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Abstract 

Photoperiod sensors allow physiological adaptation to the changing seasons. The 

external coincidence hypothesis postulates that a light-responsive regulator is 

modulated by a circadian rhythm. Sufficient data are available to test this 

quantitatively in plants, though not yet in animals. In Arabidopsis, the clock-regulated 

genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their light-

sensitive proteins are thought to form an external coincidence sensor. We use 40 time-

series of molecular data to model the integration of light and timing information by 

CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among 

other predictions, the models show that FKF1 activates FT. We demonstrate 

experimentally that this effect is independent of the known activation of CO by FKF1, 

thus we locate a major, novel controller of photoperiodism. External coincidence is 

part of a complex photoperiod sensor: modelling makes this complexity explicit and 

may thus contribute to crop improvement. 
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Introduction 

Many eukaryotes measure changes in day length (photoperiod), in order to 

synchronise their life strategies with seasonal rhythms. The photoperiod sensor in 

vertebrates is thought to be located in the pars tuberalis of the pituitary gland, though 

its molecular mechanisms are unclear (reviewed in Hazlerigg and Loudon, 2008). 

Daylength perception in plants occurs in leaves, giving rise to a long-range signal. In 

Arabidopsis thaliana, a signal induced by long photoperiods controls the transition to 

flowering at the apical meristem. Other plant species initiate over-wintering 

adaptations, such as bud dormancy and tuber formation, in response to short 

photoperiods (Thomas and Vince-Prue, 1997). Photoperiod measurement depends 

upon an interaction between photoreceptors and the 24-hour circadian clock. In 

Arabidopsis, the clock-controlled transcription of the B-box factor CONSTANS (CO) 

leads to a CO mRNA profile that peaks late in the day. High CO mRNA levels 

coincide largely with the light interval under long-day conditions (such as 16L:8D, a 

cycle of 16 hours of light and 8 hours of darkness), but are restricted to the dark phase 

under short days (8L:16D) (Suarez-Lopez et al., 2001).  The major target of CO, the 

gene FLOWERING LOCUS T (FT), is expressed after the CO peak, but only when 

CO expression coincides with light (Yanovsky and Kay, 2002). This led to the 

hypothesis that CO may activate FT transcription in a light-dependent manner 

(reviewed in Carré et al., 2006; Imaizumi and Kay, 2006). More recently, the CO 

protein was shown to be unstable in darkness, partly due to interaction with COP1 

(Jang et al., 2008), but to accumulate under constant white or blue light (Valverde et 

al., 2004). Thus, stabilization of the CO protein in the light may account for the light-

dependency of CO effects on FT. This regulation occurs in the phloem companion 

cells (An et al., 2004), allowing rapid transport of the FT protein product to the apical 
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meristem (reviewed in Kobayashi and Weigel, 2007; Turck et al., 2008). There, 

interaction with the meristem-specific transcription factor FD activates the homeotic 

genes that lead to floral development (reviewed in Kobayashi and Weigel, 2007; 

Turck et al., 2008).  

 

This molecular mechanism is consistent with the long-standing hypothesis that 

daylength perception is mediated through coincidence of an endogenous rhythm with 

an external light signal (Bünning, 1936). Expressing this hypothesis in equations 

shows that the rhythmic component could be a generic, clock-controlled gene with 

expression levels that rise towards the end of a long photoperiod (Oosterom et al., 

2004). This contrasts with the “internal coincidence model” that may apply in 

vertebrates (Hazlerigg and Loudon, 2008) in which photoperiod acts to bring two 

circadian rhythms into a particular phase relationship (Pittendrigh, 1960). Recent 

evidence suggests that the mechanism of daylength perception in plants may be more 

complex than either conceptual model. For example, expression of the CO mRNA at 

the end of long-day photoperiods is mediated in part through the action of a 

rhythmically expressed, light-activated F-box-Kelch protein known as FKF1 

(reviewed in Imaizumi and Kay, 2006). High FKF1 protein levels coincide with the 

light interval at the end of a long day, when FKF1-mediated degradation of 

transcriptional repressors in the CYCLING DOF FACTOR family promote 

transcription of CO (Fornara et al., 2009; Imaizumi et al., 2005; Sawa et al., 2007). 

Under short day conditions, FKF1 is expressed in the dark and appears inactive. This 

external coincidence between light and the FKF1 expression rhythm affects the CO 

expression rhythm: the level of CO protein may therefore integrate the output of two 

external coincidence sensors.  
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Here, we model the photoperiod sensor of Arabidopsis in detail, based upon 

molecular timeseries data. We aim to test whether the expression patterns of the 

known flowering-time genes are quantitatively consistent with their proposed 

regulatory functions, and whether these functions are sufficient to explain the 

observed behaviour of the plant. Analysis of the models confirms our understanding 

of flowering time regulation in some areas. Specific failures of the models in other 

areas predict new regulatory interactions or components that can be tested by 

molecular experimentation. 

 

Results 

Model construction and data selection 

The regulatory network was represented in ordinary differential equations, where the 

form of the equations reflected the known molecular interactions. Model construction 

proceeded in stages (Figure 1). Alternative models were compared at each stage. The 

maximal transcription rates, mRNA degradation rates and other biochemical 

parameters were estimated by fitting the models to quantitative, molecular timeseries 

data (see supplemental data), as none of these parameter values have been measured 

experimentally. The consistency of the available data sets enabled this approach. 

There was little data for key proteins in wild-type plants, so our initial models were 

based on quantitative mRNA expression patterns, with indirect information on CO 

protein levels and their regulation by light. Twenty-four sets of timeseries data 

(supplemental table 1) were selected to construct and validate the models (see 

supplemental data).   
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Model 1: activation of FT by CO and light 

Model 1 aimed to simulate the accumulation of FT mRNA, starting from CO mRNA 

expression data. The detailed mechanism of FT activation by CO protein remains to 

be determined, so several models were tested (supplemental figure 1, supplemental 

data). In the simplest model (1a), we assumed that the CO protein was produced 

rapidly and was highly unstable, so that accumulation of the CO protein mirrored CO 

mRNA. Furthermore we supposed that the CO protein was only active in the light. 

Thus the rate of FT transcription was determined by the level of CO mRNA when 

light was present and FT was not transcribed in darkness. Parameter values for this 

model were estimated using data on CO and FT mRNA levels in wild-type plants 

grown under long and short photoperiods (sets 1, 3, 8 and 9, see supplemental table 1), 

quantified from two publications of the Kay laboratory (Imaizumi et al., 2003; 

Yanovsky and Kay, 2002). We term these the training data (Figure 2). As expected, a 

limited number of parameter values allowed accurate simulation of the observed 

pattern of FT mRNA accumulation (see supplemental text). Using the optimal 

parameter sets, the fit of simulated FT mRNA levels to either training data set was 

better than the fit of the experimental data sets to each other, indicating that no better 

match to the training data was possible.  

 

A more complex model (1b) explicitly included an unstable CO protein that was 

stabilised during the light interval but rapidly degraded in darkness. Light-driven 

accumulation of this protein promoted FT transcription. Model 1b also fitted well to 

the training data, with no significant improvement over model 1a (unpublished 

results). More complex models, involving for example an additional effect of light on 

the ability of the CO protein to activate FT transcription, failed to improve the fit (see 
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supplemental data). Models 1a and 1b were validated using further sets of CO and FT 

mRNA data from a variety of photoperiodic conditions. The parameters developed for 

the training data also fitted the validation data well (supplemental figure 1C; 

supplemental text), indicating that the simple mechanisms of submodels 1a and 1b 

recapitulated the overall activation of FT by CO. As model 1b explicitly includes 

regulation of the CO protein, we anticipate that this will be more useful for 

comparison to future molecular data. 

Modification of FT activation 

The quantitative models allowed us to test whether FT activation was altered in 

mutant backgrounds. The toc1 mutation, for example, shortens the period of the 

circadian clock from 24h to 21h. toc1 mutant plants are induced to flower rapidly 

under 8L:16D, but this defect in photoperiodism can be rescued by growing the 

mutants under 21h light-dark cycles. It was therefore proposed that the altered 

circadian clock function is the only photoperiod-response defect in the toc1 mutant 

(Yanovsky and Kay, 2002). From the CO mRNA levels observed in toc1 mutants, 

models 1a and 1b simulated levels of FT mRNA that only slightly underestimated the 

levels observed in toc1 mutants (Supplementary figures 2a-2d and unpublished 

results). The best match was obtained by increasing the FT activation parameter by 

40% (Supplementary figures 2e-2h).  

 

Using model 1a, simulations of FT transcription under long days consistently 

predicted an aberrant peak of FT mRNA in the early morning that was absent from 

the training data (Figure 2b, 2d). The aberrant peak was also predicted using model 1b 

but was delayed by the time required for CO protein to accumulate (unpublished 

results, similar to Figure 3d). This defect suggested that our models overlooked an 
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additional aspect of FT regulation. The effect of CO on FT transcription may be 

“gated”, such that accumulation of CO mRNA in the morning results in less 

transcription of FT than an equal amount of CO mRNA in the afternoon. We 

estimated the effect of the hypothetical “morning gate” in model 1a and found that it 

was photoperiod-dependent but modest (~60% reduction in FT activation; see 

supplementary text, supplementary figure 3). However, the RNA data available have 

insufficient time resolution to constrain the effect accurately, and including the 

morning gate made only a small contribution to the overall fit under standard long- 

and short-day conditions. For these pragmatic reasons and considering additional 

experimental evidence (see Discussion), no separate “morning gate” mechanism was 

included in subsequent models.   

Model 2: Circadian regulation of CO transcription  

The waveform of CO mRNA accumulation is thought to be a crucial component of 

the photoperiod sensor. To include rhythmic CO regulation in model 2, we assumed 

that CO was similar to the clock component TOC1, which is expressed at the same 

phase (Locke et al., 2006; Locke et al., 2005b). We therefore simulated CO 

expression based on the TOC1 component of existing models for the circadian clock. 

Two clock models were tested. The simplest, in Model 2a, comprised a single 

transcriptional feedback loop and a single mechanism of light input at dawn (Figure 

1) (Locke et al., 2005a). The entrained phase of this clock model is locked to dawn 

and the remainder of the photoperiod has no effect (Locke et al., 2006). This model 

fitted CO RNA data poorly, because it could not accommodate the observed change in 

the CO waveform between short and long photoperiods (Figure 2). In contrast, the 

circadian clock in Model 2b comprised two interlocking feedback loops and was 

entrained through light inputs to two genes (Figure 1) (Locke et al., 2005b). The 
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interlocking-loop clock model is capable of adjusting its phase relative to dawn in 

response to varying photoperiods (Locke et al., 2006), resulting in a better fit to CO 

mRNA expression (Figures 3a, 3b).  

 

Model 2b failed to predict the shoulder of CO mRNA accumulation that is observed at 

the end of the light interval under long photoperiod cycles in wild-type plants (Figure 

3b, arrow). The simulated CO waveforms were closer to data from fkf1 mutant plants. 

Since FKF1 is known to affect CO mRNA accumulation at the end of a long day 

(Imaizumi et al., 2005; Imaizumi et al., 2003; Sawa et al., 2007), the absence of FKF1 

in our model might account for this discrepancy. Under short days, where there is 

little difference between CO waveforms in wild-type and fkf1 mutants, the model 

fitted both well. A preliminary model 3F1 was developed to simulate the effect of 

FKF1 on CO transcription, using data on the FKF1 protein profile to control 

additional synthesis of CO mRNA in a light-dependent manner (see supplementary 

text, supplementary figure 4). The model fitted one to two timepoints in the shoulder 

of CO mRNA data, which had a limited effect on FT mRNA accumulation. 

Simulating an fkf1 mutation in preliminary model 3F1 caused only a 35% reduction in 

FT transcription rate at the end of a long photoperiod. Activation of CO transcription 

by FKF1 in our model represents the double-negative mechanism, in which the 

CYCLING DOF FACTOR (CDF) repressor proteins are degraded by FKF1, but 

allows a much simpler mathematical formulation. When further quantified data 

become available, it should be possible to model recently-discovered details of the 

molecular mechanisms involved (Fornara et al., 2009; Sawa et al., 2007). 
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Model 3: Photoperiodic regulation of FT  

In order to simulate the regulation of FT under the control of light and the circadian 

clock, submodel 1b was combined with submodel 2b to form model 3 (Figure 1; see 

supplementary text). This model replaced the experimental CO mRNA data used in 

Figure 2 with the simulated CO mRNA waveforms shown in Figures 3a, 3b. 

Importantly, the model parameters were not altered, because each submodel had 

already been constrained to the relevant data.  

 

The FT expression patterns predicted by model 3 remained consistent with the FT 

data from the training and validation data sets (Figures 3c, 3d; Supplementary Figure 

1d). The CO mRNA profile simulated by model 2b lacked the FKF1-dependent 

shoulder at the end of the long photoperiod (Figure 3b), whereas model 1b had 

matched the FT mRNA based on data that included this shoulder. We therefore 

expected that using the simulated CO mRNA profile in model 3 would yield lower 

levels of simulated FT mRNA, compared to model 1b. A CO mRNA profile similar to 

an fkf1 mutant might simply have yielded the low levels of FT mRNA that had been 

observed in fkf1 mutant plants. The peak level of simulated FT mRNA in model 3 was 

indeed lower than observed in wild-type plants but, surprisingly, the reduction was 

only 40% (Figure 3d), which was an overestimate of an order of magnitude compared 

to the FT RNA levels observed in the fkf1 mutant. Thus model 3 simulated a CO 

mRNA profile similar to the fkf1 mutant but greatly overestimated the FT mRNA 

level. Removing FKF1 in the mutant plant caused a much more severe reduction of 

FT mRNA levels than could be predicted from the effect of the fkf1 mutation on CO 

mRNA levels alone. Consistent with this, adding the FKF1-dependent shoulder to the 

CO mRNA profile in preliminary model 3F1 had predicted only a modest increase in 
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FT mRNA levels (supplementary figure 4). Together, these results indicated that a 

major effect of FKF1 may be to activate FT expression downstream or independently 

of CO mRNA.  

 

To estimate the importance of FKF1-dependent activation for FT transcription, we 

constructed a speculative model (model 3F2), in which the observed FKF1 protein 

profile and the simulated CO protein together promoted FT transcription (see 

supplementary text). The model was matched to the training data sets (8 and 9; see 

supplementary table 1) that allowed direct comparison of wild-type and fkf1 mutant 

results (Figure 4). The new CO mRNA profiles were matched to the data for wild-

type and fkf1 mutant plants under long photoperiods, including the FKF1-dependent 

shoulder in the wild type (Figures 4c, 4e). The model predicted a smaller effect of 

FKF1 on CO RNA under short photoperiods, consistent with the data (Figure 4b). 

Simulated FT mRNA levels showed an improved profile in wild type (Figure 4e). The 

aberrant morning peak of earlier models (Figures 2b, 2d) was removed, because FKF1 

levels are low at dawn (Supplementary Figure 4a). Simulations with model 3F2 

showed that 90% of wild-type FT transcription at the end of a long photoperiod was 

FKF1-dependent.  

 

The photoperiod-dependence of this effect was similar to the effect of FKF1 on CO 

transcription. This raised the possibility that CO and FKF1 cooperate to regulate both 

CO and FT transcription by a single mechanism, which would include a positive 

feedback of CO protein upon CO mRNA abundance (Figure 4j). To test this 

hypothesis, the FKF1-dependent shoulder of CO mRNA under long photoperiods was 

measured in wild type plants and in seven mutant lines carrying co alleles that 
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severely affect flowering time (Supplementary Figure 7). Control fkf1 mutant plants 

showed low CO mRNA levels 13h after dawn (about 25% of wild-type levels), 

consistent with Figure 4. CO mRNA was undetectable in one insertional mutant co 

allele. The other six alleles had CO mRNA levels very close to wild type, showing 

that CO protein function was not required for the FKF1-dependent shoulder in CO 

transcription. These data favor the model depicted in Figure 4a, in which FKF1 has 

two distinct effects: its known regulation of CO mRNA levels, which does not require 

CO protein, and a previously-undescribed effect on FT expression, which depends on 

CO. 

 

We next explored the qualitative patterns of FT regulation in response to a range of 

different light-dark cycles.  As the FKF1 protein profiles required for model 3F2 were 

available for only two conditions, these simulations used model 3. FT mRNA levels 

increased in a non-linear fashion when the system was stably entrained to 24h light-

dark cycles with longer photoperiods (Figure 5a). Treating a short-day-entrained 

system with one longer photoperiod had a more graded effect (Supplementary Figure 

5), indicating that circadian entrainment significantly affected the photoperiod 

response (see Discussion). Data to inform the component models were only available 

for a limited range of conditions, so it was not unexpected that the clock model did 

not entrain stably to some exotic light-dark cycles. The model remained strongly 

rhythmic in these conditions but phase variations between successive cycles indicated 

that it was not following a stable, entrained limit cycle, which was the condition 

imposed for our analysis (see Supplemental Data). Nonetheless, two patterns of FT 

regulation appeared physiologically relevant (Figure 5a). Firstly, light-dark cycles of 

longer or shorter duration than 24h partially activated FT under all photoperiods and, 
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secondly, the steepest increase of FT expression with photoperiod occurred under 24h 

cycles. Thus the model predicts that there will be an optimal cycle duration to obtain 

the strongest photoperiodic switch, likely in a 24 h environment. 

Model 4: Prediction of flowering time  

Published flowering time data differ widely among Arabidopsis accessions and across 

laboratories, reflecting the many environmental inputs that control absolute flowering 

time (Boss et al., 2004). Most molecular studies, moreover, have focused on one 

standard long and short photoperiod condition, so the non-linear relationship between 

the FT mRNA profile and flowering time could not be estimated from the data 

available (see supplementary text). We therefore compared flowering time data to the 

FT expression profiles predicted by model 3, where we could perform simulations for 

any photoperiod. Simple mathematical functions fitted well to flowering data for 

plants of the Columbia accession (Corbesier et al., 1996), with clear differences in the 

functions required for different experimental protocols (see supplementary text, and 

supplementary figure 6). A sigmoid function matched data sets from three laboratories 

that used similar experimental protocols: data on days to flowering in plants of the 

Columbia accession (Supplementary Figure 6a, Corbesier et al., 1996) and data on 

total leaf numbers for plants of the Landsberg(erecta) accession (Figure 5b, Wilczek 

et al., 2009) and the Wassilewskija accession (Figure 5c, Pouteau et al., 2008). The 

critical photoperiod that elicited the half-maximal flowering response was almost 

identical in Figures 5b and 5c, despite the differences in absolute leaf numbers (see 

supplementary information). Mutation of CO prevents FT expression in the models, 

so co mutant plants are predicted to flower under all photoperiods with the same, high 

leaf number as wild-type plants under very short photoperiods, as confirmed in the 
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recent data (Wilczek et al., 2009). The flowering function offers a standard approach 

to reveal robust behaviour of the photoperiod response system. 

Discussion 

The external coincidence model can clearly provide a workable photoperiod sensor 

(Carré et al., 2006). We aimed for a more detailed, quantitative explanation of the 

observed molecular regulation that could be linked to the whole-organism response. 

Our approach will be validated if the resulting models accurately predict the 

molecular data yet remain comprehensible, if the models direct future 

experimentation to address gaps in current data, and if the models give insight into 

comparable processes in other contexts. The data required need not present technical 

challenges. Consistent data sets for CO and FT mRNA levels and flowering times 

would already be valuable to explore a wider range of environmental conditions and 

genotypes with the full range of FT profiles, from ft mutants to FT-overexpressing 

lines. These data would test the simple functions assumed here for CO protein 

synthesis and for the effectiveness of FT as a floral inducer. Current data were 

sufficient to make eight specific, testable predictions (Supplementary Table 2), which 

are discussed below, together with their functional implications for photoperiod 

responses.  

Suppressed induction of FT in the morning 

A good overall fit after parameter optimisation shows that a model is consistent with 

the molecular data. The simplest models of FT activation by light and CO were 

largely sufficient to recapitulate the molecular data. Simulating data from the toc1 

mutant confirmed that this mutation in the circadian clock affected FT regulation 

largely by altering rhythmic CO mRNA expression (Niwa et al., 2007; Yanovsky and 
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Kay, 2002), though a small (~40%) increase in FT activation by another mechanism 

remains possible (prediction 2, supplementary table 2). A specific failure of the model 

can be more informative. For example, the overestimation of FT levels at the start of a 

long photoperiod (Figure 2) suggested that another level of regulation reduces the 

effectiveness of CO at this time (prediction 1 in supplemental table). A similar, 

morning-specific suppression has been identified in experimental studies of CO-

overexpressing plants (Valverde et al., 2004) and linked to phyB in cop1 mutant 

plants (Jang et al., 2008). Our models show that this mechanism operates in wild-type 

plants, quantify its effects, show that the effect is greater in long than in short 

photoperiods (Supplementary Figure 3), and suggest a molecular mechanism (Figure 

4; see below). The quantitative effect of the suppression was modest (~60% reduction 

in FT activation in Supplementary Figure 3) and its parameters were not well 

constrained, because it only affected one to two data points in the FT profile. 

Moreover, morning expression of FT can sometimes be observed experimentally 

(Corbesier et al., 2007), and flowering can be accelerated under exotic light cycles 

that drive high CO expression in the morning (Roden et al., 2002). Thus the morning 

suppression mechanism is not always effective at the level of FT expression and is not 

always relevant at the level of flowering time, though it is apparent in most of the 

molecular data sets considered here. Regulation by FKF1 provides a parsimonious 

mechanism for the suppressive effect, as detailed below. 

Regulation of CO by a photoperiod-responsive clock 

The circadian peak of CO RNA accumulation moves to a later phase under long 

photoperiods (Figure 2). The interlocking, dual feed-back loop model of the clock was 

required to match this phase delay (Figure 3, prediction 3 in supplemental table), 

because the phase of this clock model responds strongly to light at dusk (Locke et al., 
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2006). A more complex, three-loop clock model (Locke et al., 2006) matches better to 

data for circadian-regulated genes other than CO, where peak phase is much less 

delayed under long photoperiods (Edwards et al, unpublished results, Millar and Kay, 

1996). The CO entrainment profile is consistent with the two-loop model and 

therefore might reflect a distinct circadian clock mechanism that is restricted to 

specific cell types, for example in the vasculature (An et al., 2004). Circadian clocks 

with distinct entrainment patterns have also been proposed in the photoperiod sensor 

of the short-day plant, Ipomoea nil (Hayama et al., 2007). The unknown mechanism 

that regulates some aspects of the CO waveform independently of the GI rhythm 

(Fornara et al., 2009) might also be consistent with the unusual photoperiod-

sensitivity of the timing of peak CO RNA.  

 

The dusk-sensitive entrainment of CO makes the system more responsive to 

lengthening photoperiods, particularly to delays in lights-off, than it is to stable, long 

photoperiods. The sensitivity to photoperiod change arises because the first 

lengthened photoperiod simply allows a longer duration of light to coincide with a CO 

mRNA rhythm that is set to the early phase characteristic of a short day, as proposed 

by Bünning’s external coincidence mechanism (Bünning, 1936). Under stable, long 

photoperiods, however, the observed phase of the CO rhythm is delayed, moving 

more of the CO mRNA peak into the dark interval. After entrainment to 8h 

photoperiods, for example, model 3 predicted a significantly greater FT area on the 

first 10h or 12h photoperiod than it did when stably entrained to 10h or 12h 

photoperiods (supplemental figure 5). The circadian entrainment of CO is consistent 

with observed flowering responses to changes in the time of sunset, which have 

evolved exquisite sensitivity in tropical trees (Borchert et al., 2005). 
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Regulation of CO and FT by FKF1 and photoperiod 

Whereas circadian entrainment delays CO expression under longer photoperiods, 

FKF1 promotes earlier CO mRNA accumulation (reviewed in Imaizumi and Kay, 

2006). The FKF1-dependent shoulder in CO RNA accumulation was readily 

simulated by adding a second source of CO RNA to supplement the waveform driven 

only by the clock model (Figures 3 and 4, supplemental figure 4). This source could 

be either an arbitrary square waveform (data not shown) or the observed FKF1 protein 

profile, which also has a sharp onset and decline (Imaizumi et al., 2003). In either 

case, the sharp change in the additional CO was important to match the dip in CO 

RNA profile that is often observed at the end of a long photoperiod (prediction 5).  

 

Our models (Figure 3, Figure 4) highlighted a dramatic and previously unsuspected 

effect of FKF1, to promote FT expression independently of its effect on CO RNA 

accumulation (prediction 6). For an intuitive illustration, consider that the levels of 

CO mRNA in the light are comparable or higher in fkf1 mutants under long 

photoperiods compared to the wild type under short photoperiods (compare Figure 3b 

with 3a), yet the cognate FT mRNA levels are much lower in the mutants (Figures 3c, 

3d). Direct interaction of FKF1 with CO protein might enhance CO function 

(Fukamatsu et al., 2005), providing a mechanism based on known components. Light-

stabilised CO protein would then activate FT transcription in an FKF1-dependent 

manner. This was achieved in a revised model by using the FKF1 protein profile to 

drive the transcription of FT in addition to its effect on CO (model 3F2, see 

supplemental text). This speculative model matched wild-type FT mRNA waveforms 

well and lacked the morning-specific peak of FT expression observed with earlier 

models (Figure 4). As FKF1 is not expressed in the morning, simulated FT mRNA 
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expression remains low at this time even if CO RNA is present. Thus the postulated 

function of FKF1 provides a parsimonious molecular mechanism for the morning 

“gate” (prediction 1). Constitutive expression of FKF1 and GI was insufficient to 

activate FT expression immediately after dawn (Sawa et al., 2007), however, 

indicating that further analysis of the morning “gate” is warranted. FKF1 was 

estimated to increase FT transcription 10-fold in our model compared to the fkf1 

mutant, highlighting the importance of FKF1 as a photoperiodic regulator (Imaizumi 

and Kay, 2006). FKF1 increased CO transcription by only 35%, suggesting that 

FKF1-independent factors are also important in regulating CO mRNA levels (Fornara 

et al., 2009; Imaizumi et al., 2005).  

 

The relationship between the two effects of FKF1, on CO and FT, is unclear. A 

possible extension to model 3F2 was to propose that FKF1 functioned together with 

CO protein, and that this mechanism activated both FT and CO transcription 

(prediction 7). This parsimonious hypothesis predicted that CO protein would be 

required for the FKF1-dependent shoulder of CO mRNA under long photoperiods. 

New experimental data for the CO mRNA levels of seven co mutant alleles failed to 

support this notion (Supplemental figure 7). Our results therefore predict that FKF1 

functions differently to regulate CO and FT, indicating that a novel regulatory 

mechanism is involved in the control of FT.  It is possible that this function is GI-

dependent, as GI regulates flowering via the circadian expression of CO (as in our 

models) but also by a genetically-separable mechanism (Gould et al., 2006; 

Mizoguchi et al., 2005).  
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Tuning the mechanisms of daylength perception 

The circadian clock models entrained stably to a limited range of exotic light-dark 

cycles with total durations that varied from 24h (Figure 5). The models were 

developed using data from only constant conditions and 12L:12D cycles (Locke et al., 

2005a; Locke et al., 2005b), so more flexible models might be constructed based upon 

new data on the clock components under other conditions. The mathematical theory 

of coupled oscillators (Guckenheimer and Holmes, 1983) shows that stable 

entrainment occurs when the system parameters are within an area of parameter space 

described as the Arnold tongue. Changing the period of the entraining cycle 

significantly away from the period of the oscillator moves the system outside the 

Arnold tongue. Consistent with theory, the clock model then becomes quasi-periodic, 

as also reported for circadian rhythms in many species.  

   

Using model simulations, we predicted that discrimination between long and 

short light intervals will be greatest when the total duration of the entraining cycle is 

24h (Figure 5; prediction 8). This qualitative prediction is reminiscent of the classic 

experiments on soybean (Hamner and Takimoto, 1964) and matches more detailed 

data from the hamster, where photoperiodic regulation of the reproductive system also 

showed the greatest amplitude under 24h cycles (Elliott, 1974). This effect also can be 

related to the theory of coupled oscillators (Guckenheimer and Holmes, 1983). 

Altering the duration of the entraining cycle by a moderate amount relative to the 

period of the oscillator moves the system within the Arnold tongue, and alters the 

phases of the clock components. The circadian clock is presumed to be adapted to the 

24h entraining cycles in which it has evolved: the clock components (and outputs 

such as CO) will be regulated with peak phases that are physiologically optimal 
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(Pittendrigh and Daan, 1976). Changing the duration of the entraining cycle will alter 

their phases and lead to a suboptimal response, either slowing growth (Dodd et al., 

2005), or in this case weakening the photoperiodic sensor. 

 

Our models illustrate how the external coincidence mechanism has evolved in 

Arabidopsis to a more elaborate form than Bünning’s original hypothesis. CO protein 

was the first molecular correlate of photoperiod to be identified and its dual regulation 

by the clock (transcriptionally) and by light (post-translationally) forms an external 

coincidence detector.  The photoperiod-sensitive entrainment of the CO mRNA 

rhythm extends beyond the simplest external coincidence hypothesis and has potential 

functional significance in detecting photoperiod change, but may require specialized 

circadian timing, as discussed above. FKF1 forms a second external coincidence 

detector that regulates CO mRNA (Imaizumi et al., 2003) and we show that it is 

crucial in activating FT (prediction 6). As CO and FKF1 function together to regulate 

FT at the end of the photoperiod, separating their expression in time might in 

principle be sufficient to prevent flower induction under short photoperiods, as 

proposed by the internal coincidence hypothesis (Pittendrigh, 1960). It will be 

interesting to determine whether the entrainment of their circadian rhythms (and the 

rhythms of other clock-controlled regulators) responds differently to photoperiods, as 

this would be required to introduce an aspect of internal coincidence (as implied in 

Imaizumi and Kay, 2006). In contrast, another photoperiodic mechanism appears to 

control the degradation rate of cry2 protein at the start of the day (El-Din El-Assal et 

al., 2001). The effect of cry2 degradation on photoperiodism is unclear, and our 

current models match FT mRNA profiles without this modulation of light input.  
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The existence of multiple photoperiod sensors has important consequences for 

understanding plant physiology. Firstly, it greatly increases the potential for 

specialized photoperiodic sensors to control different physiological responses within a 

single species, including responses of vegetative organs. Secondly, it is unclear which 

(or how many) of the molecular mechanisms will be conserved across species with 

similar photoperiodic responses. Finally, it increases the possibility that species with 

different photoperiodic responses might differ radically in their molecular 

mechanisms. It is therefore all the more striking that homologues of CO and FT have 

been implicated in the short-day photoperiodic response of the dicots Ipomoea nil 

(Hayama et al., 2007) and poplar (Bohlenius et al., 2006) and of the monocot rice (the 

genes Hd1 and Hd3a, respectively, reviewed in Hayama and Coupland, 2004; Izawa, 

2007). The profile of Hd1 RNA strongly resembles that of CO (supplemental Figure 

8a), such that Hayama et al. (Hayama et al., 2003) proposed that a single change of 

sign, equivalent to making CO a negative regulator of FT, would be sufficient to 

convert the long-day response of Arabidopsis to the short-day response of rice. Using 

RNA profiles of Hd1 and Hd3a under long and short photoperiods, we constructed the 

simplest model of the rice photoperiod sensor based upon our Arabidopsis models 

(see supplemental data). The proposed repressive function of Hd1 could fully account 

for the photoperiodic regulation of the mean level of Hd3a, because the coincidence 

of light with Hd1 RNA in the evening changes significantly between long and short 

photoperiods. There is, however, little or no difference in Hd3a expression in the 

evening, so coincidence does not directly explain the temporal profile. Peak Hd3a 

expression occurs in the morning (supplemental figure 8b), and matching this timing 

required a separate (and unknown) clock-regulated factor distinct from the Hd1 

repressor. It will be interesting to determine how the morning-specific photoperiodic 
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regulator of Hd3a relates to the well-described, evening-specific regulators in 

Arabidopsis. There are now several possible candidates in rice (reviewed in Hayama 

and Coupland 2004; Izawa 2007). Recent data gives this added relevance for 

Arabidopsis, because FT can also be expressed in the morning in some conditions 

(Corbesier et al., 2007), suggesting that the rice regulatory mechanism might also be 

present in Arabidopsis. 

 

The photoperiodic switch is part of a broader network of developmental pathways and 

environmental responses that control the flowering of Arabidopsis (Boss et al., 2004). 

Models of this broad network (Welch et al., 2003) have the exciting potential to link 

our detailed molecular mechanisms to larger-scale phenological models. These 

already have widespread applications in crop scheduling and crop improvement 

(Adams et al., 2001; Hammer et al., 2006) and have been successfully applied to 

Arabidopsis development (Wilczek et al., 2009). 
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Experimental procedures 

Plant growth and RNA assays 

Seeds of fkf1, the co alleles and cognate wild types were generously supplied by G. 

Coupland (Koeln) or by the Nottingham Arabidopsis Stock Centre. Plants were grown 

as described (Locke et al., 2005b) under 16L:8D for 10 days at 22°C. Samples were 

harvested 13h after lights-on; RNA was extracted and analysed by qRT-PCR as 

described (Locke et al., 2005b). 

 

Computational methods 

Quantitative expression profiles for CO and FT mRNA under various conditions were 

digitised from charts or graphs in the literature or kindly provided by the original 

authors (see supplemental data). Timeseries data were numbered (see supplemental 

table 1), normalized and checked for consistency (see supplemental data). Twenty-

eight timeseries from wild-type plants were used for most model training and 

validation, with ten further timeseries from toc1 and fkf1 mutants. Models were 

constructed as ordinary differential equations in Matlab (Mathworks, Cambridge UK); 

SBML versions will be available from the Biomodels repository upon publication (Le 

Novere et al., 2006), and in versions compatible with the Circadian Modelling 

simulation interface (available at www.amillar.org/Downloads.htm). Model equations 

and parameters are presented in the supplemental data. Parameters were estimated by 

fitting to the relevant data (for the wild type, to the training data sets 1, 3, 8, 9; see 

supplemental table 1), using a boundary value solver to ensure that the model 

produced stable, limit cycle solutions (see supplemental data). Models 3F1 and 3F2 

including FKF1 function are described as speculative, because there is much less 

quantitative timeseries data available for FKF1 in the literature than for CO and FT. 
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We test these models only in 8L:16D and 16L:8D conditions, where FKF1 data are 

available. 
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Figure legends 

Figure 1. Overview of modeling stages.  

Model 1 uses CO mRNA data and light/dark cycles as inputs and simulates FT 

mRNA accumulation. In model 1a, light and CO mRNA activate FT transcription 

whereas in model 1b light inhibits the degradation of CO protein, which activates FT. 

Model 2 takes a light/dark cycle as input and simulates the rhythmic expression of CO 

mRNA. Model 2a is based on a single-loop model for the circadian clock (Locke et al., 

2005a) while model 2b uses the interlocking-loop model (Locke et al., 2005b). 

Models 1 and 2 are combined in model 3a, which simulates FT mRNA profiles for a 

given light/dark cycle. Speculative models including FKF1 are presented in Figure 4 

and Supplemental Figures 4, 5 and 8. Model 4 uses model 3 to predict flowering 

responses based on FT mRNA accumulation. 

 

Figure 2. External coincidence of CO and light predicts FT mRNA expression.  
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FT mRNA expression patterns were simulated using model 1a, based on the training 

data sets (A, B, Yanovsky and Kay, 2002) and (C, D, Imaizumi et al., 2003), under 

short-day (A, C) and long-day (B, D) conditions. The maximal CO mRNA level under 

short days is set to 1 for each set of data and simulations. Open circles, CO mRNA 

data; closed circles, FT mRNA data; solid line, simulated FT mRNA levels. Filled bar 

on time axis, dark interval; open bar, light interval. 

 

Figure 3. Model 3 recapitulates CO mRNA profiles of fkf1 mutant plants, but predicts 

FT mRNA close to wild type. 

Expression patterns of CO mRNA (A, B) and FT mRNA (C, D) were simulated using 

model 3 (solid lines), under short-day (A, C) and long-day (B, D) conditions. The 

arrow in B marks the FKF1-dependent shoulder in CO expression, which is absent in 

the model. Expression level data (sets 8 and 9, Supplementary Table 1, Imaizumi et 

al., 2003) are shown, as in Figure 2. Open symbols, CO mRNA data; filled symbols, 

FT mRNA data; circles, data from wild type; squares, data from fkf1 mutant. Filled 

bar on time axis, dark interval; open bar, light interval. 

 

Figure 4. FKF1 affects FT activation. 

Speculative model 3F2 (A) includes light-dependent activation of both CO and FT by 

FKF1. Simulations (solid lines) can closely match the expression patterns (Imaizumi 

et al., 2003) of CO  (B, C, F, G) and FT (D, E, H, I) mRNA in both the wild type (B-

E) and fkf1 mutant (F-I) under short-day (B, D, F, H) and long-day (C, E, G, I) 

conditions. An alternative, more parsimonious hypothesis is shown in (J) : FKF1 has 

a single effect on CO protein activity, which both controls FT transcription and feeds 

back positively to regulate CO transcription (see Supplemental Figure 7). Open 



32 

 

symbols, CO mRNA data; filled symbols, FT mRNA data; circles, data from wild 

type; squares, data from fkf1 mutant. Filled bar on time axis, dark interval; open bar, 

light interval. 

 

Figure 5. A photoperiod sensor for 24h days, regulating flowering. 

(A) FT expression was simulated under light-dark cycles comprising 6h – 16h 

photoperiod in a total cycle duration of 16h (diamonds) to 32h (open circles), using 

model 3. 24h cycles show the largest ratio of integrated FT mRNA between long and 

short photoperiods. Absent results are due to unstable circadian entrainment in some 

conditions.  (B and C) The integrated FT mRNA area simulated by model 3 under 

different photoperiods (diamonds) is related to flowering time data for the same 

photoperiods by a simple function (line), with specific parameter values (see 

supplemental text) for data sets from Landsberg(erecta) (B, Wilczek et al., 2009) and 

Wassilewskija (C, Pouteau et al., 2008). Flowering time data covered photoperiods 

from 6L:18D to 16L:8D in (B) and (C), with an additional data point for constant light 

in (C). The data point for 12L:12D is labelled (12). 
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Supplemental Data  

Data Collection and Analysis  

Numerical values for CO and FT mRNA expression patterns were captured by digitising 

published charts or graphs of quantified data, or were kindly provided by the original authors 

(Supplemental Table 1). Experiments are numbered; pairs of CO and FT waveforms 

collected in the same genotype and experiment are given the same number.  The data 

include some variation in experimental details but share a similar basic design. In particular, 

wild-type plants under short photoperiods (8L:16D) and long photoperiods (16L:8D) were 

tested in 3 and 7 experiments, respectively, with more limited representation of exotic, non-

24h cycles. Several Arabidopsis accessions were tested, as well as fkf1 or toc1 mutants and 

CO-overexpression lines. RNA levels were measured using RT-PCR in all cases, with 

detection either by real-time fluorescence labelling or by hybridisation of radio-labelled 

probes. The mRNA used as a constitutive control for inter-sample normalization varied. 

Primers that amplify UBIQUITIN (UBQ) transcripts (Blazquez and Weigel, 1999) were used 

in experiments 1-12 and similar primers (Cerdan and Chory, 2003) for experiments 13 and 

14. Experiment 15 (Somers et al., 2004) used ACTIN2 (ACT2). In one experiment, the ratio 

FT/CO was quantified directly (Valverde et al., 2004).  

As a preliminary comparison between experiments, the ratio of peak FT to CO levels was 

calculated to determine whether these different waveforms were mutually compatible (data 

not shown). There is potential for significant variation in some experimental methods, for 

example the specific radioactivity of the probes used in the hybridization experiments might 

vary as a function of their age. The ratio (peak FT / peak CO) fell in a range 0.13 to 1.3, with 

the exception of experiments 11 (ratio = 3.3), where radiolabelling was used, and 15 (ratio = 

6.4), possibly related to the ACT2 control. Waveform 12 had by some distance the lowest 

ratio (0.15) of any experiment in a long photoperiod. The FT waveform ftcoox1 in the CO-

over-expression experiment of (Suarez-Lopez et al., 2001) lacks comparable information on 
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the CO mRNA. In contrast, the other FT data from CO-over-expression lines, coox2 and 

coox3, are normalized to the level of CO mRNA (Valverde et al., 2004). For these reasons, 

the data of (Suarez-Lopez et al., 2001) and (Somers et al., 2004) were not considered 

further. 

Data analysis and normalisation for modelling 

The remaining data were tested for comparability. According to the simplest formulation of 

the external coincidence hypothesis in Arabidopsis, FT expression should be related to the 

integrated area under the curve of CO mRNA accumulation that coincides with light. The set 

of selected data was tested against this hypothesis, to confirm that pooling results from 

diverse sources did not obscure interpretation of the data. This entails comparisons across 

experiments that might use different experimental control transcripts for technical 

standardization. The data for all genes and photoperiods within each experiment were 

therefore normalized to a common internal standard, the maximum level of CO mRNA in 

wild-type plants under short (8L:16D) photoperiods. CO mRNA has a broad, flat-topped 

waveform in these conditions, which reduces the variability due to the particular timepoint 

chosen for sampling in different experiments. Integrated areas were calculated under the CO 

mRNA curve during the light interval only, and under the FT mRNA curve over a full cycle. 

The FT area is clearly positively correlated with the CO area that coincides with light, across 

all the data sets (supplemental figure 1A). Variation among experiments accounted for less 

than a 2-fold range in the FT areas under conditions that gave similar CO areas.  As an 

additional test, the normalized FT area was plotted against the duration of light in each cycle 

(Supplemental figure 1B).  The correlation was also positive but this result is weaker, 

because the available data are clustered around 8h light and 16h light with very little data at 

intermediate photoperiods. Futhermore, the variation in experimental conditions produces 

clear outliers, for example from experiment 6 (10L:20D).  

To take account of some of the variability, two different short day (SD) and long day (LD) 

experiments were used in the initial estimation of the model parameters (the training data 
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sets): experiments 1 and 9 (short photoperiods), 3 and 8 (long photoperiods). These were 

produced by the Kay laboratory (Imaizumi et al., 2003; Yanovsky and Kay, 2002), and 

allowed direct comparison between these wild-type waveforms used to develop the models 

and the toc1 and fkf1 mutant waveforms that were tested in the same experiments. 

In order to compare model simulations to the experimental waveforms, the simulations were 

normalized to the maximum of CO mRNA under SD. Simulations were normalized by 

dividing the CO and FT waveforms in SD and LD by the maximum of the simulated CO 

waveform of the wild type in SD, then multiplying them by the maximum of the experimental 

CO waveform in SD.  In this way, the simulated and experimental CO waveforms in SD 

share the same upper limit (Figure 3).  This procedure is unnecessary for models 1a and 1b, 

which take their normalization directly from the size of the experimental CO waveform 

(Figure 2). 

Model Testing Procedure 

The kinetic parameters required in the model equations have not been directly measured by 

experiment. Random parameter sets (usually over 3,000, with each parameter usually 

bounded in the range 0 to 100) were therefore evaluated, by testing the fit of the model 

solution with that parameter set to the training data, using Matlab version 6 (Mathworks, 

Cambridge, UK). The model was solved for 120 hours (five 24-hour days) of entrainment 

under the appropriate light-dark cycle, with a final cycle that was used as the seed for a 

differential equation boundary value solver (bvp4c, MatLab version 6). The resulting solution 

was therefore guaranteed to be a true, attracting limit cycle. After using the scaling described 

in the previous paragraph, the fit of the model to the relevant data set(s) was measured using 

a weighted mean square method.  The weights were chosen to be the maximum of the 

experimental CO and FT mRNA waveforms in each photocycle (short or long days) to 

prevent the fitting procedure being dominated by the largest FT mRNA abundance in long 

days. 
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The 20 parameter sets with lowest cost (best fit) were typically subject to 5 cycles of 20 

iterations of the Nelder-Mead unconstrained simplex optimization method (Matlab version 6). 

The Nelder-Mead method typically improved the cost values by 20-30%, frequently changing 

the cost ranking compared to the starting parameter sets. After optimization, the difference in 

cost values of the 20 best solutions tended to be small, although some parameter values 

could be widely spread in parameter space.  

Models 

Our models are based on Michaelis-Menten kinetics. All parameter values are positive, so 

terms that model the degradation of the relevant molecular species are given negative sign. 

In the equations below, the term L = 1 for light and 0 for darkness. The square waveform of 

light:dark cycles in growth chamber experiments was simulated using a hyperbolic tangent 

function to produce abrupt light-dark transitions that are numerically continuous. Throughout, 

units of time are hours (h); characteristic units for molecular species are nanomoles (nmol); 

the relative mRNA profiles were normalized to an internal mRNA standard as noted below.  

For a diagrammatic representation of the different models and their relationships, see Figure 

1. 
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Level 1 – Regulation of FT by the CO concentration observed in data 

Model 1a 

FT mRNA synthesis is a function of the experimental CO mRNA amount, which is taken to 

approximate the amount of active CO protein. CO activates FT transcription only in the light 

(equation 1).  

mFTkFT
mFTvFT

eCOkCO
eCOvCOL

dt
dmFT

+
−

+
⋅⋅=  (1) 

mFT = simulated FT mRNA, vCO = maximum FT transcription rate = 25.9719 nmol/h, kCO = 

Michaelis constant of FT activation by CO = 70.6788 nmol, eCO = experimental CO mRNA 

concentration, vFT = max rate of FT mRNA degradation = 12.9543 nmol/h, kFT = Michaelis 

constant of FT mRNA degradation = 62.2131 nmol. 

Model 1b 

The experimental CO mRNA amount is translated into CO protein that is degraded only in 

darkness (2).  CO protein activates FT transcription equally in all conditions (3). 

( )
COpkCOp

COpvCOpLeCOvCOm
dt

dCOp
+

⋅−−⋅= 1      (2) 

COp = simulated CO protein, vCOm = rate constant of CO protein production = 3.3243 

nmol/h, eCO = CO mRNA concentration in experimental data, vCOp = maximum rate of CO 

protein degradation = 10.4291 nmol/h, kCOp = Michaelis constant of CO protein degradation 

= 1.4977 nmol. 

mFTkFT
mFTvFT

COpkCOFT
COpvCOFT

dt
dmFT

+
−

+
=       (3) 

vCOFT = max FT transcription rate = 0.4561 nmol/h, kCOFT = constant of activation by CO = 

9.9181 nmol, vFT =  max rate of FT mRNA degradation = 4.9569 nmol/h and kFT = Michaelis 

constant of FT mRNA degradation = 12.3926 nmol. 
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Either model 1a or 1b could fit well to the experimental data (Supplemental Figure 1c). As 

model 1b explicitly includes regulation of the CO protein, we anticipate that this will be more 

useful for comparison to molecular data, and discuss the results from this model in the main 

text. 

The “morning gate” 

To reduce the excess FT mRNA predicted in the morning (Figure 2), we inserted new 

parameters into model 1a that reduced the effectiveness of light in activating FT (by 

multiplying vCO by a constant value between 0 and 1), for a specified time interval (between 

0 and 6 hours) starting at dawn. No single combination of effectiveness and duration 

parameters allowed an improved fit to the training data under both long days and short days 

(unpublished results). The data could only be matched by allowing the gating parameters to 

vary with photoperiod. A good fit was obtained for some parameter sets with no gating at all 

under short-day conditions. The best fits resulted from a lower gating effect (and/or for a 

shorter interval) under short photoperiods, combined with stronger gating (and/or for a longer 

interval) under long photoperiods (Supplemental figure 3 and legend shows one example). 

The morning gate improved the fit to only one to two data points in the available FT RNA 

timeseries, making a relatively small contribution to the overall fit. By the same token, the 

time resolution of the current data provides insufficient constraints to parameterise the effect 

accurately. Moreover, several experimental results indicate that the gate is not always 

effective at the molecular level, nor functionally relevant for flowering (see Discussion). No 

separate morning gate mechanism was included in subsequent models. 

 

Level 2 – Regulation of CO mRNA by the circadian clock 

Model 2a 

This model is based on the first clock model (Locke et al., 2005a), which consists of two 

genes, LHY and TOC1, that form a single negative feedback loop. Light entrains the clock 

model only by enhancing LHY transcription, so the phase of the clock is locked to lights-on. 
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The nuclear TOC1 protein concentration from this model peaks at an appropriate phase 

under short days, and is therefore used without modification as a proxy for CO mRNA. 

Model 2b 

This model is based on the interlocking-loop clock model (Locke et al., 2005b). This clock 

model consists of four genes LHY, TOC1 and two unknown genes termed X and Y, in which 

LHY, TOC1, and X form one loop, while TOC1 interacts with Y to form a second, interlocking 

feedback loop. Light activates transcription of LHY and also of Y. Again, the nuclear TOC1 

protein concentration is used as a proxy for CO mRNA. 

As model 2a clearly failed to fit the phase change relative to lights-on that was observed in 

the experimental CO data (Figure 2), only model 2b was used subsequently. 

Level 3 – Regulation of FT by simulated CO 

Model 3 

This model combines CO simulated using model 2b with the activation of FT mRNA 

simulated using model 1b (equations 2 and 3). Neither model is modified but nTOC1 

replaces eCO in equation (2): 

( )
COpkCOp

COpvCOpLnTOCvCOm
dt

dCOp
+

⋅−−⋅= 11      (4) 

Parameter values are the same as in (2). nTOC1 = nuclear TOC1 protein. 

 

Modelling FKF1 effects on CO and FT transcription  

Preliminary models were constructed to quantify the effects of FKF1 upon CO and FT mRNA 

profiles. A simple step function gave a good qualitative fit to the shoulder of CO mRNA at the 

end of a long photoperiod (data not shown). As FKF1 protein profiles were quantified by 

Imaizumi et al. (2003) (Supplemental figure 4a), we modelled a more detailed molecular 

mechanism using these data for 8L:16D and 16L:8D cycles. Our aim here was to fit the CO 
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mRNA waveform in the wild-type plants of one data set as closely as possible, in order to 

distinguish quantitatively between a possible direct effect of FKF1 on FT, compared to an 

indirect effect of FKF1 on FT transcription via the regulation of CO. 

Model 3F1 - FKF1 activation of CO mRNA 

The profile of simulated CO mRNA from model 2b (mCOTOC1, originally nuclear TOC1 protein) 

was modified to fit training data set 8 rather than all four training data sets (Supplemental 

figure 4b, 4c). As the measured CO mRNA in this data set was greater than the simulated 

value during the light interval (Figure 3b), a negative term corresponding to a CO mRNA 

degradation rate was slightly increased (by 0.04% of its original value) during the light 

interval.  All other parameters remained as in model 2b. The increase in CO mRNA due to 

FKF1 was included as an additional source of CO mRNA (mCOFKF1) using a simple, linear 

equation (5, see Supplemental figure 4b). The transcription rate is linearly dependent on the 

observed FKF1 protein level (FKF1) and is active only during the light interval, when L = 1.   

11
1 1 FKFFKF

FKF mCOvFKFFKFvCOL
dt

dmCO
⋅−⋅⋅=      (5) 

vCOFKF1 = transcriptional activation rate by FKF1 (2 nmol/h), vFKF = mRNA degradation 

rate (1.8674 nmol/h). 

Total CO mRNA (mCOTOC1 + mCOFKF1) closely matched the observed CO mRNA profile of 

data set 8. The additional source of CO mRNA briefly increased the simulated wild-type CO 

mRNA profile at the end of the short photoperiod (Figure 4b), consistent with the slight 

reduction in CO mRNA at this time in fkf1 mutants compared to wild-type plants (Figure 4b). 

Translating this pool produced CO protein as in (2), and the resulting CO protein activated 

FT as in (3). Under long photoperiods, the increased CO mRNA level yielded higher peak FT 

mRNA levels (Supplemental figure 4d), giving a slightly improved match to the FT data at 

16h compared with the simulation using model 3 (compare with Figure 3d). This effect on FT 

in the wild-type simulation would scarcely justify including the increased complexity of CO 

mRNA regulation but simulations of the fkf1 mutant were more revealing. In model 3F1, the 
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FT transcription rate at the end of a long photoperiod (16h after dawn) was only 35% lower in 

the simulated fkf1 mutant compared to wild type. 

Model 3F2 - Speculative model for FKF1 activation of FT mRNA 

The level of FT mRNA observed in fkf1 mutant plants (Figure 3d) was far lower than the 

prediction from model 3, which lacked FKF1 (Figure 3d), leading us to speculate that FKF1 

was also required to activate FT transcription. We modified equation (3) to include the 

activation of FT transcription by FKF1 protein in the light, giving equation (6), with results 

shown in Figure 4A. FKF1 activation of FT was implemented as a multiplicative term in (6), 

because the effect of the fkf1 mutation on FT mRNA levels was much more severe than its 

effect on CO mRNA. A large proportion of FT mRNA thus becomes FKF1-dependent. For 

parsimony, we assumed FKF1 was equally effective in regulating CO and FT. Parameter 

vCOFT was altered compared to (3) to account for the new regulator. New parameters BCO 

and BFKF were added in order to estimate CO-independent and FKF1-independent FT 

transcription rates, respectively. These were termed ‘basal’ transcription rates to indicate that 

their regulation is unknown, not that it is necessarily unregulated.  

( )
mFTkFT

mFTvFTFKFvCOFKFLB
COpkCOFT

COpvCOFTB
dt

dmFT
FKFCO +

⋅−⋅⋅+⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅+= 11  

(6) 

vCOFT = max CO-dependent FT transcription rate = 0.58 nmol/h, kCOFT = constant of 

activation by CO = 9.9181 nmol, BCO = CO-independent transcription rate = 0 nmol/h, BFKF = 

FKF1-independent transcription rate = 0.22 nmol/h, vCOFKF1 = coupling constant for 

activation by FKF1 = 2 nmol/h, vFT = mRNA degradation rate = 1.8674 nmol/h, kFT = 

Michaelis constant of FT mRNA degradation = 5.3925 nmol.  

With BCO set to 0, FT transcription remains completely CO-dependent, consistent with 

undetectable FT levels in the co mutant (Jang et al., 2008; Suarez-Lopez et al., 2001). The 

parameter is included in the model to reflect the possibility that a small proportion of FT 
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expression is CO-independent in wild-type plants. Simulations (data not shown) suggested 

that the upper bound on the parameter value consistent with experimentally undetectable FT 

mRNA (~5% of wild-type peak level) in the co mutant is about 0.03 (data not shown), 7-fold 

less than BFKF and 19-fold less than vCOFT. As the numerical value of this very low 

transcription rate was arbitrary, and it had a negligible effect on FT in wild-type simulations 

(data not shown), it was set to 0 for parsimony. Future experiments that reliably quantify the 

low levels of FT RNA in the co mutant may constrain its value above zero.   

In order to simulate the fkf1 mutant, the parameter controlling FKF1’s transcriptional effect 

(vCOFKF1) was set to 0 in (5) and (6). The simulated CO mRNA profiles (Figure 4f, 4g) were 

very close to the simulations from model 3, as expected. Reduced CO mRNA and protein 

remained, allowing us to estimate the basal transcription rate of FT that was required to 

produce the small amounts of FT mRNA observed in the experimental data on the fkf1 

mutant (Figures 4h, 4i). The net transcription rate at the end of a 16h day was 0.0522 nmol/h 

in the mutant, compared to 0.5317 nmol/h in wild type. This result emphasizes the large 

effect of the fkf1 mutation on FT expression, which greatly exceeds the effect expected from 

the change in CO mRNA alone (illustrated by model 3F1, above).  

Level 4 – Regulation of flowering time by FT 

In the final stage of modeling, a direct predictor of flowering time was added to the model. 

This requires one of the model outputs to be connected to a measure of macroscopic 

flowering time that corresponds to experimental data (the percentage of plants flowering on a 

given day, the mean time (days) until flowering or the duration of the vegetative phase 

(number of leaves) until flowering). There was no suitable data in the literature to define 

directly the non-linear relationship between the amount of FT mRNA and the time to 

flowering. Such data cannot easily be pooled, as flowering times are highly variable between 

laboratories and even between experiments. Rather, both variables must be measured for a 

range of photoperiods in a single experiment. Such data are now urgently required.  
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In the interim, photoperiod was used as an intermediate variable between the model outputs 

and the experimental measures of flowering.  The level 3 models take photoperiod as an 

input parameter, so it was possible to predict the relationship between any of the model 

components and photoperiod. All the flowering measures in the literature are also reported 

as a function of photoperiod. The level 4 model can therefore be used to interpolate the 

flowering time for any photoperiod by calibrating the predicted FT against the measured 

flowering times. 

Mathematically speaking, if fl(ph) is an experimental measure of flowering fl (for example, 

leaf number) in a photoperiod ph, and Q refers to a molecular quantity (FT mRNA 

concentration, for example), then flowering fl under photoperiod ph is a function of Q under 

photoperiod ph. This relationship is defined by function X (in our example, X is relationship of 

leaf number to FT mRNA concentration), thus: 

fl(ph)  =  X(Q(ph)).          (7) 

As fl(ph) is known experimentally and our molecular models will give us an approximation to 

Q(ph), which we will call Q*(ph), then we can compute an approximation to X (termed X*) 

using measured fl(ph) values from the literature: 

fl(ph)  =  X*(Q*(ph)).          (8) 

Using X* we can obtain by interpolation an approximation to fl(ph), fl*(ph), for other 

photoperiods that have not been measured: 

fl*(ph)  =  X*(Q*(ph)).          (9) 

 

We analysed flowering-time data of Corbesier et al. (Corbesier et al., 1996), which offers 

several useful data sets, by this method to illustrate the approach. The data include flowering 

time (as “days to macroscopic appearance of flower buds”) of non-vernalized Columbia 

plants under various photoperiods (in figure 1 of the paper), and flowering time (as 
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“percentage of [plants showing] flower induction”) of vernalized Columbia plants maintained 

in SD for 2 months then treated with a single test cycle of various photoperiods (in figure 3a). 

In order to compute Q*(ph) for the conditions used in Figure 1, model 3b was entrained to 

light:dark cycles with various photoperiods and FT mRNA area was calculated (the area 

beneath the curve of FT mRNA level integrated over a 24h cycle). Thus the full model 

provides Q*(ph) in a complex form. The same relationship between FT area and photoperiod 

can be more simply approximated by a quadratic function (see Supplemental figure 5), given 

by  

FTarea  =  0.12ph2 –2.1ph + 12.         (10) 

The data point for a 24h photoperiod (constant light) also fits the quadratic relationship well.  

X*(Q*(ph)) could be computed in several ways, depending on the data. The measured 

flowering times in Figure 1 of (Corbesier et al., 1996) exhibit a switching behavior when 

plotted against either photoperiod or FT area, which can be approximated by a sigmoid 

function. The change in flowering time is greatest between 8h photoperiod (>80 days to 

flowering) and 12h photoperiod (~30 days), where predicted FT area is low and changes 

relatively little (supplemental figure 6a). The leftmost point is therefore in a region of very 

steep gradient, where flowering times change quickly for even a slight change in FT area. It 

is unclear where the flowering times will saturate, and in practice growth rates may be 

markedly reduced under very short photoperiods owing to metabolic effects. No saturating 

sigmoid function was found to match these data as well as a non-saturating function, given 

by 

Flowering time = d0 + a / (1 - FTarea/b)       (11) 

where d0 is a minimum flowering time at very high FTarea (estimated at 16.55 days), a is a 

multiplier (estimated at -15.29), FTarea is as described above and b is an artificial lower limit 

of FT area that prevents flowering completely (estimated value 1.63). Supplemental figure 6a 

shows this function plotted together with the most closely-matching Hill function,  
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with parameter values a1 = 662.081, b1 = 0.93871, n = 1 and d1 = 16.5 days. In this 

function, d1 is again the minimum flowering time, a1 is a multiplier, b1 is the FTarea at the 

so-called “critical photoperiod”, and n is the Hill coefficient. The critical photoperiod is 

conventionally defined as the photoperiod that causes the half-maximal flowering response, 

between the fully-induced and fully-uninduced conditions. Higher Hill coefficients allow a 

sharper switch from the uninduced to the induced response, over a narrower range of 

FTarea. Because this data set did not include sufficiently short photoperiods to indicate the 

maximum flowering time, the limits of the response were unclear: the Hill coefficient was set 

to 1 and the value of b1 was also poorly constrained. 

 

Data sets that include a greater range of photoperiods can show that the flowering response 

is minimally induced at short photoperiods and is saturated at long photoperiods. The Hill 

function (12) is equally applicable to data for flowering time (days to flowering) and for leaf 

numbers, as high leaf numbers at flowering reflect late flowering time. Equation (12) can 

therefore match the leaf number data of Pouteau et al. for the Ws accession (Pouteau et al., 

2008) and the leaf number data of Wilczek et al. for the La(er) accession (Wilczek et al., 

2009). For Wilczek et al. (Figure 5B), best-fit parameter values are n = 10, d1 = 10, a1 = 

30.0669 and b1 = 2.82065. For Pouteau et al. (Figure 5C), best-fit parameter values are n = 

6, d1 = 15, a1 = 31.9573 and b1 = 2.88922. In these cases, d1 is the minimum leaf number 

observed with fully-induced flowering, which is lower in the La(er) data than in Ws. Note the 

high values of n, which confer switching behaviour, and the very similar estimates of b1, 

which reflect similar critical photoperiods in both data sets.  

Equation (12) can be directly related to the photoperiod submodel in the recent phenological 

model for Arabidopsis (Wilczek et al., 2009). Parameter d1 corresponds to the reciprocal of 

the developmental rate for photoperiods below the critical short day length. The upper and 
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lower turning points on either side of the critical day length correspond to the FTarea at the 

critical long and short day length (Wilczek et al., 2009), respectively.  

 

In order to compute Q*(ph) for the conditions used in Figure 3 of (Corbesier et al., 1996), 

model 3b was entrained to SD (8L:16D) cycles and then tested under one longer 

photoperiod. Within the single, test photoperiod the model exhibited little change in mCO 

waveform compared to the preceding SD conditions (data not shown), because the 

entrainment of the clock was hardly affected within the first photoperiod. The mFT waveform 

was changed by the longer light intervals, resulting in a steep linear increase in the FT area 

(Supplemental figure 5). Note that this contrasts with the quadratic increase observed for the 

simulations under continuous cycles of altered photoperiod, where the entrainment of the 

clock also varies with the photoperiod (Supplemental figure 5; see Discussion).  

X*(Q*(ph)) was fitted with a sigmoid function, assuming that flowering was maximally induced 

by a 20L:4D cycle : 

( )
( )

0
)(_

)(1% k
SDFTareaareaFTcritP

SDFTareaareaFTkIndunctionFlowering nn

n

+
−+

−
=    (13) 

where k0 = 0, the % flowering in the SD control plants, k1 = 100 for full induction, P_crit = 

3.97 and the best value for n is probably 9.  This represents a very steep switching behavior, 

very similar to what is observed in Figure 3(a) of (Corbesier et al., 1996) (Supplemental 

figure 6b).  

Overall, this analysis supports the use of the FT area as a relevant model output for flowering 

prediction. Functions similar to (11), (12) and (13) above can readily be adapted to 

accommodate the variations in flowering time due to the growth conditions of specific 

laboratories, so that the model-based estimate, X*(FTarea*(ph)), can be used to interpret 

molecular data. Multiple data sets with matched FT areas and flowering times are now 
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required to define a measured X(FTarea(ph)) function, in order to validate the model-based 

estimate and to assess the variations among laboratories. 

Photoperiod responses over multiple cycles and transient changes in photoperiod 

In order for the plant to integrate the FT over a full diurnal cycle, as FTarea does in the 

model, a moderately stable molecule may be required downstream of the FT mRNA. Levels 

of this integrating molecule would then cross a threshold for flowering upon a single long 

photoperiod, in the case of the SD-grown plants in Figure 3a of (Corbesier et al., 1996). The 

effective stability of the integrator must be limited, however, to ensure that the current or 

most recent photoperiods have the greatest effect. Excessive stability would allow long-term 

accumulation to induce flowering in plants held under SD conditions for 2 months without an 

inductive photoperiod, in contradiction to the data (Corbesier et al., 1996). Where young 

seedlings are tested (for example, Corbesier et al., 2007), several LD are required to induce 

flowering, indicating that the integrating species is stable enough to accumulate over several 

days. FT expression also increases progressively after each LD, and one cycle with high FT 

expression is observed after plants are returned from LD to SD (Corbesier et al., 2007). The 

latter effects are suggestive of a positive feedback in the photoperiod sensor. As the 

mechanism(s) of these effects remain to be determined, they are not included in the models 

presented.  

Daylength perception in a short-day plant 

A dramatic re-tuning of the photoperiod sensor is thought to have occurred in rice, to 

promote flowering in SD rather than LD (Hayama and Coupland, 2004). The CO orthologue 

of rice, Heading date 1 (Hd1), is expressed in a very similar fashion to Arabidopsis CO under 

both LD and SD (Supplemental figure 8a). Rather than activating expression of FT as in 

Arabidopsis, genetic evidence indicates that Hd1 suppresses the best-characterised rice 

homologue of FT, named Hd3a (Hayama and Coupland). This change of sign has been 

proposed to account for the difference in mechanism between short-day plants and long-day 
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plants (Hayama et al., 2003). The published timeseries data for these rice genes are fewer 

and more variable than in Arabidopsis. Nonetheless, modeling of the rice data set that is 

most similar to Arabidopsis showed that, even for these data, the change of sign does not 

account for the dynamic expression pattern of Hd3a (data not shown).  The same conclusion 

can be reached by inspection of the data (Supplemental figure 8b): light coincides with the 

highest Hd1 RNA levels 12h after dawn under LD, but this peak of Hd1 passes in darkness 

under SD. If light interacts with Hd1 as it does with CO, this should result in differential 

induction of Hd3a in LD versus SD, yet Hd3a RNA levels at this time are almost identical in 

both conditions. Furthermore, about 4h after dawn Hd1 expression falls to similar, low levels 

under LD and SD,  yet this is when Hd3a RNA levels show the greatest photoperiodic 

regulation.  

We propose that the coincidence of Hd1 with light sets the mean level of Hd3a expression 

but that the phase of expression is set by another rhythmic factor, which we term the 

Circadian Regulator of Hd3a (CR3a). Activation of Hd3a transcription may for example 

require interaction between the Hd1 protein and a rhythmically expressed transcription factor. 

CR3a can be equally well approximated using a sine wave (Supplemental figure 8) or the 

waveform of Hd1 RNA (unpublished results). CR3a can be modeled as either an activator or 

repressor of Hd3a, where activating CR3a peaks shortly after dawn (as in Supplemental 

figure 8) or repressive CR3a peaks early in the night (unpublished results).  
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B = basal level of Hd3a transcription (0.05 nmol/h), vHd1 = maximum Hd3a transcription 

antagonized by Hd1 inhibition (2.545 nmol/h), kHd1 = Michaelis constant of inhibition by Hd1 

(2.3291 nmol), INT = measured integral of Hd1 mRNA area during light interval over one 24h 



17 
 

cycle (1.39 nmol under 10L14D, 4.32 nmol under 14L10D), vHd3a = maximum rate of Hd3a 

mRNA degradation (1.9861 nmol/h), kHd3a = Michaelis constant of Hd3a degradation 

(0.0327 nmol), vCR3a = maximum Hd3a transcription rate from CR3a activation (4.4770 

nmol/h), kCR3a = Michaelis constant of activation by CR3a (10.9056 nmol), ΦCR3a = phase of 

CR3a transcription (-0.6242 h), τCR3a = period of CR3a transcription (24h).   

Moreover, the relevant coincidence of Hd1 with light cannot result in immediate regulation of 

Hd3a, nor can the coincidence be integrated uniformly within the day starting from dawn, as 

both mechanisms would predict the greatest difference in Hd3a expression at the end of the 

day. We therefore propose that the coincidence of Hd1 RNA with light is integrated over 

longer time intervals spanning several days, and that this integrated measurement sets the 

mean level of Hd3a expression. The rice mechanism is therefore quite distinct from the very 

rapid effect in Arabidopsis of the coincidence of CO with light. Supplemental figure 8 shows 

that this class of mechanism readily fits the data. A parsimonious molecular mechanism is 

that Hd1 protein is much more stable than CO, accumulating over several days. A paralogue 

of CO that is rhythmically expressed with a peak near dawn (Kim et al., 2008), like 

CONSTANS-LIKE1 in Arabidopsis (Ledger et al., 2001), might function as an activating 

CR3a, though Hd1 is also proposed to have activating functions (see references in main 

text). 
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Supplemental figure legends 

 
Supplemental figure 1. Molecular data from several laboratories conform to the external 
coincidence hypothesis. 
The validation data (see Supplemental Data; Supplemental Table 1) were analysed to identify 
the trends across all experiments. (a) The integrated FT mRNA area over one cycle is strongly 
correlated with the integrated CO mRNA area during the light interval. (b) the integrated FT 
mRNA area over one cycle is more flexibly related to the hours of light during the cycle. The 
experimental mRNA levels have been normalized to the CO mRNA maximum (see 
Supplemental data). (c) Simulations of models 1a (blue symbols) and 1b (green symbols) 
optimized using the training data were then compared to the validation data of (b). (d) 
Simulations of model 3 (black symbols) were compared to the validation data of (b). In each 
case, solid lines show a linear fit to the cognate data series, indicating the overall trend of the 
data or simulations. 
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Supplemental figure 2. The toc1 mutation has little effect on light activation of FT.  
Data redrawn from (Yanovsky and Kay, 2002) depict mRNA levels of CO (open symbols) 
and FT (filled symbols) in the toc1-1 mutant under light:dark cycles of 21h (a, b, e, f, T=21h) 
or 24h (c, d, g, h, T=24h). In each case, short (a, c, e, g) and long  (b, d, f, h) photoperiod 
conditions are shown. The simulated FT mRNA levels (solid line) are shown, from 
simulations using  model 1a with parameters optimised for the wild type (a-d) or model 1a 
with parameter Vco altered to match the toc1 data sets, changing from 26 nmol/h in wild type 
to 37 (e, f) or to 35 (g, h). 
 
Supplemental figure 3. CO activates less FT expression in the early morning.  
The over-activation of FT mRNA in model 1a (Figure 2) was estimated by reducing the 
effectiveness of light in activating FT in the morning. Best-fit parameters for the duration and 
extent of this morning gate were estimated by fitting simulations (solid lines) based on 
observed CO mRNA levels (blue circles) to observed FT mRNA levels (red diamonds) from 
the two training data sets (Imaizumi et al., 2003; Yanovsky and Kay, 2002), under SD (a, b) and 
LD (c, d).  The effects shown for SD are duration 2.3 h, effective light intensity 60% of 
normal; and for LD, duration 5 h, intensity 40% of normal. 
 
Supplemental figure 4. Simulating the effect of FKF1 on CO expression.  
(a) Accumulation patterns of FKF1 protein under 8L:16D (‘SD’) and 16L:8D (‘LD’), redrawn 
from Imaizumi et al (2003). (b) The additional CO transcription due to FKF1 activation under 
16L:8D is plotted alone (dashed line) and superimposed (dotted line) upon the original rate of 
CO transcription from model 3 (solid line). The mRNA expression patterns for CO (c) and FT 
(d) were simulated by model 3F1 including the activation of CO by FKF1 protein (solid 
lines), with the corresponding experimental data (diamonds).  (e) depicts the circuit originally 
proposed by Imaizumi et al. (2003).  
  
Supplemental figure 5. Entrainment of the circadian clock contributes to the photoperiod 
switch. 
Model 3 was stably entrained to 24h cycles with various photoperiods, as in Figure 1 of 
Corbesier et al. (1996). The FT mRNA area integrated over 24h of simulation is shown (open 
diamonds, with quadratic fit). Alternatively, FT mRNA area was measured following transfer 
from 8L:16D short photoperiods to a single test photoperiod of the duration shown (filled 
circles, with linear fit), as in Figure 3 of Corbesier et al., (1996).  
 
Supplemental figure 6. Effective relationships between the predicted FT area and flowering 
time in the Columbia accession.  
The FT areas predicted in Supplemental figure 5 are plotted against the flowering time data of 
Corbesier et al. (1996), Figure 1 (a) and Figure 3 (b). The relationships are described by two 
effective functions (a, see legend), or by a sigmoid function (b). Parameter values are given in 
the Supplemental data, equations (11) - (13). Figures beside each data point show the cognate 
photoperiod (h). 
 
Supplemental figure 7. Functional CO protein is not required to produce the FKF1-
dependent shoulder of CO mRNA in long photoperiods.  
(a) Hypothetical circuit, in which the dual effects of FKF1 on CO and FT mRNA are 
accomplished by a single molecular function of FKF1 at the level of CO protein. CO protein 
is proposed to feed back to regulate the shoulder of CO mRNA. Under this model, mutation 
of CO should prevent the FKF1-dependent activation of CO transcription in long 
photoperiods.  
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(b) Seedlings with and without co mutations were grown under 16L:8D for 10 days at 22°C. 
Samples were harvested 13h after lights-on, and extracted RNA was analysed by qRT-PCR. 
The fkf1 mutant strongly reduces CO mRNA expression at this time, but co mutations have 
little or no effect. Filled bars, wild types and fkf1 mutant control. Col, Columbia parent; Ler, 
Landsberg erecta parent. Open bars, co mutant alleles. The co-SAIL allele is line 
SAIL_24_H04 and lacks CO mRNA due to a T-DNA insertion (nd, not detectable).  
 
Supplemental figure 8. The molecular photoperiod response in rice.  
mRNA expression profiles are shown for the CO homologue Hd1 (a) and the FT homologue 
Hd3a (b), under 10L:14D (open symbols, SD) and 14L:10D (filled symbols, LD), from 
(Hayama et al., 2003). Simulated Hd3a expression is shown under SD (bold solid line) and 
under LD (solid line). (c) shows the hypothetical circuit, in which the coincidence of light 
with Hd1 expression is integrated (∫ ) before it inhibits expression of Hd3a. A hypothetical 
circadian regulator (CR3a) controls the timing of Hd3a expression during the diurnal cycle. 
Hd3a promotes flowering, as FT does in Arabidopsis.  
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Supplemental Table 1. Data provenance and file names.  

Publications that provided the mRNA waveforms are listed below. The numerical values of the 
cognate data sets are available as supplemental data in the draft CSBE standard format. Each 
waveform is assigned a name, including the genotype and experiment number. Corresponding CO 
and FT waveforms share the same experiment number. Levels were measured by RT-PCR, with 
detection either by real-time fluorescence labelling or by hybridisation of radio-labelled probes. The 
mRNA used as a constitutive control for inter-sample normalization varies. Primers that amplify 
UBIQUITIN (UBQ) transcripts (Blazquez and Weigel, 1999) were used in experiments 1-12 and 
similar primers (Cerdan and Chory, 2003) for experiments 13 and 14. Experiment 15 (Somers et 
al., 2004) used ACTIN2 (ACT2). In one experiment, the ratio FT/CO was quantified directly 
(Valverde et al., 2004). Notes: LD – long days; SD – short days; a plus sign indicates wild-type 
genotype. 
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Supplemental Table 2: predictions from the models. 
Specific predictions, gaps in data and future experiments highlighted by the models are listed. 
Many additional predictions (the values of the parameters, for example) and gaps in data 
(quantitative time series of protein accumulation in the wild type, for example) are generic 
and are not listed here.  
 
 Prediction 

or Gap 
Model Outcome Possible experiments  

1 Prediction 
and Gap 

1 Effectiveness of CO mRNA in 
activating FT is reduced by ~60% in 
the first 5h of light in long 
photoperiods, but less in short 
photoperiods. This avoids a morning 
peak of FT expression. The effect of 
FKF1 (see 6, below) is a possible 
mechanism. 

Identify unknown factor 
that modifies FT 
activation in this pattern, 
e.g. quantify CO protein 
levels in WT compared to 
mRNA. 

2 Prediction 1 TOC1 has little (40% or less) effect on 
the light activation of FT transcription; 
toc1’s main effect on photoperiodism 
is via the rhythm of CO transcription. 

Quantify FT mRNA 
levels in response to light 
in toc1 and wild type. 

3 Prediction 2 The phase of circadian regulation of 
the CO mRNA changes significantly 
under different photoperiods, similar to 
TOC1 in the interlocking-loop model. 

Test CO mRNA phase 
under a range of 
photoperiods, compared 
to other clock genes. 

4 Gap 2 Insufficient data on the phases of clock 
components under different 
photoperiods. 

As for point 3, above. 

5 Prediction 2 The waveform of CO mRNA is 
modified by FKF1, which mediates up 
to a 45% increase in CO transcription 
rate over the last 8h of a long 
photoperiod, with much less effect in 
SD.  The effect on CO mRNA turns on 
and off sharply. This creates the 
photoperiod- and FKF1-dependent 
shoulder in CO expression.  

As for point 3, above, 
with additional tests in 
fkf1. 

6 Prediction 
and Gap 

3, 3F2 FKF1 very strongly promotes FT 
transcription (~10-fold increase in 
transcription rate at the end of a long 
photoperiod).  

Test FKF1 association 
with FT promoter. 

7 
 

Prediction  2,3 The FKF1 effect on FT is similar to the 
effect on CO (see 5), for example in its 
photoperiod-dependence.  Both effects 
of FKF1 might have similar 
mechanisms. One hypothesis was that 
both were mediated by CO protein.  

Testing CO mRNA under 
LD in co mutants showed 
no effect on the FKF1-
dependent shoulder (sup. 
figure 8).  

8 Prediction 3 Discrimination between long and short 
photoperiods will be optimal for cycle 

Measure flowering time 
under a range of different 
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durations close to 24h; short 
photoperiods are partially inductive in 
longer or shorter cycles. 

photoperiods, each in a 
range of cycle durations. 

9 Gap 4 Insufficient data to quantify the non-
linear response of flowering time to 
FT. 

Measure FT expression 
profiles and flowering 
time under a range of 
photoperiods. 

10 Prediction 4 The response measured in 9 will be 
approximated by equations (10, 11), up 
to the latest flowering times shown 
(sup. Figure 6).  Later flowering times 
cannot yet be predicted. 

As for point 9, above. 
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