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SUMMARY 

In this thesis we study measurable and topological dynamics of certain 
classes of cellular automata and multi-dimensional subshifts. 

In Chapter 1 we consider one-dimensional cellular automata, i. e. the maps 
T: P .+ PZ (P is a finite set with more than one element) which are given by (Tx)i = 

= F( xi+1, """' xi+r ), x= (xi )iEZ E PZ for some integers 1Sr and a mapping 

F: P r-1+1 
4 P. We prove that if F is right- (left-) permutative (in Hedlund's 

terminology) and 0S1<r( resp. 1<r: 5 0 ), then the natural extension of the 

dynamical system (P', B, t, T) is a Bernoulli automorphism (µ stands for the 

(1 /p , ... ,i /p )-Bernoulli measure on the full shift PZ ). If r<0 or 1>0 and T 
is surjective, then the natural extension of the system (PZ, B, t, T) is a K- 

automorphism. We also prove that the shift Z2-action on a two-dimensional 
subshift of finite type canonically associated with the cellular automaton T is 
mixing, if F is both right and left permutative. Some more results about ergodic 
properties of surjective cellular automata are obtained 

Let X be a closed translationally invariant subset of the d-dimensional 

full shift PZd, where P is a finite set, and suppose that the ad-action on X by 
translations has positive topological entropy. Let G be a finitely generated group of 
polynomial growth. In Chapter 2 we prove that if growth( G)<d, then any G- 
action on X by homeomorphisms commuting with translations is not expansive. On 
the other hand, if growth( G) = d, then any G-action on X by homeomorphisms 
commuting with translations has positive topological entropy. Analogous results hold 
for semigroups. 

For a finite abelian group G define the two-dimensional Markov shift 
XG ={xE GZ2 : x(iwj) + x(i+1, j) + x(i, j+i) =0 for all (i, j) E a2 }. Let µ0 be the Haar 

measure on the subgroup XG C GZ2. The group 12 acts on the measure space 
( XG , µý) by shifts. In Chapter 3 we prove that if Gt and G2 are p-groups and 
E( Gt )* E( G2 ), where E( G) is the least common multiple of the orders of the 
elements of G, then the shift actions on (XG1 , µßt) and (XG2 , µG2) are not 

measure-theoretically isomorphic. We also prove that the shift actions on XGt and 
XG2 are topologically conjugate if and only if Gt and G2 are isomorphic. 

In Chapter 4 we consider the closed shift-invariant subgroups X<f> _ 

_ <f> 1c (Zr) Z2 defined by the principal ideals <f>c 7p [u1, vft ] a5 ( (ap) Z2)' 

with f( u, v) = cf( 0,0) + ct{ 1,0 )u + c1( 0,1 )v, cf( i, j) E lp\{ 0 }, on which Z2 

acts by shifts. We give the complete topological classification of these subshifts 
with respect to measurable isomorphism. 
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INTRODUCTION 

The subject of this thesis is cellular automata and some dynamical 

systems closely connected with them. In recent development of the ergodic theory 

there has been a growing interest in exploring dynamics of automorphisms and 

endomorphisms (i. e. invertible and non-invertible continuous shift-commuting 

maps) of subshifts and especially of the full shift ( see [ BK ], [C), [ CP ], [G], [H], 

[ Hu ], [ Li ], [N], [ ShR ], [ Wo ] ). Endomorphisms (automorphisms) of the full shift 

are called cellular automata. Cellular automata owe a great deal of their popularity to 

the numerous applications they have in physics, chemistry, computer science etc. 

(seee. g. [Wo]). 

To the best of my knowledge, the mathematical study of one-dimensional 

cellular automata dates back 1969, when the cornerstone paper by G. A. Hedlund 

[ H) appeared. Later his results were extended by E. M. Coven and M. E. Paul [ CP j 

to endomorphisms of irreducible subshifts of finite type. They proved, in particular, 

that an endomorphism of an irreducible subshift of finite type is surjective if and 

only if it preserves the measure of maximal entropy on the subshift. Hence, a 

cellular automaton is surjective if and only if it preserves the equidistributed 

Bernoulli measure on the full shift, and we can consider a surjective cellular 

automaton as an endomorphism of a Borel measure space. The ergodic properties of 

general surjective cellular automaton seem currently intractable. Therefore, it is of 

interest to have at least certain classes of such maps whose dynamics can be 

understood. These have been provided in Chapter 1 of the thesis. The right/left 

permutative cellular automata are proved to be k-mixing for any kZ1. Under some 

additional assumption we prove them to have Bernoullian natural extension. For a 

surjective cellular automaton T such that (Tx ); depends only upon the coordinates 
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xj with j>i (or only upon the coordinates xj with j< i) we prove that its 

natural extension has K-property. The results of Chapter 1 answer some questions 

raised in [ ShR 1. 

The study of cellular automata is closely connected with another 

interesting field of modern ergodic theory - multi-dimensional subshifts (in 

particular, of finite type ). 'The study of multidimensional Markov shifts, while still 

at the early stage is bound to grow in importance... '( Jack Feldman). A survey of 

this fascinating topic with no indication yet of a satisfactory general theory is given 

by K. Schmidt in [ Schi ). 

In Chapter 2 we deal with automorphisms and endomorphisms of general 

subshifts of positive entropy of the d-dimensional full shift. We consider the 

continuous actions of a finitely generated (semi-) group of polynomial growth by 

such automorphisms (endomorphisms) and address the question of how the degree 

of polynomial growth of G can affect the dynamical properties of the action. It 

turns out that such an action cannot be expansive, if the degree of polynomial 

growth of G is smaller than d, and must have positive entropy if the degree is 

precisely d. This implies, in particular, that, firstly, there does not exist an 

expansive automorphism (endomorphism) of a d-dimensional subshift of positive 

entropy if d>1, and, secondly, if a one-dimensional subshift admits an expansive 

automorphism (endomorphism) with zero entropy, then the subshift itself has zero 

entropy. These statements are somewhat complementary to the result due to A. Fathi 

saying that if a compact topological space admits an expansive homeomorphism 

with zero entropy, then its topological dimension is zero. 

An important class of two-dimensional ssft (of zero entropy) is those 

that can be obtained by taking the inverse limit of a surjective cellular automaton. 

For instance, given a finite group G with the identity e, we define the ssft 
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XG ={x= (x(i.. i) )(i])EZ2 e GZ2 : X(i, j) X (i+1,1) x(i, 1+t) =e for all (i, J) c Z21. 

The Haar measure on G gives rise to a well defined shift-invariant probability 

measure t0 on XG . When G is abelian, XG is a subgroup of the full shift GZ2 

and µo is identical to the Haar measure on XG . The following question attributed 

to H. Furstenberg is formulated in [ Schl, p. 611: do there exist two algebraically 

non-isomorphic finite groups G1 and G2 with I G1 I=I G2 I such that the shift 

712-actions on (XG1 , go, ) and (XG2 , µG2) are measurably isomorphic ? We 

address this question in Chapter 3 and prove that the answer is no, if Gt and G2 

are abelian p-groups with E( G1) # E( G2 ), where E( G) is the least common 

multiple of orders of elements of G. This result is complementary to that of T. Ward 

[ War ]. In Chapter 3 we also give the complete topological classification of 

subshifts XG with G abelian by showing that the shift ? Z2-actions on (XG1, µ. ßt ) 

and (XG2 , µG2) are topologically isomorphic if and only if G1 a G2 . 
In Chapter 4 we consider another class of two-dimensional ssft with 

zero entropy. Let ap = 71/pl. The character group of the compact 0-dimensional 

group (Zp )Z2 can be canonically identified with the ring Zp [ u±l, v±l ] of Laurent 

polynomials in two commuting variables with coefficients from the finite field 71p 
. 

For any ideal Ic 71p [ u±l, v±1 ] we denote by XI the annihilator Il of I. It is 

easily seen that XI is a ssft and, simultaneously, a subgroup in the full shift 

( 7p )Z2. The first example of this kind ( with p=2, I=<1+u+v>) was 

considered by F. Ledrappier in [L1. Recently this class of ssft have been studied 

by B. Kitchens and K. Schmidt in [ KS 1], [ KS2 ] (see also [ LSW ]) who call them 

Markov subgroups. Some conjugacy invariants for Markov subgroups X< , 
fE Zp [ uft, v±l I, where <f> is the principal ideal generated by f, have been found 

in [ KS 1], [ KS2 1. It was shown, in particular, that the convex hull of the support 

S( f) of a polynomial fc Zp [ u±l, v±1 ] is a measurable ( and, hence, topological ) 
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invariant for the Markov subgroup X«). But the invariants of B. Kitchens and K. 

Schmidt do not distinguish between the Markov subshifts arising from the 

polynomials with identical (up to a translation) supports. In Chapter 4 we give a 

complete classification ( with respect to measurable isomorphism ) of Markov 

subgroups X< with S(f) ={ (0,0), (1,0), (0,1) }. Namely, we prove that X<ft) 

and X(f > with S( ft )= S( f2) ={ (0,0), (1,0), (0,1) } are measurably isomorphic, if 

and only if the ideals <ft> and <f2> are identical. 
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CHAPTER 1. 
ERGODIC PROPERTIES 

SURJECTIVE CELLULAR 

1.1 INTRODUCTION 

OF CERTAIN 
AUTOMATA 

Let p= { 0,1, ... , p-i } with some integer p> 1, and let X= PZ (i. e. X 

is the space of all doubly-infinite sequences x= (xi) irz, xi EP). Equip X 

with the product topology. Then X is a totally disconnected compact space. A 

continuous map T: X -* X commuting with the shift t defined by (tx )i = Xi+1 , 
ic 71, is called a( one-dimensional) cellular automaton. Here, for the sake of brevity, 

the cellular automata will often be referred to as CA-maps. Dynamical systems of 

this type are of great importance for many applications and have been undergoing 

extensive numerical exploration during the last decade ( see e. g. [ Wo ] ). Mathematical 

study of cellular automata was initiated by Hedlund and coworkers [H] and then 

continued in various directions by Coven and Paul [C], [ CP ], Gilman [G], Hurley 

[ Hu ], Lind [ Li ], Shirvany and Rogers [ ShR ] and others. 

From the viewpoint of ergodic theory among the cellular automata the 

surjective ones seem to be of special interest for they always preserve the 

equidistributed Bernoulli measure t on X( this fact was first observed in [ CP ] ). 

Remark that µ is exactly the normalized Haar measure on X considered as the 

compact abelian group (Zr, )Z. Here we prove strong ergodic properties (such as 

Bernoulli and Kolmogorov properties) of the natural extension of the measure 

theoretic endomorphism (X, B, p, T) for some classes of surjective cellular automata T 

(B stands for the Borel a-algebra on X ). We generalize a result of Ledrappier [L] 

about mixing of a 2-dimensional subshift of finite type defined by a cellular 

automaton. Some questions raised in [ ShR ] are answered in this chapter. 
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1.2 PRELIMINARIES 

It is well known that every CA-map can be represented as a 'sliding- 

block code'. 

Proposition 1.2.1 ((H, Theorem 3.41). A map T: X -- X is a cellular 

automaton , if and only if there exist 1, rEZ with 1Sr and a mapping 

F: P r-1+I 
-, º P such that 

(Tx )j =F (xj+1º 
... , Xj+r) (1.1 ) 

for every xePZ and every je Z. 

The mapping F is usually called the (generating) rule of the CA-map. 

To emphasize the generating rule F and the numbers 1 and r we shall use the 

notation TF 11, r1 
for the CA-map defined by (1.1 ). Notice that TF (1+i, r+i 1= 

TF D, r] = TF U, r1 o ti i, iE 71. 

For any s >_ 0 one can 'extend' a mapping F: Pm -. P to the mapping 

Fs: Pm+sý Pi+s defined by F5(x1,..., xs+m) = (yj,..., Yi+s) , where 

yj =F( xj , ... , xj+m_1 ), 15jS l+s . The surjectivity property of CA-maps 

admits a nice characterization in terms of the sets Fs-1(yi , ..., yi+s) 

Proposition 1.2.2 ((H, Theorem 5.41. ) The CA-map TF ar] :X -# X 

is surjective if and only if card (F51 (yl , ..., Y, +, )) =P m-1 for all s 2! 0 

and all (y1, ... , yi+s) EPs+1. 

From this one gets the fact we have already mentioned. 

Proposition 1.2.3 (cf. [ CP, Theorem 2.1 1). The CA-map TF[1, 
r] 

is 

surjective if and only if it preserves the measure p, i. e. P (T 1(1, 
r1 A) =µ (A ) 

for every AE 

Given a mapping F: Pm --. P and a block (zl , ... , 
zm_1) E P; n-1 

define a map F1, 
... , X. 

_1ý 
:P -ý P by setting 

F(X1,... 
'Xm-i)(Xm) = F(Xi,..., Xm-i, Xm) . 

Likewise, for any (x2, ... , Im) E Pm-i we put 
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F(X2,..., Xý)(xl) = F(xi, z2,..., xM) 
. 

We say the rule is right (resp., left) permutative, if the mapping F+(X1, 
... ýXm_1 

( resp., F (X2 , --- "i m) 
( XI )) is a permutation of P for every (i ,..., im_1) E Pm-i 

( resp., (z2 , ... , 1m) E Pm- ). This terminology is, essentially, due to Hedlund [H]. 

Proposition 1.2.4 ([H, Theorem 6.61) . If the rule F: P r-1+1 
-* P is 

right or left permutative, then the CA-map TF pal :X -+ X is surjective. 

Hence, any cellular automaton generated by a rule which is right or left 

permutative preserves 1. 

A rule F: Pm -+ P can be iterated in the following way. Define 

inductively the k-th iteration Fk: P k(m-f)+1 
-4 P of the rule F 

Fk (xt 
, ... , xm , ... , xm+(m-1) , ... , xk(m-1)+1) _ 

_ Fk-i(F(x1 ,..., xm) . F(x2 ,..., xm+l) ... , F(x(k-lj(m-1 1 .... , xk(m-1}+t)) . (1.2) 

The permutativity property is preserved by iterating the rule. 

Lemma 1.2.5. If the rule F: Pm-, º P is right (left) permutative, 

then so is its k-th iteration Fk :P 
k(m-1)+1 

-P for each integer kzI. 

Proof. The lemma is immediately proved by induction on k. It suffices 

to observe that 

_ 
(+1 

( 
Y 

X1 
, 
X2 

... , 
X(k+1)(m-1)) ( X(1c+1)(m-1}ý1 

(Fk )F(1i,..., 
1m)... F(Xk(m-1),..., z(k+1)(m-1)) 

(F(R 
k(m-l)+I'***' 

i 
(k+l)(M-1)'X(k+l) (m-1}+d) 

11 

The k-th iteration of F turns out to generate the k-th iteration of the 
CA-map generated by F. 

Lemma 1.2.6. The k-th iteration T 1, ri of the CA-map TF[L 
r] 

generated by the rule F coincides with the CA-map TFk fk, 1. 
Proof. Immediately follows from (1.1) and (1.2) . 

El 
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1.3 RESULTS 

In [SA I we considered the cellular automata with bipermutative (i. e. 

both right and left permutative ) rules and proved them to be topologically 

equivalent to one-sided Bernoulli shifts . 
Theorem 1.3.1 ([ SA ] ). If 1<0<r and F is bipermutative , then 

(X, TFI4 
rl) 

is topologically conjugate to the one-sided full shift (Z . I1I+r) , Q+) 

and the equidistributed Bernoulli measure p is the (unique) measure of maximal 

entropy for (X, TFII, 
rl 

This result has been generalized by M. Nasu IN]. 

It is not hard to give a counter-example showing that the statement of 

Theorem 1.3.1 is no longer true if we only demand F to be right or left 

permutative. For instance, let p=2 and F (x_ 1, xO ,x 1) = x_ t+ xp xt( mod 2) . 
Then it is easy to check that the CA-map TF [1, rI 

is not expansive ( see ( DGS I 

or Chapter 2 for the definition) for any 1, r (r -1= 2) and, therefore, cannot be 

topologically conjugate to a one-sided Bernoulli shift. Here we prove that the 

measure-theoretic conjugacy to a Bernoulli shift still holds, if we put the additional 

condition OS1<r (resp. l<r50). 

Since a surjective cellular automaton TF [ 1, r1 
is, in general, non- 

invertible, we will consider the natural extension (X, B, µ, TF [ I, r 1) of the 

endomorphism (X, B, t, TF [ 1, r 1). The natural extension ) of the 

endomorphism (M, A, V, T) is defined as follows ( see , e. g. [ CFS 1). Let 

M={x=(x(»), x('), x(2),... ): x(m)EX, Tx(m+i)=x(m) for all me Z+ }, 

be the a-algebra generated by the sets of the form C (m) zEM: x(m) EC}, 

where CEA, m >_ 0, and define the measure 9 by setting 9 (C (m)) =v (C) . Now 

the automorphism T of the measure space (M, A, 9) is defined by 

x(O), x(t), x(2),... )_ (Tx(O), Tx(t), Tx(2),... )_ (Tx(O), x(O)x(I),... ). 

Recall that the automorphism (M, ? 1, V, T) is said to be Bernoulli, if 
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it is isomorphic to a Bernoulli shift ( see [01). 

Theorem 1.3.2. Suppose that at least one of the following conditions is 

satisfied : 

(RP) 0 -: 5'1 <r and the rule F: Pr-1+1 -, º P is right permutative ; 

( LP) 1<rS0 and the rule F: Pr-t+t -, º P is left permutative ; 

Then the natural extension (X, B, µ, TFl ý, rl) of the dynamical system 

(X, B, p, TFII, 
rl) 

is a Bernoulli automorphism. 

Recall that the dynamical system (M, A, V, T) is k-mixing (k z1), if 

for Ap, Al,..., Ak E .. we have 

limnl, 
n2,..., nk... 00V(AO n T-n1 A, n... n T-(nl+... +nk Ak) _ 

= v(Ao)v(Al)... v(Ak). (1.3) 

If we omit the conditions 1z0 (r S 0) of the Theorem 1.3.2 we still 

can prove the k-mixing for all kz1: 

Theorem 1.3.3. Suppose that at least one of the following conditions is 

satisfied : 

(RP') 0<r and the rule F: Pr-1+1 -P is right permutative ; 

(LP') 1<0 and the rule F: pr-1+1 -P is left permutative ; 

Then the dynamical system (X, B, p, TFl J, rl) 
is k-mixing for all k2I. 

The automorphism (M, .l9, 
T) is said to be a K-automorphism ( see 

[ CFS I for details ), if there exists a sub-a-algebra x of . such that the 

following conditions are satisfied 

Go - 
DO 

(K) KC: Tx, 
n 
oT°x= As 

nnoT-nK= 
N(M), 

where MY) denotes the trivial a-algebra on Y (the inclusion and the equalities 

are meant to hold modulo null-sets ) 

Theorem 1.3.4. If 0<l Sr or 15r<0 and the CA-map TFIL 
rj 

is surjective, then the natural extension (I B, 91 TFl4 
rd of the dynamical 

system (X, B, p, TF(I, 
r] 

) is a K-automorphism . 
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In view of the classical result of Rohlin [RI, Theorem 1.3.4 yields the 

following 

Corollary 1.3.5. Under the conditions of Theorem 2.4 the dynamical 

system (X, B, p, TFI,, 
r1) 

is k-mixing for all k 21. 

Under the additional assumption p=2, Shirvani and Rogers proved in 

[ ShR I the 1-mixing property for the classes of CA-maps considered in the 

theorems above. Our Theorem 1.3.3 and Corollary 1.3.5 answer in the affirmative 

the question posed in [ ShR ] whether these systems are k-mixing for all k2: 1. 

It was also conjectured in [ ShR I that every surjective CA-map , except 

those of the form (T x )i = it (xi) , where n: P4P is a permutation , is ergodic 

with respect to g. We remark that this is not the case. The counter example (see 

Proposition 1.3.6 below) was actually considered in [Cl, but in a slightly different 

context and without indication of its non-ergodicity . 
Proposition 1.3.6. Let p=2. The surjective CA-map TF10,21 

generated by the rule F (x0 , x1 , x2) = x0 + x1 (x2 + 1) ( mod 2) is non- 

ergodic with respect to the measure p. 

Proof. Since F is left permutative , the surjectivity of the CA-map 

follows from Proposition 1.2.4. From [CI it follows that TF 10,21 is not 

topologically transitive . Hence , it is not ergodic with respect to t, because 

suppg=X. Q 

Every cellular automaton TF [ 1, r) gives rise in a natural way to a certain 

two-dimensional subshift of finite type ( see [ Schl I and Chapter 4 for the 

definition ). Namely, define 

nFIl, r1 = l0) =(CO(i, J))(i, j)E Z2 . 

w(i, j)EP, w(i, j+1) =F(X(i+I, j)"... x(i+r, j)), for all (i, j)¬Z2}. 
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The set f2F [ Ir) is a closed subset of p Z2 invariant under the two shifts 

iH tiV :p Z2 
-. ý p Z2 defined by ('tf H x)( i, i) = x( i+1,9) ' (tv x)( i, l) = X( 1, +1) , 

(i, j)E 712. Obviously, the space nF 11, r1 may be identified with the inverse limit 

X=l im X, TF [ 1, r]) which is just the space of the natural extension 

considered above. This identification enables us to turn the subshift OF [ 1, r] into 

the measure space (fIF [ 1, r 1B, µ) 
. The shifts ti11 and tiV generate a measure 

preserving 12-action T on (OF (1, r1'B, µ) defined by (m, n) H 7(m, n) = 

= tiM o tin . Recall, that the 712-action 't is mixing precisely if 

limll(m, 
n)II ->ooµ(AO 

f1 T(m, n)A1) = µ(AO)µ(A1) for A0, A1 e B. 

For a general discussion of mixing group actions see e. g. [ Sch2 J. 

Theorem 1.3.7. If the rule F is bipermutative and r> 1, then the Z 2_ 

action T on (S2F1I, rl, B, µ) is mixing and the automorphism tim o tin is 

Bernoulli for all (m, n)EZ2\{(0,0)}. 

Note that Theorem 1.3.7 generalizes Ledrappier's result [L1, which 

established the mixing property for the 712-action T on (OF [ 0,1] ' 
B, µ, ) with p 

=2 and F(x0, x1) = xp+xi (mod2). 

1.4 PROOFS OF THE THEOREMS 

First of all we recall some definitions and facts from the theory of 

Bernoulli automorphisms (see [01 for details ). 

The partitions t={ Ci } and 11 ={ Dj } of the measure space (M, 
.v) 

are said to bee-independent (ez0), if E 
jiv(CinDi)-vC; )v(Dj)l 5 E. 

The partitions are independent, if they are 0-independent . Let T be an 

automorphism of the space (M, A, v ). A partition 4={ Ci } is said to be 

Bernoulli for T, if all its shifts r4={ T° C; } are pairwise independent .A 
partition 4={ Ci } is weakly Bernoulli for T, if for every e>0 there exists an 
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integer N>0 such that the partitions Vk-, Tk and Vk: rTI are 

c-independent for all nz0. The automorphism T is Bernoulli, if and only if it 

has a generator 4 which is (weakly) Bernoulli for T. 

The following theorem of D. Ornstein enables us to establish the 

Bernoullicity without finding a (weakly) Bernoulli generator. 

Theorem 1.4.1 ( see 1 01) . Let 41 5 42 S ... S 4n S ... be an 

increasing sequence of finite partitions of the measure space (M, 
.l v) with 

V 00 
0 4n =e(e stands for the partition of M into singletons ) and let 4n be 

weakly Bernoulli for the automorphism T of this space. Then T is Bernoulli. 

Now we are going to construct such a sequence of finite weakly 

Bernoulli partitions for the natural extension of the system (X , B, t, TF [ 1, rI 
where the CA-map T111 satisfies the conditions of Theorem 1.3.2. 

Let the automorphism (M, A, 9, T) be the natural extension of the 

endomorphism (M, A, V, T). Given a partition 4 of the space (M, A, v) we 
define the partition 4 (m) of the space (M, A, 9) to be the one consisting of the 

sets C (m) ( see § 1.3) with Cc4. 

Given integers i_ S i+ and a word (xi_ , ... , xi+ )EP i+- i_ +1 we define 

the cylinder set Ci [ xi_ , ... , xi+ I= {yEX: yj = xj for all i_ Sj5i. }. Let 

( i_ , i+) denote the partition of X into the sets of the form Ci-[ xi_ , ... , xi+ 

( cylinder sets) where (xi_ , ... , xi+ ) runs over the set P '+- i_ +1. 

Lemma 1.4.2. If a rule G: PR-L+ 1-* P is right (resp. left ) 

permutative, then the partitions (ii, jt) and T -1 
GR] (i2 , j2) are 

independent, whenever R> jl - i2 (resp. L< il - j2 
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Proof. We shall carry out the proof for a right permutative rule. The 

other case is treated exactly in the same manner. Let i= min{ ii , i2 +L}. It follows 

from the right permutativity of F that for any words (xi , """ ' xi2+R-i) E pie+R- i 

and (vi2,..., vj2)e pJ2 12+1 we have 

Ci[xi 
ý" 'xi2+R-1] 

n TG[L, R](Ci2[vi2" " vj2]) 

= Ci[xi,..., Xi2+R-1, xi2+R,.... xj2+RJ I 

where Xt+R, i2 5t5 j2 are defined inductively by 

) Xt+R 
(o(xtýL,..., 

xI+R1))_1vt. 
+= 

Hence, 

-1 )) 1 j2+R-i+l. Ci I xi xi2+R-1 ]n TG [ 1,, R. (Ci2 [ vi2 , .., vj2 ]=( /p ) 

Since i2+R-1 z j, -the set Cil(uil,..., uj1] for each (u11,..., uj1)EP'-i1+1 

is a disjoint union of p 
i2 +R- I-j1+ il -i sets of the form Ci I xi , ... , xi2+R-1 ] 

This implies 

t(Cil[uil,..., uj1) (1 TG 
[I, Rj(C12(vi2,..., vj2])) = (i/P)ý1-it+i)+ý2-i2+1) _ 

µ(Cil[uil,..., uji]) µ(Ci2[vi2,..., vj2]) 

Thus, the partitions ß(i 1, j t) and TG iR 4( i2 , j2) are independent 
. 

Lemma 1.4.3. If the rule F; pr -1 +1-P satisfies the conditions 

RP) ( resp. (LP)) of Theorem 1.3.4, then the partitions «( il , j1) and 

TF[1, r] 
ß(i2 

, j2) are independent, whenever mr > jt -i2 (resp. m1 < il -j2). 

Proof. This follows from Lemma 1.4.2. To see this it suffices to 

observe that by Lemmas 1.2.5 and 1.2.6 TF [ 1,, ]aT Fm L ml, mr I with the right 

( resp. left ) permutative rule Fm . 
13 

Lemma 1.4.4. Suppose that either of the conditions (RP ), (LP) holds. 
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Then for every iZ0 the partition (-i , i) t=Vs =o 
F( -i, i) (s) of the 

measure space (X, B, µ) is weakly Bernoulli for the automorphism TFl1, 
r1 

Proof. Suppose that the condition (RP) holds and let T stand for 

TF[t, 
r) " 

We observe that T1 4(i 
, j) S 4(i + 1, j+ r) for all iSj. As 1z0, 

we have T'1(i, j) 5 4( i, j+ r) and, hence, Vk, pT "k4(i, j) S 4(i 
,j+ nr ). 

For any nz0 we have 

0V 
Tk 

0 

k=-n k=-n s=o 

n+i V 
T-k 

V 
, r-s i)(i)) -vT 

4(-l+i)(i) 
k=0 ` s=0 j=0 

<_ 4(-i, i+r(n+i))(') , (1.4) 

N+n k N+n ki VNT V 'r 
( ý/ (-i, i)(i)\ = 

k=N $-O 

N+n+i 

_VN 4(-i, i+r(n+i))(N+n+i) 
j- 

From Lemma 1.4.3 it follows that the partitions 4( it , jt) 
(m) and 

4( i2 , j2) (m') of the measure space (X, B, µ) are independent , whenever 

(m-m')r > il -i2. Therefore, if Nr > i(2+r), then 4(-i, i+r(n+i))(') 

and 4( -i, i+r (n + i) (N +n+ i) are independent for all nz0. It is known that 

if the partitions ill and 112 are independent and ýk 5 11k ,k=1,2 , then Lt and 

ý2 are independent. Now from (1.4) and (1.5) we conclude that for all iz0 there 

exists N>0 such that for every nz0 the partitions Vk- 
_p 

T k4( -i, i 

and Vk=nTk 4( -i, i )i are independent. Thus, for every iZ0 the partition 
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( -i, i )i is weakly Bernoulli for the automorphism (X , B, TF [ 1, r1 
)" 

We have proved the lemma in the case (RP). In the case when (LP) 

holds the proof is exactly the same, but 'left-sided'. Q 

Proof of Theorem 1.3.2. It is easily seen that 4( -i, i )j: 5 4( -i+l, i+1 )i+1 

for all i? 0 and V0 4( -i, i )i =c. Thus, by virtue of Lemma 1.4.4, we are 

under the conditions of Theorem 1.4.1 which yields the Bernoullicity of the 

automorphism (X , B, TF [ 1, r) 
). Q 

Proof of Theorem 1.3.3. We consider the case (RP'). Throughout the 

proof T stands for TF [ 1, r) " To prove that T is k-mixing it is sufficient to 

verify (1.3) for cylinder sets A0 , Al , ... , Ak ( see [ Bi, Theorem 1.21 ). In 

fact, we show that for any A0 = Cio [ xqý , ... , xjc j, Al = Cil [xi 
1 xý 1 

... , Ak = Ck [x�... 
�x], there exists m>0 such that the equality 

µ(E10 n T-n1A1n... n T-(n1+... +nk)Ak) = µ(AO)µ(A1)... µAk) 

holds for all n1 . n2 , .... nk > M, 
Let m be a positive number greater than max{ (js-1 - is )fir :1Ss5k}. 

s 
Take arbitrary integers n1, n2 , ... , nk > in and denote Ns = Yj nj for 

1SsSk and No = 0. Then we have is + N. r> is_1 + Ns-1 r, 1: 5 s: 5 k. 

We also put i_ = min { is +1 Ns : 0: 5 s: 5 k} and j+ = jk +r Nk. Using 

Lemmas 1.2.5' and 1.2.6 one checks easily that the set 

AO nT -n1 Al n ... nT- (nl +... + nk) Ak is the union of cylinder sets 

Ci- [ yi_ , ... ,yj+] taken over all blocks (yi- , ... , yj +) 
Ep J+ - i_ +i satisfying the 

following conditions: 

(C) yt=xto for i05t5j0 

yt 
((FNS)+y 

N(DY1 
)-1 ( xt-Ns1 ) 

for is+Nsr_5tSjs+Nsr, 1 Ss: k. 
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Since the segments [ is + N. r, js + N. rI, s=0.1, ... ,k do not overlap each 

other, the number of blocks (y; 
- , ... , 

yj+) satisfying the conditions (C) equals 

p j+'-t - Is 
_o Os is+1) ( because yt may be chosen arbitrarily if and only if 

tE j+ I\ Us 
=0 

[ is + Ns r, js + Ns rI). This gives us the desired equality : 
k 

AofT-N1 A, n... nT-NkAk) =p': s0Os Os-'s+') AO A, Ak 

The case (LP') is proved similarly. Q 

Proof of Theorem 1.3.4. Throughout the proof we write T for TF [ 1, rI 

Suppose that I>0. Let 4( i, co) _ Vý i, j) and denote by C( i, co )(m) the 

a-sub-algebra of B defined by the measurable partition 4( i, oo )(m) of the space 

(X , B, µ ). Set K= V/ koT 'k C (0, oo )(0) . We now verify that x satisfies the 

conditions (K) for a K-automorphism (see § 1.3 ). The inclusion xCTx is 

obvious. Directly from the definition of the CA-map T= TF 11, rI we observe that 

C(0, co)(m+k) T-kC(-k1, oo)(m+k) = C(_k1, oo)(m) for all m, kz0. 

It follows that 

co Do 00 00 VTn x= V ?" C(0, co )(0) VV C( -kl, oo )(m) - B. n=0 n=-C0 k=0 m-0 

( this actually means that any co E OF I t. rI is completely determined by its values 

in a right half-plane ). By the well known Kolmogorov's zero-one law ( see [CFS] ) 

00 
for the Bernoulli shift (X , B, µ, ti) we have 

nn o 
c( n, co) = W( X ). Hence, 

Do 

nno 
C( n, oo) (0) 

= NOR). This yields 

Co 00 Co Co 

nQ 
T--'K = onok 

Tk C(O, o. )l°l c 
nno 

C(nl, oo)(°) = N(A) 

which completes the proof ( the case r<0 is treated quite similarly ). 13 

Proof of Theorem 1.3.7. Clearly, it is sufficient to show that if F is 
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bipermutative and r>1, then the action of the semigroup 1x4 on the measure 

space (X, B, µ) defined by (m; n) ýº Tn' 'I'F [ I, r: ,meZ, ne7. + is mixing, 

i. e. 

limmax{Im1. 
n--ºco} 4( Ap il TF[t r]ýMA1) = µ(Ao) 4 (A1) (1.6) 

for all Ao, At E B. In the proof of Lemma 1.4.2 we showed that for any two 

cylinder sets Ap = C; 
o 

[ u4), ... , ujo ] and At = C; 
1 

[ v; l , ... , vii ] the equality 

µ (AO n T-1 G[L. R] At) =µ (AO) µ (Al) holds whenever G is right permutative 

and R> jO - il or G is left permutative and L< i0 - jl . For any meZ, nE Z+ 

we have TFn [l, r] om= TFn[nl+m, 
nr+ml' 

Since either 1<0 or r>0, for 

every sequence (m k, n k) EZx., k= 1,2.... with max{ Im kl, n k} -º o0 

there is K> 0 such that either n kr +mk> jp - il or nk1+mk<i, -jt holds 

for all k>K. Taking into account that F is both right and left permutative we 

obtain (1.6) for the case when AO and At are cylinder sets. But this is enough, 

because the a-algebra B is generated by such sets. 

The Bernoulli property of tim o tin for all (m, n) E Z2 \{ (0,0) } 

follows from Theorems 1.3.1 and 1.3.2, and from the fact that the automorphism 

T -1 is Bernoulli, whenever T is (see [0J). Q 
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CHAPTER 2. 
EXPANSIVENESS, ENTROPY AND 

POLYNOMIAL GROWTH FOR GROUPS 
ACTING ON SUBSHIFTS BY 

AUTOMORPHISMS 

2.1 INTRODUCTION 

The study of automorphisms and endomorphisms (i. e. continuous shift 

commuting maps, invertible or non-invertible) of the full shift and its subshifts 

was begun by Hedlund and coworkers [H ] and Coven and Paul [CPI. In this chapter 

we consider an action of a finitely generated group G of polynomial growth by 

automorphisms of a subshift of the d-dimensional full shift. If the subshift has 

positive topological entropy, we find that the degree of polynomial growth of the 

G may strongly affect certain dynamical properties of the action. More precisely, 
if growth(G)<d, then the action cannot be expansive. On the other hand, if the 

growth(G) is exactly d, then an expansive action must have positive topological 

entropy. The results still hold for finitely generated semigroups of polynomial 

growth acting by endomorphisms on a subshift with positive entropy. In particular, 

this implies that, firstly, there are no expansive endo- (or auto-) morphisms of 

such subshifts with d>1 and, secondly, that if d=1, then any expansive endo- 
(or auto-) morphism has positive entropy. 

The obstruction to expansiveness we have obtained here supplements, to 

some extent, the following fact established by A. Fathi. 

Proposition 2.1.1 ((F, Corollary 5.6)). If a compact topological space 

admits an expansive homeomorphism with zero entropy, then its topological 

dimension is zero. 

Related topics are also studied in (BL ]. 
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2.2. PRELIMINARIES 

Subshifts. Let P be a finite set with cardinality Card(P)>I. For any 

dz1 we put 
f2d(P) _ 

{x= (xn)n¬Zd : xnE P for all nE Zd }. 

In other words, fl d (P) is just the set P zd of all maps x: Zd _. ý P. Provide 

ad (P) with the product topology. Then fl d (P) is a compact Hausdorff zero- 

dimensional space. Define, for every mE id, a homeomorphism 'rM : fl d (P) --' 
f1 d (P) by setting (tm x )n = xn+m for all xE f1 d (P) and ne 7d 

. The 

correspondence mH 01 defines a continuous td-action r on fl d (P ). The 

pair (X, tx ), where X is a closed r-invariant subset of ad(P) and tx = ti IX 

is the restriction of the Zd-action r to X, is called a subshift. A continuous 

map T: X-. X commuting with r(i. e. To tm =tim oT for- all me Zd) is 

called an automorphism of the subshift if T is invertible. If 
.T 

is non-invertible it 

is called an endomorphism of the subshift. 

Expansiveness. Let X be a compact topological space and let G be a 

group acting on X by homeomorphisms. We denote the action by T and the 

homeomorphism corresponding to geG by T g. The action T is said to be 

expansive, if there is a closed neighbourhood VcXxX of the diagonal 

AX ={(x, y)eXxX: x=y} such that for T=TxT: XxX-, XxX 

we have ngEGT9V= Ax. If the space Xis equipped with a metric p, then 

expansiveness means that there is an expansive constant c>0 such that 

x, yEX, x# y implies p (T g x, Tg y) >c for some gEG. 
In a similar way one defines ( positive ) expansiveness for semigroups acting on a 

compact space by ( non-invertible ) continuous maps. 
Entropy ( see [ M-O I, [ Fe I for details ). It is known that a countable 

group G is amenable if and only if it contains a sequence of finite subsets 
At c A2 c ... c An c ... cG with the properties : 

(i) UnZ1An =G ; (ii) limn-* 
co 

IgApAAnIIIAn0 for every gcG. 
Such a sequence is called Fd1ner sequence. Let T be a continuous action of an 

24 



amenable group G on a compact topological space X. For a finite open cover 

of X and a finite 'set AcG let 4A = Vg 
EA (T g )- t 4. For a finite open 

cover il of X let W( q) stand for the minimal cardinality of subcovers of ti. 

Choose a Fölner sequence { An}n Zi in G and a finite open cover 4 of X and 

define. 

h(T, ) lm Sup IAn I 1og1« n) 
n-a o0 

This value does not depend on the particular Fölner sequence { An }n 
Z: 1. Then 

the topological entropy of the action T is defined as 
h (T) = sup {h (T, 4) :4 is a finite open cover of X }. 

The topological entropy for continuous actions of amenable semigroups is defined 

analogously. 

Groups of polynomial growth ( see [B], [ Gr J for details ). Consider a 

group G generated by a finite subset FCG. Define the norm 11 9 IF of an element 

gEG with respect to F to be the least integer Iý0 such that g can be expressed 

as a product fl f2 ... fl with each fEFU F-t I. We denote by BF(m ), mz1 the 

'closed' ball of radius m, i. e. BF( m) gEG: II g' FSm} and set OF(m) _ 
Card( BF(m) ). Following [B), we say that G has polynomial growth of degree k 

if there exist constants A, C>0 such that Amk: 5 ßF(m ): 5 Cmk for all in z 1. 

It is easily seen that this notion does not depend on the choice of F. In this case 

we write growth( G) = k. One can show that if G has polynomial growth, then 

the balls BF( m ), m=1,2, ... form a Fölner sequence in G, and, therefore, G is 

amenable. 

For instance, it was proved in [B]( see also [ Gr I) that if G is a finitely 

generated nilpotent group with lower central series G= G1 G2 D ... n G1»1 ={ e}, 
then growth( G) _Zqz1q rq, where rq = rank( Gq / Gq+1 ). Clearly, 

growth( Zd) = d. 
In the same manner the degree of polynomial growth can be defined 

for finitely generated semigroups. 
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2.3. RESULTS 

Let G be a finitely generated ( semi-) group with growth( G) =k and 
XC "d(P) . be, a subshift with h ('rr) > 0. 

Theorem 2.3.1. If k=d, then for any expansive action T of the 

(semi) group G by automorphisms (endomorphisms ) on the subshift X we 
have h (T) >-O. 

Theorem 2.3.2. If =k < d, then any action T of the (semi) group 

G by automorphisms (endomorphisms) on the subshift X is not expansive. 

In the case G= Z1 (or ? +) the theorems above describe dynamical 

properties of the joint action of k commuting automorphisms ( endomorphisms) of 

the subshift Xc 12d(P) according as k=d or k<d. In particular for G=Z we 
have 

Corollary 2.3.3. Let d=1 and Xc 00 t (P) be a subshift with 
h (z') > 0. Let T be an expansive endomorphism or automorphism of X. Then 

h(T)> 0. 

Corollary 2.3.4. Let d>1 and XC0d (P) be a subshift 

with h (VX) >0. Then there are neither expansive endomorphisms nor 

expansive automorphisms of X. 

We remark that if we drop the condition that the entropy of the 

subshift X be positive, then the last statement is no longer true. To give a 

counterexample consider the 2-dimensional subshift of finite type 

X= {xC d(Z/2Z): x(i, j)+X(i+t, j)+x(i, j+t)=0(mod 2), V(i, j)C Z2}. 

This subshift was first studied by Ledrappier [LI( see also [Schi]) and was 

shown to have zero entropy (h (TX) = 0). On the other hand one readily 

verifies that the automorphism T =tit 1.1 j1 x and the endomorphism S, defined by 

(Sx)(i, j) = x( i-1, j-1) + x( i, j) + x( i+l, j+i) are expansive. 
Also, it should be mentioned that our results can be reformulated as 

follows. Let Y be an arbitrary compact zero-dimensional topological space and 
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mH am be a continuous expansive Zk-action on Y. Then one can construct a 
finite topological generator (cf. [ DGS J, [W J) 41= { U; } with Ui f Uj =0 for i#j, 

by means of which we define (in the standard way ) the topological conjugacy 
between (Y, T) and a d-dimensional subshift (X, tX ). Suppose h( a) >0 and 
let G again be a finitely generated group with growth(G) = k. From Theorems 

2.3.1 and 2.3.2, respectively, we have. 

Proposition 2.3.5. Suppose k= d. Let T be an expansive continuous 

action of the (semi-) group G on Y commuting with a. Then h(T) > 0. 

Proposition 2.3.6. Suppose k<d. Then any continuous action of the 
(semi) group G on Y commuting with a is not expansive. 

2.4. PROOFS OF THEOREMS 

The proofs will be carried out for the case where G is a group, the 
'non-invertible' case where G is a semigroup is treated similarly. 

First we prove the following technical result. 
Lemma 2.4.1 (cf. (DGS1; p. 109). Let T be an expansive continuous 

action of a group G on a compact metric space (X, p) and let c>0 be an 

expansive constant for T. Let Al C AZ C ... c An c ... cG be a sequence of 

subsets of G such that Un 
z1 An = G. Then for any S>0 there exists an 

integer M= M(8) z1 such that p (x, y) zS implies existence of some gc AM 

satisfying p (T g x, T 9y) > c. 

Proof. Suppose, on the contrary that for some S>0 there exist 

sequences xn ,yn r= X, n=1,2, ... satisfying p( xn, yn) zS but with 

p( Tg xn , T9 yn )5c for all gE An. By compactness the sequence (xe, yn) E X2 

contains a convergent subsequence. To avoid double indices we assume that the 

sequence (xn, yn) itself converges to a pair (x, y) E X2. Take any gcG. Then 

ge An, and hence p( Tg xn , Tg yp) Sc, for all sufficiently large n. Since the 

action is continuous, we have p( Tg x, Tg y) S c. The last inequality holds for 

every geG which, in view of expansiveness, implies x=y. But this is 
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impossible, because we must have p( x, yzS. The contradiction proves the 

lemma. 13 

Now we provide the topological space ad (P) with a metric. For 

n= (n1,..., nd) we put InI = max15i5d Init. Let a be a fixed real 

number with 0<a<l andput L(x, y)=min{InJ: xn Fyn } for x *y. We 

define the metric pa on nd (P) by putting 

aL(x, Y), if x #y 
Pa(x, Y) = 

1 0, ifx=y 

Every subshift Xcfd( P) is given the induced metric. 

Then we introduce a family of partitions of X which will be of 

substantial use in the proofs of the main results. 

Given integers ai S bi , 15 i: 5 d define the rectangle 

R(a, b)= {ncZd: a15n15bi for all 15 iSd}, 

a= (a1 , ... , ad ), b= (bi , ... , bd ). We introduce the partition 4( a, b) of the 

space £2 d (P) into compact open sets of the form 

C(a, b; ü) = {xEfld(P): xn=un for all nER(a, b) }, 

where ü= (u 
n )n ER (ab) b) EpR (a, b) 

. The partition 4( a, b) induces a 

partition of the subshift Xc fl d (P) consisting of the non-empty intersections of 

X with elements of l; ( a, b ). We denote this partition of X by 4x( a, b) and its 

elements by CX ( a, b; ü ). Note that the partition may also be considered as an 

open cover. 

Let { Rk =R( a(k ), b(k)) }k=1,2, 
... 

be an increasing sequence of 
finite rectangles with Rk J1 Zd. Then, the topological entropy of the Zd-action 

TX on the subshift X is given by the formula (see [ Schi) ) 

h(TX) = lim (Card(Rk))'1 log Card(4X(a(k), b(k))) , (2.1) 
k-+ co 

where the limit always exists and does not depend on the sequence {Rk}, 

In what follows we write C5 ti for the partitions C and ti, if 11 is 

finer than and VEJ 71j for the refinement of the partitions { 71j }jE J 
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Let G be a finitely generated group with a fixed finite system of 

generators F. The proofs of Theorems 2.3.1 and 2.3.2 are based on the following 

Lemma 2.4.2. Let Xc 12 d (P) be a subshift and T be an 

expansive action of the group G by automorphisms on X with the expansive 

constant a r+1 with some rE Z+ . Then there exists an integer MZI such 

that 
V (T g)-14X(-m, m) z 4X(-m -l, m +1) (2.2) 

g6BF(M) 

for all m2r( where m= (m,..., m), 1= (1,..., 1) ). 

Proof. Let us apply Lemma 2.4.1 to the action T on the subshift X 

with the metric pa taking S=c= ccr +i and An = BF( n ), n=1,2, .... Put 

M= M(S). Choose arbitrarily two points x, yEX lying in different elements of 
4x(-r-1, r+l). Then p(x, y) z ar+i and, by Lemma 1, we have 

p (T g x, Tg y) >a r+ 1 for some gc BF(M)- This means that Tgx and Tg y 

lie in different elements of the partition 4x(-r, r). Hence, x and y are in 

different elements of Vg 
e Bam) (Tg )'1 ýx (r, r) , whenever they are in 

different elements of 4x(-r-1, r+1). This implies 

V (Tg)-t 4x(-r, r) Z 4x(-r -1, r+1) 
gE BF(M) 

Now we prove (2.2) by induction on m. Suppose that (2.2) holds 

for some mzr. Then, since ti X=X, and To ti= ti o T, we have 

V (T9)-1 4X(-m+j, m+j) Z 4X(-m+j -1, m+j+1) 
SE BF(M) 

for every jc 71 d. From this it follows that 

V (Tg )-i 4X ( -m-1, m+l) zV T9 )-I 4X ( -m+j, m+j) Z 
gEBF(M) 9e BF(M) 

z ýX(-m+j -l, m+j+l) . (2.3) 
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for every je Zd with Ij I= 1. Obviously, R (- m- 2, m+ 2) _ 

= Uljl-t R(-m+j-1, m+j+1) and, therefore, 4x(-m-2, m+2) 

=Vijl=i fix(-m+j-1, m+j+l). From this and (2.3) we have 

V (Tg)'i 4X(-m-1, m+1) z 4x(-m-2, m+2). 

gEBF(M) 

So, we have derived (2.2) for m+1 which completes the proof .Q 
Lemma 2.4.2 can be strengthened as follows. 

Lemma 2.4.3. Under the conditions of Lemma 2.4.2 we have 

V (T 8)''4X(-m, m) z 4x(-m -s, m +s) (2.4) 

ge Bp (sM) 

for all mzr and all sz1( where s= (s,... , s) ). 

Proof. First we observe that for any a, beM we have 

BF(a)BF(b)= {g1 92e G: g1E BF(a), g2E BF(b)} = BF(a+b), 

in particular, BF( (s + 1) M) = BF( sM ) BF( M ). Using Lemma 2.4.2 we write 

V (Tg)-1 4X(-m, m) _ 
gE BF((s+1)M) 

v (Tg)-1 (V (Th)-1 4X(-m, m)) Z 

ge BF(sM) he BF(M ) 

V 4x(-m -1, m +1) 
gEBF(sM) 

and (2.4) follows by induction on s. Q 

Now the proofs of the main theorems are almost immediate. 
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Proof of Theorem 2.3.1. Let G be a group generated by a finite set 
FCG with growth( G) =d and XC SZ d (P) be a subshift with h (tix) > 0. 

Let T be an expansive action of G by automorphisms on X. We have 

Am d< ßF(m) 
_< Cmd, mz1 with some constants A, C>0, where ßF( m) _ 

= Card( BF( m) ). Using Lemma 2.4.3 and (2.1) we find that for any mzr 

h(T, 4x(-m, m)) z 

Z umSUp (s N)-' logN( V (Tg)-i 4X(-m, m)) Z 
s-+oo gEBF(sN) 

z z (2/M )d um ((SM )d / OF (sM )) (2(m+s}+1 )' d log N (4x(- m-s, m+ s)) 

z (2/M)dC-1 h(tix). 

Hence, h(T) z (2/M)dC-Ih(rx) and h(tx)>0 implies h(T)>0. Q 

Proof of Theorem 2.3.2. Let G be a group generated by a finite set 

FeG with growth( G) =k<d and Xc !Qd (P) be a subshift with h ('tx) > 0. 

Suppose T is an expansive action of G by automorphisms on X. Using Lemma 

2.4.3 again we obtain that for any m>r 

h(T, 4x(-m, m)) z 

z limSüp pF(sN)-1 logN(V (Tg)-1 4x(-m, m)) z 
5400 gE BF(sN) 

(2/M )d 40 ((sM )d / (sM))(2(m+s)+1 )'d logW(4X(-m-s, m+s)). 

Thus, we have h( T, 4X(- m, m))= oo, since growth( G) <d implies 

(sM )d / ßF (sM) -+ oo and (2( m+s )+1 )- d log L( X(-m-s, m+s )) -* h(tix) > 0. 

But this is impossible in view of the obvious inequality h (T, 11) S log Card( B) 

which holds for any finite open cover ii. This contradiction completes the proof . 
13 
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CHAPTER 3. 
ON THE CLASSIFICATION OF SOME TWO- 

DIMENSIONAL MARKOV SHIFTS WITH 
GROUP STRUCTURE 

3.1. INTRODUCTION AND THE MAIN RESULTS 

In Chapters 5-7 of [ Schl I K. Schmidt gave probably the first survey of 

higher-dimensional Markov shifts. It contains a lot of intriguing questions 

exhibiting the striking lack of general theory in this part of modern ergodic theory. 

One of the questions raised in [ Schi ] is discussed in this chapter. 

First of all, we recall the general definition of a Markov shift in 

arbitrary dimension. Let F be a finite set. A closed shift-invariant set Xc FZd 

(d >_ 1) is called a d-dimensional Markov shift (or subshift of finite type ), if 

there exists a finite subset Dc Zd and a set PC FD such that X consists precisely 

of those points xc FZd for which the coordinate projection of x onto every 

translate of D results in an element of P. 

Let G be a finite group with the identity e and define the two- 

dimensional Markov shift 

XG ={x= (x(i, i) )(iJ)E z2 E GZ2 : x(i, l) x(i+i, j) x(i. j+i) =e for all (i, j)E Z21 

Although XG is not a subgroup of GZ2 unless G is abelian, the Haar measure XG 

on G always gives rise to a well defined shift-invariant probability measure µG on 

XG . Indeed, an element xE XG is completely determined by values of the 

coordinates x(;, 0), iE 71 and X( p, _j ), 
jE Z+. So, the Haar measure (, %G )Z ® (XG )Z+ 

on the compact group Ga ® GZ+ determines ( by means of the natural 

homeomorphism between GZ ® GZ+ and XG) a probability measure µG on XG . If 

G is abelian, then XG is a (compact) subgroup of GZ2 and the Haar measure on 
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XG is precisely µG . The horizontal and the vertical shifts OG , TG : XG -+ XG 

defined by (aG x)( i, i)= x( i+i, j) and ('rG x )( i, j) = x( i, j+t ) are commuting 

automorphisms of the measure space (XG , 
BG, µG) where BG denotes the Borel 

a-algebra on XG. The measure preserving Z2-action 7G on (XG , BG, µo ) 

generated by aG and rG is called the shift action on XG . Ergodic properties of the 

action were first studied by F. Ledrappier [L] for the case G= Z2. He showed the 

shift action to have zero entropy and to be mixing, but not 2-mixing. In fact, zero 

entropy and mixing holds for any group G (cf. [ Sch1 ], [ Sch2 ]) and 2-mixing fails 

whenever G is abelian ( see [ War ] ). It is not hard to show that hµ0(aG) = hµG(tiG) 

= log IGI. So, we have 

Proposition 3.1.1 (cf. [ War] ). If the shift actions (XQ, , Bc1, pal, 7o, ) 

and (XG2, BG2, pG2,732) are isomorphic, then 1 Gl 1= 1 G21. 

After 
. 
this discussion we formulate the following question which was 

originally raised by H. Furstenberg (see ( Sch1, p. 611 ). 

Question 3.1.2. Let G1 and G2 be finite groups with I Gi I=1 G21. 

Are the Z2-actions (XQ1 
, BGI , pGl , 

? Gl) and (XGZ 
, BG2, 

JUG2 , 
7G2) isomorphic 

9 

We remark, that the invariants called relative entropies that have been 

introduced by B. Kitchens and K. Schmidt [ KS2 J do not distinguish between such 

actions. 

The question has also been studied by T. Ward in ( War I where he 

proves that if G1 has the property that { ghg-lh-1 : g, hc G1 }= G1 , i. e. G1 is 

"strongly non-abelian", and G2 is any abelian group, then (XGBot I RG7G1) 

and (XG2 , BG2 , 9G2 7G2) are non-isomorphic. However, the arguments of [ War ] 

are not applicable to the case when G1 and G2 are both abelian. 

Here we deal only with abelian groups. We prove a theorem which 

enables us to measurably distinguish between (XG 
1, 

Bit , 11Gt 0 7G, ) and 
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, BG2 , µG2 ,T, say, for G1 = (ap )n and G2 = apn for any prime p. As XG2 G2 ) 

far as the question of topological conjugacy is concerned, we have been able to 

describe the situation completely : algebraically (non-) isomorphic abelian groups 

give rise to topologically (non-) isomorphic Markov shifts. We conjecture that the 

measure-theoretic picture is exactly the same. 

In order to formulate the result precisely, let us recall some definitions 

from basic group theory ( see e. g. [ Schn I ). The group G is called a p-group, if 

IGI= ps, sE DJ for a prime p. For any finite abelian group G the least common 

multiple of orders of its elements is called the exponent of G. We denote the 

exponent of G by E( G ). Clearly, gE(G) =e for every gcG. Furthermore, E( G) 

always divides IGI. We prove that the number E(G) is an invariant for the shift 

action (XG , BG , µG , 7G) as long as G is a p-group. 

Theorem 3.1.3. Let G1 and G2 are abelian p-groups. If the Z2-action 

(X1, Berl , , uGI , T1) is a factor of the Z2-action (Xc2 , Bc2, ltc2 , 7G2 ), then 

E(G1) S E(G2 ). In particular, if they are isomorphic, then E(G1) = E(G2). 

The theorem may be illustrated by the following 

Corollary 3.1.4. For an integer m>1 let G1 _ (Zp )m, 

G2= (Zp)m-2 $ Zp2, ... , G,,, 
-l = Zp $ Zp,,, -1, G., = Zp� . Then the Z2-actions 

(X0 , BG, µßl, ¶F) and (X, 
l 

Bcµc,? cj) (1Si, jSm) are not isomorphic 

unless i=j. 

The theorem above may be considered as a step towards proving the 

following. 

Conjecture 3.1.5. If Gl and G2 are any finite abelian groups, then the 

Z 2-actions (XGI , BG1, PG1 , 7G1) and (X02 , BIZ , µG2 , T02) are isomorphic if 

and only if G, a G2. 

We 'justify' this conjecture by proving its topological counterpart. 
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Theorem 3.1.6. If Gl and G2 are any finite abelian groups, then the 

topological Z2-actions (X61 , 7G1) and (XG2,7G2) are topologically conjugate if 

and only if Gl a G2. 

We mention an obvious "generalization" of our main results. It is easily 

seen from the proofs (see §§ 3.3-3.5) that they are valid for any "3-dot" Markov 

shift with "zero sum" law. More precisely, let 

XG, D ={x= (X(ij) )(iJ)¬ z2 C Gat : 11(m, n) eD X(i+m, j+n) =e for all (i, j)E $2 

where D={ (m(°), n(°) ), (m(l), n(1) ), (m(2), n(2) )}e 712 is any non-degenerate 

triangle, i. e. the vectors ( m(1)-m(0), n(l)-n(°) ) and ( m(2)-m(°), n(2)-n(O) ) are 

linearly independent over 71 
.( 

The case we consider above and below is the one 

with D={ (0,0 ), (1,0 ), (0,1) }. ) Theorems 3.1.3 and 3.1.6 still hold for shift 

712-actions on such Markov shifts. 

Concluding this Section we make a remark concerning notation. As from 

now on we will be concerned only with abelian groups, we will use the additive 

notation for the group operations (in particular, 0 will stand for the identity element ). 

3.2. SOME FACTS ABOUT BINOMIAL COEFFICIENTS 

It can be easily proved by induction ( see ( War 1 for the proof) that 

x(Oým) _ (-1 )m (km) 
x(k, 0) 

k=0 

for any XE XG ,mcM. Since the long-range dependence of the coordinates in 

XG involves the binomial coefficients, we investigate their divisibility properties, 

looking for possible cancellations in (3.1). 
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Lemma 3.2.1. Let p be a prime. Then for all integers sk1 and n2s 

we have psI k for each kE {0, {jpn-s+1: 05jSps"1} (alb 

means a divides b ). 

Proof. See Appendix. 

n 
This lemma tells us, in particular, that the binomial coefficient 

pn. 
S p 

is divisible by ps. One can show that, in fact, ps is the maximal power of p that 

divides the coefficient. 

Lemma 3.2.2. Let p be a prime. Then for all integers s, n with 0SsSn 

n 
the binomial coefficient 

Pp 
n -s 

is divisible by ps but not divisible by p s+1 

Proof. See Appendix. 

3.3. CYLINDER SETS 

Let G be a finite abelian group and X0 be the two-dimensional Markov 

shift defined in §3.1. With Ec 712 a finite set, let 7r, : XG .4 GE be the projection 

map onto E. Then 7LE (X0) is a subgroup of GE. We denote 7CE (X0) by XE 

and for every ac Xý define the cylinder set CG (CO _{xE XG : nE (x) =a}. 

Clearly, µG (CG (a))` (XG I -1. Define the triangles E(m, n, s) _{(i, j) E Z2 : 

izm, jzn, (i-m)+(j-n)<s}, (m, n)E Z2, sE DJ, and set T(Z)= 

= E( -f, -1,41), £EN. We will basically deal with the cylinder sets of the form 

CG (a). It is clear that for any finite set Ec Z2 there is IEN such that Ec T( E ). 

Therefore, the a-algebra BG is the completion of the a-algebra generated by the 

,IEN}. collection of cylinder sets { CO ((X): aEX Gtt 
ý 
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The set XGt ' is just the set of all allowed configurations over T( f ), 

for every such a configuration can be extended to an element of XG . So, 

X Gt 
t' 

_{aG GT(l) : a(i, i) + a(i+i, J) + a(i. j+i) =0 for all (i, J) E T( E-1 )}, 

if f>1, and X Gý 1'=G. Obviously, an element of X rt l' is completely determined by 

its values on the bottom of the triangle T(! ), i. e. by a( _1, _, e) , a( _! +i, _1) 9 """ 

... ,a Moreover, for every (a_ , ... ,a 31 )E Got +t there exists a unique 

aG XG(t with a( i, p) =ai, -1: 5i: 531. From this we obtain I Xýt t' I=IG 14t +t 

and, hence, µG (Cý(t) (a)) =IGI -4t -t for all ae XG( t). For a set Ee ZZ 

define its translate E+ (s, t) by (s, t) E Z2 setting E+ (s, t) =f (i + s, j+ t) : 

(i, j)EE}. One easily finds that 

IXT(L)U(T(L)+(k, O) 1= IXT(L)I IXT(1)+(k, O)1 
= 

IXT(L)I IXT(t)I. 

whenever k>4L. Therefore, for all k>4L, aEX Gý L', ße XT ý we have 

'(a) n C(l) +(i, 0)) 
= IG(CG(L) (a)) RG (CG (t) 

RG(CG(L G () (ß))" 

We now summarize this discussion in the following 

Lemma 3.3.1. Let A be a union of cylinder sets of the form 

T(L' (a ), aE XGýLý and B be a union of cylinder sets of the form CGýtý (ß ), 

ßE XGýtý. Then the sets A and a-k (B) are independent with respect to the 

measure 11G 9 whenever k>4L. 

3.4 OBSTRUCTIONS TO MEASURABLE CONJUGACY 

(PROOF OF THEOREM 3.1.3) 

Let G1 and G2 be finite abelian p-groups with E( G; ) = psi ,i=1,2. 
Suppose sl > s2 which means that in the group the identities psi g=0, gE Gi 

(i = 1,2) hold, but for each r not divisible by pst there exists g( r) E Gt such 
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that r g( r) ý 0. In view of the cancellations guaranteed by Lemma 3.2.1, for all 

RC XGl ,i=1,2 we can rewrite (3.1) ( with m= p" ,nz si) as follows 

s"- 1n i 
X(p, pn) = (-1)pn 

pj 
n -si+l 

X(Jpn_si+1, p) . (3.2) 
J=O JP 

Notice that for xE XG1 the sum above consists of p st -1 +1 summands including 

the p s2 -1 +1 summands of the sum for xE XGi Furthermore, those members of 

the sum for xE XG1 not included in the sum for xE XG2 are not all identically 

n 
zero. Indeed, by virtue of Lemma 3.2.2, ('). 

2) 
is not divisible by psi and 

p 

n 
hence the summand 

pn 
- s2 x( pn - s2 , 0) is not zero when x( pn - S2,0) = g* _ 

n 
=g(pn. S2)EG1. 

From (3.2) for all ßE XGi lý 
and pn-s; + 1 4$ we obtain 

psi-i n-si+l 

tiej CG; t)(ß) 
=Vn aGi CGitý(aý) , (3.3) 

öt 7=0 

where the union is taken over all ä={ aj :0SjS psi }E (X 0. t' )psi -1 
such that 

op Ps' i Pn ß= (-1) ýj=o 
jp n-si+1 

Now we are in a position to establish two facts featuring the difference 

between the measurable dynamics of XG1 and XG2 which prevents them being 

isomorphic. 

Lemma 3.4.1. There exist sets Aj (0 S j: 5 p Sl BE Bel such 

that 

n 
pst-1 k n-s2+1 

imSUpµc1(re; Bn( r'1 ýG, AkPsl-s2> 0, (3.4) 
n-ºoo k=0 

but 
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Psl-1 n-s1+1 
hm SUP 90, 

(r8tn Bn(n 6G1p A')) = 0. (3.5) 

n-ooo j=0 

Proof. We put ai =0E G1 for all 0: 5j: 5 psi-1 except for j= psi-82-19 
T(1) 

and a psl-s2-1 = g* E G1. Then we set Ai = CG 
1 

(a) (_ {xE X01: x(0,0)= aj}) 

and B= CGi l) (0). We have 

Pst-1 n 

k=O kPn. s2+i a kpsl-s2 =0, (3.6) 

psl" 
1nn 

n-s a= (. 2) b* :00. (3.7 ) 
j=0 Jp(. 1+) pI 

n view of (3.3 ), the formulas (3.6) and (3.7) give (3.4) and (3.5 ), 

respectively. Q 

Lemma 3.4.2. Let the sets Aj (0 SjSp si BE ? 3G2 satisfy 

n 
Ps2-]. k n-s 2+1 

hmSupµc2s Bnl 2 ao? Akpsi-sa)ý > 0. (3.8) 
n-+ oo k_p 

Then they satisfy 

PS1-1 n-s1+1 
Jim sup RG2 2Bn(na 2p A ý)) >0. (3.9) 

n-ºoo j_0 

Proof. Fix arbitrary sets Ai (0 <_ j _< p It '1), BE BG2 satisfying 

( 3.8 and denote µG2( Aj) = 4j (clearly, 4j > 0,0 Sj5p St - t) and 

pst-1 
11n = µG2 

('C ,2Bn(n aG2Pn-s2+1 Ak 
PSt_S2)) > 0. Then, since Bý2 is the 

k=0 

completion of a-algebra generated by the cylinder sets, there exists f r= UI and 

sets Aj, 
c (0: 5j: 5 p S1- 1), Be E BG2 which are unions 
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of cylinder sets of the form C021) (a) and satisfy t (Aj A Aý, 
£) <e 

(0 
_< 

jS p'1-1) and µ (BABE) <c. It follows that 

n 
pst-1 

k' n-s2+1 
µc2 Gz 

BIIlkn0 aG2 Ak 
PS1-S21 1° 

s2-1 

° (cr' Be n(pr 6G2paB 
IA 

k pSI-S2+ £ 
(P S2 -1+ 2) £+ (3.10) 

k=0 

PS1-1 n_s1+1 
µc n 

zllDez 
Bn 

. 
noaG2 Ai )) ° 

PS1-1 n-s1+1 
a :piB. nl n A. A. ))) < (psl-1+2)c. (3.11) ° le 

=o 
for all ne W. We have Aj', = UaEQ(j) CG2t)+(s, t)(a)ý 0SjSpst't, 

T(t)+(s, t) T(f) Be =UßER CG2 (ß) where Q(j) and R are subsets of XG2 From 

(3.3) for all n with pn- s2+ 1 >42 we obtain 

n 
st-1 

k n-s2*1 ` 
'r Be n( () aAk 

pst-S2, e) = 
k=0 

ps2-1 a 
Un Cr- Psy+1 CT(t)+(S, t)(akpst-s2) (3.12) 

k=0 

where the union is taken over all (c 
, apst_s2 ,..., apst_t) e Q(0) X Q( PSI-S2 )x... 

n s2'1 n 

... x Q( psl'1) such that (-1)p :k 
-o k 

pn 
- s2+ 1ak pst-s2 e R. We denote 

pst-1 
kpn. s2+1 

Bc, n = µG2 (, n ý, PZ Be n(r ßc2 Ak 
pst_ s2, E) 

). From (3.10) we find 
k=0 

that 11E, n > Tin - (p S2 -1 +2 )e. Using Lemma 3.3.1, one easily obtains 
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psl-1 sl 1 

I1( vG2a-s 
1+lAj, 

ý)) "'3 ne, n 

pj 11 
µG2 C Aý, 

E) > µG2 
C 

ti 
n Be 

2 
j=0 

Psi-8 2 
ý%7 

s l-1 
PTT 

> (lln-(PS2-1+2)E) 11 i "-c), j=0, J 

P81-82 47 

(a4 b means a does not divide b) for all n with pn- si +i >41. Now ( 3.11 ) 

yields 

psi-1 
µc'rez B (( n 

2l 
j=o 

PS11 
> (lln-(PS2-1+2)E) 

II 

j=0, 

PS 1-s 2 -ti 

asr i 

c? Aiý ý 

(4j-c) - (psl-1+2)E , 

But, since lim supra oo 'In >0 and 4j > 0, lim sup of the right-hand side of this 
inequality can be made positive by choosing c small enough. Hence, lim sup of the 

left-hand side is positive. This completes the proof. Q 

The Lemmas 3.4.1 and 3.4.2 show that the system (XG1 , BG1 , 9G1 7G1) 

cannot be a factor of the system (XG2 , BG2 , 9G2 , 7G2 ), if E( G1) > E( G2 ). This 

proves Theorem 3.1.3. Q 

3.5 OBSTRUCTIONS TO TOPOLOGICAL CONJUGACY 
(PROOF OF THEOREM 3.1.6) . 

Let G be a finite abelian group and heG be an element of order 3. 
Then XG ah with h(;, j) =h for all (i, j) E a2 (h is a fixed point of the shift 
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action on XG) and we define a continuous shift-commuting map Lb : XG -º Xo by 
ýLhx)(i, j) = X(i, J)+h, (i, j) c Z2. 

Lemma 3.5.1. Let G1 and G2 be finite abelian groups. Then a 

continuous factor map q: (X0t , 7G1) -* (XG2, r) is a group homomorphism 

or Lb oq with some hc G2 is a group homomorphism. 
Proof. This proof develops some ideas of (KS1 1. For any abelian G let 

OG be the zero element of the group XG (i. e. the configuration of all zeros ). Take 

a continuous factor map cp : (XGI , 7Gt) --4 (XG2 , 7G2 ). We assume that V 0G1) _ 

= 0G2 and prove that cp is a group homomorphism. If q( OG1) =h with h(ij) =h 

for all (i, j) E 712 (the fixed point 0G1 must be sent to a fixed point). we just pass 

to the continuous factor map L_ho P which already satisfies L_ho cp (OGr) = 0G2. 

First we shall prove the statement under the assumption that G2 is a p- 

group. We shall make use of the well known fact that 9 is a block map, i. e. 

there exists IEM, and a mapping F: X TT(l) 
t -+ G2 such that (p(x))(i, J) _ 

= F( 7c T(t) (tJ a` x) )" 

Let o, a, ßEXGit), where o is the zero element of the group Xäit). Let 

T stand for T(I) and denote A= CG1(a ), B= CG, (ß T), O= CG1(o ). 

ps-1 n-s+l 
Next, let E( G2) = ps and, define An =An(n aý? 0) 

k=1 

pS-1-1 
and Bn =Bn( () 

k=1 

n-s+1 

aj' o) n tie2 O. It follows from Lemma 3.3.1 that 

the sets An and Bn are non-empty, whenever pn-s+i >4£. Now we fix xE 

An and yE Bn (pn-s+l 41) 
. 

Observe that c (0G1) = 002 implies F( o) = 0. 

Hence, (P(x)(k pn-s+1,0) =0 for 1<k5 ps-1 and cP(y)(k pn-s+% 0) =0 for 

1: 5 k: 5 ps-1 -1, cp(y)( 0, pn) = 0. Applying (3.2) to the points (p(x ), cp( y) e XG2 

we obtain 
F(a)+cc(x)(p, 

pn)= 0, F(R)+cc(Y)(pn, p)= 0 (3.13) 
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On the other hand, considering the point a+yE XG1 we find 

F(a+ß)+c(x)(p, pn) +(P(Y)(pn'O)= 0 (3.14) 

Comparison of (3.13) and (3.14) gives F( a+0)= F( a)+ F( ß ). Thus, F is a 

homomorphism of Xý1 onto G2 and, therefore, cp is a homomorphism of X01 

onto XG2. The lemma is proved in the case where G2 is a p-group. 

Now consider the general case. Any finite abelian group G2 can be 

presented as a direct product (sum) 

r 
G2 = G2( Pi ) 

i=1 

where G2( pi) is a pi-group ,i=1, ... , r. It is easily seen that the group X02 

is the direct product of its 7G2-invariant subgroups corresponding to the factors 

G2(pi) of G2, i. e. 

r 
XG2 = 

i(D tXG2(Pl) 

Any continuous factor (p : (XG1 , TG1) 4 (XG2 , 7G2) gives rise to r continuous 

factors (pi = pri o cp : (XG! 7G1) -' (XG2(Pl) , 7G2(Pl) ), where pri.: XG2 -+ XG2(P, ) 
is the natural projection. According to what is proved above, for each i the map (pi 

is a group homomorphism. Hence, so is cp .Q 
Lemma 3.5.2. With Ga finite abelian group, the group 

Fix(TGoaG)= (xeXG: ZG0QG(x) =x} iS iSOmorphic to G2=GGG. 

Proof. Let xE Fix (rG o aG) and denote x(o, 0) =g and x(1, o) =h. 
Then we must have x(o, t) =k= -g -h and, by tiG o aG-invariance, x(i, i) =g 

and x(i+t, i) =h. Then we must have x( i, i+ I) =k for all ica. Following the 

rule x( i, j)+ x( i+1, j)+ x( i, j+t) =0 and the TG o aG-invariance, we are led to the 

unique configuration x which has x(i, j) being equal to g, h or k according as 
i-j is congruent to 0,1 or 2 mod 3. So, the projection N(o, 0), (i, 0) 1 
Fix (, rG o aG) _- G2 gives the desired isomorphism Q 
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Proof of Theorem 3.1.6. 
Suppose that cp : (XGl , 7G1) --> (XG2 , 7G2) is a topological conjugacy. Then, by 

Lemma 3.5.1, Lh o cp for some he G2 is a group isomorphism. Clearly, it induces 

a group isomorphism between Fix (tint o ao) and Fix (tiG2 o aGz ). By virtue of 

Lemma 3.5.2, this implies (G1 )2 a (G2 )2 and, therefore, G1 a G2 This 

completes the proof of the theorem. Q 

APPENDIX TO CHAPTER 3: 
PROOFS OF THE NUMBER-THEORETIC LEMMAS 

We begin by establishing the equality 

qn+l 
_n k_ 

ki 

OSkI,..., kgSqn i=1 

kl+... +kq =k 

for all integers q>0, n >_ 0,0: 5 k: 5 qn. Indeed, we have 
n+1 

(a+b) gn+l 
_ 

qn+l akbq'1-k 
k=O 

k 

but, on the other hand, 

n+1 nqn n- q (a+b)q = 
((a+b)") 

= 
(k_ 

n0k 

akbq k) 

- kn kn akl+... +k bqn+l_(kl+... +kq) 
_ kl-O... kq-O 1 ... 

Comparison of (3. A. 2) and (3. A. 3) yields (3. A. 1 ). 

We use (3. A. 1) to prove Lemma 3.2.1. 

Proof of Lemma 3.2.1. 

(3. A. 1) 

(3. A. 2) 

(3. A. 3) 

Let JDS stand for the claim of the lemma for a fixed s. First we prove 

JD 1 by induction on n. It is well known ( see [ HW ], Theorem 75 )) that any 
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prime p divides the binomial coefficient 
(kp) 

for any k=1, ... ,p-1. Suppose I 

to be true for some n. Let ke{0,1, ... , pn+l }\{j pn ;0Sj5p}. Then for every 

(k1,..., kp) E {0,1,..., pn}P such that kt+... +kp= k there exists 1,1: 51: 5p, 

p f; 
.1 

kn From (3. A. 1) we conclude with kl E{1, ... , pn-i } and, hence, 
p 

n+I 
that pI pk for such k. Now suppose k=j pn for some 0<j<p. We put 

K= {(kt,..., kp)E {O, l,..., pn}p: TIp=1ki=k} and K0= {(kt,..., kp)e K: 

kiE {O, pn} for all i= 1,..., p}. Clearly, IKoI=(p) and fp=1 
ki =1 for 

pn 
each (kt , ... , kp) E Kp . From the induction hypothesis we have pI fi 

=1 
ki for 

each (k1 , ... , kp) E K\K0 . Thus, writing 

Pn+ 
1_ (P1 (pn 

k IJ1 +1 ki 
(kt,..., kde K\Ko i=1 

where the both summands on the right-hand side are divisible by p, completes the 

proof of the claim JD1 . 

Now in order to prove the lemma by induction on s we need to derive 

s+1 from 1. So, let PsI (ic) for all n Zt s and all ke {0' 1,..., p}\ {j pn-s+t : 

05jSps-1}. Take any m? s+1 and any kc{O, 1,..., pm}\{jpm-s: 05jSps} 

and put K={ (k1 , ... , 
kp) E{0,1, ... , pm-1 }P : fl 

.1 
ki =k}. Then for every 

(k1 
, ... , 

kp) cK there exists £ (1 SfS p) such that kl is not divisible by 

m-1 
pm-s = p(m-i)-s+i. Since m-1s our assumption yields ps I kt 

. Next, we 

partition the set K into two sets : 

K1={(ki,..., kp)EK: I{1: 151 p, pm-s does not divide kl}I = 1}, 

K2= {(k1,..., kp)E K: I{L: 151<_p, pm-s does not divide kl}I z 2}. 
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Obviously, Ki n K2 =0, Kt U K2 = K. From the observation above we see that 

P (lzn. 1) 

, 
for all (k1, ... , kp) E K1 and p2s I JJi 

_1 

(ki 
f or all 

1 
(k1 , ... , kp) E K2 (note that 2s z s+1). Furthermore, I Ki I is divisible by p, since 

KI is the disjoint union of the sets K1(f) ={ (kt ,..., kp) c Kt : pm'S does not 

divide kL }, I=1, ..., p, which have equal cardinalities. Thus, we have 

m M-1 m-1 
k=ý, 

ft (k- 

+K 
ki 

(kl,.... Ye K1 i=1 (k1..... E2 i=1 

where the sums over K1 and K2 are both divisible by ps+t . This completes the 

proof of the lemma. Q 

Proof of Lemma 3.2.2. 

For an integer a and a prime p we write ordp (a) for the maximal 

power of p that divides a, i. e. ordp (a) = max{ mcN: pm Ia}. To prove the 

n 
lemma we have to show that ord 

p 
p( pn -s)=s. First we compute ordp( p"1 ). We 

have 

nn 

ordp( p°! ) 
t 

ordp(ä) _Ik I{ a: 15h: 5 p° : ordp(a) =k }I = 
a=1 k=1 

n-1 
= nI{a: 15a<pn, p'Ia}I + Ik(I{a: 1<_a<_pn, pkIa}I-I{a: 15a<pn, pk+tIa}I)= 

k=1 

n-1 
ý. =n+Ik (pn-k _ pn-k-I 

k=1 

Thus, for all ncN 

n-i 
ordp( pn! ) =n+ (p - 1) Ek pn-k-t . (3. A. 4 ) 

k=1 
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ordp( (pn _ pn-s) i) can be computed in the same manner taking into account that 

pn-k _ pn-k-s , if 1Sk: 5 n-s -1 
Ila: 1 _a<pn_pn-s, pkIa}I = pn-k- 1, if n-s<kSn- 1 

10 ifkzn 

We obtain 

n-1 n-s-1 
ordp((Pn _ pn-s )1) _ (p_1) kp n-k-t +(P-1) Yk (pn-k-l _ pn-k-s-t) . 

k=n-s k=1 

n-1 
a (pE kpn-k-1 _ 

k=1 

n-s-i 
P-1)k pn-s-k-1 

k=1 

From this and (3. A. 4) it follows that 

ordp( (pn - pn-s )! )= ordp( pn! ) - ordp( pn-s! ) - S. 

Finally, we have 

n 
ordp( 

pn 
- s) _ 

This proves the lemma. 

ordp( p°! ) - ordp( pn-s! ) - ordp( (pn - pn-s )! ) = S. 

0 
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CHAPTER 4. 
THE COMPLETE CLASSIFICATION OF 

" THREE DOT " MARKOV SUBGROUPS OF 
zp)Z2 

4.1. INTRODUCTION AND THE MAIN RESULT 

Let pEM be a prime number and denote 71p = 71/pZ. Consider the zero- 

dimensional compact -group S2p = (71p) Z2 and its character group (f1p )' = ®Z2 71p 

which can be identified with the ring Rp = lp [ utl, vt1 I of Laurent polynomials in 

the two commuting variables u, v with coefficients from the finite field 71p. We 
identify the polynomial f( u, v) =I (i, j )E S (0 cf( i, j) ui vi, where S(f)e Z2 is a 
finite set called the support of f, with the character Xfe (fl. )A defined by Xf(x) = 

_ 1(i 
,j )E S (1) cf( i, j) x(i, j) ,xE 

f1p. It is easy to see that for any ideal Ie ,p 
( fp )A the annihilator Il ={xE S2p :Xf( x) =0 for all fEI} is a closed 

shift-invariant subgroup of Or In particular, for the principal ideal I= <f> we 
have 

<f>1= {x6 f1p: 1: 
(i, j)eSMc1(lýj)X(i+m, j+n)=0 for all (m, n)C Z2}. 

We will use the, notation X<f> for the two-dimensional subshift of finite type <f> 1. 

Let B<f> be the Borel a-algebra of X<fl and µ, < f) be normalised Haar 

measure on B«>. The horizontal and the vertical shifts a,, r: fl 
, -+ S2p defined by 

( ax )(i, j) = x( i+1, j) and (tix )(i, j) = x( j, j+1) are group automorphisms preserving 
the subgroup X«> and, of course, µ< f>. The dynamics of the measurable Z2-action T <f> 

generated by the restrictions of a and ti on the measure space (X<1> , B< f>, µq> 
have been recently studied by K. Schmidt and B. Kitchens in [ Sch ), [ KS 11, [ KS2 I 

( see also [W] and [ Sh ] for related results ). One of the most interesting and hard 

questions here is whether or not two dynamical systems (X<f> , B< f> , lt<f> , 7<f), ) and 

(X<g> , B<g> , µ<g> , 7<g>) with f#g are measurably ( topologically) isomorphic. It 

was proved in [ KS1 ]( see also [ KS2 ]) that the convex hull of the support S( f) 
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(up to a translation, of course) of the polynomial f is an invariant of measurable 
( and, hence, topological) conjugacy. K. Schmidt and B. Kitchens conjectured that 

(X<f>, B<f>, g<>, 7«>) and (X<g>, B<g>, gq>, ? <g> ) are measurably isomorphic if 

and only if <f> = <g>, but their invariants do not distinguish between the actions 

arising from polynomials f and g with the same support. Here we prove the above 

conjecture for the class of systems arising from polynomials with the support { 

(0,0), (1,0), (0,1) }. 

We denote Sap={fc5,: S( f) _{ (0,0), (1,0), (0,1)} }, i. e. Bp is the 

subset of .p consisting of all polynomials f of the form f( u, v) = et{ 0,0 )+ 

+ cf( 1,0) u+ c1( 0,1) v with c1( i, j) e 71p" = 71p\{0}. The main result of this 
Chapter is the following 

Theorem 4.1.1. The dynamical systems (X(f>, B<f>, p<p, 7(fß) and 

(X(g>, B(g>, u<g>, T<g)) , f, gC 2p are measurably isomorphic if and only if 

<D = <g> , i. e. if and only if f=ag for some ae Zpx. 

Our strategem of proving this theorem is to gradually reduce the problem 
of measurable isomorphim to the problem of topological and, then, algebraic 
isomorphism. 

4.2. MEASURABLE ISOMORPHISM IMPLIES 
TOPOLOGICAL CONGUGACY 

Theorem 4.2.1. Let 9: X«> 4 X<, be a measurable isomorphism 

of the dynamical systems (X< >, B<j), u<f>, 7<f> ) and (X<g>, 8(gß, itCgs, T<g>), 

f, ge ! 3p 
, then there exists a shift commuting homeomorphism tp' : X«> -. X<g, 

such that (p (x) = 9'(x) for p< >-almost all xc X«) . 
Corollary 4.2.2. If the dynamical systems (X<0, B<f>, µ<f>, 7<f> ) 

and (X<g), B(g>, p s(g) , 7(gß ), f, ge Bp arge measurably isomorphic, then they 

are topologically conjugate. 
Now we introduce some more notations and make some observations 

which will be used throughout the Chapter. With Ec g2 a finite set, let 
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nE : X<O -º (71p) E be the natural projection onto the coordinates contained in E. 

Then 7rE (X< f)) is a subgroup of (71p) E. We denote it13(X«>) by XE > and 

for every aE Xq> define the cylinder set CES (a) _{xE XG : nE (x) =a}. 

Clearly, µ<> (C<> (C))= I XE> 1-1. Define the triangles 
E(m, n, s)= {(i, j)E Z2: izm, jZn, (i-m)+(j-n)<s}, 

(m, n) E 712, seN, and set T(Z) = E(- f, -1,4f ), geN. We will basically deal 

with the cylinder sets of the form C <>1 (a). It is clear that for any finite set 
Ee Z2 there is Ie IM such that Ee T(e ). Thus we have: 

Observation 4.2.3. The a-algebra B<f> is the completion of the a- 

algebra generated by the collection of cylinder sets IC q> ' (a): aeX «> ý, leW}. 
The following statement can be easily proved by the same argument as 

Lemma 3.3.1 in Chapter 3 of the Thesis 
Lemma 4.2.4. Let A and B be unions of cylinder sets of the form 

C <f (a ), aeX <f 
with the same ICN. Then the sets A and a -m(B) are 

independent with respect to the measure P< >, whenever m> 41. 

Next, we observe that for the polynomial f(u, v) = cf(0,0) + c1(1,0) u+ 

+ ct{0,1) vE SIP c ,p we have (f(u, v) )pn = cf(0,0)+ cf(1,0) upn+ cf(0,1) vP1 . but 

fp r: <f> and, hence, 

cf(0,0)x(i, J)+c91,0)x(i+pn. j)+ct{0,1 )x(i. i+p")=0 
for all x r= X<1>, (i, j) E Z2, n c: W. From this one easily obtains the following 

Lemma 4.2.5. Let a, eX <ýl 1 
and pn>41. Then the intersection 

C <> 
T(f) (a) f1 Q P" C <n 

Z) (Q) f1 r P'' C6 (Y) is equal to 

C<> 1(a) nr C<ýt'(ß), if c/0,0) a+c1(1,0) ß+cß(0,1) y= 0 in the 

group (ZP)T(S) and is empty, if cß(0,0)a+c/1,0)ß+c/0,1) y, 4 0. 
The proof of Theorem 4.2.1 is based on the following rather surprising 

fact 
Lemma 4.2.6. Let i: X«> -* X(f> be a shift-commuting automorphism 

of the measure space (X<. f>, B<f>, µ(fß ), fe . 9p and suppose that i' has finite 

order r (i, e. P <f> !Ed rJ r( E)) =0 for each Ee B<f> Then for any set 
AC B<f> with p<f> (A)> 0 satisfying 
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R 
lim p(fl(AnQ PA flz ý7](A))= Ulf)(A)2, (4.1) 

there exists a subgroup He X«) , such that p <f> (Q A A) =0 for some coset 

QEXlf> /H. 

Proof. Without changing <f> we may assume that the polynomial f has 

c1( 0,1) _ -1. To simplify notations we put cg 0,0) = a, c1( 1,0) =b so that 
f(u, v)= a+bu-v and X< _ {xE 12p: x(t, J+l)= ax(t, j)+bx(i+t, j) for all 
( i, j)E Z2 }. Also, since f is fixed throughout the proof, we will drop the 

subscript <f> in X(f> , B<f> , µ<f> , CTýl) ( a) etc. . 
Fix an arbitrary c>0. Then, by virtue of Observation 4.2.3, for the set 

AcB there is l= £( c) z0 and sets A. , An'r of the form 

Ac =V CT(t)(a), An, e =V CT(t)(y), I, JcXTU) 
aeI YeJ 

such that t (A A As) S e, µ (ri(A) A An, e ): 5 c. Observe that the following equality 
holds 

fAyEAc: 
ax+byeA,,,, }dµ(x)= 

AE 

=n µ(AEna-pn(AE)nr-pn(A,,, e)). (4.2) 

Indeed, using Lemmas 4.2.4,4.2.5 for all neN with p° >4f we have 

µCAE(1a-pn(Ac)(1ti P (Aý, e)) =µU (CT( (a)f1arp°CT(t (ß)) 
Opel, 

aa+bDEJ 

=U µ(CT(l)(a))µ(CT(t)(ß))= I g(CT(t)(a)) U µ(CT(Z)(ß)), 
a, REI, dhT ße I, 

as+bßeJ aa+bßeJ 

which is equal to the integral in the left-hand side of (4.2 ), since given an 

xE CT(I) (a )cA. a point yeX satisfies ax + by E A,,, E iff yC CT(t) (ß ) 

where ß satisfies as + bß E J. This proves (4.2 ). Because the inequality 

µ((Ana-P(A)nc-p"(rl(A)))A(Ana-P(A. )nti-P(A,,,, )))5 3e 

obviously holds for all nEW, the equality (4.2) yields 

µ(A)2 = Al , 
µ(Ana-P°(A)nr-pln(i1(A)) 5 

5 
nl mt (Ac n a- '(Ar )n ti-pn( Att, e)) + 3e _ 
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=JA µ{ ycA.: ax + by c A71, £ } dµ(x) + 3e. (4.3) 
Ac 

For EcX, zEX, hE 71p we denote E+ z={ x+ z: xcE 

hE ={ hx :xeE}. Whenever E is measurable and h00, we have µ(E + z) _ 

= µ( hE) = t( E) ( since x -+ hx is a group automorphism of X, it preserves the 

Haar measure t ). Clearly, {yeE: ax + by c E' }=En b'(E' - ax) for any 

E, E' c X. The inequalities g( AA AE) 5c, t( i( A) A An, E ): 5 c imply 

µ((Anbl(Tl(A)-ax))A(Aenb-'(A, j, e-ax ))) S 2c and, hence, 

I t{yE A: ax +by ET(A)}-µ{yG AE: ax+bye ATI, E}I S 2c 

for all x r: X. This enables us to make the following estimate 
i fAµ{ycA: 

ax +byE1(A)}dµ(x)-fA µ{ye AE: ax+bycAjj, r}dµ(x)I S 

s JA\A µ(yE A: ax+byc Tj(A))dµ(x) + 

+fA \Aµ{yG 
Ac: ax+byG An, E}dµ(x) + 

+I fA£ 

nA 
(µ{yEA: ax+bycil(A)}-µ{ycAE: ax+bycAn. e})dµ(x)IS 

<_E+e+fAenAIt{yEA: ax+byeri(A)}-µ{ycAc: ax+bycAl, E}I dt(x)S 

4p- . 
Along with (4.3) this estimate gives us 

µ(A)2 Z fAµ{yGA: 
ax+byErl(A)}dt(x) Z 

>_ fA 
µ{ye A£: ax+bycA%E}dµ(x) - 4c z 

e 
z µ(A)2 - 3e - 4e = µ(A)2 - 7e. 

Since c>0 can be chosen arbitrarily, we obtain 
fAµ(yEA: 

ax+byEil(A))dµ(x) =fAµ(A(lb-'(r1(A)-ax))dµ(x) µ(A)2, 

which means that for µ-almost all xeA we have µ( An b'' ('0(A) - ax)) = 

= µ( A) and, hence, µ( AA b-' (ri(A) - ax)) = 0, or, in terms of the indicator 

functions, 1A( z) = lb-I (n(A) - ax)( z) =1 (A)( ax + bz) for t-almost all z( we 

write 1E for the indicator function of the set E ). Finally, we express this fact as 
follows 

IA(z)=µ(A)f 1f(A)(ax+bz)1A(x)dµ(x)" (4.4) 

Now we are going to use Fourier analysis on the compact abelian group 

52 



pE(") = µ( E )-' 1E(") be the normalized indicator function of ECX. For the 

Fourier transform pp :X -º C of the function pp E £'( X, t) we have ( taking into 

account (4.4) ) 

PA(x) =fz, X PA(z)dµ(z)= µ(A )"'f z, x 1A(z)d. (z) 

= µ(A)-Z, 
f 

z, x (f Ill(A)(ax+bz)1A(x)dµ(x)) dµ(z) = 

= µ(A )-2 ff b" (ax+bz), x -b" ,x IlTI(p)( ax + bz)1A(x) dµ(z) dµ(x) = 

=f b" ,x Pn(A)( y) dµ( y) 
f 

-b" ax, x PA( x) dµ( x) _ 

= Prl(A)( X° b4) PA(x ° (-boa) ), 

for any character xEX, where Xoh (h c 71t, ) is the character given by 

< x, xo h> =< hx, x> (we use the symmetric notation < x, x> for the value of 
the character X on the element xeX which is justified by the Pontryagin duality). 

Putting d= b', e= -b-'a c 71p 
, we obtain 

PA( G) = PTI(A)(X°d) AA(X°e), (4.5) 

for all xEX. The equation (4.5) holds for every set Ae ?t satisfying (4.1 ). 

But since il is shift-commuting and measure-preserving, the set TIk ( A) satisfies 
( 4.1) whenever A does. Therefore, (4.5) remains true, if we replace A by 

Ilk (A) for any kcZ. Thus, 

P, 
lk(A)(x) = Pnk+i(A)(x°d) P, 

lk(A)(Xoe), XcX, kE Z (4.6) 

Clearly, IPA( X)I <_ 1, xEX. Using (4.6 ), we will prove that in fact 

PA( X)I can take only two values: 0 and 1. Indeed, we have IPA( x) I= 

=I Pij(A)(x o d) II PA(x o e) I. Suppose for some me DJ we have I PA(x) 15 

5I Pfm(A)(X o dm) II PA(X o em) I. Then, in view of (4.6 ), this implies 

I PA( X) 15 I Pam+t(A)( xo d°1+1) I IPA( xo em+l) I. By induction, this proves the 

following inequality 

IAA(X)I 5I Pnk(A)(Xodk)I IAA(Xoek)I, ke 71. (4.7) 
For k=r(p-1), where r is the order of i, (4.7) yields IPA( x) 15 IPA( X)12 
which implies I PA(x) IE 10,1 }. 

It is a consequence of a classical result in Harmonic Analysis ( see 
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HR ], p. 257) that the subset t={xEX: I pA(x) I =1) is a subgroup and the 

restriction of PA :X -º 4 to r is a character on F. Let H= I'1 CX be the 

annihilator of F. By virtue of the Pontryagin duality, there exists a coset YE X/H 

such that AA( x) =<a,, ,x> for all XEr with an arbitrarily chosen x,, E Y, 

and from what we have proved above it follows that pA( x) =0 for all xEX\r. 

But it is easy to see now that PA is identical to the Fourier transform of the 

function PH_x*( x) = µ( H )-' Iltt_xi( x ). By the Inversion Theorem, the 

functions PA and pH_, 
* 

are equal as elements of G'( X, .t). Hence, A differs 

from the toset H-x, by a set of measure zero. Q 

Lemma 4.2.6. Any subgroup H of X<f, with p« ! H) >0( and, 
hence, any toset QE X< /H) is a closed and open subset of X«) . 

Proof. One can easily show that the map All: X(f> -º IR defined by 

All (x) = gq> (H A (H + x)) is continuous. Since µ«>( H)>0, the closed 
(by continuity) set {xE X«>: All (x) =0} is precisely the subgroup H. H is 

also open, because its complement is a finite union of cosets which are closed, 

since H is. Q 

Thus, we have shown that any set of positive measure, satisfying (4.1 ) 

differs from a closed-open set by a set of measure 0. Now we proceed to 

proving Theorem 4.2.1. 

Proof of Theorem 4.2.1. Let cp : X< -+ X<g> be a measurable 

isomorphism of the dynamical systems (X<c> , B<f> , gq> , 7< f>) and (X<g> , B<S> 

7<g> )' f'ge 23p" Any cylinder set Cf = CT( TS t µ<g> '(a)e X<f> obviously satisfies 

i im µ<ý(Cffla'ý'(Cf)nc-Pn4(Cf))= t<ý(Cf)2 
where 4: X<f> -+ X<f> is given by 4( x) ef(0,1)-' (c1(0,0) + cf(l, 0)) x. 

Clearly, if ct{0,0) + cf(l, 0) ý 0, then 4 is a shift-commuting automorphism 

of finite order (4p-t (x) =x for all xeX). Hence, so is the automorphism 

= cp o4o X<g> -9 X<g>. For any cylinder set C=Cý>' (a) the image 

(p( Cf) E B<g> has positive measure and satisfies 
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n um µ<g>((P(Gf)fla-p'(p(Cf))flt 11((P(Gf)))= µ<g>(«P(Cf))2 
Now Lemmas 4.2.5 and 4.2.6 tell us that 9( Cf) coincides with a closed and 

open set up to a set of measure 0. The "mirror image" of the above argument 

shows that for any cylinder set Cg e X<f> the pre-image q 1( Cg) E 21<f> 

coincides with a closed and open open set up to a set of measure 0. 

Thus, cp establishes a well defined one-to-one correspondence between 

the set algebras CO<f> and CO<g>, where CO<p>e B<. > is the algebra of clopen 
( closed and open ) sets of X< f> , i. e. the algebra generated by cylinder sets. 
This correspondence defines an isomorphism FcO between the algebras of simple 

continuous functions tco( X<f>) and CcO( X<g>) ( the algebra Cco( X<t»>) is 

generated by the indicator functions of clopen subsets of X<r> ). Since Cco(X< f> ) 

is dense in the Banach algebra C( X< f>) of continuous functions on X<fI> , the 
isomorphism Fc0 : CcO( X<f> ) -º Cco( X<g> ) has a unique extension to an 
isomorphism of the Banach algebras F: C( X<f>) -, t( X<g> ). In its turn, F 

induces a homeorphism q$: Jfl (C( X<f> ) --> M(C( X<g>)) between the maximal 
ideal spaces of the Banach algebras. But, according to the Gelfand theory ( see 
I Ru ], p. 271 ), fit (C ( X<f, >)) is (homeomorphic to) X< f, > Thus, we have 

obtained a homeomorphism q$ : X< f> --º X< g> which defines the same 

correspondence between the set algebras CO<f> and CO<g> as cp. It is clear that if 

we throw away the set N=U Cr Co<f>(C 
0q (4S (C)) ), then cp(x) = O(x ), on 

the complement X<f>\N. But N is a countable union of sets of measure 0 and, 
therefore, µ. <f> (N) =0 completing the proof. 

In the argument above we used the fact that c1(0,0) + ct{1,0) 3L 0. But 

it is easy to se that, unless p=2( the case p=2 is of no interest for us, since 
22 consists of only one polynomial ), at least one of the following inequalities 

holds : cf(O, 0) + cf(l, 0) # 0, cf(O, 0) + ct{0,1) # 0, c1(1,0) + cg 1,0) & 0. If, say, 

cf(1,0) + cf(l, 0) #0 is the case, then we just have to use a modified version of 
Lemma 4.2.6, with 

l im /1<t'>(i(A) na PA nT PnA )= u<f«(A)2, 

instead of (4.1) (the proof of the lemma remains essentially the same). Q 
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4.3. TOPOLOGICAL CONGUGACY IMPLIES 
ALGEBRAIC ISOMORPHISM 

In the previous section we proved that any measurable isomorphism of 

the dynamical systems (X«> , B<f> , P<f>, 2>) and (X<g>, B<g>, µ<s> , 7<s> ), 

f, gE P'p must coincide almost everywhere with a homeomorphism. This enables us 

now to be concerned only with the question of topological conjugacy. In this 

section we consider the shift action 7(f> on X< as a topological dynamical 

system. Theorem 4.3.1 below provides the further reduction. Namely, it turns out 
that a topological conjugacy between the Markov subgroups must respect their 

algebraic structure. 

Remark that the abelian group S2p = (Zp) Z2 can in a natural way be 

considered as an (infinite dimensional) vector space over the finite field 71p 
, and 

any Markov subgroup X< becomes a subspace of CI,. The following theorem is a 

generalization of Observation 4.1 in [KS 1]. 

Theorem 4.3.1. Let f, gE Sap and let rp : (X<f>, 'T<, ) -ý (X(g>, T, ) 

be a continuous factor map. Then there exists he 1f, such that (cp(x))(i j) _ 
=(YI(x))(iJ)+h, xe X<f> , (i, j) E Z2, where V: (XCf>0T(f)(X(g), T(g)) 
is a homomorphism of vector spaces . 

Proof. For any fe ,p let 0E X< be the configuration of all zeros 
(the zero element of X«> ). Obviously 0 is a fixed point of the action 7< > 

and it is the only one, unless P(1,1) =0; if f"(1,1) = 0, then for each hc 71p 

the action Z> has the fixed point be X< f) all coordinates of which equal h. 

The factor map cp : (X< f) ,Z>) -+ (X<g> ,Z g>) sends the fixed point 0e X<f> to 

a fixed point he X< g> , 
hence 9(x)= W(x)+h, xe X< >, where 

yr: (X<1>, T <f> )+ (X<g>, 7<g>) is a factor map with the additional property yr( 0) = 0. 

Let f, geSap and let NJ : (Xf , 7f) -º (Xs , 7s) be a continuous factor 

map such that yr(0)= 0. Clearly, there exists £e DJ and a map `I': Xn(l) -º Z such 
that (W(x))(i, ,)= T(7r-r(t) (til & x) ), xe X«,, (i, j) E 12. Take 0, a, ßE XT(t) 

where 0 is the zero element of the group X(O ti and a, 0 are just arbitrary, and 
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denote: 0= Cý(l)(0 ), A= C1( a ), B= CT(1(0 ). According to Lemma 4.2.4 

the intersections An ß-Pn 0 and Bn 'L'pn o are non-empty for n large 

enough, and we fix xeAn cr-0 O and yEBn C-pn O. We also consider the 

point x+yc X<f,. We have 

cf(0,0)(i(X))(0,0)+C9 1,0)(w(x))(pn. 0)+Cf(0,1)(4J(X))(0, pn)=0 
Cf( 0,0) (w( Y ))(0,0) + c1(1,0) (W( Y ))(pn, 0) + c1( 0,1) (Vi( Y ))(0, 

pn) = 0, 

c1( 0,0) (W( x+Y ))(0,0 )+ c1( 1,0) (W( x+Y ))(pn, 0 )+ C1( 0,1) (W( x+Y ))(0, 
tp) =0 

On the other hand, (qr(X))( 0.0) _ `Y(a ), ('v(y))( 0,0) `Y( (3 ), 

(w( x+Y ))(0,0 )_ `I'( a+P ), (w( X))(pn, 0 )_ `i(0) = 0, ('v()' ))(0, 
pn )- 

'1'(0) ° 0, 

(W( x+Y))(pn, 0) _ (W(Y))(pn, 0) + (W(x+Y))(0, 
pn) _ (VV(x))(0, 

pn) , where the 

equality T(O)=O follows from y'( 0) = 0. Thus, we obtain ct{0,0)`Y( a+ß) = 

= cf(0,0)`I'( a)+ c1(0,0)`Y(0 ) and `P( a+ß) = `Y( a) +''(ß ), where a and ß are 

arbitrary. This shows that yr( x+y) = yr(x) + yr(y ), x, yE X«> , which also 
implies yr(dx)= dyf(x), xE X<f>, dE 71p. Q 

Corollary 4.3.2. Let f, gE 2p and let op : (X<f> , 7<f>) -º (X<g> , 7<g> ) 

be a topological conjugacy. Then there exists he 71p such that (q, (x))a, j) =- 
(vV(x))(;,. i)+h, xe X<f>, (i, j)E 22, where Vf: (X<f>, T<f>) -*(X<g>, 7<g>) 

is an isomorphism of vector spaces . 

4.4. ALGEBRAIC CLASSIFICATION 

Now we give the complete classification of the "three dot" Markov 

subgroups with respect to a shift commuting vector space isomorphism. In view of 
the results of the previous sections, this algebraic classification immediately gives a 

measurable classifications of such dynamical systems. 
Theorem 4.4.1. Let f, ge2 and let op: (X<f> , 7<f-*(X<g> , 7<g> ) 

be an isomorphism of vector spaces commuting with shifts. Then <f> _ <g>, i, e. 
f=dg for some de Zp 

. 
Proof. Observe that for any fc Sap the set Fix (X«> ,to a) = 

={xE X<1> : ti oa( x) =x} is a subspace of the vector space X< f) isomorphic 

to (71p )2, the isomorphism being given by the projection ns , where S ={ (0,0 ), 
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( 1,0) }. The restriction of a onto Fix( X«. ) ti o Q) a (71p )2 is the linear operator 

given by the matrix 

1 ýAO, O)c¢1, O)-' _ctO, 1)Ci(1, O)-1 
Mf = 

)EGL(2z). 
,10 

Now let f, ge Bp and suppose that there exists a topological conjugacy 

cp : (X< ,T <f> ) -+ (X<g> , 7<g> ). Then from Lemma 4.3.2 it follows that cp( x) - 

= yi(x) + b, xe X<f> , where v: (X<f>, 7<f> ) -* (X(g), 7<g>) is an isomorphism 

of vector spaces. Clearly, it induces an isomorphism between Fix (X<f>, toa) 

and Fix (X. <g>, to a) which can be considered as an invertible linear operator on 

( 71p )2 given by a matrix Rc GL( 2, Zp ). As yr is shift-commuting, R must 

satisfy the equation R Mf = Mg R. This implies tr ( Mft) = tr (Mf2) and 
det (Mf) = det (Mg ). Thus, we have 

cf(0,0) cf(1,0)-t = cg(0,0) cg(1,0)'1, cf(0,1) cf(1,0)"t = cg(0,1) cg(1,0)"t, 

hence, cf(0,0) cg(0,0)-t = cf(1,0) cg(1,0)'1 = ct{0,1) cs(0,1)'1 , i. e. g=af for 

some aE 71p" which completes the proof. Q 
Now our Main Result ( Theorem 4.1.1 ) follows immediately from 

Corollary 4.2.2, Corollary 4.3.2 and heorem 4.4.1. 
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Chapter 4 

Three Dimensional Benard 
Convection 

4.1 Introduction 

In this chapter we apply some of the results of chapters 2 and 3 to the Benard convection 
problem in a 3-dimensional box. In section 1.1 we gave a brief description of bifurcations 

occuring in a 2-dimensional vertical cross section of the domain. By exploring the third 
direction we find a much richer structure of patterns, specialy when the horizontal cross 
section is a square. 

In section 4.2 we state the Boussinesq approximation of the equations for time 
independent convection in a box with a mixture of Neumann and Dirichlet boundary 

conditions. Then we define a scaling that makes the quantities nondimensional. 

In section 4.3 we set the symmetry context where these equations should be viewed. 
It will be shown that the problem has more symmetries than the group that leaves the 
domain invariant. These symmetries are found by defining a periodic extension by 
reflection across the boundaries in such a way that the regularity of the solutions is 
preserved. The extended problem satisfies periodic boundary conditions on a larger 
domain and the symmetries are a 3-torus extension of the group that leaves the do- 
main invariant. Then, the solutions that satisfy the original boundary conditions are 
constrained by invariance under a group of reflections. 

Sections 4.4 and 4.5 deal with bifurcation problems. The construction described 
above will be used to give a general form of the reduced bifurcation equations. In 
appendices A and B, normal forms and universal unfoldings are given together with 
some bifurcation diagrams. 

Sections 4.6,4.7 and 4.8 are concerned with the well known method of Liapunov- 
Schmidt reduction that gives an exact Taylor expansion of the bifurcation equations. 
From the previous sections we have the information about which terms must be calcu- 
lated. By taking the result to appendix A or B we get the bifurcation diagrams. 
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4.2 The Boussinesq Equations 
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As in Golubitsky et al. [11], the Boussinesq approximation of the equations for the 
Benard convection in the box [0,7rti] x [0,7rQz] x [0, r¬3] may be written as 

Q ýt 
+ (v. v)v 

)=VP+O9+v 

dive=0 

+ (v. V)e = Rv3 + AO 
where v= (vl, v2i v3) is the velocity vector, 0 describes the deviation of temperature, 
p is the pressure and the parameters R and o are, respectively, the Rayleigh number 
and the Prandtl number. In order to nondimensionalize the quantities, we scale the 
domain variables as 

SlE"ýQ1Si 
e2H1e2 

S3HQ3C3s 

the deviation of temperature, the pressure and the Rayleigh and Prandtl numbers the 
are scaled as 

ýH130 pHQ3P R -. tR Q He3Q. 

By denoting u= (v, O, p) and applying the scaling above to the time independent 
Boussinesq equations we get 

4Dr[l](u, R) Irvl -1 Op 1-- -v. V Vl =0 
rlaj Q 

4D*[2](u, R) = Orv2 -1 
ap 

-1v. V, v2 =0 
rz adz Q 

(Dr[3](u, R) = Orvs - 
ap 

+0-1v. vrv3 =0 (4.1) 
ads a 

ýr[4](u, R) = Ir® + Rv3 - v. VrO =0 
(Dr[5](u, R) Vr. v =0 

where the parameter 

r= (ri, r2) _ 
11, Q2 

- Q3 Q3 

has been transferred from the dimensions of the domain to the equations, and Ar, V, 
are, respectively, scaled laplacian and gradient as 

1 ax az 02 1 

°aaa '= rý C-l r2 ýýz' N3 
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We denote the scaled domain SZ = [0, ir]3 and the boundary conditions are a mixture 
of Neumann and Dirichlet as 

vl 
L9V2 6 

49V3 OED = PE, =0 for ý1 = 0,7r 
a6 

C96 - 
v2 aC 

0t2 = N2 =0 for ez = 0, a (4.2) 

ÖVl 

aS3 

Öv2 

573 = V3 =O= p43 =0 for e3 = 0,7r. 

4.3 The Appropriate Symmetry Context 

Let uE (C°°(Q))s be an arbitrary solution of 4Pr = 0. We proceed by summarizing the 
extension method described in chapters 2 and 3 and showing that the procedure applies 
to this particular problem. We define an extension ü by reflecting each component of 
u across the boundaries of the domain SZ and combine it with sign change in the case 
of a Dirichlet boundary condition. These reflections generate the group 

If = Z2 (DZ2 ®Z2 = (ici, ics) K3) 

acting on ü as 

N1 : (VlsV21V3i()ip)(6tS2,3) I-+ (-vl, v2tv3, O, p)(-e1, e2ve3) 

ti2 : (v1sv2, v3i09P)(CliC2iC3) H (v1, 
-v2, v3, e, p)(elf-C2, e3) 

K3 : (v1, v27 V3, e, p)(S1, S21 S3) 
(v1º v2, -v3, -O, p)(S1, Sts -S3). 

In lemma 9 below we show that this extended function is a solution of the same operator 
on the larger domain 

[-7r, 7rý3. 

Then, by extending ü periodicaly to R3 we still have a solution of 4P,. =0 for which we 
keep the notation ü. Lemma 10 below says that this extension preserves the regularity 
of the solution. The extended solution ü satisfies periodic boundary conditions on fl. 

Now we define an action of the extended group K-j-T3. This group is generated by 
the reflections ic1 i ice, ic3 acting as above together with the translations ©O E [0,27r) for 
j=1,2,3 acting as 1" 

01 :21( 61616 )H u(Si + 01,2,6) 

02 :i (S1, 
S2,3) H 11(6 

, 
e2 + 02,3) 

03 : ttýS1ýS2ýb3ý H 2t(e1e6 
, 

e3+©3). 

Given the translation invariance of the operator fir, by acting on ü with an element of 
the 3-torus T3 we get a solution of the periodic boundary value problem. 

Up to this point we know that any smooth solution u of ýD,. =0 satisfying the 
boundary conditions (4.2) corresponds to a unique K-i-T3-orbit of solutions to the 
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same equation satisfying periodic boundary conditions on SZ. We choose from this 
group orbit of ü all the solutions w that satisfy the boundary conditions (4.2). These 
are exactly the ones that are fixed by the action of K 

tcw(4) = w(0 

for all is E K. These solutions belong to the subspace fixed by K, which we denote by 
Fix(K). 

We proceed by stating and proving the results referred to above. 

Lemma 9 Let u be a solution of '=0. Let the group K act as above. Then rcu is a 
solution of the same equation for all n. E K. 

Proof Given the group structure of K it is enough to show that this result holds for 
the generators of K. We define an action of c1, K2, ic3 on the operator 1,, as 

ý1 : (ý*fl], *[2], ýrf3], *f4]+ý*[5]) H (-ýrfl], ýrf2], *f3], *f4I, ýrf5l) 

Kz : (ýr[1l, ýr[ý], ýr[3l, ýtf4l, ýrf5]) H (ßr[1], -ßr[2], ýrf3l, ýrf4l, ýrf5]) 
K3: (ßr [1], ßr [2], ' r [3], ýt [4}, I [5]) H (' [1], ßr [2], -0 [3], -I [4], ýr [5]) " 

It is easy to see that c, commutes with the action of K 

4ýr(tcju(rcjý), R) = ty(Dr(u(ý), R) for j=1,1,2,3. (4.3) 
By assumption, u is a solution of ýD,. = 0. So 

4or(u(ý), R) =0 for j=1,2,3. 

Together with (4.3) this implies that 

, 1D,. (tcju(tzjC), R) =0 for j=1,2,3 

and this is what we wanted to show. Q 

Lemma 10 Let uE (C1(I13))s be a solution of'i = 0. Then uE (C00(JR3))5. 

Proof See Field et al. [8]. 13 

Note that by this method we find symmetries that are not obvious in bounded 
domains. The most immediate thing to do would be to consider only the reflections 
that leave the equations and domain invariant. This approach would be simpler but 
incomplete: some translations of our extended solutions satisfy the required boundary 
conditions and remain hidden if we insist upon leaving the domain invariant. 

Up to now we mentioned all the symmetries that do not depend on the parameter 
r. If we allow group actions on r there is one more symmetry: the group S2. This 
group has one generator denoted by s and acting as 

s: (ri, r2) ý-º (r2, r1) 
3: (VIsv2tv3vO? P)( lsb29b3) ý"'* (V2vVlgV3s%p)(6i 

116) 

s: 4D, H(, 'D, [2], 0, [1], D, [3]9 4D, [4], (Dr[5])" 
By noting that the set of boundary conditions is invariant under the action of S2 on u 
we have the following 



4.3. The Appropriate Symmetry Context 77 

Lemma 11 Let u be a solution of -(Pr =0 satisfying the boundary conditions (j. 2). Let 
the group S2 act as above. Then su is a zero of 1� =0 satisfying the same boundary 
conditions. 

Proof As we said before there is nothing to prove about the boundary conditions. 
So we only have to show that the s-conjugate of a solution u of 1, =0 is a solution of 
the conjugate operator 41, r. A straightforward calculation shows that the operator's 
commutes with the action of S2 as 

(D, r(su(g), 
R) = (4.4) 

By assumption, u is a solution of 4ý,. = 0. So 

*(u(4), R) = 0. 

Together with (4.4) this implies that 

4), r(su(sý), R) =0 

and the result follows. C3 
Note that if rl = r2 the operator 1, is invariant under the action of S2. In this 

case, given a solution u of (D,. =0 there is a conjugate su satisfying the same equations. 
If rl r2 then su is a solution of the different equation I',,. = 0. 

Finaly we combine all the results obtained up to now in the following 

Theorem 17 Let , D,. be the operator defined by (4.1). Let the groups K, T3 and S2 
act as above. Then 

1. If rl 0 r2 (rl = r2) every smooth K-invariant solution ü of 'r =0 on R3 with 
K(-I-S2)-}-T3-symmetry restricts to a smooth solution of ýD,. =0 on fl with the 
boundary conditions (4.2). 

2. Let uE (Cl(SZ))5 be a solution of 4br =0 on Il with the boundary conditions 
(!. 2). Then 

"u is smooth. 

" If rl 0 r2 then u extends uniquely to a smooth K-invariant solution of 
4(Dr =0 on R3 with K-FT3-symmetry. The S2-conjugate su is a solution of 
the equation defined by the S2-conjugate operator ýD, r. 

" If rl = r2 then u extends uniquely to a smooth K-invariant solution of 
4D,. =0 on R3 with K-{-SV}-T3-symmetry. 

We observe that u=0 is always a translation invariant solution of the equation 
OD,. = 0. We are interested in steady states bifurcating from this trivial branch when 
the Rayleigh number R is increased from below. We restrict our bifurcation analysis 
to a neighbourhood of some critical values of the unfolding parameter r. Denote 
L, = dir the linearization of 1,. about u=0. In sections 4.4 and 4.5 below, and 
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according to chapters 2 and 3, we use the symmetries in theorem 17 to get a general 
polynomial form for the projection of the bifurcation equations onto ker L,,. In latter 
sections a Liapunov-Schmidt reduction will be performed to give the exact values of 
the coefficients in the bifurcation equations. Finally, these equations will be put into 
normal form and the bifurcation diagrams read from the tables in appendix. 

4.4 Bifurcations with aK I-T3-Syinretric Exten- 
S1011 

Assume that r is such that when the parameter R is increased from zero, it crosses 
a critical value for which the linear operator L, has a nontrivial kernel. Then there 
are branches of solutions bifurcating from u=0. The Rayleigh number R is playing 
the role of bifurcation parameter and r is a 2-dimensional unfolding parameter. Recall 
that r= (rl, r2) depends only on the domain before being scaled: the two components 
represent the aspect ratios of the horizontal dimensions of the box by the vertical 
dimension. 

By Golubitsky et al. [11], bifurcations of codimension up to three are generic in 
problems with two unfolding parameters. Such bifurcations are expected to occur in 
regions of the unfolding parameter space as follows: 

" Codimension one in open regions. 

" Codimension two along lines. 

" Codimension three at isolated points. 

We begin by describing shortly the simplest codimension one bifurcations, proceeding 
then to the more complicated ones. The main interest of this section is the codimension 
three. 

As in section 4.3, from the problem 1,. =0 with the boundary conditions (4.2) 
we construct a larger one consisting of the same equation with periodic boundary 
conditions. The second problem is invariant under an action of the group K-I T3. We 
also know that in order to get explicitly all the symmetries of the first, we really need 
to state the extended problem and restrict the result to the subspace fixed by K. This 
is what we proceed to do. 

4.4.1 Single Mode Bifurcations 
By Golubitsky et al. [11], we have a codimension one bifurcation with K--T3-symmetry 
when ker L, is an irreducible representation of this group. Suppose that r in such that 
this holds for some value of the bifurcation parameter R. We may write an irreducible 
representation of T3 as 

01 : (zl 
i z2 z3 z4 ) F-º (eik*61zis eiki01-Z, eik1B1z3s e`kle'Z4) ý 

02 : (Si 
s S2 Z3 S4) -+ 

(eik2O2z1, ei 02z2s e-ik202z 3se 
ik2O2S4) 

sý 
03 : (Slt S21 Z3s S9) F-1 (eik3B3S� e_ik3B3Z2t eik3B3S3) e ik3e3z4) 
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where k1, k2, k3 are nonnegative integers and 

" z1= z4 and z2= z3 if k1=0. 

" zl=z3andz2=z4 if k2=0. 

" zl = z2 and z3 = z4 if k3 = 0- 

" z1, z2, z3, z4 are any complex numbers otherwise. 
The action of K= Z2 E) Z2 ® Z2 may be written as 

k1 : (z1, z2s z3s z4) f"* (z4173 
9 42e z1) 

ic2 : (z1, z2, Z3e x4) i. - 
(z3)z4, z1, z2) 

K3 : (Z1, Z2, z3e z4) i- x21 z19 Z4, z3)" 
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Note that bifurcating solutions have a well defined set of mode numbers k= (k1, k2, k3) E 
113. These are induced by the action of T3 above and are associated with pattern for- 

mation that can be observed in experiments. Denote 

1Vk = span{zi, z2, z3, z4} 

and 1Vk the subspace fixed by K. Then we have that 
{(Re(41), Re(z2), Re(z3), Re(x4))Izl = zZ = z3 = x4} 

= R. 

Note that the representation lVk of the group K-i-T3 is a particular case of that used in 

chapter 2 in a slightly different setting: single mode bifurcations of reaction-diffusion 
equations with Neumann boundary conditions on n-dimensional rectangles. By finding 

an isomorphism between lVk and ker Lr we will be able to use here all the results 
obtained in chapter 2. 

Theorem 18 Assume that the translation invariant solution u=0 of c, =0 un- 
dergoes a codimension one bifurcation with mode numbers j: when the parameter R is 
increased from zero. Assume also that this occurs for some value of r such that rl 0 r2. 
Then 

1. In the extended problem, ker L, is isomorphic to 1Vk. 

2. If the boundary conditions (4.2) are imposed, ker L, is spanned by uk with com- 
ponents 

V1 = ak[l] sin(k1e1) cos(k2 2) cosR 36) 

V2 = ak[2] cos(kie1) sin(k2S2) cos(k353) 

V3 = ak[3] cos(klel) cos(k2e2) sin(k3e3) 
O= ak[4] cos(kle1) cos(kge2) sin(k3S3) 

p= ak[5] cos(k1e1) cos(k2e2) COS(k353), 

where the ak[j] are real numbers depending on the mode numbers and the unfolding 
parameters r. 
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Proof To prove part 1 we construct an isomorphism between the two representations 
of the group K-{-T3. For that we need to introduce explicitly a set of generators for 
ker L,.. In part 2 we restrict these generators to Fix(K). 

1. We write zl, z2, z3, z4 as functions of the domain variables ýI, E2, e3. These func- 
tions will be used to generate the eigenmodes spanning ker Lr. The condition 
for isomorphism is that acting on the z1 as above is the same as acting on the 
eigenfunctions as in section 4.3. Define 

z1 : (e1, e2, e3) H e'(kifi+k2f2+k3fs) 

Z2 ýS1eS2ýb3) H e«k3f2+kaf2-kais) 

z3: (E1,2,3)H 6'(kjfj-k2fz+kafa) 

, z4 g'(kjfl-leafs-k3W 

Let ük be an eigenmode in ker L. Then we say that each component of ük 
belongs to a space spanned, over the reals, by the zj as 

vi E span{-izl, -iz2, -iz3, -iz4} 
v2 E span{-izl, -iz2, iz3, iz4} 

v3 E span {-izl, iz2, -iz3, iz4} (4.5) 

0E span {-i: i, iz2, -iz3, iz4} 

pE span{zl, z2, z3, z4} 

and checking that the two actions are isomorphic is a straightforward calculation. 

2. In order to restrict ker L,. to Fix(K) it is more convenient to write (4.5) in the 
equivalent form 

v1(e) E span z1(el - 21 &b3)) ý%(S1 - 2' S2, S3), *3(ý1 - y, e2, 
S3), z4(C1 - 2' e2v 

S3) 

V2(C) E span z1(e1, C2 - 
2ý53)oý2(Cli 2- Z1e3), z3(el, e2 - 

216)1Z4(C116 
- 

2113) 

v3(C) E span Z1(e1, e2, e3-2 )' z2(S1, S2, 
e3 -2 

)' z3(C1, e2, e3 -2 
)' Z4(e1, C296 -) 

0(C) E span 4"1(ei, 
C2,3 -0 vz2(S19S2) 

e3 -D 'z3(C1, S2, 
e3 - Z)iz4(ýltý2tC3 - Z) 

p(ý) Espan {z1(b1ýb2eS3)ßz2(6i6iS3)vz3(6i 
2º6b Z4(6sC2s6)} 

The result follows by fixing these generators by the action of K in section 4.3. 
13 

By theorem 18, there is no loss of generality in working with the abstract represen- 
tation lok. For ease of exposition the most relevant results obtained in chapter 2 will 
be reproduced here when appropriate. However, we should not forget the aim of this 
chapter: to see how the abstract settings of the previous chapters apply to a concrete 
physical problem. This is why at some points we go back to see what is happening in 
the Benard problem. 

Before proceeding to bifurcations of higher codimension we denote 
Vk = span{uk}, 

which, we recall, is ker L, when the single mode k bifurcates from u=0 and the 
boundary conditions (4.2) are imposed. 
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4.4.2 Simultaneous Bifurcation of Three Distinct Modes 

Now assume that r=r, is such that, by increasing the parameter R from zero, we cross 
a critical value R, for which three distinct modes k, 1, mE N3 bifurcate simultaneously 
from u=0. Then, with the boundary conditions (4.2), we have 

kerL,. = VkED V®V,,,. (4.6) 
ww 

In the associated periodic boundary value problem, ker L* is isomorphic to Wk ED IVý 
Wm and K-i-T3 acts on each irreducible block as in the previous section. We may 
assume, without loss of generality that 

hcf(k1,1� m1) =1 for 1<j<3. (4.7) 

Otherwise we factor out the kernel of the group action and take it into account at the 

end when interpreting the results. Now (4.6) is isomorphic to 

Fix(K) = Wk ®iVi ®TFm = R3. 

We define 

A= R-R 

so that the bifurcation occurs at A=0. We want to know what are the symmetry 
constraints imposed on the bifurcation equations 

f(x, y, z, A) = 0, 

where f maps II83 x Il8 onto ]I83. 
As in chapter 2 we denote by N the subgroup NK.. Ts (K)/K, which is the normalizer 

of K in K-i-T3 factored by K. The group N is isomorphic to Z2 ®Z2 ® Z2 and the 

mapping f must be equivariant under its action. As in section 2.5, the action of the 

normalizer N on 1-Vk ED TVI ® 1-Vm is generated by translations of 7r along each of the 
directions chosen to generate T3 

Ti : (x, y, z) '-' ((-1)k'X, (-1)"y, (_1)"Z) 

r2: (X, Y, Z) i-º ((-1)k2X, (-1)12y, (-1)m2Z) (4.8) 
73 : (X, Y, Z) ~ ((-1)k3x, (-1)'3y, (-1)m3Z). 

Note that by assumption (4.7) all the r1 act nontrivially and depending on the parities 
of the mode numbers, one or two of them may be redundant. Therefore we have that 
N factored by the kernel of its action is isomorphic to 

" Z2 if one and only one of the rj is redundant. 

0 Z2 ® Z2 if two and only two of the rj are redundant. 

0 Z2 ®Z2 e Z2 if all r1 are nonredundant. 

It can be shown that if N factored by the kernel of its action is isomorphic to Z2®Z2®Z2 
then the mapping f is a generic N-equivariant and the form of the bifurcation equations 
is easy to obtain. 
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Theorem 19 Assume that the solution u=0 of the Boussinesq equations undergoes a 
simultaneous bifurcation of the three modes k,!, ME F13 when a shift A of the Rayleigh 

number crosses zero. Assume that this happens for some value of r such that rl 0 r2. 
If all rr in (4.8) are nonredundant then the form of the reduced bifurcation equations is 

fi(x, y, z, A) = ax =0 
f2(x, y, z, A) = by =0 (4.9) 
f3(x, y, z, A) = cz =0 

where a, b, c are functions of x2, y2, z2 and A. 

Proof If all r1 are nonredundant, the problem has Z2 ®Z2 ® Z2-symmetry. It is 

easy to see that the invariant functions are all the even functions in x, y, x. Then the 

equivariant mappings are obtained as in theorem 11, chapter 2 and the result follows. 
13 

In appendix A the normal form of system (4.9) and its universal unfolding are given. 
Tables of nondegeneracy conditions and branching equations are obtained. In section 
4.6, a Liapunov-Schmidt reduction is performed. This reduction gives the values of 
some low order derivatives of the coefficients a, b, c. In this case derivatives up to 
third order are enough. Then, the tables in the appendix will be used to obtain the 
bifurcation diagrams. 

If the action of N has a nontrivial kernel the problem is a bit more subtle. In this 
case the periodic extension induces extra symmetries. In chapter 2 we deal with this 
problem in three steps: 

1. Impose explicitly the constraints on T3-invariant monomials. 

2. Restrict these constraints to Fix(K) and use an algorithm to obtain a minimal 
set of generators for the restricted li -i-T3-invariants. 

3. Generate the restricted Ii -i-T3-equivariants by using the result of 2 in theorem 
11. 

Then the restricted Ii -{-T3-equivariants are generated by the result of step 3 modulo 
the ring of invariants generated by the result of step 2. 

4.5 Bifurcations with a K-{-S2-+-T3-Symmetric Ex- 
tension 

The notion of codimension depends on the symmetry of the problem and, by theorem 
17, the condition rl = r2 imposes an extra S2-symmetry. Under this condition, the 
unfolding is being restricted to one parameter and codimension three bifurcations are 
no longer generic. In this diagonal of the r-space, bifurcations are expected to occur 
in regions as follows: 

" Codimension one along lines. 
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. Codimension two at isolated points. 
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As in section 4.4 we begin with a brief description of codimension one bifurcations. 
More attention will be concentrated on simultaneous bifurcations of two distinct modes 
by increasing the Rayleigh number R from zero. In appendix B we unfold these bifur- 
cations with the diagonal of the r-space and then break the S2-symmetry with the a 
parameter transverse to this diagonal. 

As in section 4.3, by reflecting across the boundaries any solution of the problem 
ýD,. =0 satisfying the boundary conditions (4.2) we construct another one consisting of 
the same equation and periodic boundary conditions on a larger domain. The second 
problem is invariant under an action of the group K-I-S2-i-T3. By theorem 17, the 
solutions satisfying the boundary conditions (4.2) are in one to one correspondence 
with those of the periodic boundary value problem that are fixed by the action of K. 

4.5.1 Single Mode Bifurcations 

Now the solution u=0 undergoes a single mode bifurcation with K-{-SV}-T% symmetry 
when ker L, is an irreducible representation of this group. Assume that this holds for 
some r when the bifurcation parameter R crosses a critical value. As in section 4.4, 
bifurcating solutions have a well defined set of mode numbers kE H3. Let the group 
S2 act on the mode numbers as 

3: (k1, k2,3) 
- 

(k2, k1, k3)" 

By noting that S2 acts trivialy if and only if kl = k2, we construct an irreducible 

representation of K-i-S2-{-T3 as 

" Wk ifki=kz 

" IVk ®IVak if k1 k2 

where IVk is as in section 4.4. On the other hand, when a solution with mode numbers 
k satisfying 0,. =0 and the boundary conditions (4.2) bifurcates from u=0 we have 
that 

. kerLr=Vkifk1=k2 

" kerLr=VkeV3kif k1 k2.1" 

As in section 4.4 it can be shown that ker L, is isomorphic to 

" Fix(K)=i'Vk=Rif kl =k2 

" Fix(K)=Wk ®IV3k= R2ifkl0k2 

and we have the tools necessary to proceed with a more detailed study of higher 
codimension bifurcations. 
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4.5.2 Simultaneous Bifurcation of Two Distinct Modes 

Assume that r=r, is such that, by increasing the parameter R, we cross a critical 
value R,, for which two distinct modes &, 1 E F33 bifurcate simultaneously from u=0. 
Then, if the boundary conditions (4.2) are imposed we have that 

" kerL, =VkED VI if k1 = k2 and 11 =12 

9 kerLr=Vk®V eV1if k1=k2and'll012 

" kerL, =VkED Vsk®VI ®Valifkl0k2and11012. 

By analogy with the previous section we construct a direct sum of irreducible repre- 
sentations of the group K-i-Sz-j-T3 which subspace fixed by K is 

" Fix(K)=Wk ®Tv1=II82 if kl = k2 and 11 =12 

" Fix(K)=Wk eW, ED W., =R3 ifkl=k2and11012 

9 Fix(K) =tick ® WW, k ® TV, ® TVa, =1i4 if kl 0 12 and 11 0 12. 

Note that as explained in section 4.4.2, there is no loss of generality in assuming that 

hcf(ki, k2, lip 12) =1 
hcf(k3,13) = 1. 

As in section 4.4 it can be shown that, when the boundary conditions (4.2) are imposed, 
ker L, is isomorphic to Fix(K) as above. From now on, without loss of generality, we 
work with Fix(K) so that several results of chapters 2 and 3 apply directly. Once more 
we define 

A= R-Rc 

so that the bifurcation is located at A=0. We want to know what are the symmetry 
constraints on the bifurcation equations 

f (x, y, A) = 0, 

where f maps Fix(K) x II8 onto Fix(K). 1. 
. By analogy with section 4.4 we denote by N the subgroup Nx. }S, +T3 (K)/K and 

the mapping f must be equivariant under its action. As we will see below, f is not 
always a generic N-equivariant. In order to write explicitly the action of N on Fix(K) 

we need to consider separately three distinct cases. 

(a) kl = k2 and 11 = 12 

This case reduces to that of 3-dimensional rectangles described in section 2.4. The 
results are reproduced here to make this chapter complete. The group N is isomorphic 
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to Z2 ® Z2 and its action on Zak ®W1 is generated by translations of r along each of 
the directions chosen to generate T3 

71 : (X? Y) i-' ((-1)k1 x, (-1)I1y) 

73 : (x, y) I-' ((_l)k3x, (-1)13y)" 

The translation 7-2 is omited because it acts as r1. Note that all rj act nontrivialy and 
some of them may be redundant. In fact, as in theorem 5, we have that N factored by 
the kernel of its action is isomorphic to 

0 Z2 if all k5 have the same parity and all lj have the same parity. 

0 ZZ ® Z2 otherwise. 

We proceed by giving a general form for the bifurcation equations. 

Theorem 20 Assume that the solution u=0 of the Boussinesq equations undergoes 
a simultaneous bifurcation of the two modes k, L E N3 when a shift A of the Rayleigh 
number crosses zero. Assume that this happens for some value of r such that rl = r2. 
If k1 = k2 and 11 = 12 then the form of the reduced bifurcation equations is 

1. If all k1 have the same parity and all i have the same parity 

fi(x, y, A) = ax+cxl-iyk =0 
f2(x) y, A) = by+dx'yk-1 =0 

where k=max; k1 and 1=m: axxlj. 

2. Otherwise 

fl (x, y, A) = ax =0 
f2(x, y, A) = by =0 

where a, b, c, d are functions of x2, y2 and A. 

Proof See section 2.4. 

(b) kl = k2 and 11 12 

0 

In this case the group N is isomorphic to Z2 ® D4 and its action on Wk ED M ®1V11 is 
generated by 

Ti (x, yi, Y2)'-' ((-1)k'x, (-1)' yi, (-1)1'! 2) 
s: (x, J1, y2) i-' (x, y2, J1) (4.10) 

T3 (x, y1, TJ2)'-' ((-1)k3x, (-1)13yi, (-1)' y2)" 

Note that the translation r2 is omited because it acts as srls. As before, one of these 
generators may be redundant. By inspection on (4.10) we see that N factored by the 
kernel of its action is isomorphic to 
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" Zz ® S2 if all k1 have the same parity and all 1,, have the same parity 
or k1, k3 +1 have the same parity and 11,12,13 +1 have the same parity. 

" Z2 ®Z2 ® S2 if all k1 have the same parity and 11,12,13 +1 have the same parity 
or k1, k3 +1 have the same parity and all 1,, have the same parity. 

" D4 if Ili 12 +1 have the same parity and k3 is even. 

0 Z2 E) D4 if 11,12 +1 have the same parity and k3 is odd. 

It can be shown that if N factored by the kernel of its action is isomorphic to Z2 ® D4 
then the mapping f is a generic N-equivariant and the form of the bifurcation equations 
is easily obtained. 

Theorem 21 Assume that the solution u=0 of the Boussinesq equations undergoes 
a simultaneous bifurcation of the two modes k, 1 E Fj3 when a shift A of the Rayleigh 

number crosses zero. Assume that this happens for some value of r such that rl = r2. 
Ifl , 

12 have different parities and k3 is odd then the form of the reduced bifurcation 

equations is 

fl(XsYlsY21 A) = ax =0 
f2(x, yl, y2, Aº) = (b + cb)yl =0 (4.11) 

f3(x, yi, y2, A) = (b - cb)y2 =0 

where a, b, c are functions of x2, yi -}- y2, (y2 - y1)z and A; and 8= yz - yi . 

Proof The action of Z2 generated by r2 implies that fl is odd in x and fz, f3 are 
even in x. Terms involving yl, yz are determined by the action of D4 generated by s, 13. 
See Golubitsky et al. [11], chapter XVII, section 4.13 

The normal form for system (4.11) together with the universal unfolding that keeps 
the symmetry are given in appendix B. Tables of nondegeneracy conditions, branching 

equations and some bifurcation diagrams are obtained. Then the S2 symmetry is 
broken with an other unfolding parameter. 

If the action of N has a nontrivial kernel, a general form for the bifurcation equations 
cannot be given. The method for finding the generators of the restricted invariants and 
equivariants splits into five steps: 

1. Impose explicitly the constraints on T3-invariant monomials. 

2. Restrict these constraints to Fix(K) and use an algorithm to obtain a minimal 
set of generators for the restricted T3-invariants. 

3. Generate the restricted T3-equivariants by using the result of 2 in theorem 11. 

4. Symmetrize the result of 2 over S2 to obtain the restricted K-jS2-}-T3-invariants. 



4.6. Some Generalities About the Liapunov-Schmidt Reduction 87 

5. Symmetrize the result of 3 over S2 to obtain the restricted K-i-SV+T3-equivariants. 

Then the restricted K-i-S2-i-T3-equivariants are generated by the result of step 5 mod- 
ulo the ring of invariants generated by the result of step 4. Now we can justify the 
statment above that a general form for the bifurcation equations cannot be given: the 
method for obtaining them involves an algorithm. Thus, we have to work case by case 
if the action of the group N has a nontrivial kernel. 

(c) k1 k2 and11 12 

In this case the group Nis isomorphic to Z2 ®D4 and its action on Wk ®W, k ED IVIED IvI 
is generated by 

i1 : (xi, x2, yi, Y2)'-' ((-1)klxi, (-1)k'x2, (-1)llyi, (-1)ß'y2) 

s: (xi, x2, yi, y2) l-' (x2, xi, y2, Yl ) 

7*3 : (xi, x2, yi, y2) '-' ((-1)k3x1, (-1)k3x2, (-1)' yi, (-1)'332)" 

As before, N factored by the kernel of its action is isomorphic to some normal subgroup 
of Z2 ®D4 containing S2. Whatever parities the mode numbers have, a general form for 
the bifurcation equations cannot be given: we need to follow the steps 1 to 5 as in the 
previous case to compute the generators of the restricted invariants and equivariants. 

4.6 Some Generalities About the Liapunov-Schmidt 
Reduction 

This section gives a description of the Liapunov-Schmidt reduction as in Golubitsky 
and Schaeffer [28]. Then we apply it to steady-state bifurcations of the family of 
operators cI parametrized by rE 1R2 satisfying the boundary conditions (4.2). This 
procedure projects the dynamics onto the kernel of the linearized operator L,. Denote 

X= (c2(st))5 
Y= (C°(f))5. 

The operator 
ý: XXIRXDt2 -º y 

(u, R, r) i-+ 0,. (u, R) 

in section 4.2 is a smooth C°° mapping and R,, r, are chosen such that the derivative 
L= (d, (D)(o, R,, r, ) is a Fredholm operator of index 0. Substituting 

r1-ºp+r,, 
R º-º A+R, 

we say that a bifurcation for the parameter .\ occurs at p=0 and \=0 if L has 
a nontrivial kernel, which will be assumed latter in all applications. Because L is 
Fredholm, it has a finite-dimensional kernel. We choose a basis for ker L and write 

ker L= span {ul,..., u�}. 
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Also, range L has finite codimension and we may write 

(range L)1 = ker L*, 
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where L* is the adjoint of L. Now, L having index 0 means that ker L and ker L`have 
the same dimension. So we choose a basis for ker L* and write 

kerL* = span Jul*,..., u;, }. 

We may decompose 

X= kerLeM 
N® range L. 

(4.12) 
(4.13) 

Let E be the projection of y onto range L and write the equations 4ý(u, \, p) =0 in 
the equivalent form 

ED(u,. \, p) =0 (4.14) 
(I - E), D (u, A, p) =0 (4.15) 

where I is the identity on Y. Note that I-E is the projection of y onto N= ker L. 
By decomposition (4.12) we may write any uEX as 

n 

u=E xj uj -I- w 

j=l 
where wE Al. Denote x= (xl, ... 9X�) E 1lß" and U= (ul, ... , un). By the implicit 
function theorem, equations (4.14) may be solved as a function w= 1V(x, A, p). Thus 
there exists a function 

IV: kerLxR -+Al 

such that 

Elb(x. U+1V(x, A, p), A, p) = 0. 

Substituting u we make the projection I-E by using the basis chosen for ker L and get 
the so called Liapunov-Schmidt reduced mapping 

f: ker LXRX R2 -º ker L* 
I" 

as 

f2(x, \, p) = (u;, "D(x. v + IU(X, A, P), A, P)), 

for 1<j<n. Note that the formula for f is not explicit: it depends on the implicitly 
defined function IV. However, the derivatives of 1V can be expressed in terms of iD and 
we can compute terms of the Taylor expansion of f. By using the symmetry constraints 
described in the previous sections we see which terms of the expansion we need in order 
to determine the bifurcation equations. 
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The aim of this section is to extract some information from the Boussinesq equations 
(4.1) with boundary conditions (4.2) so that we will be ready to perform Liapunov- 
Schmidt reductions in the following sections. In section 4.7.1 we locate bifurcation 
points in the parameter space. Section 4.7.2 is concerned with symmetries of the 
linearized operator Lr that will simplify the calculations. 

4.7.1 Location of Primary Bifurcations 
Here we identify parameter values for which there is a bifurcation from the solution 
u=0 of -D, satisfying the boundary conditions (4.2). So we want the values of R such 
that L,. (u, R) has a nontrivial kernel. By theorem 18, associated to any bifurcating 

solution is a set of mode numbers k= (k1i k2, k3) E X33 and an eigenmode uk with 
components 

v1 = ak[l] sin(kie1) cos(kye2) cos(k3e3) 

Z72 = ak[2] cos(klel) sin(k2e2) cos(k3e3) 

V3 = a, [3] cos(k1e1) cos(k2e2) sin(k3e3) 

0= ak[4] cos(k151) cos(k2e2) sin(13e3) 

p= ak[5] cos(k l) cos(k2e2) cos(k3C3), 

where the ak[j] are real numbers depending on the mode numbers and the unfolding 
parameters r. As in section 4.4, we denote 

Vk = span {uk }. 

Let r be any point in the unfolding parameter space. By solving 
Lr(uk, Rk) = 0, (4.16) 

we calculate the critical Rayleigh number Rk and the coefficients ak of the eigenmode. 
By denoting 

the solution of (4.16) is 

and 

s2 

nk ==2+ 2+z3. rl r2 

A3 
Rk =k kom. 

f}, + 

ak[i] = 
Ti (A2 - Rk) 

ak[2] = r 
z (A2 -Rk) 

ak[3] = k3Ak 

ak[4] = k3AkRk 

ak[5] = Ak(A2 - Rk). 
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As a simplification of notations, the unfolding parameters r have not kept as a subscript. 
However, we remark the dependence of ak and uk on r. From now the dependence on 
r should be seen implicitly on the mode numbers. 

As a tool for the Lia. punov-Schmidt reductions in latter section we have that when 
R= Rk, the function uk with components 

vi = 
ki 

sin(kiei)cos(k2e2)cos(k353) 

V2 = 

r2 
cos(k1S1) sin(k2S2) cos(ý353) 

v3 = k3 cos(k1E1)cos(k2b2)sin(ý. 3e3) 
(Rk 

-A 
2) cos(kiel) cos(k2e2) sin(k3e3) 

p" _ k3 cos(kiei)cos(k2e2)cos(k3e3) 

is an eigenmode of the adjoint operator L. We keep also the notation 

Vk = span {uk }. 

The graph of Rk is a folded surface with minimum 

RiRI rýn = 
47 

k3 (4.17) 

along the curve 

zz rz 
-{- 

r2 
=T 

2 
k3. (4.18) 

2 

From (4.17) we see that Rk n-in increases very fast with k3. From (4.18) we get that 
kl = k2 =0 when k-3= 0. Thus, the natural candidates to primary bifurcations by 
increasing the parameter R from zero are modes such that k-3= 1. For such sets of 
mode numbers, the curves Rk i" are projected in the 2-dimensional unfolding parameter 
space as 
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The unfolding parameter space is divided into regions according to the mode that bifur- 

cates by increasing the Rayleigh number from zero. The result, obtained numerically, 
is as 

5 

r2 

2 

0 

rI 

012345 
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4.7.2 S2-Equivariance of the Linearized Operator 

Let the group S2 act on the unfolding parameters r and X as in previous section. By 
making the only generator s act on the set of mode numbers k as 

3: (k1, k2vk3) i-p (k2, 
k1, k3) 

we consider implicitly an action of s on r. We observe that the solution uk of L*(u) =0 
calculated in section 4.7.1 is S2-equivariant 

usk(SO = Luke). 

This suggests another result concerning a symmetry of the linear operator Lr. Let the 
group S2 act on the operator L,. as 

s: (Lr[I], Lr[2], Lr[3], Lr[4], Lr[s]) º-4 (Lr[2], L*[1], Lr[3], Lr[4], L*[s])" 

This group action is the basis for the proof of the following 

Lemma 12 Let wE (ker L, )1 be a solution of Lr(u) =b where bEy is S2- 
equivariant. Then w is S2-equivariant. 

Proof The equation L,. (u) =b has a unique solution in (ker Lr)1. Let w(e) be this 
solution 

L*(w(ý)) = b(ý). (4.19) 

We claim that sw(sý) is a solution of the same equation and by uniqueness it must be 

equal to w(e). This gives the equivariance that we want 

W(4) = sw(O. 

To prove the claim we observe that 

L, r(sw(sý)) = b(sý). (4.20) 

Now a direct calculation shows that the operator L, commutes with the action of S2 

as 

L, r(sw(se)) = L, (w(ý)) 

and by equivariance of b(ý) we have that 

b(se) = Sb(. ) 

where s acts on b by permuting the first two components. Therefore, equation (4.20) 
is the same as (4.19) and sw(&) is a solution. 13 
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4.8 Interaction of Three Modes in a Box with Rect- 

angular Cross Section 

Assume that r=r, is such that three solutions with mode numbers k, L, mE r3 
bifurcate simultaneously when the Rayleigh number is increased across a critical value 
R=R, As in section 4.7 we have that ker L and ker L* are 3-dimensional spaces as 

kerL = Vk®V®V, 
kerL' = Vk ®V`ED V4. 

Let 

1= (1,1,1) 

m= (2,0,1). 

A calculation shows that these modes bifurcate simultaneously at two points in the 
unfolding parameter space. These points are approximatly as 

Critical point 1 Critical point 2 

rlý 2.634 2.992 
r2,1.521 1.496 

and the critical values of the bifurcation parameter are approximatly 

Critical point 1 Critical point 2 

R, 6.797 6.778 

The Liapunov-Schmidt calculations will be performed for the two points in parallel 
since they both satisfy the requirements of the procedure described in the sequel. As 
in section 4.4.2, the bifurcation equations obtained by a Liapunov-Schmidt reduction 
have Z2 ®Z2 ® Z2-symmetry. Thus, up to 3rd order they are of the form 

11 = (aN, NI +aN, N2+aN3N3+axA+av1P1 +av3P2)x =0 
f2 = (bN1Nl+bN3N2+bN, N3+b, &+bo, P1 +bo2P2)y =0 
f3 = (CN1N1 + CN2N2 +CN3N3 +CAA+C03Pl +Cp3P2)z =0 

where 
Nl=x 

and 

N2=y2 N3=z2 

I 

A=R -R, Pi = rl - r1, P2 = r2 - rzc. 
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According to Golubitsky and Schaeffer [28] the coefficients are 

aN, =6 (ukt vkk) 

aN2 =2 ('u%i vk! ) 

aN3 =2 (ukI Vkm) 

as = (uk, (d4ý. \). uk - d2c(uk, L- 1 D%)) 

ap, = (uk, (dDP, ). uk - d2. (D (uk, L-IE'p, )), j=1,2 

bN, =2 (ul , Uk) 

bN, = (u7, U, ) 

bN, =2 (ul, Um) 

ba = (u7, (d(Da). ui - d2c(u1, L-1Ell)A)) 
b, j _ (ul, (dDp, ). ul - d2ýD (ul, L-1DDpj)), j=1,2 

CNi =6 (um, Vm. k) 

CN2 =2 KI Vm! ) 

CN3 =2 (u, 
n, 

V.. ) 

cA = (uý, (d4)a). um - d2ý(um, L-iE(Da)) 
cv; _ (um, (dIpj). um -d2 (um, L-'EIpj)), j=1,2. 

where E is the projection onto range L and, taking into account that the initial equa- 
tions have only quadratic nonlinearity, we have that 

Vkk 

uk, 

Vkm 

Vk 

VI 

vim 

Vm k 

Vm1 

Vmm 

where 

-3d245 (uk, tvkk) 

-d24(uk, wt, ) - 2d2e(ut, wk-1) 
-d2e(uk, Wmm) - 2d2e(um, Wkm) 
-d24(ut, Wkk) - 2d2e(uk, wkt) 

-3d2, * (ut, wtt) 
-d2e(ut, wmm) - 2d2e(um, wtm) 

-d2, D(um, Wkk) - 2d2'(uk, Wkm) 

-d20(um, wit) - 2d2 (ut, wtm) 
-3d2 (um, Wmm) 

wkk = L`Ed2ýD(uk, uk) 
wki = L-'Ed2ýD(uk, u, ) 
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Wkm = L'1Ed24b(uk, um) 

wit = L-'Ed2ý(u,, ut) 
wim = L'' Ede (ui, um) 

wmm =L Ed2D(um, um). 

4.8.1 Calculation of aN,, bN2, cAT3 
In this section we give a detailed description of the calculation of aN,. The coefficients 
bN2 and cN, are obtained immediatly by substituting the mode numbers .L 

by j and it 
respectively. The main technical difficulty is the calculation of Wkk. W'i'e reserve part 
(a) to deal with this problem. In part (b) we explain how to use Maple to do the rest 
of the work. 

(a) Calculation of wkk 

The equation to solve in order to calculate wkk is 

L(wkk) = Ed', iD(21ki'ük). 

In order to simplify the notations we denote 

Ak = 
Bk _ 
Cik = 

Dk _ 
Ek = 
Fk = 

Recall from section 4.7 that 

sin(kibl)cos(k2L2)cos(k3e3) 

cos(kiel) cos(k2E2) sin(k3e3) 
sin(kiEI) sin(k2S2) sin(%i3C3) 

cos(kiS1)cos(k2e2)COS(k3e3) 

sin(k1e1) sin(kzS2) cos(k353) 

sin(%1e1) cos(k2S2) sin(k3e3)" 

(4.21) 

uk = (ak[1]Ak, ak[2]A3k, ak[3]Bk, ak[4]Bk, ak[5]Dk) 

where after calculating ak explicitly we observed the equivariance under the group S2 

as 

ask = sak. 

Now we have 

d2oP[1](uk, uk) = -2ak[1] 

Zlak[1]AkDk 

- 
L2 

ak[2]A, kEk - 
k3ak[3]BkFk 

a 

(r, 

rZ 

d24D[2](uk, uk) 
k2ak[2]AakDk 

- 
k'ak[1]AkEk 

- k3ak[3]BkF, k 
a 

(r2 

rl 

d2ý[3](uk, uk) _ _2ak[3] 
(k3aL[3]BLDk 

- =ýak[? ]A, kF', k - =1ak[1]AkFk 
a r2 rl 

d2, ý [4](UkiUk) _ -2ak[4] 
(k3ak[3]BkDk--2ak[2]A, 

kF, k-k'ak[1]AkFk rz rl 

d2 [5](ukv uk) = 0. 
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A direct calculation shows that 

(U?, d24)(uk, Uk)) =O 

for j=k, 1, m, which means that d24P(uk, Uk) E range L. Recalling that E in equation 
(4.21) denotes an orthogonal projection onto range L, this equation is the same as 

L(wkk) = d2'(uk, uk). (4.22) 

Also by direct calculation we have that d2ýD (uk, uk) is S2-equivariant. Thus, by lemma 
12, the solution wkk of system (4.22) must be such that 

W3ksk(S )= szvkk(ý). (4.23) 

Maple does not seem to solve PDEs and system (4.22) is very hard to solve without 
the help of some computer algebra. The approach we take here is to write Wkk as a 
polynomial function of Ak,... , Fk. The coefficients in this polynomial are the solution 
of a system of linear algebraic equations. Denote 

ß'k[1] = (AkDk, AakEk, BkFk, CkF'sk) 
Xk[2] = (AskDk, AkEk, BkFsk)CkFk) 

Xk[3] = (BkDk, AskFsk, AkFk, CkEk) 

. ß'k[4] = (BkDk, AskF. k, AkFk, CkEk) 
ß'k[5] _ (Ak, As2 k, Bk, Ck, D2, E2, F'k, Fk) 

and note that d2ý[j](uk, Uk) is a linear combination of the components of Xk[j]. More 
precisely, by denoting 

bk[1] = 
2ak[1] 

-klak[1], 
rýak[2], 

k3ak[3], 0 
i r2 

bk [2] = 
2ak[2] 

- 
k2 

ak [2], 
Lak 

[1], k3ak [3], 0 
Q r2 rl 

bk[3] _ 
? aß[3] (_k3akE3], 

rz ak[2], rlak[1]+0 
zi 

b, ß[4] = 2ak[4] 
(_k3ak[3J 

ak[2], -ak[1], 0 
r2 rl 

bk [5] = (0,0,0,0,0,0,0,0), 

we have that 

dZý[J)(2 kv uk) = bkU)" -VL-Ul - 
Writing wkk[j] linearly on the components of Xk[j] and substituting on (4.22) we get 
a system of linear algebraic equations on the coefficients. By doing this we arrived at 
the conclusion that the coordinates Xk are not convenient: the system we got is not 
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determined and Maple cannot solve it. In order to change coordinates we introduce 
the matrices 

_1 -1 1 -1 Pl 

1111-11 

-1 -1 
1 -1 -1 1 

and P2 = 
P' Pi 
P1 - P1 

A better coordinate system is 

Yk[j) = PIXk[j] 
Yk[5] = P2, )'k[5]. 

for1<j<4, 

Note that this change of coordinates is orthogonal. In fact we have that 

Pý'=. P1 and Pz l 
ßP2. 

Let 

d24ý4l](uktuk) = gkU]"Yk[ ] 

Wkk[7] = Pk[3]"YkLl], 

where 

9k[j] = Pi lbk[j] 

(4.24) 

and Pk are the coefficients that we want to calculate. As another symmetry observation 
we have that Yk is S2-equivariant as 

Ysk[1] = Yk[2] 

Ysk [3,2] = Yk [3,3] 
Ysk[4,2] = Yk [4,3] (4.25) 
Yak[5,2] = -Yk [5, S] 
Ysk[5,4] = -Yk [5,6], 

where Yk[i, j] represents the jth component of Yk[i]. A simple reasoning says that 
wkk written in the coordinates Yk satisfies the equivariance (4.23) if and only if the 
coefficients Pk are constrained by the symmetries (4.25). For the same reason qk satisfies 
the same symmetries. 

Substituting (4.24) in system (4.22) we get a system of linear algebraic equations 
in the form 

LkPk = Qke 

where qk is already known and by permuting rows and columns, the matrix Lk may be 
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written as 

0 0 0 0 0 0 0 0 
0 Lk[1] 0 0 0 0 0 0 
0 0 L, k[1] 0 0 0 0 0 

_ Lk = 
0 0 0 Lk[2] 0 0 0 0 
0 0 0 0 Lk [3] 0 0 0 
0 0 0 0 0 Lk[4] 0 0 
0 0 0 0 0 0 L, k [4] 0 
0 0 0 0 0 0 0 Lk[5] 

where the matrices along the diagonal are 

Lk[1] = 
k' 1 k 4*z 

ý 0 
rz 

-4(4, 
' + 41 0 -4 s 

Lk[2] = 0 -4 
ý+ +4) -4 AI 

-s -h. 0 T, 

-4k3 1 
f, 

4k3 
Lk[3] = R -4k3 0 

k3 0 0 
2+ k2) -4(4 0 0 

Lß[4] 
, 
0 -4(4, +4732) 1 

0 R -4 
(4+k3) 

k2. k3 
2 
0 rZ 

-4Ak 0 00 -4s 
0 -4Ak 00 -4 

Lk[5] = 00 -4Ak 1 2 
-4k3 

00 R -4Ak 0 
1 -s -k 0 3 0 rl rZ 

Letting ck be the corresponding reord ering of Pk we have that 

Ck [O] = Pk [5,1 ] 

Ck [i] _ (Pk [2,1]; Pk [5,2] ) 

Ck [2] _ (Pk [1,2], Pk [2,2], Pk [5,7]) 

Ck [3] _ (Pk [3,11, Pk [4,1 ], Pk [5,3] ) 

ck [4] _ (Pk [2,3], Pk [3,2], Pk [4,2], Pk [5,4] ) 
Ck [5] _ (Pk [1,4], Pk [2,4], Pk [3,4], Pk (4,4], Pk [5,51) 

1 

4s 
r, 

4k3 

0 
0 

and we let dk be the same reordering of q.. Now systems of the form 

98 

L3k[j]Csk[1] = dsk[7] 
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are redundant since c, k[j] can be obtained by conjugacy of ck[j]. So we are restricted 
to solve the systems 

Lk[J]Ck[J] = dk[J] 

for 1<j<5, which may be easily solved by hand. We may also ask Maple to solve 
these systems without worying about any technical problem since the determinants are 
nonzero. All coefficients are now determined apart from pk[5,1] which can have any 
value. This is not surprising if we see that 

Yk[5,1] = 1. 

Thus when we differentiate wkk with respect to any ýi, the coefficient pk[5,1] will not 
appear. Finaly we have Wkk and we can proceed with the rest of the calculation of aN,. 

(b) The rest of the job with Maple 

Now, Maple has no problem in doing the rest of the job. Recall that what is left is the 
computation of 

Vkk = -3d2, iD(Uke wkk)s 

where uk is one of the eigenfunctions generating ker L and Wkk is what we have just 

calculated. Given the values of uk. and Wkk, that we know at this point, Maple computes 
Vkk according to the formula above. Then we have one of the coefficients of the reduced 
equations by computing 

aN, =6 ýuk, vkký 

aaa 

6 Jo Jo Jo uk. Vkkdxdydz, 

where the dot is the usual dot product in ii and we recall that uk is one of the 
eigenfuntions generating ker L*. Two of the remaining coefficients of the bifurcation 
equations are obtained by substituting the mode numbers k in the formuli above by I 
and m respectively. The approximate results are as follows 

Critical point 1 Critical point 2 

IINi 2.712 7f 3-2.816 7C 3 ý. - 
1.5290-0.! 04 3 1.451a-0.976 3 bN2 - 7r -ý--7r 

C4.148 7r 3 
--7r N3 00 

4.8.2 Calculation of aN2, aN3, bNl, bN3, cN,, bN2 

This section gives a detailed explanation of how to obtain a1v2. The other five coeffi- 
cients are obtained automatica. ly by substitution of mode numbers. Again we reserve 
part (a) to deal with the main technical difficulty: the calculation of wkl. In part (b) 
we show how Maple can do the rest of the work. 
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(a) Calculation of wkl 

Now we want wkI satisfying the equation 

L(wkt) = Ed', Iý(uk, ul). (4.26) 

Recall that 

uk = (ak[l]Ak, ak[2]A, k, ak[3]Bk, ak[4]Bk, ak[5]Dk) 

ut = (a, [1]Ai, ac[2]A, t, ar[3]Bt, ai[4]Bt, a, [5]D, ), 

where ak and al are S2-equivariant. By analogy with the previous section we denote 

Xkl [i] _ (AIDk, A, IEk, BI Fk, CI F, k, AkDI, A, kEI, BkFI, CkF, I) 
Xkl[2] _ (A, IDk, AIEk, BIF, k, C', Fk, A, kDI, AkE:, BkF, I, CkFI) 
XkI [3] _ (BD k, A, rF, k, AIFk, Cl Ek, BkDI, A, kF, r, AkFI, CkEI) 
XkI[4] _ (BIDk, A, IF, k, AIFk, C, Ek, BkDi, A, kF, I, AkFI, CkEI) 
Xkl[5] _ (AIAk, A, IA, k, BiBk, C'Ick, DIDk, EIEk, FIFk, F, IF, k)" 

Denote also 

ak[1]al[2], k3ak[1]al[3], 0 akl[1] = -Tl ak[1]al[l], 
r2 

1 
ak, [2] = -k2ak[2]al[2], 

rlak[2]al[1], 
k3ak[2]a: [3], 0 

r2 i 

akl[3] =1 -k3ak[3]at[3], -2ak[3]a, [2], k 
ak[3]al[1], o 

o rz rl 

akl[4] = 
(_k3akE4]a: 

[3]! f.. 
ak[4]al[2], -1 ak[4]aj[1], 0 

r2 rl 
akl[5] _ (0,0,0,0), 

and finally define 

bklLl] _ (aklU], alk[j])" 

Now we have that & [j](uk, UI) is a linear combination of the components of XkI[j] as 
d2''1JI (uk, uº) = bkºLI)"XkºU]- 

A direct calculation shows that the result of this dot product is in range L and then 
equation (4.26) becomes 

L(wkt) = d2 (uk, ut)" (4.27) 

It can also be checked directly that d4D(uk, u1) is S2-equivariant and by lemma 12, the 
solution wkt of system (4.27) must satisfy the equivariance 

waksl(4) = SWkl(ý). (4.28) 
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\ 

By writing Wks as a polynomial function of Ak, Al .... Fk, F1 we reduce the problem to 
a system of linear algebraic equations. Again we checked that XkI is not a convenient 
coordinate system and we apply the change of coordinates P2 defined in the previous 
section. Thus we denote 

Yk, [j] = P2Xkr[1]" 

and let 

4ýU](uk, Ul) = gkl[7]"Yk: 4/1 (4.29) 
'wkly, /] = PklU]"Ykrl7J, 

where 

gkr[j] = Pz 1bk: Ij] 

and pk: are the coefficients that we want to calculate. Now we have that Yki satisfies 
the equivariance 

Yaksl[l] = Ykt[2] 
Y ks1 [3,2] = Yk, [3,3] 
Ysksl [3,6] = I kl [3,7] 
Ysksl[4,2] = Ykl[4,3] (4.30) 
Yksl[4,6] _ . ikl[4,7] 
Ysksl [5,2] _ -Ykl [5,8] 

Ysksl [5,4] _ -Ykl [5,6]. 

The S2"equivariance of d2 (uk, ul) and wkl imposes the symmetry constraints (4.30) 
on the coefficients qkz and pk: respectively. 

Substituting (4.29) in system (4.27) we get a system of linear algebraic equations 
as 

Lk, Pkl = qxr, 

where qka is already known and by permuting rows and columns, the matrix LkI may 
be written as I" 

Lk, [1] 0 0 0 0 0 0 0 
0 L3k, i[1] 0 0 0 0 0 0 
0 0 Lkl[2] 0 0 0 0 0 

Lkt 0 0 0 Lak31 [? ] 0 0 0 0 
0 0 0 0 Lk [3] 0 0 0 
0 0 0 0 0 L, k [4] 0 0 
0 0 0 0 0 0 Lk [5] 0 
0 0 0 0 0 0 0 Lk [6] 
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and the matrices along the diagonal are of the form 

Lkt[j] 

where d= a2 + b2 + c2 and 

-d 0 0 0 a 
0 -d 0 0 b 

- 0 0 -d 1 c 
0 0 R -d 0 
a b c 0 0 

" a= -s -L + -1, b= "+ andc=-k3+l3ifj=1. 

" a=--{-, b=+ andc=k3+13if j=2. 
rl rl r2 r2 

" a=-s-i, b=-s--12- andc=k3-13if j=3. r, r2 r2 Ti 

" a= -s - 
ýb =-s-sandc=-k3-13if j=4. 

Ti *] T2 *3 

" I'Ll 
1+ z andc=k3+l3if j=5. 

"a= -i+11- b= -ý+s and c= -k3+13 if j=6. Tl *1' t2 r2 
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Letting ck be the reordering of pk corresponding to the permutation of columns of Lkr 

we have that 

ckt[1] _ (Pkt[1,7], Pk, [2,1], Pki[3,7], Pkl[4,7], Pk: [5,2]) 

Ckj [2] _ (Pkl [1,5], Pkl [2,3], Pkl [3,2], Pkl [4, ̀ ? ], Pkl [5,4] ) 

Ckl [3] _ (Pkl [1,2], Pkl [2,2], Pkr [3,5], Pkt [4,5], Pki [5,7] ) 

ckl[4] _ (Pkt[1,4], Pkl[2,4], Pkt[3,4], Pkt[4,4], Pkl[5,5]) 
Ckl[5] _ (Pkl[1,6], Pkl[2,6], Pkl[3,1], Pkl[4,1], Pkl[5,3]) 
Cki [6] _ (Pkl [1, s], Pkl [2,8], Pkr [3, S], Pkl [4, S], Pk, [5,1] ), 

and we let dk be the same reordering of qk. By eliminating the redundant blocks of the 
form L3k, i[j] we are restricted to solve the systems 

LklUI CklUl = dk: [j] 

for 1<j<6, which is a reasonably easy calculation with or without computer algebra. 
I" 

(b) The rest of the job with Maple 

Now, Maple has no problem in doing the rest of the job. Recall that what is left is the 
computation of 

Vk, = -d2D(uk, Wit) - 2d2ýD(u1, Wk, ), 

where uk, ul are two of the eigenfuntions generating ker L, w« was computed in section 
4.8.1 and wk: is what we have just calculated. Given the values of uk, ul, wit and wkt, 
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that we know at this point, Maple computes Vkl according to the formula above. Then 
we have one more coefficient of the reduced equations by computing 

1 
aN2 =2 (uk, vkl)i 

where we recall that uk is one of the eigenfuntions generating ker L. Five of the 
remaining coefficients of the bifurcation equations are obtained by substituting the 
mode numbers k in the formuli above by j and za respectively. The results are as 
follows 

Critical point 1 

9.6760-0.142 3 aN2 ---7r 
T. 693°+ 3.474 3 

air, -- zc 
8.733ä3 0.692 3 bN, --02 -7c 

bN, 5.094° 0.386 
7r 

3 
- 6.3660-1.824 3 CN1 - a2 

7C 
5.094a 0.386 3 CNZ - a2 

7c 

4.8.3 Calculation of ax, bA, ca 

Critical point 2 

_ 
9.689e a-0.119 3 

_5.902, 
}7r 3 

_ 
8.946ät0.573 r3 

_3.7133 

- 
S. 902ä+ . 54 7r 3 

_ 
4.226ä 1.848 ý3 

0 

In this section we describe how to obtain aA. Then the coefficients b,, and cA come 
immediately by substituting the mode numbers k by 1 and nl respectively. The calcu- 
lation of as is very simple comparing with the complication of the previous sections. 
Recall that the formula is 

as = (uý, (dýa). uk - d2ý(uk, L-'Eýý))" 
By differentiating 1 with respect to A we get 

ýa = (O9Oe0, Z9 3, O)t. 

Since ýa is a linear operator, its linearization evaluated at uk is 

(dýý)"uý _ (O, O, O, uk[3], 0)t" 
Note that 1% is odd, which implies that when u=0 we have 

9Da=o. 
All together, this results say that 

. 11 

Qa = (uk*, (d0a)"uk) 

= 
Jo Jo 

uk[4]uk[3]dxdydz. 

The result evaluated by Maple is approximatly 

Critical point 1 Critical point 2 

as 2.752, r3 2.7907r3 
ba 1.622w3 1.5S5wr3 
CA 3.244r 3 2.790r 3 
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4.8.4 Calculation of apt, aP2, bP� bP2, Cpl, C2 

In this section we describe how to calculate a., and the remaining five coefficients are 
obtained by analogy. Recall that the formula is 

any _ (uk, (dt 
1). uk - d2c(uk, L-lE 12 ))" 

Differentiating 0 with respect to the parameter pl we get 

ývý [1] _ 
2 02v1 1 19P +1 

0v1 
-ri 0ý + 

ri 8ý1 Qr 
v18Ci 

ývý [2] = 

i 
2 02v2 1 0v2 

+ vl 
on ri rqC OC, 

4Dvi [3] 2 02v3 1 0v3 
ri OC2 

+ 
Qrl 

vl 8Sý 

_ 
Ovl [4] = 2 ago 1 ao 32+y vl 

ri ciý1 r1 aýi 

[5] 
P 

1 0v1 
I ri aC, 

By linearizing this operator about u=0 and evaluating at Uk we get 

(dcvý [1])"uk = 
(4kak[1] 

- 
4klak[5]) 

Ak 
rl rl 

(dcv, [2])"uk =2 k2ak[2]Ak 

(dl)v, [3]). uk 
2 

=3 k2ak[3]Bk 
r 

(dOo, [4])"uk 

l 

= 
4kak[4]Bk 

(dO., [5]). uk =- 
2klak[1]Dk. 
rl 

By inspection on the operator (Dv, we see that u=0 then 

iDP2 = 0. 

All together, the results above say that 

avý _ 
(t4, (d4)v1). uk)" 

The result evaluated by Maple for the six coefficients is approximatly 

Critical point 1 Critical point 2 

a., 0 0 
a. 2 8.249w3 8.666w3 
bo, 0.842w3 0.5677r3 
bp2 4.373w3 4.534ir3 
cp, 6.732w3 4.333w3 
co, 0 0 



4.8. Interaction of Three Modes in a Box with Rectangular Cross Section 105 

4.8.5 Normal Form and Bifurcation Diagrams 

Given a set of equations f (x,. X) = 0, where f is obtained by a Liapunov-Schmidt 

reduction we can find the topology of the bifurcation diagram, but not the stability. 
The corresponding differential equation is one of 

i 

ýb) x=f (x, A). 

In order to get information about stability we must know if our mapping f satisfies (a) 

or (b). In previous sections a 3rd order truncation of f was calculated for the (0,1,1)- 
(1,1,1)-(2,0,1) mode interaction on the Renard problem. The result is a Zz (D Z2 ®Zz- 

equivariant as 

fi (x, y, zAPi, P2) = (aN1 Ni + aN2 N2 + aNa N3 + aAA + av, Pi + ap2P2)x 
f2(x, y, z,. \, Pi, Ps) = (bN, Nl+ bN, N2 + bv3N3 + bAA + bvýPl+ bP2P2)y 
f3(x, y, z,. º, Pi, Ps) = (cNýNl+ cN2N2 + cN3N3 + cAA + cv1Pi+ cvýP2)x 

where Nl = x2, N2 = y2, N3 = z2. The bifurcation parameter A is the Rayleigh number 
with the origin shifted and pl, P2 are the unfolding parameters that have to do with 
the lengths of the domain. The coefficients a, b, c are computed in previous sections by 

a Liapunov-Schmidt reduction. 
When pl = P2 = 0, the linearization of f about the origin is 

fa,, A 00 
df =0 baA 0, 

00 caa 

which has three negative real eigenvalues if A<0 since aa, b,, ca are positive numbers 
as in section 4.8.3. Thus an equation in the form (a) for this particular f leads to 
instability of the solution (x, y, z) = (0,0,0). This means instability of the translation- 
invariant solution u=0 to the Renard problem when the Rayleigh number is below 
the critical value, which does not make sense physically. In the same way, we see that 
an equation in the form (b) gives the correct stability. 

In appendix A we analyse a normal form with Z2®Z2 Z2-symmetry. The stabilities 
are given under the assumption that the mapping f satisfies the differential equation 
(a). In order to apply the results obtained to this particular problem it is enough to 
change the signs of all coefficients in f and reduce the result to the equivalent normal 
form. 

Some of the coefficients depend of the Prandtl number a. From now on we assume 
that the fluid inside the box is water, which corresponds to 

7.03. 

Substituting this number in the coefficients calculated in previous sections and reversing 
sign we get 
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Critical point 1 Critical point 2 

air, 11.962 12.421 
air, 42.589 42.657 
aN, 36.111 26.371 
as -85.328 -86.515 
a., 0 0 

aP3 -255.76 -268.71 
bN, 38.951 39.893 
bN2 6.6793 6.3503 
bN3 22.711 15.692 
bA -50.294 -49.144 
bpi -26.093 -17.573 
bo, -135.59 -140.58 
CN1 26.935 26.371 
CN3 22.711 19.799 
CN3 18.297 12.421 
cX -100.59 -86.515 
cp, -208.75 -134.35 
cp2 0 0 
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In order to compute the normal form for f we apply a Z2 ED Z2 ® Z2-equivalent 
transformation as 

H(x, y, z, ), Pi, P2) = Sf( , A, Pi, P2) (4.31) 

where 

X(x, y, z, A, Pi, Pi) _ (Ax, By, Cz) 

A(A, Pi, Pz) Pt P2 

1D00 S(x, y, z, A, pl, p2) =0E0 
00F 

and A, B, C, D, E, F are positive constants. Substituting X, A and S in ("1.31) leads 
to 

Hl(x, y, z, A, ii, i2) = (aN, A3Dx2+aN, AB2Dy2+aN, AC2DZ2+a, AD. \)x ý" 
H2(x, y, z, A, r1, r2) = (bN, A2BEx2 + bN, B3Ey2 + bN, BC2EZ2 + b. \BEA +i i)y 
H3(x, y, z, At r"1, r"2) = (cN, A2CFx2 + cN, B2CFy2 + CN3C3 FZ2 + cACF\ + rz)x, 

where 

fl = BE bo, - 
a°' b, 

pl+ BE b� a,, bx 
pz 

as as 

rz = CF (c., - 
a°a'ý A) pl + CF (cp, 

- 
a°a'C A) P2. 
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By imposing the conditions 
(aN3 I A3D = 1 
IbN, IB3E = 1 

I CN3 I C3F = 1 
Iaa IAD = 1 
lb, IBE = 1 
(ca ICF = 1 

we get H in the desired form 

HI(x, y, z, )'rl'r2) = (e1x2 + nly2 + n2z2 + e2A)x 
H2(x, y)z, A, rl, T2) = (n3x2+E3y2+n4z2+0+iI)y 
H3(xt y, ze. \, rl, r2) = (nsx2 + n6 y2 + E5Z2 + c6A + %2)Z, 

where 

E3 = sgn(aN, ) . 
Ez = sgn(aa) 

Es = sgn(bN2) 
E4 = sgn(b, \) 

E5 = sgn(cN3) 
Es = sgn(ca) 

and 
ba 

nl = aN2 
bN2aA 

n2 = 
ca 

air, 
cN3 as 

n3 = bN, 
aN, ba 

n4 = 
CA bN3 

CN3 bA 

n5 = 
as 

CND 
aN, as 

ba 
ns = CN2. bN2 CA 

The unfolding parameters are 
1, av, ba 

bv, -a 
1 av2 bA 

P2 b2- Pi -i- 1b x .\ a, \ 
r2 =II( C, 01 - 

aaýý ) 
Pi + 

IAA 

( 
Coe '- 

aa), ) 
P2" 
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By substititing the derivatives of a, b, c given above in the formulae for e, and n1 we 
get 

Cl = E3 = E5 =1 

and 
Critical point 1 Critical point 2 

ni 3.758 3.816 
n2 2.327 2.123 
n3 5.524 5.654 
n4 2.482 2.224 
n5 1.910 2.123 
n6 1.700 1.771 

Now the unfolding parameters are approximatly 

Critical point 1 Critical point 2 

FF, -0.519pl + 0.302p2 -0.358p1 + 0.245p2 
rr2 -2.075p1 + 2.997P2 -1.553p1 + 3.106p2 

Taking these numbers to appendix A, the bifurcation diagrams can be drawn directly 
by reading the tables. The nondegeneracy conditions are satisfied, since by using the 
notation in the appendix we have 

Critical point 1 Critical point 2 

(a) -2.758 -2.816 
(b) -1.327 -1.123 
(c) -4.524 -4.654 
(d) -1.482 -1.224 
(e) -0.910 -1.123 
(f) -0.700 -0.771 
(g) -19.76 -20.57 
(h) -3.444 -3.508 
(i) -3.220 -2.939 
(j) -6.802 -6.354 
(k) 6.144 5.341 
(1) 3.980 3.369 
(m) 11.24 10.26 

and they are all nonzero. In appendix A we use the signs if these constants to get all 
the information about existence and criticality of bifurcating branches. Since the signs 
are the same for the two critical points they lead to the same bifurcation diagrams. 
From now on we concentrate on point 1. Before drawing the bifurcation diagrams we 
make a convention about the labels of possible branches. 
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(0) Translation-invariant solution u=0. 

(1) Pure mode (0,1,1). 

(2) Pure mode (1,1,1). 

(3) Pure mode (2,0,1). 

(4) Mixed mode (0,1,1)"(1,1,1). 

(5) Mixed mode (0,1,1)-(2,0,1). 

(6) Mixed mode (1,1,1)-(2,0,1). 

(7) Affixed mode (0,1,1)-(1,1,1)-(2,0,1). 

Now the unfolding parameter space is divided into six distinct regions according to the 
order of primary bifurcations when the parameter is increased. This division is the 
following 

r2 

Then some of these regions need a subdivision according to the order of secondary 
bifurcations. This will be illustrated when appropriate and we proceed by drawing the 
bifurcation diagrams. 

Region A 

This region is divided into two subregions according to the order of bifurcations from the 
primary branches. We show this division and then proceed by drawing the bifurcation 
diagram corresponding to each subregion. 
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0.746 r1 

r2 =o 

A. 

R 

Region C 

A 

This region is divided into two subregions according to the order of bifurcations from the 
primary branches. We show this division and then proceed by drawing the bifurcation 
diagram corresponding to each subregion. 

11= 0 

r2=0 

Region B 

ft, n -- 11- 
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r, - 

Region D 

C. - 

This region is divided into two subregions according to the order of bifurcations from the 
primary branches. We show this division and then proceed by drawing the bifurcation 
diagram corresponding to each subregion. 

r2=0.201r1 

T), 

Region E 

TT _ 

Y'1 = r2 

1 J1 
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Region F 

V. 

4.9 Interaction of Two Modes in a Box with Square 
Cross Section 

Now we assume that r=r, is such that the two modes k, 1 E N3 bifurcate simulta- 
neously when the Rayleigh number is increased across a critical value R= Re. By 
imposing the extra condition rl = r2 we have that ker L is either 2,3 or 4-dimensional 
depending on the mode numbers as 

1. Vk®Uifkl=k2and11=12 

2. Vk®V ED V,, if kl=k2and ll012 

3. VkED V, k®VI ®V, tifkl 0 k2and11012 

and ker L* is 

1. Vk ®V' if k1=k2 and 11=12 

2. Vk ED V'®V;, if k1=kzand 11 l2 

3. Vk ED Vak®V'®V; tif kl4k2and li7 l2 

where Vk and Vk are defined in section 4.7.1 for any given set of mode numbers k. For 
the particular case of the Renard convection we did not find any mode interaction of 
type 1. We performed a Liapunov-Schmidt reduction for a mode interaction of type 
2 which gives a 3-dimensional system of ODEs. For the particular modes chosen, a 
3rd order truncation is enough to determine the bifurcation diagrams and the analysis 
described in section 4.8 applies directly. Further analysis of the points of type 3 is 
left for further work. The reason for not doing it here is that an expansion of the 
reduced equations up to 3rd order would not be enough to catch all the features of the 
bifurcation diagrams and we are not technical prepared to go up to higher order yet. 

Y 

Now we consider a bifurcation of type 2 with mode numbers 

k= (1,1,1) 

t= (0,1,1). 
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A calculation shows that these modes bifurcate simultaneously when the unfolding 
parameters are 

rl, = r2 -, 1.687 

and the bifurcation parameter is 

7.024. 

As in section 4.5.2, the bifurcation equations obtained by a Liapunov-Schmidt reduction 
heve Z2 ® D4-symmetry. Thus, up to 3rd order they are of the form 

, 
fi = [aN, Nl + aNs N2 + aAA + av, +vý (Pi + P2)] X 
f2 = [bN, NI+bN, N2+cö+bAA+bvl +o2(Pi+p2)+bvý-112(Pi-P2)]yi 
fs = [bN, Nl + bN2 N2 - cb + bAA + bv1 +v2 (Pi + p2) - bvl 

-v2 
(PI - Pz)) y2 

where 

Ni=x2 N2=yiý'y2 yz-Yi 

and 

A=R-Rc pi =rl - rlc P2 = r2 - r2. 

The coefficients in the formulae for f are computed as in section 4.5.2 and the result 
for a=7.03 (Prandtl number for the water) is 

aN, 10.715 

aN, 35.738 

as ;:: tl -59.780 
ap, +p, ;: -55.835 

bN, 46.241 
b, V, 15.643 
bA .:; -80.288 

+" bv, +P ; -96.732 
bo, 

-v, 
96.732 

c 5.6526 

In order to compute the normal form and bifurcation diagrams we apply a Zz e D4- 
equivariant transformation 

H(x, yi, y2, A, Pi + Ps, Pi - P2) = Sf (X, n, Pi + Ps, PI-P2) (4.32) 
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where 

X (X, yi, y2,. \, Pi + Ps, Pi - Pz) = (Ax, By,, Bye) 

A(A) =A - 
apP2 (Pi + Pz) 

a+ 
C00 

S(x, yi, y2, A, Pi+Pz, Pi -Ps) =0D0 
00D 

and A, B, C, D are positive constants. By substituting X, A and S in (4.32) we get 

Hi (-X, yi, y29 As Pi, P2) = [aN, A3CX2 + aN, AB2C(yi + yz) + aAAC. ]x 
H2 (X, yi, y2, A, Pi, P2) _ [bN, A2BDx2 + bN2 B3D (yi + y2) + cB3D(y2 - yi ) 

+baBD X+ Pi + P2]Y1 
H3(x) yi, y2, A, Pi, P2) _ [bN, A2BDX2 + bN2 B3D(yi + y2) - cB3D(yz - yi ) 

+bABD \ +A, - P21y2" 

where 

aPI+P2ba (Pi + P2) Pl = BD 
(b1ý2 

- aa 
P2 = BDbpý-P2(PI - P2). 

By imposing the conditions 

I aN, IA3C =1 
laa IAC =1 
ßc1 B3D =1 
lba (BD =1 

we get H in the desired form 

Hi(x, yi, yz, A, Pi, P'x) _ 
[Eix2+n1(y+y)+c2Jx 

H2(x, yi, y2, ), Pi, Pz) _ 
[n2 + n3(yi + yz) + E3(y2 - yi) + 0+P, + h1 Yi 

H3(XgYIsY2, AgAli A2) _ 
[nsx2 + n3(yi + yi) - E3(y2 - yi) + c4A + Pi - p21 y2 

where 

Cl = sgn(aNl ) 

C2 = sgn(aa) 

C3 = sgn(c) 

Eq = sgn(ba) 
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and 

The unfolding parameters are 

ba 
ni = a Ca A 

n2 = 
as bN, 

aN, ba 

n3 
(11 bN3. 

1 aPý+PZba 
aý 

(Pi + P2) Pi = Ibn I 
bP1+Pý 

- 

P2 = IbnIbPi-P2(Pi -P2). 

By substituting the derivatives of a, b, c given above in the formulae for Ej and n1 
we get 

E1 = E3 

E2 = Eq = -1 

and 

ni 8.491 

n2 3.213 

n3 2.767. 

Now the unfolding parameters are 

PI 0.663(p + P2) 
Ps . 'r 1.205(P1 - P2)- 

A complete stability analysis of steady solutions of the system 
th = Hi (x, yi, y2,., P1, P2) 

yi = H2(x, yi, ys, A, P1, P2) 
yz = H3(x, yi, ys, J, P1, P2) 

is performed in appendix B. The results are condensed into tables giving the branches of 
solutions and their criticality with respect to the bifurcation parameter A if the system 
is nondegenerate. Our particular mapping H satisfies the nondegeneracy conditions 
since we have 

(a) .:: -2.213 
(b) 2.767 
(c) 1.767 
(d) .:: -5.724 
(e) -6.724 
(f) .: ý -24.52 
(g) . ̂r -26.28 
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and they are all nonzero. We proceed by drawing the bifurcation diagrams for the case 
when the mapping H is Z2 ® D4-equivariant. This happens when pz = 0. Then we 
show the effects of breaking the S2 symmetry with the parameter pz. Before drawing 
the bifurcation diagrams we make a convention about the labels of possible branches. 

(0) Translation-invariant solution u=0. 

(1) Pure mode (1,1,1). 

(2) Pure modes (0,1,1) and (1,0,1). 

(3) Mixed mode (0,1,1)-(1,0,1). 

(4) Mixed modes (1,1,1)-(0,1,1) and (1,1,1)-(1,0,1). 

(5) Mixed mode (1,1,1)-(0,1,1)-(1,0,1). 

Now the bifurcation diagrams depend on the sign of pl as 

n., e M, 50 

We proceed by breaking the S2 symmetry with the parameter pz. Now the modes 
(0,1,1) and (1,0,1) are no longer conjugate. In order to make the bifurcation diagrams 
clear we need new labels 

(2.1) Pure mode (0,1,1). 

(2.2) Pure mode (1,0,1). 

(4.1) Alixed mode 

(4.2) Mixed mode 

(6) Mixed mode (1,0,1)-(0,1,1). 

(7) Mixed mode 

The unfolding parameter space is divided into six distinct regions according to the order 
of primary bifurcations when the bifurcation parameter is increased. This division is 
the following 
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Pi + 172 172 =0 

2=0 

Then some of these regions need a subdivision according to the order of secondary 
bifurcations. This will be illustrated when appropriate and we proceed by drawing the 
bifurcation diagrams. 

Region A 

This region is divided into two subregions according to the order of bifurcations from the 
primary branches. We show this division and then proceed by drawing the bifurcation 
diagram corresponding to each subregion. 

T2=0.175PPi 

P2=0 

Aý Ai! 
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Region B 

1. 

Region C 

Cý 

Region D 

ný 

Region E 

R. 

Region F 

This region is divided into two subregions according to the order of bifurcations from the 
primary branches. 'Are show this division and then proceed by drawing the bifurcation 
diagram corresponding to each subregion. 
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! =o 

-0.175 ßl 

F, - IR., - 

Ni =- P2 


