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Abstract

This thesis discusses issues arising in the analysis of repeated measurement studies with
missing data.

The first part of the thesis is motivated by a study where continuous and bounded longitu-
dinal data form the outcome of interest. The aim of this study is to investigate the change
over time in the outcome variable and factors that influence this change. The analysis is
complicated because some patients withdraw from the study, leading to an incomplete data
set.

We propose a non-linear mixed model that specifies the rate of change and the
bounds of the outcome as a function of covariates. This mixed model has advantages over
transforming the data and is easy to interpret. We discuss different models for the covariance
structure of bounded continuous longitudinal data.

To explore the impact of missingness, we perform several sensitivity analyses. Fur-
ther, we propose a model for informative missingness, taking into account the number and
nature of reminders made to contact initial non-responders, and evaluate the impact of miss-
ingness on estimates of change. We contrast this model with the traditional selection model,
where the missingness process is modelled.

Our investigations suggest that using the richer information of the reminder process
enables a more accurate choice of covariates which induce missingness, than modelling the
missingness process. Regarding the reminder process, we observe that phone calls are most
effective.

The second part of this thesis is motivated by dose-finding studies, where the number of
events per subject within a specified study period form the primary outcome. These studies
aim to identify a target dose for which the new drug can be shown to be as effective as a
competitor medication. Given a pain-related outcome, we expect many patients to drop out
before the end of the study. The impact of missingness on the analysis and models for the
missingness process must be carefully considered.

The recurrent events are modelled as over-dispersed Poisson process data, with dose
as regressor. Additional covariates may be included. Constant and time-varying rate func-
tions are examined. Based on a range of such models, the impact of missingness on the
precision of the target dose estimation is evaluated by simulations. Five different analysis
methods are assessed: a complete case analysis; two analyses using different single imputa-

xii



tion techniques; a direct likelihood analysis; and an analysis using pattern-mixture models.
The target dose estimation is robust if the same missingness process holds for the

target dose group and the active control group. This robustness is lost as soon as the miss-
ingness mechanisms for the active control and the target dose differ. Of the methods ex-
plored, the direct-likelihood approach performs best, even when a missing not at random
mechanism holds.
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l’HR l’Hôspital’s rule

LOCF Last Observation Carried Forward

LORCF Last Observed Rate Carried Forward

MANOVA Multivariate ANOVA

MAR Missing At Random

MCAR Missing Completely At Random

MED Minimum Effective Dose

MI Multiple Imputation

MNAR Missing Not At Random

NLMM-1 Non-Linear Mixed Model (adjusting for gender and age)

NLMM-2 Non-Linear Mixed Model (adjusting for age)

PMM Pattern-Mixture Model

p-val. P-value

Q-Q plot Quantile-Quantile plot

SD Standard Deviation

SE Standard Error

xv



Notation

Unless otherwise stated, the following notation is repeatedly used throughout this thesis. In
addition to their statement here, they are usually described at their first occurrence. Note
that small-case versions of random variables denote realisations thereof.

N set of natural numbers
R set of real numbers
R+

0 set of non-negative real numbers
R+ set of positive real numbers
{ } empty set

N sample size used in Part I
N∗ reduced sample size used in Chapter 6
m sample size used in Part II
Mi number of observations for subject i ∈ {1, ...,N}
M number of observations per subject for balanced data
Ntot number of total observations in Part I, i.e. M1 + ... + MN

Outcome of interest in Part I
Yi, j random variable, i ∈ {1, ...,N}, j ∈ {1, ...,Mi}

Yi Mi-dimensional random vector (Yi,1, ...,Yi,Mi)
>

Y Ntot-dimensional random vector (Y >1 , ...,Y >N )>

Yi,obs random vector associated with the observed components of yi

Yobs random vector of observed components for all subjects, i.e.
(Y >1,obs, ...,Y

>
N,obs)

>

Yi,mis random vector associated with the missing components of yi

Ymis random vector of missing components for all subjects, i.e.
(Y >1,mis, ...,Y

>
N,mis)

>

Missingness Process in Part I
Ri, j indicator random variable modelling the missingness process, i ∈

{1, ...,N}
Ri M-dimensional random vector (Ri,1, ...,Ri,M)>
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R Ntot-dimensional random vector (R>1 , ...,R
>
N)>

Reminder Process in Part I
K number of reminder categories
Zi, j random variable modelling the reminder process, i ∈ {1, ...,N∗}
Zi M-dimensional random vector (Zi,1, ...,Zi,M)>

Z Ntot-dimensional random vector (Z>1 , ...,Z
>
N∗)
>

Vi, j indicator random vector associated with Zi, j

Vi indicator random matrix (Vi,1, ...,Vi,M)>

Outcome of interest in Part II
T length of the study period in Part II
Ni(T ) random variable in Part II, i ∈ {1, ...,m}
ni realisation of Ni(T ), denoting the number of events occurring by the

end of the study
Ti, j time of occurrence random variables, i ∈ {1, ...,m}, j ∈ {1, ..., ni}

ti, j event times and realisation of Ti, j with 0 < ti1 < ... < tini ≤ T
ti,d dropout time of subject i ∈ {1, ...,m}
ni(ti,d) number of events of subject i by dropout
Ti,d random variable associated with ti,d
Ni complete recurrent event data information for subject i, i.e.{

Ni(T ),Ti1, ...,Tini

}
Ni,obs corresponds to observed part of Ni, i.e. {Ni(tid),Ti1, ...,Tid}

Ni,mis missing part of Ni, i.e.
{
Ni(T ),Tid+1, ...,Tini

}
Other random variables
Ui subject-specific random effect vector for subject i
εi random vector for within-individual errors
Pi random variable associated with the dropout pattern of subject i

Explanatory Variables
xi, j vector of explanatory variables for subject i at occasion j
Xi matrix of explanatory variables for subject i, i.e. Xi = (xi,1, ...,xi,N)>

Ai matrix of explanatory variables for subject i
wi, j vector of explanatory variables for subject i at occasion j
Wi matrix of explanatory variables for subject i, i.e. Wi =

(wi,1, ...,wi,N)>

ti, j observation times for subject i and occasion j
agei age of subject i
ai age centered around median age in Part I, i.e. ai = agei − 27
sexi ∈ { f ,m}, gender of subject i, f female and m male
si randomisation group for subject i
C comparator drug in Part II
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Parameters of interest
θ parameter associated with non-linear mixed models (Part I) and mod-

els for the recurrent event data sequence (Part II)
ϑ parameter associated with count data models (Part II)
φ parameter associated with missingness process
ψ parameter associated with reminder process
β parameter associated with models for the mean
τ parameter associated with covariance structures
ξ parameter associated with covariance structures
σ2 parameter associated with within-individual variances
D2 parameter associated with variances of random effects
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Chapter 1

Introduction

Studies where measurements are collected repeatedly over time have received much atten-

tion in recent years. This is mainly due to their ability to characterize the change in the

response variable over time and factors that affect the change. They are particularly popular

in biomedical and health-care applications, where investigators are interested in identifying

the influence of treatment on disease development.

Statisticians involved in the analysis of repeated measurement studies are generally

confronted with numerous challenges. For instance, the repeated measurements for each

subject are usually correlated. Consequently, the independence assumption that is crucial

for many statistical techniques is violated. A misspecification of the correlation structure

can lead to incorrect inference for factors that affect the response. Therefore, special statis-

tical techniques have to be adopted.

An additional, commonly observed complication in the analysis of repeated mea-

surement studies arises through missing data due to missed visits, dropouts or non-return

of questionnaires. In view of the fact that missingness usually occurs for reasons outside

of the control of the investigators and may be related to the outcome measurement of inter-

est, the data analysis is severely complicated. In general there are three potential problems

that arise with missing data: loss of efficiency, complication in data handling and analysis,

and bias due to differences between the observed and unobserved data [Horton and Lipsitz,
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2001].

The present thesis discusses issues arising in the analysis of repeated measurement

studies with missing data and is divided in two parts. The first part is devoted to studies that

observe bounded, continuous repeated measurements, while the second part focuses on re-

current event data studies. In both parts, regression models and methods to handle missing

data are established.

The first part of this thesis is motivated by medical research, where it is very common to

measure physical or mental ability repeatedly over time through questionnaires or scales.

Based on the answers, summary measures such as scores can be derived for all study points.

In many applications, these scores will have finite range, where one bound indicates ‘no

symptoms’ and the other bound ‘extreme symptoms’. Examples are the Barthel index [Ma-

hony and Barthel, 1965], the Neck Disability Index [Vernon and Mior, 1991], the Foot and

Ankle Outcome Score [Roos et al., 2001] and visual analogue scales. In studies where we

expect most patients to recover, we often observe that later measurements are clustered

towards one end of the range. In this case, different patients might have the same initial

and the same final scores. However, the rate at which they achieve the final score might

differ substantially dependent on explanatory variables, e.g. treatment or age. The bounds

themselves can also be of scientific interest, e.g. a maximum achievable score can differ

substantially for different ages and genders.

For a continuous and bounded score, the classical approach is to transform the data

so that a linear regression model fits adequately. For some scores, however, a non-linear

dependence of the transformed outcome score on covariates persists due to the bounded

nature of the score. In addition, models based on transformations cannot investigate the

dependence of bounds on covariates as the bounds need to be specified prior to the trans-

formation. Using transformations can also complicate the interpretation of covariate effects

on the original score.

In view of these limitations, we present a valuable alternative to transforming data.
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A non-linear mixed model for the mean score on the original scale as a function of covari-

ates is proposed. The model is constructed for scores where the rate of recovery changes

over time and has been motivated by the Collaborative Ankle Support Trial (CAST), which

is the first large randomized controlled trial comparing four types of mechanical support

for acute ankle sprains of sufficient severity to prevent weight bearing [Lamb et al., 2005,

2009; Cooke et al., 2009].

Apart from modelling the mean score, we discuss the challenge of modelling the

covariance and correlation structure for bounded longitudinal data. With repeated measure-

ments, we expect higher correlation when the measurements are closer in time than when

they are further apart. Additionally, with bounded data, correlations increase as measure-

ments reach the bounds regardless of the time interval between measurements. Finally, the

variances are rarely constant over time. A data-driven regression approach introduced by

Pourahmadi [1999] is adopted and extended to meet these characteristics. In particular, our

extension allows for missing values.

Additionally, close attention is paid to the common issue of missing values in stud-

ies with repeated measurements. The statistical framework for the analysis of incomplete

data introduced by Rubin [1976] is reviewed. Cases where the missingness process can

be ignored are distinguished from cases where the missingness and outcome process need

be modelled jointly. Popular methods to handle missing data for both cases are reviewed.

Their respective merits and drawbacks are depicted. We discuss the necessity of a sensitiv-

ity analysis, where the stability of the conclusions is investigated under different assump-

tions regarding the reasons for missingness. Such a sensitivity analysis is performed for the

CAST data set.

The first part of this thesis concludes by adopting the idea of including additional

information about the reasons for missingness in the analysis of incomplete data sets [Alho,

1990; Wood et al., 2006; Jackson et al., 2010]. This information usually consists of proxy

outcomes [Jackson et al., 2010], follow-up studies on a sample of non-responders [Cooke

et al., 2009], collection of the reasons for dropout or extended retrieval efforts. Apart from
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questionable model assumptions, all reported attempts to incorporate additional informa-

tion are limited to cross-sectional studies. We establish a model for longitudinal data that

relaxes some of the model assumptions and adjusts for missingness by taking into account

the number and nature of reminders made to contact initial non-responders. This model is

applied to the CAST data set and contrasted to more traditional approaches to handle miss-

ing data.

The second part of this thesis focuses on dose-finding studies that aim to identify the target

dose for which a new drug can be shown to be as effective as a competing medication. The

selection of a valid dose is crucial in clinical drug development. A dose which is too low

will hinder the proof of efficacy and a dose which is too high could lead to a poor safety

profile.

The dose-finding studies that motivated our work seek to analyze processes which

generate events repeatedly over time. Such processes are referred to as recurrent event

processes. Examples include seizures in epileptic studies, hot-flushes of postmenopausal

women or flares in gout studies. Interest lies in understanding the underlying event occur-

rence process. This includes the investigation of the rate at which events occur, the inter-

individual variation, and most importantly, the relationship between the event occurrence

and explanatory variables such as treatment or dose.

Given a pain-related outcome and a repeated measurement study, a considerable

number of patients is expected to drop out before the end of the study period. Due to the

fact that dropping out may be related to the outcome of interest, the impact of missingness

on the target dose selection needs to be carefully considered.

The interplay between recurrent event data modelling, dose selection and different

causes for missingness poses the main focus of the second part of this thesis. In this context,

the target dose is defined as the dose for which the expected response at the end of the study

period is equal to that of the competitor group. Due to dropout the endpoint of interest may

be missing. In many situations, however, information about the counting process prior to
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the dropout is available, e.g. through patient diaries. This knowledge can be incorporated

in a recurrent event data analysis.

The recurrent events are modelled as over-dispersed Poisson process data, with dose

as regressor. Additional covariates may be included. Constant and time-varying rate func-

tions are examined. Based on these models the impact of missingness on the precision of

the target dose estimation is evaluated. Diverse reasons for dropping out are considered,

including dependence on covariates and number of events. The performances of various

analysis methods, including pattern-mixture models for recurrent event data, under differ-

ent scenarios are assessed via simulations. To the best of our knowledge there is no review

of several missing data methods for the analysis of recurrent event data or any work on

missingness in the case of dose-finding studies.

1.1 Outline of Thesis

This thesis has nine chapters and is organized in two parts. The first part is motivated by

the CAST study, which is presented in Chapter 2.

In Chapter 3, characteristics of longitudinal studies and analysis options for nor-

mally distributed data are reviewed. Different regression models for the CAST data set are

discussed. The regression models considered are based on an exploratory analysis, which

reveals that the outcome score evolves non-linearly over time. Also, the scores approach an

upper limit as time increases. Different transformations are used in an attempt to reduce the

effect of the boundedness and to improve the linearity of the data with respect to covariates.

Based on these transformations, linear-mixed models are fitted to the data but lead to a poor

fit. As an alternative, a non-linear mixed model accounting for the features of the CAST

data set is established and fitted to the data.

Chapter 4 examines the covariance structure of bounded, continuous longitudinal

data and adopts the data-driven regression approach introduced by Pourahmadi [1999]. This

approach is extended by using the non-linear mixed model proposed in Chapter 3 for the
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outcome process and by allowing for missing values. Different model selection tools are

used and the results compared.

In Chapter 5, we review issues arising through missing data in repeated measure-

ment studies. The framework of missing data analysis and commonly used methods to han-

dle missing values are presented. Simple approaches such as complete case analysis and

single imputation techniques are contrasted with more elaborate techniques, e.g. multiple

imputation and pattern-mixture models. The chapter concludes by performing a sensitivity

analysis for the CAST data set.

In Chapter 6, we propose a model to account for informative missingness, taking

into account the number and nature of reminders made to contact initial non-responders.

Using this model for the CAST study, the impact of missingness on the rate of change is

evaluated in a sensitivity analysis. We contrast this model with a traditional model, where

we adjust for missingness by modelling the missingness process.

In the second part of this thesis we focus on missingness in connection with dose-

finding studies, where the number of events per subject within a specified study period form

the primary outcome. In Chapter 7, we briefly review dose-finding studies, recurrent event

data analysis and missing data issues. The study which motivated our work is presented and

different methods to handle missing data in recurrent event data studies, including pattern-

mixture models, are established. Regression models enabling a target dose selection are

discussed.

In order to compare the performances of the proposed missing data methods a sce-

nario evaluation study will be presented in Chapter 8.

We conclude this thesis with Chapter 9, where we present an overview of the main

results and discuss areas for future research.
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1.2 Computing Environment and Typeset

For the computational requirements of this thesis we use SAS, Gauss, R and WinBUGS. This

thesis was typeset with LATEX 2ε using the editor TeXnicCenter.
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CAST and Missing Data
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Chapter 2

The CAST Study

2.1 Introduction

Acute ankle sprain is one of the most common soft tissue injuries seen in the UK emergency

departments. According to Cooke et al. [2009], this type of injury accounts for between 3%

and 5% of all emergency department attendances and approximately 5600 injuries each

day. The injury is usually painful and incapacitating and makes weight bearing difficult

to tolerate. A large variety of different treatments, e.g. immobilisation, physiotherapy or

functional treatments, are available. By functional treatment we mean an early mobilisation

that may include initial external support of the ankle via elasticated bandages or lace-up

boots [Cooke et al., 2009]. Although many different treatments are available, researchers

noted a lack of good-quality evidence to aid clinical decision making regarding an ‘optimal’

treatment.

The Collaborative Ankle Support Trial (CAST) is the first large randomized con-

trolled trial comparing different types of mechanical support for acute ankle sprains of suf-

ficient severity to prevent weight bearing [Lamb et al., 2005, 2009; Cooke et al., 2009].

The aim of this longitudinal study was to estimate the clinical and cost effectiveness of

three different methods of mechanical support after severe ankle sprain compared to a stan-

dard treatment. These treatments include functional treatments but also one treatment that
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immobilises the ankle for a certain time period.

We will present the CAST study in this chapter. In Section 2.2 we briefly discuss the

study design. We then present the results of the original analysis in Section 2.3. Exploratory

findings for CAST are shown in Section 2.4, and in Section 2.5 we discuss the missing data

issue.

2.2 Study Design

The data for this trial were obtained from a randomised and multicentre study, which was

run in 6 National Health Service trusts (8 hospitals) across the UK. Patients attending the

selected emergency departments who had sustained a severe sprain of the lateral ligament

complex of the ankle, were unable to weight bear, aged 16 and older, and gave informed

consent were randomised into one of four treatment groups –Tubigrip (standard treatment),

10-day below knee cast (BKC), Aircast brace and Bledsoe boot [Lamb et al., 2005]. In

this context, Tubigrip, Aircast brace and Bledsoe boot belong to the class of functional

treatments, whereas the 10-day below knee cast immobilises the ankle during the course of

the treatment.

The clinical status of these patients was measured at four points in time (baseline

and follow-up at 4 weeks, 12 weeks and 39 weeks) via the Foot and Ankle Outcome Score

(FAOS), which is a questionnaire containing 42 items and 5 subscales that ascertains func-

tional limitations and the severity of other symptoms after ligament sprains [Roos et al.,

2001]. The subscales are: pain subscale (7 items); other symptoms sub-scale (9 items);

function in activity of daily living (ADL) sub-scale (17 items); function in sport and recre-

ation sub-scale (5 items) and the foot and ankle-related quality of life (QoL) sub-scale (4

items).

Based on the answers, a continuous score, with 100 indicating no symptoms and 0

indicating extreme symptoms, was calculated for each sub-scale and point in time.

The total sample size was N = 584. Due to the fact that some patients did not
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receive the FAOS questionnaire but another questionnaire called Ankle Performance Scale

(APS), see Karlsson and Peterson [1991], during the baseline assessment and because of

missing outcome measures for one person in the main study, the data of 559 persons instead

of 584 persons will be investigated in this thesis. Moreover, this analysis will concentrate on

the symptoms sub-scale score which will be referred to as FAOSS-score (FAOS-symptoms

score). Note that the methodology derived in this thesis could be applied to any of the other

four sub-scales, because they are very similar to the FAOSS-score from a qualitative point

of view.

2.3 Original Analysis

According to the original analysis, reported in Lamb et al. [2005], the recovery was moni-

tored at each of the time points separately. Linear regression models adjusting for gender,

age and baseline scores were used to provide estimates of the recovery, with 95% con-

fidence intervals. The explanatory variable randomisation group is used rather than the

treatment group, because the analysis was performed on an intention-to-treat basis, i.e. all

participants were analysed in the groups to which they were randomised, regardless of the

treatment that they received. The distinction becomes important when investigators are con-

fronted with non-compliance, which was the case in the CAST study. We note that there

were marked differences in the compliance between the randomisation groups: BKC was

least popular (16% non-compliance) compared with the other groups having less than 3%

non-compliance. Generally, non-compliance may break the randomisation to the different

treatment arms and create bias when analyzing treatment effects. An intention-to-treat anal-

ysis avoids the effects of non-compliance by investigating the effect of a treatment policy

rather than the actual treatment effects.

For the FAOSS-score, the original analysis showed that the BKC offered a small

but statistically significant benefit to the tubular bandage at 4 weeks. Neither the Aircast

brace nor the Bledsoe boot conferred a siginifant advantage. At 12 weeks and by 39 weeks
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there were no significant differences between the three comparator supports and the tubular

bandage. The results for the other subscales are presented in Cooke et al. [2009].

From a statistical view point there are limitations to this analysis. For each patient,

the outcome of interest was measured repeatedly over time. However, the collected data

were analysed at every time point separately. Hence, the comparison of the different treat-

ments was reduced to per time point conclusions and did not enable an overall statement

regarding the rate of recovery. We will present alternative analysis techniques that model

the four time points jointly, and that are able to account for the correlation between the four

measurements of each subject, see Chapter 3. Furthermore, the issue of missing data was

not addressed directly. Given the analysis method, all available data per time point were

simply incorporated into the investigations for the same time point.

2.4 Exploratory Analysis

For initial exploratory re-analysis, the individual evolution of the FAOSS-score for a small

subset of patients was plotted against time, see Figure 2.1. We connect the measurements

for each subject to demonstrate the evolution over time.

From this plot we see the scores were usually an increasing function of time. Also,

the scores increased much faster at the beginning of the study than towards the end.

The achieved scores at the study points and the rates at which these scores were

achieved varied across the subjects. This variation appears to be smaller at the end of the

study period than at the beginning. In fact, we observe that later measurements are clustered

towards the upper end of the range. In particular, different patients might have the same

initial and the same final scores, but the rate at which they achieve the final score can differ

substantially, see black and pink lines. This observation suggests that the rate of recovery

is more of interest than the actual scores at the beginning or the end of the study.

Although the individual evolutions show these differences, we note that in general

the responses exhibited similarly shaped curves.
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Individual Evolution
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Figure 2.1: Individual evolution of the FAOSS-score for a random subset of 10 patients. The dashed
lines correspond to patients with missing outcomes.

The final observation we want to make concerns the dashed lines which belong to

patients with missing observations. The red dashed line refers to a patient who dropped out

after 12 weeks. In contrast, the black line belongs to a patient who shows a non-monotone

missingness pattern. This patient returned the questionnaire at baseline, 12 weeks and 39

weeks, but not at week 4. We will discuss the different missing data patterns in Section 2.5.

In order to show the aforementioned differences in the variation at the different

points in time, we show side-by-side boxplots of the observations for each point in time and

each randomisation group, see Figure 2.2. We note that due to the bounded nature of the

score the distribution of the score data at the later time points is skewed. In particular, we

observe that variations are not constant over time. For a detailed discussion of the variance

structure we refer to Chapter 4.

These two plots, but also many studies that measure recovery from actue injury,

show that the natural time course of recovery of ankle sprains is likely to stabilise within a
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Side-by-Side Boxplots
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Figure 2.2: Boxplots of the FAOSS-score for different time points and randomisation groups

certain period (here: 3 to 9 months) and it is seen that the difference between the treatments

will narrow in the longer term because the majority of people will recover, see Figure 2.2,

Linde et al. [1986]; Schapp et al. [1989]; Avci and Sayli [1998] and Lamb et al. [2005].

An important aim of treatment is to accelerate the rate of recovery. Understand-

ing the impact of explanatory covariates on the rate of recovery is important for guiding

patients’ and clinicians’ expectations.

Our aim is to model the recovery rate and the bounds by modelling the responses at

the four time points jointly. In this context, we aim to adjust for the explanatory variables

of gender, age and randomisation group.

The randomisation groups were generally well matched in terms of gender and age.

There was a slightly larger number of males in the BKC group. Overall there was a greater

proportion of men (58%) than women (42%). The mean age of participants was 30 years

(SD 10.8, median 27, range 16 − 72).
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Randomisation Groups
Time Tubigrip BKC Aircast Bledsoe Boot

Baseline Mean 40.3 41.8 38.8 41.1
SD 14.1 16.4 15.1 16.9

4 weeks Mean 60.7 67.4 62.8 61.6
SD 19.5 19.0 20.5 20.7

12 weeks Mean 70.0 76.0 73.8 75.1
SD 20.5 18.4 20.6 20.4

39 weeks Mean 80.4 82.8 81.0 81.2
SD 20.4 17.0 20.3 19.0

Table 2.1: Summary Statistics (SD: standard deviation) for the FAOSS-score and the different
randomisation groups and time points.

Summary statistics for the FAOSS-score and the different randomisation groups

and time points are given in Table 2.1. For further details regarding the data set we refer to

Cooke et al. [2009].

2.5 Missing Data and the Reminder Process

As with many clinical trials that collect longitudinal data, we are confronted with missing

data in the CAST trial. By missing data we mean that intended measurements were not

collected, see Chapter 5. Postal questionnaires were used in an attempt to minimise loss

to follow-up, and a system of reminder letters and telephone calls was instituted to follow

up those who did not return their questionnaire. We distinguish between the following

‘reminder categories’ z ∈ {0, 1, 2, 3, 4, 5}:

z = 0: questionnaire returned - no chasing;

z = 1: questionnaire returned after telephone chase;

z = 2: questionnaire returned after 2nd copy sent with no further telephone chasing;

z = 3: questionnaire returned after 2nd copy sent with further telephone chasing;

z = 4: core outcomes obtained over the telephone;
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attempts
time point 0 1 2 3 4 5
baseline 553 (100%) 0 0 0 0 0
4 weeks 187 (33.8%) 152 (27.5%) 53 (9.6%) 40 (7.2%) 35 (6.3%) 86 (15.6%)

12 weeks 146 (26.4%) 141 (25.5%) 46 (8.3%) 48 (8.7%) 78 (14.1%) 94 (16.7%)
39 weeks 124 (22.4%) 117 (21.3%) 42 (7.6%) 59 (10.7%) 81 (14.7%) 130 (23.5%)

# Total quest.
1010 410 141 147 194 310

returned

Table 2.2: Overview of the reminders needed to retrieve a questionnaire. In brackets the percentage
of the returned questionnaires per attempt category is given for each time.

z = 5: non responder.

The frequency for each category and time point is shown in Table 2.2. As this information

is only available for N∗ = 553 out of the N = 559 patients, we show this information only

for this subsample. Note that even though a questionnaire was received, the FAOS-scores

could not be calculated in certain cases due to item-level missingness, e.g. sport subscales

– asking for the physical functionality during physical exercises such as running – were

completed less well than other subscales. Basic mean imputation was used to substitute

likely values in order to be able to calculate a score for these questionnaires [Cooke et al.,

2009]. In Chapter 5 we will discuss why the use of such single imputation methods is

inadvisable.

In spite of the described procedure to gain data, the FAOS-score for all subscales

and points in time was measured for only 51% of the randomised patients. The FAOSS-

score was completely measured for 67% of the participants. An overview of the extent

and the different patterns of missingness for the FAOSS-scale is given in Table 2.3. Note

that approximately 10% of the participants show a non-monotone missingness pattern, i.e.

missing values do not appear in a sequential order.

A first attempt to understand the underlying missing data mechanism is to explore

the average scores for the different observation times and missingness patterns. Such a

summary is given in Table 2.4. Apparently, participants with a low baseline score tend to

not return the questionnaire at the 4 week time point. Furthermore, Table 2.4 suggests that

participants with a high 4 week or a high 12 week score tend to not return the question-
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Baseline 4 weeks 12weeks 9 months Frequency Percent
Completers

O O O O 376 67.26
Dropouts

O O O M 50 8.94
O O M M 25 4.47
O M M M 50 8.94

Non-monotone missingness
O O M O 14 2.50
O M O O 21 3.76
O M O M 12 2.15
O M M O 11 1.97

Table 2.3: Overview of missingness patterns and the frequencies with which they occur in
the FAOSS data (where: O, observed; M, missing).

Baseline 4 weeks 12weeks 9 months Frequency Percent
Completers

40.87 62.49 73.46 81.17 376 67.26
Dropouts

41.79 65.14 75.43 M 50 8.94
41.29 63.43 M M 25 4.47
38.14 M M M 50 8.94

Non-monotone missingness
40.56 73.72 M 86.48 14 2.50
39.63 M 72.79 80.27 21 3.76
30.95 M 72.27 M 12 2.15
40.58 M M 84.42 11 1.97

Table 2.4: Overview of the means for different missingness patterns in the FAOSS data
(where: M stands for ’missing’).
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naire for the following point in time. Hence, missingness seems to depend on the previous

observed measurements. However, a study to investigate the response issues to the CAST

questionnaire through interviews with 14 ‘responders’ and 8 ‘non-responders’, published in

Nakash et al. [2008], comes to the conclusion that: ‘Almost half of the participants who did

not respond to follow-up considered themselves to have made a full recovery by the second

time point (i.e. 12 weeks post injury). The term ’full recovery’ is used to describe those

participants who, on questioning, used terminology such as ’back to normal’ or ’perfect’

to describe their ankle. The effect of recovery on response is an important consideration

in acute injury trials. Full recovery is likely to occur in the majority of participants be-

fore the end of the follow-up period. Participants may then feel that their further input is

unnecessary and hence fail to respond to follow-up attempts. This appears to be the case

with CAST participants.’ Seemingly, missingness does also depend on non-observed future

outcomes. A statistical analysis investigating these hypotheses will be presented in Chapter

5 and Chapter 6.

The issue of missing data and the implications for the analysis and inference will

be discussed in more detail in Chapter 5.

2.6 Summary

In this chapter we introduced the motivating study, CAST, and discussed its characteristics.

This included the longitudinal and bounded nature of the outcome of interest, but also the

fact that a substantial part of the data is missing.

The presented plots show that the scores change faster at the beginning of the study

than towards the end. This suggests that the comparison of the clinical effectiveness of the

different treatments should be conducted in terms of the recovery rates. Furthermore, the

plots show that the data at the later time points are clustered due to the bounded nature of

the score.

We discussed the results of the original analysis and argued why this analysis is not
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suitable for the analysis of longitudinal data. Extensions which account for the inter- and

intra-individual variation, but also for the bounded nature of the score will be discussed in

the next chapter.

Additionally, the original analysis does not adjust for missing data. However, the

exploratory analysis (Section 2.5) suggests that missingness is outcome-related. Hence, the

impact of missingness on the conclusions should be carefully explored, see Chapter 5.
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Chapter 3

Longitudinal Data and CAST

3.1 Introduction

Longitudinal data are a special case of correlated data, which also encompass such struc-

tures as multivariate observations, clustered data, repeated measurements, time series data

and spatially correlated data [Molenberghs and Verbeke, 2005].

We speak of longitudinal data, when for every subject the same characteristic is

measured at a sequence of observation times. The collection of this type of data has be-

come increasingly important in different areas of contemporary quantitative research. Lind-

sey [1999] lists more than 15 different scientific fields where longitudinal data arise, for

example agriculture, biology, business, criminology, economics, geography, medicine, me-

teorology, politics and sociology. This work focuses mainly on medical applications for

longitudinal studies. The interest in longitudinal data for biomedical and health-care ap-

plications arose with the need to understand the development and persistence of diseases

over time [Fitzmaurice et al., 2004]. Investigators were particularly interested in identifying

factors, such as treatment or age, that influence the disease development.

In a longitudinal study, every subject gives rise to a vector of measurements. The

components of this vector have a temporal order. Thus, longitudinal data combine elements

of multivariate and time series data [Diggle et al., 1996]. They are a special case of multi-
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variate data, because the same characteristic is measured at different times, as opposed to

measuring a number of different characteristics. The measurements of a single subject are

ordered in time and the corresponding measurement vectors for all subjects can be seen as

replicated (short) time series data [Diggle et al., 1996]. However, an important difference

of longitudinal and time series data is that a time series usually arises from a study with a

single replication and a large number of repeated measures, whereas a longitudinal study

usually involves a large number of replications with a relatively small number of repeated

measurements [Fitzmaurice et al., 2004].

3.1.1 Objectives and Advantages of Longitudinal Studies

The main objective of longitudinal studies is to characterize the change in the response vari-

able over time and the factors that affect the change [Fitzmaurice et al., 2004]. Longitudinal

studies are capable of achieving this goal by separating changes over time within individ-

uals from differences among subjects in their baseline levels [Diggle et al., 1996; Hedeker

and Gibbons, 2006]. One cannot distinguish these two sources of heterogeneity in cross-

sectional studies, where a single outcome is measured at a defined time for each subject. In

fact, Fitzmaurice et al. [2004] claim that: ‘it is an inescapable fact that the assessment of

within-subject changes in the response over time can be achieved only within a longitudinal

study design’.

Longitudinal studies also tend to be statistically more powerful than cross-sectional

studies with the same number of subjects, because each person acts as his or her own control

[Diggle et al., 1996]. In most studies, measurements vary beyond what can be explained

through available covariates. This variability can be due to unmeasured subject-specific

factors, for example genetic, environmental, social or behavioral factors [Fitzmaurice et al.,

2004]. In general, these factors can be assumed to be stable over the duration of the study.

By measuring the response variable repeatedly over time for every subject, longitudinal

studies are able to account for this source of variability. The change in the response variable

can be estimated with greater precision [Diggle et al., 1996]. In contrast, cross-sectional
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studies are not capable of accounting for unmeasurable subject-specific factors.

3.1.2 Challenges in the Analysis of Longitudinal data

The price to pay for the advantages of longitudinal studies are the numerous challenges in

the analysis of longitudinal data. The repeated observations for each subject are usually

correlated as the same characteristic is measured repeatedly over time. This correlation vi-

olates the independence assumption that is very important for many statistical techniques.

According to Diggle et al. [1996], there are at least three consequences if existing correla-

tion is ignored in longitudinal data analysis:

• inference for regression parameters is incorrect;

• estimates of the regression parameters are inefficient; and

• insufficient protection against bias caused by missing data.

For instance, Fitzmaurice et al. [2004] present a simple example, where ignoring the cor-

relation structure leads to a substantial overestimation of the variability of the estimate of

change. This leads to standard errors and p-values for the test of no change over time that

are too large.

In general, there are three likely sources of random variation that cause the cor-

relation among repeated measurements on the same subject: between-subject heterogene-

ity, serial correlation and measurement error [Diggle et al., 1996; Fitzmaurice et al., 2004;

Molenberghs and Verbeke, 2005]. The between-subject heterogeneity reflects the natural

variation in individuals’ response. For example, some subjects can be intrinsically ‘high

responders’ and others are ‘low responders’. As mentioned above, this variation can be

caused by unmeasured factors such as genetic predisposition.

The serial correlation is caused by inherent within-individual biological variabil-

ity [Fitzmaurice et al., 2004]. Many biomedical or health-related outcomes show random

variation within the repeated measurements of one subject which cannot be explained by

covariates or circadian rhythms [Fitzmaurice et al., 2004]. Indeed, these outcomes can be
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seen as realisations of time-varying stochastic processes. The induced variation results in

correlation among the repeated measurements of one subject, where the correlation depends

on the time lags between measurements. In general, correlations become weaker as the time

lags increase [Diggle et al., 1996].

The final source of variability is measurement error, a component that is closely

related to the reliability of the outcome measure and a common problem in many studies.

Generally, measurement error induces a shrinkage of the correlation among the repeated

measurements [Fitzmaurice et al., 2004].

Measurement error and serial correlation are elements that describe the within-

individual heterogeneity. Fitzmaurice et al. [2004] note that many longitudinal studies do

not have sufficient data to estimate these two sources of random variation separately. Many

longitudinal studies may therefore only distinguish between-individual heterogeneity from

within-individual heterogeneity. For a more detailed discussion on the different sources of

variation we refer to Diggle et al. [1996] and Fitzmaurice et al. [2004].

As mentioned earlier, the correlation among repeated measures invalidates the cru-

cial independence assumption for many statistical techniques and thus special statistical

methods are required. The added correlation could be seen as a negative feature; however,

it is this characteristic that makes longitudinal studies more powerful than cross-sectional

studies [Fitzmaurice et al., 2004].

An added, commonly observed complication in the analysis of longitudinal stud-

ies arises through unbalanced data. We speak of unbalanced data when the observation

times are not common to all subjects. We distinguish unbalanced data due to study design

from unbalanced data due to missing data. Examples of the former case are studies where

measurements for individual subjects are collected relative to a benchmark or an occurring

subject-specific event; and studies which follow a rotating panel study design [Fitzmaurice

et al., 2004]. Some statistical techniques for the analysis of longitudinal data can easily ac-

count for unbalanced data due to study design. In contrast, unbalanced data due to missing

data may pose the most dramatic difficulty [Gibbons et al., 2010]. In order to stress the
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fact that an intended observations on a subject could not be observed, these data are often

referred to as being incomplete [Fitzmaurice et al., 2004]. The presence of missing data

can lead to a far more complex analysis, see Chapter 5. The advantage of longitudinal data

to cross-sectional data, however, is that all available data from each subject can be used in

the analysis, leading to increased statistical power, see Hedeker and Gibbons [2006] and

Chapter 5.

A further analytical issue which frequently arises in observational longitudinal stud-

ies is caused by the collection of time-varying covariates [Diggle et al., 1996]. Time-varying

covariates can play an important role in the investigation of causal relationships and come

with a complication of the data analysis.

3.1.3 Simple Approaches for the Analysis of Longitudinal Data

All the sources of complexity in the analysis of longitudinal data demand special statistical

tools. Over the last years several analysis techniques have been discussed in the statis-

tical literature and many monographs offering detailed accounts of the models and their

applications have been published [Diggle et al., 1996; Lindsey, 1999; Fitzmaurice et al.,

2004; Molenberghs and Verbeke, 2005; Hedeker and Gibbons, 2006]. In the following, we

provide a short overview of the historical approaches used in the analysis of longitudinal

data.

One relatively simple but sometimes effective approach is the derived variables

analysis [Diggle et al., 1996; Fitzmaurice et al., 2004; Hedeker and Gibbons, 2006]. For

every subject the repeated measurements are reduced into summary measures; e.g. aver-

age across time, linear trend across time, last observation carried forward, change scores or

computing the area under the curve [Hedeker and Gibbons, 2006]. Subsequently, traditional

statistical techniques for the analysis of cross-sectional data, e.g. ANOVA, can be used to

compare group means or to analyze covariate effects [Diggle et al., 1996]. In the case of

two repeated observations per subject, change scores can be computed and ANCOVA can

be used to investigate covariate effects [Hedeker and Gibbons, 2006]. In general, how-
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ever, derived variable analysis is not able to investigate within-individual changes, and by

construction this method can not handle time-varying covariates. Furthermore, unbalanced

data lead to heteroscedasticity as the amount of information per subject varies. Fitzmaurice

et al. [2004] states that ‘thus, a simple univariate analysis cannot proceed without proper

consideration of the covariance, the very feature of the data that these methods were de-

veloped to avoid having to specify.’ The calculation of some derived variables, e.g change

scores, is not even defined for incomplete data sets. Hence, this approach is generally too

restrictive and does not address the primary goal of longitudinal data analysis, namely the

characterisation of the change in the response variable over time and the factors that affect

the change.

Two classical approaches and, according to Fitzmaurice et al. [2004], two of the

earliest proposals for the analysis of Gaussian longitudinal data are the repeated measures

analysis of variance (ANOVA), sometime referred to as the univariate or mixed-model

ANOVA, and the multivariate repeated measures analysis of variance (MANOVA). The

repeated measures ANOVA accounts for the correlation among repeated measurements of

one subject by the inclusion of a subject-specific random intercept. This random intercept

reflects the natural variation in individuals’ response and the correlation arises because all

repeated observation on one subject share the same random intercept. The inclusion of a

random intercept only, instead of for example a random slope, leads to a compound sym-

metry covariance structure, which implies constant variances and covariances over time.

These assumptions can be too restrictive in practice and do not account for (possibly exist-

ing) serial correlation. Moreover, this analysis can not handle continuous covariates. For

example, time is used as a classifying variable; thus, repeated measures ANOVA can not

readily handle unbalanced or incomplete data, although extensions to the unbalanced case

exist [Hedeker and Gibbons, 2006].

The MANOVA approach is an extension of the classical ANOVA to handle multi-

variate response vectors [Fitzmaurice et al., 2004]. As the repeated measurements for each

subject form a response vector, this approach can be used for the analysis of longitudinal
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data. In comparison to the repeated measures ANOVA, this technique enables the specifi-

cation of an unstructured and therefore more flexible covariance structure [Gibbons et al.,

2010]. The main disadvantage of this approach, however, is that (by construction) it can

only be used on complete data. Furthermore, MANOVA also requires balanced data and

can not handle continuous covariates [Fitzmaurice et al., 2004].

3.1.4 Regression Models for Gaussian Data

The disadvantages of the simple approaches presented emphasize that in order for a model

to be of real practical use for the analysis of longitudinal data, it needs to satisfy certain

conditions. Firstly, it should be able to deal with unbalanced and incomplete data in a ‘nat-

ural’ way. Secondly, the inclusion of continuous and time-varying covariates should be

straightforward. Thirdly, the model should account for the three different sources of vari-

ation and allow flexible specifications of correlation structures. Finally, the model should

be able to characterize the within-individual change over time. In the following we will

present regression models that meet these desirable features.

Most useful statistical models for the analysis of Gaussian longitudinal data can

be classified either as full multivariate models or linear random-effect models [Laird and

Ware, 1982]. They differ in the approach taken to account for the correlated nature of

the data. The full multivariate models are also known as marginal multivariate models,

whereas linear random-effect models are also referred to as linear mixed models [Molen-

berghs and Verbeke, 2005], multi-stage random-effect models [Laird and Ware, 1982; Dig-

gle et al., 1996], subject-specific models [Molenberghs and Verbeke, 2005], hierarchical

linear models [Davidian and Giltinan, 1995] or mixed-effects regression models [Hedeker

and Gibbons, 2006].

In the full multivariate model, the repeated measurement vector for every subject is

assumed to follow a multivariate normal distribution with a mean vector and a covariance

matrix. In particular, the mean vector and the covariance matrix are modelled separately,

possibly in terms of available covariates. Here, the covariance matrix accounts for the asso-
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ciation structure among the repeated measurements of a subject. In contrast, the correlation

in a linear random-effect model arises from the inclusion of unobserved subject-specific ran-

dom effects and the within-individual heterogeneity. For this approach, we assume that the

regression models for the response vectors of all subjects have the same form; however, the

regression coefficients are subject-specific. For example, in many longitudinal studies with

continuous data the responses can be assumed to follow a linear regression model (perhaps

after adequate transformation). However, in general, the intercept or the slope vary from

subject to subject. For instance, the aforementioned repeated measures ANOVA assumes

that the intercept varies among subjects, reflecting the idea that the baseline measurement

of subjects is expected to be subject-specific. This may be due to unmeasurable factors,

e.g. genetic predisposition. General multi-stage random-effect models can include several

random-effects and induce different covariance structures.

Both model families can handle unbalanced data and to a certain extent incomplete

data. Likelihood-based inference for full multivariate and random-effect models are robust

to ignorable missingness processes, see Chapter 5. They have the capacity to include con-

tinuous and time-varying covariates; and they account for the dependence structure of the

data. However, they have limitations. The full multivariate models can be cumbersome in

certain settings, as the computational complexity is closely linked to the parametric model

assumed for the covariance matrix and the dimension thereof. Some modifications of full

multivariate methods to semi-parametric methods overcome the excessive computational

requirements, e.g. pseudo-likelihood methods and generalized estimating equations. These

methods are robust to misspecification of the covariance structure and useful when interest

focuses on mean parameters only [Diggle et al., 1996]. However, using these methods can

incur efficiency loss and can lead to bias for partially observed data, see Chapter 5. A fur-

ther downside of the full multivariate model is that it does not separate between-individual

heterogeneity from within-individual heterogeneity. In particular, it does not specify in-

dividual characteristics, but sometimes these are of interest, e.g. when the prediction of

subject-specific outcomes is the aim of the study. In contrast, random-effect models quan-
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tify the between-individual heterogeneity and subject-specific characteristics. They usually

involve fewer parameters than full multivariate models and are thus computationally more

appealing. However, relative to the full multivariate model, they are limited by the special

form assumed for the covariance structure [Laird and Ware, 1982]. This limitation will be

discussed in more detail in Section 3.2 and Chapter 4.

We note that although these two model families are generally different, they can

lead to the same inference for fixed effect parameters, i.e., the parameters associated with

available covariates. This feature arises from the elegant properties of the multivariate nor-

mal distribution: each random-effect model implies a full multivariate model. However,

these models are not equivalent, see Section 3.2.

3.1.5 Regression Models for Non-Gaussian Data

So far we focused on Gaussian data, but the aforementioned full multivariate and random-

effect models can be extended to the case of discrete and categorical data. Assuming the

single responses follow a distribution from the exponential family, a generalized linear

model [McCullagh and Nelder, 1989] can be formulated for each component of the re-

peated measurement vector. Similar to the Gaussian case, there are different ways to ac-

count for the correlation among the observations of a subject. Firstly, a marginal model

can be formulated. As in the case of the full multivariate model, the association structure

is modelled separately from the mean through a marginal covariance structure. In this con-

text, the covariance matrix can be modelled through a parametric approach (full likelihood

approach) or by means of a working covariance matrix (semi-parametric approach), see

generalized estimating equations (GEE) presented in Liang and Zeger [1986], and pseudo-

maximum likelihood methods [Molenberghs and Verbeke, 2005]. As mentioned above, the

latter methods imply that, under some regularity conditions, inference for the regression

coefficients of interest is valid under misspecification of the covariance matrix.

Secondly, subject-specific random regression parameters can be incorporated in the

generalized linear model, inducing correlation in the same fashion as for linear random-
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effect models. In the literature these models are referred to as random-effect models, gener-

alized linear mixed models [Molenberghs and Verbeke, 2005] or hierarchical models [Da-

vidian and Giltinan, 1995].

Thirdly, a conditional model can be formulated. The conditional expectation of a

component of the response vector is modelled in terms of available explanatory variables

and a subset of past outcomes. Thus, the relation between the outcome and the predictors,

but also the dependence structure are modelled through a single equation [Diggle et al.,

1996]. Note that a conditional model can also be formulated for Gaussian outcomes.

All these model families can be seen as extensions of the generalized linear models

introduced by McCullagh and Nelder [1989] for independent observations in the context of

correlated data [Molenberghs and Verbeke, 2005].

We noted that in the case of Gaussian data, fixed effects parameters based on marginal

and random-effect model have the same interpretation. In the case of non-Gaussian data,

however, different assumptions about the source of correlation can lead to regression pa-

rameters with distinct interpretations [Diggle et al., 1996]. A marginal model measures

population-averaged effects of explanatory variables on the mean response. In contrast,

random-effect models analyze the effect of covariates on the mean response of single indi-

viduals conditional upon their subject-specific random effects. In conditional models, the

covariate effects of explanatory variables on the mean response are measured conditional

on the subjects’ measurement history.

From the cited literature, it is obvious that marginal and random-effect models are

more popular than conditional models. This might be due to the drawbacks in the inter-

pretability of conditional models. To quote Molenberghs and Verbeke [2005]: ‘Diggle et al.

[1996] criticized the conditional approach because the interpretation of a fixed effect pa-

rameter (e.g., time evolution or treatment effect) of one response is conditional on other

responses for the same subject, outcomes of other subjects, and the number of repeated

measures. Not only may such parameters make answering the substantive question difficult,

they are also ill founded when the number of measurements per subject is not constant.’
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3.1.6 Regression Models for Non-Linear Relationships

The models presented so far assume that the mean response is a linear function of the un-

known parameters or that a link-function exists such that a linear model for the transformed

mean is adequate. However, some studies observe data that are intrinsically non-linear and

fitting a linear or generalized linear model to the components of the response vector is inad-

equate. In many settings, transformations of the outcome of interest or covariates are pro-

posed to establish linear relationships between the mean or transformed mean (generalized

linear model) and the parameters of interest. Although the approach of data transformations

is widely used in applied data analysis, it is not always possible to obtain a linear relation,

see Section 3.3. In some cases, the research questions of interest can only be answered

based on the original data. Davidian and Giltinan [1995] note that when the model for the

mean response is non-linear it is often because of a meaningful empirical or theoretical re-

lationship between the response and covariates, and it is desirable that this relationship be

preserved in the data. Both marginal and random-effect models can be extended to account

for a non-linear relationship of the mean response and covariates. Admittedly, there has

been very little attention to marginal models in the literature [Molenberghs and Verbeke,

2005]. Non-linear random-effect models are frequently termed as non-linear mixed models

Davidian and Giltinan [1993, 1995]; Vonesh and Chinchilli [1997]; Davidian and Giltinan

[2003]; Molenberghs and Verbeke [2005]. This class of models has found many biologi-

cal applications, such as pharmacokinetic analysis, rate of clearance of a drug, studies of

growth to adult size and decay. However, we will show that they can be also very useful in

the health-care context, see Section 3.5.

3.1.7 Exploratory Analysis

In statistical research, it is common practice to conduct exploratory data analysis before

fitting a statistical model. Thus, it comes as a surprise that, although various monographs

and papers on the analysis of longitudinal data have been published, only a few researchers

discuss this aspect of the data analysis. Among the literature that addresses the challenge

30



3. LONGITUDINAL DATA AND CAST

of exploratory analysis, the book of Diggle et al. [1996] gives a few guideline for making

an effective exploratory analysis for longitudinal data:

• instead of data summaries show as much as possible of the raw data;

• reveal patterns of scientific interest;

• highlight both cross-sectional and longitudinal features of the data;

• identify subjects with unusual patterns.

For graphical presentation time plots [Fitzmaurice et al., 2004], also informally referred to

as ‘spagetthi’-plots, can be very useful. In these plots the outcome of interest is plotted

against time. The repeated measurements of every subject are connected through lines to

emphasize the change over time. As longitudinal studies usually involve a large number of

subjects, these plots can be excessively busy. Diggle et al. [1996] suggest different ways

to overcome this problem; one of which is to create a time plot for a random sample of

patients. Such a plot was presented in Chapter 2, Figure 2.1. By connecting the repeated

measurements of every subject, cross-sectional features can be distinguished from longitu-

dinal features. These plots also enable the comparison of within-individual and between-

individual heterogeneity, and can help in identifying unusual patterns, e.g. response profiles

of subjects with missing observations might differ from the profiles of completers.

Most longitudinal studies also aim to investigate the effect of explanatory variables

other than time on the outcome of interest. A scatter-plot of the response against explanatory

variables can be useful. Furthermore, a modification of time plots, where time is replaced

by another explanatory variable, can be created. In order to reveal typical patterns, non-

parametric smoothing techniques, such as lowess, spline and kernel estimation can be used

to fit a smooth curve to the data [Diggle et al., 1996]. Additionally, mean response profiles

for different sub-groups of the population can be plotted, for example see Chapter 2, Figure

2.2.

We mentioned earlier that time plots can be useful for visualizing the dependence

among the repeated measurements. Additionally, a scatter-plot of each pair of repeated
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measurements [Fitzmaurice et al., 2004] or the empirical correlation matrix can be helpful

in assessing the dependence structure. An alternative method, which has it origins in the

analysis of spatially correlated data, is the variogram, which plots half-squared differences

between pairs of residuals against the corresponding time lags [Diggle, 1988; Diggle et al.,

1996; Hedeker and Gibbons, 2006].

3.1.8 Model Diagnostics

The methods presented in the last section are aimed at exploring longitudinal data before a

statistical model is fitted. They should therefore be the starting point of any data analysis.

In contrast, the final point of any data analysis should consist of model diagnostics to check

the fitted model against the observed data. Similarly to the case of exploratory analysis, we

note that model diagnostics have not been explored intensively in the literature.

Model diagnostic tools for longitudinal data ought to check for systematic depar-

tures in the data from the mean and the dependence structure modelled. Although interest

usual lies in the mean model and associated parameters, Fitzmaurice et al. [2004] showed

that a misspecification of the dependence structure can lead to incorrect inference for the

mean parameters. Vonesh et al. [1996] note that very little work has been done in the area of

model diagnostics with respect to the assumed dependence structure. This is partly due to

the various levels of complexity in the analysis of longitudinal data, as set out in the thesis

of Chiswell [2007]. For example, in order to fit a mixed model the investigator needs to

decide how many, and which, parameter coefficients are assumed to be subject-specific ran-

dom coefficients, as these induce correlation on the marginal level. Furthermore, sources

for the within-individual variation have to be identified. This implies decisions about (i)

the within-individual variances and whether these are homo- or heteroscedastic, and (ii) the

existence of within-individual serial correlation. Given all these factors that influence the

covariance model, Yang and Yue-Chen [2006] come to the conclusion that a single model

diagnostic tool alone is not able to resolve all problems. Yang and Yue-Chen [2006] ar-

gue that a useful model diagnostic tool should check for random fluctuation in the residual
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values; eight different testing procedures for randomness are presented in their paper.

In order to check the adequacy of the model for the mean response, Diggle et al.

[1996] suggest superimposing the fitted mean response profiles on a time plot of the aver-

age observed response within each combination of treatment and time. Additionally, the

fitted variogram can be superimposed on a plot of the empirical variogram. Fitzmaurice

et al. [2004] also suggest the use of the empirical variogram to assess the validity of the

variance assumptions. Graphical diagnostics using transformed residuals are recommended

to explore the adequacy of the model for the mean response. Alternatively, Vonesh et al.

[1996] present mean and covariance concordance correlation coefficients between fitted and

observed measurements, which are similar to the R2 criterion widely used for univariate lin-

ear regression models. For normally distributed data, the adequacy of the fitted covariance

model is assessed via a pseudo-likelihood ratio test. A plot, similar to the quantile-quantile

plot (Q-Q plot), to check the model fit for longitudinal data and that is able to account for

an unbalanced design is presented in Park and Lee [2004]. The observation vector of each

subject is summarized through a univariate normalized residual and based on the residuals

for all subjects a Q-Q plot using the standard normal distribution can be constructed. This

approach is shown to be effective in determining the adequacy of the mean model fit, and

in the detection of outlying and influential observations. However, Park and Lee [2004]

state that these model diagnostic tools are less effective as covariance model diagnostics.

Alternatively, we propose performing a sensitivity analysis with respect to the covariance

model chosen. We will illustrate this approach in Chapter 4.

For a more detailed account on model diagnostic tools for longitudinal data with

particular focus on non-linear mixed models, we refer to Chiswell [2007].

3.1.9 Summary

In this section we have elaborated the objectives of longitudinal studies, and listed some

of the advantages over cross-sectional studies. The price to pay for these advantages is

that more complex data analysis techniques are required. Among other desirable features,
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these techniques ought to account for the correlated nature of longitudinal data. We have

discussed the limitations of simple approaches, such as repeated measures ANOVA and

MANOVA. Full multivariate models and linear mixed models are suitable alternatives for

the analysis of Gaussian longitudinal data; these will be discussed in more detail in Section

3.2. Different extension to non-Gaussian data and non-linear regression models have been

discussed. Furthermore, we give a short account on exploratory and model diagnostic tools

in the context of longitudinal data.

We have briefly mentioned that missing data poses a considerable challenge in the

analysis of longitudinal data; and that likelihood-based inference for full multivariate and

random-effect models are robust to ignorable missingness processes. Chapter 5 and Chapter

6 are devoted to these aspects.

We note that this chapter focuses mainly on modelling the mean response. In Chap-

ter 4, we will discuss models for the covariance structure.

Finally, we admit that there are numerous additional topics on the analysis of lon-

gitudinal data that we are not going to discuss in this thesis, e.g. multivariate longitudinal

data and non-parametric analysis techniques. We refer to Diggle et al. [1996] and Gibbons

et al. [2010] for a discussion of these topics.

The remains of this chapter are organized as follows. We discuss full multivariate

and linear-mixed models in Section 3.2. We then apply linear-mixed models to the CAST

data set in Section 3.3 and discuss why these models are not suitable for this particular data

set. Non-linear mixed models are presented as a valuable alternative in Section 3.4 and

applied to the CAST data in Section 3.5.

3.2 Full Multivariate Models and Linear-Mixed Models

In this section, full multivariate and linear mixed models for Gaussian longitudinal data will

be presented in detail.
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3.2.1 Notation

Let yi, j denote the observation of subject i ∈ {1, ...,N} at observation time ti, j, j ∈ {1, ...,Mi},

and yi = (yi,1, ..., yi,Mi)
> be the Mi-dimensional response vector of subject i. For a balanced

design we denote Mi = M for all i ∈ {1, ...,N}. The vector yi is a realisation of the random

vector Yi, where Yi is assumed to follow a multivariate normal distribution. The joint

outcome vector for all subjects is denoted by y = (y>1 , ...,y
>
N)> and the associated random

vector by Y = (Y >1 , ...,Y >N )>.

For subject i and observations time ti, j, the q-dimensional (q ∈ N) vector of ex-

planatory variables (e.g. time, age, gender, treatment) is represented by xi, j. The covari-

ate vectors for all observation times of subject i are collected through the matrix Xi =

(xi,1, ...,xi,Mi)
>.

The mean and the variance of Yi, j are denoted by E(Yi, j) = µi, j and Var(Yi, j), re-

spectively. The corresponding Mi-dimensional mean vector and the Mi × Mi-dimensional

covariance matrix of Yi are represented by E(Yi) = µi and Cov(Yi) = Σi, respectively.

In the CAST study presented in Chapter 2, the design implies N = 559, Mi ∈

{1, 2, 3, 4} and ti, j = t j ∈ {0, 4, 12, 39} for i ∈ {1, ..., 559} and j ∈ {1, 2, 3, 4}. The explanatory

variables of interest are given by the randomisation group, age and gender of the subjects.

The randomisation groups are denoted by si ∈ {1, 2, 3, 4} for Tubigrip, BKC, Aircast brace

and Bledsoe boot, respectively. Note that in this thesis we mean randomisation group

whenever we refer to treatment groups, because the analysis will be performed based on

the intention-to-treat principle. The age and gender of subject i ∈ {1, ...,N}, are denoted by

agei and sexi, respectively.

3.2.2 Full Multivariate Model

In the marginal multivariate model for Gaussian data, we assume all subjects are inde-

pendent and that Yi ∼ NMi (µi,Σi), where the mean µi and the covariance matrix Σi are

modelled separately.

Most longitudinal studies are interested in studying the change of the mean response
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over time and in identifying covariates that influence the change. For this purpose a linear

regression model

E(Yi) = µi = Xi β,

for the mean response vector is formulated, where β ∈ Rq is a q-dimensional vector of un-

known coefficients. In a separate step, a model for the covariance matrix Σi is formulated.

It is convenient to set Σi = Σ, i ∈ {1, ...,N}, when the data are balanced and the covariance

matrix does not depend on covariates. In general, however, the covariance matrix will de-

pend on the subject i, at least through its dimension. Different assumptions regarding the

covariance structure can be made, e.g. unstructured form, first-order autoregressive struc-

ture, compound symmetry structure or Toeplitz structure [Hedeker and Gibbons, 2006].

All these covariance structures, except the unstructured form, assume equal variances and

a specific structure for the pairwise correlations. In contrast, the unstructured covariance

structure allows all variances and covariances to be different. Hence, the number of pa-

rameters depends on the number of repeated measures per subject. For Mi = M, Σi = Σ,

i ∈ {1, ...,N}, the number of covariance parameters under an unstructured covariance model

is given by M (M+1)
2 .

3.2.3 Linear Mixed Model

In Section 3.1.4, the linear mixed model was briefly introduced as a regression model that

accounts for the correlation among the repeated measures of a subject through the inclu-

sion of unobserved subject-specific random effects and a model for the within-individual

heterogeneity. Following the derivations in Laird and Ware [1982]; Davidian and Giltinan

[1995] and Diggle et al. [1996], we define a random-effect model for Gaussian data, i.e. a

linear mixed model, in terms of a hierarchical two-stage model. In the first stage population

parameters, individual effects and the within-subject heterogeneity are introduced, whereas

the second stage accounts for the between-subject variation [Fitzmaurice et al., 2004].
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Stage 1:

The response vector Yi satisfies the mixed model

Yi = Xi β + AiUi + εi,

where β ∈ Rq represents the parameter vector of fixed effects, Ui is a p-dimensional vector

of random effects, Ai is a Mi× p- dimensional design matrix linking Yi to the random effects

and εi is a Mi-dimensional vector of within-individual errors. We assume:

• The error terms satisfy

εi ∼ N(0, Σ̃i),

where Σ̃i is a (Mi × Mi)-dimensional covariance matrix, accounting for the within-

individual heterogeneity. In particular, this matrix ought to account for variation due

to measurement error and serial correlation.

• The conditional mean vector µ̃i := E(Yi|Ui) satisfies the linear mixed model

µ̃i = Xi β + AiUi.

Stage 2:

In order to account for the between-individual variation we assume:

• The random vectors Ui are mutually independent and identically distributed for all

i ∈ {1, ...,N} with

Ui
iid.
∼ N(0,D), (3.1)

where D is a p × p-dimensional covariance matrix and

• Ui are independent of εi and the explanatory variables Xi for all i ∈ {1, ...,N}.

The motivation for the assumption shown in equation (3.1), is given in [Molenberghs and

Verbeke, 2005, page 37]: ‘because subjects are randomly sampled from a population of
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subjects, it is natural to assume that the subject-specific regression coefficients [...] are

randomly sampled from a population of regression coefficients. It is customary to assume

the [...] Ui to be (multivariate) normal, but extensions can be formulated [...].’

Under these assumptions, the marginal mean vector and covariance matrix for Yi

are given by:

E(Yi) = E [E(Yi|Ui)] = Xi β;

Cov(Yi) = E [Cov(Yi|Ui)] + Cov [E(Yi|Ui)]

= Σ̃i + AiDA>i .

Therefore, every linear mixed model has a hierarchical but also a marginal model formula-

tion. In Section 3.1.4, we discussed that parameters based on marginal and random-effect

models generally have different interpretations. While parameters based on a marginal

model have population-averaged interpretations, random-effect model parameters describe

the evolution of the response variable based on a certain level of the subject-specific ran-

dom variable Ui. Nevertheless, the parameter estimates for fixed effects obtained through

both model families should be equal in the case of Gaussian data. This is due to the unique

properties of the multivariate normal distribution. Let βRE and βM denote the fixed effects

parameter vectors based on the hierarchical and marginal model formulation, respectively.

The hierarchical model formulation yields

E(Yi) = E [E(Yi|Ui)] = Xi β
RE , and the marginal formulation

E(Yi) = Xi β
M.

Assuming the rank of the matrix Xi is full for every i, i.e. rank(Xi) = q for all i ∈ {1, ...,N},

leads to βRE = βM. This connection of marginal and hierarchical models in the case of

Gaussian models is so natural that it can be misleading. Even though every hierarchi-

cal model has a marginal model formulation, these two model families are not equivalent.
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Molenberghs and Verbeke [2005] present an example where two different hierarchical mod-

els lead to the same marginal model. On the other hand, Molenberghs and Verbeke [2005]

show that not every marginal model can be expressed in terms of a hierarchical model. For

example, a marginal model that assumes a compound symmetry covariance structure with

negative correlations cannot be implied by a hierarchical model.

The last observation we want to make concerns the within-individual heterogeneity

modelled through Σ̃i. Frequently, a special structure, the so-called conditional indepen-

dence model is proposed [Laird and Ware, 1982], where

Σ̃i = σ2 IMi ,

IMi is the Mi ×Mi-dimensional identity matrix and σ2 ∈ R+. While this assumption simpli-

fies the likelihood construction to a great extent, it ignores serial correlation and emphasizes

measurement error as only source for within-individual variation. Diggle et al. [1996] ex-

plain the popularity of this assumption by noting that in many applications the magnitude

of serial correlation is dominated by the combination of between-individual correlation and

measurement error. According to Molenberghs and Verbeke [2005], computational com-

plexity when accounting for serial correlation is a further reason for adopting the simpler

model.

3.2.4 Estimation and Inference

As seen in the last subsection, every hierarchical model has a marginal formulation. Thus,

model fitting for full multivariate and linear mixed models can be based on the marginal

model formulation. In this context, we will focus on the maximum likelihood approach for

estimation and inference.

In the full multivariate and linear mixed model the response vector Yi is assumed

to follow a multivariate normal distribution with mean Xi β and covariance matrix Σi and

Σ̃i +AiDA>i , respectively. Independent of the model choice we denote the covariance matrix
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through Σi(τ), where τ is a vector of covariance parameters. For example, the compound

symmetry structure only involves two different parameters, one for the variance and one for

the correlation, whereas the unstructured form involves M (M+1)
2 parameters for a balanced

data set.

We now consider estimating the mean parameter β and the covariance parameter τ

jointly by maximizing the joint likelihood:

LY (β, τ) =

N∏
i=1

fYi(yi) (3.2)

=

N∏
i=1

1√
(2 π)Mi det (Σi(τ))

exp
{
−

1
2

(Yi − Xi β)> Σ−1
i (τ) (Yi − Xi β)

}

Conditionally on τ, the maximum likelihood estimator for β is given by the weighted least-

squares estimator [Laird and Ware, 1982; Diggle et al., 1996]

β̂(τ) =

 N∑
i=1

X>i Σ−1
i (τ)Xi


−1 N∑

i=1

X>i Σ−1
i (τ)yi. (3.3)

The maximum-likelihood estimator τ̂ for τ can be obtained by substituting β̂(τ) into the

likelihood (3.2) and subsequent maximization of LY (β̂, τ) with respect to τ. The maximum-

likelihood estimator for β is then given by β̂ = β̂(τ̂). As noted by Laird and Ware [1982], the

maximum likelihood estimate for τ fails to account for the degrees of freedom lost in esti-

mating β and is thus biased downwards. Alternative estimating methods for the covariance

parameters, such as the restricted maximum likelihood (REML) method, were proposed

[Laird and Ware, 1982; Diggle et al., 1996]. The REML estimator is defined as a maximum

likelihood estimator based on a linearly transformed set of data, such that the distribution of

the transformed data does not depend on β [Diggle et al., 1996]. Maximizing the likelihood

based on the transformed data set yields a consistent estimator τ̃ for τ. The REML estimator

for β is then obtained by substituting τ̃ in equation 3.3.

Diggle et al. [1996] note that the distinction between maximum likelihood and

REML is important only when the number of mean parameters q is relatively large com-
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pared to the overall number of observation, i.e. Ntot =
∑N

i=1 Mi. In the applications relevant

to this thesis, q is usually much smaller than Ntot. Hence, we will focus on the maximum

likelihood approach and refer to Laird and Ware [1982] and Diggle et al. [1996] for further

details regarding REML.

In order to conduct maximum-likelihood inference for the mean parameters, the mo-

ments of the asymptotically normally distributed estimator β̂(τ̂) need to be calculated. As-

suming the mean vector and covariance matrix were correctly specified we obtain [Molen-

berghs and Verbeke, 2005]:

E
(
β̂(τ̂)

)
=

 N∑
i=1

X>i Σ−1
i (τ̂)Xi


−1 N∑

i=1

X>i Σ−1
i (τ̂) Xi β = β and

Cov
(
β̂(τ̂)

)
=

 N∑
i=1

X>i Σ−1
i (τ̂)Xi


−1 N∑

i=1

X>i Σ−1
i (τ̂) Σi(τ̂) Σ−1

i (τ̂) Xi

 N∑
i=1

X>i Σ−1
i (τ̂)Xi


−1

=

 N∑
i=1

X>i Σ−1
i (τ̂)Xi


−1

.

Note that the covariance matrix of β̂(τ̂) does not account for the variability in estimating

τ, and thus underestimates the variability. For this reason, the t-test is often used instead

of the z-test / Wald-test for hypothesis testing [Molenberghs and Verbeke, 2005]. Several

approaches for the estimation of the degrees of freedom exist [Fitzmaurice et al., 2004];

for example, it can be computed as the number of subjects minus the dimension of the

random-effect vector [SAS/STAT, 1999]. Molenberghs and Verbeke [2005] note that for

large sample sizes most estimation methods yield very similar results in terms of p-values.

For small samples the estimation method of the degrees of freedom has to be chosen more

carefully. In this work, we will focus on studies with large samples sizes and will use the

estimation method proposed by SAS/STAT [1999], see above.

For the covariance parameters asymptotic Wald-type, likelihood ratio and score tests
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can be used [Molenberghs and Verbeke, 2005]. We will focus on the t-test for the covariance

parameters. For more details regarding this aspect we refer to Molenberghs and Verbeke

[2005].

3.2.5 Inference for the Random Effects

In many longitudinal studies, inference focuses on the parameters of the marginal distribu-

tion, i.e. β and τ. However, in some applications, interest lies in predicting subject-specific

outcomes or response profiles. Diggle et al. [1996] present an example, the CD4+ study,

where investigators want to estimate the subject-specific evolution of CD4+ cell counts for

the counselling of HIV-infected men.

In order to construct predictions but also to identify outliers [Molenberghs and

Verbeke, 2005] and for model diagnostics, the subject-specific random-effect vectors Ui,

i ∈ {1, ..., n}, can be estimated through their empirical Bayes (EB) estimates. The EB esti-

mates Ûi are calculated as means of the posterior distribution of Ui given β̂ and τ̂, i.e. the

distribution of Ui|Yi, β̂, τ̂. Let Σi(τ̂) = Σ̃i(τ̂) + Ai D(τ̂) A>i denote the maximum-likelihood

estimator for the covariance matrix. Under the assumption of normality for Yi andUi, Laird

and Ware [1982] present a closed form solution for the EB estimate:

Ûi = D(τ̂) Ai Σ−1
i (τ̂)

(
yi − Xi β̂

)
(3.4)

and its covariance matrix:

Cov
(
Ûi

)
= D(τ̂) A>i

Σ−1
i (τ̂) − Σ−1

i (τ̂) Xi

 N∑
i=1

X>i Σ−1
i (τ̂) Xi

 X>i Σ−1
i (τ̂)


× Ai D(τ̂). (3.5)

Using the covariance expressed through equation (3.5) to assess the precision of Ûi fails to

account for the random variation of Ui, and hence underestimates the variation in Ûi −Ui.
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Laird and Ware [1982] propose to use

Cov
(
Ûi −Ui

)
= D(τ̂) − Cov

(
Ûi

)
to assess the precision of the EB estimates.

A commonly observed feature of EB estimates is that they are shrunken towards

the mean of the prior distribution of Ui, i.e. 0. The degree of shrinkage depends on the

interplay of within-subject heterogeneity and between-subject heterogeneity [Molenberghs

and Verbeke, 2005]. This interplay can be illustrated through the following calculations

[Fitzmaurice et al., 2004]:

ŷi = Xi β̂ + Ai Ûi

(3.4)
= Xi β̂ + Ai D(τ̂) Ai Σ−1

i (τ̂)
[
yi − Xi β̂

]
=

[
IMi − Ai D(τ̂) Ai Σ−1

i (τ̂)
]

Xi β̂ + Ai D(τ̂) Ai Σ−1
i (τ̂)yi

(∗)
=

[
Σ̃i(τ̂) Σ−1

i (τ̂)
]

Xi β̂ +
[
IMi − Σ̃i(τ̂) Σ−1

i (τ̂)
]
yi,

where Σ̃i(τ̂) denotes the estimated within-subject variation and the equality (∗) follows from:

IMi = Σi(τ̂) Σ−1
i (τ̂) =

[
Ai D(τ̂) Ai + Σ̃i(τ̂)

]
Σ−1

i (τ̂)

= Ai D(τ̂) Ai Σ−1
i (τ̂) + Σ̃i(τ̂) Σ−1

i (τ̂).

These derivations show that the predicted response profile for subject i, i.e. ŷi, can be in-

terpreted as a weighted average of the population-averaged profile and the observed data of

subject i [Molenberghs and Verbeke, 2005]. The population-averaged profile is weighted

more when the within-subject variation is large relative to the between-subject variation.

On the other hand, the observed response is weighted more when the opposite holds. Thus,

Molenberghs and Verbeke [2005] come to the conclusion that ‘severe shrinkage is to be

expected when the residual variability is large in comparison to the between-subject vari-

43



3. LONGITUDINAL DATA AND CAST

ability (modelled by the random effects), whereas little shrinkage will occur if the opposite

is true’.

3.3 Linear Mixed Models and CAST

The CAST study, presented in Chapter 2, provides an example of a longitudinal study in

which the change of the mean response over time and the effect of factors, such as treatment

and age, on the change is of interest.

The time plot shown in Figure 2.1, page 13, revealed that the scores were usually a

non-linear increasing function of time. The scores increase much faster at the beginning of

the study than towards the end.

In general, the responses exhibited similarly shaped curves. However, the scores at

the study points and the rates at which these scores were achieved varied across the subjects.

This variation appears to be smaller at the end of the study period than at the beginning. In

fact, we observe that later measurements are clustered towards the upper end of the range.

In particular, different patients might have the same initial and the same final scores, but the

rate at which they achieve the final score can differ substantially.

Our aim is to analyze the FAOSS-data through a random-effect model. In this con-

text, we will assume an ignorable missingness mechanism, which implies that the miss-

ingness process can be ignored in a full-likelihood based analysis, see Chapter 5. More

specifically, the likelihood contribution of a given subject i is obtained by integrating out

the missing values from the density of Yi. As the scores are continuous, we assume that the

measurements for each subject follow a normal distribution. Based on normality, a linear

mixed model could be fitted. However, this model assumes a linear relation between the

mean response and the parameter vector of interest, while the observed response profiles

suggest a non-linear relation. The classical approach to solve this problem is to transform

the data so that a linear regression model fits adequately.

Using the notation introduced in Section 3.2.1, we have tried the following trans-
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formations for the responses yi, j and observation times ti, j, respectively:

Transformation A:

yi, j 7→ ln
(
100.5 − yi, j

)
(3.6)

Transformation B:

yi, j 7→ ln

 yi, j + 1
2

100.5 − yi, j

 (3.7)

Transformation C:

yi, j 7→ ln
(
yi, j +

1
2

)
(3.8)

Transformation D:

ti, j 7→ ln
(
ti, j +

1
2

)
(3.9)

Transformation E:

ti, j 7→ ln
(
ti, j + 1

)
. (3.10)

In order to fit an adequate model based on the transformed data, we show the time plots for

these five transformation in Figure 3.1 and Figure 3.2.

The time plots for these transformations suggest that a model linear in time will

not be sufficient to describe the transformed data adequately. While the time-plots based on

Transformation A, D and E suggest that a quadratic model in time might be appropriate, this

is not the case for the data based on Transformations B and C. For the latter transformations,

the bounded nature of the original score is carried forward to the transformed data.

Nevertheless, we attempted to fit linear mixed models, which are quadratic in time

and included age-effects, to all transformed data sets. The mean model of interest for Trans-

formations A, B and C is given by:

E
(
Y trans

i, j

)
= β0 + β1 ai + Ui,1 +

(
[β21 + β2,si 1(si , 1)] + β3 ai + Ui,2

)
ti, j

+
(
[β41 + β4,si 1(si , 1)] + β5 ai

)
t2
i, j, (3.11)
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Figure 3.1: Time plots for Transformations A, B, C and a random subset of 10 patients.
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Figure 3.2: Time plots for Transformations D (top), E (bottom) and a random subset of 10 patients.

where Y trans
i, j is the transformed random variable of Yi, j based on the transformations trans ∈

{A,B,C}, ai = agei − 27 (age centered around median age) and 1(si , 1) is one if si , 1

and zero otherwise, i.e. interest lies in the treatment contrasts compared to the standard

treatment Tubigrip (si = 1). Model (3.11) allows for a subject-specific intercept (through

Ui,1) and a subject-specific interaction with time (through Ui,2).

Regarding the covariance structure, we assume the serial correlations are negligible,

see Section 3.2.3. This implies that the error of measurements are conditionally indepen-
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dent, i.e.

Y trans
i, j |Ui

ind.
∼ N

(
E(Y trans

i, j ), σ2
)

for all j ∈ {1, ...,Mi},

where Ui = (Ui,1,Ui,2)> and

Ui ∼ N2

0,
σ

2
U1

0

0 σ2
U2


 .

This assumption implies that the two subject-specific effects are independent. This sim-

plification as well as the assumed conditional independence and homoscedasticity for the

within-subject variances are likely to be violated. However, in this section we want to focus

on modelling the mean. Chapter 4 is devoted to modelling the covariance structure.

Overall, the assumed covariance matrix for the transformed marginal response vec-

tor Y trans
i is then given by:

Vi(τ) = σ2 IMi +


1 ti,1
...

...

1 ti,Mi


σ

2
U1

0

0 σ2
U2


 1 · · · 1

ti,1 · · · ti,1

 , (3.12)

=



σ2 + σ2
U1

+ σ2
U2

t2
i,1 σ2

U1
+ σ2

U2
ti,1 ti,2 · · · σ2

U1
+ σ2

U2
ti,1 ti,Mi

σ2
U1

+ σ2
U2

ti,2 ti,1 σ2 + σ2
U1

+ σ2
U2

t2
i,2 · · · σ2

U1
+ σ2

U2
ti,2 ti,Mi

...
...

. . .
...

σ2
U1

+ σ2
U2

ti,Mi ti,1 σ2
U1

+ σ2
U2

ti,Mi ti,2 · · · σ2 + σ2
U1

+ σ2
U2

t2
i,Mi


where τ = (σ2, σ2

U1
, σ2

U2
)>. Note that the covariance matrix Vi(τ) depends on i only through

its dimension. In the case of missing observations, the covariance matrix is composed of

the rows and columns that correspond to the observed measurements.

For the Transformations D and E, we will investigate the following mean models:

E
(
Yi, j

)
= β0 + β1 ai + Ui,1 +

(
[β21 + β2,si 1(si , 1)] + β3 ai + Ui,2

)
ln(ti, j + c)
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+
(
[β41 + β4,si 1(si , 1)] + β5 ai

)
ln2(ti, j + c), (3.13)

where c ∈ {12 , 1}. We assume the same covariance structure as presented in equation (3.12),

however, the observation times ti, j are replaced by the transformed observation times ln(ti, j+

c) for c ∈ {12 , 1}.

Note that the models defined through equation (3.11) and equation (3.13) do not

condition on the baseline score Yi,0, they rather model the baseline score as part of the

outcome vector Yi. In retrospective, we admit that conditioning on the baseline score could

lead to advantages in terms of statistical power and to more precise estimates of treatment

effects.

The maximum-likelihood estimators for β = (β0, β1, β2,1, β2,2, β2,3, β2,4, β3, β4,1, β4,2,

β4,3, β4,4, β5)> and τ = (σ2, σ2
U1
, σ2

U2
)> based on Transformations A-E, models (3.11),(3.13)

and an ignorable missingness process are shown in Table 3.1, on page 50. Note that the

model based on Transformation C revealed that the inclusion of a subject-specific time-

interaction is not necessary. Moreover, the analyses of all transformed data sets but Trans-

formation D do not reject the null hypothesis β1 = 0 at a significance level of 0.05.

The aim of the CAST study was to compare the effectiveness of Tubigrip to that

of BKC, Aircast brace and Bledsoe boot. The effectiveness is measured in terms of the

FAOSS-score change over time. In Model (3.11) and Model (3.13), the treatment ef-

fects on the average response profile are quantified through the parameters β2,si and β4,si ,

si ∈ {1, 2, 3, 4}. The results based on Transformation A and B suggest that the mean change

of Tubigrip is significantly different to the average response evolution of the remaining

treatments. In contrast, the results for Transformation C and E imply that solely the score

profiles of Tubigrip and BKC differ, whereas the results for Transformation D yield that the

average response evolutions are equal for all treatments. The results based on all transfor-

mations reveal significant age-effects on the time evolution.

Thus, the significance of treatment differences and age-effects can be derived based

on the results presented in Table 3.1. However, in case of a significant treatment difference
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3. LONGITUDINAL DATA AND CAST

it is not obvious which treatment is more effective. Also, the significant age effects do

not reveal whether older or younger people recover faster from ankle sprains. That is,

the interpretation of the parameter estimates is not straightforward and demands further

analyses or graphical displays. In order to investigate the nature of the treatment differences,

we contrast the observed average score evolutions for Tubigrip and BKC with the fitted

response profiles, see Figure 3.3, page 52. The plots show that BKC is more effective than

Tubigrip for all transformations where a significant treatment difference was detected, i.e.

Transformations A, B and E. However, especially the plots for Transformations A, B and

C suggest that the models fit poorly from the twelfth week onwards. Admittedly, this is a

rather lopsided comparison as the fitted curves of 27 year old patients are compared to the

observed average evolutions of all patients.

In order to investigate the overall mean model fit of the proposed models, we use

the diagnostic plots presented by Park and Lee [2004]. For incomplete data a normalized

residual plot based on the quantile-quantile (Q-Q) plots is proposed. For every subject the

normalized residual q∗i is a univariate summary measure of the residual vector

ri = Yi − Ŷi = Yi − Xi β̂,

with

Cov(ri) = H Σi(τ) H>,

where H = IMi −
(∑N

i=1 X>i Σ−1
i (τ)Xi

)−1 ∑N
i=1 X>i Σ−1

i (τ) and Σi(τ) is the covariance matrix

of the outcome vector Yi, see Section 3.2. The normalized residual is defined as

q∗i =
q1/4

i − (Mi −
1
2 )1/4

(8
√

Mi)−1/2
,

where

qi = r>i Cov(ri) ri.

It can be shown that the q∗i , i ∈ {1, ...,N}, follow approximately a standard normal distribu-

51



tr
an

sf
or

m
ed

sc
or

e
A

(a) Transformation A

tr
an

sf
or

m
ed

sc
or

e
B

(b) Transformation B

tr
an

sf
or

m
ed

sc
or

e
C

(c) Transformation C

Fa
os

s-
sc

or
e

(d) Transformation D

Fa
os

s-
sc

or
e

(e) Transformation E

Figure 3.3: Observed average response profile versus fitted response profiles for Tubigrip, BKC
and the different transformations. For the fitted response profiles we choose age = 27, which
corresponds to the median age.
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3. LONGITUDINAL DATA AND CAST

tion [Park and Lee, 2004]. Based on the normalized residuals, a Q-Q plot which plots the

observed q∗i , i ∈ {1, ...,N}, against the quantiles of the standard normal distribution can be

constructed.

In order to simplify the calculations we replace the covariance matrix of the resid-

uals, Cov(ri), by the covariance matrix of the vector of error terms Yi − Xi β. Although

these two covariance matrices are not identical, Fitzmaurice et al. [2004] state that for all

practical purposes the covariance matrix of the residual vector can be approximated by

Cov(ri) ≈ Cov(Yi − Xi β) = Σi(τ).

Now, the observed normalized residuals can be calculated based on the estimated mean pa-

rameter vector β̂ and the estimated covariance matrix Σi(τ̂). These residuals will depend on

the covariance structure modelled and a poor choice is likely to affect the residuals. Because

(in this section) we are mainly interested in checking the mean model, we would like to rule

out sensitivity to the covariance structure chosen. In fact, Park and Lee [2004] note that the

model diagnostic proposed is not very sensitive to covariance misspecification. Neverthe-

less, we used both the fitted and the sample covariance matrix (based on observed pairs),

to approximate Cov(ri) and to investigate the impact of the chosen covariance matrix. The

resulting Q-Q plot pairs confirm the observation made by Park and Lee [2004], see Figure

3.4, page 54.

The Q-Q plots for the different transformations and mean models (3.11) and (3.13),

reveal stretched S-shape patterns for Transformations A, B and C. The quantiles of the

standard normal distribution near to zero, exceed the quantiles based on the observed nor-

malized residuals. For the quantiles near one, however, the observed residuals exceed the

expected quantiles of the standard normal distribution. This suggests that the distribution

of the normalized residuals is negatively skewed or heavy left-tailed. In contrast, the Q-Q

plots based on Transformations D and E show no drastic systematic departures; merely a

lack of fit for the quantiles near zero is noticeable.
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(a) Transf. A, fitted Σi(τ) (b) Transf. A, observed Σi(τ)

(c) Transf. B, fitted Σi(τ) (d) Transf. B, observed Σi(τ)

(e) Transf. C, fitted Σi(τ) (f) Transf. C, observed Σi(τ)

(g) Transf. D, fitted Σi(τ) (h) Transf. D, observed Σi(τ)

(i) Transf. E, fitted Σi(τ) (j) Transf. E, observed Σi(τ)

Figure 3.4: Q-Q plots for the five transformed data sets and fitted models using the normal distribu-
tion. The horizontal axes correspond to the expected quantiles of the standard normal distribution,
whereas the vertical axes correspond to the observed normalized residuals from the fitted models.
The dashed lines illustrate the distribution reference line.
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3. LONGITUDINAL DATA AND CAST

Thus, the fitted models based on Transformations D and E seem to provide reason-

able model fits. Transformations D and E differ only through an additional constant c ∈

{ 12 , 1}, which was needed to resolve the issue with zeros when using a log-transformation.

Now, although these transformations are very similar, the conclusions based on the param-

eter estimates, shown in Table 3.1, differ. While the model based on Transformation E

reveals a significant treatment difference between Tubigrip and BKC, this difference is not

detected in the analysis based on Transformation D. These contradicting results are caused

by the transformation of the time line: the relative distance between the time points of inter-

est is changed through the transformation. Let tD
j and tE

j denote the transformed observation

times based on Transformation D and Transformation E, respectively. Then we obtain

Transformation D Transformation E

t1 = 0 7→ tD
1 = −0.69 t1 = 0 7→ tE

1 = 0

t2 = 4 7→ tD
2 = 1.50 t2 = 4 7→ tE

2 = 1.61

t3 = 12 7→ tD
3 = 2.53 t3 = 12 7→ tE

3 = 2.56

t4 = 39 7→ tD
4 = 3.68 t4 = 39 7→ tE

4 = 3.69.

As we are applying a monotone transformation the relative ordering of the observation times

persists for both transformations. However, the distances between adjacent time points

differ. For example tD
2 − tD

1 = 2.19 weeks whereas tE
2 − tE

1 = 1.61 weeks. In contrast, the

distances between the last two times points are quite similar: tD
4 − tD

3 = 1.15 and tE
4 − tE

3 =

1.13. In the CAST study, the score changes much faster at the beginning of the study than

towards the end, see Figure 2.1 on page 13. Clearly two transformations with differing

effects on the time line at the beginning of the study but similar effects towards the end of

the study lead to varying results, see also Figure 3.3(d) and Figure 3.3(e), page 52.
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3. LONGITUDINAL DATA AND CAST

3.3.1 Summary

In this section we fitted linear mixed models under ignorable missingness (see Chapter 5)

to the CAST data set. Exploratory analysis, shown in Chapter 2, revealed that the FAOSS-

score evolves non-linearly over time. Also, the scores approach an upper limit as time

increases. We tried five different transformations to reduce the effect of the boundedness and

to improve the linearity of the data with respect to covariates. Three of these transformations

transform the outcome data, whereas the remaining two transformations are applied to the

observations times ti, j, i ∈ {1, ...,N} and j ∈ {1, ...,Mi}.

While some transformations suggest that a quadratic model in time might be appro-

priate, other transformations seem to carry forward the boundedness of the original data.

Nevertheless, we fitted linear mixed models quadratic in time and age to the transformed

data. A subject-specific intercept and a subject-specific time-interaction was included. The

fitted models based on the different transformations of the outcome data, i.e. Transforma-

tions A, B and C, lead to a poor model fit. In particular, the fits at the last two time points,

i.e. week 12 and week 39, were unsatisfactory.

The results based on the transformations of the time line, i.e. Transformations D

and E, lead to adequate model fits. However, the conclusions vary substantially dependent

on the transformation. The main aim of the CAST study was to investigate the effects of

covariates on the change over time. Transforming the time line may change the relative

distance of the time points; and an analysis based on such a transformation may not answer

the original research question. Hence, extreme care should be taken when transforming the

time line.

Furthermore, all transformations lead to parameter estimates that are relatively dif-

ficult to interpret. Our analyses required graphical displays to explore the nature of existing

covariate effects.

A further limitation of the transformations presented is that none of them accounts

for the bounded nature of the score. We noted previously that for every subject the original

score approaches a final score as time increases. Generally, recovery from acute injuries
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3. LONGITUDINAL DATA AND CAST

is not always complete, so the achieved final score might not be on the upper bound, i.e.

100 score points. This achieved final score is of interest to investigators, as it is likely to

depend on covariates, such as age and gender. These effects cannot be explored based on

the Transformations A, B and C, as the bounds of the score are fixed, and are part of the

specification of the transformation. Similarly, we cannot investigate these effects based on

Transformations D and E, because the bounded nature of the score is simply ignored.

Overall, the listed limitations discourage the use of any of these transformations.

We are aware that the list of transformations explored here is not exhaustive, e.g. Carpenter

et al. [2002] propose a transformation of the time line that might be suitable. Nevertheless,

we refrain from exploring any other transformation. As an alternative, we will present a

model for the outcome score on the original scale as a function of covariates in Section

3.5. The model is constructed for scores where the rate of recovery changes over time. In

addition, the model is able to account for the bounded nature of the score and to investigate

the effect of covariates on the achieved final score.

3.4 Non-Linear Mixed Models

In the last section, we have seen that linear mixed models are not always the adequate

model choice for continuous longitudinal data. In some applications the mean response is

intrinsically non-linear and there exists no suitable transformation of the data or covariates

to transfer the problem to a linear regression problem. In such cases, non-linear mixed

models can be a valuable alternative.

A non-linear mixed model for normally distributed longitudinal data is based on a

framework that is very similar to that of the linear mixed model. The within- and between-

subject variation is accommodated in a two-stage model. In the first stage, the systematic

variation is characterised through a non-linear regression model with a model for the within-

individual variation. Then, the second stage accounts for the between-individual variation

through the inclusion of subject-specific parameters.

57



3. LONGITUDINAL DATA AND CAST

Davidian and Giltinan [1995] give the following definition of a non-linear mixed

model for normally distributed longitudinal data:

Stage 1:

The systematic variation of the response for subject i at time point j is modelled through

Yi, j = g(xi, j, θi) + εi, j, (3.14)

where g : R → R is a non-linear function and εi, j is the random error term reflecting

uncertainty in the response. With εi = (εi,1, ..., εi,Mi)
> we assume

E(εi|θi) = 0; and Cov(εi|θi) = Σ̃i = Σ̃i(ξ1).

The covariance matrix Σ̃i reflects the within-individual variation and depends on variance

and correlation parameters which are summarised through the parameter vector ξ1. In line

with linear mixed models, it is common to assume Σ̃i(ξ1) = σ2 Ini , ξ1 = σ2, for the within-

individual covariance structure, see Section 3.2.3. That is, the serial correlation is neglected

and equal variances are assumed.

Stage 2:

The inter-individual variation is captured through the subject-specific regression parameter

θi. The variation of θi might have different sources, such as individual characteristics (treat-

ment group, age, gender etc.). But unexplained variation, due to natural variability among

subjects, might also be a source. To account for these possibilities, the parameter of interest

θi is modelled in dependence of known fixed quantities, say θ, and a random componentUi

associated with the i-th subject. A general model is then given by

θi = d(θ,Ui),
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3. LONGITUDINAL DATA AND CAST

where d(·) is a vector-valued function. Furthermore, we assume

Ui
iid.
∼ N(0,D(ξ2));

and denote all covariance parameters accounting for within- and between-subject variation

by ξ = (ξ>1 , ξ
>
2 )>. Note that, unless d(·) leads to an affine transformation of Ui, we are usu-

ally not able to establish the distribution of θi easily. Alternative distributional assumptions

for Ui, e.g. Ui is gamma distributed, can be made [Davidian and Giltinan, 2003].

3.4.1 Estimation and Inference

In Section 3.2.3, we have seen that every hierarchical model has a marginal model formu-

lation. Maximum-likelihood estimation was based on the marginal normal distribution and

closed formed solutions for the mean parameters are available. However, a marginal model

formulation does not always exist in the case of non-linear mixed models. The estimation

of θ and ξ is usually much more complicated, especially when the random effects Ui en-

ter the model equation (3.14) in a non-linear fashion. Different approaches to deal with

the higher complexity in the parameter estimation are proposed in the literature [David-

ian and Giltinan, 1995; Vonesh and Chinchilli, 1997]. In this thesis we will focus on the

maximum-likelihood approach. Alternatively, Bayesian inference [Davidian and Giltinan,

1995, Chapter 8], inference based on individual estimates [Davidian and Giltinan, 1995,

Chapter 5] or on linearisation [Davidian and Giltinan, 1995, Chapter 6] can be made.

For maximum-likelihood inference we want to base inference on the marginal dis-

tribution of Y , i.e.

Ly(θ, ξ) =

N∏
i=1

fYi(yi) =

N∏
i=1

∫
fYi |Ui (yi) fUi (ui) dui.

The calculation of the likelihood involves the integration over the random-effects Ui. The

complexity of this integration depends on the dimension of Ui, and on the way the random

effects Ui enter the model. The integration is more complex when the random effects enter

59



3. LONGITUDINAL DATA AND CAST

the model non-linearly. In particular, it is usually not possible to solve this integral explic-

itly. Approximative integration methods, such as Gaussian-Quadrature are frequently used

to evaluate the likelihood.

Following the numerical evaluation of the likelihood, maximum-likelihood esti-

mates can be calculated through numerical optimization routines, e.g. quasi-Newton or

Newton-Raphson methods. Inference can be based on the same principles as presented in

Section 3.2.4.

3.4.2 Inference for the Random Effects

As seen in Section 3.2.5, the random effects can be estimated through empirical Bayes

(EB) estimates. The EB estimates are calculated based on the posterior distribution of

Ui|Yi, in which all unknown parameters have been replaced by their estimates. In the linear

mixed model case, Ui|Yi, i ∈ {1, ...,N}, are normally distributed and the EB estimates are

calculated as the expectations of these distributions. A closed form for the EB estimates was

presented in Section 3.2.5. However, in the case of non-linear mixed models the marginal

distribution of Yi may be non-normal and thus the distribution ofUi|Yi may be non-normal

as well. According to Molenberghs and Verbeke [2005], it is then customary to define the

EB estimates as the posterior modes of the posterior distribution

fUi |Yi,θ̂,ξ̂
(ui|yi, θ̂, ξ̂) =

fYi |Ui,θ̂,ξ̂
(yi|ui, θ̂, ξ̂) fUi |ξ̂

(ui|ξ̂)∫
fYi |Ui,θ̂,ξ̂

(yi|ui, θ̂, ξ̂) fUi |ξ̂
(ui|ξ̂) dui

.

3.5 Non-Linear Mixed Models and CAST

In Section 3.3 we fitted linear mixed models to the CAST data set. We investigated several

transformations and included higher-order time effects. All attempts led to unsatisfactory

fits. Importantly, when using these transformations we were not able to investigate covariate

effects on the final recovery level. In this context, the final recovery level is defined as the

final achieved score and should not be confused with the upper bound (100 score points for
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3. LONGITUDINAL DATA AND CAST

FAOSS). This distinction is important, because recovery from acute injuries is not always

complete, so the score at final recovery might not be on the actual upper bound.

Based on exploratory analysis, given in Section 2.4, we propose a non-linear mixed

model for the original score data that models the rate of recovery as a function of explana-

tory variables, and takes the bounded nature of the score into account. The investigations in

this section will base on an ignorable missingness mechanisms, see Chapter 5. This mecha-

nism implies that valid likelihood inference can be based on the observed data only, i.e. the

likelihood contribution of a given subject i is obtained by integrating out the missing values

from the density of Yi.

For an individual i ∈ {1, ...,N} we propose the following mixed model for the out-

come vector:

Yi|Ui
indep.
∼ NMi

(
µi, σ

2IMi

)
;

Ui
iid
∼ Nd(0,D(ξ2)), i ∈ {1, ...,N}; and

µi, j = g(x̌i, j, si, ti, j, θi) for j ∈ {1, ...,Mi},

where Ui, a random-effect vector, has a multivariate normal distribution with mean vector

zero and covariance matrix D(ξ2), IMi is the Mi-dimensional identity matrix, g(·) is a non-

linear function, µi = (µi,1, ..., µi,Mi)
>, x̌i, j is a sub-vector of xi, j excluding the observation

times (ti, j) and randomisation groups (si), and θi is the parameter vector of interest. For

convenience we omit the i-subscript for θi in the derivation of the non-linear model. Note

that the model presented makes use of the conditional independence assumption; with the

notation of the last section we have Σ̃i(ξ1) = σ2 IMi , ξ1 = σ2.

The FAOSS-score increases over time and is bounded, thus motivating our proposal

that the recovery rate should change over time. We expect a very low rate of recovery

when patients suffer from extreme symptoms. In particular, yi, j = 0 implies a recovery

rate of zero, e.g. for the FAOSS-score worst symptoms indicate a very swollen and stiff

ankle, which delays the start of recovery. Additionally, we know that the recovery rate
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is zero when the final recovery level is achieved. This means that the rate of recovery

at a certain time depends on the distance of the current score to the lower bound and the

final recovery level. In mathematical terms, we expect the rate of improvement at t, i.e.

g′(x̌i, j, si, t, θ), to be proportional to the current score, g(x̌i, j, si, t, θ), and the still achievable

score [limr→∞{g(x̌i, j, si, r, θ)} − g(x̌i, j, si, t, θ)], where limr→∞{g(x̌i, j, si, r, θ)} denotes the

final recovery level. Hence, we are interested in solving the differential equation

g′(x̌i, j, si, t, θ) = κsi g(x̌i, j, si, t, θ) [ lim
r→∞
{g(x̌i, j, si, r, θ)} − g(x̌i, j, si, t, θ)], (3.15)

where κsi ≥ 0 for si ∈ {1, ..., 4} is the treatment-specific proportion-factor. The model

proposed in equation (3.15) implies that g(·) is a monotone increasing function of time,

because we assume κsi ≥ 0 and

0 ≤ g(x̌i, j, si, t, θ) ≤ lim
r→∞
{g(x̌i, j, si, r, θ)}

for all t ∈ R+
0 . In order to solve the differential equation, we reduce the problem to x̌i, j = { },

and define g(t) := g(x̌i, j, si, t, θ) and gmax := limr→∞{g(x̌i, j, si, r, θ)}. As long as 0 < g(t) <

gmax, t ∈ R+
0 , we obtain

g′(t) =
dg(t)

dt
= κsi g(t) [gmax − g(t)]

⇔
1

g(t) [gmax − g(t)]
dg(t) = κsi dt

⇒

∫
1

g(t) [gmax − g(t)]
dg(t) =

∫
κsi dt. (3.16)

Then
1

g(t) [gmax − g(t)]
=

A
g(t)

+
B

[gmax − g(t)]
,

with A, B ∈ R implies

A [gmax − g(t)] + B g(t) = 1.
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A solution of this equation is given by A = B = 1
gmax

and equation (3.16) simplifies to

∫
1

gmax

(
1

g(t)
+

1
gmax − g(t)

)
dg(t) =

∫
κsi dt

⇔

∫
1

g(t)
dg(t) +

∫
1

gmax − g(t)
dg(t) = gmax κsi t + C1, (3.17)

where C1 is the integration constant. Integrating the left-hand side of equation (3.17) yields

ln (|g(t)|) − ln (|gmax − g(t)|) = gmax κsi t + C2

⇔ ln
(∣∣∣∣ g(t)

gmax − g(t)

∣∣∣∣) = gmax κsi t + C2

⇔
gmax − g(t)

g(t)
= exp

{
−gmax κsi t

}
·C3, (3.18)

where Ci, i ∈ {2, 3} are real-valued constants. In order to determine the integration constant

C3, we set t = 0 and denote the intercept, i.e. g(0), by β0. Then,

C3 =
gmax − β0

β0
.

Substituting C3 into equation (3.18) and solving for g(t) yields

g(t) =
gmax

exp
{
−gmax κsi t

} (
gmax

β0
− 1

)
+ 1

.

The above calculations were conducted for 0 < g(t) < gmax. However, we note that g(t) = 0

and g(t) = gmax solve the differential equation (3.15).

For the following considerations, we define β1 := gmax and β2,si := κsi gmax. Then,

the differential equation (3.15) is solved through

g(t) = g(si, t, θ) = g(x̌i, j, si, t, θ) =
β1

e−β2,si t
(
β1
β0
− 1

)
+ 1

,

where θ = (β0, β1, β2,1, ..., β2,4)>. In this model β0 denotes the intercept, β1 the final recov-
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ery level, and β2,si the treatment specific recovery rate. However, usually the scores and

the rate of recovery depend on explanatory variables. Incorporating the covariates x̌i, j is

straightforward:

g(x̌i, j, si, t, θ) =
β1 + α>1 x̌i, j

exp{−([β21 − β2,si 1(si , 1)] + α>2 x̌i, j) · t}
(
β1 + α>1 x̌i, j

β0 + α>0 x̌i, j
− 1

)
+ 1

, (3.19)

where 1(si , 1) is one if si , 1 and zero otherwise, i.e. without loss of generality we assume

that interest lies in the treatment contrasts compared to the standard treatment Tubigrip,

i.e. si = 1. The parameter vector characterizing the mean of Y is then given by θ =

(β0, β1, β2,1, ..., β2,4, α
>
0 , α

>
1 , α

>
2 )>. The interpretation of all parameters is straightforward:

• β0 + α>0 x̌i, j describes the intercept, where α0 indicates the effect of the covariates on

the intercept.

• β1 + α>1 x̌i, j describes the final recovery level and α1 the covariate effects on this

recovery level. This model accounts for the bounded nature of the score. As time

increases, a limiting score which varies with x̌i, j is achieved.

• [β21 − β2,si 1(si , 1)] + α>2 x̌i, j indicates the rate of improvement, i.e. how fast the

final recovery level is achieved. This rate depends on the randomisation group si and

the covariates x̌i, j. For si ∈ {2, ..., 4} the parameters β2,si denote the contrast to the

treatment slope of si = 1, i.e. β21.

Note that in order to increase statistical power and the precision of treatment effect esti-

mates, we could condition on the baseline score Yi,0 instead of including it as component

of the outcome vector. In more detail, model (3.19) with β0 + α>0 x̌i, j = β0 + α0 yi,0 could

be fit to the outcome vector Ỹi = (Yi,4,Yi,12,Yi,39)>. Although this reformulation is gener-

ally appealing, we will focus on the four-dimensional outcome vector Yi which includes the

baseline score and model (3.19).

In order to capture the inter-individual variation, we extend this model to a non-

linear mixed model by including the subject-specific random effect Ui. Generally, the ran-
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dom effect can be incorporated in a number of ways. For the current investigations we

focus on a one-dimensional random effect Ui ∼ N(0, σ2
U) which is included in an additive

manner:

g(x̌i, j, si, t, θi) =
β1 + α>1 x̌i, j

exp{−([β21 − β2,si 1(si , 1)] + α>2 x̌i, j) · t}
(
β1 + α>1 x̌i, j

β0 + α>0 x̌i, j
− 1

)
+ 1

+ Ui,

where θi = (θ>,Ui)>. That is, we assume that the intercept and the upper bound vary across

patients, but not the rate of recovery.

The covariance parameter for this model is given by ξ = (σ,σU)>. Note that this

model can easily be reformulated in terms of a multivariate normal model with a compound

symmetry covariance structure:

Yi ∼ NMi (µ̃i,Σi) , where (3.20)

µ̃i j =
β1 + α>1 x̌i, j

exp{−([β21 − β2,si 1(si , 1)] + α>2 x̌i, j) · t j}

(
β1 + α>1 x̌i, j

β0 + α>0 x̌i, j
− 1

)
+ 1

,

µ̃i = (µ̃i,1, ..., µ̃i,Mi)
>; JMi is a Mi × Mi matrix with all elements unity and

Σi = σ2 IMi + σ2
U JMi .

Note that the covariance matrix of subject i depends on i only through its dimension and is

a sub-matrix of the M ×M-dimensional overall covariance matrix Σ. The sub-matrix Σi has

the appropriate rows and columns for the observed measurement times. The assumed co-

variance structure implies equal correlation of any two different measurements on the same

subject regardless of the length of the time interval between these measurements. How-

ever, the design of the CAST study had unequally spaced time points, and with repeated

measurements, we expect higher correlation when the measurements are closer in time than

when they are further apart. Additionally, with bounded data, correlations increase as mea-

surements reach the bounds regardless of the time interval between measurements, further
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Ignorable Missingness
Variable Parameter Est. SE p-val.
Intercept β0 40.92 0.79 -
Final Recovery β1 82.76 1.00 -
Covariate Effects on Final Recovery Level
Age-effect α1,1 -0.24 0.07 <0.001
Gender-effect α1,2 -5.28 1.44 <0.001
Treatment-Specific Recovery Rates
Rate of Tubigrip β21 0.29 0.03 -
Contrast: BKC β22 -0.11 0.04 0.004
Contrast: Aircast β23 -0.07 0.04 0.072
Contrast: Bledsoe β24 0.0005 0.03 0.989
Covariate Effects on Recovery Rate
Age-effect α2,1 -0.01 0.001 < 0.001
Gender-effect α2,2 -0.06 0.03 0.034
Variance Components
Within - Variance σ 13.63 0.26 -
Between - Variance σU 12.00 0.51 -

Table 3.2: Overview of the parameter estimates and standard errors for the outcome model (3.20)
based on the assumption of an ignorable missingness process. The p-values are reported only for the
components of θ and ξ that might be zero.

complicating the situation. More flexible covariance structures for bounded continuous

data, and the CAST data set in particular, are discussed in Chapter 4.

In the following, we fit model (3.20) to the CAST data set, assuming an ignorable

missingness process. We adjust for the randomisation group si, age and gender of the

patients. Let ai = agei − 27 (age centered around the median) and gender sexi ∈ { f ,m} ( f

female, m male). Then

x̌i, j = x̌i = (ai,1(sexi = f ))> .

Furthermore, α` = (α`,1, α`,2)> for ` ∈ {0, 1, 2}. The maximum likelihood estimates for

θ and ξ can be calculated through the Newton-Raphson method, which is implemented in

the SAS-procedure NLMIXED [SAS/STAT, 1999]. The parameter estimates for the fitted

model are summarized in Table 3.2. Note that a primary analysis revealed insignificant

age- and gender-effects on the intercept, i.e. α0 = 0. The interpretation of all parameters

is straightforward. The intercept for an average patient, where the patient-specific quantity

is zero, is given by β̂0 = 40.92. The final recovery level for an average person is given by
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β̂1 = 82.76, but with a negative age-effect and the final recovery level for female patients

is on average approximately 5 score points lower than for male patients. Using these point

estimates and allowing for the age range of 16 to 72 implies that the final recovery level

for male patients varied between 72 and 85 score points, whereas for an average female

patient the final recovery level lay between 67 and 80. Furthermore, we observe a negative

age effect on the rate of improvement, i.e. older participants recovered less quickly than

younger patients. In addition, female patients recovered less quickly than male patients as

γ̂2 < 0. Generally this means that the final recovery level for older and female patients was

lower than for younger and male patients. In particular, this implies that older and female

patients were less likely to recover completely from a severe sprain with the treatment

options tested in this trial.

The standard deviations reflecting the within- and between-patient variations are of

the same magnitude.

Regarding the treatment comparison, a significantly higher recovery rate of BKC

compared to Tubigrip is detected. The rate of recovery for Aircast brace was only marginally

higher than for Tubigrip. There was no significant difference in recovery rates between

Tubigrip and Bledsoe boot. The fitted curves for the different randomisation groups for

average male patients of age 37 or 66 are shown in Figure 3.5(a) and Figure 3.5(b) respec-

tively. Independent of the randomisation group, patients ended at the same score. However,

the rate at which they achieved the final recovery level differed substantially, in particular

for older patients. Note that the fitted curves for Tubigrip and Bledsoe are indistinguishable

due to the insignificant treatment difference. The dependence of the recovery rate and the

final recovery level on age and gender is visualized for the randomisation group Tubigrip in

Figure 3.5(c). In order to capture the interplay between the covariate effects of age, gender

and randomisation groups with the bounded nature of the score, we present the average

improvements between two adjacent time points dependent on these covariates, see Table

3.3. The estimates for the improvements underline the large effect of age and gender on

the recovery. Comparing the score gain for 16 year old and 66 year old patients shows that
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Age Gender Treatment weeks 0-4 weeks 4-12 weeks 12-39

Est. CI Est. CI Est. CI

16 years

female

Tubigrip 20.3 [15.9,24.8] 16.1 [13.1,19.1] 2.4 [0.1,4.6]
BKC 26.2 [22.4,30.0] 12.0 [8.6,15.5] 0.6 [-0.03,1.2]
Aircast 23.8 [20.1,27.5] 13.9 [10.8,17.0] 1.1 [0.1,2.0]
Bledsoe 20.4 [16.3,24.5] 16.1 [13.2,18.9] 2.3 [0.3,4.4]

male

Tubigrip 26.2 [21.9,30.4] 16.6 [13.1,20.1] 1.4 [0.1,2.7]
BKC 32.0 [28.5,35.4] 11.8 [8.5,15.1] 0.3 [0.01,0.7]
Aircast 29.7 [25.9,33.4] 13.8 [10.4,17.3] 0.6 [0.04,1.2]
Bledsoe 26.2 [23.0,29.5] 16.5 [13.9,19.2] 1.4 [0.4,2.3]

21 years

female

Tubigrip 18.4 [14.4,22.5] 16.2 [13.9,18.5] 1.3 [0.5,5.6]
BKC 24.4 [20.8,28.1] 12.4 [9.2,15.6] 0.4 [0.01,1.5]
Aircast 22.0 [18.5,25.5] 14.2 [11.5,16.9] 0.6 [0.2,2.5]
Bledsoe 18.5 [14.6,22.3] 16.1 [13.9,18.4] 1.3 [0.6,5.4]

male

Tubigrip 24.2 [20.2,28.2] 17.0 [14.0,19.9] 0.8 [0.3,3.3]
BKC 30.2 [26.8,33.5] 12.3 [9.2,15.4] 0.2 [0.03,0.8]
Aircast 27.8 [24.1,31.5] 14.3 [11.1,17.6] 0.4 [0.1,1.5]
Bledsoe 24.3 [21.1,27.4] 16.9 [14.6,19.2] 0.6 [0.7,2.9]

27 years

female

Tubigrip 16.2 [12.5,19.8] 16.0 [14.4,17.6] 4.0 [1.1,7.0]
BKC 22.3 [18.8,25.9] 12.8 [9.9,15.7] 1.0 [0.1,2.0]
Aircast 19.9 [16.5,23.2] 14.5 [12.2,16.8] 1.9 [0.4,3.3]
Bledsoe 16.2 [12.5,19.9] 16.0 [14.3,17.6] 4.0 [1.0,7.0]

male

Tubigrip 21.8 [18.1,25.6] 17.3 [14.9,19.6] 2.4 [0.6,4.2]
BKC 28.0 [24.7,31.4] 12.9 [9.9,15.9] 0.6 [0.1,1.1]
Aircast 25.6 [21.8,29.3] 14.9 [11.8,17.9] 1.1 [0.1,2.1]
Bledsoe 21.9 [18.8,25.0] 17.3 [15.3,19.2] 2.4 [1.0,3.8]

37 years

female

Tubigrip 12.4 [9.5,15.4] 14.9 [13.8,16.1] 6.4 [2.8,9.9]
BKC 18.9 [15.4,22.4] 13.3 [10.8,15.8] 1.7 [0.2,3.1]
Aircast 16.3 [13.0,19.6] 14.5 [12.7,16.3] 3.0 [0.8,5.2]
Bledsoe 12.5 [8.8,16.2] 15.0 [13.8,16.1] 6.3 [1.9,10.8]

male

Tubigrip 17.9 [14.4,21.4] 17.3 [15.7,18.9] 3.9 [1.4,6.5]
BKC 24.4 [20.8,28.0] 13.7 [10.8,16.7] 1.0 [0.1,1.9]
Aircast 21.8 [17.8,25.9] 15.5 [12.7,18.4] 1.8 [0.2,3.4]
Bledsoe 18.0 [14.6,21.3] 17.3 [15.7,18.9] 3.9 [1.4,6.4]

66 years

female

Tubigrip 2.3 [-1.3,5.9] 4.3 [-1.9,10.5] 10.9 [2.6,19.1]
BKC 9.2 [4.4,13.9] 11.4 [9.0,13.9] 6.3 [-0.3,12.8]
Aircast 6.3 [1.3,11.3] 9.7 [5.1,14.3] 10.1 [2.2,18.1]
Bledsoe 2.4 [-3.3,8.0] 4.4 [-5.2,14.0] 11.0 [-1.3,23.3]

male

Tubigrip 6.9 [1.9,11.8] 11.2 [5.8,16.5] 13.1 [5.2,21.0]
BKC 14.1 [8.5,19.6] 14.2 [11.3,17.1] 4.1 [-0.9,9.0]
Aircast 11.1 [4.7,17.5] 14.0 [11.3,16.8] 7.1 [-1.3,15.5]
Bledsoe 6.9 [0.7,13.1] 11.2 [4.7,17.7] 13.0 [3.3,22.7]

Table 3.3: Overview of the average improvements (Est.) between two adjacent time points for
different age groups, genders and randomisation groups. The age classes were classified according
to the first percentile (16 years), the first (21 years), second (27 years) and third (37 years) quantiles
and the 99th percentile (66 years). The confidence intervals are denoted by CI.
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(a) Recovery for age = 37 years (b) Recovery for age = 66 years (c) Recovery for Tubigrip

Figure 3.5: a) Fitted recovery curve versus time for the different randomisation groups and 37
year old male patients. b) Fitted recovery curve versus time for the different randomisation groups
and 66 year old male patients. c) Fitted FAOS-score versus time for different genders, age classes
and Tubigrip. The age groups were classified according to the first (21 years) and third (37 years)
quantiles.

older patients recovered much more slowly than young patients. Furthermore, the effect of

the bounded score stands out. In the last time interval, the improvement was generally much

smaller than in the previous intervals. However, the effect of the bounded score depended

also on age and gender.

For an average person, i.e. Ûi = 0, we are able to calculate the expected time to

achieve a certain score S based on the fitted curves. For this purpose we need to rearrange

equation (3.19) to solve for time t(S ):

t(S ) =
−1

[β21 − β2,si 1(si , 1)] + α2 ai + γ2 1(sexi = f )

× log


β1 + α1 ai + γ1 1(sexi = f ) − S(
β1 + α1 ai + γ1 1(sexi = f )

β0
− 1

)
· S


The estimated times to achieve a score of S = 65 are shown in Table 3.4. While a 16 year

old male patient under Tubigrip needed approximately 4 weeks to achieve a score of 65, a

man at the age of 37 years needed on average 2 weeks longer. The difference for 66 year

old patients is even more drastic. However, care should be taken in reporting these results
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female male

Age Treatment Weeks CI Weeks CI

16 years

Tubigrip 5.0 [3.6,6.3] 3.6 [2.8,4.3]
BKC 3.5 [2.8,4.3] 2.7 [2.2,3.1]

Aircast 4.0 [3.2,4.9] 3.0 [2.4,3.5]
Bledsoe 4.9 [3.7,6.2] 3.5 [3.0,4.1]

21 years

Tubigrip 5.6 [4.1,7.1] 3.9 [3.1,4.7]
BKC 3.9 [3.0,4.7] 2.9 [2.4,3.4]

Aircast 4.5 [3.5,5.4] 3.3 [2.7,3.9]
Bledsoe 5.6 [4.2,7.0] 3.9 [3.3,4.5]

27 years

Tubigrip 6.7 [4.9,8.4] 4.5 [3.6,5.4]
BKC 4.4 [3.4,5.4] 3.2 [2.6,3.8]

Aircast 5.2 [4.1,6.3] 3.7 [2.9,4.4]
Bledsoe 6.6 [4.9,8.4] 4.5 [3.7,5.2]

37 years

Tubigrip 9.3 [6.8,11.8] 5.8 [4.5,7.1]
BKC 5.6 [4.2,7.0] 3.9 [3.1,4.7]

Aircast 6.8 [5.1,8.5] 4.5 [3.4,5.6]
Bledsoe 9.3 [6.3,12.2] 5.7 [4.5,7.0]

66 years

Tubigrip 73.5 [-40.0,186.9] 18.4 [4.4,32.4]
BKC 17.1 [4.7,29.5] 8.3 [4.2,12.5]

Aircast 25.6 [2.2,49.1] 10.9 [3.9,18.0]
Bledsoe 71.5 [-96.3,239.4] 18.2 [1.4,35]

Table 3.4: An overview of the expected number of weeks to reach a score of 65 for different
genders, age groups and the four randomisation groups.

as for 66 year old female patients the maximum achievable score was nearly 68, which is

close to S = 65 and thus leads to an imprecise estimation. This is reflected in the wide

confidence intervals which even include negative values. In general, however, we believe

that this information, together with the ability to quantify the expected final recovery level

per age band and gender, could be of particular interest to patients.

Finally, the adequacy of the model for the mean response is assessed via model diag-

nostic plots (Figure 3.6, page 71) presented by Park and Lee [2004] and used in Section 3.3.

We show the Q-Q plot for model (3.20) and in order to enable a comparison with the results

in Section 3.3, we present also the results based on model (3.20) with α1,2 = α2,2 = 0, i.e.

we do not adjust for the gender of patients. We denote these fitted non-linear mixed models

by NLMM-1 (model (3.20)) and NLMM-2 (model (3.20) without gender), respectively. The

plots using the fitted covariance matrix show small signs of skewness. However, using the
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(a) NLMM-1, fitted Σi(τ) (b) NLMM-2, fitted Σi(τ)

(c) NLMM-1, sample Σi(τ) (d) NLMM-2, sample Σi(τ)

Figure 3.6: Q-Q plots for the fitted non-linear mixed models using the normal distribution. NLMM-
1 corresponds to model (3.20) and NLMM-2 to model (3.20), where we do not adjust for gender.
The results based on fitted and sample covariance matrtices are contrasted. The horizontal axes
correspond to the expected quantiles of the standard normal distribution, whereas the vertical axes
correspond to the observed normalized residuals from the fitted models. The dashed lines illustrate
the distribution reference line.

sample covariance matrix reveals an adequate fit of the models for the mean response. Note

that independent of the chosen covariance matrix, the non-linear mixed models presented

lead to better model fits than any transformation explored in Section 3.3. In addition, we

contrast the observed average score evolution for Tubigrip and BKC with the fitted mean

response profiles. For NLMM-1 the observed average evolutions of men are contrasted

with the fitted response curves of 27 year old, male patients, see Figure 3.7(a), page 73.

In the case of NLMM-2, the observed average evolutions of all patients are compared to

the fitted mean response curves of 27 year old patients, Figure3.7(b), page 73. These plots

reveal a relatively poor model fit at the twelfth week time point. This is caused by compar-

ing the fitted curves of 27 year old patients to the observed evolutions of all patients. To

present a fairer comparison, we predict the FAOSS-scores based on the presented models
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and compare these to the observed average score evolutions. In this context, we can predict

the outcomes of a given subject through the population-average mean response model (via

µ̃i, j, see equation (3.20)) or through the subject-specific mean response model (via µ̃i, j + Ûi,

where Ûi is the EB estimate, see Section 3.4.2). Graphical displays of these comparisons

are given in Figure 3.7, page 73. The NLMM-1 and NLMM-2 model are shown to predict

the mean responses accurately. In this context, the predictions based on the subject-specific

mean response models (Figure 3.7(e) and Figure 3.7(f)) are shown to be more accurate than

those based on the population-average mean response models (Figure 3.7(c) and 3.7(d)).

Overall, the non-linear mixed models lead to a satisfying fit.

3.5.1 Summary

We have proposed a model for continuous, bounded longitudinal data which enables the

investigation of covariate effects on the rate of change and the final recovery level. The

model belongs to the class of non-linear mixed models which have found many biological

applications, such as pharmacokinetic analysis, rate of clearance of a drug, studies of growth

to adult size and decay [Davidian and Giltinan, 1995, 1993; Vonesh and Chinchilli, 1997;

Davidian and Giltinan, 2003]. However, to the best of our knowledge they are not yet used

in the health-care context.

Although this specific model was motivated by the CAST study, we believe that it

can be suitable for the analysis of other studies. In health-care and medical research, it is

very common to measure physical or mental ability repeatedly over time, through question-

naires or scales. Based on the answers, scores can be derived for the study points. In many

applications, these scores will have finite range, where one bound indicates ‘no symptoms’

and the other bound ‘extreme symptoms’. Examples are the Barthel Index [Mahony and

Barthel, 1965], the Neck Disability Index [Vernon and Mior, 1991], the Foot and Ankle

Outcome Score (FAOS) [Roos et al., 2001] and visual analogue scales. In studies where

we expect most patients to recover, we often observe that later measurements are clustered

towards one end of the range. In this case, different patients might have the same initial and
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Figure 3.7: Observed average response profiles versus fitted response profiles for Tubigrip and
BKC. For NLMM-1 the observed average evolutions of men are contrasted with the fitted response
curves of 27 year old, male patients (Figure 3.7(a)). For NLMM-2, the observed average evolutions
of all patients are compared to the fitted mean response curves of 27 year old patients (Figure 3.7(b)).
In addition, the observed average response profiles are contrasted with the predicted mean response
evolutions, where the predictions are calculated based on the population-average mean response
models (without Ûi, Figure 3.7(c) & (d)) or based on the subject-specific mean response models
(with Ûi, Figure 3.7(e) & (f)).
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the same final scores. However, the rate at which they achieve the final score might differ

substantially depending on explanatory variables, for example, treatment or age. The scores

at final recovery can also be of scientific interest, as they can differ substantially between

different ages and genders.

For a continuous and bounded score, the classical approach is to transform the data

so that a linear regression model fits adequately. We claim that this approach, for example

by using the log or logit transformation does not always resolve the problem of a non-linear

relationship between the outcome score and covariates. We investigated several transforma-

tions for the CAST study, but a non-linear relation with time persisted due to the bounded

nature of the outcome. Also the inclusion of higher order time effects did not lead to a satis-

fying fit. Importantly, using transformations we were no longer able to investigate covariate

effects on the final recovery level, and the interpretation of covariate effects on the original

score was severely complicated. For all these reasons, we believe that non-linear mixed

models can be a valuable alternative.

In the specific case of the CAST study, the original analysis did not distinguish

between the within- and between-individual variation [Lamb et al., 2009; Cooke et al.,

2009]. Additionally, the repeated measurements were not modelled jointly: the treatment

differences were investigated for every time point separately and it was not clear how to

combine these estimates into a single inference. This situation was even more complicated

as the data were clustered towards the end of the trial. Discrimination between treatments

at these time points was practically impossible. Moreover, no satisfactory description of the

score evolution over time for different age groups and genders was presented.

Our model was derived on medical research grounds and reflects the knowledge of

experts in the specific research area. It enables a very flexible incorporation of exploratory

variables and is easy to interpret, which is a valuable advantage over the alternative of data

transformation. In addition, it accounts for the two different sources of variation and enables

us to model the final recovery, which might be of particular interest to patients.

Fitting this model to the CAST data revealed that recovery was more rapid with
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BKC than with Tubigrip. These results coincide with those of the original analysis, but add

to it by allowing the estimation of the time to recovery in each of the groups. The results of

this analysis re-enforce the results of the original CAST trial, insofar as it provides further

that interventions that immobilise the ankle, such as below knee plaster, are more effective

than those which permit early movement. These conclusions are contrary to previous stud-

ies [Bridgman et al., 2003]:‘There is some evidence that interventions that immobilise the

ankle, such as below knee plaster, are less effective than those which permit early move-

ment.’ Taking into account the considerable variation in the costs for each treatment, these

results might be relevant for the UK National Health Service. ‘The unit costs of devices

and the labour to fit them is estimated to be, per each patient, £60 for boots (Bledsoe), £30

for braces (Aircast), £12 for below knee plaster casts, and £2 for Tubigrip (from retailers

list prices, estimates of nurse time to fit devices in a pilot study, and standard NHS nursing

costs [...])’ [Bridgman et al., 2003].

Further, we show that older and female patients recovered substantially more slowly

than younger and male participants. Also the scores at final recovery for older female

patients were lower than for young male patients, suggesting that older female patients

were less likely to recover completely from an acute soft tissue injury. We translated these

findings into auxiliary information, such as the expected time to achieve a certain score for

different patient groups.

Although we believe that our model is superior to standard analysis techniques ap-

plied in this field, we note that the model is limited by the covariance structure it assumed

for the outcome vector. We worked with a compound symmetry covariance structure, which

implied equal correlation of any two different measurements on the same subject regardless

of the length of the time interval between these measurements. We will relax this assump-

tion and discuss more suitable covariance structures for bounded, continuous longitudinal

data in Chapter 4. Furthermore, we note that our analysis assumed an ignorable missingness

process. A sensitivity analysis scrutinizing this assumptions will be presented in Chapter 5

and Chapter 6.
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Chapter 4

Modelling the Covariance Matrix for

Continuous Bounded Longitudinal

Data

4.1 Introduction

The aim of the CAST study was to compare the effectiveness of four ankle sprain treat-

ments, where effectiveness was measured in terms of the mean response vector. Thus, the

scientific focus lies on the mean response, and in Chapter 3 we derived a model for the mean

response vector while treating the covariance structure as a nuisance. Indeed, most longi-

tudinal studies focus on regressing the mean response on available covariates, while the

covariance structure is thought to be a ‘nuisance parameter’ [MacKenzie and Pan]. How-

ever, as noted by MacKenzie and Pan, in the case of Gaussian data the inferential challenge

is symmetrical in mean and covariance. A misspecification of the covariance structure is

able to bias inference for the mean vector of interest [Fitzmaurice et al., 2004], e.g. due to

confidence intervals that are too narrow or wide and p-values that are too small or large.

Therefore, the covariance structure should not be seen as a nuisance, but as an additional

object which needs to be specified.
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4. MODELLING THE COVARIANCE MATRIX

In the context of generalized estimating equations, standard errors for the mean

vector of interest can be based on the so-called sandwich estimators [Liang and Zeger,

1986], which are robust to misspecifications of the covariance matrix [Fitzmaurice et al.,

2004]. In principal, it is also possible to base inference for linear mixed models on the

sandwich estimator. However, using generalized estimating equations can lead to great loss

of efficiency for mean parameters. Also inference may be biased for partially observed data

sets when the reason for data being missing is related to the outcome of interest, see Chapter

5. For these reasons we want to focus on likelihood-based inference.

In Section 3.2, we discussed several approaches to account for the correlation among

the repeated measures in longitudinal studies. We presented the approach of full multivari-

ate models, where the dependence structure is modelled through the covariance matrix;

and the random-effect approach, where the inclusion of subject-specific random effects in-

duces the correlation structure. As Laird and Ware [1982] note, full multivariate models are

more flexible in modelling the covariance matrix than random-effect models. However, this

comes with the cost of more parameters and decreased power in small samples.

According to the scientific literature, there are three broad approaches to modelling

the covariance structure for full multivariate models. Firstly, an unstructured covariance

matrix can be fitted to the data [Fitzmaurice et al., 2004]. The great advantage is that

no assumptions about variances and covariances are made. However, fitting models with

this covariance structure can be challenging, because the estimated matrix must be positive

semi-definite. Different matrix decompositions which enable unconstrained parametriza-

tions have been proposed by Pinheiro and Bates [1996]. A further challenge of the unstruc-

tured covariance models is that the number of covariance parameters, e.g. for a balanced

study design:
M (M + 1)

2
, increases rapidly with the number of observations times M. In

particular, the covariance matrix may feature a structure that can be appropriately captured

by fewer parameters, which themselves can be estimated more accurately than the uncon-

strained covariance matrix [Diggle et al., 1996]. This leads to the second approach, the

so-called covariance pattern models which impose a structure on the covariance matrix.
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Depending on the accuracy of the imposed structure, the precision of the estimation can be

improved. Some of the most widely used covariance pattern models for longitudinal data

are compound symmetry (see Section 3.5), Toeplitz, autoregressive, banded and exponential

covariance models. For details regarding these covariance structures we refer to Fitzmau-

rice et al. [2004] and Hedeker and Gibbons [2006]. In practice, a covariance pattern model

is selected from a set of candidate structures via a model selection criterion, e.g. likelihood

ratio test, Akaike or Bayesian information criterion [Hedeker and Gibbons, 2006]. Pan and

MacKenzie [2006] refer to this approach as menu selection and note that the choice out of

a finite set of covariance structures may be not optimal. Alternatively, a data-driven regres-

sion modelling approach for the covariance matrix was proposed by Pourahmadi [1999].

This approach bases on a modified Cholesky decomposition and an unconstrained parame-

terization of the covariance matrix. We will discuss this methodology in Section 4.3.

Note that the presented covariance models for full multivariate models are gener-

ally not capable of distinguishing between-subject heterogeneity from within-subject het-

erogeneity. If both sources of variation or random-effect models are of scientific interest,

a covariance structure can indirectly be imposed by the inclusion of random effects, see

for example Section 3.5. However, the set of covariance structures that can be implied

by random-effect models is limited, see Section 3.2. Increased flexibility may be reached

by using one of the covariance model approaches for full-multivariate models to specify

the within-individual variation matrix Σ̃. We note that it can be impossible to derive the

marginal covariance matrix Σi(τ) when random effects enter the mean model equation in a

non-linear way.

In this chapter, we will investigate suitable covariance structures for bounded, con-

tinuous longitudinal data. These investigations are motivated by the CAST study and we

aim to explore the sensitivity of the inference for mean parameters based on different co-

variance structures. In this context, the mean parameters will be estimated based on the

non-linear mixed model proposed in Section 3.5. An ignorable missingness mechanism

will be assumed, that is valid likelihood-inference can be based on the observed data only,
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see Chapter 5.

Before fitting appropriate models to the CAST data set, we explore the empirical

covariance matrix, Covemp, and the empirical correlation matrix, Corremp, of the four di-

mensional response vectors Yi, i ∈ {1, ...,N}. As we are confronted with missing data, we

calculate these matrices based on the pairwise available cases [Little and Rubin, 2002]:

Covemp =



234.2 101.6 86.2 73.9

389.5 257.8 196.2

404.6 260.0

365.2


and Corremp =



1 0.34 0.28 0.25

1 0.65 0.52

1 0.68

1


. (4.1)

We see that correlations decay with increasing time lags along the rows. Along the super-

diagonals, however, the correlations increase with time due to the bounded nature of the

score. Furthermore, the variances appear to increase with time until the last observation

time is reached. This characteristic arises because most people recover towards the end

of the study, and are thus clustered at the upper bound of the score, see Figure 2.2, page

14. Overall, the covariance structure implied by Covemp and Corremp suggests an unusual

covariance matrix, where none of the widely used covariance pattern models accounts for

such a structure.

The most flexible approach to obtain a suitable structure would be to fit an un-

structured covariance matrix. However, this structure involves eight additional parameters

compared to the compound symmetry structure fitted in Section 3.5. Due to the models’

complexity and convergence problems we were not able to fit this model. In a second

attempt, we fit various covariance pattern models and covariance models induced by the

inclusion of random effects. None of the fitted models is able to account for the features

discussed previously. Therefore, we adopt the regression modelling approach presented by

Pourahmadi [1999] and discussed in Pan and MacKenzie [2003, 2006]. This methodology

is extended by allowing for ignorable missingness, see Chapter 5. Furthermore, instead of a

polynomial model for the mean vector we fit the non-linear mixed model presented in Sec-

tion 3.5. Results based on different model selection tools and details of our investigations
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are given in the next sections.

4.2 First Attempts to Model the Covariance Structure

The non-linear mixed model introduced in Section 3.5 is of the form

Yi ∼ NMi (µ̃i,Σi) , where (4.2)

µ̃i j =
β1 + α>1 xi, j

exp{−([β21 − β2,si 1(si , 1)] + α>2 xi, j) · t j}

(
β1 + α>1 xi, j

β0 + α>0 xi, j
− 1

)
+ 1

,

i ∈ {1, ...,N}, j ∈ {1, ...,Mi}; and the covariance matrix of subject i, i.e. Σi, depends on i only

through its dimension and is a sub-matrix of the M × M-dimensional overall covariance

matrix Σ. Here we are interested in specifying this overall covariance matrix Σ. In this

context we focus on model (4.2) with xi, j = ln(agei). We admit that the transformation of

age is not consistent with the approach taken in Section 3.5; it reflects the development of

the work throughout the course of the PhD.

Due to the bounded nature of the score, we argue that suitable covariance structures

ought to incorporate a dependence on the mean score and the time lags. Amongst others

we investigated the following covariance structures, assuming an ignorable missingness

process, see Chapter 5.

Let JM be a square matrix with all elements unity and t j ∈ {0, 4, 12, 39} for j ∈

{1, 2, 3, 4}. We further define the following two symmetric matrices:

A =



σ2
1 0 0 0

σ2
2 0 0

σ2
3 0

σ2
4


and B =



1 ρt2−t1 ρt3−t1 ρt4−t1

1 ρt3−t2 ρt4−t2

1 ρt4−t3

1


,
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with σ2
k ∈ R

+, k ∈ {1, 2, 3, 4} and ρ ∈ [−1, 1]. Based on these matrices we define

Σ1 := A + τ2 B + D2 JM, (4.3)

where τ2,D2 ∈ R+. This covariance matrix accounts for correlations that vary with the

lags of time through the matrix B. Furthermore, it allows for heteroscedasticity. Fitting

model (4.2) with the covariance matrix Σ = Σ1 yields that the hypothesis D2 = 0 is not

rejected at a significance level of 0.05. Moreover, ρ̂ = 0.996 with standard error 0.004. The

corresponding fitted covariance and correlation matrices are given by

Σ̂ f it,1 =



340.9 151.4 146.6 131.5

330.9 149.0 133.6

323.9 138.0

311.2


and ˆCorr f it,1 =



1 0.45 0.44 0.40

1 0.46 0.42

1 0.43

1


,

such that the correlations along the sub-diagonals and the variances decrease with time;

these features contradict the structure seen and expected for bounded continuous longitudi-

nal data.

In an attempt to recover the structure seen in equation (4.1), we tried to fit an al-

ternative covariance model, where the variances allow for the bounded nature of the data.

We assume the variances depend on the current average score, ȳ j, and the still achievable

average score,
(
100 − ȳ j

)
; ȳ j is the average score of the observed scores at observation time

t j, j ∈ {1, 2, 3, 4}. The matrix A in equation (4.3) is replaced by Ã = diag(ã11, ã22, ã33, ã44)

where ãkk = ȳk (100 − ȳk). However, this attempt failed due to convergence problems.

We fitted various other, simpler covariance pattern models, but none of the fitted

models recovered the structure seen in the empirical covariance and correlation matrices,

see equation (4.1). As noted in the introduction to this chapter, these methods model the

covariance matrix in terms of fixed effects, i.e. the covariance of the marginal response

vector is specified. Alternatively, we could focus on the mixed model formulation as the
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random effects induce a covariance structure after marginalization. Admittedly, the covari-

ance matrix defined through equation (4.3) could arise from a random-effect model where

one-dimensional subject-specific random effects Ui ∼ NM(0,D2) enter the mean model

linearly and the within-individual variation is modelled through Σ̃i = A + τ2 B.

In Section 3.5, we fitted a non-linear mixed model with compound symmetry co-

variance structure. We discussed why this structure is not suitable and will discuss an

alternative random-effect model that allows the covariances to depend on the time lags:

Yi|Ui
ind.
∼ N4

(
µi, σ

2I4
)

and Ui
ind.
∼ N(0,D2)

with µi j = µ̃i j + w>i j Ui and wi j = (1 + t j)φ.

In particular, we make use of the conditional independence assumption. The resulting co-

variance matrix for the marginal outcome vector Yi is then given by

Σ2 := σ2I + D2



1 5φ 13φ 40φ

25φ 65φ 200φ

169φ 520φ

1600φ


(4.4)

and we estimate σ̂2 = 176.21 (±6.9), D̂ = 100.06 (±13.15) and φ̂ = 0.131 (±0.02). Thus,

Σ̂ f it,2 =



276.3 123.6 140.1 162.4

328.9 173.1 200.6

372.4 227.4

439.8


and ˆCorr f it,2 =



1 0.41 0.44 0.47

1 0.49 0.53

1 0.56

1


.

The correlations along the rows and sub-diagonals increase with time, so do the variances.

Turning to the parameter vector θ, we note that the estimates θ̂ based on Σ1, Σ2 and

compound symmetry (CS) vary slightly, see Table 4.1, page 84. The intercepts, treatment-

specific recovery rates and the age-effects on the rates of recovery are practically indis-
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tinguishable for all covariance structures. Although the standard errors vary slightly, the

inference remains the same for all models investigated. However, it is noticeable that the

final recovery level and the age-effect on this quantity are considerably different when using

Σ2.

From the two examples, Σ1 and Σ2, we see that modelling the covariance structure

for bounded longitudinal data is very challenging. While the correlations along the rows

decrease because the serial correlations decrease, the correlations along the sub-diagonals

increase due to the bounded nature of the score. Furthermore, the variances are not constant

over time. In order to account for these features, we exploit a more flexible and direct

approach introduced in Pourahmadi [1999].

4.3 Data-Driven Regression Modelling Approach

In this section we present a covariance model that uses the modified Cholesky decompo-

sition of the covariance matrix and which has a nice regression interpretation. It was first

presented by Pourahmadi [1999] and refined by Pan and MacKenzie [2003].

Based on derivations in Pourahmadi [1999], we know that there exists a unique

lower triangular matrix Fi with 1’s as main diagonal entries and a unique diagonal matrix

Qi, such that the marginal covariance matrix Σi of Yi can be decomposed to

Σi = Fi Qi F>i . (4.5)

As discussed in Pourahmadi [1999]; Pan and MacKenzie [2003, 2006] all entries of the

matrices Fi and Qi have a statistical interpretation: the below-diagonal entries of the matrix

Fi are the negatives of the autoregressive coefficients, ϕi, j,k ( j > k), in

ŷi, j = µ̃i, j +

j−1∑
k=1

ϕi, j,k (yi,k − µ̃i, j),

the linear square predictor of yi, j based on its predecessors yi, j−1, ..., yi,1. The diagonal
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Figure 4.1: Empirical regressogram based on the empirical covariance matrix. The triangles denote
the observed (−1)ϕobs, j,k and log(σ2

obs, j). The smooth curve was derived using local polynomial
regression fitting and the R-program scatter.smooth.

entries of Qi are the prediction (or innovation) variances σ2
i, j = Var(yi, j − ŷi, j), where j ∈

{1, 2, 3, 4}. The advantage of this method compared to other decomposition methods is that

the parameters ϕi, j,k are unconstrained, while σ2
i, j ∈ R

+. In order to simplify modelling, we

focus on log(σ2
i, j) ∈ R. We note that this transformation could be problematic for variances

near zero. For the CAST data set, however, this is not an issue, as variances are expected to

be substantially larger than zero.

In line with the last section, we assume that Σi, depends on i only through its di-

mension and is a sub-matrix of the M × M-dimensional overall covariance matrix Σ.

In the next step, we will suggest parametric models for the covariance parameters

ϕ j,k and σ2
j . We use empirical regressograms, introduced in Pourahmadi [1999], to inform

our model choice. Based on the empirical covariance matrix (equation (4.1)) the unique

matrices F and Q are specified. Then, the negative sample autoregressive parameters ϕobs, j,k

are plotted against the time lags, |t j − tk| ∈ {0, 4, 12, 27, 35, 39}, and the log-innovation

variances log(σ2
obs, j) are plotted versus time t j ∈ {0, 4, 12, 39}. The resulting plots are shown

in Figure 4.1. The fitted smooth curves were derived using local polynomial regression

fitting. The empirical regressograms and the fitted smooth curves suggest that ϕ j,k and
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log(σ2
j) are polynomial functions of the lags and time, respectively. For the logarithm of the

innovation variances a cubic function and for the autoregressive parameters a polynomial

of degree 5 seem reasonable. Note that polynomials of these degrees would lead to exact

interpolations of the covariance parameters.

However, according to Pan and MacKenzie [2003], we should be cautious with the

regressogram-based model selection, as a model that is not optimal may be proposed. An

alternative approach based on the Bayesian Information Criterion (BIC) is suggested. For

this method, the profile likelihoods by saturating the parameter sets in pairs are investigated.

Let dϕ ∈ {0, 1, ..., 5} denote the degree of the negative autoregressive parameters and dσ ∈

{0, 1, 2, 3} the degree of the log-innovation variances. In our context, the BIC for covariance

model selection depends on the chosen degrees and is defined by

BIC(dϕ, dσ) = −2 lmax(dϕ, dσ) + np log(N),

where lmax(dϕ, dσ) is the maximised log-likelihood for the specific pair (dϕ, dσ) and np =

dϕ + dσ + 2 is the number of covariance parameters. According to Pan and MacKenzie

[2003], the optimum pair (d∗ϕ, d
∗
σ) may be found using the two following searches:

d∗ϕ = argmindϕ

{
BIC(dϕ,max(dσ) = 3)

}
and

d∗σ = argmindσ

{
BIC(max(dϕ) = 5, dσ)

}
.

However, as emphasized by Fitzmaurice et al. [2004] and Hedeker and Gibbons [2006],

BIC extracts a very large penalty for the addition of parameters. To quote Fitzmaurice et al.

[2004]: ‘ In general, we do not recommend the use of BIC for covariance model selection

as it entails a high risk of selecting a model that is too simple or parsimonious for the data

at hand.’ Therefore, we will contrast the results based on the BIC searches with those based

86



4. MODELLING THE COVARIANCE MATRIX

on the Akaike Information Criterion (AIC), which is defined as

AIC(dϕ, dσ) = −2 lmax(dϕ, dσ) + 2 np

and known to overfit, see Hurvich et al. [1989]. The general polynomials we are considering

are given by

ϕ j,k = γ0 + γ1 (t j − tk) + . . . + γ(dϕ+1) (t j − tk)dϕ and (4.6)

log(σ2
` ) = δ0 + δ1 t` + . . . + δ(dσ+1) tdσ

`
,

where j ∈ {2, 3, 4}, k ∈ {1, 2, 3, 4} with j > k and ` ∈ {1, 2, 3, 4}. We define γ =

(γ0, ..., γ(dϕ+1))> and δ = (δ0, ..., δ(dσ+1))>.

Based on the marginal model

Yi ∼ N4 (µ̃i,Σ)

with µ̃i specified in equations (3.19), (3.20) and the covariance matrix Σ determined through

equations (4.5) and (4.6), we can calculate the log-likelihood. Numerical optimization

routines are used in an attempt to maximize the joint log-likelihood. However, using the

parametrization showed in (4.6) our optimization method fails to converge. As suggested

in Pan and MacKenzie [2006], it is beneficial to represent the polynomials in orthogonal

form. This re-parametrization has three main advantages, see Hedeker and Gibbons [2006].

Firstly, it avoids collinearity problems that can result from using multiples of t j as regres-

sors. Secondly, using orthogonal polynomials has the advantage of putting the polynomials

on the same scale. That is, the estimated coefficients of the polynomial are standardized

and their relative contribution can be compared based on their magnitude. Finally, orthogo-

nal polynomials circumvent the fact that for higher-degree polynomials it gets increasingly

difficult to estimate the regression coefficients as the coefficients and their standard errors

become vanishingly small.
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4. MODELLING THE COVARIANCE MATRIX

Based on the work described in Bock [1975] and Hedeker and Gibbons [2006], we

re-parametrize the polynomials defined in (4.6) through orthogonal polynomials. In a first

step we calculate the lag (S auto) and time (S innov) matrices based on the original metric:

S auto =



1 1 1 1 1 1

4 8 12 27 35 39
...

...
...

...
...

...

4dϕ 8dϕ 12dϕ 27dϕ 35dϕ 39dϕ


and S innov =



1 1 1 1

0 4 12 39
...

...
...

...

0 4dσ 12dσ 39dσ


.

The first rows correspond to the intercept. Note that these matrices simply capture the

information of the regressors in the polynomials defined above, see equation (4.6). Based

on these matrices and linear algebra the orthogonal polynomial values Oauto and Oinnov can

be calculated. Let S ∈ {S auto, S innov} and O be the corresponding orthogonal transformation.

Then we perform the following steps to obtain O:

Step 1: Compute the symmetric matrix S > S .

Step 2: Obtain the upper-triangular Cholesky factor H of S > S .

Step 3: Calculate the inverse of H, i.e. H−1.

Step 4: Compute O as O = S H−1.

To distinguish between the two representations, i.e. the original time metric S and the

orthogonal polynomial time metric O, we denote the associated parameter vectors based on

the orthogonal parametrization as γorth and δorth.

Using the orthogonal transformation we are now able to maximize the likelihood

and to perform the BIC- and AIC-based search for the optimal model. The values of the

maximized log-likelihoods and the corresponding BIC and AIC values are summarized in

Table 4.2. The significance of the differences in the AIC and BIC values for two nested

models can be determined based on the χ2-distribution. For the difference of the BIC- and

AIC-values based on lmax(dϕ = 5, dσ = u), lmax(dϕ = 5, dσ = v); u, v ∈ N and v > u we
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Search for d∗ϕ
dϕ lmax(dϕ, dσ = 3) np BIC(dϕ, dσ = 3) AIC(dϕ, dσ = 3)
0 -7654.64 5 15340.86 15319.28
1 -7637.38 6 15312.65 15286.76
2 -7634.47 7 15313.15 15282.94
3 -7627.25 8 15305.02 15270.50
4 -7626.88 9 15310.60 15271.76
5 -7605.72 10 15274.59 15231.44

Search for d∗σ
dσ lmax(dϕ = 5, dσ) np BIC(dϕ = 5, dσ) AIC(dϕ, dσ = 3)
0 -7617.83 7 15279.87 15249.66
1 -7612.89 8 15276.30 15241.78
2 -7612.68 9 15282.20 15243.36
3 -7605.72 10 15274.59 15231.44

Table 4.2: BIC- and AIC-based search for the optimal pair (d∗ϕ, d
∗
σ). The log-likelihood values and

the corresponding AIC, BIC values are shown.

obtain

− 2
[
lmax(dϕ = 5, dσ = u) − lmax(dϕ = 5, dσ = v)

]

=


BIC(dϕ = 5, dσ = u) − BIC(dϕ = 5, dσ = v) + log(N) (v − u)

AIC(dϕ = 5, dσ = u) − AIC(dϕ = 5, dσ = v) + 2 (v − u)

∼ χ2
(v−u).

(4.7)

A similar expression can be obtained for testing the difference based on lmax(dϕ = u, dσ = 3)

and lmax(dϕ = v, dσ = 3); u, v ∈ N and v > u . Based on this test, the AIC-based and BIC-

based searches yield that the optimal model is specified by the degree pair (d∗ϕ, d
∗
σ) = (5, 3).

This is the same pair we would have chosen based on the regressogram.

The optimal model involves the estimation of ten covariance parameters. It speci-

fies the exact polynomial interpolation to the autoregressive parameters and log-innovation

variances. In particular, this model is equivalent to modelling an unstructured covariance

structure. The parameter estimates for θ, γorth, δorth and the back-transformed γ and δ based

on this model are shown in Table 4.3. Here, the back-transformation of γorth and δorth can
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Orthogonal Metric Original Metric
Variable Est. SE P-val. Est. SE P-val.
Intercept β0 41.11 0.68 -
Final Recovery β1 108.47 7.89 -
Treatment-Specific Recovery Rates
Rate of Tubigrip β21 1.06 0.15 -
Contrast: BKC β22 -0.12 0.05 0.014
Contrast: Aircast β23 -0.05 0.04 0.266
Contrast: Bledsoe β24 -0.005 0.04 0.906
Covariate Effects on Final Recovery Level and Recovery Rate
Age-effect on Max. α1 -8.75 2.35 < 0.001
Age-effect on Rate α2 -0.24 0.04 < 0.001
Variance Components

γorth,0 0.76 0.04 < 0.001 γ0 -2.34 0.49 < 0.001
γorth,1 -0.30 0.04 < 0.001 γ1 1.25 0.20 < 0.001
γorth,2 -0.10 0.05 0.071 γ2 -0.17 0.03 < 0.001
γorth,3 -0.22 0.05 < 0.001 γ3 0.01 0.001 < 0.001
γorth,4 -0.006 0.06 0.923 γ4 -0.0002 3.6 ·10−5 < 0.001
γorth,5 0.37 0.06 < 0.001 γ5 2.17 ·10−6 3.3 ·10−7 < 0.001
δorth,0 11.05 0.07 < 0.001 δ0 5.50 0.06 < 0.001
δorth,1 -0.23 0.07 0.001 δ1 0.12 0.04 0.001
δorth,2 -0.02 0.07 0.778 δ2 -0.01 0.004 < 0.001
δorth,3 0.24 0.07 0.002 δ3 0.003 7.3 ·10−5 < 0.001

Table 4.3: Overview of the parameter estimates and standard errors (SE) of θ and the covariance
parameters γorth, δorth, γ and δ. The parameter estimates of θ are not affected by the orthogonal
transformation and are therefore only listed once. All results are based on the assumption of an
ignorable missingness process. The p-values are reported only for the components of θ that might
be zero.

be calculated through

γ = H−1 γorth and δ = H−1 δorth.

The corresponding standard errors can be derived based on

Cov(γ) = H−1Cov(γorth)(H−1)> and Cov(δ) = H−1Cov(δorth)(H−1)>,

see Hedeker and Gibbons [2006].

The fitted covariance and correlation matrices based on this model and the decom-
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Figure 4.2: Fitted polynomials based on the model with (d∗ϕ, d
∗
σ) = (5, 3). The triangles denote the

observed (−1)ϕobs, j,k and log(σ2
obs, j).

position in equation (4.5) are then given by

Σ̂ f it =



244.96 107.25 89.58 75.85

374.73 242.73 185.19

396.38 241.53

361.69


and ˆCorr f it =



1 0.35 0.29 0.25

1 0.63 0.50

1 0.64

1


.

It is remarkable how similar these results are, compared with the empirical covariance and

correlation matrices shown in equation (4.1). Based on these results, we were able to fit an

unstructured covariance matrix, using the fitted covariances as starting values in our opti-

mization routine. Not surprisingly, the parameter estimates for θ and the fitted covariance

matrix are identical (for up to two decimal places). In fact, the parameter estimate θ̂ based

on this method are very close to the ones based on a compound symmetry structure. The

age-effect on the final recovery score and the final recovery score itself are slightly differ-

ent. However, overall the resulting conclusions are the same with just the effect sizes and

associated standard errors varying slightly.

The fitted regressograms visualize the model fit, see Figure 4.2. We see that the
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model fit is very good for the log-innovation variances, but less good for the autoregressive

parameters. The good overall fit can be explained by results shown in Pan and MacKenzie

[2003]. According to these, misspecification is dominated mainly by the difference in the

innovation variances. Misspecification of the autoregressive coefficients appears to be less

important.

Although the fitted model leads to a satisfying fit, we were interested in investigat-

ing whether the covariances also depend on covariates other than time. The covariate of

interest is age, because the final recovery score varies by age. Thus, we expect the effect

of skewness and the correlations to depend on this variable. However, incorporating this

variable in the model for the innovation variances and autoregressive parameters did not

improve significantly the AIC or BIC values.

4.4 Summary

In this section we have seen that modelling the covariance structure for bounded longitudi-

nal data is challenging. This is due to three likely features of the covariance matrix. Firstly,

the correlations along the rows decrease because serial correlations decrease over time. Sec-

ondly, the correlations along the sub-diagonals increase due to the bounded nature of the

score. Finally, the variances are rarely constant over time. In fact, due to randomisation and

inclusion criteria we expect the variances to be small at baseline. The variability is expected

to increase throughout the study. However, as time passes most patients achieve their final

recovery level and are clustered towards the upper bound of the score. Thus, the variation

decreases as the bounds are reached.

We show that finding a suitable covariance pattern model that accounts for these

characteristics is not straightforward. The same holds for covariance structures that are

implied by random-effect models. The approach introduced in Pourahmadi [1999] and

described in Pan and MacKenzie [2003, 2006] appears to be a flexible and suitable approach

to model the covariance structure of bounded longitudinal data. This approach is extended
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by using the non-linear mixed model proposed in Section 3.5 for the outcome process and

by allowing for missing values. Different model selection tools are used. Applying this

method to the CAST data recovers an unstructured covariance structure.

The aim of this chapter was to explore the sensitivity of the inference presented in

Section 3.5 to the choice of the covariance model. The parameter estimates of interest for

the CAST study, i.e. the treatment differences and age-effects, remain very stable under all

covariance matrices investigated. The inference remains the same, solely the effect sizes

vary a little.

So far we focused on the challenge of modelling the mean and covariance of lon-

gitudinal bounded data, while ignoring the missing data issue. The next two chapters are

devoted to this aspect of the data analysis.
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Chapter 5

Missing Data and CAST

5.1 Introduction

In Chapter 3 we mention that one challenge in the analysis of longitudinal data arises

through unbalanced data, i.e. the observation times are not common to all subjects. Unbal-

anced data can arise due to the study design or due to missing data. By missing data we

mean that intended measurements are not taken, leading to missing entries in the outcome

vector Yi. Generally, missing values can occur on independent and dependent variables.

However, in this thesis we will focus on issues that arise when the dependent variable is

missing. Regardless of the cause, unbalanced data raise technical difficulties in the anal-

ysis. However, unbalanced data due to missing data additionally raise ‘deeper conceptual

issues, since we have to ask why the values are missing and more specifically whether their

being missing has any bearing on the practical questions posed by the data’ [Diggle et al.,

1996]. Take, for example, a clinical study to evaluate the efficacy of a new drug where all

patients for whom the drug is not effective withdraw after the baseline assessment. Ana-

lyzing the data for the complete cases only would overstate the treatment effect and thus

lead to an incorrect inference. Lack of efficacy is only one potential cause of missing data;

others are: patients skip visits for practical or administrative reasons, patients move away,

equipment failure, other medical conditions not related to the primary outcome, unaccept-
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able side effects, the primary outcome might reach a pre-specified benchmark or patients

may consider themselves to have fully recovered [Carpenter et al., 2002; Molenberghs and

Kenward, 2007; Nakash et al., 2008].

Longitudinal studies usually aim to make inference for population quantities, e.g.

the mean change over time, and with missing data the scientific interest remains the same.

That is, we are usually interested in: What would have happened had there been no miss-

ing values? Drawing this inference can be quite complicated. In general, three potential

problems arise with missing data: loss of power due to reduced information, complication

in data handling and analysis, and bias due to differences between the observed and un-

observed data [Horton and Lipsitz, 2001]. The extent of these problems depends on the

proportion of missingness, the missing data pattern and most importantly the strength of

the relationship between the unobserved outcomes and the probability of dropout [Wood

et al., 2006].

Generally, a missing data pattern describes which measurements are observed and

which are missing. We distinguish between two different patterns:

• Monotone missingness patterns occur when subjects are observed without interrup-

tion from the beginning of the study until a given point in time, when they quit the

study and do not return. In the case of longitudinal studies, monotone patterns are

often referred to as dropout or attrition.

• In the case of non-monotone missingness patterns the measurements can be observed

and missing on any occasion.

Non-monotone missingness patterns usually raise more difficulties than monotone patterns,

see Chapter 6.

Let us now turn to the relationship between the outcome of interest and the prob-

ability of missing values. Rubin [1976] proposed a framework for this probabilistic rela-

tionship. Let ri, j be a realisation of the random variable Ri, j, which indicates whether the

outcome of subject i ∈ {1, ...,N} at time point j ∈ {1, ...,M}, i.e. yi, j, was observed, ri, j = 1,
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or missing, ri, j = 0. We refer to Ri =
(
Ri,1, ...,Ri,M

)>, i ∈ {1, ...,N}, as the missing data

indicator of subject i. Accordingly, R = (R>1 , ...,R
>
N)> denotes the missingness indica-

tor for all subjects. Rubin [1976] developed a taxonomy to classify different missingness

mechanisms, i.e. to describe the relationship between the missingness indicatorRi, the out-

come vector Yi and covariates. He distinguishes between the missing completely at random

(MCAR), the missing at random (MAR) and the missing not at random (MNAR) mecha-

nisms. Before introducing these mechanisms, we briefly want to discuss likelihood-based

inference for incomplete data.

Generally, the appropriate starting point for likelihood-based analysis is the density

of the full data (Yi,Ri), i ∈ {1, ...,N} [Molenberghs and Kenward, 2007]:

f(Yi,Ri) (yi, ri|Xi,Wi, θ, φ) = fYi (yi|Xi, θ) fRi |Yi (ri|yi,Wi, φ), (5.1)

where Xi and Wi denote the matrices of explanatory variables affecting the outcome and

missingness mechanism, respectively. The associated parameter vectors are given by θ and

φ, respectively. Assume that Yi is not fully observed and thus can be partitioned into the

observed, Yi,obs, and missing part, Yi,mis. Then, the density in equation (5.1) depends on

missing values and inference needs to be based on the observed data density:

f(Yi,obs,Ri)(yi,obs, ri|Xi,Wi, θ, φ) =

∫
fYi (yi,obs,yi,mis|Xi, θ)

× fRi |Yi (ri|yi,obs,yi,mis,Wi, φ) dyi,mis. (5.2)

This density generally requires a model for the outcome process and the missingness mech-

anism. In most cases interest lies in the outcome process, while the missingness mechanism

itself is a nuisance. It has been shown that under certain circumstances the missingness

mechanism can be ignored and no model is required.

The classification of different missingness mechanisms proposed by Rubin [1976]

is based on the conditional model for Ri|Yi, and hence is based on the idea that subjects

are selected to have missing values by their response Yi = (Yi,obs,Yi,obs) and explanatory
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variables Wi.

A missingness process is said to be MCAR, when missingness may be related to

available covariates but is conditionally independent of the outcome Yi = (Yi,obs,Yi,obs).

Mathematically, this is equivalent to:

fRi |Yi (ri|yi,Wi, φ) = fRi (ri|Wi, φ),

where Wi corresponds to the set of relevant explanatory variables. Note that the original def-

inition of MCAR [Rubin, 1976] does not allow for a dependence on covariates. However,

nowadays statistical literature often does not distinguish between the original MCAR defi-

nition and the covariate-dependent MCAR definition given in equation (5.1), see Carpenter

et al. [2002]; Wood et al. [2006]; Molenberghs and Kenward [2007].

Under MCAR, the incomplete data set can be seen as a random subsample of the

complete data set, which would have been observed without missingness [Little and Rubin,

2002]. In a clinical trial context, the assumption of MCAR corresponds to a response being

missing for any reason, possibly noted at baseline, which (conditional on baseline covariates

in the model) is not associated with their post-randomization response [Carpenter et al.,

2002]. This reason could be skipping a visit due to another appointment, moving away or

presence of non-study related medical conditions.

Regarding the observed data density, equation (5.2), MCAR implies:

fYi,obs,Ri(yi,obs, ri|Xi,Wi, θ, φ) MCAR
=

∫
fYi (yi,obs,yi,mis|Xi, θ) fRi (ri|Wi, φ) dyi,mis

= fYi,obs(yi,obs|Xi, θ) fRi(ri|Wi, φ),

i.e. if the parameter sets θ and φ are distinct, valid inference for θ can be drawn based on

fYi,obs(yi,obs|Xi, θ). By valid we mean that likelihood-inference based on the observed data

Yobs only has the same properties as inference based on the complete data Y , i.e. consistent

estimators, confidence intervals with the correct coverage and tests with the correct size.

If θ and φ overlap, basing inference on fYi,obs(yi,obs|Xi, θ) leads to consistent but not fully
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efficient estimates [Carpenter et al., 2002]. In particular, inference for θ does not require a

model forRi, i.e. the missingness mechanism is ignorable.

The conditional independence assumption of a MCAR missingness mechanism is

very strong and rarely realistic. A missingness process which uses less restrictive assump-

tions is the MAR mechanism. In this case, missingness may be related to covariates and

observed measurements Yi,obs but is conditionally independent of the missing outcomes

Yi,mis. More specifically, a MAR missingness process holds if

fRi |Yi (ri|yi,Wi, φ) = fRi |Yi,obs (ri|yi,obs,Wi, φ).

That is, missingness occurs for reasons which are associated with the observed outcome of

interest, e.g. adverse events, total recovery from illness or reaching a pre-specified bench-

mark.

The observed data density in equation (5.2) simplifies to

fYi,obs,Ri(yi,obs, ri|Xi,Wi, θ, φ) MAR
=

∫
fYi (yi,obs,yi,mis|Xi, θ) fRi |Yi,obs (ri|yi,obs,Wi, φ) dyi,mis

= fYi,obs(yi,obs|Xi, θ) fRi |Yi,obs(ri|yi,obs,Wi, φ).

As in the case of a MCAR process, valid inference for the parameter vector θ can be drawn

based on fYi,obs(yi,obs|Xi, θ), subject to loss of efficiency if the separability or distinctness

condition for the parameters θ and φ does not hold [Molenberghs and Kenward, 2007].

Again, inference for θ does not require a model for the missingness mechanism.

Note that the concept of ignorability under MAR, i.e. ignoring the missingness

mechanism, is only valid for likelihood-based (and thus Bayes-based) inference. Frequen-

tist techniques, such as the generalized estimating equations (GEE), usually require the

stronger MCAR assumption.

Finally, if the missingness probability depends on unknown quantities, i.e.

fRi |Yi (ri|yi,Wi, φ) = fRi |Yi,obs,Yi,mis (ri|yi,obs, yi,mis,Wi, φ)
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the missingness process is termed MNAR. This missingness mechanism might take place

in clinical studies, where adverse events or total recovery occur after the last documented

outcome, but prior to the next planned one. Following an example in the handbook of the

SAS-procedure MI [SAS/STAT, 1999], consider a trivariate data set with variables Y1 and Y2

fully observed, and a variable Y3 that has missing values. MAR assumes that the probability

that Y3 is missing for an individual can be related to the individuals values of variables Y1

and Y2, but not to its value of Y3. On the other hand, if a complete case and an incomplete

case for Y3 with exactly the same values for variables Y1 and Y2 have systematically different

values, then there exists a response bias for Y3, and MAR is violated. Note that without

additional information of Y3, it is impossible to test the MAR assumption against MNAR

[Molenberghs et al., 1998].

The observed data density under MNAR does not simplify and we remain with

fYi,obs,Ri(yi,obs, ri|Xi,Wi, θ, φ) MNAR
=

∫
fYi (yi,obs,yi,mis|Xi, θ)

× fRi |Yi,obs,Yi,mis (ri|yi,obs,yi,obs,Wi, φ) dyi,mis,

where we cannot simplify the integral. In particular, we cannot ignore the missingness pro-

cess but need to model the measurement and missingness process jointly. MNAR missing-

ness processes are therefore often referred to as informative or non-ignorable missingness.

Methods modelling the measurement and missingness process jointly, such as se-

lection models, pattern-mixture models and shared parameter models have been proposed

and will be discussed in Section 5.4. All these models base on untestable assumptions for

the conditional distribution of Yi,mis|Yi,obs, see Section 5.4.

Although the assumption of MAR can be realistic for certain settings, in most appli-

cations it is impossible to exclude the possibility of MNAR. Hence, it is unwise to rely on

the precise conclusions of an analysis based on a particular MAR or MNAR model. Many

researchers recommend exploring the stability of the conclusions across a range of different

MAR and MNAR models through a sensitivity analysis. Carpenter et al. [2002] suggest:
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‘The MNAR models need to be selected to build an envelope of conclusions, bounded by

the results of the MAR model and the worst case MNAR model. Clearly, selection of the

latter and the form of the MNAR model both depend on scientific judgement.’

In the following we will discuss different ways for handling longitudinal studies

with missing values. Many monographs and papers focusing on reviewing issues that arise

with missing data in longitudinal studies were published in the recent years, for example

Little [1995]; Schafer and Graham [2002]; Little and Rubin [2002]; Carpenter et al. [2002];

Molenberghs et al. [2004]; Molenberghs and Kenward [2007]; Diggle et al. [2007]; Daniels

and Hogan [2008]; Graham [2009].

According to Carpenter et al. [2002] we can distinguish four different analysis ap-

proaches:

1. Perform the analysis only on those subjects who complete the trial;

2. Analyse only the available data;

3. Use a single or multiple imputation technique to replace the missing observations

with plausible values, then analyse the completed data set(s); and

4. Model the repeated data and missingness process jointly.

The first option yields a complete case analysis. The second option can be realised through

the direct likelihood approach, which is the likelihood-based way of using available infor-

mation only [Molenberghs and Kenward, 2007]. Other, mostly nonparametric, methods of

using only the observed data are available [Little and Rubin, 2002]. Single and multiple

imputation techniques are well known [Rubin, 1987, 1996; Schafer, 1997, 1999; Horton

and Lipsitz, 2001; Little and Rubin, 2002]. According to Carpenter et al. [2002], the fourth

option ‘is usually the most complex computationally, but it is also the most useful, as it

elucidates the often unexpectedly subtle assumptions behind the other methods, and allows

the sensitivity of the conclusions to assumptions about the missing data mechanism to be

assessed’.
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A short review of popular methods to handle missing data in longitudinal data is

presented in the following sections. We will focus on frequentist approaches and refer to

Daniels and Hogan [2008] for the discussion of missing data methods under the Bayesian

paradigm. In Section 5.2 we review ad hoc methods to handle missing data, while in Section

5.3 and Section 5.4 we review more principled methods under the assumptions of MAR or

MNAR, respectively. We conclude this chapter by performing a sensitivity analysis for the

CAST data set in Section 5.5 and by summarizing our findings in Section 5.6.

5.2 A Review of Simple Missing Data Methods

In this section we will discuss simple methods to handle missing data in longitudinal studies.

By ‘simple’ we mean ad-hoc methods that edit the incomplete data sets to produce com-

pleted data sets that can be analyzed by standard methods and software for balanced data.

We will argue why these methods should be avoided and review more suitable methods in

Section 5.3 and Section 5.4.

5.2.1 Complete Case Analysis

In a complete case analysis all participants with missing values are discarded from the

sample and the missingness process is ignored. This method is also known as case deletion

or listwise deletion and is the default method for handling missing values in some statistical

techniques, e.g. MANOVA.

Advantages of a complete case analysis are that it is easy to communicate between

statisticians and non-statisticians and that the implementation is straightforward. Further-

more, it can be applied to monotone and non-monotone missingness.

A complete case analysis yields consistent estimators under a MCAR missingness

process [Molenberghs and Kenward, 2007]. However, depending on the number of dis-

carded subjects the estimators can be very inefficient. Generally, this approach is not cost-

effective and it can lead to substantial bias in case of a MAR or a MNAR process.
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5.2.2 Last Observation Carried Forward

Another common, albeit problematic, strategy is the last observation carried forward (LOCF)

method. In this approach, missing values for each participant are substituted by the most re-

cent available value. This leads to the assumption that a patient sustains a specific level after

drop-out and may cause an unrealistic response profile. In particular, longitudinal studies

aim to investigate the change over time in the response variable and factors that influence

that change. An analysis using LOCF may not answer the original research question or bias

the inference. Further, LOCF does not distinguish between imputed and observed data and

thus usually overestimates the precision of the estimates.

This method is widely used in the pharmaceutical industry and advertised by some

public authorities, e.g. the European Medicines Agency (EMEA) [EMEA, 2009]. The rea-

son for this is that LOCF is thought to lead to a conservative analysis, that is an analysis that

underestimates treatment differences. However, many researchers have shown that even in

the setting of MCAR a bias (positive or negative) can occur which leads to a risk of over-

stating the magnitude of a treatment effect. This is shown via an example in Molenberghs

and Kenward [2007] and the authors conclude: ‘[...] even under the unrealistically strong

assumption of MCAR, we see that the bias in the LOCF estimator typically does not van-

ish and, even more importantly, the bias can be positive or negative, and can even induce

an apparent treatment effect when there is none.’ Thus, it is surprising that EMEA [2009]

states: ‘LOCF only produces unbiased estimates under the MCAR assumption [...].’

5.2.3 Single Imputation Methods

In the last section we have discussed the LOCF approach, where every missing value is

filled in by the last available response. Alternative methods to fill in the incomplete data

are available and generally referred to as single imputation methods. Examples are: imput-

ing unconditional means; imputing from unconditional distribution; imputing conditional

means; imputing from a conditional distribution; hot deck imputation; baseline observa-

tion carried forward; worst case value imputation and many more, see Schafer and Gra-
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ham [2002]; Wood et al. [2006]; Molenberghs and Kenward [2007]; EMEA [2009]. All

these methods produce apparently complete data sets. However, basing inference on these

completed data sets can be misleading, as the data distribution and relationships can be

distorted [Schafer and Graham, 2002]. For example the point estimates can be biased if

the imputation model is wrong. On the other hand, even if a correct imputation model is

provided, the standard errors may fail to account for the added uncertainty due to miss-

ingness. Molenberghs and Kenward [2007] list three potential pitfalls of single imputation

techniques:

• ‘The performance of imputation techniques is unreliable. Situations where they do

work are difficult to distinguish from situations where they prove misleading.

• Imputation often requires ad hoc adjustments to obtain satisfactory point estimates.

• This methods fail to provide simple, correct estimators of precison.’

The latter limitation is caused by not distinguishing between observed and imputed values.

This can lead to underestimated standard errors, p-values that are too small and confidence

intervals which are too narrow [Little and Rubin, 2002]. The accommodation of the added

uncertainty due to non-response can, among others, be achieved through resampling meth-

ods, such as bootstrap and jackknife, or multiple imputation. We refer to [Little and Rubin,

2002, Chapter 5] for resampling methods and will discuss multiple imputation in Section

5.3.3.

A few words of caution regarding imputation methods were already given by Demp-

ster and Rubin [1983]: ‘The idea of imputation is both seductive and dangerous. It is

seductive because it can lull the user into the pleasurable state of believing that the data

are complete after all, and it is dangerous because it lumps together situations where the

problem is sufficiently minor that it can be legitimately handled in this way and situations

where the standard estimators applied to the real and imputed data have substantial biases.’

Nevertheless, single imputation techniques, especially LOCF, remain very popular.
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5.2.4 Summary

In this section we have reviewed simple methods to handle missing data in longitudinal

studies and discussed why these should be avoided. While the complete case analysis and

some single imputation techniques are valid analysis techniques under the unrealistic as-

sumption of MCAR, LOCF can lead to incorrect inference even in this case. In particular,

‘[...] when there are missing values, simple methods of analysis do not necessarily imply

simple, or even accessible, assumptions, and without understanding properly the assump-

tions being made in an analysis we are not in the position to judge its validity or value’

[Molenberghs and Kenward, 2007].

Thus, it comes as a surprise that these techniques are still widely used and wrongly

advocated by authorities such as the EMEA. Wood et al. [2006] reviewed 71 published

papers in major medical journals and the methods adopted to handle missing data. Their

findings for 34 studies with repeated measures are:

• 46% of the trials used complete case analysis in the primary analysis;

• 15% used LOCF;

• 18% used single imputation techniques: worst case, nearest value and regression

imputation;

• 12% used repeated measures ANOVA;

• one trial used multiple imputation (see Section 5.3.3); and

• one trial was analysed through GEE.

Furthermore, 29% of the repeated measures studies performed a sensitivity analysis. How-

ever, as noted by Wood et al. [2006]: ‘The most common form of sensitivity analysis was

LOCF when the primary analysis adopted a complete case analysis.’ Given all the limita-

tions of complete case analysis and LOCF this is a rather questionable sensitivity analysis.

In the next sections we will review more suitable approaches.
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5.3 A Review of Missing Data Methods under MAR and Ignor-

ability

In this section we will present methods that are suitable when a MAR mechanism holds.

All presented approaches but one do not explicitly model the missingness process.

5.3.1 Direct Likelihood Approach

The direct likelihood approach is the likelihood-based way of using the available informa-

tion only, while ignoring the missing data mechanism [Molenberghs and Kenward, 2007].

Inference for the parameter of interest θ can be based on the likelihood

LYobs(θ|Yobs, X) =

N∏
i=1

fYi,obs(yi,obs|Xi, θ)

=

N∏
i=1

∫
fYi,obs,Yi,mis(yi,obs,yi,obs|Xi, θ) dyi,mis.

Evaluating this likelihood requires integration over the missing data, which can be very

complex in the case of non-monotone missingness patterns. The subsequent maximisation

with respect to the parameter of interest θ usually requires numerical techniques, such as the

Newton-Raphson or Fisher-Scoring method. Both optimization methods involve calculating

the matrix of second derivatives of the likelihood. According to Little and Rubin [2002], the

entries in this matrix tend to be complicated functions of θ. Alternative computing strategies

for incomplete data problems, which simplify the integration and the maximization, such

as the Expectation Maximization (EM) algorithm or Multiple Imputation were proposed.

5.3.2 Expectation-Maximization Algorithm

The expectation-maximization algorithm (EM algorithm) was proposed by Dempster et al.

[1977] and is a convenient and widely applicable computational technique that can be used

in the case of ignorable missingness where the observed data likelihood is difficult to com-

pute [Molenberghs and Kenward, 2007].
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The fundamental idea behind this algorithm is to associate a complete data prob-

lem for which maximum likelihood estimation is computationally tractable with the given

incomplete data problem. Each iteration of the EM algorithm consists of two steps, the

expectation step (E-step) and the maximization step (M-step). The EM algorithm is easy to

implement and converges reliably. Furthermore, the Hessian matrix does not have to be cal-

culated. However, the algorithm is slow to converge if the fraction of missingness is large

and in some problems the likelihood in the M-step turns out to have no closed form which

complicates the maximization substantially [Molenberghs and Kenward, 2007]. A major

drawback of the EM algorithm is that additional steps are required to compute standard

errors [Little and Rubin, 2002, Chapter 9].

Detailed accounts on the EM algorithm are given in Dempster et al. [1977], [Little

and Rubin, 2002, Chapter 8] and [Molenberghs and Kenward, 2007, Chapter 8].

5.3.3 Multiple Imputation

In Section 5.2 we have reviewed the approach of filling in missing values by plausible values

based on the observed data. We have discussed that ‘a naive or unprincipled imputation

method may create more problems than it solves, distorting estimates, standard errors and

hypothesis tests’ [Schafer, 1999]. Rubin [1987] presented a more principled method to

create apparently complete data sets and inference that properly reflects uncertainty due to

non-response in the case of an ignorable missingness mechanism. This approach is referred

to as multiple imputation (MI). It is a simulation-based technique where missing values are

replaced by k > 1 Bayesian draws from the conditional distribution of Yi,mis given Yi,obs and

relevant covariates Xi, creating k completed data sets [Molenberghs and Kenward, 2007].

The data augmentation algorithm, introduced by Tanner and Wong [1987], is a convenient

way to create multiple imputations from this conditional distribution [Schafer, 1997]. This

algorithm consists of two steps, the imputation step (I-step) and the posterior step (P-step).

In the I-step the missing data are drawn based on the observed data, covariates and the

current parameter estimate. Then, in the P-step, the updated parameter estimate is drawn
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based on the current (imputed) data. The resulting imputed data sets define a Markov Chain,

which under some conditions, converges to the stationary distribution of Yi,mis|Yi,obs, Xi for

all i ∈ {1, ...,N} [Tanner and Wong, 1987]. Other approaches to create multiple imputations

are discussed in Little and Rubin [2002] and Molenberghs and Kenward [2007].

The k completed data sets can then be analysed using standard methods such as GEE

or (generalized) linear mixed models, resulting in k sets of parameter estimates and associ-

ated covariance matrices. Rubin [1987] presents rules to combine these k estimates using

simple arithmetic to produce overall estimates and confidence intervals that adequately in-

corporate missing data uncertainty.

One advantage of the MI approach is that the model used to create the imputed data

sets and the model used subsequently to analyze the ‘completed’ data sets can be considered

separately [Schafer, 1999; Molenberghs and Kenward, 2007]. According to Schafer [1999],

the MI leads to valid inferences with perhaps some loss of power, when the imputer’s model

makes fewer assumptions than the analyst’s model. Furthermore he states that ‘the only se-

rious danger of inconsistency arises when the imputer makes more assumptions than the

analyst and these additional assumptions are unwarranted. For example, consider a situ-

ation where a variable is imputed under no-interactions regression model and the analyst

subsequently looks for evidence of interactions; if interactions are present, then the MI esti-

mates will be biased toward null values.’ In addition, the imputation model should allow for

all covariates that are known to be predictive for missingness [Molenberghs and Kenward,

2007].

Note that MI is most commonly used under an ignorable missingness mechanism.

However, extensions to account for informative missingness settings exist, see Molenberghs

and Kenward [2007] and citations therein.

A detailed review of MI is beyond the scope of this thesis. Many papers and mono-

graphs discussing the properties and different extensions to the classical multiple imputa-

tion approach were published in recent years [Rubin, 1987, 1996; Little and Rubin, 2002;

Schafer, 1997, 1999; Horton and Lipsitz, 2001; Molenberghs and Kenward, 2007].
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5.3.4 Inverse Probability Weighting

In Section 5.2 we have discussed that analyzing complete cases only usually leads to inef-

ficient estimators and incorrect inference under MAR or MNAR mechanisms. One way of

removing the bias under MAR is by reweighting the information of the completers, see for

example Horvitz and Thompson [1952] and Alho [1990].

This approach has found application in combination with the semi-parametric gen-

eralized estimating equations. GEE usually require the strong assumption of MCAR to

yield valid inference. However, by incorporating specific weights these can be extended

to yield valid inference under a MAR missingness process. The GEE is formulated based

on the complete cases only, but the contribution of every complete case is weighted. For a

given subject and point in time, the weight is derived from the inverse probability of drop-

ping out at that measurement occasion [Molenberghs and Kenward, 2007]. The resulting

estimating equation is referred to as weighted generalized estimating equation (WGEE).

Given a correct outcome and missingness model, the WGEE leads to consistent estimators

under MAR. However, the estimators remain inefficient as only the information of com-

pleters is used. In order to improve the efficiency, the WGEE were extended by adding

a term of expectation zero. This additional term is a function of the partially observed

data, i.e. the data of non-completers. The additional term does not affect the unbiasedness

and leads to fully efficient estimators, see Molenberghs and Kenward [2007] and citations

therein. By fully efficient estimator, we mean that given the chosen semi-parametric model

the estimator attains the minimum variance possible among all consistent asymptotically

normal estimators [Molenberghs and Kenward, 2007].

Overall, efficient WGEE estimators require three models: (1) one model for the

outcome of interest Y , (2) one model for the missingness mechanism and (3) one model for

the partially observed data, i.e. a model for Ymis|Yobs which is compatible with the model

for the outcome of interest in (1) [Molenberghs and Kenward, 2007]. A misspecification

of model (1) usually leads to inconsistent estimators for all parameters. However, given

a correct specification of model (1) and ‘either model (2) or model (3) is wrong, but not
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both, the estimators in model (1) are still consistent’ [Molenberghs and Kenward, 2007].

Therefore, the resulting estimates are termed doubly robust.

In this thesis we have not focused on GEE for the analysis of longitudinal data.

Thus, we also neglected WGEE and double robust estimators in the forthcoming analysis

of the CAST data set. We believe that these approaches can be more robust to misspec-

ifications than the fully parametric approaches presented, e.g. the direct likelihood ap-

proach. However, WGEE require a model for the missingness mechanism and we agree

with Schafer and Graham [2002] who note: ‘We acknowledge that these weighting tech-

niques may be useful in some circumstances. However, as a general principle, we also

believe that a researcher’s time and effort are probably better spent building an intelligent

model for the data rather than building a good model for the missingness, especially if

departures from MAR are not a serious concern.’

5.4 A Review of Missing Data Methods under Non-ignorable or

Informative Missingness

All missing data methods presented in Section 5.3 but the inverse probability weighting

approach focus on ignorable missingness. Inference for the parameter of interest θ is based

on the likelihood

LYobs(θ|Yobs, X) =

N∏
i=1

fYi,obs(yi,obs|Xi, θ),

where the function fYi,obs(yi,obs|Xi, θ) is obtained by integrating yi,mis out of the complete

data density f(Yi,obs,Yi,mis)(yi,obs,yi,mis|Xi, θ).

In the case of informative missingness, the missingness process is not ignorable and

inference for θ needs to be based on the joint likelihood of Yobs andR:

L(Yobs,R) (θ, φ|Yobs,R, X,W) =

N∏
i=1

∫
f(Yi,Ri)

(
yi,obs,yi,mis, ri|Xi,Wi, θ, φ

)
dyi,mis.

That is, we need to explicitly model the missingness in addition to the model for the out-
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come Y .

Three different model families, basing on different factorisations of the joint density

f(Yi,Ri)
(
yi,obs,yi,mis, ri|Xi,Wi, θ, φ

)
, are distinguished: selection models, pattern-mixture mod-

els and shared-parameter models [Molenberghs and Kenward, 2007]. A selection model

factorises the joint density fYi,Ri(·) into the marginal outcome density fYi(·) and the miss-

ingness model, conditional on the measurements fRi |Yi(·). ‘The term selection model comes

from the econometric literature [Heckman, 1976] and it can be seen that a subject’s miss-

ing values are ‘selected’ through the probability model, given their measurements whether

observed or not’ [Kenward, 1998]. In a pattern-mixture model, we use the alternative fac-

torisation, where the joint density of the full data is factorised into the marginal missing-

ness density fRi(·) and the measurement process, conditional on the missingness pattern

fYi |Ri(·). Thus, ‘pattern-mixture models stratify the population by the pattern of dropout,

implying a model for the whole population that is a mixture over patterns’ [Little, 1995]. In

a shared parameter model, the density of the full data is modelled through the incorporation

of random effects, which drive both the outcome and the missingness process. These model

families will be reviewed in the next sections.

5.4.1 Selection Models

Selection models were first used in the econometric literature [Heckman, 1976, 1979] and

base on the following factorisation of the joint density:

f(Yi,Ri)
(
yi,obs,yi,mis, ri|Xi,Wi, θ, φ

)
= fYi

(
yi,obs,yi,mis|Xi, θ

)
fRi |Yi

(
ri|yi,obs,yi,mis,Wi, φ

)
.

In order to fit a selection model, we need to model the marginal outcome process and the

conditional missingness process. The conditional missingness process specifies the relation

between the probability of an observation being missing and the outcome of interest and

covariates. For example, the probability of dropping out may depend on observed quantities

only, leading to MAR, or on unobserved quantities, yielding a MNAR process. In particular,
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the taxonomy of the different missing data mechanisms introduced by Rubin [1976] is based

on the selection model framework, see Section 5.1. Typically a logistic regression model

[Diggle and Kenward, 1994; Kenward, 1998; Carpenter et al., 2002] or a probit model

[Heckman, 1979; Little, 1995] is formulated for the hazard of dropping out.

Based on the selection model factorisation and different models for the condi-

tional missingness process, some researchers have attempted to test a MAR null hypothesis

against a MNAR alternative [Diggle and Kenward, 1994]. However, it has been shown that

these tests are very sensitive to the model assumptions, see discussion below. More gen-

erally, Molenberghs et al. [2008] have shown that an assessment of MAR versus MNAR

based on the observed data only is not possible.

Fitting selection models is usually computationally demanding, especially in the

case of non-monotone missingness patterns. One main difficulty arises through the required

integration over the missing values. Furthermore, likelihood surfaces tend to be flat or awk-

wardly shaped which makes selection models difficult to use [Molenberghs and Kenward,

2007].

However, as mentioned above, the technical difficulties do not pose the only draw-

back of selection models. Like all models that attempt to model MAR or MNAR missing-

ness, selection models are based on untestable assumptions: ‘It is assumed in the modelling

approach taken here that the relationship among the measurements from a subject are the

same whether or not some of these measurements are unobserved due to dropout. It is this

assumption, combined with the adoption of an explicit model linking outcome and dropout

probability, that allows us to infer something about the MNAR nature of the dropout pro-

cess. Given the dependence of the inferences on untestable assumptions, care is needed in

the interpretation of the analysis’ [Molenberghs and Kenward, 2007].

Thus, although in parametric selection models all parameters are usually identifi-

able, this identification is driven by the parametric assumptions for the conditional model

fYi,mis |Yi,obs(·) (implied by the model for the complete data Yi) and the explicit missingness

process model fRi |Yi(·). This can be seen from the following relationship, where we sup-
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press dependence on covariates [Kenward, 1998]:

f(Yi,obs,Ri)
(
yi,obs, ri|θ, φ

)
=

∫
fYi

(
yi,obs,yi,mis|θ

)
fRi |Yi

(
ri|yi,obs,yi,mis, φ

)
dyi,mis

= fYi,obs(yi,obs|θ)

×

∫
fYi,mis |Yi,obs(yi,mis|yi,obs, θ) fRi |Yi

(
ri|yi,obs,yi,mis, φ

)
dyi,mis

= fYi,obs(yi,obs|θ) EYi,mis |Yi,obs

[
fRi |Yi

(
ri|yi,obs,yi,mis, φ

)]
.

For a simple example, Kenward [1998] has shown that inference for the missingness process

can critically depend on the assumed distribution for Yi,mis|Yi,obs. Changing just the tails of

this distribution can lead to substantially different conclusions, see also Daniels and Hogan

[2008]. The fact that selection models are highly sensitive to parametric assumptions and

that the identifiability problem is ‘masked’ [Molenberghs and Kenward, 2007] has led some

researchers to avoid such modelling. However, we note that all models for informative

missingness are based on untestable assumptions and agree with Kenward [1998] that these

models could be very useful in the context of a sensitivity analysis, where we want to

assess the sensitivity of our conclusions to various plausible assumptions about the reasons

for missingness and the complete data model. The main appeal of selection models is that

they fit nicely with the classification of missing data mechanisms. Furthermore, in most

settings they have an intuitive appeal: ‘It is natural to think about how a participant’s data

values influence his or her probability of dropping out [...]’ [Graham, 2009]. Additionally,

selection models enable direct inference for the parameter of interest θ because the marginal

outcome process is modelled. This is not the case for pattern-mixture models as will be

discussed in the next section.

We will fit selection models to the CAST data set and provide an extension to the

‘traditional’ selection model in Chapter 6.
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5.4.2 Pattern-Mixture Models

The pattern-mixture model (PMM) factorisation of the joint density f(Yi,Ri) (·) is given by

f(Yi,Ri)
(
yi,obs,yi,mis, ri|Xi,Wi, θ, φ

)
= fYi |Ri

(
yi,obs,yi,mis|ri, Xi, θ

)
fRi (ri|Wi, φ) . (5.3)

The sample is essentially stratified by the observed patterns and different models are fitted

to each pattern. Fitting different models for different dropout patterns is generally appeal-

ing; e.g. the average evolution over time for completers and non-completers may be quite

different. However, the price to pay for this generalisation is that pattern-mixture models are

by construction under-identified. Several approaches to overcome the under-identification

were proposed, some of which will be touched on below.

A further drawback of PMMs is that the missing data terminology introduced by

Rubin [1976] is not naturally applicable to pattern-mixture models. For monotone missing-

ness a link between MAR missingness processes and a certain type of identifying restric-

tion has been developed [Molenberghs et al., 1998]. Generally, research on pattern-mixture

models focuses on monotone missingness, see Molenberghs et al. [1998]; Molenberghs and

Kenward [2007] and citations therein. We will also focus on monotone missingness in this

section.

For a longitudinal study with M different observation times and monotone missing-

ness, we are able to distinguish between M different dropout patterns, where the pattern

denotes how many observations were made. Let d ∈ {1, ...,M} denote the missingness pat-

tern and P be the associated random variable. Then, suppressing the subscript i, covariates

and parameters, the joint density of Y = (Y1,Y2, ...,YM)> and P = d is given by

f(Y ,P)(y1, ..., ym, P = d) = fY |P(y1, ..., yM |P = d) fP(d)

(∗)
= fd(y1, ..., yM) fP(d)

= fd(y1, ..., yd) fd(yd+1, ..., yM |y1, ..., yd) fP(d)
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= fd(y1, ..., yd)︸        ︷︷        ︸
known

M−d−1∏
s=0

fd(yM−s|y1, ..., yM−s−1)︸                      ︷︷                      ︸
unknown

fP(d)︸︷︷︸
known

, (5.4)

where (∗) follows from defining fY |P(y1, ..., yM |P = d) := fd(y1, ..., yM). Following Little

[1994], the inestimable parameters for the unknown conditional densities in equation (5.4)

are set equal to functions of the parameters describing the distribution of the completers.

Using these identifying restrictions is not the only way to overcome under-identification.

Alternatives, such as using patterns as explanatory variables, are discussed in Molenberghs

and Kenward [2007].

We will illustrate the approach of using identifying restrictions for the CAST study

design. Assume a given subject withdraws from the study after the assessment at week

four, i.e. d = 2, yobs = (y0, y4)> and ymis = (y12, y39)>. With the notation fY |P(y1, ..., yM |P =

d) := fd(y1, ..., yM) the distribution of Y = (Y0,Y4,Y12,Y39)> for the second missingness

pattern is given by

f2(y0, y4, y12, y39) = f2(y0, y4) f2(y12, y39|y0, y4)

= f2(y0, y4)︸    ︷︷    ︸
known

f2(y12|y0, y4) f2(y39|y0, y4, y12)︸                                 ︷︷                                 ︸
unknown

.

In order to identify the unknown conditional densities of unobserved components given a

set of observed components, we use identifying restrictions:

f2(y12|y0, y4) = ω f3(y12|y0, y4) + (1 − ω) f4(y12|y0, y4),

and

f2(y39|y0, y4, y12) = f4(y39|y0, y4, y12)

where unavailable information is borrowed from patterns for which the required information

is available.
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Different choices forωwere proposed [Little, 1993, 1994; Molenberghs et al., 1998;

Kenward et al., 2003; Molenberghs and Kenward, 2007] and yield different missingness

mechanisms, e.g.

• complete case missing value (CCMV):

ω = 0, i.e. information which is unavailable is always borrowed only from the model

for the completers;

• neighbouring case missing value (NCMV):

ω = 1, i.e. information which is unavailable is always borrowed from the first pattern

which observes the missing observation;

• available case missing value (ACMV):

Here we use all the available cases to calculate the weight, i.e.

ω =
α3 f3(y0, y4)

α3 f3(y0, y4) + α4 f4(y0, y4)
,

where α3 and α4 are the fractions of observations in pattern d = 3 and d = 4, respec-

tively. Molenberghs et al. [1998] showed that for longitudinal data with monotone

missingness, MAR is equivalent to the available missing value case. This equivalence

does not hold in case of non-monotone missingness.

• non-future dependence missing value:

This missingness mechanism describes a MNAR process in which missingness is

allowed to depend on past measurements and on the present, possibly unobserved

outcome, but not on future ones. We refer to Kenward et al. [2003] for details regard-

ing this identifying restriction.

Using one of these identifying restrictions Thijs et al. [2002] and Molenberghs and Kenward

[2007] present an overall strategy for fitting pattern-mixture models. We will touch upon

this for the specific case of the CAST data set:
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1. Specify and fit a model to the pattern-specific identifiable densities, f1(y0), f2(y0, y4),

f3(y0, y4, y12) and f4(y0, y4, y12, y39). For patterns P ∈ {2, 3, 4} the parameter vector

of interest, θP, is estimated. Then all of them are grouped in one vector Ξ with

distribution G.

2. To properly account for the uncertainty with which these parameters are estimated,

we draw a realisation from this distribution.

3. In this case, there are only four patterns. Dependent on the pattern, identification

takes the following form:

• f4(y0, y4, y12, y39) = f4(y0, y4, y12, y39);

• f3(y0, y4, y12, y39) = f3(y0, y4, y12) f4(y39|y0, y4, y12);

• with ω12,3 + ω12,4 = 1 we set

f2(y0, y4, y12, y39) = f2(y0, y4)[ω12,3 f3(y12|y0, y4) + ω12,4 f4(y12|y0, y4)]

× f4(y39|y0, y4, y12);

• with ω4,2 + ω4,3 + ω4,4 = 1 and ω12,3 + ω12,4 = 1 we set

f1(y0, y4, y12, y39) = f1(y0)[ω4,2 f2(y4|y0) + ω4,3 f3(y4|y0) + ω4,4 f4(y4|y0)]

×[ω12,3 f3(y12|y0, y4) + ω12,4 f4(y12|y0, y4)]

× f4(y39|y0, y4, y12)

Select an identification method of choice and calculate the weights ωi j.

4. Using this identification method, determine all the unknown conditional distributions

of the unobserved outcomes, given the observed ones.

5. Using standard multiple imputation methodology, we draw multiple imputations for

the unobserved components, given the observed ones and the pattern-specific densi-
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ties (⇒ L completed data-sets per pattern).

6. Repeat all the steps except the first S times (⇒ L×S completed data-sets per pattern).

7. For every pattern analyse the L× S multiply imputed sets of data using the models of

choice.

8. Inference for each pattern can be conducted in a multiple imputation way.

We see that fitting pattern-mixture models yields pattern-specific parameter esti-

mates. However, these are rarely of scientific interest. In most cases, we are aiming to

provide inference for population parameters across all missingness patterns. Drawing this

inference based on pattern-mixture models is not precluded: For each parameter the overall

estimate can be calculated as the weighted average of the pattern specific estimates. The

weights are estimated as the pattern probabilities, i.e. the proportion of subjects in a given

pattern. The associated standard errors can be calculated through the delta-method [Molen-

berghs and Kenward, 2007].

The fitting strategy also reveals that generally a large number of parameters is in-

volved in estimating pattern-mixture models. Assume we would like to use the ACMV

restrictions. Then we need to estimate the pattern-specific parameter of interest θ̂P, P ∈

{2, 3, 4} based on f2(y0, y4), f3(y0, y4, y12) and f4(y0, y4, y12, y39), respectively. In the case

of the CAST study, the outcome model is quite complex and the number of subjects drop-

ping out after week 4, i.e. with drop-out pattern P = 2, is not large enough to estimate the

pattern-specific estimate θP=2. Thus, we are not able to borrow information from pattern 2

in order to identify parameters in pattern 1. This observation is confirmed by Hogan and

Laird [1997] and Molenberghs and Kenward [2007] who noted that, to estimate the large

number of parameters in a pattern-mixture model, one has to fulfil the delicate condition

that each dropout pattern occurs sufficiently often. In Section 5.5, we will therefore focus

on CCMV restrictions, where all unavailable information is imputed based on θ̂P=4.

In Section 5.4.1, we discussed that conclusions based on selection models are very

sensitive to the parametric assumptions on the full data Y and the conditional missingness

117



5. MISSING DATA AND CAST

model R|Y . Pattern-mixture models do not suffer from this substantial sensitivity. How-

ever, the assumptions underlying the identifying restrictions are not less strong. To cite

Graham [2009]: ‘Estimation of population effects is possible through identifying restric-

tions, and the observed data provide no evidence whatsoever to support or contradict these

assumptions.’ Nevertheless, we believe that Molenberghs et al. [1998] have a point by stat-

ing that the pattern-mixture approach ‘is more honest, because parameters for which the

data provide information are clearly distinguished from parameters for which there is no

information at all.’ In line with the case of selection models, researchers recommend the

use of pattern-mixture models within a sensitivity analysis.

We conclude this section by noting that in the case of a MCAR mechanism pattern-

mixture and selection models coincide, because the outcome process and missingness pro-

cess are independent.

5.4.3 Shared Parameter Models

Until now we have seen two ways of factorising the joint density of the outcome and miss-

ingness process, namely the selection model and the patten-mixture model. A third way is

to write the joint distribution in terms of a latent variableBi, which drives both the outcome

and the missingness process:

f(Yi,Ri)(yi, ri|Xi,Wi,Ci, θ, ψ) =

∫
f(Yi,Ri,Bi)(yi, ri, bi|Xi,Wi,Ci, θ, φ, ξ) dbi,

where Bi follows a parametric model, Bi|Ci ∼ P(ξ), where Ci is a set of covariates. These

models are called shared parameter models. In this work we will not focus on these models,

we refer to Molenberghs and Kenward [2007] and citations therein.

5.5 Sensitivity Analysis for CAST

In this section, we want to explore the sensitivity of conclusions based on the non-linear

mixed model presented in Section 3.5 and different approaches to handle missing data.
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Before using any approach to deal with missing data, it is worth reflecting which

missingness mechanism may be operating and which explanatory variables influence the

missingness. The latter point is of special interest under the MNAR assumption, where

the missingness process has to be modelled. We know from the thesis [Nakash, 2007]

which explanatory variables are more likely to influence the response of participants in the

CAST trial. The analysis of the effect of age on response in CAST demonstrates a positive

effect with the best responders older than 44. Furthermore, females were generally better at

responding than males, a pattern which has been noted in the health related survey literature.

There were no significant differences on the type of employment. Furthermore, no effect in

terms of the treatment received as part of CAST between the responders and non-responders

was detected. These results are based on a logistic regression analysis performed for each

follow up time point separately.

We now turn to the relation between missingness and the outcome of interest. As

mentioned in Section 2.5, patients with a low baseline score tend to not return their ques-

tionnaire at the 4 week follow-up point. Also, participants with a high 4 week score or a

high 12 week score show the tendency to not return their questionnaire for the following

point in time. Thus, missingness seems to depend on the observed outcome of interest,

leading to a MAR missingness process. However, we already discussed that a formal dis-

tinction between MNAR and MAR based on the observed data only is not possible. In

fact, we have reasons to believe that missingness also depends on unobserved scores, i.e.

that the operating missingness process is MNAR. A study to investigate response issues

surrounding the CAST trial revealed that patients who considered themselves to have made

full recovery did not return their questionnaires [Nakash et al., 2008].

In order to investigate the sensitivity of conclusions for CAST, we will use different

methods to handle missing data. We will perform: a complete case analysis (CC); a last

observation carried forward analysis (LOCF); an analysis based on multiple imputation (MI,

5 imputations); an analysis using the direct likelihood approach (DL) and finally we will fit

a pattern-mixture model (PMM) using the CCMV identifying restrictions. The imputations
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5. MISSING DATA AND CAST

for the MI approach were created separately for each randomisation group and are based

on an imputation model that accounts for the age of patients. The imputations were created

using the software package MI (SAS), which assumes that (Yi, Xi) is normally distributed.

We are aware that this imputation model leaves room for discussion. In Chapter 6 we will

also fit selection models.

For all approaches except the pattern-mixture model the following mixed model

will be assumed for the outcome vector Yi, i ∈ {1, ...,N}:

Yi|Ui
ind.
∼ NMi

(
µi, σ

2IMi

)
; Ui

iid
∼ N(0,D2); and

µi, j = g(x̌i, j, si, ti, j, θi) for j ∈ {1, ...,Mi},

where Ui, a subject-specific effect, has a normal distribution with mean zero and variance

D2, IMi is the Mi-dimensional identity matrix, µi = (µi,1, ..., µi,Mi)
>, θi the parameter vector

of interest and g(·) the model function of interest:

g(x̌i, j, si, t, θi) =
β1 + α>1 x̌i, j

exp{−([β21 − β2,si 1(si , 1)] + α>2 x̌i, j) · t}
(
β1 + α>1 x̌i, j

β0 + α>0 x̌i, j
− 1

)
+ 1

+ Ui,

(5.5)

where x̌i, j = x̌i = agei. We note that in previous chapters we have transformed the covariate

age. We refrain from doing so in this chapter; this inconsistency reflects the development of

the work throughout the course of the PhD. We also note that for convenience we assume

a compound symmetry covariance structure in this section, see Section 3.5 and Chapter 4.

The resulting parameter estimates for DL, CC, LOCF, MI and outcome model (5.5) are

summarized in Table 5.1 on page 121.

We observe that based on the DL, CC and MI approaches, intercepts and final re-

covery scores are nearly equal. The standard deviations for the parameters obtained by the

CC analysis are somewhat larger due to the reduced information. The estimated intercept

and the final recovery score obtained for the LOCF analysis differ substantially from the

remaining results. We observe a lower final recovery level because potentially lower scores
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are carried forward to the endpoint. The lower intercept may be due to potentially lower

values at the second point in time, which leads to an adjustment of the intercept.

For the recovery rate of Tubigrip, we observe quite similar estimates based on the

DL, CC and MI analysis. The results based on the LOCF analysis differ, suggesting a

considerably lower recovery rate.

All approaches detect a significant difference in the rate of improvements between

Tubigrip and BKC. Only the LOCF analysis confirms a significant treatment difference

between Tubigrip and Aircast. The MI approach suggests a marginally significant treatment

difference between Tubigrip and Aircast. None of the methods finds a significant treatment

difference for the Bledsoe boot. We note that the standard errors of the contrasts resulting

from the LOCF analysis are the smallest across all approaches.

For all methods, the null hypothesis α0 = 0 is not rejected at a significance level of

5%. The remaining age-effect parameters are very similar for the DL, CC and MI approach,

but are somewhat different for the LOCF approach. In line with results seen in previous

chapters, older patients achieve a lower final recovery level than younger patients. Fur-

thermore, all approaches confirm that older participants recover less quickly than younger

patients.

The inter- and intra-individual variance parameters and their standard deviations are

nearly identical for the DL, the CC and the MI approach. The estimates are larger for the

LOCF analysis.

Let us now turn to pattern-mixture models. In this context we focus on the data

set with monotone missingness. We obtained the data set with monotone missingness by

deleting yi,k for all k > j when ri, j = 0, i ∈ {1, ...,N}. Attempts to fit a pattern-mixture

model based on outcome model (5.5) to this modified data set failed, as the pattern-specific

parameter θP=4 used to identify unknown conditional densities could not be estimated due
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5. MISSING DATA AND CAST

to convergence problems. We therefore decided to fit the following, slightly simpler model:

g(x̌i, j, si, t, θi) =
β1 + α>1 x̌i, j

exp{−([β21 − β2,si 1(si , 1)]) · t + α>2 x̌i, j}

(
β1 + α>1 x̌i, j

β0 + α>0 x̌i, j
− 1

)
+ 1

+ Ui,

(5.6)

where exp{−([β21 − β2,si 1(si , 1)] + α>2 x̌i, j) · t} in the denominator of the model equation

(5.5) is replaced by exp{−([β21−β2,si 1(si , 1)]) · t +α>2 x̌i, j}. The estimates for each pattern

and parameter are shown in Table 5.2, page 124. Note that the intercepts and final recovery

levels accounting for age and based on model (5.6) are no longer given by β0 +α0 ·agei and

β1 + α1 · agei, respectively. Table 5.3 gives the estimated intercept and final recovery level

for an average individual, i.e. with age = median(age) = 27 and Ûi = 0.

Comparing the parameter estimates and associated standard errors across all pat-

terns reveals that especially the variance components and standard errors vary. Given the

varying sample sizes for the different patterns this is not surprising.

The intercepts of pattern 1 and pattern 2 are considerably smaller than those of

patterns 3 and 4, see Table 5.3. Due to the small number of patients in pattern 2 and pattern

3, the associated standard errors are substantially larger than for the remaining patterns.

The final recovery levels of the first three patterns are very similar. The other estimates are

noticeably different, however, there seems to be no consistent structure. This is not very

surprising, as the different outcome evolutions are assumed for each pattern.

Regarding the treatment contrasts we note that, in the second pattern, the differ-

ences between Tubigrip and BKC or Aircast are much larger than in the other patterns.

This confirms our assumption that participants who recover faster drop out earlier than oth-

ers. Furthermore, only pattern 2 and pattern 4 confirm a significant treatment difference

between the recovery rates of Tubigrip and BKC. In pattern 2, also a significant treatment

contrast for Tubigrip versus Aircast is suggested. For all other patterns this difference re-

mains insignificant. None of the patterns reveal a difference in the recovery rate of Tubigrip

and Bledsoe boot. Note that in order to get an overall treatment effect we would need to
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5. MISSING DATA AND CAST

Parameter Pattern 1 Pattern 2 Pattern 3 Pattern 4
Intercept 36.38 37.71 42.05 41.65
Final Recovery Level 79.09 81.78 79.87 85.05

Table 5.3: Estimated intercepts and final recovery scores for the different patterns, agei = 27 and
Ûi = 0 using a pattern-mixture model with CCMV identifying restrictions and five imputations.

combine the results for all patterns, taking into account the sample size of each pattern.

Related work can be found in Molenberghs and Kenward [2007].

5.6 Summary

In this chapter, we have reviewed the issue of missing data in the analysis of longitudi-

nal studies. We present the statistical framework introduced by Rubin [1976] and popular

methods to handle missing data. Their respective merits and drawbacks are depicted. In

this context, we argue why ‘ad hoc’ methods should be avoided and present alternatives,

such as the direct likelihood approach or the multiple imputation approach.

In the introduction and Section 5.4, we stress that it is not possible to distinguish

MAR and MNAR missingness processes based on the observed data only. We discuss that

a sensitivity analysis, where the stability of the conclusions is investigated under different

assumptions, is a valuable approach to analyze incomplete data.

In Section 5.5 we perform a sensitivity analysis for the CAST data set, where the

results based on a complete case analysis, the last observation carried forward approach, the

direct likelihood approach, multiple imputations and a pattern-mixture model are compared.

This sensitivity analysis will be continued in the next chapter, where we aim to account for

informative missingness through selection models.
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Chapter 6

Adjusting for Missingness through

the Reminder Process

6.1 Introduction

In Chapter 5 we have discussed that under non-ignorability and MNAR, the measurement

and missingness processes need to be modelled jointly. Methods such as pattern-mixture

models, shared parameter models and selection models have been proposed for this case.

We have reviewed these model families and applied pattern-mixture models to the CAST

data set in Section 5.4 and Section 5.5, respectively.

In this chapter, we want to resume the sensitivity analysis started in Section 5.5. In

this context, we aim to account for informative missingness through selection models.

In order to fit a selection model, we need to formulate models for the marginal

measurement process and the conditional missingness process, see Section 5.4.1. Assuming

a monotone missingness pattern, a logistic model for the dropout process in combination

with a multivariate normal linear model for the measurement process was proposed [Diggle

and Kenward, 1994]. The assumption of monotone missingness has been relaxed by Baker

[1995] and Troxel et al. [1998]. However, Baker [1995] discusses models for repeated

binary data and one of the main challenges of selection models - the integration over the
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6. ADJUSTING FOR MISSINGNESS THROUGH THE REMINDER PROCESS

missing data - reduces to calculating simple sums. In contrast, Troxel et al. [1998] analyze

continuous longitudinal data. A logistic and probit model for the missingness process and a

multivariate normal linear model for the outcome of interest are proposed. The missing data

model allows the probability of non-response to depend on current and previous outcomes,

see also Diggle and Kenward [1994] and Baker [1995]. However, in order to facilitate the

integration and the construction of the likelihood, a first-order Markov dependence structure

for the measurement vector is chosen.

In the CAST study 10% of the patients exhibit a non-monotone missingness pattern.

Although the methodology presented in this chapter is able to account for non-monotone

missingness patterns, we will focus on monotone missingness. In particular, we deleted

all those observations that were made after a patient failed to return a previous question-

naire. Discussion for the non-monotone case can be found in Section 6.4 and Section 9.2,

respectively.

In the following sections, the traditional selection model is extended in three ways.

Firstly, none of the aforementioned approaches includes additional information about the

missingness process, which can be very helpful in obtaining a better understanding of the

missing data mechanism [Wood et al., 2006]. This information usually consists of proxy

outcomes [Jackson et al., 2010], follow-up studies on a sample of non-responders [Cooke

et al., 2009], collection of the reasons for dropout or extended retrieval efforts. The ad-

ditional information we will use is of the last type. More precisely, we use the number

and nature of attempts made to contact initial non-responders, see Section 2.5. Following

the ideas in Alho [1990] and Wood et al. [2006], we will use a multinomial model for the

reminder process. Alho [1990] focuses on studies with a single time point and a logis-

tic regression model is used to analyze the response probabilities at each contact attempt.

Based on these probabilities, a Horvitz-Thompson type estimator for the sample moments

is proposed. The same assumptions are made by Wood et al. [2006], but different estima-

tion methods are discussed: conditional likelihood method; EM algorithm and a Bayesian

approach using MCMC methods. These approaches will be extended for the longitudinal
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case.

Secondly, the models discussed by Alho [1990] and Wood et al. [2006] assume that

the effect of covariates and outcomes on the reminder probabilities is the same at all contact

attempts. Our model extension allows for covariate or outcome effects to vary between

different reminder process categories.

Thirdly, instead of a multivariate linear model, we fit the non-linear mixed model

presented in Section 3.5.

This chapter is arranged as follows. In Section 6.2, we present the selection model

framework, in which we use the missingness indicator or the number and nature of attempts

to account for informative missingness. Using this model, the impact of missingness on

the rate of improvement is evaluated for different missingness processes in Section 6.3.

Concluding remarks are given in Section 6.4.

6.2 Selection Models and CAST

In the following subsections, we propose a selection model for continuous longitudinal data

to adjust for informative missingness when initial non-responders are re-approached several

times.

6.2.1 Notation

Let zi, j ∈ {0, 1, ...,K}, denote the reminder category which is a realisation of the random

variable Zi, j. Thus, we distinguish K + 1 reminder categories. The vector of reminders

for subject i is denoted by Zi = (Zi,1, ...,Zi,M)> and for all subjects by Z = (Z>1 , ...,Z
>
N)>.

Because for CAST the attempt information is only available for N∗ = 553 patients out of

the N = 559 patients, we focus on this sub-sample. Further, we have M = 4, K = 5 and

j ∈ {1, 2, 3, 4}. The documented levels for zi, j ∈ {0, 1, 2, 3, 4, 5} were illustrated in Section

2.5.
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6.2.2 Selection Models

Suppose the complete data Y follows the parametric model P(θ) and R follows the para-

metric model P(φ). We partition the vector Y into the observed, Yobs, and unobserved part,

Ymis. If the missingness process is non-ignorable or informative we need to base inference

for θ on the joint likelihood of Yobs and the missingness process R. A selection model fac-

torises the joint density of the measurement process and the response mechanism into the

marginal measurement process and the response process, conditional on the measurements.

Thus, the joint likelihood for (θ, φ) based on Yobs and R is given by

LYobs,R (θ, φ) =

N∏
i=1

∫
fYi

(
yi,obs, yi,mis|Xi, θ

)
fRi |Yi

(
ri|Wi, yi,obs, yi,mis, φ

)
dyi,mis.(6.1)

As

zi, j ∈ {0, 1, 2, 3,K − 1} ⇔ ri, j = 1 and zi, j = K ⇔ ri, j = 0

we can extend the selection model by adjusting for non-response through zi, j rather than

ri, j. This approach is motivated by the hypothesis that subjects who reply after several

reminders might be more similar to non-responders, than those who reply at the first at-

tempt. In particular, we can see ri, j as a special case of zi, j. The extension of the likelihood

in equation (6.1) to adjust for the reminder process is straightforward. Let Z follow the

parametric model P(ψ). We then simply need to replace ri by zi and φ by ψ in equation

(6.1). Fitting these selection models requires a model for the outcome vector Yi and models

for the conditional response process Ri|Yi and the conditional reminder process Zi|Yi. We

use the non-linear mixed model proposed in Section 3.5 for the marginal outcome process

and various plausible regression models for the conditional response and the conditional

reminder process. All models that attempt to model MAR or MNAR missingness are based

on untestable assumptions. Thus, our modelling framework has to be seen in the context of

a sensitivity analysis, where we want to assess the sensitivity of our conclusions to various

plausible assumptions about the reasons for missingness.
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6.2.3 Outcome Model

The outcome model is motivated by the CAST study and was presented in Section 3.5. For

an individual i ∈ {1, ...,N∗}, the following mixed model for the outcome vector Yi will be

assumed:

Yi|Ui
ind.
∼ NM

(
µi, σ

2IM
)

; Ui
iid
∼ N(0,D2); and

µi, j = g(x̌i, j, si, ti, j, θi) for j ∈ {1, ...,M},

where Ui, a subject-specific effect, has a normal distribution with mean zero and variance

D2, IM is the M-dimensional identity matrix, µi = (µi,1, ..., µi,M)>, θi the parameter vector

of interest and g(·) the model function of interest given in equation (5.5), page 120 with

x̌i, j = x̌i = agei − 27 and α0 = 0. We note that for convenience we assume a compound

symmetry covariance structure in this section.

6.2.4 Reminder Process Model

The reminder process instituted in the CAST study was illustrated in Section 2.5. At first

glance the geometric and Poisson models seem realistic in capturing the characteristics of

the attempt process. However, the non-monotonic frequencies in the reminder categories

discourages the use of these models, see Table 2.2. Following ideas of Alho [1990] and

Wood et al. [2006] we will therefore focus on a multinomial model for the attempt process.

We develop a model for a single subject, and use the assumed independence be-

tween subjects to give the complete model. For the time points j ∈ {2, ...,M} let p j,0 be the

probability of responding at the first attempt. For k ∈ {1, ...,K − 1} let p j,k denote the prob-

ability of responding to the k-th attempt, given that the subject has not responded earlier.

From the study design, we know that all subjects reply without any chasing at the baseline

assessment, i.e. p1,0 = 1 for all subjects.

The unconditional probabilities µ j,k of replying to attempt k ∈ {1, ...,K − 1} at time
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point j ∈ {2, ...,M} are then given by:

µ j,0 = p j,0; µ j,1 = p j,1 (1 − p j,0); . . . µ j,K−1 = p j,K−1

K−2∏
k=0

(1 − p j,k).

Furthermore, the probability of not replying at time point j ∈ {2, ...,M}, i.e. z j = K, is given

by µ j,K = 1 −
∑K−1

k=0 µ j,k. Corresponding to these probabilities, we redefine the random

variable Z j in terms of an indicator random vector. Let V j be a (K + 1)-dimensional random

vector, where the `-th component is defined as

V j,` =


1, if attempt Z j = ` − 1;

0, otherwise

for ` ∈ {1, ...,K + 1}. All information about Z is now captured through the indicator matrix

V = (V2, ...,VM)> and the likelihood based on Yobs and V can be derived by replacing Ri, j

with Vi, j and φ with ψ in equation (6.1). We can write

V j|Y ∼ Multinomial
(
1, µ j,0, ..., µ j,K

)
. (6.2)

A generalized linear model for either µ j,k or p j,k can be formulated. The marginal proba-

bility µ j,k determines the chance of replying to the k-th attempt. In contrast, formulating a

model for the conditional probability p j,k investigates the effect of covariates on replying

to the k-th attempt, given the previous attempts were unsuccessful. As the attempt process

evolves over time, it is sensible to explore the latter case.

The generalized linear models we propose for p j,k, j ∈ {2, ...,M}, k ∈ {0, 1, ...,K−1}

are given by

logit(p j,k) = ψ0k + ψ>1 w̆ j + ψ2 t j + ψ3 y j−1 + ψ4 y j, (6.3)

where attempt-varying intercepts (ψ0k), covariates (w̆ j), and observation times (t j) are in-
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cluded. Further, y j−1 is the previous outcome and y j the current score. Under monotone

missingness, this general model allows for different assumptions about the missingness

mechanisms; a MNAR model is implied by ψ4 , 0, a MAR model by ψ4 ≡ 0 and, condi-

tioned on covariates, a MCAR model is implied by ψ3 ≡ 0 ≡ ψ4.

In line with earlier work, this model assumes that the covariate and outcome effects

on p j,k are common to all attempts, see Alho [1990] and Wood et al. [2006]. Only the inter-

cept varies across the different reminder categories. This assumption can be too restrictive

in practice and can lead to a misspecified model, see Wood et al. [2006]. Our model can be

expanded to allow the covariate and outcome effect to vary between the different reminder

categories. However, the inclusion of attempt-varying covariate or outcome effects leads

to a large number of parameters and high computational complexity. Parameter estimation

and inference can be hindered if the sample size of some reminder categories is too small.

We underline the feasibility of fitting a model with attempt-varying covariate or outcome

effects by considering a MNAR model where we include an attempt-varying gender effect,

see Section 6.3.3.

The model in (6.3) assumes that the model for V j|Y does not depend on later obser-

vations y`, where ` > j. We regard this as a sensible assumption for most settings.

With bounded scores and highly correlated scores at adjacent occasions, we will

usually observe a high correlation between the estimates for ψ3 and ψ4. This problem

will always persist when including previous and current scores linearly. For example, with

two perfectly positively correlated scores at adjacent time points, a distinction between the

proposed MAR and MNAR models is not possible. Therefore, we will also consider a

different parametrization proposed by Diggle and Kenward [1994]:

logit(p j,k) = ψ0k + ψ>1 w̆ j + ψ2 t j + ψ∗3

[
y j−1 + y j

]
+ ψ∗4

[
y j − y j−1

]
(6.4)

where the estimates for ψ∗3 and ψ∗4 are usually less correlated. Again, this model allows for

different assumptions regarding the missingness processes: a MCAR model is implied by
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ψ∗3 ≡ 0 ≡ ψ∗4, a MAR model by ψ∗3 ≡ −ψ
∗
4 and a MNAR model by ψ∗3 , −ψ

∗
4.

In order to account for the within-patient correlation across the attempts at the dif-

ferent observation times, we need to extend this model, see Section 6.2.6.

6.2.5 Missingness Process Model

We now consider modelling the missingness process, conditional on the outcome of interest.

In the spirit of regression modelling, we propose the following logistic linear model for all

i ∈ {1, ...,N∗}, j ∈ {2, ...,M}:

Ri, j = 1|Yi ∼ Bernoulli(ρi, j), with (6.5)

logit(ρi, j) = φ0 + φ>1 w̃i, j + φ2 t j + φ3 yi, j−1 + φ4 yi, j (6.6)

where w̃i, j denotes covariates we wish to include in the missingness process model. As

above, t j are the observation times, yi, j−1 the previous outcome and yi, j the current score.

We do not specify a model for Ri,1 as all scores are observed at baseline. This model

corresponds to a MNAR model if φ4 , 0 and to a MCAR model (conditioned on covariates)

if φ3 ≡ 0 ≡ φ4. As we focus on monotone missingness, a MAR missingness process is

obtained by setting φ4 ≡ 0, but this holds for monotone missingness only. In the case

of non-monotone missingness, it is a less than trivial manner to construct sensible MAR

models [Molenberghs et al., 2008]. We will also consider a model similar to that given in

equation (6.4), see Section 6.3.2.

6.2.6 Full Model under Monotone Missingness

For monotone missingness, we can now construct the joint likelihood of Yobs,R and Yobs,V

respectively. The derivations will be shown for a selection model that uses the reminder

process (via Vi, j) to account for missingness. The likelihood using the missingness indicator

process Ri, j can be derived by replacing Vi, j by Ri, j and ψ by φ in all following equations.
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The observed data likelihood contribution of a certain subject is given by:

f(Yi,obs,Vi)
(
yi,obs, vi|Xi,Wi, θ, ψ

)
=

∫
fYi

(
yi,obs, yi,mis|Xi, θ

)
fVi |Yi

(
vi|Wi, yi,obs, yi,mis, ψ

)
dyi,mis.

Here, we illustrate the derivations for M = 4 and by assuming that dropout for the subject of

interest occurs after the second measurement time, i.e. yi,obs = (yi,1, yi,2)>. The derivations

for other cases follow straightforwardly. We obtain

f
(
yi,obs, vi|Xi,Wi, θ, ψ

)
=

∫ ∫
f
(
yi,4|yi,3, yi,2, yi,1,Xi, θ

)
f
(
yi,3|yi,2, yi,1,Xi, θ

)
f
(
yi,2|yi,1,Xi, θ

)
× f

(
yi,1|Xi, θ

)
f
(
vi,4|vi,3, vi,2, vi,1,Wi, yi, ψ

)
f
(
vi,3|vi,2, vi,1,Wi, yi, ψ

)
× f

(
vi,2|vi,1,Wi, yi, ψ

)
dyi,4 dyi,3.

For the sake of clarity we suppress subscripts, referring to the relevant distributions, in the

notation of the densities. In the case of monotone missingness we observe

vi, j = (0, 0, 0, 0, 0, 1) =⇒ vi, j+1 = (0, 0, 0, 0, 0, 1) (6.7)

for j ∈ {2, 3} and j + 1 ∈ {3, 4}. Therefore,

f
{
vi,4 = (0, 0, 0, 0, 0, 1)|vi,3 = (0, 0, 0, 0, 0, 1), vi,2, vi,1,Wi, yi, ψ

}
= 1.

Rearranging the observed likelihood yields

f
(
yi,obs, vi|Xi,Wi, θ, ψ

)
= f

(
yi,2|yi,1,Xi, θ

)
f
(
yi,1|Xi, θ

)
f
(
vi,2|vi,1,Wi, yi,2, yi,1, ψ

)
×

∫
f
(
yi,3|yi,2, yi,1,Xi, θ

)
f
(
vi,3|vi,2, vi,1,Wi, yi,3, yi,2, ψ

)
×

∫
f
(
yi,4|yi,3, yi,2, yi,1,Xi, θ

)
dyi,4︸                                    ︷︷                                    ︸

=1

dyi,3, (6.8)

i.e. the integrals reduce to one-dimensional integrals for i ∈ {1, ...,N∗}. We note that the
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likelihood terminates after the time of the first missing observation due to the relation shown

in equation (6.7). In particular, implication (6.7) does not hold for non-monotone missing-

ness; and we are confronted with multidimensional integrals.

The likelihood contribution shown in equation (6.8) stresses that we ought to con-

sider the dependence structure across the reminders at the different time points for a given

subject. When modelling the reminder process such a dependence structure can be included

in various ways, e.g. by formulating a random-effect model for p j,k. However, this would

require the computation of further integrals which complicates the evaluation of the like-

lihood. Alternatively, we can account for the dependence by formulating a model for Vi, j

conditional on Vi, j−1, ...,Vi,1. For simplification, we decide to model Vi, j conditional on

Vi, j−1; that is, we extend the models given in equation (6.3) and equation (6.4) by adding

the term ψ5,k 1
(
zi, j−1 = k

)
, which indicates which attempt category zi, j−1 ∈ {0, ...,K − 1}

was observed at the previous point in time. We note that modelling the missingness process

Ri under the assumption of monotone missingness does not require the incorporation of a

dependence structure.

The integral in the likelihood contribution of subject i, shown in equation (6.8), can

be solved through an adaptive Romberg-type integration technique. This approach produces

a quick, rough estimate of the integration result and then refines the estimate until achieving

the prescribed accuracy [SAS/STAT, 1999]. The maximum likelihood estimates for θ and

ψ (or φ) can then be calculated through the Newton-Raphson ridge optimization method

which is implemented in the subroutine call nlpnrr in proc IML [SAS/STAT, 1999].

6.3 Results for CAST under Monotone Missingness

In this section we explore the impact of missingness on the estimated rate of recovery

through a sensitivity analysis. Further, we aim to investigate covariate and outcome effects

on the reminder process and which reminders are most effective. In this context, we focus

on monotone missingness and adjust for missingness by modelling the reminder process,
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Monotone and Ignorable Missingness
Variable Parameter Est. SE p-val.
Intercept β0 41.01 0.78 -
Maximum β1 80.05 0.85 -
Rate of Tubigrip β21 0.27 0.03 -
Contrast: BKC β22 -0.12 0.04 0.006
Contrast: Aircast β23 -0.05 0.04 0.174
Contrast: Bledsoe β24 -0.004 0.04 0.915
Age-effect on Max. α1 -0.30 0.07 < 0.001
Age-effect on Rate α2 -0.006 0.001 < 0.001
Within - Variance σ2 186.1 7.33 -
Between - Variance D2 148.2 12.7 -

Table 6.1: Overview of the parameter estimates and standard errors for the outcome model (3.20)
with x̌i, j = ai based on the assumption of an ignorable missingness process. The p-values are
reported only for the components of θ that might be zero.

see Section 6.2.4. We contrast this model with the traditional selection model, where we

adjust for missingness by modelling the missingness process, see Section 6.2.5.

For CAST we focus on x̌i, j = w̆i, j = w̃i, j = agei − 27 = ai, i.e. age centered around

the median age. Different assumptions for the missingness mechanisms will be made and

the results will be compared with those obtained based on the assumption of ignorability,

see Table 6.1.

6.3.1 Results using the Reminder Process Model

Using the notation in Section 6.2.4, we investigated the following logistic regression models

for the conditional reminder process probabilties p j,k:

MCARp: logit(p j,k) = ψ0k + ψ1 ai + ψ2 t j + ψ5,k 1
(
vi, j−1 = k

)
;

MARp: logit(p j,k) = ψ0k + ψ1 ai + ψ2 t j + ψ3 y j−1 + ψ5,k 1
(
vi, j−1 = k

)
;

MNARp-1: logit(p j,k) = ψ0k + ψ1 ai + ψ2 t j + ψ3 y j−1 + ψ4 y j + ψ5,k 1
(
vi, j−1 = k

)
;

MNARp-2: logit(p j,k) = ψ0k + ψ1 ai + ψ2 t j + ψ4 y j + ψ5,k 1
(
vi, j−1 = k

)
; and

MNARp-3: logit(p j,k) = ψ0k+ψ1 ai+ψ2 t j+ψ
∗
3

[
y j−1 + y j

]
+ψ∗4

[
y j − y j−1

]
+ψ5,k 1

(
vi, j−1 = k

)
.
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where k ∈ {0, 1, 2, 3, 4} and j ∈ {2, 3, 4}, i.e. t j ∈ {4, 12, 39}. Note that here MCAR denotes

a mechanism where missingness is allowed to depend on covariates but not on the outcome

of interest. Initial analysis shows that the inclusion of ψ5,k 1
(
vi, j−1 = k

)
is not necessary,

as these parameters are equal and so can all be absorbed into the intercept. Furthermore,

the age-effect on the intercept of the non-linear mixed model, i.e. α0, was shown to be

not significant. The results for the simpler model with α0, ψ5,k omitted and the case of

monotone missingness are shown in Table 6.2.

The estimates for the outcome model parameters, i.e. θ, are practically identical un-

der all reminder processes investigated, including the estimates under the assumption of an

ignorable missingness process. The treatment effect of Tubigrip, the treatment differences

and the associated p-values are essentially equal for all models. In line with the results

shown in Section 3.5, all approaches detect that BKC is significantly better than Tubigrip

and that Bledsoe is not measurably different from Tubigrip. For the treatment difference of

Aircast and Tubigrip we observe p-value= 0.2, while in Section 3.5 a marginal difference

was detected (p-value= 0.07). This is likely due to the exclusion of the covariate gender in

the model fitted here.

Older participants achieve a lower final recovery level than younger participants,

as α̂1 < 0. Furthermore, all models confirm that older participants recover less fast than

younger patients.

For the reminder vector Z, given the outcome vector Y and covariates, the results

vary substantially under the different assumptions for the missingness processes. Especially,

the MNARp-3 process leads to different conclusions from the other models.

Under MCARp we observe that sending a second questionnaire is least effective for

the return of questionnaires. The other reminder categories appear to be equally effective.

We observe a positive age-effect, i.e. the probability of replying at a certain attempt in-

creases with age. Furthermore, the probability of replying at a certain attempt decreases as

time passes. The age- and time-effects persist under MARp, MNARp-1 and MNARp-2; the

effect sizes are practically identical, and likelihoods similar.
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6. ADJUSTING FOR MISSINGNESS THROUGH THE REMINDER PROCESS

The MARp results suggest that the reminder process, and therefore the missingness

process, depends on the outcome of interest (p-value= 0.07). The probability of returning a

questionnaire decreases with the score at the prior occasion: patients with high scores at the

previous observation times tend to return the questionnaires only after several attempts or

not at all. This result is in line with quantitative findings presented in Nakash et al. [2008],

which suggest that patients who considered themselves to have made fully recovery, did not

return their subsequent questionnaire. Furthermore, we observe that phone calls are most

effective for the retrieval of questionnaires. In contrast, sending a second questionnaires is

least effective. The same conclusions are carried forward to the models under the MNARp-

1 and the MNARp-2 assumption. However, the effect sizes and the associated p-values vary

across the models.

For the MNARp-1 model, no significant effect of current or previous score on

the response probabilities is found. As mentioned in Section 6.2.6, this is likely due to

the high correlation of scores at adjacent occasions. The empirical correlations based

on the observed data are given by: Corremp(y•,0;y•,4) = 0.34, Corremp(y•,4;y•,12) =

0.65 and Corremp(y•,12;y•,39) = 0.68, where y•, j is the vector of all observations made

at time t j ∈ {0, 4, 12, 39}.

As scores reach the final recovery level, Yi, j and Yi, j−1 are highly correlated, so that

after allowing for the effect of one score, there is little additional effect of the other score.

At the final recovery level, the scores are effectively interchangeable.

Removing the previous outcome, that is fitting the model under a MNARp-2 pro-

cess, reveals a negative effect of the current score on the probability of replying. The effect

size is comparable with the effect of the previous score, ψ̂3, in the MARp model.

The alternative parametrization, i.e. MNARp-3, suggests that the reminder process

depends on the mean score and the improvement of the score between two adjacent time

points. The probability of replying decreases with the mean but increases with the improve-

ment. In contrast to the previous models, the age effect is shown to be not significant and

the time effect is positive. Furthermore, phone calls are again most effective for the retrieval
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6. ADJUSTING FOR MISSINGNESS THROUGH THE REMINDER PROCESS

of questionnaires. The deviance suggests that the MNARp-3 leads to the best fit.

6.3.2 Results using the Missingness Process Model

When adjusting for monotone missingness through the missingness indicator Ri, j, we ex-

plore the impact of dropout on the rate of improvement under the following assumptions:

MCARr: logit(ρi, j) = φ0 + φ1ai + φ2t j;

MARr: logit(ρi, j) = φ0 + φ1ai + φ2t j + φ3yi, j−1;

MNARr-1: logit(ρi, j) = φ0 + φ1ai + φ2t j + φ4yi, j;

MNARr-2: logit(ρi, j) = φ0 + φ1ai + φ2t j + φ3yi, j−1 + φ4yi, j.; and

MNARr-3: logit(ρi, j) = φ0 + φ1ai + φ2t j + φ∗3 (yi, j−1 + yi, j) + φ∗4 (yi, j − yi, j−1).

The estimated outcome parameters (Table 6.3) are consistent with those obtained by mod-

elling the reminder process. The intercepts for the missingness processes vary substantially

across the assumed models. This is not surprising, as we include more covariates to explain

the missingness process. The probability of replying increases with age for all investigated

models, but the time effect is not significant.

The MARr model suggests that the probability of replying at a certain time does

not depend on the score at that time (p-value= 0.12). Note that this result is contrary to the

conclusions based on modelling the reminder process. Including both previous and current

scores using MNARr-1 is not informative. The MNARr-2 model finds a marginal effect of

the current score on the missingness probabilities: as the score increases, the probability

of replying increases. Under the assumption of MNARr-3, we obtain that missingness

depends positively on the average score (p-value= 0.06) but not on the improvement of the

scores at adjacent observations times. Thus the covariate effects differ from the findings in

Section 6.3.1. However, once an effect is included in only one of these two models (e.g.

the time effect), the remaining parameter estimates become difficult to compare. Therefore,
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6. ADJUSTING FOR MISSINGNESS THROUGH THE REMINDER PROCESS

MNARp-3

current score previous score
µ j5

t j = 12 t j = 39

60
50 0.07 0.04
60 0.13 0.08

90
60 0.08 0.04
90 0.35 0.26

MNARr-3

current score previous score
1 − ρ j

young old

60
50 0.17 0.11
60 0.17 0.11

90
60 0.14 0.09
90 0.12 0.08

Table 6.4: Overview of the probabilities of not replying for different age groups and previous /

current scores based on the point estimates obtained from fitting the MNARp-3 reminder and the
MNARr-3 missingness models. The age groups were classified according to the first (21 years) and
third (37 years) quantile.

we should refrain from comparing the separate parameter estimates for the reminder and

the missingness process directly. For further discussion regarding the disagreement of the

results for the two types of models, we refer to Section 6.3.4.

For illustration, we show the probabilities of not replying for different age groups

and low/high scores under the MNARp-3 and the MNARr-3 model, see Table 6.4.

6.3.3 Model Extension for the Reminder Process Model

The reminder process models investigated so far assume that covariate and outcome effects

are the same across all reminder categories. In this section, we will relax this assumption

and allow our reminder process model to include attempt-varying gender effects, i.e.

MNARp − A : logit(pi, j,k) = τ0k + τ1 ai + τ2 t j + τ3 yi, j + τ4k 1 f emale(sexi). (6.9)

The results for the outcome and reminder process (Table 7.1) are consistent with those seen

in Section 6.2.4. Female patients seem to be more likely to reply at the first two attempts

than male patients. However, this effect is not significant. It is not clear whether a gender

effect does not exist or whether the corresponding sample sizes were simply too small to

detect a significant effect. We modify model (6.9) such that τ40 = τ41 and τ42 = τ43 = τ44.

We refer to this model as MNARp-B and the results are given in Table 7.1. The latter

analysis confirms that female patients are more likely to respond at the first two attempts

than male patients. This effect remains not detectable or not existent for the other reminder
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6. ADJUSTING FOR MISSINGNESS THROUGH THE REMINDER PROCESS

categories.

We conclude that, although in principle it is possible to fit such a model, inference

will depend strongly on the sample size per reminder category.

6.3.4 Comparison of the Investigated Selection Models

In addition to the previous models, we have also investigated the following model for the

missingness process:

MNARr : logit(ρi, j) = λ0 + λ1 ai + λ2 t j + λ3 yi, j + λ4 1 f emale(sexi),

where we have included gender as a covariate. This analysis results in a non-significant

gender-effect, but suggests a significant effect of age on the likelihood of being a responder.

In contrast, the reminder process probabilities revealed no significant effect of age.

We already noted that covariate effects on the missingness and reminder probabili-

ties are difficult to compare when covariates (here: time, age, gender) are included only in

one of the two models. Nevertheless, we make an attempt to determine what the differences

between the two types of models are that led to these disagreements. Theoretically speak-

ing, we believe that it is possible that covariate effects are included in the reminder process

but not in the missingness process (here: time and gender) and the other way around (here:

age).

For simplicity, we distinguish only three reminder categories: prompt reply (z = 0),

one reminder (z = 1) and non-responder (z = 2). We focus on a model where the effect of

a single, one-dimensional and continuous covariate wi, j is of interest. The concept can be

extended to more reminders and categorical covariates.

Assume that wi, j has a common and significant effect on the reminder probabilities

pi, j,k. In particular, we assume that all subjects who reply promptly have a low value for

wi, j and all patients who reply after one reminder have a large value for wi, j. All subjects

with average values for wi, j are assumed to be non-responders. Pooling all responders into
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6. ADJUSTING FOR MISSINGNESS THROUGH THE REMINDER PROCESS

one category, as is done when modelling the missingness process, could then hinder the

estimation of a significant covariate effect.

In contrast, it is possible that subjects within the reminder categories z ∈ {0, 1} are

very homogeneous with regard to wi, j, so that no significant effect of wi, j is detectable. Or

alternatively, the sample sizes of the reminder categories are too small to provide evidence

for an effect. In both cases, pooling all responders into one category can lead to a significant

effect; in particular, when the attempt-specific intercepts for these reminder categories are

different. In the case of very homogeneous reminder categories z ∈ {0, 1} with respect to

wi, j, the covariate wi, j might act as surrogate for the different reminder categories.

In addition, including attempt-varying coefficients in the reminder process can lead

to further variations of the conclusions. Take the example where subjects who reply promptly

have a low value for wi, j and all patients who reply after one reminder have a large value

for wi, j. Now assume that the covariate effect for the first reminder category (z = 0) is

significantly positive and the effect for the second category is significantly negative. De-

pendent on the attempt-specific intercept the conclusions can vary when modelling only the

missingness probabilities.

Overall, we note that using the richer information of the reminder probabilities en-

ables a more accurate choice of covariates which induce missingness. However, this state-

ment is conditional upon having large enough sample sizes to detect significant effects for

all reminder categories.

6.4 Summary

We have proposed a selection model for continuous longitudinal data to adjust for non-

ignorable or informative missingness when initial non-responders are re-approached sev-

eral times. In addition, we have contrasted this model with the traditional selection model

framework, where we adjust for missing data by modelling the missingness process.

The models presented combine the non-linear mixed model presented in Section
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6. ADJUSTING FOR MISSINGNESS THROUGH THE REMINDER PROCESS

3.5 for the underlying outcome model with logistic regression models for the missingness

and the reminder processes.

For the reminder process, we model the probability of replying at a certain attempt,

given not having replied earlier, through a multinomial model. We use logistic regression to

explore the dependence of the response probabilities on covariates as well as the outcome

of interest. We investigate models which assume the same covariate and outcome effect

across all reminder categories. However, we also discuss the limitation of this assumption

and expand our model to allow for attempt-varying covariate or outcome effects.

We perform a sensitivity analysis, where we investigate the impact of missingness

on the rate of improvement for different model families and under different assumptions

about the missingness process. We focus on the case of monotone missingness patterns.

The simplicity of the model fitting described relies heavily on this assumption. As soon

as we relax this assumption, we are confronted with multi-dimensional integrals. Attempts

to run the extended SAS code which accounts for non-monotone missingness failed due to

slowness. The calculation of the likelihood in every iteration step requires the computation

of several hundred integrals and every iteration step ran for several hours. Therefore, we

moved to the Bayesian paradigm to fit models based on non-monotone missingness using

WinBUGS. However, the complicated outcome model and correlated parameters make the

model fitting very difficult, see Section 9.2.

For CAST, the conclusions that recovery is slower, and less satisfactory with age,

and more rapid with BKC than Tubigrip do not alter materially across all models investi-

gated.

Depending on whether the reminder process or the missingness process is explored,

we find that the probabilities of replying decrease or increase with the observed outcome

at the current or previous occasions. Due to the high correlation between the scores at

adjacent time points, problems arise when including current and previous scores jointly.

The MNARp-3 reminder model suggests that the improvement and the average score, rather

than the actual scores, affect the missingness process and this model leads to the best fit.
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When modelling the missingness process, only a marginal effect of the average score was

found. Overall, these results suggest that missingness depends on the outcome of interest.

In general, we observe different covariate effects for the reminder and missingness

processes. However, also within the two model families conclusions depend on the assumed

missingness mechanism. For example, for all reminder process models, except MNARp-

3, we observe a (sometimes marginal) positive effect of age on the response probabilities.

The MNARp-3 suggests that age does not have a significant effect. We argue that a direct

comparison of the results for the two model families is difficult, as different covariates

are included in the corresponding models. We claim it is possible that covariate effects

are included in the reminder process but not in the missingness process and the other way

around, see Section 6.3.4.

Our investigations suggest that using the richer information of the reminder process

enables a more accurate choice of covariates, which induce missingness, than modelling the

missingness process. This holds under the condition that the sample sizes of all reminder

categories are large enough to detect significant effects. A further advantage of modelling

the reminder process versus the traditional selection model is the ability to incorporate the

dependence across the reminders at the different observation times for a given patient.

Regarding the reminder process, we observe that phone calls are most effective,

while sending a second questionnaire without further telephone chasing appears to be least

effective in retrieving questionnaires. Such insight is important to understand the effective-

ness of reminder systems and to improve the design of future studies.

Overall, the outcome parameters of interest are estimated very robustly across all

models investigated. However, we believe that care has to be taken with such conclusions.

The identification of all models presented is driven by untestable parametric assumptions

on the marginal outcome model, the conditional missingness and the conditional reminder

process, respectively. It is not clear to which extent these conclusions would differ under

other assumptions; e.g. other covariance structure for the marginal outcome process, use

of the probit link-function for the reminder and missingness probabilities, incorporation of
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explanatory variables such as occupation in the missingness and reminder process mod-

els. Furthermore, we include the previous and current score linearly in the reminder and

missingness process. Other functional relationships might lead to differing conclusions. In

particular, we estimate the model parameters ψi for i ∈ {3, 4} relating the selection model

to missing responses. This estimation can be sensitive to the parametric assumptions on the

marginal outcome model, see Kenward [1998]. Alternatively, we could fix these parameters,

estimate the model and investigate the sensitivity of conclusions to a range of plausible val-

ues for ψi, i ∈ {3, 4}. For the traditional selection model where we adjust for missing data by

modelling the missingness process, this approach was adopted by Carpenter et al. [2002].

Despite the listed shortcomings of our analysis , we believe that the model families

explored are valuable for understanding treatment and covariate effects on the outcome as

well as the inclination to reply. More efficient algorithms would facilitate extensions to

non-monotone missingness patterns and wider use of these models.
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Chapter 7

Missingness and Dose-Finding

Studies with Recurrent Event Data

7.1 Introduction

A clinical trial is a research study and usually categorized into Phase I, Phase II and Phase

III clinical trials. In the first phase the experimental drug is tested the first time on human

beings. The main goal is to prove the safety of the new drug. In a Phase II clinical trial we

aim to determine the efficacy of the new drug compared to placebo or an active comparator.

Moreover, we want to identify the dose-response relationship and the target dose for which

the drug can be shown to be simultaneously safe and effective. Using this dose we then

move to the confirmatory Phase III trial.

In this part of the thesis we will focus on dose-finding studies in the context of Phase

II trials. The primary outcome of interest consists of the number of events per subject within

a specified study period. As with all clinical trials which observe measurements repeatedly

over time, we are confronted with missing data, see Chapter 5. In fact, the studies of interest

observe pain-related outcomes. Thus, we expect patients to drop out for reasons that are

related to the outcome of interest.

Given the importance of selecting the adequate dose, we carefully consider the in-
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7. MISSINGNESS AND DOSE-FINDING STUDIES

terplay between recurrent event data modelling, dose selection and different missingness

mechanisms. This work is published in Akacha and Benda [2010].

This chapter is organized as follows. The remainder of this section is devoted to

reviews on dose-finding studies, recurrent event data analysis and missing data issues. In

Section 7.2 we introduce the study which motivated our work. Section 7.3 discusses dif-

ferent methods for handling missing data in recurrent event data studies. In Section 7.4,

we investigate regression models for recurrent event data analyses and endpoint-analyses,

that is only the data at the end of the study are analyzed. Concluding remarks are given in

Section 7.5.

7.1.1 Dose-Finding Studies: A Brief Review

Typically, the aim of a clinical trial is to determine the efficacy of a new drug compared to

placebo or an active comparator. In the special case of dose-finding studies the interest lies

in identifying the dose-response relationship and the target dose for which the drug can be

shown to be simultaneously as effective as a comparator and safe. A good understanding

of the dose-response relationship is crucial in clinical drug development. A dose which

is too low will hinder the proof of efficacy and a dose which is too high could result in

safety issues. In fact, one of the main reasons for the high discontinuation rate of Phase III

clinical trials was found to lie in a poor understanding of the dose-response relationship and

consequently in an inadequate dose selection [Bretz et al., 2008].

Several approaches have been proposed for the efficacious planning and analysis

of a dose-finding study. A methodology that combines formal hypothesis testing for dose

response with flexible modeling of the dose-response relationship and estimating a target

dose, i.e. a minimum effective dose (MED) that produces a clinical relevant effect was pro-

posed in Bretz et al. [2006] and Pinheiro et al. [2006]. This concept of selecting the best

model while controlling the familywise error rate and the subsequent target dose estimation

is an extension of the ideas proposed in Tukey et al. [1985]. The estimation of the MED

based on a given model can be regarded as a calibration problem which can be seen as
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a reverse process to regression, i.e. the estimation of a value for an independent variable

that yields an expected outcome for the dependent variable equal to a predefined value.

An overview on the classical calibration problem is described in Osborne [1991]. There is

also an extensive literature on calibration problems related to dose estimation, e.g. Filloon

[1995]; Hsu and Berger [1999]; Tamhane and Logan [2002]; Morales et al. [2006]; Budtz-

Jœrgensen [2007] and Bretz et al. [2008]. See also Forkman [2008] and Dette et al. [2008]

regarding designing aspects of non-linear calibration problems.

Usually, the efficacy is measured relative to placebo. In many applications, how-

ever, a comparison with available medications is desired in order to identify the dose be-

yond which the new drug provides a better efficacy outcome than the competitor drug. This

chapter focuses on the estimation of a target dose defined as the dose for which the ex-

pected response is equal to that of a competitor group. More generally, the target dose

could be defined as the dose that yields an expected response which equals a given function

of the average control effect. If for example this function is given by an additive constant

it may correspond to the smallest dose for which the expected response is not inferior to

that of a control group. The latter modification would be straightforward and may be used

in planning non-inferiority trials with an adequate dose. In contrast to the literature cited

above, the reference value for the outcome of the target dose must be estimated from the

current study, i.e. embedded in the dose-response model, where - depending on the cho-

sen parametrization- either the response of the comparator drug or the target dose itself

represents an additional parameter to estimate.

7.1.2 Recurrent Event Data Analysis: A Brief Review

The dose-finding studies that motivated our work seek to analyze processes which generate

events repeatedly over time. Such processes are referred to as recurrent event processes.

Examples include seizures in epileptic studies, hot-flushes postmenopausal women suffer

from or flares in gout studies.

Statisticians involved in these studies are usually interested in understanding the
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underlying event occurrence process. This includes the investigation of the rate at which

events occur, the inter-individual variation and most importantly, the relationship between

the event occurrence and explanatory variables such as treatment or dose.

The modelling of recurrent events can be approached in a number of ways. The

two most common ways are through event counts and gaps or waiting times between two

events. According to Cook and Lawless [2007], models and methods based on counts are

often useful when individuals frequently experience the events of interest, and the events

are ‘incidental’ in the sense that their occurrence does not materially alter the process itself,

either directly or through resulting interventions. In contrast, analyses based on waiting

times are often relevant when events are relatively infrequent, some type of individual re-

newal occurs after an event, or when prediction of the time to the next event is of interest.

The applications in mind for this work are of the former nature, and the canonical approach

for the analysis of event counts is the Poisson process.

Poisson processes can be defined in various ways, one of which is via the intensity

function, see Andersen et al. [1993] and Appendix A.3. It gives the instantaneous probabil-

ity of an event occurring at a certain point in time. Modelling the dependence of recurrent

events on explanatory variables can be achieved by specifying the associated intensity as a

function of those variables. Corresponding work and different models have been presented

in Andersen and Gill [1982]; Lawless [1987]; Andersen et al. [1993]; Lindsey [1995] and

Cook and Lawless [2007].

7.1.3 Recurrent Event Data and Missingness: A Brief Review

The studies that motivated our work focus mainly on the number of events that occur by the

end of the study period. Therefore, modelling the counts through a generalized linear model

as introduced in McCullagh and Nelder [1989] might seem sufficient. However, in recurrent

event data studies and more generally in studies with repeated measurements, incomplete

data due to missed visits or dropouts are quite common. Hence, the endpoint of interest

may be missing. In many situations, however, information about the counting process prior

153



7. MISSINGNESS AND DOSE-FINDING STUDIES

to dropout is available, e.g. through patient diaries. This knowledge can be incorporated in

a recurrent event data analysis.

For the specific case of recurrent event data, the literature mainly distinguishes

between two different missingness mechanisms: the conditionally independent censoring

mechanism and the dependent or informative censoring mechanism. The conditionally in-

dependent censoring corresponds to the general concept of data being ‘missing at random’

in the terminology of Little and Rubin [2002], see Cook and Lawless [2007]. It has been

shown that valid likelihood inference can then be based on the observed data process by

using the concept of risk sets, see Andersen et al. [1993]; Robins and Rotnitzky [1995]

and Cook and Lawless [2007]. Under informative censoring, the censoring mechanism de-

pends on quantities which are unknown prior to dropout. In this case, joint modelling of

the recurrent events and censoring mechanism may be necessary, see Cook and Lawless

[2007]. Joint parametric or semi-parametric models, similar in spirit to shared parameter

models, have been discussed in Lancaster and Intrator [1998] and Wang et al. [2001]. A

widely used method to adjust for informative censoring is based on inverse probability of

censoring weights, see Robins and Rotnitzky [1995]; Miloslavsky et al. [2004] and Cook

and Lawless [2007]. For a more thorough bibliographic note on censoring mechanisms in

the case of recurrent event data we refer to [Cook and Lawless, 2007, Chapter 2 and Chapter

7].

Although these methods to adjust for missingness in the case of recurrent event

data exist, we aim to explore and apply methods that are generally used for longitudinal

data. This approach is advantageous, because these methods are usually better known to

the clinical community. We hope this research will make it easier for clinicians to abandon

the widely used complete case analysis or last observation carried forward approach in favor

of more suitable models. To the best of our knowledge there is no such review of several

missing data methods for the analysis of recurrent event data or any work on missingness

in the case of dose-finding studies. Different missing data methods with the main focus on

repeated measurement studies were discussed in Chapter 5.
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Regulatory aspects of missing data in clinical trials are described in the Interna-

tional Conference on Harmonisation of Technical Requirements for Registration of Phar-

maceuticals for Human Use (ICH) E9 guideline [ICH-E9, 1998], and the EMEA Points to

Consider on Missing Data [EMEA, 2001]. Recently, a revised EMEA guideline has been

published as a draft, EMEA [2009], giving a more detailed insight in potential issues related

to the different methods of missing data handling. Whilst, from a regulatory point of view,

the main focus appears to lie in confirmatory Phase III trials, the undesired effects of miss-

ing data are also relevant in dose-finding studies. As described in EMEA [2009], bias is the

most important concern. In dose-finding, this may lead either to over- or underestimation

of the treatment effect or a dose-response slope. Overestimation would, in general, lead to

an underestimation of a target dose, and vice versa. Consequently, the assumed therapeutic

window would be either too narrow or too wide. In the first case, the development pro-

gram might erroneously be stopped or continued with an unnecessarily high dose that has

a potentially poor safety profile, whereas in the latter case an ineffective dose might be put

forward to Phase III.

7.1.4 Notation

Suppose m independent subjects are randomized into a trial and that each subject experi-

ences a type of recurrent event.

Let ni be a realisation of the random variable Ni (T ) and denote the number of events

over the complete study period [0,T ] for the i-th subject, i ∈ {1, ...,m}. The event times for

subject i are denoted by 0 < ti,1 < ... < ti,ni ≤ T and the corresponding ‘time of occurrence’

random variables by Ti,1, ...,Ti,ni .

Let xi, ji be the vector of explanatory variables for subject i and event time ji ∈

{ti,1, ..., ti,ni}. It is assumed that xi, ji are time-independent explanatory variables. Therefore,

xi, ji = xi for all ji ∈ {ti,1, ..., ti,ni}. Let si denote the treatment for subject i. Assuming

the study design involves ` doses, q1, ..., q`, of the new drug and one comparator (C), then

si ∈ {q1, ..., q`,C}. The target dose of interest is denoted by η ∈ R. Dependent on the
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context, we denote the entire parameter vector of interest by θ ∈ Rp1 , p1 ∈ N or ϑ ∈ Rp2 ,

p2 ∈ N.

Furthermore, let Ni =
{
Ni(T ),Ti,1, ...,Ti,ni

}
denote the complete recurrent event

data information for subject i and let ti,d ∈ (0,T ] indicate the dropout time for subject

i ∈ {1, ...,m}. For non-completers the dropout time is defined as the last observed event time.

Then Ni,obs =
{
Ni(ti,d),Ti,1, ...,Ti,d

}
denotes the observed part and Ni,mis = {Ni(T ),Ti,d+1, ...,

Ti,ni} the missing part of the recurrent event data sequence. For clarity, in this work we

assume that once patients drop out, they do not return to the study.

7.2 An Example: The Gout Study

The study that motivated our work is an upcoming dose-finding study, which investigates a

new compound for the prophylaxis of signs and symptoms of acute flares in chronic gout

patients. An active controlled Phase II study will be carried out: 350 patients suffering

from chronic gout are randomized into one of six treatment groups. Five of these groups

correspond to different doses of the new drug, the sixth is an active control. One hundred

patients are randomized into the active control group, whereas 50 patients are assigned to

one of the five doses of the new drug. For similar studies see Borstad et al. [2004] and

Becker et al. [2005].

The primary objective is to determine the target single dose of the new compound

that leads to the same efficacy as the active-control, with respect to the mean number of

gout flares occurring within 16 weeks of randomization.

Given the primary outcome, an endpoint-analysis is to be performed. However,

given the painful nature of gout flares many patients are expected to drop out. Safety con-

cerns for high doses and adverse events are further expected reasons for dropout.

Performing an endpoint-analysis without adjustment for missingness would imply

no inclusion of information about non-completers. The underlying assumption is an iden-

tical evolution for completers and non-completers. Given the reasons for dropout, this is
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rather unrealistic.

Fortunately, all patients are asked to record the date they suffered from a gout flare.

Using this information, the number of flares by the time of dropout will be known and can

be included in the modelling framework, as will be shown in Section 7.4. Explanatory

variables of interest are age, ranging between 16 years and 72 years, and treatment.

7.3 Approaches to the Analysis of Recurrent Event Data with

Dropout

As described in the introduction, the studies that motivated this work focus mainly on the

number of events that occur by the end of a specific study period. In practice, however,

the primary endpoint is not always observed, but information about the counting process

before dropping out is usually available. Hence, the remaining derivations of this chapter

are based on this assumption.

In the following subsections the focus will lie on different methods to deal with

missing data in this specific case. Five approaches will be discussed: complete case anal-

ysis; two single imputation techniques; the direct likelihood approach and pattern-mixture

models.

7.3.1 Complete Case and Imputation-Based Procedures

In a complete case analysis (CC) all participants with missing data are simply discarded

and the missingness process is not explicitly incorporated, i.e. we exclude all patients for

whom ni is missing.

Another common strategy is to fill in missing values based on the observed mea-

surements. We will explore two single imputation techniques: last observed rate carried

forward (LORCF) and last count carried forward (LCCF). For the shortcomings of com-

plete case analysis and single imputation techniques we refer to Section 5.2.

LORCF makes the implicit assumption that events for a specific patient occur at the
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same average rate before and after dropout. The missing true endpoint ni is replaced by the

rounded value of ni(ti,d) + (T − ti,d) ni(ti,d)
ti,d

, where ni(ti,d) is the number of events by drop-out.

For LCCF, the missing outcome ni is simply replaced by ni(ti,d). Replacing every

missing endpoint with the imputed value leads to a ‘completed’ data set.

Based on the ‘completed’ data sets a generalized linear model for count data can be

formulated, see Section 7.4.1.

7.3.2 Direct-Likelihood Approach

The direct likelihood (DL) approach is valid under ignorability, see Section 5.3.1 and Little

and Rubin [2002]. Information from non-completers is incorporated when fitting a specific

model and estimating the target dose of interest. Let Ni,obs =
{
Ni(ti,d),Ti,1, ...,Ti,d

}
denote

the observed part and Ni,mis =
{
Ni(T ),Ti,d+1, ...,Ti,ni

}
the missing part of the recurrent event

data sequence. Likelihood inference for the parameter of interest θ can then be based on the

observed likelihood

Lobs(θ|Nobs) =

m∏
i=1

fNi,obs(ni,obs|θ),

where f (·|θ) denotes a parametric model for the recurrent event data sequence. Specific

models which enable the estimation of the target dose of interest will be discussed in Section

7.4.2.

7.3.3 Analysis using Pattern-Mixture Models

In the case of pattern-mixture models (PMM), we assume that the distribution differs ac-

cording to the underlying missingness pattern, see Section 5.4.2.

Let di denote the missingness pattern for subject i and Pi be the associated ran-

dom variable. In case of continuous time recurrent event data the missingness pattern di is

equivalent to the dropout time ti,d. The joint distribution of Ni and Pi is then given by

f(Ni,Pi)(ni, ti,d) = fNi |Pi(ni|ti,d) fPi(ti,d)
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= fNi,obs |Pi(ni,obs|ti,d) fNi,mis |Ni,obs,Pi(ni,mis|ni,obs, ti,d) fPi(ti,d), (7.1)

where the first and third factors can be modelled through the data. We can use identify-

ing restrictions to determine the unknown conditional densities of unobserved components,

given a set of observed quantities, see Section 5.4.2 and Little [1994]. For other ways to

overcome the under-identification, we refer to Molenberghs and Kenward [2007].

Different identifying restrictions yield different missingness mechanisms. In our

setting each pattern (except the pattern of the completers) consists of one patient only.

Therefore, estimating the pattern-specific identifiable densities, as required in the fitting

procedure for the discrete time PMMs, see Section 5.4.2 and Thijs et al. [2002], is not

always feasible. We will use the complete case missing value restrictions (CCMV), where

information which is unavailable is borrowed from the model for the complete cases, see

Section 5.4.2 and Molenberghs et al. [1998].

In order to be able to borrow information using other identifying restrictions, pa-

tients with similar dropout times have to be clustered into one group or pattern. Once the

clustering is done, identifying restrictions for the unknown conditional densities need to be

specified. Although very interesting, tackling this problem is beyond the scope of this thesis

and we will focus on the CCMV restrictions.

From equation (7.1), PMMs rely on modelling the whole recurrent event data se-

quence. A corresponding model will be presented in Section 7.4.2 and this section will be

revisited in Section 7.4.3.

7.4 Model Specification

In this section, we formulate regression models that enable the target dose selection and the

investigation of covariate effects on the endpoints n1,...,nm, taking into account that some

endpoints are missing. Some of the missing data handling methods discussed in Section 7.3

edit the incomplete data set in order to obtain ‘completed’ data sets (CC, LORCF, LCCF).

A statistical analysis based on these approaches requires a model for the endpoints only.
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In contrast, the direct likelihood approach requires a model for the whole recurrent event

data sequence. In order to create multiple imputations of the endpoints based on a pattern-

mixture model, we need to model the whole recurrent event data sequence. Based on the

‘completed’ data sets an endpoint analysis can be performed. That is, fitting a pattern-

mixture model in this context requires two models.

In Section 7.4.1 we discuss a model suitable for an endpoint analysis, while Section

7.4.2 is devoted to models for the whole recurrent event data sequence. Section 7.4.3 dis-

cusses how these models can be combined to fit a pattern-mixture model. We develop the

models for a single subject. In view of the assumed independence between subjects, it is

then easy to build the complete models.

7.4.1 Models for Count Data

The probability of n events occurring in the interval [0,T ] can be modelled by a Poisson

distribution with mean Λx(ϑ), i.e.

P (N(T ) = n) =
exp (−Λx(ϑ)) Λn

x(ϑ)
n!

,

where ϑ denotes the parameter of interest and x the explanatory variables.

Following the ideas in McCullagh and Nelder [1989], a generalized linear model

will be formulated to model the mean Λx(ϑ) as a function of the dose and other explana-

tory variables. The canonical link function is used and the following relationship for the

expectation of N(T ), E [N(T )], is assumed:

ln {E [N(T )]} = ln [Λx(ϑ)] = α0 + α1 ln(age) + α2 g(s, η),

where η is the target dose of interest and ϑ = (α0, α1, α2, η)>. Further explanatory vari-

ables such as gender and occupation can be included. The function g(·, η) quantifies the

dose-response relationship between the endpoint N(T ) and the dose, treated as a contin-

uous variable. This work will focus on linear and log-linear dose-response relations. An
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extension of the models for other dose-response relations [Bretz et al., 2005] is straight-

forward. Now suppose subject i and j share the same covariates. The target dose is then

defined as

η =
{
q ∈ R : E[Ni(T ) | si = q] = E[N j(T ) | s j = C]

}
.

The following parametrizations for g(·, η) are proposed for the estimation of η, s ∈ {q1, ..., q`}:

linear model: g(s, η) = s − η; and

log-linear model: g(s, η) = ln(s) − ln(η).

For s = C the value g(C, η) is set to zero, i.e.

g(C, η) = 0 and g(η, η) = 0,

enabling the selection of the target dose defined as the dose that leads to the same expected

number of events as the comparator.

As defined, the Poisson model features the constraint of equal mean and variance,

but the number of events usually varies beyond what can be explained through available

covariates. To take this inter-individual variation into account, a model in which the re-

gression parameters vary across different patients will be considered, see Chapter 3. The

following generalized linear mixed model is proposed:

N(T )|U ∼ Poisson [U Λx(ϑ)] ; U ∼ Gamma
(
ζ−1, ζ

)
and

ln {E [N(T )|U]} = ln [U Λx(ϑ)] = α0 + α1 ln(age) + α2 g(s, η) + ln (U) ,

where g(·, η) is defined above, Poisson(·) denotes the Poisson distribution and Gamma(·, ·)

the gamma distribution, see Appendix A.2 for the parametrization used. Assuming the U’s

are gamma-distributed random variables with mean 1 and variance ζ implies that subjects

with U greater than one are more likely to experience an event than those with U less
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than one. In particular, the marginal distribution of N(T ) is given by a negative-binomial

distribution (NB(·, ·)), see for example Diggle et al. [1996]:

N(T ) ∼ NB
(
1
ζ
,

1
1 + ζ Λx(ϑ)

)
with ln [Λx(ϑ)] = α0 + α1 ln(age) + α2 g(s, η);

such that the overdispersion coefficient is given by 1 + ζ Λx(ϑ). We note that the overdis-

persion depends on the explanatory variables.

The joint likelihood LN(ϑ, ζ) of n1, ..., nm is then given by

LN(ϑ, ζ) :=
m∏

i=1

LNi(ϑ, ζ)

=

m∏
i=1

Γ(ni + 1
ζ )

Γ( 1
ζ )

(
ζΛxi (ϑ)

ζΛxi (ϑ) + 1

)ni
(

1
ζΛxi (ϑ) + 1

) 1
ζ

.

Note that we consider this likelihood for all ‘completed’ data sets, i.e. under the complete

case, LORCF and LCCF approach. Furthermore, we can use this likelihood in the context

of the PMM analysis, once the missing endpoints were imputed, see Section 7.4.3 for more

details.

The maximum likelihood estimates for ϑ and ζ can be calculated through the dual

quasi-Newton algorithm, implemented for example in NLMIXED, SAS/STAT [1999]. The

estimates obtained will depend substantially on the procedure used to deal with the missing

data and the chosen dose-response model. This inference can be severely biased, as will be

shown in Chapter 8.

7.4.2 Models for Recurrent Event Data

For inference based on the direct likelihood and the PMM approach, a model for the whole

event data sequence N = (N(T ),T1, ...,Tn) is required.

We assume that events occur in continuous time. For simplification, it is often as-

sumed that events occur according to a Poisson process {N(t), t ≥ 0} with (time-dependent)

intensity function λx(t, θ), see Appendix A.3. The intensity function specifies the instan-
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taneous probability of an event occurring at a certain point in time. According to Lawless

[1987], the corresponding cumulative intensity function is given by

Λx (t, θ) =

t∫
0

λx (w, θ) dw,

where θ quantifies the relationship between the intensity and covariates x. The joint distri-

bution of the count n and the event times 0 ≤ t1, ..., tn ≤ T can be shown to be

P [N(T ) = n,T1 = t1, ...,Tn = tn] = exp [−Λx(T, θ)]
n∏

j=1

λx
(
t j, θ

)

via product integration, see Kalbfleisch and Prentice [1980]; Andersen et al. [1993] and

Cook and Lawless [2007]. However, this model ignores the overdispersion. Therefore, we

consider instead a model with varying event rates across patients, where

λx (t, θ|U = u) = u λx (t, θ) (7.2)

and u is a realization of the random variable U. Here, the extended model of interest is

given by

N(t)|U ∼ Poisson [Λx(t, θ|U)] and U ∼ Gamma
(
ζ−1, ζ

)
,

where

Λx(t, θ|U = u) =

∫ t

0
u λx (w, θ) dw = u Λx(t, θ).

Note that the intensity, implicitly given in equation (7.2), belongs to the conditional count-

ing process {N |U = u} and not to the marginal process N.

The contribution of a specific subject to the joint likelihood for the outcome ‘n

events occur at times t1, ..., tn’, with U specified as above, is then given by

LN(ζ, θ) =

∫
fN(T ),T1,...,Tn,U(n, t1, ..., tn, u) du
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=

∫
fN(T ),T1,...,Tn |U(n, t1, ..., tn) fU(u) du (7.3)

=

n∏
j=1

 u λx
(
t j, θ

)
u Λx (T, θ)

 n!
∫

exp {−u Λx (T, θ)} (u Λx (T, θ))n

n!
fU(u) du

= n!

 n∏
j=1

λx
(
t j, θ

)
Λx (T, θ)

 Γ(n + 1
ζ )

n! Γ( 1
ζ )

(
ζΛx (T, θ)

ζΛx (T, θ) + 1

)n (
1

ζΛx (T, θ) + 1

) 1
ζ

︸                                                       ︷︷                                                       ︸
f (θ,ζ)

,

where Γ(·) denotes the gamma function (see Appendix A.1) and f (θ, ζ) is the density of a

negative-binomial distributed random variable with mean Λx (T, θ) and variance Λx (T, θ) +

ζ Λ2
x (T, θ). In particular, the overdispersion coefficient is given by 1 + ζ Λx(T, θ), and thus

depends on explanatory variables.

We now want to discuss suitable models for the intensity function λx (t, θ). In the

literature it is very common to assume covariates affect the intensity through a multiplicative

model of the form

λx (t, θ) = λ0(t, δ) h(x, β), (7.4)

where θ = (β, δ)> is the parameter vector of interest, λ0(·) is the baseline intensity function

and h(·) is a positive-valued function of x and β, see Andersen et al. [1993] and Lawless

[1995]. Then, the corresponding cumulative intensity function is given by

Λx (t, θ) = Λ0 (t, δ) h(x, β), where Λ0 (t, δ) =

t∫
0

λ0 (w, δ) dw.

The case where λ0(·) is left arbitrary (a semi-parametric model) is distinguished from the

case where the baseline function is specified up to a parameter vector δ (a full parametric

model). As implied by the notation in equation (7.4), the focus of this work lies in fully

parametric models. Further discussion on semi-parametric models can be found in Lawless

[1987] and Lin et al. [2001].

Model (7.4) implies that the intensity functions associated with any two sets of
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covariate values, say xi and x j, are proportional over time, i.e.

λxi (t, θ) = λ0(t, δ) h(xi, β) and λx j (t, θ) = λ0(t, δ) h(x j, β)

⇔
λxi (t, θ)
λx j (t, θ)

=
h(xi, β)
h(x j, β)︸   ︷︷   ︸

=:c

⇔ λxi (t, θ) = c · λx j (t, θ) .

According to Lin et al. [2001], this restriction may be too strong in practice. Alterna-

tive non-multiplicative models such as additive and time transform models can be formu-

lated, see Cook and Lawless [2007] and citations therein. Alternatively, the model (7.4)

could be extended such that the baseline rates depend on explanatory variables: λx (t, θ) =

λ0(t, x, δ) h(x, β). The effect of covariates on the intensity remains easy to interpret; however,

interpreting this effect on the cumulative intensity function, i.e. the mean of the counting

process, can become quite difficult. In this work we chose to adopt a multiplicative model,

despite knowing that the proportionality assumption might be too stringent. We are will-

ing to make this assumption, in particular, because our focus does not lie on the modelling

aspect. Our key goal is to investigate the impact of dropout, which will be based on a

simulation study. In this simulation study we will employ the same model for the simu-

lations as for the analysis of those simulated data sets. Thus, our main challenge is not

to find an appropriate model for a real data set. However, we acknowledge that exploring

the effect of using different simulation and analysis models should be considered in future

investigations.

For full parametric multiplicative models, different models for the baseline function

and the function h(·) may be proposed. It is often convenient to choose the function h(·)

according to the Andersen-Gill Model [Andersen and Gill, 1982; Cook and Lawless, 2002]:

h(x, β) = exp
(
x> β

)
since no restrictions on the values of the regression parameter β are needed.
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Here, we will focus on a slight extension of the Andersen-Gill-Model. We assume

h(x, β) = exp
[
k(x, β)

]
, (7.5)

where k(·) is a (not necessarily linear) function of x and β. One possible model with x =

(ln(age), z)> is

k(x, β) = β0 ln(age) + β1 g(s, η). (7.6)

Different choices for g(·, η) were discussed in Section 7.4.1.

Using the extended fully parametric Andersen-Gill model with h(x, β) specified in

equation (7.5) leads to a time dependence solely through the baseline intensity function.

Different assumptions about the function λ0(·) can be made. If the rate of events is expected

to be constant over the whole study period, it is sensible to choose λ0(·) as a constant func-

tion. This yields a homogeneous Poisson process. Alternatively, a monotone decreasing or

increasing rate function may be suitable and can be realized through a Weibull rate func-

tion, see Lawless [1987]. In the case of a seasonal illness, a periodic rate function might be

considered.

The baseline functions that we are going to investigate are given by:

Constant: λ0 (t, δ) = δ, δ ∈ R+

Weibull : λ0 (t, δ) = δ0 δ1 tδ1−1 with δ = (δ0, δ1)> ∈ R+ × R+.

Note that the Weibull intensity function is monotone decreasing for 0 < δ1 < 1, constant

for δ1 = 1 and monotone increasing for δ1 > 1.

Depending on the chosen intensity function the likelihood in equation (7.3) will

become more or less cumbersome; with a constant function the likelihood simplifies sub-

stantially. Leaving out the density of the negative-binomial distribution in equation (7.3)
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leads to

Constant:
n∏

j=1

λ0
(
t j, δ

)
Λ0 (T, δ)

=
1

T n

Weibull:
n∏

j=1

λ0
(
t j, δ

)
Λ0 (T, δ)

=
δn

1(
∏n

j=1 t j)δ1−1

T n δ1
.

In summary, the following model for the recurrent event data sequence N is considered:

N(t)|U ∼ Poisson [U Λx(t, θ)] ; U ∼ Gamma
(
ζ−1, ζ

)
and

ln {E [N(t)|U]} = β0 ln(age) + β1 g(s, η) + ln [Λ0 (t, δ)] + ln (U) , (7.7)

where θ = (β, η, δ)>. The constant and Weibull intensity functions will be considered in the

simulation study presented in Chapter 8.

For the DL approach we base inference on LNobs(θ, ζ) =
∏m

i=1 Li,obs(θ, ζ), where

Li,obs(ζ, θ) = ñi,obs!

ñi,obs∏
j=1

λxi

(
ti, j, θ

)
Λxi (T, θ)

 Γ(ñi,obs + 1
ζ
)

ñi,obs!Γ( 1
ζ
)

[
ζΛxi (T, θ)

ζΛxi (T, θ) + 1

]ñi,obs
[

1
ζΛxi (T, θ) + 1

] 1
ζ

with ñi,obs := ni(ti,d) if patient i drops out and ñi,obs := ni(T ) for completers.

In order to fit a pattern-mixture model using the CCMV restrictions we first need

to estimate (θ, ζ) based on the likelihood (7.3) for the complete cases only. Based on the

resulting estimates the missing values are replaced by multiple imputations, see Section

7.3.3 and Section 7.4.3.

For both approaches the dual quasi-Newton method is used to maximize the corre-

sponding likelihoods.

7.4.3 Pattern-Mixture Models: Revisited

We now revisit the pattern-mixture models described in Section 7.3.3, and aim to identify

the conditional model fNmis |Nobs,P(nmis|nobs, td, X, θ, ζ).

As we are observing an overdispersed Poisson process, we incorporated an unob-
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servable subject-specific random effect U ∼ Gamma(ζ−1, ζ) in the model framework pro-

posed in Section 7.4.2. Conditional on this random variable the event counts were assumed

to follow a Poisson process. As here the interest lies in the unconditional counting process

N, we note that this is no longer a Poisson process with rate function u λx(t, θ). Instead,

using the notation in Section 7.4.2, the rate function of the unconditional counting process

N is given by

λ̃x(t, ζ, θ) =
1 + ζ N(t−)

1 + ζ Λx(t, θ)
λx(t, θ), (7.8)

where N(t−) is the number of events that occur in the time interval [0, t), see Andersen et al.

[1993].

In order to identify fNmis |Nobs,P(nmis|nobs, td, X, θ, ζ) we use the CCMV identifying

restrictions, where we only have to distinguish between the set of completers (=: I) and

the set of non-completers (=: Ic). The parameters of interest in the likelihood contribution

(7.3) are θ and ζ. Assume that these were estimated through θ̂comp and ζ̂comp for the com-

plete cases, using the model in (7.7). Then, the rate function for the completers ` ∈ I is

determined through

λ̃x`(t, ζ̂comp, θ̂comp) =
1 + ζ̂comp N`(t−)

1 + ζ̂comp Λx`(t, θ̂comp)
λx`(t, θ̂comp).

For i ∈ Ic, we then identify

Ni(T ) = Ni(ti,d) + Ncomp
{
(ti,d,T ]

}
|Ni(ti,d), (7.9)

where Ncomp
{
(ti,d,T ]

}
|Ni(ti,d) is a draw for the number of events occurring in the inter-

val (ti,d,T ], based on the counting process with intensity function λ̃xi(t, ζ̂comp, θ̂comp), t ∈

(ti,d,T ].

As it is cumbersome to draw from Ncomp
{
(ti,d,T ]

}
|Ni(ti,d), we choose to draw the

event times and to count the event occurrences by the end of the study. Given an event
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occurred at time t j−1, the waiting time w j for event t j can be simulated based on

B j =

t j−1+w j∫
t j−1

λ̃xi(t, ζ̂comp, θ̂comp)dt,

where B j is standard exponential distributed, see Cook and Lawless [2007].

Solving this integral for the constant and Weibull rate functions is straightforward.

For the constant rate function we obtain:

B j =

t j−1+w j∫
t j−1

1 + ζ N(t−)
1 + ζ Λx(t, θ)

λx(t, θ)dt

=

t j−1+w j∫
t j−1

1 + ζ N(t−)
1 + ζ δ t h(x, β)

δ h(x, β)dt

= (1 + ζ N(t j−1)) δ h(x, β)

t j−1+w j∫
t j−1

1
1 + ζ δ t h(x, β)

dt

= (1 + ζ N(t j−1)) δ h(x, β)
1
ζ
· ln (|1 + ζ δ t h(x, β)|)

∣∣∣∣t j−1+w j

t j−1
.

Reformulation of this equation yields

w j =

exp
(

B j
1
ζ +N(t j−1)

+ ln
(
|1 + ζ δ t j−1 h(x, β)|

))
− 1

ζ δ h(x, β)
− t j−1,

where B j ∼ Exp(1). We note that the denominator turns zero when ζ = 0, i.e. when dealing

with the classical homogeneous Poisson process with intensity function λx(t, θ) = δ h(x, β).

However, in that case it is well known that the waiting times are exponentially distributed

with parameter δ h(x, β). In fact, by using l’Hôspital’s rule (l’HR) for the calculation of

limits, we obtain this result. Let

ξ := exp

 B j
1
ζ + N(t j−1)

+ ln
(
|1 + ζ δ t j−1 h(x, β)|

) ,
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then

lim
ζ→0

w j = lim
ζ→0

exp
(

B j
1
ζ +N(t j−1)

+ ln
(
|1 + ζ δ t j−1 h(x, β)|

))
− 1

ζ δ h(x, β)
− t j−1

l’HR
= lim

ζ→0

(
B j

ζ2 [ζ−1+N(t j−1)]2 +
δ t j−1 h(x,β)

1+ζ δ t j−1 h(x,β)

)
· ξ

δ h(x, β)
− t j−1

=
B j + δ t j−1 h(x, β)

δ h(x, β)
− t j−1

=
B j

δ h(x, β)
,

i.e. the inter-arrival times are exponentially distributed with parameter λx(t, θ) = δ h(x, β).

Similarly, we obtain the following expression for the waiting times under a Weibull

rate function, i.e. λx(t, θ) = δ0 δ1 tδ1−1 h(x, β):

w j =


exp

{
B j

1
ζ +N(t j−1)

+ ln
(
|1 + ζ δ0 tδ1

j−1 h(x, β)|
)}
− 1

ζ δ0 h(x, β)


1
δ1

− t j−1.

Now, for each patient i from the set Ic, multiple draws of Ni(T ) are created ac-

cording to the identifying restriction defined in equation (7.9). In our case we will use 5

imputations. Then, the missing endpoints for subjects i ∈ Ic are replaced by these multi-

ple draws, creating several ‘completed’ data sets for all subjects i ∈ Ic. Subsequently, the

generalized linear mixed model, introduced in Section 7.4.1, is fitted to these ‘completed’

data sets. The same model is fitted separately to the data of all completers ` ∈ I. For each

parameter the final estimate is a weighted average of the pattern specific estimates. The

weights are estimated as the pattern probabilities, see Section 5.4.2 and Thijs et al. [2002]

for details about fitting procedures for pattern-mixture models.
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7.5 Summary

This chapter was motivated by a dose-finding study which explores a recurrent event data

process over a time period of several weeks. In practice, investigators are not interested in

modelling the whole recurrent event sequence. Instead, they focus on the number of events

occurring in a specific time interval. Due to missingness this endpoint is not observed for all

patients and the classical approach of investigators is to perform a complete case analysis

where all non-completers are discarded from the analysis.

In our study of interest, however, dropout is expected to be outcome related and

the underlying assumption justifying a complete case analysis, i.e. MCAR, is violated.

Therefore, other techniques to handle missing data and their performances have to be in-

vestigated. Some classical techniques for dealing with missing data in the case of repeated

measurements were discussed in Section 7.3. Some of these methods require models for the

whole recurrent event process, whereas others enable an endpoint analysis for the number

of events occurring by the end of the study. Regression models which enable the target dose

selection and the investigation of the effect of other explanatory variables were laid out in

Section 7.4. The recurrent events are modelled as overdispersed Poisson process data, with

dose and age as regressors. We examine constant and time-varying rate functions.

In order to compare the performances of the proposed missing data methods a sce-

nario evaluation study will be presented in Chapter 8.
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Chapter 8

Simulation Study

The key goal of this chapter is to investigate the performance of several missing data han-

dling methods for the target dose selection in a recurrent event data study. To allow a direct

quantitative comparison of the methods presented in Section 7.3 under the same conditions

and using the same performance metrics, a simulation study, motivated by the setting of the

example in Section 7.2, was undertaken.

As the data for the motivating study have not yet been collected, the investigations

will be performed from a study design point of view. This investigation is necessary for

deciding on the primary analysis techniques and the justification of the chosen sample size.

In clinical research, these have to be specified in study protocols prior to the arrival of the

data. Furthermore, choosing the adequate analysis option enables a prompt analysis of the

data upon availability.

In Section 8.1, we present the design of the simulation study based on the case study

introduced in Section 7.2. Section 8.2 presents the results of the simulation study for a large

sample size and Section 8.3 investigates whether these results also hold for small sample

sizes. Finally, concluding remarks are given in Section 8.4.
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8.1 Simulation Assumptions

In this simulation study, we will explore various scenarios, using different:

• rate functions: constant and (decreasing) Weibull;

• dose-response profiles: linear and log-linear;

• missingness mechanisms (see page 175);

• dropout-rates: 20% – 50%;

• overdispersion coefficients: dependent on covariates 1 + φΛxi(T, ϑ) ∈ [1.1, 1.4],

which corresponds to the range of 10% − 40% overdispersion.

We assume that five different doses {0.25, 0.5, 1, 2, 3} of the new drug and one comparator

are used in the trial. We investigate the impact of dropout on the target dose estimation and

the most robust analysis method when missingness occurs.

Analyses based on a sample size of 350 subjects revealed a bias of 5% when

analysing the complete simulated data sets, i.e. the data sets before introducing missing-

ness. In order to reduce the bias due to finite sampling, a large sample size of 3500 subjects

was chosen first to compare the different analysis methods, see Section 8.2. Subsequently

in Section 8.3, a sample size of 350 was used to confirm the results for a more realistic

setting.

Each of the doses of the new drug is assigned to one-seventh of the subjects (500

or 50, respectively) and the comparator to two-sevenths (1000 or 100, respectively). The

study period is 112 days. We simulate the data using the target dose η = 2 and patients

are assumed to suffer from three events on average. All the aforementioned assumptions

for the simulation study were chosen in consultation with clinicians which were involved

in planning the clinical study presented in Section 7.2.

In order to simulate recurrent event data based on the model given in equation (7.7),

Section 7.4.2, we perform the following steps for each scenario, i.e. choice of explanatory

variables, rate function etc.:
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Step 1: For each subject i ∈ {1, ...,m} we draw the random effect Ui and calculate the

intensity function λxi (t, θ|Ui = u), see equation (7.2).

Step 2: In Section 7.4.2, we assume that the event counts, given Ui, occur according to a

Poisson process.

For a constant intensity function we are then dealing with a homogeneous Poisson

process. Hence, the inter-arrival times are exponentially distributed with parameter

λxi (t, θ|Ui = u) = u δ h(x, β). Drawing from this distribution is then straightforward

using statistical software such as SAS.

In the case of the Weibull intensity function, the cumulative distribution function for

the waiting time E = w to the next event, given an event occurred at time t, has to

be calculated directly. Let N(t) denote the number of events occurring in the time

interval [0, t]. Then,

FE(w) = P(E ≤ w)

= P(N(t + w) − N(t) ≥ 1)

= 1 − P(N(t + w) − N(t) < 1)

= 1 − P(N(t + w) − N(t) = 0).

Now, we know that N(t + w) − N(t) is Poisson distributed with mean

Λx (t + w, θ|U) − Λx (t, θ|U) = U h(x, β)
∫ w

0
λ0 (t + v, θ) dv

= U h(x, β) δ0
[
(t + w)δ1 − tδ1

]
.

Thus,

FE(w) = 1 − exp
(
−U h(x, β) δ0

[
(t + w)δ1 − tδ1

])
.

We can now simulate from this distribution by using the inverse CDF method. That is,
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we sample from the uniform distribution on the interval [0, 1], i.e. v ∼ Uni f orm(0, 1),

and find w, such that FE(w) = v. Solving this equation yields:

w =

(
ln(1 − v)
−U h(x, β) δ0

+ tδ1

) 1
δ1
− t.

Depending on the used intensity function, we draw the waiting times according to

corresponding distribution and count the number of events by the end of the study,

i.e. 112 days.

For each scenario 1000 data sets are created.

Step 3: Subsequently, we introduce missingness by applying the following missing data

mechanisms:

MAR : Subject drops out after t j ∼ Bernoulli
[
p(t j)

]
, (8.1)

where logit
[
p(t j)

]
= γ0,s + γ1,s ln(age) + γ2,s s + γ3,s

N(t j)
t j

, and

γk,s < 0 for k ∈ {0, 1} and γk,s > 0 for all k ∈ {2, 3}. That is, the probability of

dropping out decreases with age but increases with the assigned dose (due to adverse

events) and number of events.

MNAR : Subject drops out after t j ∼ Bernoulli
[
p(t j)

]
, (8.2)

where logit
[
p(t j)

]
= γ0,s +γ1,s ln(age)+γ2,s s+γ3,s

N(t j)
t j

+γ4,s
N(T ) − N(t j)

T − t j
, and

γk,s < 0 for k ∈ {0, 1} and γk,s > 0 for all k ∈ {2, 3, 4}. Here, additionally, the proba-

bility of dropping out increases with the potentially unobserved number of events by

the end of the trial.
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Moreover, we distinguish two cases. Firstly, for k ∈ {0, 1, 3, 4}

γk,s = γk for s ∈ {0.25, ..., 3,C} and γ2,s s =


γ2 s for s ∈ {0.25, ..., 3};

γ2 η for s = C;

i.e. the missingness processes for the comparator and the target dose group are iden-

tical. Secondly, for k ∈ {0, 1, 3, 4}

γk,s =


γk for s ∈ {0.25, ..., 3};

γ∗k , γk,η for s = C;
and

γ2,s s =


γ2 s for s ∈ {0.25, ..., 3};

γ∗2 , γ2 η for s = C;

i.e. the missingness processes for the comparator and the target dose group differ.

Based on the simulated data sets we present the results of the simulation study in the next

section. As the results under a constant or decreasing Weibull rate are identical from a

qualitative point of view, we will focus on the results for the constant rate. For this case a

total of 12 scenarios were investigated. The different compositions are given in Table 8.1.

8.2 Results using a Large Sample Size

The results of the simulation study, using the mean bias of the estimated target dose as our

performance metric, are given in Table 8.2 and Table 8.5. The mean (mean(η)) and median

(median(η)) of the estimated target doses, the standard errors (σ̂η) and the 90% range for

the estimates ( γ̂) are presented. The pattern-mixture model was fitted using the CCMV

identifying restrictions and 5 imputations, see Section 7.4.3.

For the first eight scenarios, see Table 8.1, a homogeneous Poisson process with a

linear dose-response relationship was assumed. Different dropout rates are considered. The
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Simulation scenarios assuming a constant rate function

Rate Missingness Contrast Dropout-Rate
Scenario linear log-linear MAR MNAR same miss. diff. miss.

1 X X X 22.10%
2 X X X 21.69%
3 X X X 46.06%
4 X X X 45.51%
5 X X X 25.88/36.71/21.55%
6 X X X 26.27/35.13/22.72%
7 X X X 54.18/71.04/47.43%
8 X X X 56.53/70.74/50.84%
9 X X X 22.86%

10 X X X 22.49%
11 X X X 26.50/36.69/22.41%
12 X X X 27.04/35.09/23.82%

Table 8.1: Overview of the different scenarios for the simulation study using a constant rate
function. In case of different missingness rates for the new drug and the comparator, the column
’Dropout-Rate’ consists of the dropout rates for the complete data set/ only for the comparator/ only
for the experimental drug.

first four scenarios, which assume the same dropout rate and process for the target dose

group and the comparator, lead to estimates which are very close to the true value η = 2.

The estimates obtained by analyzing the complete data sets (CD) are the most accurate ones.

However, in the case of MAR, it is remarkable how close these are to the direct likelihood

(DL) estimates (see Scenario 1 and Scenario 3). Due to the reduced information, standard

errors are slightly higher than those obtained from the CD analysis. Even in the case of

MNAR, where ignoring the missingness process is usually not valid, we obtain acceptable

estimates, including for Scenario 4, where almost half of the endpoints are missing. Also

the estimates obtained by the complete case analysis (CC), the last count carried forward

technique (LCCF) and the pattern-mixture models (PMM) are within a 2.5% range of the

true value. The target dose is usually slightly underestimated. The standard errors are

marginally higher than those of the complete data. The mean of the estimates under the

last observed rate carried forward (LORCF) approach is highly biased due to outliers. We

observe two reasons for outlying estimates. Firstly, imputing the missing endpoint through

the rounded value of ni(ti,d)+ (T − ti,d) ni(ti,d)
ti,d

can yield very large numbers of events and will

affect the estimation of the target dose. Secondly, outliers occur due to numerical issues:
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Simulation results for constant rate and linear dose-response relation.
True value of the target dose used in the simulation study is η = 2.

Scenario Parameter CD CC LORCF LCCF DL PMM
1 mean(η) 2.002 1.985 -84.60 1.997 2.003 1.997

1 median(η) 1.998 1.983 1.968 1.995 2.000 1.994

1 σ̂η 0.07 0.07 2382.1 0.07 0.08 0.07

1 γ̂ [1.89,2.12] [1.86,2.12] [-11.78,6.41] [1.88,2.13] [1.88,2.13] [1.88,2.12]
2 mean(η) 2.002 1.987 -84.45 1.997 2.003 1.997

2 median(η) 1.998 1.986 1.966 1.999 2.002 1.996

2 σ̂η 0.07 0.08 2417.8 0.08 0.08 0.08

2 γ̂ [1.89,2.12] [1.86,2.12] [-11.75,7.18] [1.87,2.12] [1.88,2.13] [1.87,2.13]
3 mean(η) 1.999 1.981 -881.9 1.973 1.999 2.006

3 median(η) 1.999 1.978 1.967 1.977 1.999 2.005

3 σ̂η 0.07 0.09 27576 0.09 0.08 0.09

3 γ̂ [1.89,2.10] [1.84,2.13] [-3.44, 6.56] [1.83,2.11] [1.88,2.19] [1.87,2.15]
4 mean(η) 1.999 1.972 -989.9 1.921 1.992 1.992

4 median(η) 1.999 1.970 1.959 1.919 1.991 1.994

4 σ̂η 0.07 0.09 30962 0.10 0.08 0.11

4 γ̂ [1.89,2.10] [1.82,2.12] [-3.79, 6.38] [1.76,2.09] [1.87,2.12] [1.83,2.15]

5 mean(η) 2.000 2.403 -0.982 2.494 2.000 2.404

5 median(η) 1.999 2.403 1.720 2.492 1.999 2.403

5 σ̂η 0.07 0.10 72.69 0.10 0.08 0.09

5 γ̂ [1.88,2.12] [2.25,2.57] [-2.77,5.90] [2.35,2.65] [1.87,2.14] [2.26,2.56]
6 mean(η) 2.000 2.473 -4.915 2.626 2.083 2.481

6 median(η) 1.999 2.474 1.496 2.623 2.081 2.478

6 σ̂η 0.07 0.10 144.51 0.10 0.08 0.10

6 γ̂ [1.88,2.12] [2.32,2.63] [-4.85,5.38] [2.47,2.78] [1.96,2.22] [2.32,2.64]
7 mean(η) 2.002 3.279 -561.21 3.082 2.000 3.237

7 median(η) 2.001 3.274 1.821 3.079 2.001 3.235

7 σ̂η 0.07 0.15 15117 0.11 0.09 0.13

7 γ̂ [1.89,2.11] [3.03,3.54] [-10.56,6.09] [2.91,3.26] [1.85,2.14] [3.03,3.46]
8 mean(η) 2.002 3.591 -614.04 3.602 2.085 3.586

8 median(η) 2.001 3.586 1.758 3.604 2.08 3.584

8 σ̂η 0.07 0.18 15187 0.20 0.09 0.20

8 γ̂ [1.89,2.11] [3.30,3.91] [-9.92,4.83] [3.34,3.88] [1.93,2.24] [3.30,3.89]

Table 8.2: Simulation results for a constant rate with a linear dose-response relationship. The
amount of missingness and the missingness process vary according to Table 8.1. In the column
’CD’ (complete data) the data sets were analyzed before introducing missingness. Moreover, ’CC’
refers to the complete case analysis, ’ LORCF’ to last observed rate carried forward, ’LCCF’ to the
last count carried forward imputation and ’DL’ to the direct likelihood approach. The estimate σ̂η
denotes the standard error of η̂ and γ̂ the 90% range of the η-estimates.
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the dual quasi-Newton algorithm used to fit the generalized linear model defined in Section

7.4.1 did not converge for every simulated data set. Therefore, we use the more outlier-

robust median, in order to compare the performance of this imputation technique to the

other approaches. This shows that the LORCF estimates lie within a 2.5% range of the true

value.

The results of Scenario 3 and Scenario 4 using the LORCF, LCCF and CC approach

suggest that estimating the target dose in the given setting is very robust. But which com-

ponent of the setting leads to these results? The remaining parameter estimates show some

severe biases for LORCF, CC, LCCF and PMM.

Assuming a linear dose-response relation and the model introduced in Section 7.4.1

yields

ln {E [N(T )|U]} = α0 + α1 ln(age) + α2 (s − η) + ln (U) .

For fitting purposes we reparametrise α0 = ln (ρT ). In comparison, the model for the whole

recurrent event data sequence, Section 7.4.2, gives

ln {E [N(T )|U]} = β0 ln(age) + β1 (s − η) + ln(δT ) + ln (U) .

In particular, both parametrisations imply ρ = δ, α1 = β0, α2 = β1 and the same subject-

specific parameter ζ and target dose η in both models. The estimates for these estimates

and Scenario 3 and Scenario 4 are given in Table 8.3. The estimates for these parameters

are more sensitive to dropout; the estimates for α1 = β0, δ = ρ and ζ are biased for some

methods. In particular, we observe a higher bias under the assumption of MNAR. The

parameter α1 = β0 is severely biased in the case of LORCF, but also for the CC, LCCF and

PMM approaches. The estimates for ρ and the target dose using the LORCF method are

also biased. This is very likely due to outlying measurements. Moreover, the estimation

of the overdispersion parameter ζ seems to be biased in all approaches. A biased estimate

for ζ implies that the variance estimate of N(T ) is biased, which is in line with the results

presented in Gustafson [2001]. However, the estimation of ζ could be affected by the finite
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Scenario Parameter True CD CC LORCF
EST SE EST SE EST SE

3 β0 = α1 0.01 0.011 0.02 0.022 0.04 -0.051 0.61
3 β1 = α2 -0.4 -0.401 0.01 -0.445 0.02 -0.451 0.34
3 δ = ρ 0.02 0.020 0.002 0.014 0.002 101.74∗ 2909∗

3 ζ 0.015 0.015 0.01 0.0003 0.002 3.130 0.50
3 η 2 1.999 0.07 1.981 0.09 -881.907∗ 27577
4 β0 = α1 0.01 0.011 0.02 0.019 0.04 -0.055 0.63
4 β1 = α2 -0.4 -0.401 0.01 -0.396 0.02 -0.462 0.35
4 δ = ρ 0.02 0.020 0.002 0.014 0.003 120.40 3473
4 ζ 0.015 0.015 0.01 2.94 ·10−6 1.9·10−5 3.239 0.51
4 η 2 1.999 0.07 1.972 0.09 -989.9 30962

Scenario Parameter True LCCF DL PMM
EST SE EST SE EST SE

3 β0 = α1 0.01 0.018 0.03 0.012 0.03 0.016 0.04
3 β1 = α2 -0.4 -0.312 0.01 -0.400 0.02 -0.380 0.02
3 δ = ρ 0.02 0.014 0.002 0.020 0.002 0.019 0.01
3 ζ 0.015 0.0005 0.002 0.016 0.01 0.0002 0.001
3 η 2 1.974 0.09 1.999 0.08 2.006 0.09
4 β0 = α1 0.01 0.015 0.04 0.011 0.03 0.013 0.05
4 β1 = α2 -0.4 -0.263 0.01 -0.379 0.01 -0.335 0.02
4 δ = ρ 0.02 0.014 0.003 0.019 0.003 0.019 0.02
4 ζ 0.015 2.74 ·10−6 2.1·10−5 7.98 ·10−6 6.1·10−5 5.50 ·10−6 2.1·10−4

4 η 2 1.921 0.10 1.992 0.08 1.992 0.11

Table 8.3: Mean estimates and standard errors for the parameters involved in the models of Scenario
3 and Scenario 4, given in Table 8.1.

sample size and the small value we chose for the simulation study (ζ = 1/65 ≈ 0.0154).

To rule out the influence of ζ on the results obtained, simulations were conducted with the

value ζ = 1. The results, given in Table 8.4, suggest similar findings to those presented in

Table 8.2, but that the bias of the target dose estimation increases with the overdispersion

parameter.

Note that all approaches except the direct likelihood and the LORCF method un-

derestimate the parameter ζ. This is due to the dropout probabilities, which depend on

explanatory variables and the number of events at a certain point in time, thus reducing the

heterogeneity for the complete cases or imputed data sets. In contrast, the overdispersion

parameter ζ is highly overestimated in the case of LORCF which is related to the outlying

imputations mentioned earlier. Only the results yielded by the direct likelihood approach

are very accurate.
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Parameter CD CC LORCF LCCF DL PMM
same missingness: 21.14%
mean(η) 1.992 1.971 -4.399 1.984 1.999 1.980

median(η) 1.994 1.964 1.821 1.982 2.001 1.980

σ̂η 0.12 0.14 72.61 0.13 0.14 0.13

γ̂ [1.79,2.19] [1.75,2.20] [-10.17,5.30] [1.78,2.21] [1.78,2.22] [1.77,2.20]
different missingness: 24.24% (total) - 32.44% (s = C) - 20.95% (s ∈ {0.25, 0.5, 1, 2, 3})
mean(η) 1.992 3.092 -28.90 2.911 2.004 3.098

median(η) 1.987 3.085 1.682 2.906 2.004 3.090

σ̂η 0.12 0.20 542.90 0.17 0.15 0.19

γ̂ [1.79,2.19] [2.78,3.45] [-8.93,4.94] [2.64,3.21] [1.75,2.26] [2.80,3.43]

Table 8.4: Mean and median estimates for the target dose, the corresponding standard error and
the 90% range in case of MAR and ζ = 1.

Overall the direct likelihood estimates for Scenario 3, that is MAR, are satisfactory

and near the true values. In the case of MNAR a higher bias is observable.

These results lead to the hypothesis that the estimation of the target dose is very

robust, because the same missingness process was applied for patients receiving the com-

parator and the target dose. The responses for both treatment groups are ‘equally biased’

and will therefore still yield the correct estimate for the target dose.

In order to investigate this hypothesis, data sets according to Scenarios 5 - 8 in

Table 8.1 were simulated and analyzed. The dropout mechanisms for the comparator and

the different doses of the new drug have the same functional form but different parameters,

see equations (8.1) and (8.2), which lead to a higher dropout rate in the comparator group.

Comparing the resulting target dose estimates for these scenarios, a remarkable bias for the

CC, LCCF and PMM approaches is observed. In the case of Scenario 5 and Scenario 6,

where we have an overall dropout rate of about 26%, these approaches overestimate η by

approximately 25%. With 50% missingness, this bias increases to approximately 75%.

The overestimation of the target dose in the complete case analysis is due to the

nature of the simulated missingness processes. Patients who suffer from many events are

more likely to drop out than those with only a few events. As the dropout rate in the

comparator group is higher than for the other dose groups, it appears that the CC analysis
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discards relatively more patients assigned to the comparator group. The remaining patients

in the comparator group present a subsample with relatively fewer events, thus leading to an

overestimation of the target dose. Now, as we used the CCMV restrictions for the pattern-

mixture models, this bias is also incorporated in the PMM estimates.

In the case of LCCF the last observed count is carried forward. Therefore, the num-

ber of events is underestimated for all non-completers and the target dose overestimated.

In contrast, the target dose is underestimated in the case of LORCF by at most

25%. The substantial bias is slightly surprising, because the data were simulated via a

homogeneous Poisson process and the LORCF approach imputes the missing values based

on this assumption.

Note that the true target dose η is not included in the 90% range of estimates for

either CC, LCCF or PMM and that the bias increases with ζ in the case of different miss-

ingness processes too, see Table 8.4.

Let us now turn to Scenarios 9-12 and their results, which are shown in Table 8.1

and Table 8.5, respectively.

Again, the data were simulated according to a homogeneous Poisson process but

with a log-linear dose-response relation. The results are very similar in spirit to those dis-

cussed previously. A negligible bias can be observed for Scenarios 9 and 10, where the

same missingness process is assumed for the comparator and the target dose group. For

Scenario 11 and 12 the bias is up to 55% for 20% missingness, compared to a maximum of

30% in Table 8.2. This bias increases to up to 600% in case of 50% missingness (results

omitted). The DL approach performs very well in the MAR case but leads to a bias of

around 10% in the case of MNAR. This bias is nevertheless considerably smaller than that

of the remaining techniques.

These results show that the impact of missingness on the estimated target dose

does not only depend on the assumed missingness process, the dropout rate and the inter-

individual variation, but also on the assumed dose-response relationship.
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Simulation results for constant rate and log-linear dose-response relation

Scenario Parameter CD CC LORCF LCCF DL PMM
9 mean(η) 2.007 1.971 7.3·1010 1.989 2.011 1.974

9 median(η) 1.993 1.963 1.868 1.977 2.003 1.966

9 σ̂η 0.14 0.15 8.1·1011 0.15 0.16 0.15

9 γ̂ [1.80,2.26] [1.75,2.22] [1.5·10−4,987.5] [1.77,2.25] [1.78,2.28] [1.76,2.23]
10 mean(η) 2.007 1.970 6.2·1010 1.984 2.008 1.970

10 median(η) 1.993 1.961 1.839 1.973 1.995 1.963

10 σ̂η 0.14 0.15 7.1·1011 0.15 0.15 0.15

10 γ̂ [1.80,2.26] [1.75,2.23] [1.1·10−5,594.7] [1.75,2.26] [1.78,2.28] [1.74,2.24]
11 mean(η) 2.008 3.012 4.3·1010 3.372 2.010 2.968

11 median(η) 2.005 3.004 1.605 3.347 2.007 2.953

11 σ̂η 0.13 0.28 5.4·1011 0.33 0.16 0.28

11 γ̂ [1.79,2.24] [2.58,3.51] [9.3·10−3,44.05] [2.87,3.95] [1.76,2.29] [2.54,3.46]
12 mean(η) 2.008 3.278 4.5·1010 4.135 2.201 3.267

12 median(η) 2.005 3.261 1.299 4.095 1.999 3.239

12 σ̂η 0.13 0.33 5.8·1011 0.46 0.18 0.34

12 γ̂ [1.79,2.24] [2.78,3.90] [6.4·10−3,24.19] [3.46,4.98] [1.93,2.51] [2.76,3.86]

Table 8.5: Simulation results for a constant rate and a log-linear dose-response relationship. The
amount of missingness and the missingness process vary according to Table 8.1. The estimate σ̂η
denotes the standard error of η̂ and γ̂ the 90% range of the η-estimates.

8.3 Results using a Realistic Sample Size

In Section 8.2 we chose a relatively large sample size and found that the bias depends on

the missingness processes in the comparator and the target dose group. The DL approach

was shown to perform best among the investigated methods. Here, we investigate how these

results differ for a more realistic sample size. The sample size used is 350, see Section 8.1,

and results are shown in Table 8.6.

We observe a bias increase of approximately 25% compared to the results with the

larger sample size and larger standard errors. However, from a qualitative point of view the

findings remain the same, see Section 8.2.
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Parameter CD CC LORCF LCCF DL PMM

Linear Rate
same missingness: 22.75%
mean(η) 2.012 1.999 -51.82 2.006 2.013 2.001

median(η) 1.994 1.975 1.590 1.990 1.998 1.977

σ̂η 0.22 0.25 446.1 0.24 0.24 0.24

γ̂ [1.69,2.40] [1.63,2.44] [-51.52,4.70] [1.66,2.40] [1.66,2.40] [1.64,2.43]
different missingness: 25.88% (total) - 36.65% (s = C) - 21.56% (s ∈ {0.25, 0.5, 1, 2, 3})
mean(η) 2.006 2.418 -273.6 2.502 2.004 2.420

median(η) 1.994 2.396 1.528 2.477 1.987 2.399

σ̂η 0.22 0.29 6412 0.29 0.24 0.29

γ̂ [1.67,2.39] [1.99,2.92] [-9.24,4.09] [2.08,3.00] [1.61,2.42] [1.99,2.91]

Log-Linear Rate
same missingness: 22.86%
mean(η) 2.096 2.051 1.7·1010 2.071 2.111 2.057

median(η) 2.027 1.980 1.410 1.998 2.030 1.985

σ̂η 0.51 0.53 2.7·1011 0.53 0.56 0.53

γ̂ [1.40,3.01] [1.34,3.03] [4·10−18,90.27] [1.34,3.12] [1.39,3.24] [1.35,3.06]
different missingness: 26.47% (total) - 36.76% (s = C) - 22.34% (s ∈ {0.25, 0.5, 1, 2, 3})
mean(η) 2.058 3.184 5.2·109 3.571 2.056 3.193

median(η) 1.977 2.977 1.0752 3.308 1.946 2.981

σ̂η 0.47 1.07 9.4·109 1.26 0.56 1.09

γ̂ [1.43,2.87] [1.91,5.19] [4·10−14,43.1] [2.12,5.81] [1.35,3.03] [1.92,5.21]

Table 8.6: Mean and median estimates for the target dose, the corresponding standard error and
the 90% range in case of MAR and a sample size of 350 subjects.

8.4 Summary

The performed simulation study suggests that the estimation of the target dose is very ro-

bust if the same dropout mechanisms apply for the comparator and the target dose group.

However, care should be taken because other model parameters can be substantially biased.

This holds in particular for the parameters which estimate subject-specific characteristics.

Further studies showed that this robustness is lost as soon as the dropout processes

differ for the comparator and the target dose group. A dropout rate as little as 25% was

able to severely bias the target dose when performing the ‘traditional’ complete case analy-

sis. In the case of a log-linear dose-response and a homogenous Poisson process the target

dose was overestimated by more than 50%. The pattern-mixture model performs similarly
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badly. This is not surprising as all unavailable information is borrowed from completers.

Moreover, both single imputation techniques perform poorly in this case. The bias intro-

duced by the last count carried forward approach is comparable to that of a complete case

analysis. The target dose is always overestimated and dependent on the rate function, dose-

response relationship, dropout rate and mechanism the bias varies between 25% and 600%.

In contrast, the target dose is usually underestimated in the case of the last observed rate

carried forward approach. The bias ranges between 25% and 75%. Outliers and numerical

problems hinder an adequate dose selection. As expected, the direct likelihood approach

performed well, with a bias of maximal 5% in the case of a MAR process and of up to

10% in the case of a MNAR mechanism. These results suggest that the direct likelihood

approach provides a certain protection against bias for the MNAR process used.

In light of these results, we remark that the direct likelihood performed best among

the missing data handling approaches proposed in Section 7.3. This approach yields the

smallest bias, but also small standard errors which justify the sample size of 350 patients in

our specific case, see Table 8.6. Hence, we recommend the inclusion of this method in the

study protocols. Furthermore, we discourage the use of complete case analysis and single

imputation techniques. The poor performance of the pattern-mixture models is simply due

to the identifying restrictions used. Ideally, we would like to consider other possibilities to

borrow available information.

We observe that the magnitude of bias increases with the overdispersion, the dropout-

rate and for decreasing sample sizes. Furthermore, the magnitude depends highly on the

missingness process and the modelling framework, i.e. the underlying rate function and the

assumed dose-response model.

We acknowledge that there are several limitations to our investigations of the impact

of missingness on the dose-selection for recurrent event data studies. Firstly, we define the

dropout time for non-completers as the last observed event time. We employ this definition,

because using patient diaries it is difficult to observe the precise time of dropout. In fact,

the real dropout time lies in the interval (ti,d,T ] and more suitable approaches, e.g. by
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modelling the time to dropout after tid using survival models, might be preferable. We note

that an alternative definition of the dropout times would alter the results of all methods

except the complete case analysis and the last count carried forward method.

Secondly, our simulation results are based on using the same simulation and analy-

sis models. In practice, however, this will rarely be the case and we expect that the impact

of dropout also depends on the misspecification between ‘true’ and ‘fitted’ model.

Thirdly, the scope of our investigations is limited to cases where the same functional

form of the missingness process is assumed for the new drug and the comparator drug.

Solely the dropout rates differ. The impact of missingness is expected to be more severe if

the functional form and the included covariates differ for the two treatment groups.

Finally, the models investigated in the last two chapters assume a specific dose-

response relationship (linear or log-linear). In many applications, however, this relation is

not known and needs to be specified, see Bretz et al. [2005]. The selection of a suitable

dose-response relation itself is likely to be sensitive to dropout.
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Chapter 9

Conclusions and Future Directions

9.1 Summary and Conclusions

This thesis is concerned with the analysis of repeated measurements studies and issues

arising when data are incomplete.

The first part is motivated by the CAST study which observes bounded and contin-

uous longitudinal data. The aim of this study is to investigate the change over time in the

outcome score and factors that influence this change.

In Chapter 2, time plots reveal that the outcome of interest evolves non-linearly

over time. Also, the scores approach an upper limit as time increases. To fit a linear-mixed

model in Chapter 3, different transformations are used in an attempt to reduce the effect of

the boundedness and to improve the linearity of the data with respect to covariates. Three

of these transformations transform the outcome score, whereas the remaining two trans-

formations are applied to the observation times. The fitted models based on the different

transformations of the outcome score lead to a poor model fit. In contrast, the results based

on the transformations of the observation times lead to adequate model fits. The inference,

however, is shown to be very sensitive to the chosen transformation. We come to the con-

clusion that an analysis based on a transformation of the observation times may not answer

the original research question. In addition, models based on transformations cannot investi-
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gate the dependence of bounds on covariates, as the bounds need to be specified prior to the

transformation. Using transformations can also complicate the interpretation of covariate

effects on the original score.

In Chapter 3, we therefore present a valuable alternative to transforming data. A

non-linear mixed model for the mean score on the original scale as a function of covariates

is proposed. The model is constructed for continuous data where the rate of change is not

constant over time. It enables a very flexible incorporation of exploratory variables and is

easy to interpret, which is a valuable advantage over the alternative of data transformations.

For CAST, it allows us to model the final recovery level, which might be of particular

interest to patients. Although the non-linear mixed model is motivated by the CAST data

set, it could be applied to other studies, e.g. a longitudinal study using the Neck Disability

Index [Vernon and Mior, 1991].

For CAST, the non-linear mixed model reveals that recovery was more rapid with

BKC than with Tubigrip. The rate of recovery for Aircast brace was only marginally higher

than for Tubigrip. There was no significant difference in recovery rates between Bledsoe

boot and Tubigrip. Further, we show that older and female patients recovered substantially

more slowly than younger and male participants. Also, the score at final recovery for older

female patients was lower than for young male patients, suggesting that older female pa-

tients were less likely to recover completely from an acute soft tissue injury. We translate

these findings into auxiliary information, such as the expected time to achieve a certain

score for different patient groups.

The fitted non-linear mixed model in Chapter 3 is limited by the covariance struc-

ture it assumes. We discuss alternative structures for the covariance matrix of bounded

continuous longitudinal data in Chapter 4. Investigations of the study design and empiri-

cal covariance and correlation matrices suggest that a suitable covariance structure should

meet three characteristics. Firstly, correlations should be larger when the measurements are

closer in time than when they are further apart. Additionally, correlations are expected to

increase as measurements reach the bounds regardless of the time interval between mea-
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surements. Finally, the variances are rarely constant over time. Finding a covariance model

that meets these features proves to be very difficult. Several covariance pattern models and

random-effect models are fitted to the data. However, none of the these structures lead

to a satisfying fit. Therefore, we adopt the data-driven regression approach introduced by

Pourahmadi [1999]. Instead of a polynomial model for the outcome process, we chose

the non-linear mixed model presented in Chapter 3. Furthermore, we allow for an ignorable

missingness process and we argue that the AIC should be used for model selection purposes.

Applying this method to the CAST data recovers an unstructured covariance structure. For

CAST, the inference based on a compound symmetry structure and unstructured covariance

matrix is the same; the effect sizes and standard errors vary only a little.

After having specified a statistical model for the outcome vector of interest, we turn

to the challenge of missing values in repeated measurement studies. In Chapter 5 the statis-

tical framework for the analysis of incomplete data is reviewed and a few popular methods

to handle missing data and their underlying assumptions are reviewed. We stress that a

distinction between MAR and MNAR missingness processes based on the observed data

only is not possible. Moreover, we discuss how a sensitivity analysis, where the stability

of the conclusions is investigated under different assumptions, is a valuable approach to

analyze incomplete data. A sensitivity analysis for the CAST data set is performed, where

the results based on a complete case analysis (CC), the last observation carried forward

approach (LOCF), the direct likelihood approach (DL), multiple imputations (MI) and a

pattern-mixture model are compared. While the conclusions based on the CC, MI and DL

analysis are quite similar, they are substantially different for the LOCF approach.

This sensitivity analysis is continued in Chapter 6, where we account for informa-

tive missingness through selection models. The traditional selection model is extended by

adjusting for missingness through the number and nature of reminders made to contact ini-

tial non-responders. Using this model the impact of missingness on the rate of change is

evaluated in a sensitivity analysis. We contrast this model with the traditional selection

model, where we adjust for missingness by modelling the missingness process.
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Our investigations suggest that using the richer information of the reminder process

enables a more accurate choice of covariates, which induce missingness, than modelling the

missingness process. This holds under the condition that the sample sizes of all reminder

categories are large enough to detect significant effects. A further advantage of modelling

the reminder process versus the traditional selection model is the ability to incorporate the

dependence across the reminders at the different observation times for a given patient.

Regarding the reminder process, we observe that phone calls are most effective. For

the score data, the conclusions that recovery is slower, and less satisfactory with age, and

more rapid with BKC than Tubigrip do not alter materially across all models investigated.

Overall we believe that the robustness of the rate of improvement parameters is

closely related to the functional form of the non-linear mixed model. The score changes

much faster at the beginning of the study than towards the end. At the same time most

patients drop out in the last weeks. That is, the non-linear mixed model appears to be able

to accurately pick up the change because most patients have available data at the crucial

observation times. We expect that conclusions based on transformations and linear-mixed

models are more sensitive to missing values. However, this conjecture requires further in-

vestigation.

The second part of the thesis is motivated by a dose-finding study which explores a recur-

rent event data process over a time period of several weeks. Investigators involved in this

study are interested in the number of events occurring in a specific time interval. Due to

missingness this endpoint is not observed for all patients and the classical approach of in-

vestigators is to perform a complete case analysis where all non-completers are discarded

from the analysis.

In our study of interest, however, dropout is expected to be outcome related and

the underlying assumption justifying a complete case analysis, i.e. MCAR, is violated.

In Chapter 7, we discuss alternative techniques to handle missing data: last observed rate

carried forward, last count carried forward, direct likelihood approach and pattern-mixture
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models. Some of these methods require models for the whole recurrent event process,

whereas others enable an endpoint analysis for the number of events occurring by the end

of the study. Regression models which enable the target dose selection and the investigation

of the effect of other explanatory variables are presented. In this context, the target dose is

defined as the dose for which the expected response is equal to that of a competitor group.

The reference value for the outcome of the target dose is estimated from the current study,

i.e. embedded in the dose-response model.

The recurrent events are modelled as over-dispersed Poisson process data, with dose

and age as regressor. Constant and Weibull rate functions are examined.

In order to investigate the impact of dropout on the target dose selection, and to

compare the performances of the proposed missing data methods, a scenario evaluation

study is performed in Chapter 8. The results of this study suggest that the estimation of the

target dose is very robust if the same dropout mechanisms apply for the comparator and the

target dose group. However, we observe that other model parameters can be substantially

biased. This holds in particular for the overdispersion parameter.

Further studies showed that this robustness is lost as soon as the dropout processes

differ for the comparator and the target dose group. A dropout rate as small as 25% leads

to a severe bias for the target dose selection when performing the traditional complete case

analysis. Of the methods explored, the direct-likelihood approach performs best, even when

a MNAR mechanism holds. Hence, we recommend the inclusion of this method in the

study protocols. Furthermore, we discourage the use of complete case analysis and single

imputation techniques. The fitted pattern-mixture models also perform poorly, which is

likely due to the identifying restrictions used.

We observe that the magnitude of bias increases with the overdispersion, the dropout

rate and for decreasing sample sizes. Furthermore, the magnitude strongly depends on the

missingness process and the modelling framework, i.e. the underlying rate function and the

assumed dose-response model.
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The work presented answered some of the questions raised by the two studies that moti-

vated our work. Clearly, at least as many questions remain unanswered and thus require

future research. Some of these questions concern assumptions which have to be scruti-

nized. Others concern extensions and generalisation of results, especially for the case of

non-monotone missingness patterns. And some others pose questions which currently do

not seem to draw attention in the broad research community. We will list some of these

areas for future research in the next section.

9.2 Future Work

The following list could serve as an agenda for future work. Most of these aspects have

been already mentioned in the summaries of each chapter.

(i) The inference in the first part of the thesis is heavily based on the assumption of

normally distributed data. However, the distribution of the data at later time points

appears to be skewed, see Figure 2.2. Suitable transformations or the use of another

distribution for the components Yi, j need to be further explored.

(ii) The random effects enter the non-linear mixed model (Chapter 3) in a linear fashion.

This assumption enables the formulation of an associated full multivariate model and

simplifies the computational tasks to a great extent. In the case of random effects that

enter the model equation in a non-linear way, we would be confronted with additional

integrations in the evaluation of the likelihood functions.

(iii) All random effects in Part I of the thesis are normally distributed, while all random

effects in Part II are assumed to be gamma distributed. Alternative distributions could

be used.

(iv) In the first part we focus on the symptoms sub-scale of the CAST data. Future work

could focus on all five sub-scales and make use of analysis methods for multivariate
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longitudinal data. In this context, the correlation between the different scores needs

to be accounted for.

(v) All fitted pattern-mixture and selection models are based on the assumption of mono-

tone missingness patterns. In practice, however, we usually observe non-monotone

missingness patterns. An extension allowing for non-monotone patterns would be of

great value.

We have attempted to fit the selection model presented in Chapter 6 for the non-

monotone case. The calculation of the likelihood requires the computation of several

hundred integrals for each iteration step. A program written in SAS needed several

hours for each iteration step. Therefore, we moved to the Bayesian paradigm us-

ing WinBUGS. We use the outcome model, reminder process model and missingness

process model presented in Chapter 6. The following priors are used

β0 ∼ Uni f orm [0, 100] ;

β1 ∼ Uni f orm [0, 100] ;

β2,trti ∼ N (0, 1000) for C ∈ {1, 2, 3, 4};

ψ0,k ∼ N (0, 1000) for k ∈ {1, 3, 4};

ψ j ∼ N (0, 1000) for j ∈ {1, 3};

ψ∗j ∼ N (0, 1000) for j ∈ {4, 5};

φ j ∼ N (0, 1000) for j ∈ {0, 1, 2, 3, 4};

1
σ2 ∼ Γ (0.001, 0.001) and

1
D2 ∼ Γ (0.001, 0.001) .

Unfortunately, the complicated outcome model and correlated parameters make the

model fitting very difficult. This work is currently in progress.

(vi) The sensitivity analysis presented in Chapter 6 is based on numerous assumptions
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which cannot be verified from the data. It is not clear to what extent our conclu-

sions would differ under other assumptions; e.g., other covariance structures for the

marginal outcome process, use of the probit link-function for the reminder and miss-

ingness probabilities or incorporation of explanatory variables such as occupation in

the missingness and reminder process models. Furthermore, we include the previous

and current score linearly in the reminder and missingness process. Other functional

relationships might lead to differing conclusions and thus need further investigation.

(vii) In the last section, we mention that the robustness of the rate of improvement param-

eters may be closely related to the functional form of the non-linear mixed model.

A comparison of results based on a suitable transformation and linear mixed models

with our non-linear mixed model could be very interesting.

(viii) In the second part of this thesis, we define the dropout time as the last observed

event time. Clearly, the real dropout time lies in the interval (tid,T ] and more suit-

able approaches allowing for a more general definition of the dropout time should be

explored.

(ix) The model for the counting process in Chapter 7 is based on a proportional model

for the intensity function and the inclusion of a random effect in a multiplicative

manner. These assumptions might be too strict in practice and alternatives should be

investigated.

(x) The simulation study presented in Chapter 8 focuses on cases where the same func-

tional form of the missingness process is assumed for the new drug and the competi-

tor drug. Only the dropout rates differ. In practice, however, the functional forms for

the two treatments might differ and we expect a more severe bias in the target dose

selection if this is the case.

(xi) All investigated models in Chapter 7 and 8 assume a specific dose-response relation-

ship. However, this relationship is rarely known and needs to be specified based on
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the data. This specification itself is likely to be sensitive to dropout. This aspect

needs to be further explored.

(xii) The pattern-mixture model for recurrent-event data presented in the second part of

this thesis was fitted by using the CCMV identifying restrictions. In order to be

able to borrow information using other identifying restrictions, patients with similar

dropout times have to be clustered into one group or pattern. The clustering could be

based on the four quartiles of the dropout-times.

(xiii) One aspect that we have not touched upon before concerns the assumed baseline rate

functions in our investigations. The constant and Weibull rate functions lead to a

monotone rate. With drugs for gout, however, it is commonly observed that the rate

at which flares occur increases in the first weeks of the study, but tends to decrease

afterwards. One way to model this is given by a Gaussian rate function

λ0(t, δ) =
1
δ1

exp

− (t − δ0)2

2δ2
1

 + δ2,

where δ = (δ0, δ1, δ2)> and δ1, δ2 ∈ R
+. We refrained from using this rate function

in the presented work because simulating a counting process based on this rate is

complicated.

(xiv) Finally, we note that the literature review revealed several relevant research areas

which seem to attract very little attention. Some of these are: identifiability issues for

non-linear mixed models; model diagnostic tools for non-linear mixed models; sam-

ple size calculations for non-linear mixed models; multiple imputation for recurrent

event data and sensitivity of inference to data transformations.
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Appendix A

Supplementary Material

A.1 Gamma Function

For a complex number z with positive real part, the gamma function Γ(z) is defined as

Γ(z) =

∞∫
0

tz−1 exp(−t) dt.

A.2 Gamma Distribution

A random variable U is said to be gamma distributed with shape parameter λ and scale

parameter α, if its density function is given by

fU(u) =
uλ−1

Γ(λ)αλ
exp

(
−

u
α

)
, u ≥ 0.

We write U ∼ Γ(λ, α). It can be shown that E(U) = λα and Var(U) = λα2.

A.3 Poisson Process

A counting process {N(t), t ≥ 0} is a stochastic process that represents the number of events

that occur up to time t ∈ R+
0 . We speak of a Poisson process with rate function λ(t) > 0 if
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(i) N(0) = 0;

(ii) the number of events that occur in disjoint time intervals are independent;

(iii) the counting process has unit jumps, i.e. for all t:

P (N(t + h) − N(t) = 1) = λ(t)h + o(h) and

P (N(t + h) − N(t) ≥ 2) = o(h),

where lim
h→0

o(h)
h = 0.
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