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SUMMARY

In this thesis we study measurable and topological dynamics of certain
classes of cellular automata and multi-dimensional subshifts.
In Chapter 1 we consider one-dimensional cellular automata, i. e. the maps

T: P2 P? ( P is a finite set with more than one element) which are given by (Tx); =

= F( X; 44,0 X3r )y X = (X{)icz € PZ for some integers 1<r and a mapping

F:P i » P. We prove that if F is right- (left-) permutative ( in Hedlund's

terminology ) and 0<1<r (resp. 1<r<0), then the natural extension of the

dynamical system (Pz, B, L, T) 1s a Bernoulli automorphism (jt stands for the

(1/p, ..., 1/p )-Bernoulli measure on the full shift pe ). If r<0 or 1>0 and T

is surjective, then the natural extension of the system (Pz, B, 1, T) is a K-

automorphism. We also prove that the shift Z2-action on a two-dimensional
subshift of finite type canonically associated with the cellular automaton T 1is
mixing, if F is both right and left permutative. Some more results about ergodic
properties of surjective cellular automata are obtained

Let X be a closed translationally invariant subset of the d-dimensional

full shift Pzd, where P is a finite set, and suppose that the Z%-action on X by
translations has positive topological entropy. Let G be a finitely generated group of
polynomial growth. In Chapter 2 we prove that if growth( G ) <d, then any G-
action on X by homeomorphisms commuting with translations is not expansive. On
the other hand, if growth(G) = d, then any G-action on X by homeomorphisms
commuting with translations has positive topological entropy. Analogous results hold

for semigroups.
For a finite abelian group G define the two-dimensional Markov shift

XG ={x€ G22 . x(i,j)"" x(i+1,j)+x(i,j+1) = () for all ( i,j ) 622 }. Let Ha be the Haar
measure on the subgroup X5 C GZ°. The group Z2 acts on the measure space
(Xg»Hg) by shifts. In Chapter 3 we prove that if G; and G, are p-groups and

E(G;)#E(G,), where E(G)is the least common multiple of the orders of the
elements of G, then the shift actions on (XG1 , ”01) and (XG2 , ucz) are¢ not

measure-theoretically isomorphic. We also prove that the shift actions on XGI and
XG2 are topologically conjugate if and only if G; and G, are i1somorphic.

In Chapter 4 we consider the closed shift-invariant subgroups X¢gy =
= <f>* < (Z,) 2’ defined by the principal ideals <f>c Z,[u*!, v¥1] = ((Zp) 2\

with f(u,v)= c(0,0)+c{1,0)u+c(0,1)v, c(i,j)€ Z\{0}, on which Z?

acts by shifts. We give the complete topological classification of these subshifts
with respect to measurable isomorphism.
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INTRODUCTION

The subject of this thesis 1s cellular automata and some dynamical

systems closely connected with them. In recent development of the ergodic theory
there has been a growing interest in exploring dynamics of automorphisms and
endomorphisms ( 1. e. invertible and non-invertible continuous shift-commuting
maps ) of subshifts and especially of the full shift (see[BKLICLICPLIG][H],
[Hu,[Lil,[NL[ShR},[Wo]). Endomorphisms ( automorphisms) of the full shift
are called cellular automata. Cellular automata owe a great deal of their popularity to

the numerous applications they have in physics, chemistry, computer science etc.
(seee.g.[Wol).

To the best of my knowledge, the mathematical study of one-dimensional
cellular automata dates back 1969, when the comerstone paper by G. A. Hedlund
[H] appeared. Later his results were extended by E. M. Coven and M. E. Paul [CP}
to endomorphisms of irreducible subshifts of finite type. They proved, in particular,
that an endomorphism of an irreducible subshift of finite type is surjective if and
only if it preserves the measure of maximal entropy on the subshift. Hence, a
cellular automaton is surjective if and only if it preserves the equidistributed
Bernoullt measure on the full shift, and we can consider a surjective cellular
automaton as an endomorphism of a Borel measure space. The ergodi_c properties of
general surjective cellular automaton seem currently intractable. Therefore, it is of
interest to have at least certain classes of such maps whose dynamics can be
understood. These have been provided in Chapter 1 of the thesis. The right/left
permutative cellular automata are proved to be k-mixing for any k2 1. Under some
additional assumption we prove them to have Bernoullian natural extension. For a

surjective cellular automaton T such that (Tx); depends only upon the coordinates



x; with j>1i (or only upon the coordinates x; with j<1) we prove that its
natural extension has K-property. The results of Chapter 1 answer some questions
raised in[ ShR].

The study of cellular automata is closely connected with another
interesting field of modern ergodic theory - multi-dimensional subshifts ( in
particular, of finite type ). ' The study of multidimensional Markov shifts, while still
at the early stage is bound to grow in importance...'(Jack Feldman). A survey of
this fascinating topic with no indication yet of a satisfactory general theory is given
by K. Schmidt in [ Schi ].

In Chapter 2 we deal with automorphisms and endomorphisms of general
subshifts of positive entropy of the d-dimensional full shift. We consider the
continuous actions of a finitely generated (semi-) group of polynomial growth by
such automorphisms ( endomorphisms ) and address the question of how the degree
of polynomial growth of G can affect the dynamical properties of the action. It
turns out that such an action cannot be expansive, if the degree of polynomial
growth of G is smaller than d, and must have positive entropy if the degree is
precisely d. This implies, in particular, that, firstly, there does not exist an
expansive automorphism ( endomorphism ) of a d-dimensional subshift of positive
entropy if d> 1, and, secondly, if a one-dimensional subshift admits an expansive
automorphism ( endomorphism ) with zero entropy, then the subshift itself has zero
entropy. These statements are somewhat complementary to the result due to A. Fathi
saying that if a compact topological space admits an expansive homeomorphism
with zero entropy, then its topological dimension is zero.

An 1mportant class of two-dimensional ssft (of zero entropy ) is those
that can be obtained by taking the inverse limit of a surjective cellular automaton.

For instance, given a finite group G with the identity e, we define the ssft



Xg = {x=(xqj))apez2 € GL°: X(i,j) X(i+1,j) X(i, j+1) = € forall (i,j)e Z2},
The Haar measure on G gives rise to a well defined shift-invariant probability
measure U, on X5. When G is abelian, X is a subgroup of the full shift G2°
and H is identical to the Haar measure on X5. The following question attributed
to H. Furstenberg is formulated in [ Schi, p.61]: do there exist two algebraically
non-isomorphic finite groups G; and G, with |Gy|=1G;| such that the shift
Z%-actions on (XGl » U 1) and (X(32 , ucz) are measurably isomorphic ? We
address this question in Chapter3 and prove that the answer is no, if G, and G,
are abelian p-groups with E(G;) # E(G, ), where E(G) is the least common
multiple of orders of elements of G. This result is complementary to that of T. Ward
[ War . In Chapter 3 we also give the complete topological classification of

subshifts X. with G abelian by showing that the shift 2%-actions on (Xg s pGl)
and (XGZ, uaz) are topologically isomorphic if and only if G;=G,.

In Chapter 4 we consider another class of two-dimensional ssft with
zero entropy. Let Z, = Z/pZ. The character group of the compact 0-dimensional
group (Z, )2% can be canonically identified with the ring Zp[uﬂ,vﬂ] of Laurent
polynomials in two commuting variables with coefficients from the finite field Zp.
For any ideal IcZ,[utl,v¥!] we denote by X; the annihilator I* of I It is
easily seen that X; is a ssft and, simultaneously, a subgroup in the full shift
(Zp )2®, The first example of this kind ( with p=2, I=<14+u+v> ) was
considered by F. Ledrappier in [L]. Recently this class of ssft have been studied
by B. Kitchens and K. Schmidt in [KS1]), [KS2] (see also[LSW]) who call them
Markov  subgroups. Some conjugacy invariants for Markov subgroups X¢ps
fe Z,[utl,vi1], where <f> is the principal ideal generated by f, have been found
in [KS1], [KS2]). It was shown, in particular, that the convex hull of the support

S(f) of a polynomial fe Z,[u*l,v¥1] is a measurable (and, hence, topological )
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invariant for the Markov subgroup X.r~. But the invariants of B. Kitchens and K.
Schmidt do not distinguish between the Markov subshifts arising from the
polynomials with identical (up to a translation ) supports. In Chapter 4 we give a
complete classification ( with respect to measurable isomorphism ) of Markov
subgroups X, with S(f) ={(0,0),(1,0), (0,1) }. Namely, we prove that x<f1>
and X<f2> with S(f, ) = S(f,)=1{(0,0), (1,0), (0,1)} are measurably isomorphic, if
and only if the ideals <f;> and <f,> are identical.



CHAPTER 1.
ERGODIC PROPERTIES OF CERTAIN
SURJECTIVE CELLULAR AUTOMATA

1.1  INTRODUCTION
Let P={0,1,..,p-1} with some integer p>1, andlet X = PZ (i.e. X
is the space of all doubly-infinite sequences X = (X:);e 7> X;j € P). Equip X
with the product topology. Then X is a totally disconnected compact space. A
continuous map T:X - X commuting with the shift Tt defined by (1x); =x;.1,
i€ Z, iscalled a (one~dimensional ) cellular automaton. Here, for the sake of brevity,

the cellular automata will often be referred to as CA-maps. Dynamical systems of

this type are of great importance for many applications and have been undergoing
extensive numerical exploration during the last decade (seee. g.[ Wo]). Mathematical
study of cellular automata was inittated by Hedlund and coworkers[ H] and then

continued in various directions by Coven and Paul [C],[CP]), Gilman[G), Hurley

[Hu), Lind [Li), Shirvany and Rogers [ ShR] and others.

From the viewpoint of ergodic theory among the cellular automata the
surjective ones seem to be of special interest for they always preserve the
equidistributed Bernoulli measure t on X (this fact was first observed in [CP]).

Remark that p 1s exactly the normalized Haar measure on X considered as the
compact abelian group (Zp ). Here we prove strong ergodic properties ( such as
Bernoulli and Kolmogorov properties ) of the natural extension of the measure
theoretic endomorphism (X, B, i, T) for some classes of surjective cellular automata T
( B stands for the Borel o-algebra on X). We generalize a result of Ledrappier [L]
about mixing of a 2-dimensional subshift of finite type defined by a cellular

automaton. Some questions raised in [ ShR] are answered in this chapter.
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1.2 PRELIMINARIES
It is well known that every CA-map can be represented as a ’sliding-

block code’.
Proposition 1.2.1 ([ H, Theorem 3.4]). Amap T:X - X is a cellular

automaton , if and only if there exist 1, r€e Z with ISr and a mapping

F :PHH - P such that

(Tx)j=F(Xj+I""’xj+f) (1.1)
for every xe€PZ and every je 2.
The mapping F is usually called the (generating) rule of the CA-map.
To emphasize the generating rule F and the numbers 1 and r we shall use the
notation Ter1 ) for the CA-map defined by (1.1). Notice that TF[l+i, il =

_ _ i 3
= Tl °TF[l,rl - “Fl1l oT!, 1€ Z.

For any s20 one can ‘extend’ a mapping F: P’ P to the mapping

F,: PP, P defined by F.(X{,..oXg4m) = (¥Yq».»Y14s) » Where

yj = F (X, 5Xjym-1) » 1S)S 1+s. The surjectivity property of CA-maps
admits a nice characterization in terms of the sets Fs'l(yl yooe s Y14g ) o

Proposition 1.2.2 ([ H, Theorem 5.4) ) The CA-map Ty i, X X
is surjective if and only if card(FS"I(yI yoor s Yi4s) ) = pm"j for all s 2 0
and all (y;,..,Y1+s) € PS*H1 .

From this one gets the fact we have already mentioned.

Proposition 1.2.3 (cf.[CP, Theorem 2.1]). The CA-map Tp,, ., I8
surjective if and only iIf it preserves the measure i, 1.e. U ( Tf:l[ Le]A) =1 (A)

for every A€ B.

Given a mapping F:P™ 5 P and a block (%;,..,%pn1)€P™

define a map inl v Xmey) - P P by setting

+

F(il.... 'im-—l)(xm) = F(iiy-..pim..‘[’xm) .

Likewise, for any (X,,...,Xp) € P™ ! we put

11



F(%,,. 8.)(X) = F(x{,%,0,%p) .

We say the rule is right (resp., left) permutative, if the mapping F.('-i .

)
(resp., F(z,, .. x.)(Xy)) is apermutation of P forevery (X;,..%Xp-1)€ po-1
(resp., (X5, ..., Xy ) € pm-1 ). This terminology is, essentially, due to Hedlund [H l.

Proposition 1.2.4 ([H, Theorem 6.6]). Ifthe rule F:P
right or left permutative, then the CA-map Tgp PE X = X is surjective.

r-It1 - P 1s

Hence, any cellular automaton generated by a rule which is right or left

permutative preserves .

A rule F:P" o P can be iterated in the following way. Define

k(m-1)+1

inductively the k-th iteration F*:P > P of the rule F

Fk ( xl v oeo 9 Xy s eoe s xm+(m_1) 9 ooe ,Xk(m_1)+1 ) =
-1
= FS (F(X{ seees X) » F(Xg sees Xa1) 5 oo s FXk=13(m=1)41 » o+ » Xk(m-13+1)) - (1.2)

The permutativity property is preserved by iterating the rule.

Lemma 1.2.5. If the rule F:P" - P is tight ( left ) permutative ,

. . . k k(m-
then so 1s its k-th iteration F :P (m-1)+1

- P for each integer k21 .
Proof. The lemma is immediately proved by induction on k. It suffices

to observe that

+1 \+
(F7)

+ - .

B ( Fk) F(ii’""im) F(ik(m-1)""'i(k-l-1)(m-1)) (F(xk(m-IHI""'x(k+1)(m-1)'x(k+l) (m-1)+1))
[

The k-th 1teration of F turns out to generate the k-th iteration of the

il , iZ e s i(k+1)(m-l) ) ( x(i(+1)(m-1)+1 ) =

CA-map generated by F.

Lemma 1.2.6. The k-th iteration Tl!'([ Lr] ©of the CA-map TF[I, r]

generated by the rule F coincides with the CA-map TF“ (K kr]

Proof . Immediately follows from (1.1) and (1.2). L]
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1.3 RESULTS
In [ SA] we considered the cellular automata with bipermutative (1. e.
both right and left permutative ) rules and proved them to be topologically

equivalent to one-sided Bernoulli shifts .

Theorem 13.1 ([SA]) If I<0O<r and F is bipermutative, then
(X, Tg; Lr 1) is topologically conjugate to the one-sided full shift ( E-'(;Jlllﬂ , 0%
and the equidistributed Bernoulli measure [ is the (unique ) measure of maximal
entropy for (X, Tg, Ir] ).

This result has been generalized by M. Nasu [N].

It is not hard to give a counter-example showing that the statement of
Theorem 1.3.1 is no longer true if we only demand F to be right or left
permutative. For instance, let p=2 and F(x_{,Xp,Xy) = X_y+XpXxqy (mod2).
Then it is easy to check that the CA-map Tgy, .y is not expansive (see [DGS]
or Chapter 2 for the definition) for any 1, r (r-1=2) and, therefore, cannot be
topologically conjugate to a one-sided Bernoulli shift. Here we prove that the
measure~-theoretic conjugacy to a Bemoulli shift still holds, ‘if we put the additional

condition 0<l<r (resp.1<r<0).

Since a surjective cellular automaton Ty I8 in general, non-

invertible, we will consider the natural extension (X, 3,4, F[1 r]) of the
endomorphism (X, B, 1, TF[l. r])' The natural extension (M, 4,9, T ) of the
endomorphism (M, 4,V,T ) is defined as follows (see,e.g. [CFS]). Let

M = {x=(xO,xD x@  y: x™ex, Txm)_xM for all me Z, 1},
A be the c-algebra generated by the sets of the form CWW={x e M: xMeC},
where C€ 2, m20, and define the measure 9 by setting 9 (C™)=vy(C). Now
the automorphism T of the measure space (I\Z, .;, V) is defined by

T (x@,xM x@ | )= (TxO, D, Tx®@, .. ) = (TxO@, xO@ , x( Y,

Recall that the automorphism (M, 4,V,T ) is said to be Bernoulli, if

13



it is isomorphic to a Bernoulli shift (see [O]).
Theorem 1.3.2. Suppose that at least one of the following conditions is

satisfied :

r-1+1

(RP) O0<1<r and the rule F: P - P is right permutative ;

r-1+1

(LP) 1 <r <0 and the rule F: P - P is left permutative ;

Then the natural extension ( X, QE, i, f‘F (1r] ) of the dynamical system
(X,B, 1, T Ir) ) Is a Bemoulli automorphism .
Recall that the dynamical system (M, 4,V,T ) is k-mixing (k21), if
for Ag,A¢,..., A € A we have
Iimm Dy, ..,n 00V (Aol TMANLAT ®r-+MWAL) =
= V(Ap)V(A1)...V(AL). (1.3)
If we omit the conditions 1 2 0 (r £ 0) of the Theorem 1.3.2 we still

can prove the k-mixing for all k21

Theorem 1.3.3. Suppose that at least one of the following conditions is

satisfied :

(RP') 0 <r and the rule F: pl L p s right permutative ;

(LP') 1 < 0 and the rule F: P 5 p s left permutative ;

Then the dynamical system (X, B, U, Ty (1] ) 1is k-mixing for all k 2 1.
The automorphism (I\Z, .ﬁ. 9,T ) is said to be a K-automorphism ( see
[ CES ] for details ), if there exists a sub-c-algebra X of 4 such that the

following conditions are satisfied

00

(k)  xeTx, ViIix=2a, [N Tox= M),

n=0

where AL Y ) denotes the trivial ¢-algebra on Y (the inclusion and the equalities
are meant to hold modulo null-sets ).

Theorem 1.34. If 0<l <r or |l £r < 0 and the CA-map Te(1 ¢
I1s surjective, then the natural extension (X, B, 1, Tgrp ) of the dynamical

system (X, B, U, TF{ L1l ) 1s a K-automorphism .

14



In view of the classical result of Rohlin [R], Theorem 1.3.4 yields the
follovk;ing , | |

Corollary 1.3.5. Under the conditions of Theorem 2.4 the dynamical
system (X, B, U, Tgg Y, 1s k-mixing for all k2 1.

Under the additional assumption p = 2, Shirvani and Rogers proved in
[ ShR ] the 1-mixing property for the classes of CA-maps considered in the
theorems above. Our Theorem 1.3.3 and Corollary 1.3.5 answer in the affirmative
the question posed in [ ShR] whether these systems are k-mixing for all k21.

It was also conjectured in [ ShR] that every surjective CA-map , except
those of the form (Tx);= ®(x;), where ®:P- P is a permutation, is ergodic
with respect to 1. We remark that this is not the case. The counter example ( see
Proposiﬁon 1.3.6 below ) was actually considered in [C], but in a slightly different
context and without indication of its non-ergodicity .

Proposition 1.3.6. Let p=2. The sugective CA-map T [0,2]
generated by the rule F(xp,Xx; ,Xy) = Xg+x4(xy+1) (mod2) is non-
ergodic with respect to the measure [l . '

Proof . Since F is left permutative , the surjectivity of the CA-map
follows from Proposition 1.24. From [ C] it follows that Tr10 2] is not

topologically transitive . Hence , it is not ergodic with respect to W, because

supp L = X. [
Every cellular automaton Tp(, ., gives rise in a natural way to a certain
two-dimensional subshift of finite type ( see [ Schi] and Chapter 4 for the

definition ). Namely, define
QF[LI'] = {m=(m(i,j))(i,j)e y 2K
(D(i,j)EP, m(i,j+1) =F(x(i'l'l,j)""’x(i'ﬂ',j))' for all (i,j)ezz}.

15



The set Qp[1y) is a closed subset of P2Z® jinvariant under the two shifts
Ty s Ty PZ* , PZ% (efined by T X )i, i) = X(isn, i) (FvX)(n5) = X 41)°
(i,j) € Z2. Obviously, the space Qf [1r) may be identified with the inverse limit
X = lgn(x. Tgqy, r]) which is just the space of the natural extension

considered above. This identification enables us to turn the subshift Qp[) ) into

the measure space (€2g[}¢], 3, iL). The shifts 7, and T, genecrate a measure

preserving Z?-action T on (Qp[1r],» B, i ) defined by (m,n) p T(Mm0) =

= 'c':;o 1:3 . Recall, that the Z%-action T is mixing precisely if
A(Ag N T™M)A ) = A(AQ)A(Ay) for Ag,Aq € B.

For a general discussion of mixing group actions see e. g. [ Sch2].

m e 1 - o0

Theorem 1.3.7. If the rule F is bipermutative and r> 1, then the Z°-

action T on (L2r(]r}, 3, ') is mixing and the automorphism Tf;o 1;3 1S

Bernoulli for all (m,n)e€ r & \{(0,0)}.

Note that Theorem 1.3.7 generalizes Ledrappier’s result [ L ], which
established the mixing property for the Z%-action T on (QFr[10.1]> B, 1) with p
=2 and F(xp,X({) = Xg+x4 (mod2).

1.4 PROOFS OF THE THEOREMS

First of all we recall some definitions and facts from the theory of
Bernoulli automorphisms (see [O] for details ).

The partitions §={C;} and 1 = {D;} of the measure space (M, 4, V)
are said to be e-independent (£20), if ):lev(cinnj)-v(ci)v(Dj)I <e.
The partitions are independent, if they are O-independent. Let T be an
automorphism of the space (M, 4,V ). A partition § = {C; } is said to be
Bernoulli for T, if all its shifts TN = { T° C; } are pairwise independent. A

partition § = { C;} is weakly Bernoulli for T, if for every €> 0 there exists an

16



integer N >0 such that the partitions \/yp.., T XE and \/f:ﬂ TkE are
e-independent for all n20. The automorphism T is Bernoulli, if and only if it
has a generator & which is (weakly ) Bemoulli for T.

The following theorem of D. Ornstein enables us to establish the

Bernoullicity without finding a ( weakly ) Bemoulli generator.
Theorem 1.4.1(see [O]). Let &;S&,5 .56, 5 .. be an

increasing sequence of finite partitions of the measure space (M, A, V ) with

\/;0 é,= € ( € stands for the partition of M into singletons ) and let &, be
weakly Bernoulli for the automorphism T of this space. Then T is Bernoulli.
Now we are going to construct such a sequence of finite weakly

Bernoulli partitions for the natural extension of the system (X, B, i » Trr1e1 7

where the CA-map TF[l,rl satisfies the conditions of Theorem 1.3.2.

Let the automorphism (lﬁ, ﬁ, v, 'f') be the natural extension of the
endomorphism (M, 4,Vv,T ). Given a partition € of the space (M, 4,V) we
define the partition & M of the space (M, 4, 9) to be the one consisting of the
sets C ™ (see §1.3) with Ce &,

Given integers 1_< 1, and a word (xj ,... ,xi_l_)e pll.+1 we define
the cylinder set Cjlxj ,...xj ] =1{yeX: yj=x foralli_ £j<i,}. Let

J

E(i_, i) denote the partition of X into the sets of the form Ci_[ X{ s ,xi-l_],
(cylinder sets ) where (xi__ ) eoe s xi+) runs over the set Pi+' 1. +1 :

Lemma 1.42. If a rule G:PR 'L'”-» P is right ( resp. left )

. .. . -1 .,
permutative, then the partitions &(1i,, j,) and TGiL R) §(iy ,j,) are

independent, whenever R > j, - i, (resp. L < iy~ j, ).

17



Proof . We shall carry out the proof for a right permutative rule. The

other case is treated exactly in the same manner. Let i = min{i;,ip+L}. It follows
from the right pem;utativity of F that for any words (x;,.. s Xj,+R-1 ) € pl2tR-1

and (viz,...,vjé)e P’z""l+1 we have

-1
Ci[Xi,u-:Xiz_l.R_l] n TG[LR](Cizlviz'“"v' ]) =
= Ci[xi,...,xiz_'_R_l, xi2+R,...,Xj2+R] )

where xup, i, St S, are defined inductively by

_ + -1
Tt+R T (G(xt+L----'xt+R-1)) (V)
Hence,

-1 - o
. . . - _ . 1-i + 1
Since ip+R -1 2 j;, the set Cilluh""'ujl] for each (vy; ,...,u; )e pit 11

i2 +R-1-jl+i1-i

is a disjoint union of p sets of the form C;[x, ... » Xi+R-1 ].

This implies
" - j1=1+1) + (Gy-is+1) _
1( G g s oesy TN TG g (G vy veu vy D)) = (17p) Gl D+ Gt
- u(Cilluil"“'ujl]) u(Ci2[Vi2:...;Vj2]) '

-1
Thus, the partitions §(iy, j;) and TG[L. R) (i, ,jp) are independent.

Lemma 1.43. If the rule F: PT “I"".., P satisfies the conditions (

RP)(resp. (LP)) of Theorem 134, then the partitions &(iy, j,) and

Ti:-.n;l,r] &(iy ,jp) are independent, whenever mr > j, -i, (resp. ml < iy - j,).

Proof. This follows from Lemma 1.4.2. To see this it suffices to

observe that by Lemmas 1.2.5 and 1.2.6 T?[l_,] = TFm[ml, me | with the right
( resp. left ) permutative rule F , 0O

Lemma 1.4.4. Suppose that either of the conditions ( RP ), ( LP ) holds.
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Then for every i 2 O the partition &(-i, i);j=\/s_y &(-i, 1)® of the

measure space ()E ,é, {1 ) is weakly Bernoulli for the automorphism Terrer
Proof. Suppose that the condition (RP) holds and let T stand for
We observe that T-1&(i, j) < E(i+1, j+r) for all iSj. As120,

TeiL )

we have T-1&(i,j) < &(i,j+r) and, hence, \/ E-O T-kE(i,j) < &(i,j+nr).

For any n 2 0 we have

k=0 s =0 j =
< E(-,i+r(n+i))D), (1.4)
NV T AR T ()
k\fNT §(-i,i); = k\-/NT ( s\!()&(-l,l) ) =
N+n+i _ _
= _\/N E(-i,i)3) < E(-i,i+r(n+i))(N+n+i) (1.5)
j= H

From Lemma 1.4.3 it follows that the partitions  &(iy,j;) (™) and
&(1y,37) (m)  of the measure space (X, %, i1 ) are independent, whenever
(m-m')r > j; -iy. Therefore, if Nr > i(2+r), then é(-i,i+r(n+i))(i)
and & (-i,i+r(n+i))(N+0+1) 36 independent for all n = 0. It is known that
if the partitions 1, and M, are independent and § <%, _, k = 1,2, then {; and
C, are independent. Now from (1.4 )and (1.5) we conclude that for all i20 there
exists N > 0 such that for every n 2 0 the partitions VE__n TKE( -, i)

and \/E:;Tkﬁ( -1,1); are independent. Thus, for every i 2 0 the partition
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)

¢(-i,i); is weakly Bemoulli for the automorphism (X, 3, i » Tp[1 11 -

We have proved the lemma in the case (RP). In the case when (LP)
holds the proof is exactly the same, but ‘left-sided’. L]

Proof of Theorem 1.3.2. 1t is easily seen that &( -i,1), S&( -i+1, i+1),,,

for all 120 and \/:o &(-i,i); = €. Thus, by virtue of Lemma 1.4.4, we are

under the conditions of Theorem 1.4.1 which yields the Bernoullicity of the

automorphism ()E,%, [‘I,TF“ r} ) . [
Proof of Theorem 1.3.3. We consider the case ( RP’). Throughout the

proof T stands for TF[l (] To prove that T 1is k-mixing it is sufficient to

verify (1.3) for cylinder sets Ay, Aq,..., A ( see [Bi, Theorem 1.2] ). In

fact, we show that for any Ay = Ciolx?c ,...,xjpc], A= Ci1[x111 vee s Xjy Iyun

caey Ap= Cik[x]i"l!l  ooe .x}‘k], there exists m > 0 such that the equality

p(Ag NT™MANAT M= ALY = n(Ag)R (A7) ...t (Ag)

holds for all ny» ny,...,n. > m.

Let m be apositive number greater than max{(js-1 - ig)/r: 1<s<k}l.
S
Take arbitrary integers ny, ny,...,n. > m and denote N = Zj =y 0y for

1<s<k and Ny = 0. Then we have ig + Nor > j_4 + Ng_qr, 1Sssk.
min{ ig + INg : 0<s<k } and j_ = jx + rNi. Using

We also put 1_
Lemmas 1.2.5 and 1.2.6 one checks easily that the set

AgNT ™MAN..NT ®*+-+M) A is the union of cylinder sets
Ci_lyj_»w»y;, ] taken over all blocks (y; ,...¥; )€ pis =i+l Gicfving the

following conditions:

yt=x? for iosts_]o;

N.\¥ -1 §
(BT gy Ngeenyeovenr ) (NGt

for i+ Nyrst<j+ Nr, 1<s<sk.

<
L o
Il
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Since the segments [ ig+ Ngr, joc+ Ngr ], s=0.1,..,k do not overlap each

other, the number of blocks (y; ,.. ) satusfying the conditions (C) equals

th+

. kK . .
pl+itl - L =0 Us-igtl) ( because y, may be chosen arbitrarily if and only if
teli,j, 1 \Us_gl ic+ Ncr, jo+ Ner ] ). This gives us the desired equality :

k . .
n(ANT MAN..NT NeAy) = p&s=00slstD o A ) p(AY) .. WAL
The case (LP’) is proved similarly. L]
Proof of Theorem 1.3.4. Throughout the proof we write T for Tereer

Suppose that 1 > 0. Let §(i,0) = V;i E(i,j) and denote by C(i, o0 )@ the

o-sub-algebra of B defined by the measurable partition E(i, 00 )™ of the space

(X, 3, f). Set K= Vyp-o T-Xc(0,0)0 . We now verify that X satisfies the
conditions ( K) for a K-automorphism (see § 1.3). The inclusion X C T X 1s
obvious. Directly from the definition of the CA-map T = TF[l, (] We observe that
C(0, 00 )m+k) 5 ’f""kC(-kl,m)(m*k) = C(-kl,00)®™  for all mk20.

It follows that

00

T K= YV, T"c(0,0)® > V

- (m) _ ¢
Lo mLo C(-kl, o) B .

(this actually means that any W€ Qpp) ) is completely determined by its values

in a right half-plane ). By the well known Kolmogorov’s zero-one law ( see [CFS])

for the Bernoulli shift (X, 3,4, t) we have [l c(n,e0) = a((X). Hence,

00

nf___]o C(n,0) ) = a(X). This yields
00 ‘- 00 00 ‘_k 0 00 "
IIQOT nx = nDOK\-/nT C(0,00)( ‘ - nOO C(nl*m)(O) = AN(X)

which completes the proof (the case r < 0 is treated quite similarly ). [J

Proof of Theorem 1.3.7. Clearly, it is sufficient to show that if F is
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bipermutative and r > 1, then the action of the semigroup Z xZ, on the measure

space (X, B, ) defined by (m,n) » ‘L'moT;;[Lr- , m€ Z, n€ &, is mixing,

. 1.e.

limma.x{lml,n—-bm} p( A-() N T;?[LI]TmAj ) = l—'-(Ao) H(A1) (1.6)
for all Ay, Ay € B. In the pfoof of Lemma 1.4.2 we showed that for any two
cylinder sets Ag = G, luj,»-.,u] and Ag= G [vj,..,v;] the equality

-1 . . .
H(Ag N TG[L.R]AI) = H(Ag) H(A;) holds whenever G is right permutative

and R > jj-1; or G is left permutative and L < ij-j;. For any me 2, ne Z,

we have T?*‘[l,r] o T = TF“[nl+m,nr+ml‘ Since either 1< 0 or r > 0, for
every sequence (my,n,) € Zx2Z,, k=1,2,... with max{imyl, n;} -
there is K>0 such that either nyr+my > jy-i; or npl+my < iy-j; holds
for all k > K. Taking into account that F is both right and left permutative we
obtain (1.6) for the case when Ay and A, are cylinder sets. But this is enough,
because the o-algebra B is generated by such sets.

The Bernoullt property of 1? o 15 for all (m,n)e 22\{(0,0)}
follows from Theorems 1.3.1 and 1.3.2, and from the fact that the automorphism

T-1 is Bemnoulli, whenever T is (see [0]). O
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CHAPTER 2.
'EXPANSIVENESS, ENTROPY AND
POLYNOMIAL GROWTH FOR GROUPS

ACTING ON SUBSHIFTS BY
- AUTOMORPHISMS

2.1 INTRODUCTION

The study of automorphisms and endomorphisms (i. e. continuous shift
commuting maps, invertible or non-invertible ) of the full shift and its subshifts
was begun by Hedlund and coworkers[ H} and Coven and Paul [CP ). In this chapter
we considelr an action of a finitely generated group G of polynomial growth by
automorphisms of a subshift of the d-dimensional full shift. If the subshift has
positive topological entropy, we find that the degree of polynomial growth of the
G may strongly affect certain dynamical properties of the action. More precisely,
if growth(G)<d, then the action cannot be expansive. On the other hand, if the
growth( G ) is exactly d, then an expansive action must have positive topological
entropy. The results still hold for finitely generated semigroups of polynomial
growth acting by endomorphisms on a subshift with positive entropy. In particular,
this implies that, firstly, there are no expansive endo- (or auto-) morphisms of
such subshifts with d>1 and, secondly, that if d = 1, then any expansive endo-
(or auto- ) morphism has positive entropy.

The obstruction to expansiveness we have obtained here supplements, to
some extent, the following fact established by A. Fathi.

Proposition 2.1.1 ([ F, Corollary 5.6]). If a compact topological space
admits an expansive homeomorphism with zero entropy, then its topological
dimension is zero.

Related topics are also studied in [BL ]
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2.2. PRELIMINARIES
Subshifts. Let P be a finite set with cardinality Card(P ) > 1. For any

d21 we put

Q4(P) = {x=(xn)nezd: X, € P for all ne Zd} .
In other words, Q ;(P) 1is just the set PZ¢ of all maps x: Z9 - P. Provide
,(P) with the product topqlogy. Then € 4 (P) is a compact Hausdorff zero-

dimensional space. Define, for every m € Z9, a homeomorphism t™: Q4 (P) -
Q4(P) by setting (t™x), = Xp,m forall x € Q4(P) and ne 24, The
correspondence mp T defines a continuous Z9-action T on £ q (P). The
pair (X, Ty ), where X is a closed t-invariant subset of € 4(P) and 7, =71|X
is the restriction of the Zd-action T to X, is called a subshift A continuous
map T: X-X commuting with T (i.e. To1® = ™o T for all me 24) is
called an automorphism of the subshift if T is invertible. If T is non-invertible it
1s called an endomorphism of the subshift.

Expansiveness. Let X be a compact topological space and let G be a
group acting on X by homeomo‘rphisms. We denote the action by T and the
homeomorphism corresponding to g€ G by T & The action T is said to be
expansive, if there is a closed neighbourhood V € X XX of the diagonal
Ay ={(x,y)eXxX:x=y} such that for T=TxXT: XxX-XxX
we have [) geG TEV = Ay . If the space X is equipped with a metric p, then
expansiveness means that there is an expansive constant ¢ > 0 such that

x,y € X, x#y implies p(T&x, T®y) > ¢ for some g€ G.
In a similar way one defines ( positive ) expansiveness for semigroups acting on a
compact space by ( non-invertible ) continuous maps.

Entropy ( see I[M-O],[Fe] for details ). It is known that a countable
group G 1s amenable if and only if it contains a sequence of finite subsets
AjcA,c..cA c..cG with the properties:

(i) U,5Ap=G: (ii) lim__ _lgA AA /1A =0 for every geG.
Such a sequence is called Folner sequence. Let T be a continuous action of an
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amenable group G on a compact topological space X. For a finite open cover &
of X and a finite set ACG let EA=\/, . o (T8)'E. For a finite open
cover 1 of X let A(n) stand for the minimal cardinality of subcovers of m.
- Choose a Folner sequence {Al;}n >1 in G and a finite open cover § of X and

define.

h(T,§) = limsup |A |1 logal(&An) .

- 00

This value does not depend on the particular Folner sequence { A_ } 5y- Then
the topological entropy of the action T is defined as

h(T) = sup{ h(T,&): & is a finite open cover of X }.
The topological entropy for continuous actions of amenable semigroupsis defined
analogously.

Groups of polynomial growth ( see [B),[Gr] for details ). Consider a
group G generated by a finite subset F < G. Define the norm lgll; of an element
g € G with respect to F to be the least integer £20 such that g can be expressed
as a product f f,..f, with each f.€ F{yF-!1. We denote by Be(m), m21 the
Closed” ball of radius m, i.e. By(m)={ge G:liglzy<m} and set B(m)=
Card(Bg(m)). Following [B)], we say that G has polynomial growth of degree k
if there exist constants A, C>0 such that AmkSBF(m)Ska for all mz21.
It 1s easily seen that this notion does not depend on the choice of F. In this case
we write growth(G ) = k. One can show that if G has polynomial growth, then
the balls Be(m), m=1,2,... form a Folner sequence in G, and, therefore, G is
amenable.

For instance, it was proved in [ B](sec also[Gr])that if G is a finitely
generated nilpotent group with lower central series G=G, 2G,>..> G, =1eh

rank( ch| /G Clearly,

then growth(G) = Zq21 qry, Where r,

growth( 29 ) = d.
In the same manner the degree of polynomial growth can be defined

at1 >

for finitely generated semigroups.
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2.3. RESULTS
. Let G be a finitely generated ( semi-) group with growth(G)=k and
Xc Q4(P) be a subshift with h(tx) > 0.

Theorem 23.1. If k=d , then for any expansive action T of the
(semi ) group G by automorphisms ( endomorphisms ) on the subshift X we
have h(T) >-0.

Theorem 23.2. If -k<d, then any action T of the (semi) group
G by automorphisms (endomorphisms ) on the subshift X is not expansive.

In the case G = ZK (orZ,X) the theorems above describe dynamical
properties of the joint action of k commuting automorphisms ( endomorphisms ) of
the subshift X c Q4(P) according as k =d or k<d. In particular for G = Z we
have

Corollary 2.33. Let d=1and X ¢ Q ,(P) be a subshift with
h(tx) > 0. Let T be an expansive endomorphism or automorphism of X. Then
h(T) > 0. ~ |

Corollary 234. Let d>1 and X < Q ,(P) be a subshift
with  h(tx) > 0. Then there are neither expansive endomorphisms nor
expansive automorphisms of X.

We remark that if we drop the condition that the entropy of the
subshift X be positive, then the last statement is no longer true. To give a

counterexample consider the 2-dimensional subshift of finite type
X = {xe€ Qd( 2/22). x(i,j)+x(i+l,j)+x(i,j+l) = 0(1‘1’10(12), V(i,j)E 22}
This subshift was first studied by Ledrappier [ L] ( see also [ Sch1]) and was

shown to have zero entropy (h(Tx) = 0). On the other hand one readily
verifies that the automorphism T=t{(!:1)x and the endomorphism S, defined by
( Sx )( i,j) = X( i-1, j-1 )+ X(i,j) + X(i+1, j+1) arc expansivc.

Also, it should be mentioned that our results can be reformulated as

follows. Let Y be an arbitrary compact zero-dimensional topological space and
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mp o® be a continuous expansive ZK-action on Y. Then one can construct a
finite topological generator (cf.I{DGSL[W]) ¢ ={U;}with UNU;=0 forixj,
by means of which we define ( in the standard way ) the topological conjugacy
between (Y,T) and a d-dimensional subshift ( X, Ty ). Suppose h(oc)>0 and
let G again be a finitely generated group with growth( G) = k. From Theorems
2.3.1 and 2.3.2, respectively, we have.

Proposition 2.3.5. Suppose k= d. Let T be an expansive conlnuous

action of the (semi-) group G on Y commuting with 6. Then h(T) > 0.

Proposition 2.3.6. Suppose k <d. Then any continuous action of the

(semi ) group G on Y commuting with o is not expansive.

2.4. PROOFS OF THEOREMS

The proofs will be carried out for the case where G is a group, the
‘non-invertible’ case where G is a semigroup is treated similarly.

First we prove the following technical result.

Lemma 2.4.1 (cf.[DGS];p. 109). Let T be an expansive continuous
action of a group G on a compact metric space (X,p) and let ¢ > 0 be an
expansive constant for T. Let A, cA,c..cA c..c G be a sequence of
subsets of G such that |J,>, A,=G. Then for any & > 0 there exists an
integer M=M(6)21 such that p(x,y) 206 implies existence of some g€ Ay,
satisfying p(T éx,T §y) > c.

Proof. Suppose, on the contrary that for some 0 > 0 there exist
sequences X, Yp € X, n=1,2,... satisfying p(x, yp) 20 but with
p(TEx,, T8y, )<c for all g€ A. By compactness the sequence (X, y,) € X?
contains a convergent subsequence. To avoid double indices we assume that the
sequence ( Xp, yp) itself converges to a pair (x,y)€ X2 Take any ge€ G. Then
g€ A, and hence p(TEx,,TEy,)<c, for all sufficiently large n. Since the
action is continuous, we have p(T®x,T®y) < c. The last inequality holds for

every g € G which, in view of expansiveness, implies x = y. But this is
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impossible, because we must have p(x,y)=29. The contradiction proves the

lemma. [

Now we provide thé topological space £ ;(P) with a metric. For
n=(ng,..,ng) we put Inl = max; ;<4 Inl. Let o be a fixed real
number with 0<a<1 andput L(x,y)=min{lnl: x5 #yy } for x #y. We

define the metric p, on Q 3 (P) by putting

o L(xy) j
pa(X:Y)={ * 1 x #y
0, if x=1y

Every subshift X< Q4 (P) is given the induced metric.

Then we introduce a family of partitions of X which will be of
substantial use in the proofs of the main results.

Given integers a, S b. , 1sisSd define the rectangle

R(a,b) = {ne 24 a Sn sb, forall 1s1sd },
a=(a,..,a3), b=(by,..,by). We introduce the partition &(a,b) of the
space 2 4 (P) into compact open sets of the form

C(a,bji) = {xe Q4 (P): xp=u, forall neR(ab) },
where U = (u, ), ¢ R(ab) € pPR(ab) The partition &(a,b) induces a
partition of the subshift X< Q ,(P) consisting of the non-empty intersections of
X with elements of £(a,b). We denote this partition of X by Ex(a,b)and its
clements by Cx (a,b; ). Note that the partition may also be considered as an
open cover.

Let {R, =R (alk),b(k))},_ 1, . be an increasing sequence of
finite rectangles with R} 7 29 . Then, the topological entropy of the Z9-action
Tx on the subshift X is given by the formula (see[Schi])

h(ty) = Iim (Card(Ry ) )-1 log Card( §x( a®, bk )) |, (2.1)

k- oo

where the limit always exists and does not depend on the sequence {R1}.
In what follows we write { < 1 for the partitions C and n, if 1 is
finer than { and Vjej M for the refinement of the partitions {nj }je J-
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Let G be a finttely generated group with a fixed finite system of
generators F. The proofs of Theorems 2.3.1 and 2.3.2 are based on the following
Lemma 24.2. Let X< ,(P) be a subshift and T be an
expansive action of the group G by automorphisms on X with the expansive
constant o ! with some r € Z, . Then there exists an integer M2 1 such

that

V (T8 é(-m,m) 2 &(-m-1,m +1) (22)
gEBF(M)

for all m2r ( where m = (m,..,m), 1 = (1,..,1) ).

Proof. Let us apply Lemma 2.4.1 to the action T on the subshift X
with the metric p, taking d=c=arf*+! and A =Bg(n), n=1,2,... Put
M= M(0). Choose arbitrarily two points x,y € X lying in different elements of
Ex(-r-1,r+1). Then p(x,y) 2 af*! and, by Lemma 1, we have
p(T8x, T8y) >af*! for some g € Br(M). This means that T&x and Ty
lie in different elements of the partition &, (-r,r ). Hence, x and y are in

different elements of \/g € B M) (T8)! G (-r,r), whenever they are in

different elements of §y (-r~-1,r+1). This implies

Vo (T E (-rr) 2 Eg(-r-1,r+1) .
g € Bp(M)

Now we prove (2.2) by induction on m. Suppose that (2.2) holds

for some m 2= r. Then, since TX = X, and TetT = 10T, we have

\/ (TEY ' Eg(-m+j,m+j) 2 Ey(-m+j-1, m+j+1)
gEBF(M)

for every je Z9¢. From this it follows that

Vo (TE) & (-m1,m+l) 2 (T8)! &y (-m+j, m+j) 2
geBF(M) gEBF(M) .
2 Ey(-m+j-1, m+j+1) . (2.3)
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for every j € Z% with |[jl=1. Obviouslyy, R(-m-2, m+2) =
.-=U|“_1R(-m+j-—1,m+j+1) and, therefore, £y (-m-2, m+2) =

=\/|j|=1 &y (-m+j-1, m+j+1). From this and (2.3) we have

V (T8) 1 & (-m-1,m+1) 2 Ey(-m-2, m+2).
g€ B (M)

So, we have derived (2.2) for m+1 which completes the proof. L]

Lemma 2.4.2 can be strengthened as follows.

Lemma 2.4.3. Under the conditions of Lemma 2.4.2 we have

V.  (TE)E(-m,m) 2 Ex(-m -5, m +5) (2.4)
g€B, (sM)

for all m2r and all s2 1 ( where s = (s8,...,8) ).
Proof . First we observe that for any a,b€ N we have

Br(a)Bg(b)=1{g,g,€G: g,€Bg(a), g€ Be(b)} = Be(a+b),
in particular, Bp((s+1)M) = B(sM) Bg(M). Using Lemma 2.4.2 we write

\/ (Tg)-l g){(_mrm) =
g€ B, ((s+1)M)

V (' (VO (MY e (-mm) ) 2
g€ B (sM) he B, (M)

vV

\/ gx(-m'l,m+1) 9
ge€B (sM)

and (2.4) follows by induction on s. L]

Now the proofs of the main theorems are almost immediate.
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Proof of Theorem 2.3.1. Let G be a group generated by a finite set
Fc G with growth(G)=d and X< Q ;(P) be a subshift with h(1x)>0.
Let T be an expansive action of G by automorphisms on X . We have
Amd<B(m)<Cm9, m21 with some constants A,C>0, where B(m) =
= Card(Bg(m ) ). Using Lemma 2.4.3 and (2.1) we find that for any m 2 r

h(Tr g)((-m:m)) 2

2 lim sup Bg(sN)? logﬂ[(\/

T8y ! & (-m, >
i sup gEBF(sN)( )" Ex(-m m))

> (2/M)? 1im ((sM)3 7 Bg (sM) (2(m#s)+1)7 ¢ log A(Ex(-m -5, m+5)) 2

> (2/MYCt h(1y).
Hence, h(T) = (2/M)4C-1h(14) and h(T4)>0 implies h(T)>0. O

Proof of Theorem 2.3.2. Let G be a group generated by a finite set
Fc G with growth(G)= k<d and XcQ ;(P) be a subshift with h(1x)>0.
Suppose T is an expansive action of G by automorphisms on X. Using Lemma

2.4.3 again we obtain that for any mzar

h(T, &x(-m,m)) 2

> limsup Bz(sN)! logN(V

S— 00

Tg -1 - ’ 2
gEBF(sN)( ) E.;x( m m))

2(2/M)dslilg((sM)d/BF(sM))(Z(m+s)+1 )= 4 log A(Ex(- m-s, m+5)).

Thus, we ha;re h(T, &(-m,m))= oo, since growth(G)<d implies
(sM)d/ Be(sM)->0 and (2(m+s H1)” dlog A( &y (-m-s, m+s)) = h(tx) > 0.
But this is impossible in view of the obvious inequality h (T, nn) <log Card(n )

which holds for any finite open cover 1. This contradiction completes the proof. [
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CHAPTER 3.

ON THE CLASSIFICATION OF SOME TWO-
DIMENSIONAL MARKOV SHIFTS WITH

GROUP STRUCTURE

3.1. INTRODUCTION AND THE MAIN RESULTS

In Chapters 5 -7 of [Schi] K. Schmidt gave probably the first survey of
higher-dimensional Markov shifts. It contains a lot of intriguing questions
exhibiting the striking lack of general theory in this part of modern ergodic theory.
One of the questions raised in [ Schi] is discussed in this chapter.

First of all, we recall the general definition of a Markov shift in
arbitrary dimension. Let F be a finite set. A closed shift-invariant set X Fzd
(d=1) is called a d-dimensional Markov shift ( or subshift of finite type), if
there exists a finite subset D < 29 and a set P FP such that X consists precisely
of those points x € F29 for which the coordinate projection of x onto every
translate of D results in an element of P.

Let G be a finite group with the identity e and define the two-
dimensional Markov shift
Xg = {x=(x44)ijez? € GZ?. X(i,j) X(i+1,j) X(i,j+1) =€ forall (1,j)€ Z2}.
Although X is not a subgroup of GZ° unless G is abelian, the Haar measure Ag
on G always gives rise to a well defined shift-invariant probability measure p; on
XgG- Indeed, an element x € X is completely determined by values of the
coordinates x(; 0),i€ Z and X(g_i),j € Z,. So, the Haar measure (Ag)Z® (Ag)%+
on the compact group GZ & GZ+ determines ( by means of the natural
homeomorphism between GZ @ GZ+ and X5 ) a probability measure Hg on Xg. If

G is abelian, then X is a (compact) subgroup of GZ? and the Haar measure on
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Xg is precisely p,. The horizontal and the vertical shifts o©g, Tg: Xg = Xg
defined by (O0gX)(i )= X(i+1,j) and (TgX)(j j)= X(4,j+1) are commuting
automorphisms of the measure space (X5, Bg, Hg) where B5 denotes the Borel
c-algebra on X,. The measure preserving Z%-action T5 on (Xg, Bg Hg )
generated by o5 and T is called the shift action on X . Ergodic properties of the
action were first studied by F. Ledrappier [L] for the case G = Z,. He showed the
shift action to have zero entropy and to be mixing, but not 2-mixing. In fact, zero
entropy and mixing holds for any group G (cf.[Scht],[Sch2]) and 2-mixing fails
whenever G is abelian (see[War]). It is not hard to show that hy G(GG) = huG(‘l:G)
= log| GIl. So, we have

Proposition 3.1.1 (cf. [ War] ). If the shift actions (Xg .+ Bg1 Mg, T, )
and (Xg,s Bg,1 Hg,» Tg,) are isomorphic, then 1Gy1=1G,l.

After this discussion we formulate the following question which was

originally raised by H. Furstenberg ( see [ Schi, p. 61]).
Question 3.1.2. Let G; and G, be finite groups with 1G;l=1G,].

Are the Z°-actions (Xg ,Bg,) Hg,» Tg,) and (Xg,, Bg,s Hg,r Tg,) isomorphic
s
We remark, that the invariants called relative entropies that have been

introduced by B. Kitchens and K. Schmidt [ KS2] do not distinguish between such
actions.

The question has also been studied by T.Ward in [ War] where he
proves that if G; has the property that {ghg-th-1:g,he G;} =Gy, i.e. G 18
"strongly non-abelian®, and G, is any abelian group, then (Xg; » Ba, 0 Mg, » T, )
and (XG2 . %2' uGz, Q;}z) are non-isoniorphic. However, the arguments of [ War]
are not applicable to the case when Gy and G, are both abelian.

Here we deal only with abelian groups. We prove a theorem which

enables us to measurably distinguish between (XGl : 901 » Kg, » ‘1‘01) and
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(XGz’ Bg,» Hg, Tcz) , say, for Gy =(Z,)" and G;= Zy,n for any prime p. As
far as the question of topological conjugacy is concerned, we have been able to
describe the situation completely : algebraically (non-) isomorphic abelian groups
give rise to topologically (non-)isomorphic Markov shifts. We conjecture that the
measure-theoretic picture is exactly the same.

In order to formulate the result precisely, let us recall some definitions
from basic group theory ( seee. g.[Schn*]). The group G is called a p-group, if
|Gl=ps, s€ N for a prime p. For any finite abelian group G the least common
multiple of orders of its clements is called the exponent of G. We denote the
exponent of G by E(G). Clearly, gk(G) = ¢ forevery g € G. Furthermore, E( G )
always divides |G|. We prove that the number E(G) is an invariant for the shift
action (X5, Bs, Hg»Tg) as long as G is a p-group.

Theorem 3.1.3. Let G; and G, are abelian p-groups. If the &?-action
(Xg,» B, Hg,» Tg,) is a factor of the Z°-action (Xg,,Bg,: Hg,» Tg,)» then
E(G;)<E(G,). In particular, if they are isomorphic, then E(G;)= E(G,).

The theorem may be illustrated by the following

Corollary 3.1.4. For an integer m > 1 let Gy=(2Z,)",
Gy=(Z,)"°®2Zy,....Gn1=2Z,®Zyu-1, Gy = Zym . Then the Z2-actions
(X ¥ ﬁGi, Hg,» TGf) and (XGj , ﬁcj , ,qu , ‘TGj) (1<i,j<m) are not isomorphic
unless 1 = j.

The thecorem above may be considered as a step towards proving the

following .

Conjecture 3.1.5. If G, and G, are any finite abelian groups, then the
2 . ’ * ’
£ <-actions ( X6+ Bg,1 Hg,» Tg,) and ( X6, Bg,» K, Tg,) are 1somorphic if
and only if G, = G,.

We ’justify ’ this conjecture by proving its topological counterpart.
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Theorem 3.1.6. If G, and G, are any finite abelian groups, then the
topological Z °-actions ( XGI , ‘1‘61 ) and (X , 'Taz ) are topologically conjugaté if
and only if G, = G,.

We mention an obvious "generalization" of our main results. It is easily
seen from the proofs (see §§ 3.3-3.5) that they are valid for any "3-dot" Markov
shift with “zero sum" law. More precisely, let
Xgp = 1Xx=(xq; )i ez2 € GZ?%. H(m,n) e p XG+m, j+n) = © for all (i,j)e€ 22},
where D = { (m©®, n@), (mM, n(M), (m@, n@)} c 2% is any non-degenerate
triangle, i.e. the vectors ( m(D-m©®, n(0N-n® ) and ( M@-mO, n(A-n®) are
linearly independent over Z. ( The case we consider above and below 1s the one

with D={(0,0), (1,0), (0,1)}.) Theorems 3.1.3 and 3.1.6 still hold for shift

Z2-actions on such Markov shifts.
Concluding this Section we make a remark concerning notation. As from
now on we will be concerned only with abelian groups, we will use the additive

notation for the group oberations(in particular, 0 will stand for the identity element ).

3.2. SOME FACTS ABOUT BINOMIAL COEFFICIENTS

It can be easily proved by induction (see [ War] for the proof) that

m
Im

for any x€ X;, me N. Since the long-range dependence of the coordinates in
X involves the binomial coefficients, we investigate their divisibility properties,

looking for possible cancellations in (3.1).
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Lemma 3.2.1. Let p be a pume. Then for all integers s21 and n2s

n
we have p3|(pk) for each k€ {0, 1,..,pRI\{jpstl;: 0<sj<ps!} (alb

means a divides b).

Proof. See Appendix.

n
This lemma tells us, in particular, that the binomial coefficient (ppn.s)

is divisible by pS. One can show that, in fact, p° is the maximal power of p that

divides the coefficient.

Lemma 3.2.2. Let p be a prime. Then for all integers s, n with 0<ssSn

n

the binomial coefficient (I;n -s) is divisible by p® but not divisible by pS*!

Proof. See Appendix.

3.3. CYLINDER SETS

Let G be a finite abelian group and X5 be the two-dimensional Markov

shift defined in §3.1. With Ec Z? a finite set, let m;: X; - GE be the projection
map onto E. Then =;(X;) 1is a subgroup of GE. We denote ng (Xg) by xE
and for every oceX(E; define the cylinder set Cg(a)= {xeX5:n(x)=01l.

Clearly, uG(Cg(a))=|Xg|-1. Define the triangles E(m,n,s)={(i,j)e 2?:
i2m, j2n, (i-m)+(j-n)<s}, (mn)eZ? selN, and set T(L) =
= E(-£, -£, 4f), £€ N. We will basically deal with the cylinder sets of the form

Cg (o). It is clear that for any finite set E < Z2 there is £€ N such that Ec T(£).
Therefore, the oc-algebra Bg is the completion of the o-algebra generated by the

collection of cylinder sets {Cgm(a): o € xg“’, Le N }.
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The set Xg“: is just the set of all allowed configurations over T(L),
for every such a configuration can be extended to an element of X;. So,

T(L,;

X {ae GT(t) . a(i’j)+a(i+1'j)+a(i'j+1)=O fOr all (i'j)ET(z"i )}:

T(1}

if £ >1, and X5 ’= G. Obviously, an element of x;‘;‘” is completely determined by

its values on the bottom of the triangle T(L), i.e. by O g -£)r O fi1, -L)s =
.»Qc3p ). Moreover, for every (a_p,.., a3 )€ G**1 there exists a unique

T(L) T(L; |G|4£+1

a€Xg  with o gy= a3, -£s1<3L. From this we obtain | X g

and, hence, tg (Cg P (@) ) = 1G 1™ for all ae X5'*. For a set Ec 22
define its translate E+(s,t) by (s,t)e€ Z? setting E+(s,t)={(i+s,j+t):
(i,j)€ E}. One easily finds that

|x'(1;(L)U(T(z)+(k,O) | = IXG(L)I ng('”(k O)I _ lx'(I]'(L)I |XT(1)|

T(L)

whenever k >4 L. Therefore, for all k >4L, o€ XT(L\ Be X5 we have

g (Co (o) N cXM* &0 gyy o pa (et a)) pg(CeP(B)).

We now summarize this discussion in the following

Lemma 3.3.1. Let A be a union of cylinder sets of the form

T(U(OL) o € XG(L) and B be a union of cylinder sets of the form CG(”(B)

3 e x T

measure g, whenever k > 4L.

Then the sets A and o~k (B ) are independent with respect to the

3.4 OBSTRUCTIONS TO MEASURABLE CONJUGACY
( PROOF OF THEOREM 3.1.3)

Let Gy and G, be finite abelian p-groups with E(G;)=p3 , i=1,2.
Suppose s, >s, which means that in the group the identities p$i g=0, geG;

(i=1,2) hold, but for each r not divisible by p°! there exists g(r)e Gy such

37



that rg(r)# 0. In view of the cancellations guaranteed by Lemma 3.2.1, for all

x€ X » i=1,2 we can rewrite (3.1) (with m=p",n2s;) as follows

n Pg n
x(olpn) = (_I)P jzo (j;)“'si"'l) x(jpn—si+1.0) . (3'2)

81-1

Notice that for x € XGl the sum above consists of p + 1 summands including

82"'1

the p + 1 summands of the sum for x € sz' Furthermore, those members of

the sum for X € XG1 not included in the sum for x € X, , are not all identically

n

p

pn'sz) is not divisible by p°t and

zero. Indeed, by virtue of Lemma 3.2.2, (

Nl

hence the summand (;’n_s:) X(ph-sy o) is Mot zero when X, n-s, gy = o* =
pll
= g( n=-89 ) € Gl ‘
P
From (3.2) for all BEXEE” and p"~Sit1540 we obtain
n_T(L) psi"l - nosit] T(L)
@ Cg (B) = U N ag; Cq, (), (3.3)
- a J=20
' : = : | T(L, psi"l
where the union is taken over all @ = {aj:os jispiTtle(Xg ) such that

Now we are in a position to establish two facts featuring the difference

between the measurable dynamics of Xg and Xg, which prevents them being

isomorphic.
Lemma 3.4.1. There exist sets Aj (0sjspsi~—1) Be GGI such
that

limsuphs, (" BN( N & Ay )) >0, (34)

but
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limsupho, (& BN( N odf " A)) = 0. (3.5)

Proof. We put aj =0 € G1 for all OSj < psl""1 except for j - psl-SZ"l'

and a sy-5y-1 = g* € G;. Then we set Aj= Cg(l”(aj) (= {xexcl:x(o'o)-: aj})

and B = CEi“(O). We have
ps2. ! on
k§0 (kpn-s2+l) aypsi-s;, = 0, (3.6)
pb1-? o (pn ) *
jga (jp“'51+1) d; = pn-sz gt # 0, (3.7)

In view of (3.3), the formulas (3.6) and (3.7) give (3.4) and (3.5),

respectively. [
Lemma 3.4.2. Let the sets Aj (0sjspsi~!), Be 5862 satisfy

p52-1 n-so+1

. - -k

]Jmsupucz(’td‘;nBﬂ( N oG, Akpsrsz)) >0.  (3.8)
- 00 k = 0

Then they satisfy

. n psl_l _jpn Sl+1

111’11Sllli)ll(}z(’c(}'@2 Bﬂ( 'ﬁ gg, Aj)) > 0. (3.9)
N-»00 3 = 0

Proof.  Fix arbitrary sets A; (0<j<p st-1y Be Bg, satisfying
(3.8) and denote WG (A;)=§ (cleardy, & >0, 0<j<sp®-!) and

Akpsl'SZ)) > 0. Then, since 902 is the

completion of o-algebra generated by the cylinder sets, there exists £€ N and

: -1 : :
sets A ¢ (0<j<p®™"), Bge Bg, Which are unions
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of cylinder sets of the form Cg ‘’(&) and satisfy W(AAA )<e
(0<jsp®t~') and p(BAB_ )<e. It follows that

52‘1

1o, (B0 0 0& Appsn)) A
52-1 n-szi-l
At BN N 05 Agmesne))) < (p27'+2)e, (3.10)
k = 0
sq~-1 n
o, (< BN odr™ay)) 4
J =
PS]‘_]' D-s 1+1
A(@ B N( N odP A L)) < (pHT+2)e. (3.11)
3 = 0

for all ne N. We have A]’ = UCLEQ(J) CG(z)'l'(S t)(a), Osjspsl-l

UBeR (z)+(s t)(B) where Q(j) and R are subsets of XT(”. From
(3.3) for all n with p"~- 2#1 5 4% we obtain
Psz-l n-§ o+1
-ph -kp
G, Be ﬂ( krj ) e Akpsl"s2,e) B
Pszﬁl D-S o+ 1
-k
U I GGZP CT(£)+(s’t)(akpS1-Sz ) ] (3 12)
k = 0

where the union is taken over all (ao , O

pst=52 3o Oosy-1 )€ Q(O) X QPSI52) X ..

szl n
WX Q(pSt~l) such that (- 1)p Ek -0 (k nes,+ 1) akpsl_sz € R. We denote
P

PSZ_I B-§o+1

- -k :
Nem = Mo, (78 Bg N N 0G, Ay s g)) From (3.10) we find

that Men >Mp = (p52- I+2)e. Using Lemma 3.3.1, one easily obtains

40



ucz('cg;n B, n( pm : ngpn-wlAj’e)) = Nen p-l;-[o, Hg, (A ¢) >
. I &
51~1
> (M- (p%27'+2)e) :QO' (§;-¢€),
p 4]

(atb means a does not divideb) for all n with p“"'sl+1>4£. Now ( 3.11)

yields
pSl"‘l Il-srl-l
-p" -Jp
o, (7 BN( 0 037 4y)) >
pSl“l
> (- (%271 +2)e) [IO (&-€) - (p*t™'+2)e ,
p % 4]

But, since lim sup,  , M,>0 and §j >0, limsup of the right-hand side of this

inequality can be made positive by choosing € small enough. Hence, lim sup of the
left-hand side is positive. This completes the proof. [
The Lemmas 3.4.1 and 3.4.2 show that the system (XGl . QGI y Hg . ‘TGI)

cannot be a factor of the system (XGz : %2  Hg, » '2‘02 ), if E(G¢)>E(G,). This

proves Theorem 3.1.3. [

3.5 OBSTRUCTIONS TO TOPOLOGICAL CONJUGACY
( PROOF OF THEOREM 3.1.6).

Let G be a finite abelian group and h€ G be an element of order 3.
Then X5 3 h,. with h¢j jy=h for all (1,))€ Z*> (h is a fixed point of the shift
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action on XG) and we define a continuous shift-commuting map L : X5 X5 by
(Lo x)i,j) = X(i,jy +h (1) € 2%
Lemma 3.5.1. Let Gy and G, be finite abelian groups. Then a

continuous factor map @: (Xg; ‘TGI) - ( on, ‘1‘62 ) 1s a group homomorphism

1 4
or Lyo¢@ with some he€ G, is a group homomorphism .
Proof. This proof develops some ideas of [ KS1). For any abelian G let

O; be the zero element of the group Xg (i.e. the configuration of all zeros). Take
a continuous factor map @: (XGl , ‘I'Gl) -~ (XGz’ ‘2‘02 ). We assume that ¢ 001 ) =
= 0g, and prove that @ is a group homomorphism. If ¢(0g, ) = h with he;jy=h
forall (i,j) € Z? (the fixed point Oq , must be sent to a fixed point), we just pass
to the continuous factor map L_o¢@ which already satisfies L _po (p(OGl) = 002.

First we shall prove the statement under the assumption that G, is a p-

group. We shall make use of the well known fact that ¢ 1is a block map, i.e.

there exists £€ N, and a mapping F:X'(l;(ln - G, such that (o(x))i,j) =

= F( [ T(2) (TJ Gi X) ).

T(L .
Let o,0,P € XG(1 ), where 0 is the zeroelement of the group xg‘l”. Let

T stnd for T(Z) and denote A= Cg (@), B= Cg(B) O=Cg (o).

1

p°~ L n-s+1
Next, let E(G,)=p* and define A, =AN( N oz O)
k =1 ?
pS~i-1 St o
and B,=BN( N 05" O)N1F O. It follows from Lemma33.1 that
k =1

the sets A_ and B, are non-empty, whenever p"$*! >4f, Now we fix x€
A, and yeB_  (p"st! >41). Observe that ¢( Og,) = Og, implies F(o)=0.
Hence, (p(x)(kp -s+1 gy = 0 for 1<k<ps! and (P(Y)(kp“'s“. 0) = 0 for
1skspsli-1, ®(y)o,pn) = 0. Applying (3.2) to the points ¢(x ), ¢(y) € XGz

we obtain
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On the other hand, considering the point x+Yy € XG1 we find

F(a+|3)+(p(x)(0,pn)+(p(y)(pn'0)= 0 (3.14)
Comparison of (3.13) and (3.14) gives F(a+B)=F(a)+F(p). Thus, F is a

T(¢
homomorphism of XG(1 )

onto G, and, therefore, ¢ is a homomorphism of }J(G,1
onto X02 . The lemma is proved in the case where G, 1s a p-group.

Now consider the genecral case. Any finite abelian group G, can be
presented as a direct product (sum )

r
G, = i?iGz( P; )

where G,(p;) is a p;-group,i=1,..,r. It is easily seen that the group on
is the direct product of its Q‘Gz-—invariant subgroups corresponding to the factors

GZ( pl) of GZ’ 1. €.

 §

Any continuous factor @: (XG1 , ‘TGI) ~ (XG2 , ‘1‘02) gives rise to r continuous

factors (pi= pl'io O . (XGI’TGI) Q(XGz(pi)’TGz(Pi Gz(Pi)

is the natural projection. According to what is proved above, for each 1 the map o,

)), where pr;: XG2 - X

is a group homomorphism. Hence, so is ¢. [

Lemma  3.5.2 With- G a finite abelian group, the group
Fix (Tze05)={x€Xg: Tg005(x)=x} is isomorphic to G*=G®G,

Proof. Let x€ Fix(15e05) and denote x. oy =8 and X,y oy =h.
Then we must have X qy= k=-g-h and, by 15e¢ O,-invanance, X(i.i) = 8
and X ;44 iy =h.Then we must have x,;;,,,=k for all ie Z. Following the
rule x¢; i)+ X(ir1,j)+ X(j,j+1) = 0 and the 750 Og-invariance, we are led to the
unique configuration x which has x; j) being equal to g, h or k according as

i-j is congruent to 0, 1 or 2 mod3. So, the projection {(0,0) (1,0)}
Fix (150 05) - G? gives the desired isomorphism [
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Proof of Theorem 3.1.6.
Suppose that @ : (XGl ,‘Tai) - (Xcz,‘TGz) is a topological conjugacy. Then, by

Lemma 3.5.1, L o ¢ for some he€ G, is a group isomorphism. Clearly, it induces
a group isomorphism between Fix(’l:Gl ° 001) and Fix (‘cdzo S, ). By virtue of
Lemma 3.5.2, this implies (G )* = (G,)* and, therefore, G; = G, This
completes the proof of the theorem. [

APPENDIX TO CHAPTER 3 :
PROOFS OF THE NUMBER-THEORETIC LEMMAS

We begin by establishing the equality

(qml) = )) Igl(gr) (3.A.1)

k —
0sk, ,...,kqs qn i=1

k1+...+kq — k

for all integers q>0, n20, 0<sk<q?. Indeed, we have

{ n+l1 1
(a+b)9" qZ(ﬁ )akqu"k : (3.A2)

but, on the other hand,

N
wow® - (e - (§fe)oner)

Il N n n
,,. +1 n
- 8 S ()AL e s ()

Ky

Comparison of (3.A.2) and (3.A.3) yields (3.A.1).
We use (3.A.1) to prove Lemma 3.2.1.
Proof of Lemma 3.2.1.

Let g stand for the claim of the lemma for a fixed s. First we prove

d; by induction on n. It is well known (see[HW ], Theorem75] ) that any
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prime p divides the binomial coefficient (E) for any k=1,...,p-1. Suppose D4
to be true for some n. Let ke {0,1,..,p" 1 }\ {jp*: 0<j<p}. Then for every
(k¢,..,ky)€e{0,1,..., n}P  guch that k1+...+kp= k there exists £, 1<{<p,

n

P
with k,e {1,..,p"-11} and, hence, p|Hi=1(pk) . From (3.A.1) we conclude

1

n+l
that pl(pk ) for such k. Now suppose k = jp" for some 0<j<p. We put

K ={(ky,o ky)€{0, 1,0, p"P: [TT_ k;=k?} and Kg={(k,..,kp)€K:

n

P
k,€ {0,p"} for all i=1,..,p}. Clearly, |Kjl= (Jp) and H1=1(Fl'q) = 1 for
P N
each (ky,..,kp) € Ky. From the induction hypothesis we have pllli= qu for
each (ky,...,kp) € K\Kj. Thus, writing

Y- s T

(Kp oK) EK\K i=1171

where the both summands on the right-hand side are divisible by p, completes the

proof of the claim 3, .

Now in order to prove the lemma by induction on s we need to derive

I

- g4y from Dg. So, let psl(li’c) for all n2s and all ke {0,1,..,p"}\ {jp*5t:

0<j<p*!}. Take any m2s+1 and any ke {0, 1, ..,p™}\ {jp™S: 0Sj<Sp°}

§=1ki = k }. Then for every

and put K={(ky,..,ko)e{0,1,..,p™11P: ]
(k{,..,kp) € K there exists £ (1<f<p) such that k, 1s not divisible by

m-1
pM-8 = p(m-1)-s+1  Gince m - 1>s our assumption yields ps| (Iit ) Next, we

partition the set K into two sets:
K{=1{(kq,..,kp) € K: |1{2: 1<L<p, p™$ doesnot divide k,}| = 1},
Ky={(ky,...kp)€K: [{£: 152<p, p™* doesnotdivide k,}| 2 2}.
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Obviously, K;N1K, = @ , K;UK, =K. From the observation above we see that
m-1

-1
P P
pS|Hi=1(pk_ ) for all (ky,..,k,) €K, and p2SI1'Ii.,=1(f;<i ) for all
|

(ky,..,kp) € K,y (note that 2s 2s+1). Furthermore, IK, | is divisible by p, since
K, is the disjoint union of the sets Ky(f) = {(kq,...ky)€K;: p™-S does not
divide k, }, £=1,...,p, which have equal cardinalities. Thus, we have

VD I i (| 4 I ().

(kl,....l(p)E K, i=1 (kl,...,kp)e K, i=1

s+1

where the sums over K; and Kz are¢ both divisible by p**". This completes the

proof of the lemma. [

Proof of Lemma 3. 2. 2.

For an integer a and a prime p we write ord, (a) for the maximal

power of p that divides a, i.e. ordy(a)=max{me N: p™la}. To prove the

n

lemma we have to show that ordp ((ppn.s)) = §. First we compute ordp( p™ ). We

have

n n

ordp(p“!)‘= i ordy(a) = E kl{a: 1<agp": ordp(a)r-:k}l =
a=1 k=1

n-1

= nl{a: 1<a<p®, p"la}l + ), (l{a:ISaSp“,pklall—l{a:ISaSp“,pk+1|a}|)=
k=1

n-l1
= n+ Y k(pvk-piiely,
k=1
Thus, for all ne N

n-1
ordp( pP'!') = n+ (p-1) k p“"k"'1 : (3.A4)
k=1
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ordy( ( p" - p™3)! ) can be computed in the same manner taking into account that
ph-k_pt-k-s " if 1<k<n-s-1
{a: 1sasp®™p"s,p*lall = p*k-1  ,ifn-ssksn-1
0 , if k2n

We obtain

n-s-1
ord,( (P" - p"*)!) = (p-1) 2 kp" K4 (p-1) 2, k(pvkt-phkesly .

k=n-s k=1
n-1 n-s-f

- (p-1) X kp"*¥! - (p-1) ), kpsk1,
k=1 k=1

From this and (3.A.4) it follows that
ord,( (p" - PPN ) = ordy( ptl) - ord( p-8l) - s.
Finally, we have

n .
Ordp ((I;n - s)) = Ol'dp( pn' ) - Ordp( pn-s! ) - Ordp( (pn - Pn's)l ) =

This proves the lemma. [J
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CHAPTER 4.

THE COMPLETE CLASSIFICATION OF
“ THREE DOT ” MARKOV SUBGROUPS OF

(Zp) Z?

4.1. INTRODUCTION AND THE MAIN RESULT

Let pe N be a prime number and denote Zp = Z/pZ. Consider the zero-
dimensional compact group Q= (Z,) 2’ and its character group (€, M = D2 Z,
which can be identified with the ring Ry = Z,[u*!,v*1] of Laurent polynomials in
the two commuting variables u, v with coefficients from the finite field Zp. We

identify the polynomial f(u, v) = Z(i,j)e S (f) ce(1,]) ul vi, where S(f)c 2? is a
finite set called the support of f, with the character ¥ € (S').l:,)A defined by xp(x) =
=Z(i,j)e3(f)°f(i'j)x(i,j)’ x€ L. It is easy to see that for any ideal IC R,
..==_~=($'2p)A the annihilator I*={x¢€ Qp: X¢(x)=0 for all feI} is a closed
shift-invariant subgroup of Qp. In particular, for the principal ideal I= <f> we
have

Dt={xeQ: X ivesoC i) X(jm jny=0 for all (m,n)e 22},
We will use the notation X for the two-dimensional subshift of finite type <f> .

Let B¢ be the Borel c-algebra of X, and pepy, be normalised Haar
measure on B.r. The horizontal and the vertical shifts o,7: Qpe Qp defined by

(OX )(4,j) = X(i+1,j) and (TX )4, j) = X(4,j+1) are group automorphisms preserving
the subgroup X ¢y and, of course, H¢py. The dynamics of the measurable Z2-action Ty

generated by the restrictions of ¢ and T on the measure space (X¢gy s Begys Heps )
have been recently studied by K. Schmidt and B. Kitchens in [Sch], [ KS1], [ KS2]
(see also [W] and [Sh] for related results ). One of the most interesting and hard

questions here is whether or not two dynamical systems ( X¢gy , Bepy o Hepy » T¢py ) and
( X<g> » Beg> r Mgy » Legd ) with f# g are measurably (topologically ) isomorphic. It
was proved in [KS1] (seealso [KS2]) that the convex hull of the support S(f)
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(up to a translation, of course) of the polynomial f is an invariant of measurable
( and, hence, topological ) conjugacy. K. Schmidt and B. Kitchens conjectured that

(X<f> ’ $<f> ’ u'<f) ’ ‘T(D ) and (X<g> . ﬂ<g> ; u<g) ’ ‘T<g> ) arc measurably isornorphic if
and only if <f> = <{g>, but their invariants do not distinguish between the actions

arising from polynomials f and g with the same support. Here we prove the above
conjecture for the class of systems arising from polynomials with the support {

(0,0, (1,0), (0,1) }.

We denote Slp = {fe R,: S(f) =1(0,0),(1,0), 0,1)} }, 1.e. Bp 1s the
subset of R, consisting of all polynomials f of the form f{(u,v)= ¢{0,0)+
+c(1,0)u+cd0,1)v with c{i,j)e Z, = Z\{0}. The main result of this
Chapter is the following

Theorem 4.1.1. The dynamical systems (Xe¢py, Berys Bepy s T¢py ) and
(X¢o>s Begsr Megy» T¢gy)» £18 € Lp are measurably isomorphic if and only if

f> =<g>,ie if and only if f=ag for some a€ Z,.
Our strategem of proving this theorem is to gradually reduce the problem
of measurable isomorphim to the problem of topological and, then, algebraic

isomorphism.

42. MEASURABLE ISOMORPHISM IMPLIES
TOPOLOGICAL CONGUGACY

Theorem 4. 2. 1. Let ¢: X » X5 be a measurable isomorphism
of the dynamical systems (X¢gys Bepss Hers s Tery ) and (Xegpy s Begy s Hegy» Tegy )
f,g€ Ly, then there exists a shift commuting homeomorphism 0 : Xepy - X¢p>
such that ¢ (x) =@ (x) for Uepy-almost all x € Xy .

Corollary 4. 2. 2. If the dynamical systems (Xepy, Berys Hepy» Tery )
and (X¢gs, Begss Megy» T¢gy ) £, 8€ Ly are measurably isomorphic, then they

are topologically conjugate.
Now we introduce some more notations and make some observations
which will be used throughout the Chapter. With E c Z? a finite set, let
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e X¢epy = (Zp) E be the natural projection onto the coordinates contained in E.
Then 7y (X¢py ) is a subgroup of (Z,)E. We denote 7y (X¢py ) by Xe¢p and
for every « € XED define the cylinder set CED (a)=1{x€X;:mz(x) =0}

Clearly, pep (Chn(0))= | X5l ", Define the triangles
E(m,ns)={(i,j)€Z%: i2m, j2n, (i-m)+(j-n)<s}
(m,n)e Z2, se N, and set T(L)= E(-L-¢ 4L), Le N. We will basically deal

with the cylinder sets of the form CT(”(a) It is clear that for any finite sct

Ec Z? there is £€ N such that EcT(2). Thus we have:

Observation 4.2.3. The o-algebra B, is the completion of the o-

algebra generated by the collection of cylinder sets {C ' (@): 0 € Xeo', L€ N},

The following statement can be easily proved by the same argument as

Lemma 3.3.1 in Chapter 3 of the Thesis
Lemma 4.2.4. Let A and B be unions of cylinder scts of the form

(o), a€Xesr) with the same L€ N. Then the sets A and ¢ -M(B) arc

independent with respect to the measure [Lery, whenever m > 44,
Next, we observe that for the polynomial f(u,v) = ¢(0,0)+ c{1,0) u+

+e0)ve 8,c Ry we have (f@v))P = c(0,0)+c(1,0) uP" +¢(0,1) vP", but
" e <O and, hence,

T(l)

cf(0,0)x(i’j)+cf( I'O)X(i+pn,j)+cl(0’ 1 )x(i.j+p") = ()
for all x € X¢gy, (i,j) € Z% n€ N. From this one easily obtains the following
T(L)

Lemma 42.5. Let o,B,y€ X and p">4 L. Then the intersection
(a) N o P CH(B) N TP C(v) is ecqual to

SAa) NP CS(B), if c£0,0)a+c(1,0)B+c (0, 1)y= 0 in the
group (Zp) 108, and is empty, if c{0,0)a+c{1,0)B+c(0,1)7# 0.
The proof of Theorem 4.2.1 is based on the following rather surprising

T(l)

T(l)

fact
Lemma 4.2.6. Let 1n: X » X¢py be a shift-commuting automorphism

of the measure space (X¢ry, B¢y, M¢ry )» € Ly and suppose that 1 has finite

order r (i.e. ey (EANT(E)) =0 for each E € Bery ) Then for any set
A€ Bey with e (A)>0 satisfying
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lim_ pep (AN PANTPNA)) = te (A)2, (4.1)

n— oo

there exists a subgroup H<C X.p, such that f.r (QA A) =0 for some cosct

Qe X¢py /H.
Proof. Without changing <f> we may assume that the polynomial f has

¢(0,1)=-1. To simplify notations we put ¢(0,0)=a, c{1,0)=>b so that
f(u,v)=a+bu-v and X¢p ={xe€Qp: xyy=ax, y+bx, 5y for all
(i,j) e Z%}. Also, since f is fixed throughout the proof, we will drop the

SUbSCI'ipt {f> in X(f) ; 9(f> , u(f) ' C'ff()z)( a) ctc. .
Fix an arbitrary € > 0. Then, by virtue of Observation 4.2.3, for the set
A€ B there is £={(e)20 and sets Ag, Ape of the form

Ae U CT(”((:), An’e = U CT(I)(Y)' I,JCXT(I)
agel Ye

such that pn(AAA;)<e, pn(N(A)AApe)se. Observe that the following equality
holds

fA iy € Ag: ax+by€ Ayt du(x) =
£
= lim p(AcNSP(A)NTP (Ape)). (4.2)

Il = o0

Indeed, using Lemmas 4.2.4,4.2.5 for all ne N with p" >4 we have

(AN P(AINTP(Ane)) = 1 U (CT®(a)no?"cT®)(B))) =

oPel
acc+bfel
= U (W nwc®))= ¥ mc™a)) U wCct®(p)),
oBel, | nel Bel,
ac+bflel ac.+bPel

which is equal to the integral in the left-hand side of (4.2 ), since given an
X € CT(”(a)CAB a point y € X satisfies ax+bye€ Ay iff y€ CT(')(B)
where P satisfies ao+bP € J. This proves (4.2). Because the inequality
L((ANSP(AINTP(N(A)))A(ANGP(ADNTP(Ape)))S 3e
obviously holds for all n€ N, the equality (4.2) yields
L(A)P = lim p(ANSP(A)NTP(N(A)) S
< lim p(AcNoP(A)NTP(Ane)) + 3¢ =

n— oo
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= J-A u{yeAe:ax+byeAn,g}du(x)+33- (4.3)
£

For EcX, z€e X, he ZP we denote E+z = {x+z: x€E },
hE = {hx: x€ E}. Whenever E is measurable and h# 0, we have W(E+2) =
= W(hE)=pu(E) (since x-hx is a group automorphism of X, it preserves the
Haar measure p ). Clearly, {y€eE:ax+bye E'}=ENb?!(E -ax) for any
E, E' c X. The inequalites H(AAA;) <¢e, UN(A)AAy)SE imply
R(CANDbT(MA) -ax))A(AgNb? (Ape-ax))) < 2e  and, hence,

Ip{ye A:ax+byen(A)} -plye Ag:ax+bye Apell < 2¢
for all x € X. This enables us to make the following estimate

|fAu{yeA:ax+byen(A)}du(x)-fA plye Ag:ax+bye Apeldp(x)| <
£
< fA\Aeu{yeA:ax+byen(A)}du(x) +

+ fAe\Ap{ye Ag:iax+by€ ApcHdu(x) +

+|fA£nA(u{yeA:ax+byen(A)}-u{ye Ag:ax+bye An,e})du(x)ls

S.‘:‘,+t-:+fA A|u{yeA:ax+byen(A)}-u{yeAg:ax+bye An,e}l du(x) S

el
< 4g.

Along with (4.3) this estimate gives us
(A 2 fAu{yeA:ax+bye nA)}du(x) 2
2fAeu{yeAg:ax+byeAn,g}du(x)—4e 2

n(A) - 7e.

> n(A) - 3¢ - 4¢

Since £>0 can be chosen arbitrarily, we obtain

[ mlyeAzax+byen@ducx) =J mAND! (N(A) - ax)) du(x) = p(A)?
which means that for p-almost all xe€ A we have (AN b' (n(A) - ax)) =

-

= HW(A) and, hence, H(AAb'(n(A)-ax))= 0, or, in terms of the indicator
functions, 1A(Zz) = 1pt (nAa)-ax)(2) = Iy ax+bz) for p-almost all z ( we
write 1 for the indicator function of the set E ). Finally, we express this fact as
follows

1,(2) = p(A )] 1y (ax +bz) 14(x) du(x). (4.4)
Now we are going to use Fourier analysis on the compact abelian group
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pe(+) = H(E)'1g(.) be the normalized indicator function of Ec X. For the
Fourier transform fiA:)Z-a» C of the function pj € L}(X, ) we have (taking into

account (4.4))

sa(x) = J @ palz) du(z) = w(A Y[ (X} 1x(z) du(z) =
= u(A)“2f(z_,ﬂ(f]1n(m(ax+bz)lA(x)du(x)) du(z) =
= p(A)2JJ (57 @xwb2), 1) (573X, %) Lyeay(ax+bz) 15(x) du(z ) dp(x) =
= J U592 Pocay(¥) dit(y) J (53, %) pa(x) da(x) =

= Pna)( X ° b*) PA(x e (-b7a)),

for any character Y € )2, where Y oh (he Zp) is the character given by

(x,xoh> = <hx,y > (we use the symmetric notation < x,% > for the value of
the character % on the element x € X which is justified by the Pontryagin duality).

Putting d =b”, e = -b"a € Z,, we obtain

PA(X) = Pray(xed) pa(xee) (4.5)
for all y € X. The equation (4.5) holds for every set A € B satisfying (4.1).
But since m is shift-commuting and measure-preserving, the set X (A) satisfies

(4.1) whenever A does. Therefore, (4.5) remains true, if we replace A by

Nk (A) for any ke Z. Thus,

Prica (%) = Prirtcay(X°d) Priay(xee) xe€X, ke Z (4.6)
Clearly, |pa( )| 1, %€ X . Using (4.6), we will prove that in fact
| pa( % )| can take only two values: 0 and 1. Indeed, we have |pPpa(y)] =
= | Ppay(xed)l 1pa(xee)l. Suppose for some me N we have [P (x)I s
< | Prmea)( X o d®)| Ipa(xee™)l. Then, in view of (4.6), this implies
IBACX)I ] < 1 Ppmerpy(x e d™ 1)1 1pA(x e ™). By induction, this proves the
following inequality
IPACX) ! < 1 Pray( X e d) L IPp(x e eR) ], ke Z (4.7)
For k=r(p-1), where r is the order of n, (4.7) yields 1p,(%)| SIpA(x)I?
which implies |p,(x)le{0,1}.

It is a consequence of a classical result in Harmonic Analysis ( see
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[HR ], p. 257 ) that the subset I = {xe)E: 1pp(x)] =1} is a subgroup and the
restriction of bA:)EaC to T is a character on T. Let H=T*c X be the
annihilator of I". By virtue of the Pontryagin duality, there exists a coset Y € X/H
such that Pp(x)=<x,,x”> for all x €I with an arbitrarily chosen x, €Y,
and from what we have proved above it follows that p,(%) =0 forall %€ X\T.
But it is easy to see now that p, is identical to the Fourier transform of the
function PH-x,( x) = p(H)? lli-x,( x ). By the Inversion Theorem, the

functions pa and py_, are equal as elements of LY X,u). Hence, A differs

from the coset H-x, by a set of measure zero. [
Lemma 4.2.6. Any subgroup H of X¢py Wwith Uep (H) >0 ( and,
hence, any coset Q€ X /H ) is a closed and open subset of X¢p .
| Proof, One can easily show that the map Aj: X¢p - R defined by
Ag(x) = pepp (HA(H+x)) is continuous. Since Hey(H) >0, the closed
(by continuity ) set {x € X¢n: Ay (x) =01} is precisely the subgroup H. H is

also open, because its complement is a finite union of cosets which are closed,

since H is. []

Thus, we have shown that any set of positive measure, satisfying (4.1)
differs from a closed-open set by a set of measure 0. Now we proceed to
proving Theorem 4.2.1.

Proof of Theorem 4.2.1. Let ¢: X = X<g> be a measurable

isomorphism of the dynamical systems (X¢p » Bepy o Mepy» Tepy ) and (Xeoy o Beg s

Hegy» Tg> )» £.8 € 8. Any cylinder set Cp = Cff()” (o) c X¢py Obviously satisfies

lim, pepy (CeNOP(CHNTPIE(C)) = pep (Ce) 2

n— eo

where §: X¢py = X¢py is given by &(x) = - ¢((0, 1)1 ( c(0, 0) +¢c¢(1,0) ) x.
Clearly, 1if ¢(0,0) +c{1,0) # 0, then & is a shift-commuting automorphism
of finite order (EP~!(x)= x for all x € X). Hence, so is the automorphism

N=@o&op!: X¢g> = X¢g>- For any cylinder set C = Cff()“ (o) the image

¢(Cs) € $<g> has positive measure and satisfies
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lim, gy (P(CHNGPO(CHINTPN(P(Cp))) = hegy (9(Cp)) 2,

1 —>eo

Now Lemmas 4.2.5 and 4.2.6 tell us that ¢(C;) coincides with a closed and
open set up to a set of measure 0. The “mirror image” of the above argument
shows that for any cylinder set C,C X e the pre-image i Ce) € B¢y
coincides with a closed and open open set up to a set of measure 0.

Thus, ¢ establishes a well defined one-to-one correspondence between
the sct algebras CO¢p, and COgy, Where CO¢py© Bepy is the algebra of clopen
( closed and open ) sets of X ¢y, 1. €. the algebra generated by cylinder sets.
This correspondence defines an isomorphism F., between the algebras of simple
continuous functions Cgo( X¢ey ) and C( X<g>) (the algebra Cco( Xe¢py ) is
generated by the indicator functions of clopen subsets of X.py ). Since Coo(Xeps )
is dense in the Banach algebra C(X(py ) of continuous functions on Xepy , the
isomorphism  Fgo: T X¢py ) & Coo X¢py ) has a unique extension to an
isomorphism of the Banach algebras F: C(X.n ) = T( X¢gd ). In its turn, F
induces a homeorphism & : M(T(X¢py ))» M(T(X¢py )) between the maximal
ideal spaces of the Banach algebras. But, according to the Gelfand theory ( sce
[Rul, p.271), M(C( X¢py ) ) is ( homeomorphic to) Xpy  Thus, we have
obtained a homeomorphism §: Xipy - Xcoy  which defines the same
correspondence between the set algebras CO¢ry and CO¢e> S Q. It 1s clear that if
we throw away the set N = UCE Co(f)(CA(p"(Q)(C))), then (x)=P(x), on

the complement X.~\N. But N is a countable union of sets of measure 0 and,
therefore, p¢e (N ) =0 completing the proof. .
In the argument above we used the fact that c(0, 0) +c{1,0) £ 0. But

it 1S easy to se that, unless p=2 (the case p=2 is of no interest for us, since

%, consists of only one polynomial ), at least one of the following inequalities
holds : ¢¢(0,0)+c(1,0) # 0, c(0,0)+¢c{0,1) #0, c(1,0)+c1,0)+#0. If, say,
ce(1,0)+c(1,0) # 0 is the case, then we just have to use a modified version of
Lemma 4.2.6, with

im, Uep (NMA) N PANTPA)= pep (A)?,

n— oo

instead of (4.1) (the proof of the lemma remains essentially the same). n
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4.3. TOPOLOGICAL CONGUGACY IMPLIES
ALGEBRAIC ISOMORPHISM

In the previous section we proved that any measurable isomorphism of
the dynanucal systems (X<f> ’ $<f) ’ l.l(f) ’ ‘T<f> ) and (X<g> ’ Q3<g> ' l.l<g> ’ ‘T<g> ),
f,g € £, must coincide almost everywhere with a homeomorphism. This enables us

now to be concemned only with the question of topological conjugacy. In this
section we consider the shift action T¢y on X.~ as a topological dynamical
system. Theorem 4.3.1 below provides the further reduction. Namely, it turns out
that a topological conjugacy between the Markov subgroups must respect their

algebraic structure.

: 2 .
Remark that the abelian group €, = (Zp) £° can in a natural way be
considered as an (infinite dimensional ) vector space over the finite field Zp. and

any Markov subgroup X becomes a subspace of £2,. The following theorem is a

generalization of Observation 4.1 in [ KS1].

Theorem 4.3.1. Let f,g€ Bp and let @: (X¢py, Tepy ) = (X<g> , ‘T<g>)
be a continuous factor map. Then there exists he€ Z, such that (p(x Deij)=
=(W(x))jj)+h, x€ X¢py, (1, ]) € 2°, where W:(X¢py, Tepy ) - (X¢p> » Teg> )
1s a homomorphism of vector spaces .

Proof. For any fe€ Ry let 0€ X, be the configuration of all zeros
(the zero element of X,y ). Obviously 0 is a fixed point of the action T,py

and it is the only one, unless £(1,1)=0; if f(1,1)=0, then for each he Z,
the action T.ey has the fixed point b€ X, all coordinates of which equal h.
The factor map @:(X¢py» Tepy ) > (X¢gy » Tegy ) sends the fixed point 0 € Xy to
a fixed point h e X(.5, hence ¢(x)=vwy(x)+h, x € X¢py, where
Y (Xepys Tepy )= ( X<g>, ‘T<g> ) 1s a factor map with the additional property (0 ) = 0.

let f, g€ Bp and let (Xf,Q})-a(Xg,‘z‘g) be a continuous factor

map such that!w(0)= 0. Clearly, there exists £€ N and a map Y¥: Xg)“)» Zp such

that (y(x))j 5y = Y( mr(z)(TiGix)), x € X¢py, (1,j) € 2% Take 6,0, € Xg")(”,

where O is the zero element of the group XE)(” and o, B are just arbitrary, and
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denote: O = C?;)(”(B), A= C%(z)(a), B = C'(l;)m(ﬁ). According to Lemma 4.2.4
the intersections A | o PO and B ) TP'0O are non-empty for n large

enough, and we fix x€ Af) s P'O and y€B NTP'O. We also consider the
point X + y € X<f>' We have

cf(O.O)(w(x))(O'O)+cf(1.0)(W(X))(pn'0)+cf(0,1)(W(X))(O'pn)=0,

cf(O’O)(W(Y))(O’O)'i'cf(1v0)(W(Y))(pn'O)+cf(0v1)(W(Y))(O‘pn)=0:
cf‘(O’O)(W(x'l'Y))(O'O)'l'cf(ItO)(W(x+Y))(pnlo)+cf(0: 1 )(\V(X+Y))(0'pn)=0-
On the other hand,  (W(X)) g oy= (@) (WY gy= ¥(B)
(W(x+Y ) g 0y= F(atP), (W(X)) ngy=F(0) =0, (W(y)) g ny=¥(9)=0,
(WCXHY D 0y = WY D pn gy> WEXHY D g oy = (WX} g ny» Where the
equality ¥(0)=0 follows from y(0)=0. Thus, we obtain c{0,0)'¥Y(a+f) =
= ¢(0,00¥( o) +c0,0)¥(P) and ¥Y(ot+B)=Y(o)+¥(P), where coand P are
arbitrary. This shows that Yy(x+y)=wy(x)+y(y), x,y € X¢p» ,» Which also

implies W(d!)r-d\]f(x),xe)((f), d e Zp. L]
Corollary 4.3.2. Let f,ge £p and let ¢:(X¢py, Tepy ) = (X¢gy » T¢gs)
be a topological conjugacy. Then there exists h € Z, such that (P(X))¢; ;)= =

(W(x))yj)yth, X€ X¢py s (i,j) € Z%, where y : (X¢ryr» Tepy ) = (X<g> , ‘-T<g>)
is an isomorphism of vector spaces .

4.4. ALGEBRAIC CLASSIFICATION

Now we give the complete classification of the “three dot* Markov
subgroups with respect to a shift commuting vector space isomorphism. In view of
the results of the previous sections, this algebraic classification immediately gives a

measurable classifications of such dynamical systems.

Theorem 4.4.1. Let f,g€ Bp and let @ : (X¢py ) Tepy ) (X<g> : ‘T<g>)
be an isomorphism of vector spaces commuting with shifts. Then <f? = <{g), i.e.
f=dg for some de Z,.

Proof. Observe that for any fe £, the set Fix(X¢p ,To0) =

={x€Xy! Too(Xx)=x1} is a subspace of the vector space X¢py isomorphic

to (Zp )%, the isomorphism being given by the projection mg, where S ={(0,0),
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(1,0)}. The restriction of ¢ onto Fix(X ey, To O) & ( Zp )% is the linear operator

given by the matrix

-1 -1
<{0,0) c{1,0) " -c£0,1) c{1,0)
Mf= f( 11( f( Of( | EGL(2,ZP),

Now let f, g€ Bp and suppose that there exists a topological conjugacy
¢ : (X s Tepy )= (X<g> . ‘T<g> ). Then from Lemmad4.3.2 it follows that ¢(x) =

=y(x)+b, x€Xpy, where Y (X Tepy ) (X¢gys Tgoy ) is an isomorphism
of vector spaces. Clearly, Wy induces an isomorphism between Fix (X ey, To G)
and Fix (X5, Te0) which can be considered as an invertible linear operator on
(Z,)* given by a matrix R € GL(2,Z,). As y is shift-commuting, R must
satisfy the equation R Mg= M,R. This implies tr( Mfl ) = tr ( Mfz ) and
det (M) = det ( Mg ). Thus, we have

Cf(0,0) Cf(l,O)-l = Cg(0,0) Cg(iso)-l ’ cf(0’11) cf(lyo)-l = cg(Oii) Cg(l,O)-l ’
hence, ¢£0,0) cg(O,,O)"1 = ¢¢(1,0) cg(l,.O)"'l = ¢{0,1) cg(Oi,.l)"'l , 1.e. g=af for

some a€ £, which completes the proof.  [J

Now our Main Result ( Theorem 4.1.1 ) follows i1mmediately from
Corollary 4.2.2, Corollary 4.3.2 and heorem 4.4.1.
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Chapter 4

Three Dimensional Bénard
Convection

4.1 Introduction

In this chapter we apply some of the results of chapters 2 and 3 to the Bénard convection
problem in a 3-dimensional box. In section 1.1 we gave a brief description of bifurcations
occuring in a 2-dimensional vertical cross section of the domain. By exploring the third
direction we find a much richer structure of patterns, specialy when the horizontal cross

section 1s a square.

In section 4.2 we state the Boussinesq approximation of the equations for time
independent convection in a box with a mixture of Neumann and Dirichlet boundary
conditions. Then we define a scaling that makes the quantities nondimensional.

In section 4.3 we set the symmetry context where these equations should be viewed.
It will be shown that the problem has more symmetries than the group that leaves the
domain Invariant. These symmetries are found by defining a periodic extension by
reflection across the boundaries in such a way that the regularity of the solutions is
preserved. The extended problem satisfies periodic boundary conditions on a larger
domain and the symmetries are a 3-torus extension of the group that leaves the do-
main invariant. Then, the solutions that satisfy the original boundary conditions are
constrained by invariance under a group of reflections.

Sections 4.4 and 4.5 deal with bifurcation problems. The construction described
above will be used to give a general form of the reduced bifurcation equations. In
appendices A and B, normal forms and universal unfoldings are given together with

some bifurcation diagrams.

Sections 4.6, 4.7 and 4.8 are concerned with the well known method of Liapunov-
Schmidt reduction that gives an exact Taylor expansion of the bifurcation equations.
From the previous sections we have the information about which terms must be calcu-

lated. By taking the result to appendix A or B we get the bifurcation diagrams.
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4.2 The Boussinesq Equations

As in Golubitsky et al. [11], the Boussinesq approximation of the equations for the
Bénard convection in the box [0, 7¢;] x [0,7{;] x [0, w€3] may be written as

: (_‘_9_‘_’_ + (v.V)v) = —-Vp+ Og + Av

K o \ ot
divv =0
%?— + (v.V)O = Rvs + AO

where v = (v, v2,v3) is the velocity vector, © describes the deviation of temperature,
p is the pressure and the parameters R and o are, respectively, the Rayleigh number
and the Prandt]l number. In order to nondimensionalize the quantities, we scale the

domain variables as -~
1 | 1
§ = '5;51 §2 2:;52 {3 'z;;fas

the deviation of temperature, the pressure and the Rayleigh and Prandtl numbers the
are scaled as

|
O (30 p i f3p R~ (R 0 = =0
3
By denoting u = (v,0,p) and applying the scaling above to the time independent
Boussinesq equations we get

B 1dp 1 B
(I),-[I](U, R) = A,vl — ;:-1'52-1' — -;v.V,.vl = (
1 dp 1
‘) —_— — ST S—— g S— —
dp 1
®,.3](v,R) = A3 ——+0—==0.V,u3=0 (4.1)
= 363 g
. [4)(u,R) = A,0+ Rvz —v.V,0 =0
®.[5](u,R) = V,v=0

where the parameter

€ ¢
ro= (r,r2) = (?};,i)

has been transferred from the dimensions of the domain to the equations, and A,, V,
are, respectively, scaled laplacian and gradient as

1 9 10 02

& = Fegtioatag
v - (_1__9_ 10.2)
’ r1 351’7‘2 352’353 '
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We denote the scaled domain § = [0, 7]° and the boundary conditions are a mixture
of Neumann and Dirichlet as

- 6v2 _ 603 - _ _ .
vl_é?;_afl —-O& D¢, = for 61-—-0,71'
dv Ov
-56_: == Vg = -5-&—3- — 952 — p& = for {2 — 0,7!' (4.2)
0'01 6‘02 .

5?;=-55“”3=9=P63=0 for {3 =0,m.

4.3 The Appropriate Symmetry Context

Let u € (C*®(Q))° be an arbitrary solution of ®, = 0. We proceed by summarizing the
extension method described in chapters 2 and 3 and showing that the procedure applies
to this particular problem. We define an extension i by reflecting each component of
u across the boundaries of the domain ) and combine it with sign change in the case
of a Dirichlet boundary condition. These reflections generate the group

K = 2,04, ®Z; = (K, kK, Krs)
acting on u as

K1: (v1,v2,v3,0,p)(61,€2,63) — (—v1, 02,03, O,p)(=&1,62,€3)
K2 . (vla vy, 3, O, p)(€1$£2$£3) = (vh —v2, v3, O, p)(fh ‘_62163)
K3 . (vh U2, 7-’319’ p)(£11£21£3) = (vls V24 —V3, _in)(fhfh _63)'

In lemma 9 below we show that this extended function is a solution of the same operator
on the larger domain

A

Q = [-m, 7).

Then, by extending @ periodicaly to R® we still have a solution of ®, = 0 for which we
keep the notation 4. Lemma 10 below says that this extension preserves the regularity
of the solution. The extended solution @ satisfies periodic boundary conditions on fl.

Now we define an action of the extended group K+T3. This group is generated by
the reflections k., 2, k3 acting as above together with the translations 0; € [0, 27) for
i=1,2,3 acting as | '

91 . ﬁ(511£2:£3) = ﬁ(fl + 91162:63)
02 : ﬁ(glafhfl’») = ﬁ(é‘la& + 92163)
93 . ﬁ(é.l!fh 63) = ﬁ(611£2a£3 + 03)'

Given the translation invariance of the operator ®,, by acting on 4 with an element of
the 3-torus T° we get a solution of the periodic boundary value problem.

Up to this point we know that any smooth solution u of ¢, = 0 satisfying the
boundary conditions (4.2) corresponds to a unique K+4T3-orbit of solutions to the
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same equation satisfying periodic boundary conditions on (). We choose from this
group orbit of 4 all the solutions w that satisfy the boundary conditions (4.2). These
are exactly the ones that are fixed by the action of I¥

kw(kf) = w({)
for all K € K. These solutions belong to the subspace fixed by K, which we denote by
Fix(K).

We proceed by stating and proving the results referred to above.

Lemma 9 Let u be a solution of &, = 0. Let the group K act as above. Then ku is a
solution of the same equation for all k € K.

Proof Given the group structure of K" it is enough to show that this result holds for
the generators of . We define an action of &y, k2, k3 on the operator ¥, as

(®,(1], 2,(2], @-(3], ®/[4], @/[5]) — (-2.[1], 2.[2], D, [3], ®/[4], D, [5])
2 (®[1], 2, [2], @/ [3], B¢ [4], @/[5]) > (O [L], =2, [2], (3], - [4], D¢ [])
kst (@[], 2.[2], ®,[3], 2. [4], 2,[5]) — (@.[1], D (2], — P, (3], -, [4], P:[5])).

It 1s easy to see that ¢, commutes with the action of K
d,(k;u(k;€), R) £;P.(u(é),R) for j=12,3. (4.3)
By assumption, u is a solution of ¢, = 0. So
d.(u(é),R) = 0 for 3=1,2,3.
Together with (4.3) this implies that
o,(kju(ki€),R) = 0 for j=1,2,3

and this is what we wanted to show. D
Lemma 10 Let u € (CY(R?))® be a solution of &, = 0. Then u € (C*(R?))>.
Proof See Field et al. [8]. D

Note that by this method we find symmetries that are not obvious in bounded
domains. The most immediate thing to do would be to consider only the reflections
that leave the equations and domain invariant. This approach would be simpler but
incomplete: some translations of our extended solutions satisfy the required boundary
conditions and remain hidden if we insist upon leaving the domain invariant,

Up to now we mentioned all the symmetries that do not depend on the parameter
r. If we allow group actions on r there is one more symmetry: the group S,. This
group has one generator denoted by s and acting as

$: (r1,r2) = (r2,71)
(v1,v2,v3,0,p)(&1, &2, £3) = (v2, 01,03, O, p)(&2, &1, 3)
(2.[1], ©.(2], ®,[3], ®.[4], ®.[5]) = (®.[2], ®.[1], D, [3), . [4], 2. [5]).

By noting that the set of boundary conditions is invariant under the action of S; on u
we have the following
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Lemma 11 Let u be a solution of ¥, = 0 satisfying the boundary conditions (4.2). Let
the group S, act as above. Then su is a zero of ®,, = 0 satisfying the same boundary

conditions.

Proof As we said before there is nothing to prove about the boundary conditions.
So we only have to show that the s-conjugate of a solution u of ®, = 0 is a solution of
the conjugate operator ®,,. A straightforward calculation shows that the operator @,

commutes with the action of S, as
®,.(su(s€),R) = s®,(u(f),R). (4.4)
By assumption, u i1s a solution of ¢, = 0. So
¢, (u(¢),R) = 0.
Together with (4.4) this implies that
P, (su(sf),R) = 0

and the result follows. n

Note that if r; = r, the operator ®, is invariant under the action of S,. In this
case, given a solution u of ¢, = 0 there is a conjugate su satisfying the same equations.
If ry # r, then su is a solution of the different equation ®,, = 0.

Finaly we combine all the results obtained up to now in the following

Theorem 17 Let @, be the operator defined by (4.1). Let the groups K, T3 and S,
act as above. Then

1. If ry # r2 (r1 = r3) every smooth K -invariant solution & of ®, = 0 on R® with
K (+8S2)+T°-symmetry restricts to a smooth solution of &, = 0 on Q with the
boundary conditions (4.2).

2, Let u € (C'())° be a solution of ®, = 0 on Q with the boundary conditions
(4.2). Then

o u is smooth.

o If ry # ry then u extends uniquely to a smooth K-invariant solution of
d, =0 on\yR“" with K+T3-symmetry. The S;-conjugate su is a solution of
the equation defined by the S,-conjugate operator ®,,.

o If 1y = r; then u extends uniquely to a smooth K-invariant solution of
d, = 0 on R® with K4S+ T3-symmelry.

We observe that u = 0 is always a translation invariant solution of the equation
®, = 0. We are interested in steady states bifurcating from this trivial branch when
the Rayleigh number R is increased from below. We restrict our bifurcation analysis
to a neighbourhood of some critical values of the unfolding parameter r. Denote
L, = d®, the linearization of ®, about u = 0. In sections 4.4 and 4.5 below, and
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according to chapters 2 and 3, we use the symmetries in theorem 17 to get a general
polynomial form for the projection of the bifurcation equations onto ker L,. In latter
sections a Liapunov-Schmidt reduction will be performed to give the exact values of
the coeflicients in the bifurcation equations. Finally, these equations will be put into
normal form and the bifurcation diagrams read from the tables in appendix.

4.4 Bifurcations with a K+4+T%-Symmetric Exten-
sion

Assume that r is such that when the parameter R is increased from zero, it crosses
a critical value for which the linear operator L, has a nontrivial kernel. Then there
are branches of solutions bifurcating from u = 0. The Rayleigh number R is playing
the role of bifurcation parameter and r is a 2-dimensional unfolding parameter. Recall
that r = (71, r2) depends only on the domain before being scaled: the two components

represent the aspect ratios of the horizontal dimensions of the box by the vertical

dimension.
By Golubitsky et al. [11], bifurcations of codimension up to three are generic in
problems with two unfolding parameters. Such bifurcations are expected to occur in

regions of the unfolding parameter space as follows:

o Codimension one in open regions.
¢ Codimension two along lines.

e Codimension three at isolated points.

We begin by describing shortly the simplest codimension one bifurcations, proceeding
then to the more complicated ones. The main interest of this section is the codimension

three.

As in section 4.3, from the problem ®, = 0 with the boundary conditions (4.2)
we construct a larger one consisting of the same equation with periodic boundary
conditions. The second problem is invariant under an action of the group K+4T3. We
also know that in order to get explicitly all the symmetries of the first, we really need
to state the extended problem and restrict the result to the subspace fixed by &'. This
is what we proceed to do.

4.4.1 Single Mode Bifurcations

By Golubitsky et al. [11], we have a codimension one bifurcation with K'+T3-symmetry
when ker L, is an irreducible representation of this group. Suppose that r in such that
this holds for some value of the bifurcation parameter R. We may write an irreducible
representation of T2 as

. 13V  kq 8 13X tky 6
O01: (21,22,23,24) = (€721, €71 25, €171 25, 1% 24)

. oy .k 9 ‘k 9 -'k 9 """"k B *
92 . (Zl, <2923 .:..4) — (6' 2 221, C' 2 22’2,6 it 22’3,6 . 224)
93 . (211321 <3, 34) = (etksaazhe-ikaaazz,etkaeszme—lksaazd)
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where k;, k9, k3 are nonnegative integers and
o 21 = 24 and 29 = 23 ifkl = (.
® 21 =23 and <9 = 24 ifk2=0.
o 2y =27 and z3 =24 if k3 =0.
® 21,22,23,24 are any complex numbers otherwise.

The action of K = Z, @ Z, @ Z, may be written as

K12 (21,2223, 24) ™ (Z4,%3,%2,%1)
K2« (21,22; <3, 24) = (231241 <1y 22)
k3 (21,22, 23, 24) = (22, 21, 24, 23)-

Note that bifurcating solutions have a well defined set of mode numbers k = (k;, k2, k3) €
N3, These are induced by the action of T2 above and are associated with pattern for-
mation that can be observed in experiments. Denote

Wi span{z1, 22, 23, 24 }
and W the subspace fixed by /. Then we have that

Wi = {(Re(z1), Re(z2), Re(z3),Re(24)) |21 = 22 = 23 = 24}
= R,

|

Note that the representation 1} of the group K +T3 is a particular case of that used in
chapter 2 in a slightly different setting: single mode bifurcations of reaction-diffusion
equations with Neumann boundary conditions on n-dimensional rectangles. By finding
an 1somorphism between Wi and ker L, we will be able to use here all the results

obtained in chapter 2.

Theorem 18 Assume that the translation invariant solution u = 0 of &, = 0 un-
dergoes a codimension one bifurcation with mode numbers k when the parameter R ts
increased from zero. Assume also that this occurs for some value of r such that ry # r,.

Then
1. In the extended problem, ker L, is isomorphic to V.

2. If the boundary conditions ({.2) are imposed, ker L, is spanned by u, with com-

ponents \
v; = ag[l]sin(k1&;) cos(k2€2) cos(kaa)
v = a[2] cos(k1&;)sin(k2€2) cos(kzés)
vs = ai[3]cos(k&;) cos(ka€2) sin(kaéa)
© = ai[4] cos(k1&;) cos(ke€;) sin(k3és)
p = ai[5]cos(k1&1) cos(ka€2) cos(kaéa),

where the ai{j] are real numbers depending on the mode numbers and the unfolding
parameters r.



4.4. Bifurcations with a K4+T3-Symmetric Extension SO

Proof To prove part 1 we construct an isomorphism between the two representations
of the group K+T3. For that we need to introduce explicitly a set of generators for
ker L,. In part 2 we restrict these generators to Fix(X).

1. We write 21, 22, 23, 24 as functions of the domain variables §;, &2, €3. These func-
tions will be used to generate the eigenmodes spanning ker L,.. The condition
for isomorphism is that acting on the z; as above is the same as acting on the
eigenfunctions as in section 4.3. Define

(61362563) — e'(k181+k282+k38s)

(El?E?aE{i) — o' (h181+kada=kals)

(61352153) — ei(klel"kﬁﬁkafs)

(€1, &3, €3) 1= eithibi=hata=ksts),
Let 4 be an eigenmode in ker L,. Then we say that each component of u,
belongs to a space spanned, over the reals, by the 2; as

vy € span{—izy, =12y, —123, =124}

span{—izy, —iz3,123,124}
span{—i2y,12;, —123,124} (4.5)
span{—izy,127, —123,124}
P € spa'n{zlszhz%z‘t}

and checking that the two actions are isomorphic is a straightforward calculation.

>
X
m M M

2. In order to restrict ker L, to Fix(X’) it is more convenient to write (4.5) in the
equivalent form

v1(€) € span{z(§; — fzafa) 22(61 — -3- £3),
‘Ug(f) € span zl(Ela‘f? 2163)1 (5 % ) (61:62 - %$£3)y 24(61:62 ""' %153
‘03(6) € span 21(613‘52163 - ) 32(£ 521{‘3 'g') < (61152363 #)1 24(£l$£21£3 -2

2
O(§) € span {z1(&1,62,63 — -3’-), 22(£1, €2, &3 — %),*3(51,52153 - '5'), 24(51,52,53 - %)
p(E) € Spal {21 (£1$£2’£3)a 22(51,62,63), z3(£li£2&£3)a 34(613621£3)} .

The result follows by fixing these generators by the action of " in section 4.3.
O

3(61 21£2$£3)tz4(£1 - %162!63)
)

By theorem 18, there is no loss of generality in working with the abstract represen-
tation W;. For ease of exposition the most relevant results obtained in chapter 2 will
be reproduced here when appropriate. However, we should not forget the aim of this
chapter: to see how the abstract settings of the previous chapters apply to a concrete
physical problem. This is why at some points we go back to see what is happening in
the Bénard problem.

Before proceeding to bifurcations of higher codimension we denote

Vi = span{u},

which, we recall, is ker L, when the single mode k& bifurcates from ¥ = 0 and the
boundary conditions (4.2) are imposed.



4.4. Bifurcations with a K+T3-Symmetric Extension 81

4.4.2 Simultaneous Bifurcation of Three Distinct Modes

Now assume that r = r; is such that, by increasing the parameter R from zero, we cross
a critical value R., for which three distinct modes k, I, m € N°® bifurcate simultaneously
from u = 0. Then, with the boundary conditions (4.2), we have

ker L, = Vi Vi@ Vn. (4.6)

In the associated periodic boundary value problem, ker L, 1s isomorphic to IVk oW e
W,. and K+T2 acts on each irreducible block as in the previous section. We may

assume, without loss of generality that
hef(k;,l;,m;)=1 for 1<£5<3. (4.7)

Otherwise we factor out the kernel of the group action and take it into account at the
end when interpreting the results. Now (4.6) is isomorphic to

. Fix(K) = W,eoW, oW, = R>.
We define
A = R-—R,

so that the bifurcation occurs at A = 0. We want to know what are the symmetry
constraints imposed on the bifurcation equations

f(z,y,2,A)

where f maps R? X R onto R°.
As in chapter 2 we denote by N the subgroup Ny 3s(K)/K, which is the normalizer

of K in K4T3 factored by K. The group N is isomorphic to Z; ® Z; & Z2 and the
mapping f must be equivariant under its action. As in section 2.5, the action of the
normalizer N on W, @ W; @ W,, is generated by translations of = along each of the
directions chosen to generate T°

(2,9,2) = ((=1)%2,(=1)"y, (~=1)™2)
(.'L', yvz) = ((—l)kzx?(_l):zyi (_l)mzz) (4'8)
T3 - (:L‘, y,Z) — ((_l)kaz,(_l)fsy,(_l)maz)_

Note that by assumption (4.7) all the 7; act nontrivially and depending on the parities
of the mode numbers, one or two of them may be redundant. Therefore we have that
N factored by the kernel of its action is isomorphic to

e Z, if one and only one of the 7; is redundant.
o Z, ®Z, if two and only two of the 7; are redundant.

o Z; ®Z, P Z, if all 7; are nonredundant.

It can be shown that if V factored by the kernel of its action is isomorphic to Z;®Z 202
then the mapping f is a generic N-equivariant and the form of the bifurcation equations
is easy to obtain.
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Theorem 19 Assume that the solution u = 0 of the Boussinesq equalions undergoes a
simultaneous bifurcation of the three modes k,l,m € N? when a shift A of the Rayleigh
number crosses zero. Assume that this happens for some value of r such that ry # r,.
If all ; in (4.8) are nonredundant then the form of the reduced bifurcation equations is

f1(31y131’\) =az =
fz(ms Yy <y /\) - by = ( (4-9)
fa(xays <y '\) =cz = 0

where a, b, c are functions of £2, y?, z* and .

' r
Proof If all 7; are nonredundant, the problem has* Z; @& Z; @ Z;-symmetry. It is
easy to see that the invariant functions are all the even functions in z,y,2. Then the
equivariant mappings are obtained as in theorem 11, chapter 2 and the result {follows.
O

In appendix A the normal form of system (4.9) and its universal unfolding are given.
Tables of nondegeneracy conditions and branching equations are obtained. In section
4.6, a Liapunov-Schmidt reduction is performed. This reduction gives the values of
some low order derivatives of the coefficients a,b,c. In this case derivatives up to
third order are enough. Then, the tables in the appendix will be used to obtain the

bifurcation diagrams.
If the action of IV has a nontrivial kernel the problem is a bit more subtle. In this
case the periodic extension induces extra symmetries. In chapter 2 we deal with this

problem in three steps:

1. Impose explicitly the constraints on T>-invariant monomials.

2. Restrict these constraints to Fix(/') and use an algorithm to obtain a minimal
set of generators for the restricted K +T3-invariants.

3. Generate the restricted K'+T3-equivariants by using the result of 2 in theorem
11.

Then the restricted K'+T3-equivariants are generated by the result of step 3 modulo
the ring of invariants generated by the result of step 2.

4.5 Bifurcations with a K+S,+T3-Symmetric Ex-
tension

The notion of codimension depends on the symmetry of the problem and, by theorem
17, the condition r; = r, imposes an extra S,-symmetry. Under this condition, the
unfolding is being restricted to one parameter and codimension three bifurcations are
no longer generic. In this diagonal of the r-space, bifurcations are expected to occur
in regions as follows:

¢ Codimension one along lines.
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¢ Codimension two at isolated points.

As in section 4.4 we begin with a brief description of codimension one bifurcations.
More attention will be concentrated on simultaneous bifurcations of two distinct modes
by increasing the Rayleigh number R {from zero. In appendix B we unfold these bifur-
cations with the diagonal of the r-space and then break the S;-symmetry with the a
parameter transverse to this diagonal.

As in section 4.3, by reflecting across the boundaries any solution of the problem
®, = 0 satisfying the boundary conditions (4.2) we construct another one consisting of
the same equation and periodic boundary conditions on a larger domain. The second

problem is invariant under an action of the group K+S,+T3. By theorem 17, the
solutions satisfying the boundary conditions (4.2) are in one to one correspondence
with those of the periodic boundary value problem that are fixed by the action of K.

4.5.1 Single Mode Bifurcations

Now the solution u = 0 undergoes a single mode bifurcation with K +S;+T3-symmetry
when ker L, is an irreducible representation of this group. Assume that this holds for
some r when the bifurcation parameter R crosses a critical value. As in section 4.4,
bifurcating solutions have a well defined set of mode numbers k € N°. Let the group

S, act on the mode numbers as
S . (klikh kS) L (kh klakS)'

By noting that S, acts trivialy if and only if &, = %k, we construct an irreducible
representation of I{+S,+T3 as

o Wiifky =k,
o Wi W, if ky # K,

where 1V, is as in section 4.4. On the other hand, when a solution with mode numbers
k satisfying ®, = 0 and the boundary conditions (4.2) bifurcates from u = 0 we have

that

o ker L, =V if by =k

o ker L, = Vi @ Vi if ky #£ ks, \
As in section 4.4 it can be shown that ker L, is isomorphic to

o Fix(K)=W,=Rif by =Kk

o Fix(K)=W, Wy =R?*if &y # &,

and we have the tools necessary to proceed with a more detailed study of higher
codimension bifurcations.
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4.5.2 Simultaneous Bifurcation of Two Distinct Modes

Assume that r = r, is such that, by increasing the parameter R, we cross a critical
value R., for which two distinct modes k,I € N°* bifurcate simultaneously from u = 0.

Then, if the boundary conditions (4.2) are imposed we have that
seker L. =V.eoViifki=kyand [ = [,
sker L, =V.,aVi@V,if ky = k; and’ly # 1,
sker L, =V, @Vy @V @V if ky £ kg and 1) £ 15,

By analogy with the previous section we construct a direct sum of irreducible repre-
sentations of the group K+S;+T> which subspace fixed by K is

¢ FIX(I{) ‘Vk D ‘V; R2 if Ll = Lg and Il — 12
o Fix(K)=W,W, oWy = R3if ky =k, and Uy # [,
¢ FiX(I{) —_ le D IV,}; D ‘Vz D IV,: — R4 if kl 75 kg and 11 7{ 12.

Note that as explained in section 4.4.2, there is no loss of generality in assuming that

th(kla k?slleZ) =1
th(k3, 13) = 1.

As in section 4.4 it can be shown that, when the boundary conditions (4.2) are imposed,
ker L, is isomorphic to Fix(/\') as above. From now on, without loss of generality, we
work with Fix(J) so that several results of chapters 2 and 3 apply directly. Once more

we define
A\ = R- R,

so that the bifurcation is located at A = 0. We want to know what are the symmetry
constraints on the bifurcation equations

f(z,y, )

where f maps Fix(K) x R onto Fix(K).

By analogy with section 4.4 we denote by N the subgroup Ngis,41s(K)/K and
the mapping f must be equivariant under its action. As we will see below, f is not
always a generic N-equivariant. In order to write explicitly the action of N on Fix(K)
we need to consider separately three distinct cases.

(a) k‘l — kz and 11 = 12

This case reduces to that of 3-dimensional rectangles described in section 2.4. The
results are reproduced here to make this chapter complete. The group NV is isomorphic



4.5. Bifurcations with a K+S;+T3-Symmetric Extension 83

to Z, @ Z, and its action on Wi @ W, 1s generated by translations of = along each of
the directions chosen to generate T°

n: (z,9) ~ ((-1)%2,(-1)"y)
3t (z,y) = ((-1)2z,(=1)"y).

The translation 7; is omited because it acts as 7;. Note that all 7; act nontrivialy and
some of them may be redundant. In fact, as in theorem 5, we have that /N factored by

the kernel of its action is isomorphic to

o Z, if all k; have the same parity and all /; have the same parity.

o Z, @ Z, otherwise.

We proceed by giving a general form for the bifurcation equations.

Theorem 20 Assume that the solution u = 0 of the Boussinesq equations undergoes

a simultaneous bifurcation of the two modes k,l € N® when a shift A of the Rayleigh
number crosses zero. Assume that this happens for some value of r such that ry = rs.
If by = kg and 1y = 13 then the form of the reduced bifurcation equations ts

1. If all k; have the same parity and all l; have the same parity

filzyy,A) =az+cz™ly* = 0

falz,y,A) = by + dz'y*? = 0
where k = maz;k; and | = maz;l;.
2. Otherwise
filz,y,A)=az = 0
fa(z,y, ) =by = 0
where a, b, c,d are functions of %,y and ).
Proof See section 2.4. | C

(b) kl = kg and 11 7£ 12

In this case the group N is isomorphic to Z,; @ D4 and its actionon W, @ 1V, @ 1V, is
generated by

i (2,91,92) = (1), (=1)"y1, (-1)"y,)
S (37, Y1, UQ) = (31 Y2, yl) (4'10)
3t (z,y1,92) = ((=1)%z,(=1)By1, (=1)"y2).

Note that the translation 7, is omited because it acts as s7ys. As before, one of these
generators may be redundant. By inspection on (4.10) we see that N factored by the
kernel of its action 1s isomorphic to
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o Z,®S, if allk; have the same parity and all I; have the same parity
or ky,k; + 1 have the same parity and 1, 13,13 + 1 have the same panty.

o Z:®7Z,®S; if allk; have the same parity and 1,102,013 + 1 have the same parity
or ki, k3 + 1 have the same parity and all /; have the same parity.

o D, if 1,13 + 1 have the same parity and k3 is even.
o Z,®dDy, if ly,l; + 1 have the same parity and k3 is odd.

It can be shown that if NV factored by the kernel of its action is isomorphic to Z; & D4
then the mapping f is a generic N-equivariant and the form of the bifurcation equations

is easily obtained.

Theorem 21 Assume that the solution u = 0 of the Boussinesq equalions undergoes
a simultaneous bifurcation of the two modes k,l € N° when a shift A of the Rayleigh

number crosses zero. Assume that this happens for some value of r such that ry = r;.
If ly,1; have different parities and k3 is odd then the form of the reduced bifurcation

equations s

fl(xsyhy% A) =azr =0
fa(zyy1,92,A) = (b+ cb)yr = 0 (4.11)
f3(xa Y1, Y2, /\) = (b— 65)y2 = ()

where a,b,c are functions of 22, y? + y2, (y2 —y?)? and A; and § = y3 — y}.

Proof The action of Z, generated by 7, implies that f; is odd in z and f;, f5 are
even in z. Terms involving y;,y; are determined by the action of D4 generated by s, 73.

See Golubitsky et al. [11], chapter XVII, section 4. O

The normal form for system (4.11) together with the universal unfolding that keeps
the symmetry are given in appendix B. Tables of nondegeneracy conditions, branching
equations and some bifurcation diagrams are obtained. Then the S; symmetry is

broken with an other unfolding parameter.
If the action of N has a nontrivial kernel, a general form for the bifurcation equations

cannot be given. The method for finding the generators of the restricted invariants and
equivariants splits into five steps:

1. Impose explicitly the constraints on T°-invariant monomials.

2. Restrict these constraints to Fix(K) and use an algorithm to obtain a minimal
set of generators for the restricted T>-invariants.

3. Generate the restricted T3-equivariants by using the result of 2 in theorem 11.

4, Symmetrize the result of 2 over S, to obtain the restricted K +S;+T3-invariants.
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5. Symmetrize the result of 3 over S, to obtain the restricted K'4S;+T3-equivariants.

Then the restricted &X' +S;+T3-equivariants are generated by the result of step 5 mod-
ulo the ring of invariants generated by the result of step 4. Now we can justify the
statment above that a general form for the bifurcation equations cannot be given: the
method for obtaining them involves an algorithm. Thus, we have to work case by case

if the action of the group N has a nontrivial kernel.

(C) kl # kg and Il 7,'5 12

In this case the group N is isomorphic to Z; @Dy and its action on Wiy @W 1V Wy
1s generated by

T (T1,72,¥1,Y2) & ((“l)klxl,("l)k’xm(“l)l’yh("'l)lzyz)
S . (331,2?2,3/1, yz) > (1'21 L1, y?syl)
T3 . (I1&$2ayls y2) — ((_1)k3x11(_1)k33:21(—l)hyh(-l)’ay?)'

As before, N factored by the kernel of its action is isomorphic to some normal subgroup
of Z2® D4 containing S,. Whatever parities the mode numbers have, a general form for
the bifurcation equations cannot be given: we need to follow the steps 1 to 5 as in the
previous case to compute the generators of the restricted invariants and equivariants.

4.6 Some Generalities About the Liapunov-Schmidt
Reduction

This section gives a description of the Liapunov-Schmidt reduction as in Golubitsky
and Schaeffer [28]. Then we apply it to steady-state bifurcations of the family of
operators @, parametrized by r € R? satisfying the boundary conditions (4.2). This
procedure projects the dynamics onto the kernel of the linearized operator L,. Denote

X = (CHQ))
y = (C°(Q))
The operator |

D: X XRXR? — Y
(u,R,7) - &.(u,R)

in section 4.2 is a smooth C* mapping and R,, r. are chosen such that the derivative
L = (d®)(o,R, r.) is a Fredholm operator of index 0. Substituting

r—=p+re

R— A+ R,

we say that a bifurcation for the parameter X occurs at p = 0 and A = 0 if L has
a nontrivial kernel, which will be assumed latter in all applications. Because L 1s
Fredholm, 1t has a finite-dimensional kernel. We choose a basis for ker L and write

~ker L = span{uy,...,u,}.
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Also, range L has finite codimension and we may write
(range L)* = ker L*,

where L* is the adjoint of L. Now, L having index 0 means that ker L and ker L*have
the same dimension. So we choose a basis for ker L* and write

ker L* = span{uj,...,u,}.
We may decompose
X = ker Lo M (4.12)
Y = N ®range L. (4.13)

Let E be the projection of ) onto range L and write the equations ®(u, A, p) = 0 in
the equivalent form

E®(u, A, p)
(I - E)‘I)(u, ’\a P)

0 (4.14)
0 (4.15)

where I is the identity on ). Note that I — E is the projection of )Y onto N = ker L*.
By decomposition (4.12) we may write any u € &’ as

n
U = Za:_,-uj + w
=1

where w € M. Denote z = (z4,...,2,) € R* and U = (uy,...,u,). By the implicit
function theorem, equations (4.14) may be solved as a function w = W(z, A, p). Thus
there exists a function

W: ker L xR — Af

such that
E®(z.U +W(z,\ p),A\,p) = 0.

Substituting u we make the projection I-E by using the basis chosen for ker L and get
the so called Liapunov-Schmidt reduced mapping

f: ker L xR xR? — ker L*

fi(z, Ay p) = (u},@(:v.U+ W(z, A, p), A p)),s

for 1 < j < n. Note that the formula for f is not explicit: it depends on the implicitly
defined function W. However, the derivatives of W can be expressed in terms of ¢ and
we can compute terms of the Taylor expansion of f. By using the symmetry constraints
described in the previous sections we see which terms of the expansion we need in order
to determine the bifurcation equations.
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4.7 Basic Tools

The aim of this section is to extract some information from the Boussinesq equations
(4.1) with boundary conditions (4.2) so that we will be ready to perform Liapunov-
Schmidt reductions in the following sections. In section 4.7.1 we locate bifurcation
points in the parameter space. Section 4.7.2 is concerned with symmetries of the
linearized operator L, that will simplify the calculations.

4.7.1 Location of Primary Bifurcations

Here we identify parameter values for which there is a bifurcation from the solution
u = 0 of ®, satisfying the boundary conditions (4.2). So we want the values of R such
that L.(u, R) has a nontrivial kernel. By theorem 18, associated to any bifurcating
solution is a set of mode numbers k = (ky, k2, k3) € N® and an eigenmode u; with
components

v1 = ai[l]sin(k1€1) cos(ky€2) cos(kaés)
vy = ai[2) cos(kiéy)sin(ke€;) cos(kaéa)
vy = ai[3]cos(ké,) cos(h2€3) sin(h3é3)
O = ax[4]cos(k1€y) cos(k2€z) sin(k3€3)
p = a5 cos(k1€;) cos(kqa€2) cos(kaés),

where the ai[j] are real numbers depending on the mode numbers and the unfolding
parameters r. As in section 4.4, we denote

Vk = span{uk}.
Let r be any point in the unfolding parameter space. By solving

L. (ux,R;) = 0, (4.16)

we calculate the critical Rayleigh number R, and the coeflicients a; of the eigenmode.

By denoting
L2 2

72
the solution of (4.16) is
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As a simplification of notations, the unfolding parameters r have not kept as a subscript.
However, we remark the dependence of a; and u; on r. From now the dependence on
r should be seen implicitly on the mode numbers.

As a tool for the Liapunov-Schmidt reductions in latter section we have that when
R = Ry, the function u} with components

ki .

v; = ;—3-sm(klfl)cos(kgfg)cos(kafg)
kb _

vy = '1'_":'COS(klfl)Sln(szz)cos(kafs)

> k3 cos(ki&1) cos(k2€2) sin(k3é3)
(Ri — Af) cos(k1€1) cos(kz€2) sin(k3éa)

~

p* = kscos(ki€;)cos(ka€a) cos(ksés)

O
% W
|

is an eigenmode of the adjoint operator L;. We keep also the notation

Ve = span{u.}.

The graph of Ry is a folded surface with minimum

pin 2T

along the curve
k2R3 01,
—— -y —_— - N » . 118
ri T rs 2L3 (4.18)

From (4.17) we see that R™" increases very fast with k3. From (4.18) we get that
ky = k3 = 0 when k3 = 0. Thus, the natural candidates to primary bifurcations by
increasing the parameter R from zero are modes such that k3 = 1. For such sets of
mode numbers, the curves R{™™ are projected in the 2-dimensional unfolding parameter
space as
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The unfolding parameter space is divided into regions according to the mode that bifur-
cates by increasing the Rayleigh number from zero. The result, obtained numerically,
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4.7.2 Ss-Equivariance of the Linearized Operator

Let the group S; act on the unfolding parameters r and A’ as in previous section. By
making the only generator s act on the set of mode numbers £ as

sz (kiykg,ks) v (Kayky, k3)

we consider implicitly an action of s on r. We observe that the solution u; of L,(u) =0
calculated in section 4.7.1 i1s S,-equivariant

us(sf) = sur(§).

This suggests another result concerning a symmetry of the linear operator L,. Let the
group S, act on the operator L, as

s: (L.(1), L+[2], L+ [3], L+ [4], L,[5]) = (L+[2}, L+ (1}, L+ (3}, L [4], L+ [5]).

This group action is the basis for the proof of the following

Lemma 12 Let w € (ker L,)* be a solution of L.(u) = b where b € ) is S;-
equivrariant. Then w ts S;-equivariant.

Proof The equation L,(u) = b has a unique solution in (ker L,)*. Let w(§) be this
solution

L (w(¢)) = b(¢). (4.19)

We claim that sw(s€) is a solution of the same equation and by uniqueness it must be
equal to w(€). This gives the equivariance that we want

w(sf) = sw({).

To prove the claim we observe that

L (sw(sf)) = b(s§). (4.20)

Now a direct calculation shows that the operator L, commutes with the action of S;
as \s

Ly(sw(s§)) = Lr(w(())
and by equivariance of b(£) we have that
b(s§) = sb({)

where s acts on b by permuting the first two components. Therefore, equation (4.20)
1s the same as (4.19) and sw(s€) is a solution. O
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4.8 Interaction of Three Modes in a Box with Rect-
angular Cross Section

Assume that r = r. is such that three solutions with mode numbers k,l.m € N3
bifurcate simultaneously when the Rayleigh number is increased across a critical value
R = R.. As in section 4.7 we have that ker L and ker L* are 3-dimensional spaces as

ker L = ViV Va
ker LI = VoV V..
Let
k (0,1,1)
!. — (lslsl)
m = (2,0,1).

A calculation shows that these modes bifurcate simultaneously at two points in the
unfolding parameter space. These points are approximatly as

Critical point 1 Cnitical point 2
e * 2.634 2.992
2. 1.521 1.496

and the critical values of the bifurcation parameter are approximatly

Critical point 1 Critical point 2
R, 6.797 6.778

The Liapunov-Schmidt calculations will be performed for the two points in parallel
since they both satisfy the requirements of the procedure described in the sequel. As
in section 4.4.2, the bifurcation equations obtained by a Liapunov-Schmidt reduction
have Zy @ Z; @ Z,-symmetry. Thus, up to 3rd order they are of the form

fi = (an, N1 +an, N2 + anyNa + axA + a,, py + a,,p3)z = 0
fa = (bnyNy + by, Ny + byy N3 + by + by, p1 + bypp2)y = 0
f3 (CN1 Nl + CN2N2 + CNaAra + C,\A + cPl P1 + szpg)z — 0

where

and
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According to Golubitsky and Schaeffer [28] the coefficients are

1
anN, = E(u:i V;ck)
1, .
an, = E(uki ‘/H)
1
anN, = E(u:! ‘/km)
ay = (uyg, (ddy).ux — dzq)(uk, L'IE(I)'\»
Qp; = (u;:a(d(ppj)'uk -dzq)(uk!L—lE@P;))a J=12
1, .
by, = E(ul ’ V“t)
1
bN: — E(”?, WI)
1, .
sz - "2"(1"“ Vlm)
by = (uy, (dPy).u; — d2¢>(u;,L"1E<I>,\))
by, = (ur,(d®,;).u — d*®(uy, L"IE(I)M)), 1=1,2
1
tyy = E(u;n Vink)
1, .
CN; = 'é'(um! me)
1
CNy = '2'('”:1’ Viam)
cx = (u,,, (d®y).u, — d2®(um, L-IE(I’,\))

co; = (up,(d®y,)um —d*®(un, L7'ED, ), j=1,2.

where E is the projection onto range L and, taking into account that the initial equa-
tions have only quadratic nonlinearity, we have that

Vie = -3d2<I)(uk, Wik )
VL; = -d"’@(uk,wu) — 2d2¢>(u;,w“)
Vim = =—d*®(up, Wmm) = 2d°®(Uupm, Wiy )
VieR = —dsz(u;,wkk) — 2d2¢’(uk,wk;)
Vi = =3d°®(uy, wy)
\ Vim = —d*®(up, wpm) — 2d°® (U, Wim )
mG = —d2¢>(um, wkk) — 2d2¢(uk, wkm)
Vi = —=d*®(up,wy) — 2d*®(up, wim)
Viem = —3d2‘~I>(um s Wnm )

where

Wi = L_lEdz‘I)(uk,ﬁuk)
Wi = L"Ed’@(uk,u;)
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S
3
|

= L“lEdsz(uk,um)
wy = L-lEdz@(ul,u;)
= L'Ed*®(u;,um)
Wnm = L-lEdQ@(um,um).

&
3
|

4.8.1 Calculation of ay,,bn,,cn,

In this section we give a detailed description of the calculation of an,. The coeflicients
by, and cy, are obtained immediatly by substituting the mode numbers & by { and m
respectively. The main technical difficulty is the calculation of wx. We reserve part
(a) to deal with this problem. In part (b) we explain how to use Maple to do the rest

of the work.

(a) Calculation of Wik

The equation to solve in order to calculate wyy is
Lwi) = Ed*®(ug,up). (4.21)
In order to simplify the notations we denote

Ar = sin(ké&) cos(k2€2) cos(hzés)

Bi = cos(ki&;) cos(ky€3) sin(haés)
Cr = sin(k&;)sin(ky€;)sin(kaés)

Dy = cos(k1€;)cos(kqyéy) cos(kaéa)
E, = sin(k1§1)sin(k€z) cos(kaéa)

Fr, = sin(k1€;)cos(ky€;) sin(kaé3).
Recall from section 4.7 that
(ak[l]Ak,ak[2]A,k,ak[3]Bk,ak[4]Bk,ak[S]Dk)

where after calculating a; explicitly we observed the equivariance under the group S;
as

a,k — Sak-

Now we have

201 (up, up) = —202[1] (%ak{l}Aka — %m["]AsLEk - A3‘?’«:[3]3&5&)
d*O[2)(up,ur) = —26:;[2] (é—z—ax["]A,ka - 'I:-:*ak[l]AkEk - Laak[3]BkFak)
o) = ~228 (Lafm0, - Zaflasri - Fallan)
d°®[4)(ur,ur) = —2ax[4] (kaak[BIBka — -’:zak[‘)]A,kF,k —_ hak[l]Aka)

d2¢’[5](uk,uk) 0.
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A direct calculation shows that

(u},d’@(uk,uk))

for § = k,l,m, which means that d*®(ux,u;) € range L. Recalling that E in equation
(4.21) denotes an orthogonal projection onto range L, this equation is the same as

L(wi) = d*®(up,us). (4.22)

Also by direct calculation we have that d®®(u,,u;) is S,-equivariant. Thus, by lemma
12, the solution w;: of system (4.22) must be such that

w,k,k(sf) = swkk(f). (4.23)

Maple does not seem to solve PDEs and system (4.22) is very hard to solve without
the help of some computer algebra. The approach we take here is to write wy; as a
polynomial function of Ag,..., Fx. The coefficients in this polynomial are the solution
of a system of linear algebraic equations. Denote

rk[]'] — (Aka:AakEh Bka; Cszk)

.Xk[.?.] = (AsDy, ArEy, By Fy1, Ci F})
Xi[3] = (BiDyy Ak Fyry A Fry Cr EL)
X:[4] = (BixDiy At Fyry ArFry Cr E)
Xi[5] = (A sLtBMCkakaEthiF )

and note that d?®[j](ux,ux) is a linear combination of the components of Xj[7]. More
precisely, by denoting

be[l] = 9“;[1] (———ag[l], “2ax[2), ksa;,[3],0)
be[2] = 2“;[2] (_%akp],ﬂak[l] kaax[3), )
be[3] = 2“;[3] (—LgaL[S] -—ak[‘)],—a; ],o)
beld] = 2ak[4]( ksa[3), —ak[‘?] —-ak[l] o)
bi[5] =(mooommmm,

we have that

d?0[5)(ur, ux) = be[§]. Xi[5].

Writing wsi[7] linearly on the components of X;[7] and substituting on (4.22) we get
a system of linear algebraic equations on the coefficients. By doing this we arrived at
the conclusion that the coordinates X are not convenient: the system we got is not
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determined and Maple cannot solve it. In order to change coordinates we introduce
the matrices

1 1 1

1
111 4 (P P
A=t1 1 o1 | 2nd P""(Pl -Pl)
1

-1 -1 1
A better coordinate system is

Gli] = PXili] for1<j<4,
Yi[5] = PXi[5).

Note that this change of coordinates is orthogonal. In fact we have that

1 1

.Pl-l = ZPI and P;l — 'ng.
Let
d*®[j](uk,ux) = ql[j]-Ya[y]
wili] = peli]Yills (4.24)
where

a[7] = Pribj]

and p; are the coefficients that we want to calculate. As another symmetry observation
we have that Y} 1s S;-equivariant as

Yak[I] — Yk [2]
Y[3,2] = Yi[3,3]
Yie[4,2] = Yi[4,3] (4.25)
Kk[512] = "Yk[5:8]
Yi[5,4] = =Yi[5,6],

where Yi[i, j] represents the jth component of Yi[i]. A simple reasoning says that
wyr written in the coordinates Y} satisfies the equivariance (4.23) if and only if the
coefficients p; are constrained by the symmetries (4.25). For the same reason gy satisfies
the same symmetries.

Substituting (4.24) in system (4.22) we get a system of linear algebraic equations
in the form

LkPk = Gk,

where ¢ is already known and by permuting rows and columns, the matrix L, may be
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written as

-
-
Il

e I e Y e Y e Y e i e B e BN e

where the matrices along the diagonal are

L[1]

L.[2]

Li[3]

Lk[4]

L[5]

1
Y

I
R

[l ’

0 0 0 0 0 0 0
L(1] 0 0 0 0 0 0
0 0 Lif2] O 0 0 0
0 0 0 L.3] O 0 0
0 0 0 0  Li[4] 0 0
0 0 0 0 0 Luf4] O
0 0 0 0 0 0  Li[5)
k3 k
~4% 4k
kp 0
T2
—4 (4% + %) 0 —gk
1 2 12 12 kl
0 ~4(F+3) -4k
.5 Lk 0
b | ra
—4k3 1 4k
R -4k O
kA 0 0
~4 (5 + k3) 0 0 4k
0 R ~4 (3 +4) 0
% ks 0 0
~4A; O 0 0 —43
0 —~4 AL 0 0 -4;:
0 0 —~4 A 1 Y
0 0 R —4A,; 0
kb ke ka 0 0
Ty ra

Pk[5, 1]

(p«[2, 1], P[5, 2])

(px(1,2], Pr[2,2], pi[5, 7])

(px[3,1], P[4, 1], P& [5, 3])

(px2,3), Px(3,2], P& 4, 2], pk[5, 4])
(pel1,4), & [21 4], px 3, 4], pk[4, 4]1 Dk [51 5]):

and we let di be the same reordering of ¢g;.. Now systems of the form

L[jleali] = dul]

98
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are redundant since c,:[j] can be obtained by conjugacy of ci[j]. So we are restricted
to solve the systems

Li[jlexls] = di[j]

for 1 < 7 <5, which may be easily solved by hand. We may also ask Maple to solve
these systems without worying about any technical problem since the determinants are
nonzero. All coefficients are now determined apart from pi[5,1] which can have any
value. This 1s not surprising if we see that

Yi[5,1]

Thus when we differentiate wy; with respect to any £;, the coefficient pi[5,1] will not
appear. Finaly we have w;; and we can proceed with the rest of the calculation of ap,.

(b) The rest of the job with Maple

Now, Maple has no problem in doing the rest of the job. Recall that what is left is the
computation of

‘/kk = -—3d2¢'(uki wkk)i

where u; is one of the eigenfunctions generating ker L and wy is what we have just
calculated. Given the values of u; and wi, that we know at this point, Maple computes
Vir according to the formula above. Then we have one of the coefficients of the reduced
equations by computing

1
uka VU:)

= 6./ / / uy.Vidrdydz,

where the dot is the usual dot product in R® and we recall that u} is one of the
eigenfuntions generating ker L*. Two of the remaining coefficients of the bifurcation
equations are obtained by substituting the mode numbers k in the formuli above by [
and m respectively. The approximate results are as follows

an,

Critical point 1 Critical point 2

A 1.5290 0. f04 3 1.45]0-—0676 3
N — ——'—,r—;ﬂ'
4.148 _3 2.816 _3

CN, -2 et

4.8.2 Calculation of ay,,an,, bn,, bn,, Ny, bn,

This section gives a detailed explanation of how to obtain ay,. The other five coefli-
cients are obtained automaticaly by substitution of mode numbers. Again we reserve
part (a) to deal with the main technical difficulty: the calculation of wy;. In part (b)
we show how Maple can do the rest of the work.
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(a) Calculation of wy;

Now we want wy,; satisfying the equation

L(wy) = Ed*®(u,u). (4.26)
Recall that
U = (ak[l]Ak,ak[2]A,k,ak[3]Bk,ak[4]Bk,ak[5]Dk)
U = (a;[l]A;,a;[Q]A,;,a;[3]B;,ag[4]B¢,a;[S]D;),

where a; and a; are S,-equivariant. By analogy with the previous section we denote

Xkl[ll — (AIDka Aleka Bth ClFaka Ath AakEh Bth CkF:l)
Xul2) = (AuDy,AiEy, BiF,;,C1Fy, A, Dy, ALEy, B Fy, Ci Fr)
XH[3] — (BleaAsIFaks Aka'! CIEksBleiAakFal1AkE$ CkEI)

Xuld] = (BiDxyAsuFsxy AtFy,C1Ex, By Dy, A Fa, AxF1, Cr EY)
Xkl[5] (AlAkv AsIAska BlBka Clcki DJDJH E;Ek, F}Fk, F:I-Fak)-

Denote also

aull] = Elr-(--’f-:-ak[l]a,[lj,-’f-?-ak[l]a,[z],kaak[l]a,[s],o)
l2) = 1 (-Eauplaf2) Lazal] kel2lals)o)
a3l = -};( kaak[3]a;[3],—;-ak[S]a;[Q],—-l-ak[3]a;[1],0)
anfd] = ( kyar[4]a{3], —-ak[4]a;[...],—ak[4]a;[1],0)

o

=

o
|

(0,0,0,0),
and finally define
bulil = (awls], anls]).
Now we have that d?®[5](ux,u;) is a linear combination of the components of X[j] as
O[5 (ur,w) = bulf]. Xulj). t

A direct calculation shows that the result of this dot product is in range L and then
equation (4.26) becomes

L(wk;) —— d2¢(uk,u;). (4.27)

It can also be checked directly that d*®(u,y;) is S;-equivariant and by lemma 12, the
solution wy; of system (4.27) must satisfy the equivariance

wst(s€) = swy(€). (4.28)
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By writing wy; as a polynomial function of Ay, A;..., Fi, F; we reduce the problem to
a system of linear algebraic equations. Again we checked that X}, is not a convenient
coordinate system and we apply the change of coordinates P, defined in the previous

section. Thus we denote
Ykl[J] = B ’MU]-
and let

d2<I>[j](uk,u;)
wi[J]

qri(7]-Yulj]
Pk'l[j].}ﬁl;[j], (4.29)

where

guli] = Py lbylj]

and pi; are the coefficients that we want to calculate. Now we have that Y}, satisfies
the equivariance

Yia[l] = Yu[2]
Yieal3,2] = Yul3,3]

Y;kal[3i 6] = Yqy [3a 7]

Yia[4,2] = Yu[4,3] (4.30)
Yieul4,6) = Yu[4,7]

Yis[3,2] = =Yu[5,8]

Yiest[5,4] = =Yu|5,6).

The S,-equivariance of d*®(uy,1;) and wy; imposes the symmetry constraints (4.30)
on the coefficients gi; and py; respectively.

Substituting (4.29) in system (4.27) we get a system of linear algebraic equations
as

Lupn = qu,

where g;; is already known and by permuting rows and columns, the matrix Lj; may
be written as

Lull] O 0 0 0 0 0 0
0 L,k,:[ll 0 0 0 0 0 0
0 0 Luyf2] O 0 0 0 0
I, = 0 0 0 Lia[2] 0 0 0 0
Mo 0 0 0 0 Ly3] o© 0 0 |’
0 0 0 0 0 L.f4 O 0
0 0 0 0 0 0 L5 O
0 0 0 0 0 0 0 L; [6]
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and the matrices along the diagonal are of the form

-d 0 0 0 a
0 —d 0 0 b
Lulj] = 0 0 —-d 1 c |,
0 0 R —-d 0
a b ¢ 0 O
where d = a? + b* + ¢ and
ea=-248 p=21Lande=-k+hifj=1
oa=—-§}+;{i—,b=%+%andc=k3+13ifj=2.
.a=—%—ﬁ-,b=—%—%andc=k3—13ifj=3.
oa=—%—%,b=—%—;’_§-andc=—k3—13ifj=4.
oa=.-—%+%,b=—%+%andc=k3+l3ifj=5.
oa=—%+%,b=—%+%andc=—k3+13ifj=6.

Letting cix be the reordering of p corresponding to the permutation of columns of Ly
we have that

%

cri1] (pra[1, 7], P2, 1], Pra[3, 7], PRa[4, 7}, P[5, 2))
Ckl[2] (pkl[l’5]!Pkl[2$3]1pk1[312]$pk![412]vpkl[5i4])
cal3] = (pw(1,2],p1[2,2], pui[3, 5}, Pxi[4, 5), P[5, 7))
CH[4] (Pkl[l ) 4]$ Pkt [2! 4]& Pk1[3t 4]s pkl[‘d‘, 4] ’ pk1[5, 5])
cxi[5] (Prill, 6], pa[2, 6], pra[3, 1], Pra[4y 1], Pri[5, 3})
cul6] = (pull,8],pu[2,8], pu(3,8), pi[4, 8], puil5, 1)),

and we let d; be the same reordering of ¢;. By eliminating the redundant blocks of the
form L,is[7] we are restricted to solve the systems

Lulslenl] = dul]

for 1 < j <6, which is a reasonably easy calculation with or without computer algebra.
\.

(b) The rest of the job with Maple

Now, Maple has no problem in doing the rest of the job. Recall that what is left is the
computation of

Vi = —d2<I>(uk,wu) —2d2¢'(u;,wk;),

where u;,u; are two of the eigenfuntions generating ker L, w; was computed in section
4.8.1 and wy; is what we have just calculated. Given the values of u;, u;, wy and wyy,
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that we know at this point, Maple computes V;; according to the formula above. Then
we have one more coefficient of the reduced equations by computing

anN, = E(u;a VH)$

where we recall that u) i1s one of the eigenfuntions generating ker L®. Five of the
remaining coefficients of the bifurcation equations are obtained by substituting the
mode numbers k in the formuli above by ! and m respectively. The results are as
follows

Critical point 1 Critical point 2
9.6760-0.142_3 9.6890—0.119 3

aN; R RN
7.693043.474 ;.3 5.002040.540 1.3

b 8733040692 .3 _8.946040.573 .3

)|

; _ 5.0940+0.386,_3 3.7130-1.092 3
N3 o 4 o T "
6.3660-1.824,_3 5.902040.540 1.3

ch — a3 T — pn n
Ny 8004940386 .3 . 4:226041.848 73

4.8.3 Calculation of a,, by, c)

In this section we describe how to obtain ay. Then the coefficients by, and ¢, come
immediately by substituting the mode numbers k£ by [ and m respectively. The calcu-

lation of ay is very simple comparing with the complication of the previous sections.
Recall that the formula i1s

an = (ug,(d®,).ur —d*®(uy, L"E‘I’,\)).

By differentiating ® with respect to A we get
(0,0,0,vs,0)%.
Since @, is a linear operator, its linearization evaluated at u; is
(d®y).ur = (0,0,0,ux[3],0).
Note that @, is odd, which implies that when u = 0 we have
¢, = 0.
All together, Bhis results say that

ay = (ug,( d@,\ ).up)

= / / / uk[4]uk[3]d:rdydz

The result evaluated by Maple is approximatly

Critical point 1 Critical point 2
a 2.752x3 2.790x°
by 1.62273 1.58573

Cx 3.244 73 2.79073
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4.8.4 Calculation of a,,,a,,,b,,,5,,,¢,,, ¢,

In this section we describe how to calculate a, and the remaining five coefficients are
obtained by analogy. Recall that the formula is

(ul, (dD,,).ux — d2®(ux, L-1E®,,)).

Differentiating ® with respect to the parameter p; we get
2 621’1 1 3p | 301

Palll = ~5%g T o T o
5,[2 = --2-%-1‘?- ;%v -

OBl = ot g

5,,4] = —%%26—(1;)-+—1—v1 o

5,5 = -;%-g-g.

By linearizing this operator about u = 0 and evaluating at u; we get

2 1
(dD,, [1])ur = (-z::kfak[l] - "a'klak[5]) Ax
ri T
9

(@02 = SHallA
(4%, [B]).ux = %klak[3]BL
(dD, [4]) . = %kfak[ﬂBk
(dD, [5]).u = --;l?-klak[l]Dk.

By inspection on the operator ®,, we see that u = 0 then
¢, = 0.
All together, the results above say that

(qu (dP,, )'uk>'

The resul!;_ evaluated by Maple for the six coefficients is approximatly

Critical point 1 Critical point 2
a,, 0 0
a,, - 8.249x° 8.66673
b,, 0.84273 0.5677°
b, 4.373rn° 4.534 73
Cp, 6.732x° 4.333x°

Cp, 0 0
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4.8.5 Normal Form and Bifurcation Diagrams

Given a set of equations f(z,A) = 0, where f is obtained by a Liapunov-Schmidt
reduction we can find the topology of the bifurcation diagram, but not the stability.
The corresponding differential equation 1s one of

(a) &+ f(z,A)=0.
(b) T = f(z,A).

In order to get information about stability we must know if our mapping f satisfies (a)
or (b). In previous sections a 3rd order truncation of f was calculated for the (0,1,1)-
(1,1,1)-(2,0,1) mode interaction on the Bénard problem. The result is a Z; @ Z; @ Z;-

equivariant as

(any N1 + an, N2 + any N3 + a)A + a, p1 + ap:P2)x
(bn, N1 + by, N + by N3 + bad + by, p1 + bpyp2)y
(e, N1 + ey, Ny + eny N3 + exXd + €5 p1 + €5, 02) 2

fl(xa Yy 2y A, 1, P2)
fz(l‘, Yy <y A& P1, P2)
fa(-’f, Yy 2, A& P1, p2)

where N; = 22, N, = y2, N3 = z%. The bifurcation parameter X is the Rayleigh number
with the origin shifted and p,, p, are the unfolding parameters that have to do with
the lengths of the domain. The coefficients a, b, ¢ are computed in previous sections by
a Liapunov-Schmidt reduction.

When p; = p; = 0, the linearization of f about the origin is

aAA 0 0
df = 0 LA 0 |,
0 0 e\

which has three negative real eigenvalues if A < 0 since ay, by, ¢y are positive numbers
as in section 4.8.3. Thus an equation in the form (a) for this particular f leads to
instability of the solution (z,y, 2) = (0,0,0). This means instability of the translation-
invariant solution u = 0 to the Bénard problem when the Rayleigh number is below
the critical value, which does not make sense physically. In the same way, we see that
an equation in the form (b) gives the correct stability.

In appendix A we analyse a normal form with Z,®Z,@®Z,-symmetry. The stabilities
are given under the assumption that the mapping f satisfies the differential equation
(a). In order to apply the results obtained to this particular problem it is enough to
change the signs of all coefficients in f and reduce the result to the equivalent normal
form.

Some of the coefficients depend of the Prandtl number o. From now on we assume
that the fluid inside the box is water, which corresponds to

o =~ 17.03.

Substituting this number in the coefficients calculated in previous sections and reversing
sign we get
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Critical point 1

Critical point 2

106

an, 11.962 12.421
an, 42,589 42.657
an, 36.111 26.371
ay ~85.328 —86.515
a, 0 0
a,, ~255.76 —268.71
b, 38.951 39.893
by, 6.6793 6.3503
bn, 22.711 15.692
b -50.294 -49.144
b,, -26.093 -17.373
b,, —~135.59 —140.38
CN, 26.935 26.371
e, 22.711 19.799
CN, 18.297 12.421
C) -100.59 —86.915
Cp, —208.75 —~134.35
Co, 0 0

In order to compute the normal form for f we apply a Z, ® Z; ® Z;-equivalent
transformation as

H(xayiz:AiPlaPQ) = Sf(-\’,A,PlyPZ) (4'31)

where

-‘Y(xa Yy <y ’\1 L1, p2) = (A.'L’, By’ CZ)

Qp, ap,

A(A,pl,pz)-—-A— ay P 1= a P2
D 0 O

S(xay':zaAaplapﬂ: ( 0 F O )
0 0 F

and A, B,C,D, E, F are positive constants. Substituting X, A and S in (4.31) leads
to

Hy(z,y,2,\,71,72) = (an, A’Dz? + aN,ABsz2 + a:'!;-s,r:,/flCaDz2 -+ a,\ADA).‘L‘

Hy(z,y,2,\,71,72) = (bnyyA’BEz?* + by, B*Ey® + by, BC?E2? + byBEX + )y

Hi(z,y,z,\,71,72) = (cn A*CFz?® + cny B*CFy? 4 cn,C3F2z* 4 cAxCF ) + )2,
where

;‘h
|
A
£
Y
Eﬁ
l
-
S
N,
S—e o’
>
+
@
"3
o~
hﬁ
| %
l
o
©
| .
Nk
—”
D
| ]
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By imposing the conditions

lan, |A®D
lbn, |B°E
len, |[CPF
lay|AD
b, |BE
leA|CF

ek ek pud ek b e

we get H in the desired form

(613:2 + n1y2 + n222 + 62/\)13
(naz? + e3y® + ny2? + e\ + )Y
(n5:1:2 + ney2 + 5532 + €6A + 7“:2)‘%

Hl(xa Yy <y AsFla FQ)

HQ(J:’ Y, 2, As Fl‘l ‘Fz)
H3(-'1', Y, 2, /\1 Fli FQ)

where

sgn(ap, )
sgn(a)
Sgn(sz)
sgn(by)
es = sgn(cn,)
sgn(c)

GG,
W N e
i

and
b

bn,ax
C)

=
|

aN,

S
|

o~
X
|

-~
i
Il

-~
o
|

-~
=
I

The unfolding parameters are

3
]
!
|._
O
K,
l
=
2
)
>
S—”’
™
-
|....
O
©
)
|
'
o
L )
O
p s
S——”’
-
~N
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By substititing the derivatives of a,b,c given above in the formulae for ¢; and n; we
get

€1 =— €3 = €5 — 1
€ =€4 =€ = -1
and
Critical point 1 Cntical point 2
o3 3.758 3.816
2 2.327 2.123
na 5.524 5.654
14 2.482 2.224
- 1.910 2,123
ng ‘ 1.700 1.771
Now the unfolding parameters are approximatly
Critical point 1 Critical point 2

) —~0.519p; + 0.302p, —-0.358p1 + 0.245p;
To —2.075p; + 2.997p, —~1.533p; + 3.106p;

Taking these numbers to appendix A, the bifurcation diagrams can be drawn directly
by reading the tables. The nondegeneracy conditions are satisfied, since by using the

notation in the appendix we have

Cntical point 1 Critical point 2
(a) ~2.758 —-2.816
(b) —-1.327 -1.123
(c) —4.524 ~4.654
(d) —1.482 —1.224
(e) —0.910 -1.123
(f) —-0.700 -0.771
(g) —-19.76 —20.57
(h) -3.444 —-3.508
(1) -3.220 —2.939
(3) —6.802 —-6.354
(k) 6.144 5.341
(1) 3.980 3.369
(m) 11.24 10.26

and they are all nonzero. In appendix A we use the signs if these constants to get all
the information about existence and criticality of bifurcating branches. Since the signs
are the same for the two critical points they lead to the same bifurcation diagrams.
From now on we concentrate on point 1. Before drawing the bifurcation diagrams we
make a convention about the labels of possible branches.
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(0) Translation-invariant solution u = 0.
‘ (1) Pure mode (0,1,1).

(2) Pure mode (1,1,1).

(3) Pure mode (2,0,1).

(4) Mixed mode (0,1,1)-(1,1,1).

(5) Mixed mode (0,1,1)-(2,0,1).

(6) Mixed mode (1,1,1)-(2,0,1).

(7) Mixed mode (0,1,1)-(1,1,1)-(2,0,1).

Now the unfolding parameter space is divided into six distinct regions according to the
order of primary bifurcations when the parameter is increased. This division is the

following

=0

Then some of these regions need a subdivision according to the order of secondary
"bifurcations. This will be illustrated when appropriate and we proceed by drawing the

bifurcation diagrams.

Region A

This region is divided into two subregions according to the order of bifurcations from the
primary branches. We show this division and then proceed by drawing the bifurcation
diagram corresponding to each subregion.
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n=rn
AZ ?2 - 0.746 ?‘l
Ay
=0
Al A
] /5/ ]
3 4 3 6
2 2

0 0
Region B
Region C

This region is divided into two subregions according to the order of bifurcations from the
primary branches. We show this division and then proceed by drawing the bifurcation
diagram corresponding to each subregion.

=-8511F, |£=0
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Cy: Cy:

Region D

This region is divided into two subregions according to the order of bifurcations from the
primary branches. We show this division and then proceed by drawing the bifurcation

diagram corresponding to each subregion.

I'2=0
D

?2 - 0201 f‘l D2

Region E
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Region F

4.9 Interaction of Two Modes in a Box with Square
Cross Section

Now we assume that r = r, is such that the two modes k,! € N® bifurcate simulta-
neously when the Rayleigh number is increased across a critical value R = R,. By
imposing the extra condition r; = r; we have that ker L is either 2, 3 or 4-dimensional

depending on the mode numbers as

1. VieViif ki =kyand | =[5

2. VioeVioVyifky =k and [} # [,

J. VioVaodVioVaif ki £k and ) # 1,
and ker L* is

1. VeV ik =kand l; =1,

2. Vo VireViif by =k and ) #£ 1,

. Viio VooVt Vyifky#kandl # 1,

where V; and V;* are defined in section 4.7.1 for any given set of mode numbers k. For
the particular case of the Bénard convection we did not find any mode interaction of
type 1. We performed a Liapunov-Schmidt reduction for a mode interaction of type
2 which gives a 3-dimensional system of ODEs. For the particular modes chosen, a
3rd order truncation is enough to determine the bifurcation diagrams and the analysis
described in section 4.8 applies directly. Further analysis of the points of type 3 is
left for further work. The reason for not doing it here is that an expansion of the
reduced equations up to 3rd order would not be enough to catch all the features of the
bifurcation diagrams and we are not techmcal‘\( prepared to go up to higher order yet.
Now we consider a bifurcation of type 2 with mode numbers

k
l

(1,1,1)
0,1,1).

(|
AN



4.9. Interaction of Two Modes in a Box with Square Cross Section 113

A calculation shows that these modes bifurcate simultaneously when the unfolding
parameters are |

rie =r3. =~ 1.687

and the bifurcation parameter is

R, ~ 7.024.

As in section 4.5.2, the bifurcation equations obtained by a Liapunov-Schmidt reduction
heve Z, @ D,-symmetry. Thus, up to 3rd order they are of the form

fi = [anyNy+an,No+axA +a,4,,(p1+ p2)]z
fa = [szNl + szNZ + cé + by A + bp1+p2 (Pl + P2) + bm-P:(Pl - P?)] U1
fa = [bN: Ny 4+ by Ny — €6+ brA + by, 4, (1 + p2) — bpy=pa(p1 — P2)] Y2
where
N, = z? Ny =yi+y3 6=y3 -yi
and
A=R—Rc P1=T1 — T, P2 = T2 —T2..

The coefficients in the formulae for f are computed as in section 4.5.2 and the result
for 0 = 7.03 (Prandtl number for the water) is

aN, =~ 10.715
anN, =~ 35.738
ay ~ =-59.780
Api4py = —55.835
bnyy = 46.241
by, = 15.643
b, ~ -—=80.288
\ bpi4py = —96.732
bpi—py =~ 96.732
c & 95.6526

In order to compute the normal form and bifurcation diagrams we apply a Z; @ Dy-
equivariant transformation

SHX, A, p1+p2p1 — pﬁ) (4-32)

H(x,ylijaA}pl +P2:pl "'"P?)
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where

X(z,y1,¥2, Ay o1 + P2, ;1 — p2) = (Az, By, Bya)
A(A) = A —

C 0 0
S(z,y1,92 A1+ p2,p1—p2)=| 0 D O
0 0 D

Qo4 p2

ay

(p1 + p2)
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and A, B,C, D are positive constants. By substituting X, A and S in (4.32) we get

Hy(z,y1,¥2, A, p1, P2)
H2($) Y1sY2, A$ 511 52)

H.?»(xv Y1y Y2, ’\a 511 52)

where

By imposing the conditions

we get H in the desired form

Hl(xa Y1, Y2, ’\a ﬁl¢ﬁ2)
H?(“’, Y1+ Y2y As ﬁla 52)
HS(xa Y1,Y2, ’\! ﬁl! 52)

where

[an, A°Cz? + an, AB*C(y? + y3) + ayAC))z

[bx, A’ BDz? + by, B?D(y3 + y3) + cB*D(y3 — y?)
+0xBDA + 51 + p2)n

bn, A*BDz? + by, B> D(y3 + y3) — ¢B*D(y; — y})

+00,BDA + 5y — pa)ya.

BD (bp1+pz - Certes bA

ax

BDb,,-,,(p1 — p2).

lan, |A°C
lax|AC
lc|B°D
x| BD

1
el e

) (p1 + p2)

[613‘2 +n1(y; +y3) + 621\] T

["23"'2 +n3(yi +v3) + €a(y; — 41) + €ad + p1 + 52] 1
[712-’172 + na(yf + yg) - 63(3/3 - yf) + €4A + p1 — 52] Y2

|

Sgn(aNl )
sgn(a,)
sgn(c)
sgn(b,)
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and
ny = |[——]an,
Cay
a
= b
n2 aNlb'\ N1
1
Ny = 'E sz.
The unfolding parameters are
o 1 A, 4+ b,\
TN (bm+pz - — ai’ )(Px + p2)
. 1
P2 = mbm-m(f’l ""‘"P2)'

By substituting the derivatives of a,b,c given above in the formulae for ¢; and n;
we get
1
~1

€1 = €3

€ = €4

and

- 8.491
3.213
2.767.

S
R R

Now the unfolding parameters are

pr = 0.663(p1 + p2)
p2 = 1.205(p; — p3).
A complete stability analysis of steady solutions of the system

= Hi(z,1,y2,2, p1,02)

n = Hy(z,y1,y2,A, p1,02)

Y2 H3(z,y1,y2, A, p1, f2)
is performed in appendix B. The results are condensed into tables giving the branches of
solutions and their criticality with respect to the bifurcation parameter A if the system

1s nondegenerate. Qur particular mapping H satisfies the nondegeneracy conditions
since we have

(a) ~ -2.213
(b) =~ 2.767

(c) ~ 1.767

(d) =~ -5.724
(e) ~ —6.724
(f) ~ —24.52
(g) =~ —26.28
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and they are all nonzero. We proceed by drawing the bifurcation diagrams for the case
when the mapping H is Z, @ Dy-equivariant. This happens when g; = 0. Then we
show the effects of breaking the S; symmetry with the parameter p;. Before drawing
the bifurcation diagrams we make a convention about the labels of possible branches.

(0) Translation-invariant solution u = 0.

(1) Pure mode (1,1,1).

(2) Pure modes (0,1,1) and (1,0,1).

(3) Mixed mode (0,1,1)-(1,0,1).

(4) Mixed modes (1,1,1)-(0,1,1) and (1,1,1)-(1,0,1).

(5) Mixed mode (1,1,1)-(0,1,1)-(1,0,1).
Now the bifurcation diagrams depend on the sign of 5; as

P1<0 p1>0

0 | 0

We proceed by breaking the S; symmetry with the parameter g;. Now the modes
(0,1,1) and (1,0,1) are no longer conjugate. In order to make the bifurcation diagrams
clear we need new labels

(2.1) Pure mode (0,1,1).

(2.2) Pure mode (1,0,1).

(4.1) Mixed mode (1,1,1)-(0,1,1).
(4.2) Mixed mode (1,1,1)-(1,0,1).

(6) Mixed mode (1,0,1)-(0,1,1).

(7) Mixed mode (1,1,1)-(0,1,1)-(1,0,1).

The unfolding parameter space is divided into six distinct regions according to the order
of primary bifurcations when the bifurcation parameter is increased. This division is

the following
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§y +0,=0 p1=p2=0

E

Then some of these regions need a subdivision according to the order of secondary
bifurcations. This will be illustrated when appropriate and we proceed by drawing the
bifurcation diagrams.

Region A

This region is divided into two subregions according to the order of bifurcations from the
primary branches. We show this division and then proceed by drawing the bifurcation
diagram corresponding to each subregion.

P1=02

A2
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Region B
B:
7
1 4.1
2.1
0
Region C
Region D
Region E
\.
Region F

This region is divided into two subregions according to the order of bifurcations from the
primary branches. We show this division and then proceed by drawing the bifurcation

diagram corresponding to each subregion.
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