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Nonasymptotic bounds on the mean square error
for MCMC estimates via renewal techniques

Krzysztof Łatuszyński, Błażej Miasojedow and Wojciech Niemiro

Abstract The Nummellin’s split chain construction allows to decompose a Markov
chain Monte Carlo (MCMC) trajectory into i.i.d. “excursions”. Regenerative MCMC
algorithms based on this technique use a random number of samples. They have
been proposed as a promising alternative to usual fixed length simulation [25, 33,
14]. In this note we derive nonasymptotic bounds on the mean square error (MSE)
of regenerative MCMC estimates via techniques of renewal theory and sequential
statistics. These results are applied to costruct confidence intervals. We then focus
on two cases of particular interest: chains satisfying the Doeblin condition and a ge-
ometric drift condition. Available explicit nonasymptotic results are compared for
different schemes of MCMC simulation.

1 Introduction

Consider a typical MCMC setting, where π is a probability distribution on X and
f : X → R. The objective is to compute (estimate) the integral
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θ := π f =
∫

X
π(dx) f (x). (1)

Assume that direct simulation from π is intractable. Therefore one uses an ergodic
Markov chain with transition kernel P and stationary distribution π to sample ap-
proximately from π . Numerous computational problems from Bayesian inference,
statistical physics or combinatorial enumeration fit into this setting. We refer to
[32, 30, 9] for theory and applications of MCMC.

Let (Xn)n≥0 be the Markov chain in question. Typically one discards an initial
part of the trajectory (called burn-in, say of length t) to reduce bias, simulates the
chain for n further steps and approximates θ with an ergodic average:

θ̂
fix
t,n =

1
n

t+n−1

∑
i=t

f (Xi). (2)

Fixed numbers t and n are the parameters of the algorithm. Asymptotic validity of
(2) is ensured by a Strong Law of Large Numbers and a Central Limit Theorem
(CLT). Under appropriate regularity conditions [32, 4], it holds that

√
n(θ̂ fix

t,n −θ)→N (0,σ2
as( f )), (n→ ∞), (3)

where σ2
as( f ) is called the asymptotic variance. In contrast with the asymptotic the-

ory, explicit nonasymptotic error bounds for θ̂ fix
t,n appear to be very difficult to derive

in practically meaningful problems.
Regenerative simulation offers a way to get around some of the difficulties. The

split chain construction introduced in [2, 28] (to be described in Section 2) allows
for partitioning the trajectory (Xn)n≥0 into i.i.d. random tours (excursions) between
consecutive regeneration times T0,T1,T2, . . . . Random variables

Ξk( f ) :=
Tk−1

∑
i=Tk−1

f (Xi) (4)

are i.i.d. for k = 1,2, . . . (Ξ0( f ) can have a different distribution). Mykland at al. in
[25] suggested a practically relevant recipe for identifying T0,T1,T2, . . . in simula-
tions (formula (2) in Section 2). This resolves the burn-in problem since one can
just ignore the part until the first regeneration T0. One can also stop the simulation
at a regeneration time, say Tr, and simulate r full i.i.d. tours, c.f. Section 4 of [33].
Thus one estimates θ by

θ̂
reg
r :=

1
Tr−T0

Tr−1

∑
i=T0

f (Xi) = ∑
r
k=1 Ξk( f )
∑

r
k=1 τk

, (5)

where τk = Tk −Tk−1 = Ξk(1) are the lengths of excursions. Number of tours r is
fixed and the total simulation effort Tr is random. Since θ̂

reg
r involves i.i.d. random

variables, classical tools seem to be sufficient to analyse its behaviour. Asymptoti-
cally, (5) is equivalent to (2) because
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√
rm(θ̂ reg

r −θ)→N (0,σ2
as( f )), (r → ∞), (6)

where m := Eτ1. Now rm = E(Tr−T0), the expected length of trajectory, plays the
role of n. However, our attempt at nonasymptotic analysis in Subsection 3.1 reveals
unexpected difficulties.

In most practically relevant situations m is unknown. If m is known then instead
of (5) one can use an unbiased estimator

θ̃
unb
r :=

1
rm

n

∑
k=1

Ξk( f ), (7)

Quite unexpectedly, (7) is not equivalent to (5), even in a weak asymptotic sense.
The standard CLT for i.i.d. summands yields

√
rm(θ̃ unb

r −θ)→N (0,σ2
unb( f )), (r → ∞), (8)

where σ2
unb( f ) := VarΞ1( f )/m is in general different from σ2

as( f ).
We introduce a new regenerative-sequential simulation scheme, for which better

nonasymptotic results can be derived. Namely, we fix n and define

R(n) := min{r : Tr > T0 +n}. (9)

The estimator is defined as follows.

θ̂
reg-seq
n :=

1
TR(n)−T0

TR(n)−1

∑
i=T0

f (Xi) =
∑

R(n)
k=1 Ξk( f )

∑
R(n)
k=1 τk

, . (10)

We thus generate a random number of tours as well as a random number of samples.
Our approach is based on inequalities for the mean square error,

MSE := E(θ̂ −θ)2. (11)

Bounds on the MSE can be used to construct fixed precision confidence intervals.
The goal is to obtain an estimator θ̂ which satisfies

P(|θ̂ −θ | ≤ ε)≥ 1−α, (12)

for given ε and α . We show that MSE bounds combined with the so called “me-
dian trick” lead to confidence intervals which can be better than those obtained by
different methods.

The organization of the paper is the following. In Section 2 we recall the split
chain construction. Nonasymptotic bounds for regenerative estimators defined by
(5), (7) and (10) are derived in Section 3. Derivation of more explicit bounds which
involve only computable quantities is deferred to Sections 5 and 6, where we con-
sider classes of chains particularly important in the MCMC context. An analogous
analysis of non-regenerative scheme (2) was considered in [21] and (in a different
setting and using different methods) in [34].
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In Section 4 we discuss the median trick [16, 27]. One runs MCMC repeatedly
and computes the median of independent estimates to boost the level of confidence.
The resulting confidence intervals are compared with asymptotic results based on
the CLT.

In Section 5 we consider Doeblin chains, i.e. uniformly ergodic chains that sat-
isfy a one step minorization condition. We compare regenerative estimators (5), (7)
and (10). Moreover, we also consider a perfect sampler available for Doeblin chains,
c.f. [36, 15]. We show that confidence intervals based on the median trick can out-
perform those obtained via exponential inequalities for a single run simulation.

In Section 6 we proceed to analyze geometrically ergodic Markov chains, assum-
ing a drift condition towards a small set. We briefly compare regenerative schemes
(5) and (10) in this setting (the unbiased estimator (7) cannot be used, because m is
unknown).

2 Regenerative Simulation

We describe the setting more precisely. Let (Xn)n≥0 be a Markov chain with tran-
sition kernel P on a Polish space X with stationary distribution π, i.e. πP = π.
Assume P is π-irreducible. The regeneration/split construction of Nummelin [28]
and Athreya and Ney [2] rests on the following assumption.

Assumption 2.1 (Small Set) There exist a Borel set J ⊆X of positive π measure,
a number β > 0 and a probability measure ν such that

P(x, ·)≥ β I(x ∈ J)ν(·).

Under Assumption 2.1 we can define a bivariate Markov chain (Xn,Γn) on the
space X ×{0,1} in the following way. Variable Γn−1 depends only on Xn−1 via
P(Γn−1 = 1|Xn−1 = x) = β I(x ∈ J). The rule of transition from (Xn−1,Γn−1) to Xn is
given by

P(Xn ∈ A|Γn−1 = 1,Xn−1 = x) = ν(A),
P(Xn ∈ A|Γn−1 = 0,Xn−1 = x) = Q(x,A),

where Q is the normalized “residual” kernel given by

Q(x, ·) :=
P(x, ·)−β I(x ∈ J)ν(·)

1−β I(x ∈ J)
.

Whenever Γn−1 = 1, the chain regenerates at moment n. The regeneration epochs
are

T0 := min{n : Γn−1 = 1},
Tk := min{n > Tk−1 : Γn−1 = 1}.
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Write τk = Tk−Tk−1. The random tours defined by

Ξk := (XTk−1 , . . . ,XTk−1,τk), where τk = Tk−Tk−1, (13)

are i.i.d. for k > 0. Without loss of generality, we assume that X0 ∼ ν(·), unless stated
otherwise. We therefore put T0 := 0 and simplify notation. In the sequel symbols P
and E without subscripts refer to the chain started at ν . If the initial distribution ξ is
other than ν , it will be explicitly indicated by writing Pξ and E ξ . Notation m = Eτ1
stands throughout the paper.

We assume that we are able to identify regeneration times Tk. Mykland et al.
pointed out in [25] that actual sampling from Q can be avoided. We can generate the
chain using transition probabability P and then recover the regeneration indicators
via

P(Γn−1 = 1|Xn,Xn−1) = I(Xn−1 ∈ J)
βν(dXn)

P(Xn−1,dXn)
,

where ν(dy)/P(x,dy) denote the Radon-Nikodym derivative (in practice, the ratio of
densities). Mykland’s trick has been established in a number of practically relevant
families (e.g. hierarchical linear models) and specific Markov chains implementa-
tions, such as block Gibbs samplers or variable-at-a-time chains, see [18, 26].

3 General results for regenerative estimators

Let f : X → R be a measurable function and θ = π f . We consider block sums
Ξk( f ) defined by (4). From the general Kac theorem (Theorem 10.0.1 in [24] or
Equation (3.5.1) in [29]) we have

m =
1

βπ(J)
, EΞ1( f ) = mπ f = mθ .

From now on we assume that EΞ1( f )2 < ∞ and Eτ2
1 < ∞. Let f̄ := f − π f and

define

σ
2
as( f ) :=

EΞ1( f̄ )2

m
,

σ
2
τ :=

Varτ1

m

(14)

Remark 1. Under Assumption 2.1, finiteness of EΞ1( f̄ )2 is a sufficient and neces-
sary condition for the CLT to hold for Markov chain (Xn)n≥0 and function f . This
fact is proved in [4] in a more general setting. For our purposes it is important to
note that σ2

as( f ) in (14) is indeed the asymptotic variance which appears in the CLT.
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3.1 Results for θ̂
reg
r

We are to bound the estimation error which can be expressed as follows:

θ̂
reg
r −θ =

∑
r
k=1
(
Ξk( f )−θτk

)
∑

r
k=1 τk

= ∑
r
k=1 dk

Tr
. (15)

where dk := Ξk( f )−θτk = Ξk( f̄ ). Therefore, for any 0 < δ < 1,

P(|θ̂ reg
r −θ |> ε) ≤ P

(∣∣∣∣ r

∑
k=1

dk

∣∣∣∣> rmε(1−δ )

)
+P
(

Tr < rm(1−δ )
)
.

Since dk are i.i.d. with Ed1 = 0 and Vard1 = mσ2
as( f ), we can use Chebyshev in-

equality to bound the first term above:

P

(∣∣∣∣ r

∑
k=1

dk

∣∣∣∣> rmε(1−δ )

)
≤ σ2

as( f )
rmε2(1−δ )2 (16)

The second term can be bounded similarly. We use the fact that τk are i.i.d. with
Eτ1 = m to write

P
(

Tr < rm(1−δ )
)
≤ σ2

τ

rmδ 2 . (17)

We conclude the above calculation with in following Theorem.

Theorem 3.1 Under Assumption 2.1 the following holds for every 0 < δ < 1

P(|θ̂ reg
r −θ |> ε) ≤ 1

rm

[
σ2

as( f )
ε2(1−δ )2 +

σ2
τ

mδ 2

]
(18)

and is minimized by

δ = δ
∗ :=

σ
2/3
τ

σ
2/3
as ( f )ε−2/3 +σ

2/3
τ

.

Obviously, ETr = rm is the expected length of trajectory. The main drawback of
Theorem 3.1 is that the bound on the estimation error depends on m, which is typi-
cally unknown. This fact motivates our study of another estimator, θ̂

reg-seq
n , for which

we can obtain much more satisfactory results. We think that derivation of better
nonasymptotic bounds for θ̂

reg
r (not involving m) is an open problem.
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3.2 Results for θ̃ unb
r

Recall that θ̃ unb
r can be used only when m is known and this situation is rather rare

in MCMC applications. Analysis of θ̃ unb
r is straightforward, because it is simply a

sum of i.i.d. random variables. In particular, we obtain the following.

Corollary 3.2 Under Assumption 2.1,

E(θ̃ unb
r −θ)2 =

σ2
unb( f )
rm

, P(|θ̃ unb
r −θ |> ε)≤

σ2
unb( f )
rmε2 . (19)

Note that σ2
unb( f ) = VarΞ1( f )/m can be expressed as

σ
2
unb( f ) = σ

2
as( f )+θ

2
σ

2
τ +2θρ( f̄ ,1), (20)

where ρ( f̄ ,1) := Cov(Ξ1( f̄ ),Ξ1(1))/m. This follows from the simple observation
that VarΞ1( f ) = E(Ξ1( f̄ )+θ(τ1−m))2.

3.3 Results for θ̂
reg-seq
n

The result below bounds the MSE and the expected number of samples used to
compute the estimator.

Theorem 3.3 If Assumption 2.1 holds then

(i) E (θ̂ reg-seq
n −θ)2 ≤ σ2

as( f )
n2 E TR(n)

and
(ii) E TR(n) ≤ n+C0,

where
C0 := σ

2
τ +m+1.

Corollary 3.4 Under Assumption 2.1,

E (θ̂ reg-seq
n −θ)2 =

σ2
as( f )
n

(
1+

C0

n

)
, (21)

P(|θ̂ reg-seq
n −θ |> ε) ≤ σ2

as( f )
nε2

(
1+

C0

n

)
. (22)

Remark 2. Note that the leading term σ2
as( f )/n in (21) is “asymptotically correct”

in the sense that the standard fixed length estimator has MSE ∼ σ2
as( f )/n. The

regenerative-sequential scheme is “close to the fixed length simulation”, besause
limn→∞ETR(n)/n = 1.
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Proof (of Theorem 3.3). Just as in (15) we have

θ̂
reg-seq
n −θ =

∑
R(n)
k=1 (Ξk( f )−θτk)

∑
R(n)
k=1 τk

=
1

TR(n)

R(n)

∑
k=1

dk,

where pairs (dk,τk) are i.i.d. with Ed1 = 0 and Vard1 = mσ2
as( f ). Since TR(n) > n, it

follows that

E (θ̂ reg-seq
n −θ)2 ≤ 1

n2 E

(
R(n)

∑
k=1

dk

)2

.

Since R(n) is a stopping time with respect to Gk = σ((d1,τ1), . . . ,(dk,τk)), we are
in a position to apply the two Wald’s identities. The second identity yields

E

(
R(n)

∑
k=1

dk

)2

= Var d1 ER(n) = mσ
2
as( f )ER(n).

In this expression we can replace mER(n) by ETR(n) because of the first Wald’s
identity:

E TR(n) = E
R(n)

∑
k=1

τk = Eτ1 ER(n) = mER(n)

and (i) follows.
We now focus attention on bounding the expectation of the “overshoot” ∆(n) :=

TR(n)−n. Since we assume that X0 ∼ ν , the cumulative sums τ1 = T1 < T2 < .. . <
Tk < .. . form a (nondelayed) renewal process in discrete time. Let us invoke the
following elegant theorem of Lorden [22]:

E∆(n)≤ 2Eπ τ1. (23)

By a classical result of the renewal theory, the distribution of τ1 under stationarity
is given by

Pπ(τ1 = i) =
P(τ1 ≥ i)

m
for i = 1,2, . . . . (24)

For a newer simple proof of Lorden’s inequality, we refer to [6]. Equation (23) yields
immediately (ii) with C0 = 2Eπ . Elementary calculation (using (24) and summation
by parts) shows that 2Eπ τ1 = Eτ2

1 /m + 1. Recall the definition of σ2
τ to complete

the proof.

4 The median trick

This ingeneous method of constructing fixed precision MCMC algorithms was
introduced in 1986 in [16], later used in many papers concerned with computa-
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tional complexity and further developed in [27]. We run l independent copies of
the Markov chain. Let θ̂ ( j) be an estimator computed in jth run. The final esti-
mate is θ̂ := med(θ̂ (1), . . . , θ̂ (l)). To ensure that θ̂ satisfies (12), we require that
P(|θ̂ ( j)− θ | > ε) ≤ a ( j = 1, . . . , l) for some modest level of confidence 1− a <
1−α . This is obtained via Chebyshev’s inequality, if a bound on MSE is available.
The well-known Chernoff’s inequality gives for odd l,

P(|θ̂ −θ | ≥ ε)≤ 1
2

[4a(1−a)]l/2 =
1
2

exp
{

l
2

ln [4a(1−a)]
}

. (25)

It is pointed out in [27] that under some assumptions there is a universal choice of a,
which nearly minimizes the overall number of samples, a∗ ≈ 0.11969. The details
are described in [27].

Let us now examine how the median trick works in conjunction with regenerative
MCMC. We focus on θ̂

reg-seq
n , because Corollary 3.4 gives the best available bound

on MSE. We first choose n such that the right hand side of (22) is less than or equal
to a∗. Then choose l big enough to make the right hand side of (25) (with a = a∗)
less than or equal to α . Compute estimator θ̂

reg-seq
n repeatedly, using l independent

runs of the chain. We can easily see that (12) holds if

n≥ C1σ2
as( f )

ε2 +C0,

l ≥C2 ln(2α)−1 and j is odd,

where C1 := 1/a∗ ≈ 8.3549 and C2 := 2/ln [4a∗(1−a∗)]−1 ≈ 2.3147 are absolute
constants. The overall (expected) number of generated samples is lETR(n) ∼ nl as
ε → 0 and n → ∞, by Theorem 3.3 (ii). Consequently for ε → 0 the cost of the
algorithm is approximately

nl ∼C
σ2

as( f )
ε2 log(2α)−1, (26)

where C = C1C2 ≈ 19.34. To see how tight is the obtained lower bound, let us com-
pare (26) with the familiar asymptotic approximation, based on the CLT. Consider
an estimator based on one MCMC run of length n, say θ̂n = θ̂ fix

t,n with t = 0. From
(3) we infer that

lim
ε→0

P(|θ̂n−θ |> ε) = α,

holds for

n∼ σ2
as( f )
ε2

[
Φ
−1(1−α/2)

]2
, (27)

where Φ−1 is the quantile function of the standard normal distribution. Taking into
account the fact that [Φ−1(1−α/2)]2 ∼ 2log(2α)−1 for α → 0 we arrive at the
following conclusion. The right hand side of (26) is bigger than (27) roughly by a
constant factor of about 10 (for small ε and α). The important difference is that (26)
is sufficient for an exact confidence interval while (27) only for an asymptotic one.
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5 Doeblin Chains

Assume that the transition kernel P satisfies the following Doeblin condition: there
exist β > 0 and a probability measure ν such that

P(x, ·)≥ βν(·) for every x ∈X . (28)

This amounts to taking J := X in Assumption 2.1. Condition (28) implies that
the chain is uniformly ergodic. We refer to [32] and [24] for definition of uniform
ergodicity and related concepts. As a consequence of the regeneration construction,
in our present setting τ1 is distributed as a geometric random variable with parameter
β and therefore

m = Eτ1 =
1
β

and σ
2
τ =

Varτ1

m
=

1−β

β
.

Bounds on the asymptotic variance σ2
as( f ) under (28) are well known. Let σ2 = π f̄ 2

be the stationary variance. Results in Section 5 of [4] imply that

σ
2
as( f )≤ σ

2

(
1+

2

1−
√

1−β

)
≤ 4σ2

β
. (29)

If the chain is reversible, there is a better bound. We can use the well-known formula
for σ2

as( f ) in terms of the spectral decomposition of P (e.g. expression “C” in [11]).
Results of [31] show that the spectrum of P is a subset of [−1 + β ,1− β ]. We
conclude that for reversible Doeblin chains,

σ
2
as( f )≤ 2−β

β
σ

2 ≤ 2σ2

β
. (30)

An important class of reversible chains are Independence Metropolis-Hastings
chains (see e.g. [32]) that are known to be uniformly ergodic if and only if the rejec-
tion probability r(x) is uniformly bounded from 1 by say 1−β . This is equivalent
to the candidate distribution being bounded below by βπ (c.f. [23, 1]) and translates
into (28) with ν = π . The formula for σ2

as( f ) in (29) and (30) depends on β in an
optimal way. Moreover (30) is sharp. To see this consider the following example.

Example 5.1 Let β ≤ 1/2 and define a Markov chain (Xn)n≥0 on X = {0,1} with
stationary distribution π = {1/2,1/2} and transition matrix

P =
[

1−β/2 β/2
β/2 1−β/2

]
.

Hence P = βπ +(1−β )I2 and P(x, ·)≥ βπ. Moreover let f (x) = x. Thus σ2 = 1/4.
To compute σ2

as( f ) we use another well-known formula (expression “B” in [11]):
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σ
2
as( f ) = σ

2 +2
∞

∑
i=1

Cov{ f (X0), f (Xi)}

= σ
2 +2σ

2
∞

∑
i=1

(1−β )i =
2−β

β
σ

2.

To compute σ2
unb( f ), note that Ξ1( f ) = I(X0 = 1)τ1. Since τ1 is independent of X0

and X0 ∼ ν = π we obtain

σ
2
unb( f ) = βVarΞ1( f ) = β

[
EVar(Ξ1( f )|X0)+VarE(Ξ1( f )|X0)

]
=

1−β

2β
+

1
4β

=
3−2β

β
σ

2.

Interestingly, in this example σ2
unb( f ) > σ2

as( f ).

In the setting of this Section, we will now compare upper bounds on the total
simulation effort needed for different MCMC schemes to get P(|θ̂ −θ |> ε)≤ α .

5.1 Regenerative-sequential estimator and the median trick

Recall that this simulation scheme consists of l MCMC runs, each of approximate
length n. Substituting (29) in (26) we obtain that the expected number of samples is

nl ∼ 19.34
4σ2

βε2 log(2α)−1 and nl ∼ 19.34
(2−β )σ2

βε2 log(2α)−1 (31)

(respectively in the general case and for reversible chains). Note also that in the
setting of this Section we have an exact expression for the constant C0 in Theorem
3.3. Indeed, C0 = 2Eπ τ1 = 1/β .

5.2 Standard one-run average and exponential inequalty

For uniformly ergodic chains a direct comparison of our approach to exponential
inequalities [10, 19] is possible. We focus on [19] which is tight in the sense that it
reduces to the Hoeffding bound when specialised to the i.i.d. case. For f bounded let
‖ f‖sp := supx∈X f (x)− infx∈X f (x). Consider the simple average over n Markov
chain samples, say θ̂n = θ̂ fix

t,n with t = 0. For an arbitrary initial distribution ξ we
have

Pξ (|θ̂n−θ |> ε)≤ 2exp

{
−n−1

2

(
2β

‖ f‖sp
ε− 3

n−1

)2
}

.

After identifying leading terms we can see that to make the right hand side less than
α we need
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n∼
‖ f‖2

sp

2β 2ε2 log(α/2)−1 ≥ 2σ2

β 2ε2 log(α/2)−1. (32)

Comparing (31) with (32) yields a ratio of roughly 40β or 20β respectively. This in
particular indicates that the dependence on β in [10, 19] probably can be improved.
We note that in examples of practical interest β usually decays exponentially with
dimension of X and using the regenerative-sequential-median scheme will often
result in a lower total simulation cost. Moreover, this approach is valid for an un-
bounded target function f , in contrast with classical exponential inequalities.

5.3 Perfect sampler and the median trick

For Doeblin chains, if regeneration times can be identified, perfect sampling can
be performed easily as a version of read-once algorithm [36]. This is due to the
following observation. If condition (28) holds and X0 ∼ ν then

XTi−1, i = 1,2, . . . (33)

are i.i.d. random variables from π (see [5, 29, 15, 4] for versions of this result).
Therefore from each random tour between regeneration times one can obtain a sin-
gle perfect sample (by taking the state of the chain prior to regeneration) and use it
for i.i.d. estimation. We define

θ̂
perf
n :=

1
n

n

∑
i=1

f (XTi−1). (34)

Clearly

E(θ̂ perf
n −θ)2 =

σ2

n
and P(|θ̂ perf

n −θ |> ε) ≤ σ2

nε2 . (35)

If we combine this prefect sampler with the median trick we obtain an algorithm
with expected number of samples

nl ∼ 19.34
σ2

βε2 log(2α)−1. (36)

Comparing (31) with (32) and (35) leads to the conclusion that if one targets rigor-
ous nonasymptotic results in the Doeblin chain setting, the approach described here
outperforms other methods.
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5.4 Remarks on other schemes

The bound for θ̂
reg
r in Theorem 3.1 is clearly inferior to that for θ̂

reg-seq
n in Corollary

3.4 Therefore we excluded the scheme based on θ̂
reg
r from our comparisons.

As for θ̃ unb
r , this estimator can be used in the Doeblin chains setting, because

m = 1/β is known. The bounds for θ̃ unb
r in Subsection 3.2 involve σ2

unb( f ). Although
we cannot provide a rigorous proof, we conjecture that in most practical situations
we have σ2

unb( f ) > σ2
as( f ), because ρ( f̄ ,1) in (20) is often close to zero. If this is

the case, then the bound for θ̃ unb
r is inferior to that for θ̂

reg-seq
n .

6 A Geometric Drift Condition

Using drift conditions is a standard approach for establishing geometric ergodicity.
We refer to [32] or [24] for the definition and further details. The assumption below
is the same as in [3]. Specifically, let J be the small set which appears in Assumption
2.1.

Assumption 6.1 (Drift) There exist a function V : X → [1,∞[, constants λ < 1
and K < ∞ such that

PV (x) :=
∫

X
P(x,dy)V (y)≤

{
λV (x) for x 6∈ J,
K for x ∈ J,

In many papers conditions similar to 6.1 have been established for realistic MCMC
algorithms in statistical models of practical relevance [12, 7, 8, 13, 18, 35]. This
opens the possibility of computing our bounds in these models.

Under Assumption 6.1, it is possible to bound σ2
as( f ), σ2

τ and C0 which appear
in Theorems 3.1 and 3.3, by expressions involving only λ , β and K. The following
result is a minor variation of Theorem 6.5 in [20].

Theorem 6.2 If Assumptions 2.1 and 6.1 hold and f is such that ‖ f̄‖V 1/2 :=
supx | f̄ (x)|/V 1/2(x) < ∞, then

σ
2
as( f )≤ ‖ f̄‖2

V 1/2

[
1+λ 1/2

1−λ 1/2 π(V )+
2(K1/2−λ 1/2−β (2−λ 1/2))

β (1−λ 1/2)
π(V 1/2)

]

C0 ≤
λ 1/2

1−λ 1/2 π(V 1/2)+
K1/2−λ 1/2−β

β (1−λ 1/2)
,

To bound σ2
τ we can use the obvious inequality σ2

τ =C0−m−1≤C0−2. Moreover,
one can easily control πV 2 and πV, and further replace ‖ f̄‖V 1/2 e.g. by ‖ f‖V 1/2 +
(K1/2−λ 1/2)/(1−λ 1/2), we refer to [20] for details.

Let us now discuss possible approaches to confidence estimation in the setting
of this section. Perfect sampling is in general unavailable. For unbounded f we
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cannot apply exponential inequalities for the standard one-run estimate. Since m
is unknown we cannot use θ̃ unb

r . This leaves θ̂
reg
r and θ̂

reg-seq
n combined with the

median trick. To analyse θ̂
reg
r we can apply Theorem 3.1. Upper bounds for σ2

as( f )
and σ2

τ are available. However, in Theorem 3.1 we will also need a lower bound on
m. Without further assumptions we can only write

m =
1

π(J)β
≥ 1

β
. (37)

In the above analysis (37) is particularly disappointing. It multiplies the bound by
an unexpected and substantial factor, as π(J) is typically small in applications. For
θ̂

reg-seq
n we have much more satisfactory results. Theorems 3.3 and 6.2 can be used

to obtain explicit bounds which do not involve m.
We note that nonasymptotic confidence intervals for MCMC estimators under

drift condition have also been obtained in [21], where identification of regeneration
times has not been assumed. In absence of regeneration times a different approach
has been used and the bounds are typically weaker.
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