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Summary

In the course of national sports tournaments, usually lasting several months, it is expected

that the abilities of teams taking part in the tournament change in time. A dynamic ex-

tension of the Thurstone-Mosteller model for paired comparison data is introduced to model

the outcomes of sporting contests allowing for time-varying abilities. It is assumed that the

development of teams’ abilities follows a stationary process and a team-specific home effect

is considered. The likelihood function of the proposed model requires the approximation of

a high dimensional integral. This difficulty is overcome by means of maximum simulated

likelihood via the Geweke-Hajivassiliou-Keane algorithm. Ranking of teams and forecasting

future match results are performed through a Metropolis-Hastings algorithm. The method-

ology is applied to sports data with and without tied contests, namely the 2006-2007 Italian

volleyball league and the 2008-2009 Italian Serie A football season.
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1 Introduction

The analysis of sports data has always aroused great interest among statisticians. Albert et

al. (2005) collect a number of articles that summarise various statistical aspects of interest in

sports data including rating of players or teams, evaluation of sport strategies, enhancement

of sport rules, illustration of statistical methods and forecasting of results.

Sports data have been investigated from different perspectives, often with the aim of

forecasting the results. A first approach consists in modelling the number of goals of the two

teams. Maher (1982) employs independent Poisson distributions for the number of scores

of each team with means that depend on the attack and defence strength of teams. Dixon

and Coles (1997) propose an ad hoc adjustment of the Poisson distribution introducing a

dependence parameter that modifies the probabilities of the results 0-0, 0-1, 1-0 and 1-

1. Dixon and Coles (1997) introduce also a dynamic element in the model updating the

parameter estimates including the results up to the last observation and down-weighting

observations distant in time. Karlis and Ntzoufras (2003) suggest to apply a bivariate Poisson

distribution with a dependence parameter between the number of goals scored by the two

teams and then extend the model to inflate the probabilities of draws.

McHale and Scarf (2007) model the number of shots of the two teams. They propose two

different types of Archimedean copula with either Poisson or negative binomial distributions

for the marginals to account for the negative dependence between shots-for and shots-against.

Extensions allowing dynamic developments of abilities of the teams are proposed by Rue

and Salvesen (2000) and Crowder et al. (2002). Rue and Salvesen (2000) assume that the

attack and defence strength parameters of each team follow a Brownian motion process.
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The model is estimated by employing Bayesian inference through Markov chain Monte Carlo

methods. Crowder et al. (2002) suggest an autoregressive model for the attack and defence

abilities of teams. The original model is then replaced by a derived version that is easier to

handle by maximum likelihood.

A second approach to the analysis of sports data consists in modelling the difference in

scores. Clarke and Norman (1995) perform a linear regression of the difference in scores on

the difference in strength of the two teams. Harville (2003) employs a similar specification,

but eliminates the incentives for running up the score beyond a predetermined number of

points. A dynamic specification of strength in this context is considered in Harville (1980)

who proposes an autoregressive process for the strength of teams in different seasons. Also

Glickman and Stern (1998) assume that the evolution of week-by-week and seasonal strength

follows a first-order autoregressive process. Inference is carried out in a Bayesian framework

through Markov chain Monte Carlo algorithms.

Finally, sports data can be analysed by considering only the outcomes of the matches (win-

draw-loss). Goddard and Asimakopoulos (2004) use an ordered probit model to determine

which covariates, e.g. importance of the match, fouls, yellow and red cards, affect the result

of the match. An ordered probit model is adopted also by Koning (2000) who specifies the

probability of the outcome as a function of the difference of abilities of the two teams. Kuk

(1995) introduces two strength parameters for each team, one denoting the strength when

playing at home and the other when playing away.

Barry and Hartigan (1993) propose a dynamic extension for the ability parameters of

teams; they employ a choice model assuming a prior distribution for strength of teams that

changes slowly in time. Fahrmeir and Tutz (1994) consider three possible specifications for

the development of abilities: a first and second order random walk and a local linear trend

model. These models are estimated using empirical Bayes methods. Glickman (1999) specifies

a logit model assuming a prior with normal increments for abilities of teams and proposes

an approximate Bayesian algorithm for ranking purposes. Knorr-Held (2000) employs a logit
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model assuming random walk priors for abilities of teams. The variance of the random walk

is estimated through four different predictive criteria while the abilities are estimated by

means of the extended Kalman filter and smoother.

In this paper, we analyse the results of double round-robin tournaments from the last per-

spective, that is modelling the outcomes of matches. Since we are interested in studying how

the strengths of the teams evolve during the season, we develop a stochastic dynamic paired

comparison model. Differently from previous works by Fahrmeir and Tutz (1994), Glickman

(1999) and Knorr-Held (2000), we specify a stationary time series model for describing the

evolution in time of the ability of each team and estimate model parameters by simulated

maximum likelihood.

The paper is organised as follows. Section 2 presents two motivating data sets regard-

ing Italian men’s volleyball and football major leagues. Exploratory analyses are carried

out to give guidance on model construction. Section 3.1 describes a dynamic version of the

Thurstone-Mosteller model suggested by the exploratory analyses. Section 3.2 discusses

maximum simulated likelihood estimation of the proposed model while in Section 3.3 a

Metropolis-Hastings algorithm is developed for the estimation of the model components and

for the prediction of match results. The methodology is applied in Section 4 to the data for

the two sports. Some concluding remarks are given in Section 5.

2 Description of the data and first analyses

2.1 Volleyball

As motivating examples we consider data from two major Italian double round-robin tour-

naments. The first one is the 2006-2007 regular season of the men’s Italian A1 volleyball

league. There are fourteen teams in the league competing in a double round-robin tour-

nament starting in September 2006 and ending in April 2007. Match results are available

from the website http://www.legavolley.it. Table 1 orders the teams by the final points
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Table 1: 2006-2007 regular season men’s Italian A1 volleyball league. The table displays: (1)
points (pts), (2) percentage of home points (% home), (3) estimated abilities (ability), (4)
quasi standard errors (qse) and (5) ranks (rank) based on the static Thurstone-Mosteller
model, (6) estimated mean abilities, (7) quasi standard errors and (8) ranks based on the
dynamic Thurstone-Mosteller model.

static dynamic
pts % home ability qse rank ability qse rank

1) Cuneo 57 0.60 0.876 0.296 1 0.716 0.257 1
2) Roma 56 0.61 0.726 0.285 2 0.603 0.251 2
3) Treviso 50 0.68 0.486 0.272 3 0.437 0.250 3
4) Piacenza 49 0.59 0.470 0.271 4 0.365 0.243 4
5) Modena 45 0.64 0.244 0.264 5 0.175 0.243 6
6) Perugia 43 0.54 0.226 0.264 6 0.178 0.239 5
7) Taranto 43 0.67 -0.001 0.262 8 0.012 0.241 8
8) Trentino 41 0.51 -0.090 0.262 9 -0.068 0.229 9
9) Montichiari 40 0.65 0.124 0.262 7 0.084 0.239 7
10) Macerata 34 0.79 -0.106 0.262 10 -0.094 0.248 10
11) Latina 24 0.79 -0.583 0.278 11 -0.481 0.252 11
12) Padova 23 0.78 -0.874 0.298 14 -0.713 0.259 14
13) Vibo Valentia 22 0.68 -0.627 0.280 12 -0.516 0.254 12
14) Verona 19 0.95 -0.871 0.297 13 -0.691 0.259 13

ranking with Cuneo classified first and Verona last at the end of the regular season. The

points are assigned as follows: if a match ends 3-0 or 3-1 the winning team gains 3 points

and the losing team remains empty handed, while if the match ends 3-2, the winning team

gains 2 points and the losing team is rewarded with 1 point.

Let Yij be the binary random variable which denotes whether the match ended in a victory

(Yij = 1) or a loss (Yij = 2) for the home team i against the away team j, with i, j = 1, . . . , n,

i 6= j. In the specific case of the volleyball tournament there are n = 14 teams. Traditional

pair comparison models describe the outcome probability as pr(Yij = 1) = F (ai− aj), where

F is a distribution function and ai is a parameter measuring the ability of team i. This simple

choice model is commonly termed the Bradley-Terry model (Bradley and Terry, 1952) or the

Thurstone-Mosteller model (Thurstone, 1927; Mosteller, 1951) depending on whether F is

the distribution function of a logistic or of a standard normal random variable, respectively.

The second column of Table 1 displays the percentage of points obtained by each team
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when playing at home. Between 51% and 95% of the total points gained by a team are

collected in home matches. On average, 68% of the points are acquired in home games. The

advantage deriving from playing at home is commonly taken into account by including a

common home effect parameter h for all teams (Fahrmeir and Tutz, 1994; Knorr-Held, 2000;

Harville, 2003), thus leading to the model

pr(Yij = 1) = F (h+ ai − aj). (1)

Model identifiability requires one constraint in the set of abilities, such as the sum con-

straint
∑n

i=1 ai = 0 or the reference team constraint ai = 0 for some i ∈ {1, . . . , 14}. Column

three of Table 1 shows estimates of the abilities âi from the above model using a probit link

and the sum constraint for consistency with the analyses later conducted in this paper. The

estimated home effect parameter ĥ is 0.562 with standard error 0.112, thus confirming the rel-

evant advantage for home teams. Indeed, the model-based estimated probability of a victory

for the home team in a match between two teams with the same ability is Φ(0.562) = 0.71,

where Φ(x) denotes the cumulative distribution function of standard normal variable com-

puted at point x.

Column four of Table 1 displays the quasi standard errors (Firth and de Menezes, 2004)

of the estimated abilities. These quasi standard errors allow to approximately reconstruct

the uncertainty of pairwise differences âi− âj used for comparing teams without the need to

report also the covariance between âi and âj. The estimated abilities suggest classifying the

teams in three groups: a first class group including the best four teams in the final ranking,

a second group of teams with an average ability and a final group of four teams that are

weaker than the others.

The ranking derived from the estimated abilities closely agrees with the actual final rank-

ing, with a Kendall τ rank correlation index of 0.906. The minor differences between the

two rankings are due to the different classification philosophies. For example, Montichiari

is ranked 7th by the estimated abilities while it is 9th in the final ranking because in a

6

CRiSM Paper No. 10-19v2, www.warwick.ac.uk/go/crism



relatively large number of matches it won 3-2. Such a result is considered a win in the

Thurstone-Mosteller model, but the points gained by the winning team are fewer than if it

won with a larger margin (3-1 or 3-0).

2.2 Association football

The second application regards the 2008-2009 Italian Serie A football league. This tourna-

ment comprises twenty teams with matches played between August 2008 and May 2009. The

teams ranked according to the final points order are listed in Table 2. In the football tour-

nament, the winning team gains 3 points while the losing team gets nothing. If the match

is tied, both teams gain 1 point. On average, 65% of the total points are gained in home

matches, with percentages ranging from 45% to 79%.

In contrast to volleyball, football matches can also end in a tie, hence random variable

Yij has three categories that we arbitrarily code as follows: 1 if the home team wins, 2 for a

tie and 3 for a victory of the guest team. Model (1) is extended to account for ties with a

cumulative link specification

pr(Yij ≤ yij) = F (δyij
+ h+ ai − aj), (2)

where −∞ = δ0 < δ1 < δ2 < δ3 =∞ are cutpoint parameters. Model identifiability requires

a further constraint in the cutpoints or to fix the value of the home effect parameter. Here,

we prefer the first option and we assume δ1 = −δ2 so as to preserve the model symmetry.

The third column of Table 2 reports the estimates of the abilities which range from −0.505

for Reggina to 0.840 for Internazionale. Again, the ranking derived from the estimated

abilities is very similar to the final points ranking, as the Kendall τ rank correlation is 0.95.

The estimated home effect parameter is ĥ = 0.396 with standard error 0.062.
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Table 2: 2008-2009 Italian Serie A football league. The table displays: (1) points (pts),
(2) percentage of home points (% home), (3) estimated abilities (ability), (4) quasi stan-
dard errors (qse) and (5) ranks (rank) based on the static Thurstone-Mosteller model,
(6) estimated mean abilities, (7) quasi standard errors and (8) ranks based on the dynamic

Thurstone-Mosteller model.
static dynamic

pts % home ability qse rank ability qse rank
1) Internazionale 84 0.56 0.840 0.203 1 0.622 0.171 1
2) Juventus 74 0.53 0.546 0.189 2 0.405 0.160 3
3) Milan 74 0.61 0.545 0.195 3 0.412 0.164 2
4) Fiorentina 68 0.65 0.366 0.196 5 0.279 0.169 5
5) Genoa 68 0.60 0.413 0.188 4 0.326 0.161 4
6) Roma 63 0.68 0.278 0.190 6 0.211 0.164 6
7) Udinese 58 0.66 0.128 0.186 7 0.084 0.160 7
8) Palermo 57 0.75 0.094 0.190 8 0.064 0.168 8
9) Cagliari 53 0.70 0.003 0.187 9 0.028 0.166 9
10) Lazio 50 0.56 -0.133 0.190 11 -0.102 0.166 11
11) Atalanta 47 0.70 -0.150 0.187 12 -0.117 0.164 12
12) Napoli 46 0.76 -0.160 0.187 13 -0.131 0.172 13
13) Sampdoria 46 0.70 -0.110 0.185 10 -0.088 0.159 10
14) Siena 44 0.73 -0.263 0.191 15 -0.194 0.166 14
15) Catania 43 0.79 -0.258 0.190 14 -0.198 0.168 15
16) Chievo 38 0.45 -0.298 0.181 16 -0.230 0.157 16
17) Bologna 37 0.57 -0.377 0.187 17 -0.290 0.161 17
18) Torino 34 0.74 -0.462 0.191 18 -0.355 0.167 18
19) Reggina 31 0.58 -0.505 0.188 20 -0.380 0.159 19
20) Lecce 30 0.63 -0.497 0.186 19 -0.382 0.161 20

2.3 Temporal development of team abilities

In the above static models, parameters ai measure the average abilities of the teams over a

complete season. However, team abilities are expected to change during the season because

of injuries to players, tiredness due to participation also in international competitions, team

psychology and other factors. Figure 1 shows time-varying estimates of abilities obtained by

re-fitting models (1) and (2) using an increasing number of gameweeks for the second halves

of the two tournaments. Overall, the team ability trajectories are characterized by a notable

persistence through time, except for few trajectories exhibiting smooth drops or rises during

specific parts of the season.
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Figure 1: plot of estimated abilities for the second half of the season of the 2006-2007 men’s
Italian A1 volleyball league (left panel) and of the 2008-2009 Serie A football league (right
panel).

3 Dynamic stochastic Thurstone-Mosteller model

3.1 The model

First analyses suggest to model the match results with the dynamic cumulative link model

pr(Yij ≤ yij|Aitij = aitij , Ajtij = ajtij ) = F (δyij
+ h+ aitij − ajtij ),

where the random variable Aitij describes the ability of team i in the home match against

team j played at gameweek tij and parameter h counts for the home advantage.

Previous works by Fahrmeir and Tutz (1994), Glickman (1999) and Knorr-Held (2000)

model the ability process Ait for a single team as random walks of first or second order.

The key characteristic of a random walk process is the variance of Ait increasing with time

without bound. However, the plots in Figure 1 seem not to support the volatility of a random

walk process. In other words, we argue that the random-walk assumption of an heterogeneity

among teams increasing with time is implausible. Hence, we specify the ability process Ait for

a specific team i as a stationary Gaussian process with zero mean and exponential covariance

function cov(Ait, Ait′) = σ2γ|t−t
′|, where σ2 > 0 and γ ∈ (0, 1) are two unknown parameters

that regulate the variance and the autocorrelation of the ability process, respectively.

With the normal assumptions for the team abilities Ait, it is convenient to assume a
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probit link so that match results {Yij = yij} can be written as censored normal variables

Zij ∈ (δyij−1, δyij
] where Zij = h + Aitij − Ajtij + εij, with latent errors εij distributed as

independent standard normal variables. The resulting model represents a stochastic dynamic

version of the Thurstone-Mosteller model.

In contrast to static paired comparison models, the proposed dynamic model induces

a cross-dependence among match results; only the results of matches sharing a team are

dependent. The degree of dependence between two matches involving the same team is

inversely proportional to the temporal distance between the matches. Let θ = (h, δ2, σ
2, γ)T

be the whole parameter vector. If the sport does not allow for ties, δ2 = 0. The joint

probability for two matches is

pr(Yij = yij, Ykl = ykl;θ) =

∫ δyij

δyij−1

∫ δykl

δykl−1

p(zij, zkl;θ)dzij dzkl,

where p(zij, zkl;θ) is the density of a bivariate normal variable with zero mean and covariance

cov(zij, zkl) =



σ2γ|tij−tkl| if i = k, j 6= l or i 6= k, j = l

1 + 2σ2 if i = k, j = l,

−σ2γ|tij−tkl| if i = l, j 6= k or i 6= l, j = k,

−2σ2γ|tij−tkl| if i = l, j = k,

0 otherwise.

(3)

Covariance cov(zij, zkl) is thus equal to zero unless one or both the teams are involved in

the two matches. Note that this behaviour is qualitatively different from that of a model in

which ability is assumed to change through an autoregressive process of order one. Indeed,

as parameter γ approaches its limit value of one, the expression of cov(zij, zkl) converges to

that corresponding to constant-in-time abilities, Ait ≡ Ai for all times t, distributed as inde-

pendent zero-mean normal variables with variance σ2. With an autoregressive specification,

in contrast, the identity γ = 1 would correspond to a non-stationary random walk model for
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the time-varying abilities Ait.

Let y denote all match results. The likelihood function for θ is given by the rectangular

normal integral

L(θ;y) =

∫
D
p(z;θ)dz,

where the integral domain D is the cartesian product of the intervals (δyij
−1, δyij

] and z is the

vector of elements zij for all terms in the set {i, j = 1, . . . , n, i 6= j}. The likelihood integrand

p(z;θ) is thus a multivariate normal density of dimension m = n(n − 1), the number of

matches played in the tournament, with zero mean and variance matrix with entries given

by expression (3).

Likelihood evaluation is difficult because for each paired comparison there are two abilities

correlated with the abilities relating to the same teams in different matches, so the likelihood

cannot be split into low-dimensional integrals. The dimension of the likelihood integral is

thus equal to the number of matches played in the tournament. The next section shows how

the likelihood may be computed approximately by importance sampling.

3.2 Maximum simulated likelihood

The proposed paired comparison model is equivalent to a multivariate probit model whose

likelihood is estimated by simulation via the Geweke-Hajivassiliou-Keane (GHK) algorithm

(Train, 2003; Masarotto and Varin, 2010). This algorithm approximates the joint distribution

of all the outcomes by sequential simulation from univariate truncated normal distributions.

Algorithm implementation requires the assumption of an order for the matches. We

choose to arrange the matches in chronological order, with those played at the same time in

alphabetic order of the home team. The GHK algorithm is a sequential importance sampling

algorithm based on drawing from the conditional density p(zij|yij,Zij;θ), where Zij is the

vector of latent variables Zkl preceding Zij in the chosen order. In other words, the GHK

algorithm employs as importance density the normal density p(zij|Zij;θ) truncated over the

interval (δyij−1, δyij
].
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Let mij and sij be the mean and the standard deviation of the conditional density

p(zij|Zij;θ), respectively. Then, a draw from the importance density p(zij|yij,Zij;θ) is ob-

tained by setting

zij(uij) = mij + sijΦ
−1{(1− uij)lij + uijrij},

where uij is a draw from a random variable uniformly distributed in the unit interval, quan-

tities lij and rij are defined as

lij = Φ

(
−δyij−1 −mij

√
1 + 2σ2

sij
√

1 + 2σ2

)
and rij = Φ

(
−δyij

−mij

√
1 + 2σ2

sij
√

1 + 2σ2

)
.

Denote by z
(b)
ij the bth draw from the above importance density (b = 1, . . . , B). The GHK

algorithm approximates the likelihood of the proposed paired comparison model by the Monte

Carlo sum

L̂GHK(θ;y) =
1

B

B∑
b=1

 ∏
ord(i,j)

p(z
(b)
ij |Z

(b)
ij ;θ)

p(z
(b)
ij |yij,Z

(b)
ij ;θ)

 ,

where the product follows the predetermined match order indicated by ord(i, j). The GHK

algorithm is popular in the econometric literature for approximate inference in multivariate

probit models; more details and references can be found in Train (2003).

As with any importance sampling algorithm, the GHK algorithm provides an unbiased

estimate of the likelihood function, but it is biased on the scale of the log-likelihood. Since

it is more convenient to maximize the log-likelihood, it is opportune to correct the bias

of its importance sampling approximation. For this purpose, we implement the correction

suggested by Durbin and Koopman (1997).

Given the data dimensionality, some comments on computational aspects are worth noting

here. The essential ingredient of the GHK algorithm is the Cholesky factor of the variance

matrix of Z used for sampling sequentially from the conditional density p(zij|yij,Zij;θ).

Computation of the Cholesky factor requires O(m3) computations, with m being the number

of matches. In a complete season double round-robin tournament m = O(n2), thus suggesting
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that the algorithm may be of little utility except for relatively small tournaments. However,

if necessary, relevant computational saving can be obtained by noticing that the variance

matrix of Z is increasingly sparse as the number of teams increases because only pairs of

matches with a team in common are correlated. In fact, while the variance matrix has

dimension m2 = {n(n− 1)}2, its non-zero cells number only 2n(n− 1)(2n− 3). For example,

the percentage of zero cells in the variance matrix of Z is 73% for the volleyball data, 81%

for the football data and it would be 96% in a hypothetical tournament involving 100 teams.

3.3 Estimation of model components, and prediction

Typical interest in statistical analysis of sports tournaments is addressed to ranking teams

and forecasting match results. These two targets require estimation of team abilities and the

home advantage effect. For these purposes we develop a Metropolis-Hastings algorithm as

follows.

Let T be the time of the last match observed, YT be the set of all matches results played

up to time T and θ̂T be the maximum simulated likelihood estimate of θ based on all matches

played up to time T ∈ {1, . . . , 2(n−1)}. Estimation of team abilities Ait for all times t ≤ T is

based on suitable summaries of the smoothing density p(Ait|YT ; θ̂T ). This conditional density

can be conveniently estimated through the following Metropolis-Hastings algorithm:

1. Set initially all model components equal to zero, then repeat the following step a suffi-

ciently large number of times

2. Simulate a proposal ãit for the ability of each team at each different time t ≤ T in turn

from the conditional distribution of Ait given all the other abilities. The probability of

accepting this proposal depends on whether at time t team i plays at home or away.

Consider the first case and suppose that team j is playing away from home, then

t = tij ≤ T and the proposal ãitij is accepted with probability given by the smaller of
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1 and the ratio of the match result probabilities

pr(Yij = yij|Aitij = ãitij , Ajtij = ajtij ; θ̂T )

pr(Yij = yij|Aitij = aitij , Ajtij = ajtij ; θ̂T )
,

otherwise leave Aitij unchanged from its current value aitij . On the other hand, if team

i plays away at home of team j, we have t = tji ≤ T and the proposal ãitji
is accepted

with probability given by the smaller of 1 and the ratio of the match result probabilities

pr(Yji = yji|Aitji
= ãitji

, Ajtji
= ajtji

; θ̂T )

pr(Yji = yji|Aitji
= aitji

, Ajtji
= ajtji

; θ̂T )
,

otherwise leave Aitji
unchanged from its current value aitji

.

At convergence, draws from this Metropolis-Hastings algorithm are used for estimation

of various summaries of the smoothing densities p(Ait|YT ; θ̂T ) for t ≤ T and i = 1, . . . , n.

Comparisons among the various teams at a certain point of the tournament can be based

on the estimated abilities Âit = E(Ait|YT ; θ̂T ). Expected values Âit are estimated through

the averages of draws ait from the above Metropolis-Hastings algorithm. Finally, at time t

teams are ranked on the basis of the average of the estimated time-varying abilities from the

beginning of the tournament up to time t, with t = 1, . . . , 2(n− 1).

The Metropolis-Hastings algorithm is also used for prediction of future match results.

For example, suppose the target is forecasting the result of the future match between home

team i and away team j using information in all the matches played up to time T . Forecast

probabilities are then computed as pr(Yij = k|YT ; θ̂T ) = Φ(δ̂k + ĥ+ Âitij − Âjtij )−Φ(δ̂k−1 +

ĥ + Âitij − Âjtij ) for k = 1, 2, 3, where Âitij = γ̂
|tij−T |
T E(AiT |YT ; θ̂T ) is the forecasted ability

for home team i at future time tij with γ̂T being the component pertaining to γ in θ̂T . The

forecast ability for the away team is estimated similarly.
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4 Application of the model

We fit the proposed model to the volleyball and football data described in Section 2 with the

GHK algorithm using 2, 000 Monte Carlo replications. Adequacy of the Monte Carlo size has

been checked by the stability of parameter estimates in repeated estimation using different

pseudo-random seeds.

Parameter estimates for the volleyball data are (with standard errors in brackets) ĥ = 0.57

(0.11), γ̂ = 0.96 (0.03) and σ̂ = 0.62 (0.18). Fitting the model to football data gives

qualitatively similar estimates: δ̂2 = 0.39 (0.04), ĥ = 0.40 (0.06), γ̂ = 0.98 (0.02) and

σ̂ = 0.37 (0.08). The notably large values of the estimate of the autocorrelation parameters

confirm the very slowly varying abilities observed in Figure 1. Hence, we re-fit the two data

sets with the limiting case of abilities constant in time. In these restricted models parameter

estimates for h and δ2 are essentially unchanged while the estimate of σ is slightly smaller:

the estimates for the volleyball data are ĥ = 0.52 (0.11) and σ̂ = 0.47 (0.11), while those

for football are δ̂2 = 0.38 (0.04), ĥ = 0.39 (0.06) and σ̂ = 0.32 (0.06). For the volleyball

tournament, the maximized log-likelihood for the model with constant-in-time abilities is

−106.38 against a value of −105.56 for the dynamic model. Since the restricted models

correspond to the limiting case of γ approaching one, the likelihood ratio test statistic does

not have the usual asymptotic χ2
1 distribution under the null hypothesis of constant-in-time

abilities, H0 : {Ait = Ai, for all times t}. This difficulty can be overcome by relying on

a parametric bootstrap assessment, which produces a p-value equal to 0.10 based on 500

replicates and thus finds no convincing evidence against the null hypothesis. The same

conclusion is drawn for football data where the maximized log-likelihoods are −378.92 and

−378.36 for the constant and dynamic models, respectively, and the parametric bootstrap

test yields a p-value equal to 0.13.

Tables 1 and 2 suggest the possible incorporation of heterogeneity in the home advantage

effect, for example by considering team-specific home effects parameters hi. Although tech-

nically possible since a complete double round-robin tournament involves O(n2) matches,
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estimation of the n team-specific home effects hi is impractical. Instead, we consider also a

random-effect type specification where team-specific home effects hi are realizations of a ran-

dom variable H supposed independent of the team abilities Ait and distributed as a normal

variable with mean h and variance σ2
H. In the volleyball data, the parameter estimates for

this heterogeneity model are ĥ = 0.58 (0.14), σ̂H = 0.27 (0.27), σ̂ = 0.63 (0.19) and γ̂ = 0.96

(0.04) with a maximized log-likelihood equal to −105.4. These values indicate the absence

of a statistically significant home advantage heterogeneity beyond what is captured by the

abilities Ait. The same conclusion is drawn for the football data, indeed in this case the

estimates of a model with heterogeneous home effects are δ̂2 = 0.39 (0.04), ĥ = 0.40 (0.08),

σ̂H = 0.19 (0.13), σ̂ = 0.36 (0.08) and γ̂ = 0.98 (0.02) with a maximized log-likelihood of

−377.92. In this instance, a parametric bootstrap assessment of the likelihood ratio test for

the hypothesis H0 : σH = 0 based on 500 replicates produces the estimated p-values equal

to 0.22 for the volleyball data and 0.15 for the football data. See also the final discussion in

Section 5.

The Metropolis-Hastings algorithm discussed in Section 3.3 is used for estimation of the

model components Ait with the volleyball and football tournaments. Given the nature of the

algorithm and the dependence structure of the stochastic components, successive draws show

a noticeable correlation which decays quite slowly. In order to reduce correlation between

successive draws, the chain is thinned by saving one draw in ten. A total of 50, 000 draws

are saved and the first 10, 000 are discarded to allow for burn-in. Convergence of the last

40, 000 draws is also checked through standard diagnostic tools implemented in the coda R

package (Plummer et al., 2009). In particular, the convergence diagnostics based on the work

of Geweke (1992) and Heidelberger and Welch (1983) do not indicate any problems.

Column six of Table 1 shows the average of the estimated abilities of the volleyball teams

for the complete season along with their quasi standard errors. The ranking derived from

the mean abilities of the dynamic model closely agrees with the actual final ranking and with

the ranking arising from the static model, in fact the Kendall τ rank correlation with these
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two rankings equals 0.884 and 0.978, respectively.

The left panel of Figure 2 displays the 95% confidence intervals for the estimated mean

abilities constructed from the quasi standard errors. The estimates suggest that there may be

groups of teams with different strength, even though it should be noticed that the confidence

intervals are fairly wide. The best two teams, which coincide with the first two teams in the

final points ranking, appear to have an ability higher than the mean ability of other teams in

the league. Latina, Vibo Valentia, Verona and Padova appear the weakest teams in the mean

ability ranking. In particular, the last two teams both won 6 matches and lost 20 during

the season. However, the points system which rewards by one point a match lost by one set

creates a final ranking in which Padova is higher than Vibo Valentia even though the latter

won 8 matches and lost 18.
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Figure 2: The left panel of the figure displays the 95% confidence intervals for the mean of the
estimated abilities based on the quasi standard errors of the teams competing in the 2006-
2007 regular season of the men’s Italian A1 volleyball league. The right panel displays the
95% confidence intervals for the mean of the estimated abilities based on the quasi standard
errors of the teams competing in the 2008-2009 regular season of the men’s Italian Serie A
league.

The right panel of Figure 2 shows the caterpillar plot of the average of the estimated

abilities of the twenty football teams competing in the 2008-2009 Serie A league. The plot
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reveals that only the best four teams in the league in terms of the points ranking have an

estimated average ability higher than zero at an approximate 95% confidence level.

Figures 3 and 4 show the estimated mean abilities of a few teams in the volleyball and

football leagues over the course of season. Cuneo and Roma occupy the first and second

positions in the final volleyball ranking. Their ability was high for the whole season, but

Cuneo was stronger at the beginning of the tournament. Verona experienced an unlucky start

to the season with some players injured and consequently a poor performance. After six games

the coach was changed and the performance of Verona improved noticeably, nevertheless the

team ended the season in last position. The opposite behaviour is shown by Latina which

experienced an evident decrease of its ability in the second half of the season: in fact it lost

all of the last nine matches.

Regarding the football Serie A league, Figure 4 clearly reveals how much better Inter-

nazionale performed than other top teams Milan and Juventus during the whole season.

Indeed, Internazionale ended the tournament ten points ahead of Milan and Juventus. The

figure also displays the ability for Reggina which is among the weakest teams in the season.

The abilities of the other teams are all between those of Internazionale and Reggina. In

particular, Napoli shows a significant decrease in its performance a few matches after the

beginning of the season. This decline stopped when the team changed coach 13 matches

before the end of the tournament.

Table 3 shows model-based forecasts for all the matches of gameweek 24 of the volleyball

tournament. Assessment of forecast quality can be based on the Brier score (Brier, 1950)

given by

BS =
k∑
l=1

(fl − ol)2 ,

where fl is the forecasted probability of outcome l and ol is 1 if l occurs and 0 otherwise, k is

equal to 3 or 2 depending on whether the sport allows for ties or not, respectively. For each

match, a Brier score equal to zero corresponds to a perfect prediction. At the other extreme,

a Brier score equal to two corresponds to a completely erroneous prediction. The sum of the
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Figure 3: 2006-2007 regular season men’s Italian A1 volleyball league. Estimated time-
varying mid-abilities during the complete season for teams Cuneo, Latina, Macerata, Perugia,
Roma, and Verona.
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Figure 4: 2008-2009 Italian Serie A football league. Estimated time-varying mid-abilities
during the complete season for teams Internazionale, Juventus, Milan, Napoli, Reggina and
Udinese.
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Brier scores for all the matches can be used for an overall assessment of the forecast quality:

the lower the sum, the better the forecasts. The total score of our forecasts for the volleyball

matches of gameweek 24 is 1.50. If we had simply used a uniform distribution on the results

giving each outcome probability 0.5, the Brier score would be considerably worse with a value

of 3.5. If we had used the empirical probabilities of home and away win, equal to 0.65 and

0.35, respectively, then the Brier score would have been 2.32.

Table 3: 2006-2007 regular season men’s Italian A1 volleyball league. Results, model-based
forecasts and Brier scores for all the matches in gameweek 24.

forecasts
home away result win loss Brier
Cuneo Treviso win 0.77 0.23 0.11
Padova Trentino loss 0.59 0.41 0.69
Piacenza Latina win 0.93 0.07 0.01
Vibo Valentia Montichiari win 0.57 0.43 0.36
Macerata Taranto win 0.67 0.33 0.22
Modena Verona win 0.79 0.21 0.09
Roma Perugia win 0.89 0.11 0.02

Table 4 reports the model-based predictions for the ten matches of gameweek 29 of the

Italian Serie A tournament. The total Brier score for these predictions is 5.19. In this case

a uniform distribution on the probabilities of the outcomes (1/3, 1/3, 1/3), would yield a

Brier score of 6.67, while the observed proportions of wins, draws and losses (0.51, 0.25, 0.24)

observed throughout the season up to gameweek 28, would produce a Brier score of 6.26.

The broad conclusion from these forecasts and those not shown here for other gameweeks

is that, in both sports, the dynamic model produces substantially better forecasts than the

empirical proportions.

5 Conclusions

We have described a dynamic stochastic paired comparison model for the results of matches in

sport tournaments. The model specification induces a natural cross-correlation between pairs
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Table 4: 2008-2009 Italian Serie A football league. Results, model-based forecasts and Brier
scores for all the matches in gameweek 29.

forecasts
home away result win draw loss Brier
Catania Lazio win 0.49 0.29 0.22 0.40
Roma Juventus loss 0.43 0.30 0.27 0.81
Bologna Cagliari loss 0.42 0.30 0.28 0.79
Chievo Palermo win 0.47 0.29 0.24 0.42
Fiorentina Siena win 0.61 0.25 0.14 0.23
Genoa Udinese win 0.63 0.24 0.13 0.21
Internazionale Reggina win 0.82 0.14 0.04 0.05
Lecce Atalanta draw 0.37 0.31 0.32 0.72
Napoli Milan draw 0.24 0.30 0.46 0.77
Torino Sampdoria loss 0.42 0.30 0.28 0.79

of matches sharing a team and takes into account the changes in abilities of teams during

the season. Difficulties in likelihood computation deriving from the crossed dependence

structure have been overcome by resorting to maximum simulated likelihood through the

Geweke-Hajivassiliou-Keane algorithm.

The methodology is illustrated through the analysis of two complete round-robin tourna-

ments where ties are or are not allowed. In both applications it is found that the team abilities

are quite constant during the season. A similar conclusion is drawn by Knorr-Held (2000)

about the 1996-1997 Bundesliga tournament and the 1996-1997 American Nation Basketball

Association season.

The issue of whether team-specific home advantages should be included in paired com-

parison models was considered by many authors with contrasting conclusions. Knorr-Held

(1997) does not find much evidence of home advantage heterogeneity among teams in the

Bundesliga. Neither do the results in Harville and Smith (1994) show much difference in

home field advantages among college basketball teams. Analyses for some other contexts do,

however, support heterogeneity in home advantages, see Clarke and Norman (1995), Kuk

(1995) and Glickman and Stern (1998) for different analyses of the English Premier Football
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League.

Following previous analyses of team tournaments, we have assumed equispaced match

times corresponding to the gameweeks. However, this assumption could be inappropriate

because gameweeks often last more than a day, breaks during the season may occur or

matches may be postponed. For example, in many European football leagues matches are

played from Friday to Monday with breaks during colder periods or around the matches

of the national teams. Furthermore, single matches can be postponed because of extreme

weather conditions or concomitant international club matches. These considerations would

suggest a continuous-time model specification

pr(Yij ≤ yij|Hi = hi, Ai(tij) = ai(tij), Aj(tij) = aj(tij)) = F (δyij
+ h+ ai(tij)− aj(tij)),

where Ai(tij) denotes the ability of team i at the calendar time tij of its match against team

j. We have fitted this continuous-time model to both the volleyball and football data but,

for these two particular tournaments, we found negligible differences in estimated model

parameters relative to the approximate discrete-time specification.

The average abilities reproduce closely the final points ranking of the tournaments. In

volleyball a ranking even closer to the final one might be obtained by considering four possible

categories for the match result, namely decisive loss, narrow loss, narrow win and decisive

win corresponding to the results of matches which give to the teams 0, 1, 2 or 3 points.

The focus in this paper has been on modelling match results, but similar ideas can be

exploited in the analysis of difference in goals scored in each match. Indeed, the latent process

Zij can be viewed as a model for such a difference.

The model discussed in the paper easily allows the incorporation of time-constant covari-

ates. More difficult but also much more interesting is modelling match results as a function

of endogenous time-varying covariates such as the number of goals scored and conceded in

previous matches. This type of analysis may be very helpful for forecasting match results,

and will be the subject of future research.
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