSK with logistic and PWL spreading, 10,30.N =  CGA-Simulation 

(CGA-S) and Simulation-Only (S-Only) methods. Also shown is the BPSK lower bound curve. 
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Fig. 7. BER for multi-user ( 2)L =  CSK with Bernoulli-shift spreading, 10,20.N =  CGA-Simulation 

(CGA-S) with and without autocorrelation (with Corr, without Corr) and Simulation-Only (S-Only) me-

thods. Also shown is the BPSK lower bound curve. 
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Fig 8. BER for multi-user ( 5)L = CSK with Bernoulli-shift spreading, 10,30.N =  CGA-Simulation  

Energy (CGA-S) with and without autocorrelation (with Corr, without Corr) and Simulation-Only (S-Only) 

methods. Also shown is BPSK lower bound curve. 

4 

5L =  users and spreading 10N = , 30N = . There is the same pattern of results, that with 

the higher number of users CGA-Simulation is still accurate, and with an accentuation of 

the need for autocorrelation in (33) at high spreading. 

 

7  BER by CGA and Analytical Distribution of Bit Energy 
 

The CGA-Analytical method for computing BER, more mathematical than the CGA 

simulation method, is based on detailed analytical results for the distribution of bit energy 

which have been obtained previously in the context of mobile radio channels, [1], [20], 

[7] and [5].  This method uses (32) in terms of the square root of bit energy 

(SRE), bceλ = , and the expression  

            ( )
1

2 2

10

1 1 2
1 { ( )}

N

csk X

k

k
BER Q k p d

SNR SOR SOR N
λ ρ λ λ

+∞ −

=

   
+ + −       

∑∫� .   (34) 
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In mobile radio channel work, the square root of bit energy, as channel attenuation, fol-

lows either the Rayleigh distribution, [5], the Nakagami distribution, [7] or the Rice dis-

tribution [20], and in these cases analytical expressions are available for (34). Thus, the 

immediate task is to ascertain whether the simulated pdf of the square root of bit energy 

for CSK systems can be satisfactorily matched to one of these distributions. In this way, a 

fully analytical expression, although approximate to some limited degree, will be ob-

tained.  
 

  Recall from Fig. 3 that the logistic spreading segments have given an irregular shape to 

the bit energy distribution and thus not analytically suitable to probability density function 

matching. On the other hand, the PWL simulated distribution appears smooth and un-

imodal, although skewed. Thus, continuing with 10
6 

PWL segments with spreading factor 

10N = , the SRE simulated distribution has been obtained and is shown in Fig. 9; also 

shown are the probability density functions of the Rice and Nakagami distributions.  Both 

are visually very close to the PWL simulated distribution, but according to the chi-square 

goodness-of-fit test, the Rice distribution is to be preferred. The Rice distribution function 

is given by (53) in Appendix A. 
 

The CGA Analytical Method using the Rice Distribution and PWL  spreading 

   In order to obtain the CGA analytical BER expression, the scale and shape parameters 

, KΩ  of the Rice distribution must be computed in terms of the PWL map (30), as in [3]. 

This can be achieved by the assumption that the standardized bit energy from a PWL map 

is the square of a Rice variable R .  The expectation of 2R  will then be unity, so requiring 

that the mean of the Rice distribution be unity.  The chaotic values ,l jx  are uniformly dis-

tributed over the interval [ 1, 1]− + , [3], and thus the variance of 2R , using the sum of va-

riances formula, is  

                                    ( ) ( )
1

2 2 2

, ,

1

4
var 1 2 1 ,

5

N

l i l i k

k

k

N
R corr x x

N

−

+

=

  
= + −  

  
∑ .         (35) 

Here the quadratic autocorrelations have been ignored for the PWL as being very small in 

the case used. It is convenient to note from (53) and (54) in Appendix A for the Rice dis-

tribution that 

                                       2 21
( ) 1, , [ ]

1 1
rE R K Var R

γ
γ

γ

−
Ω = = = =

− −
,            (36) 

and then use (55) and (56) in Appendix A for the final result. The comparisons in Fig. 9 

indicate very accurate matching of both Rice and Nakagami distributions to the Simula-

tion-only curve. 
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Fig. 9. (a) Comparison of the simulated distribution of the square root of bit energy for the PWL 

map ( 3, 0.1, 10)K Nϕ= = =  with that of matching Rice and Nakagami probability density functions,  (b) 

Zoom in to show that the simulated distribution follows the Rice probability density function. 
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Fig 10.  BER for multi-user ( 1, 2,3)L =  CSK, with PWL ( 3, 0.1)K φ= =  spreading, 5N = . CGA-Analytical 

Rice distribution (CGA-A-Rice), CGA-Simulation (CGA-S) and Simulation-Only (S-Only) methods. Also 

shown is the BPSK lower bound curve. 
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Fig. 11. BER for multi-user ( 1, 4,8)L =  CSK, with PWL ( 3, 0.1)K φ= =  spreading, 64N = . CGA Analytical 

Rice distribution (CGA-A-Rice), CGA-Simulation (CGA-S) and Simulation-Only (S-Only) methods.  Also 

shown is the BPSK lower bound curve. 

 

 The CGA analytical BER expression derived from (34) when the pdf of the square root 

energy is assumed to have a Rice distribution is, following [20], 

                               
2 2

0

1
( , ) 1 exp ( )

2 1 2
PWL

d u v
BER Q u v I uv

d

   +
= − + −   

+   
             (37) 

where ( , )Q u v , u , v , d  are given in the Appendix B. 

In Fig. 10 the CGA analytical BER expression from (37) is compared with results from  

Simulation-only (S-only) of CSK systems.  For the low spreading factor of 5N =  in these 

multi-user cases, there is excellent agreement, except at large signal-noise ratios; but then 

there are only small deviations. These results thus justify the approximations which have 

been made in obtaining the analytical result (37).  

Fig. 11 gives similar results to Fig. 10 except for the larger spreading factor of 64N =  

and the larger numbers of  users. The previous conclusions are reinforced.  Furthermore, 

there is good agreement between the CGA-Analytical  and the CGA-Simulation methods. 

 

8  Exact Gaussian Theory (EGT) for BER 
 

The Exact Gaussian Theory (EGT) for BER from correlation decoding in multi-user 

CSK is developed from the single-user case [17] and was initiated in [30]. First, by com-

bining the covariance sum of the correlator (15) with its components (16) into a single 

expression, the BER probability in (17) becomes 

              { }
1

( , ) 0 | 1 | 1 .
L

T T T

l l l l l l l l k k l

k l

BER P Cs z x b P x x x x b x bε
= ≠

 
= < = = − > + = 

 
∑      (38) 

Conditional on the spreading of the th
l user, T

l lxε  has a Gaussian distribution of mean ze-

ro and variance 2 ( );T

n l lx xσ  thus conditional on spreading and bit values of the other users 
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as well, the BER probability can be written 

                                     { }
1

2

1

( ) ,
L

T T T

l l l n l l l l k k

k l

Q x x x x x b xσ
= ≠

 
+ Ψ Ψ = 

 
∑ .         (39) 

This means that (39) can be regarded as a function two dependent random variables, bit 

energy T

l lx x  and the multi-user variable lΨ , also from (16). The unconditional BER is 

thus the average of Q  over the bit energy and the multi-user variable. The single-user 

case will be presented first.   
 

Single-User Exact Gaussian Theory 

Exact theory for the single user case of CSK begins from (39) without the lΨ  term. 

Hence, and after a little rearrangement, the BER expression is  

  ( ){ }1 2
1 2

l

T

x l l XBER E Q N x x SNRσ− =              (40) 

in terms of standardized bit energy, the result from [17].  For exact results, the expecta-

tion has to be evaluated numerically. This might seem to need and N-dimensional 

integral, but in the chaotic case is one-dimensional because  

            ( 1)

, 0( ), 0,1, 2,...i

l ix x iτ −= =              (41) 

where ( ) ( )iτ ⋅ is the th
i iteration of the map, and the expectation can be done as a function 

of the single variable 0x  which has the invariant distribution of the map, pdf ( )Xf ⋅ . More 

explicitly, it can be seen that (40) leads to  

                            ( ) ( )
1 2

1 21 ( 1) 2

1
1

.
N

j

X X

j

BER SNR N x f x dxτ σ
+

− −

−
=

   
= Φ −  

   
∑∫              (42) 

Explicit calculations require mathematical formulae for the map iterations, as are avail-

able for standard maps, but not for many others. Otherwise, these have to be done numer-

ically, a process which is bound to degrade accuracy. For logistic and Bernoulli-shift 

maps, as specified at (29) and (31), for 2,3,...j = , there are  

                                          ( )( ) 1cosh(2 arccosh( )), 1 1j jx x xτ −= − ≤ < ,          (43) 

                           ( )( ) 1 2 2

2 2

1
2 1 2 , , 2 ,..., 2 1.

2 2

j j j j

j j

k k
x x k x kτ − − −

− −

+
= − − ≤ < = − −       (44) 

These functions allow (42) to be coded in any desired language, with computational ac-

curacy governed only by software; they also allow the exact distribution of standardized 

bit energy to be obtained as a transformation of the invariant distribution. Illustrations of 

exact BER for logistic and Bernoulli-shift maps are given in Fig.12. They show that logis-

tic spreading is superior to Bernoulli-shift spreading, a result might have been anticipated. 
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Fig. 12. BER for single-user CSK by exact Gaussian theory (EGT) method with logistic, Bernoulli-shift 

and independent Gaussian spreading, 5N = . Also shown is the BPSK lower bound curve. 

 

from the SGA result (22) because logistic map spreading is not linearly autocorrelated, 

unlike Bernoulli-shift map. However, the mathematical exactness of these results is their 

value. Note that non-chaotic independent Gaussian spreading is the least effective, al-

though it is still much lower than the 1N =  upper bound which is not shown.  

One insightful deduction from the exact result (40) is that BER has ( )Q SNR  as its 

lower bound, as already noted at (23), and further that this arises when bit energy is con-

stant. An upper bound is the 1N =  case. Another deduction from (40) is concerned with 

minimising bit energy for optimum spreading, and shows that the spreading should have 

negative quadratic autocorrelations; this conclusion is foreshadowed in the SGA result 

(22) and first reported in [29]. 
 

Multi-user Exact Gaussian Theory 

Exact Gaussian theory for BER from correlation decoding in multi-user CSK begins 

from the expectation of  (39) over all spreading 1,...,
L

x x  and over the bit values of all 

other users, 1,... ...,
l L

b b b< > . Denoting these more briefly as ,x b , there is the following 

most general result  

 { }
1

2
, ( )T T

x b l l l n l l
BER E Q x x x xσ

 
= + Ψ 

 
.             (45) 

To take this further in full exactness is a combinatorial calculation which involves assum-

ing that the proportions of the transmitted 1±  bit values are :1p p−  and that r of the oth-

er users transmit 1's+ , 1, 2,..., 1r L= − .  Then there is the ‘perfectly exact’ expression  

  
11 1

1 2

1 1 1

1
(1 ) ( ) .

L r L
r L r T T T T

x l l k l k l n l l

r k l k r l

L r
BER p p E Q x x x x x x x x

r
σ

− −
− −

= = ≠ = + ≠

− −     
= − + −   

    
∑ ∑ ∑ (46) 

This result is computationally rather difficult, but a more tractable result is based on (39) 
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and the use of conditional expectations. As a function of its two variables, 
l

x  and 
l

Ψ , 

(39) gives for BER the expression 

                                          { }
1

2
| ( )

l l l

T T

x x l l l n l l
BER E E Q x x x xσΨ

 
= + Ψ 

 
.           (47) 

The conditional distribution of 
l

Ψ  clearly has a mean of zero, and a calculation for its 

variance, which recognizes the independence of spreading between different users, yields 

            { } 2var ( 1)( )T

l l X l X
L x x σΨ = − Σ              (48) 

where 
X

Σ  is the N N× circulant autocorrelation matrix of the spreading. Particularly note 

that the variance does not involve the bits of other users since the calculation has involved 

their squaring, a great saving in complication. The next step is one of accurate approxima-

tion for the conditional distribution of given 
l

x , and since 
l

Ψ  is the sum of 1L −  inde-

pendent terms, this can be taken as Gaussian. The resulting calculation in (47) is done by 

using the formula (60) in Appendix C, giving the nearly EGT result 

                                  ( ){ }1 2
2 2( 1)

l

T

l x l l

T T

l l X l X l
BER E x x x x L x xεσ σ

−

= Φ −  + − Σ  .              (49) 

This can be rearranged  as follows 

 

    ( )
1 21 2

1 2
1 2 ) ) 1 1
( )

) )l
x

T T
T l l l l
l l X T T

l X l l X l

E Q
x x x x

BER N x x
x x x x SNR SOR

σ

−

−
=

        +      Σ Σ       

      (50) 

 

which is reminiscent of the earlier more approximate SGA and CGA results (22) and (27). 

With uncorrelated spreading it reduces to the CGA result (32) but not so with autocorre-

lated spreading. With no channel noise, there is simplification which indicates there is still 

bit error caused by the interference of other users. This is the explanation of the eventual 

horizontal behaviour of multi-user BER curves beginning to be evident in Fig. 6 - Fig. 8, 

Fig. 10 - Fig.12, and Fig. 13 includes an illustration of the near exact result (50) for Ber-

noulli-shift map spreading. 

 

 

9  Generalized Correlation Decoding 
 

Up to this point the paper has been concerned with correlation decoding, the standard 

method. However, a decoder is only optimal with minimum BER when it is the maximum 

likelihood estimator of the transmitted bit.  The correlation decoder is only the maximum 

likelihood estimator for Gaussian channel single-user CSK systems. There has been some 

previous investigation of likelihood decoding, e.g. [22], but not for multiple-user CSK in 

the coherent form.  
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Fig. 13. BER for multi-user 3L =  CSK with Bernoulli-shift spreading, 4N = , 2SOR = .  SGA for cor-

relation decoding, EGT for correlation decoding, and EGT for generalized correlation decoding. Also 

shown are the BPSK lower bound for uncorrelated spreading and the noiseless SOR lower bound. 

 

In general it is a formidable problem and no explicit decoder is derivable, and therefore 

its analytical BER cannot be envisioned. However, in [19] the likelihood was approx-

imated by a multivariate Gaussian distribution and this led to a generalized correlation 

decoder which took the form 

        

1

1

1 0
ˆ

1 0

T

l X l

l T

l X l

if z x
b

if z x

−

−

+ Σ ≥
= 

− Σ <
               (51) 

where 1

X

−Σ  is the inverse of the circulant autocorrelation matrix of the spreading vector .
l

x  

This decoder is thus seen to take account of autocorrelation within the spreading, and to 

be the same as the correlation decoder if there is no autocorrelation within the spreading. 

The exact theory for its BER follows similarly to that of the correlation decoder at (38) 

and (39), and the result from [19] is 
 

     ( )
1 2

1 1
1 2

1 1 2

1

1 1
lx

T
T l X X l
l X l X T

l X l

E Q
x x

BER N x x
x x SNR SOR

σ

−
− −

− −

−

    Σ Σ  = Σ +    Σ     

.    (52) 

 

In the case of three users and Bernoulli-shift map spreading of factor 4, exact calculations 

from (52) are used in Fig. 13 to compare the BER with the corresponding result (50) for 

the correlation decoder.  The comparison illustrates in a very simple case the advantage of 

the generalized correlation decoder over the conventional one, from taking advantage of 

the autocorrelation in the Bernoulli-shift map spreading.  Evidence here seems to suggest 

that for high SNR, the generalized correlation decoder has considerably lower BER than 

the correlation decoder but for negative or modest SNR it could be a negligible amount 

greater. Also in Fig. 13 are the inaccurate SGA (22) for correlation decoding, the BPSK 

lower bound (23) and the noiseless SOR lower bound ( ) 0.07865Q SOR = .   
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10  Conclusions 
 

  The purpose of the paper has been to examine, extend and inter-relate the theory and 

methods of calculation of bit error rate for single and multi-user coherent chaos shifting 

systems, using correlation decoders and a likelihood-based improvement. The SGA me-

thod has been viewed as valuable in concisely indicating the key statistical quantities 

which effect BER but not for yielding generally accurate results.  A more accurate CGA 

method is developed and its results are compared to their SGA counterparts; these involve 

the use of the distribution of bit energy and quadratic autocorrelations, unusual aspects 

relative to conventional communication systems. Consideration has also been given to 

exact calculation of BER, the ‘gold standard’, usually insightful but computationally 

much more demanding. Finally, theory has also been presented for maximum likelihood-

based generalized correlation decoders and their improved BER performance. The rela-

tive advantages and disadvantages of the different approaches have been illustrated.  Sim-

ilar analyses can be applied to non-coherent CSK and other chaotic systems.  
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APPENDICES 

Appendix A. The Rice distribution  

A random variable R  with a Rice distribution has distribution function, [20], given by  

 

     
2

0

2( 1) ( 1) ( 1)
( ) exp 2 , 0

K r K r K K r
p r K I r

  + + +
= − − ≥    Ω Ω Ω   

                 (53) 

where 0, 0  KΩ ≥ ≥ are the scale and shape parameters, and )(0 xI
 
is the zero-order mod-

ified Bessel function of the first kind.  The scale and shape parameters Ω  and the K  are 

given, simplified from [1], in terms of the standardized bit energy moments by  

    2 1
( ),

1 1
r

E R K
γ

γ

−
Ω = =

− −
,                (54) 

where 2 2 2[ ] / ( ( ))Var R E Rγ =  is the kurtosis of R .  Defining the following further para-

meters as 

    2 2,
2( 1) ( 1)

K

K K
σ α

Ω Ω
= =

+ +
,               (55) 

a convenient form of the Rice pdf is then given, as in [1], by  
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2 2

02 2 2
( ) exp , 0

2
R

r r r
p r I r

α α

σ σ σ

 +  
= − ≥   

  
,          (56) 

and is used in the analytical formula (37) for BER. 
 

 

Appendix B.  Rice distribution formulae for bit energy 

The following formulae have been needed to give the Rice approximation to BER with 

CSK pwl spreading, 

                     
2[1 2 2 ( 1)]

2(1 )

d d d
v

d

γ + + +
=

+
,  

2[1 2 2 ( 1)]

2(1 )

d d d
u

d

γ + − +
=

+
         (57) 

           
22

2 2

2 2
,

2

X

n

N
d

σα
γ σ

σ σ
= = ,                 (58) 

where ( , )Q α β  is the Marcum Q-function, [20], given by 

                                       
2 2( )/2

11

1
( , ) ( )M x

MM

x

Q x e I x dxα

β

α β α
α

∞

− +

−−

=

= ∫                            (59)  

and 
1( )

M
I x−  is a modified Bessel function of the first kind of order 1M − . 

Appendix C.  A Gaussian integral result  

With ( )φ ⋅  the probability density function of a standardized Gaussian variable, and for 

any constants , , ,a b c d ,  

                { } { } { }2 2 1 21 1 1 ( )( ) .( ) ( ) c a b db b m a Q d m c dmφ −
+∞

− − −

−∞
Φ − ++ − + =∫       (60) 
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