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ABSTRACT

The aim of the work presented in this thesis was to produce the improvement of the
existing simulation tools used for the analysis of materials and structures, which are
dynamically loaded and subjected to the different levels of temperatures and strain
rates. The main objective of this work was development of tools for modelling of
strain rate and temperature dependant behaviour of aluminium alloys, typical for
aerospace structures with pronounced orthotropic properties, and their implementation
in computer codes. Explicit finite element code DYNA3D has been chosen as
numerical test-bed for implementation of new material models. Constitutive model
with an orthotropic yield criterion, damage growth and failure mechanism has been
developed and implemented into DYNA3D.

Second important aspect of this work was development of relatively simple
experimental methods for characterization of engineering materials, and extensive
experimental work has been undertaken. Tensile test has been used for the
characterisation of two aluminium alloys, at different levels of the strain rates and
temperatures, and for three different orientations of materials. The results from these
tests allowed derivation of material constants for constitutive models and lead to a
better understanding of aluminium alloy behaviour. Procedures for derivation of
parameters for temperature and strain rate dependant strength models were developed
and parameters for constitutive relations were derived on the basis of uniaxial tensile
tests. Taylor cylinder impact test was used as a validation experiment. This test was
used to validate the implementation, and accuracy of material model in computer
code. At the end of each incremental development, validation of the constitutive
material model has been performed through numerical simulations of Taylor cylinder
impact test, where simulation results have been compared with the experimental post-
test geometries in terms of major and minor side profiles and impact-interface
footprints. Plate impact test has been used to determine the material properties at high
strain rate, and to investigate damage evolution in impact-loaded material.

Initially the material model has been designed as a temperature and strain rate
dependant strength model in a simple isotopic form, which then has been tested and
verified against the experimental results. Coupling of the Hill’s orthotropic yield
criterion with isotropic, temperature and strain rate dependant, hardening material
model, has been chosen to suit the orthotropic behaviour. Method for calibration of
orthotropic yield criterion has been developed and parameters have been identified for
the orthotropic model under the associated flow rule assumption and in case of plane
stress on the basis of tensile and cylinder impact tests. The complexity of the model
has been further increased through coupling of hardening model with orthotropic yield
criterion including damage evolution and failure criteria. The constitutive model was
developed within the general framework of continuum thermodynamics for
irreversible processes, and plate impact test and tensile tests have been used for
determination of parameters for damage part of the new material model.
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1. INTRODUCTION

1.1. Statement of objective

The main objective of this research project is development of constitutive
models for modelling of strain rate and temperature dependant behaviour of
aluminium alloys, typical for aerospace structures with pronounced orthotropic
properties, and their implementation into an explicit nonlinear finite element code.
The output of this work is to offer enhanced simulation tools to be used for the
analysis of aluminium structures, which are dynamically loaded and subjected to the
range of temperatures and strain rates.

The complexity of a constitutive model is generally related to its intended
application. Areas of application include metal forming processes, crashworthiness,
and high velocity impact problems typical for the aerospace structures. Improvement
of the simulation tools in general should result in reduction of the difference between
numerical simulations and real mechanical processes.

Computer simulations can replace expensive and time consuming tests, enable
designers to validate reliability of structures and manufacturers to check defined
manufacturing processes, before the decision is made to start the production. The
combination of experiments, numerical solutions and dynamic material
characterisation has been shown to be very effective in reducing both manpower
requirements and cost.

Goal in material modelling is to develop models, which are widely applicable
and reasonable easy to characterise (determine input parameters for the model). Some
material models require only a value of dynamic yield stress as input data, while
others require a complete description of material behaviour. In the most general case
stress depends on strain, strain-rate, damage, temperature and loading history. One
model may be applicable for more than one application, but generally it has been
found that certain classes of models are used for only certain type of applications.

Generally constitutive models must have following characteristics: capability to
describe important aspects of material behaviour, to be mathematically and
computationally simple, and to require a reasonable amount of experimental effort to
obtain material parameters.

No mater how complex mathematical model is, it is possible to incorporate such
model into a computer code. The difficulties in obtaining experimental data and
model constants determine the practical value of the model. The second important
aspect of this work is the development of relatively simple experimental methods for
characterization of engineering materials for the proposed model.

The new material model was implemented into the explicit finite element code
DYNAZ3D. The constitutive model comprises of a strength model, an orthotropic yield
criterion, damage initiation, evolution and failure model. Initially the new material
model has been designed as a temperature and strain rate dependant strength model in



a simple isotopic form, which then has been tested and verified against the
experimental results. The complexity of the model has been increased in the further
iterations through coupling of strength model with orthotropic yield criterion
including damage evolution and failure criteria.

A schematic representation of the project research methodology is presented in
figure Fig. 1.1.1., and an outline description of the three iterations is given below.

Material Model Requirements |
* Strain rate dependency

* Temperature dependency

* Anisotropy - Orthotropy

* Failure mechanism

Formulation of a

mathematical 3 :
: . | model Material simulation =
. T!l'lal_?n:elﬁl;aitlng : ¥+ Micromechanical i M
wnsile Mg 6{‘.39 slmulatian i
: *r% i : - N | K
£ A 1
l . . HQ# . l_-.l B
Material | Material Material ¥ Q
—_— -+
parameters model parameters :

o“f’/’-/_'_\_ﬂo% &

iy “n,

0,5%‘@ / Validation via ‘-.I’%%
ks | iterative model | 9,
()

/ ' improvement /
by, A

- > T T =
i e - Validation simulation
Validation testin — ;
« Taylor test g ——Comparison = Macromechanical
sirnulalon

S W
]

e

e

walo=r Ta
|| E— .

Fig. 1.1.1. Project research methodology

First iteration [1-4] consisted of implementation of the isotropic strength
model with strain rate and temperature dependency and determination of parameters
for the proposed strength model.

The proposed Mechanical Threshold material model is capable of accurately
modelling behaviour of aluminium alloys typical for aerospace structures, which are
temperature and strain rate dependent, and as a starting point of this development a
number of well established strength models have been considered to suit this
behaviour.

Second iteration [5] of the development consisted of coupling orthotropic
yield criterion with isotropic, temperature and strain rate dependant, hardening
material model, and determination of parameters for orthotropic criterion.

Proposed material model contains an orthotropy definition as a type of
anisotropy. This includes the definition of material properties Elastic modulus, Shear
modulus, Poisson’s ratio for three directions and the anisotropy parameters that define
the yield criterion.



Third iteration [6-8] consisted of integration of strength and damage models
with orthotropic yield criterion and determination of parameters for damage model.

A number of existing failure material models and approaches to modelling of
failure were assessed. For instance, effective surface reduction based models, models
based on thermally activated damage and fracture and material instability based
damage and failure models. This consideration resulted in the definition of the
concept for the new material model.

Tensile tests were used for the characterisation of two aluminium alloys, at
different levels of strain rate and temperature, and for different orientations of
materials. The results from these tests allowed derivation of material constants for
constitutive model and lead to a better understanding of aluminium alloy behaviour.
This has been achieved through data processing with final result in the form of input
parameters for the material constitutive models.

Taylor cylinder and plate impact test were performed as validation
experiments. Depending on the initial impact velocity and sample geometry of the
material, a vide range of strains, strain rates and temperatures can be achieved in a
single test. These tests provide a clean set of experimental data from which is possible
to validate a material model and its implementation into a computer code. Plate
impact tests were used to determine the material properties at high strain rate, and to
investigate damage evolution in impact-loaded materials.

Implementation of the proposed material model has been followed by
validation of the model through the set of simulation tests and comparison with
experimental results. On the end of iteration, validation of the constitutive material
model has been performed through numerical simulations of Taylor cylinder impact
test. The simulations of Taylor impact tests have been done using the public domain
version of Lagrangian finite element code DYNA3D, and have been compared with
the experimental post-test geometries in terms of major and minor side profiles and
impact-interface footprints.

1.2. Structure of the thesis

Chapter 2
Review of relevant experimental and simulation techniques

Literature survey of the most common experimental techniques in the area of
material model development and validation was performed. Experimental methods of
probing material behaviour at intermediate and high strain of rates are outlined.

Furthermore, the main aspects of computational methods for impacts problems
are presented. The review considers a number of hydrocodes, their similarities and
differences.



Chapter 3
Experimental work

In order to characterise the materials of interest, i.e. determine material
parameters a series of experiments were performed. The materials chosen for this
research project AA7010 and AA2024 are commercial aluminium alloys very
common in aircraft structures and of high importance to AIRBUS.

Uniaxial tensile test

Uniaxial tensile tests for the two aluminium alloys were performed as a
function of temperature at the intermediate strain rate regime using universal
hydraulic testing machine fitted with environmental temperature chamber at School of
Engineering — Cranfield University. Uniaxial tensile tests for two aluminium alloys
were performed in three different material directions, namely 0° (extrusion), 45° and

907 (transversal).

In this work non-standard specimen geometry was used in order to extend the
strain rate range of the servo hydraulic machine. To determine specimen geometry a
set of simulations has been done and the new specimen geometry was determined.

Since that maximum achievable strain rate was in the intermediate strain-rate
regime 10 s, temperature chamber provided low temperature tests as alternative for
the tests at high strain rates, based on the assumption that that the strain rate and
temperature effects are interchangeable.

Results from these tests are presented in this work as stress-strain curves of
AA7010 and AA2024 at different strain rates and temperatures, and for different
orientations of materials.

Taylor cylinder impact test

Several Taylor impact test, using specimens cut out from a rolled plate of
AA7010 aluminium alloy were performed. Geometric profile data for deformed
specimens were generated using a 3D scanning machine. The data consist of digitised
side profiles for minor and major direction, and digitised footprints that give cross-
sectional area at the impact interface.

These digitised shapes show good experimental reproducibility, and represent
an excellent data set for direct comparison with numerical simulation results. The
specimen heights and radial deformations were used for comparison.

Plate impact test

Plate impact test were performed on OFHC Cu using single-stage gas gun.
Plane samples were impacted by plane projectile plates at different velocities.

Using stress gauges, which were supported with PMMA blocks on the back of
the target plates, stress-time histories have been recorded.



After testing, micro structural observations of the softly recovered OFHC Cu
spalled specimen have been carried out and evolution of damage has been examined.

Chapter 4
Strain rate and temperature dependence

The material models detailed in this chapter are formulated primarily to
describe material strength as a function of strain, strain rate and temperature.
Significant attention was paid to the temperature and strain rate dependant material
models such as Johnson-Cook (JC), Zerilli-Armstrong (ZA) and Mechanical
Threshold Stress (MTS), and detailed descriptions of those models are given.

One of the limiting factors in obtaining accurate simulations result is the lack
of specific material input parameters for advanced constitutive strength models such
as Johnson-Cook, Zerilli-Armstrong and Mechanical Threshold Stress (MTS).
Therefore, procedures for determination of the input parameters for the models were
developed and presented in detail.

Procedures for derivation of parameters for temperature and strain rate
dependant strength models were applied to the aluminium alloy AA7010. Parameters
for Johnson-Cook (JC) and Mechanical Threshold Stress (MTS) models were derived
on the basis of tensile tests, and used as input parameters for numerical simulation of
Taylor impact test.

The numerical simulations of Taylor impact tests were performed using the
public domain finite element code DYNA3D, and compared with the experimental
post-test geometries. Modified form of MTS material model was implemented in
DYNA3D computer code while the JC material model was used as implemented in
DYNA3D.

Chapter 5
Anisotropic plasticity

The yield criterion chosen for the orthotropic material is the Hill’s yield
criterion with isotropic hardening. The MTS model was chosen to represent
hardening of material in the referent direction. Rolling direction of plate has been
chosen as referent direction.

A modification of Hill’s yield criterion was proposed to allow combined
isotropic-kinematic hardening, which can be useful for analyses of orthotropic
aluminium alloys in sheet or plate form.

Tensile tests in a different material directions resulted in different yield
stresses, and those values have been used for calibration of orthotropic yield criterion.
Because of the limitations of the uniaxial tests (only longitudinal strain of flat tensile
specimen has been measured for all three different directions) results from Taylor
tests were used for determination of Lankford coefficients.



A method for calibration of orthotropic yield criterion has been developed and
parameters have been identified for Hill’s orthotropic model under the associated flow
rule assumption.

Using the determined parameters for Hill’s criterion, the corresponding
temperature and strain rate dependant initial yield loci and yield surfaces were
constructed for aluminium alloy AA7010.

Numerical simulations of Taylor test experiments have been done in order to
test proposed procedure for calibration of Hill’s orthotropic yield criterion and
calculated parameters for aluminium alloy AA7010.

Chapter 6
Material failure modelling

This chapter starts with literature survey, which include analysis of the
existing work in the field of material failure modelling. Significant attention was paid
to the material models, which describe spall phenomenon. A review of exiting
dynamic failure criteria is presented in this chapter.

A material failure model based on the assumption that material separation
during fracture processes is thermally activated has been adopted for the proposed
model. With this basic assumption, the proposed model is compatible with the
Mechanical Threshold Stress model and therefore in the first instance it was
incorporated into the MTS material model in DYNA3D.

In order to analyse proposed criterion a series of FE simulations have been
performed for OFHC Cu. The numerical analysis results clearly demonstrate the
ability of the new model to predict the spall process and experimentally observed
tensile damage and failure. It allows simulation of high strain rate deformation
processes and dynamic failure in tension for wide range of temperatures. Also, the
proposed cumulative criterion for fracture enables one to simulate tensile damage
including spall over a wide range of impact velocities.

Chapter 7
Coupling of anisotropic elastoplasticity and damage

The coupled anisotropic elastoplastic and damage framework for ductile
fracture is presented in this chapter. The yield criterion chosen to suit the orthotropic
material is the Hill’s yield criterion with isotropic hardening, which was represented
with MTS strength model for the material behaviour in the referent direction. To
account for the physical mechanisms of failure, the concept that thermal activation of
material separation during fracture processes has been adopted as basic mechanism
for proposed model.

General coupling of anisotropic elasto-plasticity and damage formulations is
demonstrated within a thermodynamically consistent framework. This framework



follows an irreversible thermodynamic approach using internal variables together with
their associated generalized forces.

Firstly, the internal variables and thermodynamic potentials used to describe
the processes are identified. The concept of transformation or mapping to effective-
stress space is introduced. General forms for damage functions and yield functions in
the effective-stress space are constructed using homogeneous functions. Finally, the
compliance with the first and second thermodynamic laws is enforced.

An anisotropic damage evolution equation and a constitutive equation of
plasticity are formulated using a damage effect tensor M (D). Elastic-plastic

constitutive and damage evolution equations are formulated by the use of the
symmetric tensors H - plastic characteristic tensor and J - damage characteristic
tensor, to represent the shapes of the yield and damage surfaces respectively.

Method for calibration of the proposed damage model is presented, and
applied on the aluminium alloy AA7010, using experimentally determined stress —
strain curves.

Chapter 8
Implementation and Validation

This chapter presents the implementation of proposed strain rate and
temperature dependent, anisotropic elasto-plastic-damage model into public domain
DYNA3D code. The developed model has been implemented in the code, using
proposed elastic predictor/plastic corrector/damage mapping, integration algorithm.
Numerical simulations of Taylor impact cylinder have been carried out to validate
implemented model and good agreement with experimental results was obtained.



2. EXPERIMENTAL AND SIMULATION TECHNIQUES

2.1. Introduction

It is now well established, that most materials show a significant change in
mechanical response under increased rates of straining. Material characterization
involves not only the stress-strain response, but also the accumulation of damage and
the mode of failure which materials undergoes.

The mathematical description of the relationship between the stresses, strains,
their derivatives, temperature and damage is referred to as the constitutive law or
relationship.

The basic problem is how to determine the constitutive relationship that best
describes a particular material or class of materials. The most general form of a
material constitutive equation should cover the description of material behaviour
under the widest range of strain rates that may be encountered. However this can be
extremely difficult, thus constitutive equations often cover only certain range of strain
rates. It has been observed that for a number of materials different physical
mechanisms are dominant at different strain rates.

In describing the relationship between stress and strain and their time
derivatives for particular material, we have to emphasize that both stress and strain are
point tensors functions, so a constitutive law relates stress and strain at a point. In the
most general case, the relations between stresses (three normal and three shear stress)
and strains (three normal and three shear strains), their time derivates, as well as any
other function necessary to describe the material behaviour must be considered. It is
obvious that constitutive relationship necessary to completely describe the materials
behaviour can be extremely complex, because of the large number of components of
stress, strain and their time derivate that may be involved in the formulation.

A several forms of constitutive law are given by following relationship:
o= f(g¢,T) (2.1.1.)

Where ¢ is strain, £ is strain rate and T is temperature. Because plastic
deformation is irreversible and path dependant process, the response of the material is
dependent on the deformation substructures, thus we can add one more term in the
above equation, and we have:

o = T (e,¢,T,deformation _history)
(2.1.2))

For simplicity reasons, instead of dealing with tensors, it is much simpler to
consider scalar quantities of stress and strains. That is the reason why experimental
investigations are focused primarily on one-dimensional states of stress or strain.



In this chapter strain rate effects are discussed, and some of the considerations
in dynamic testing of materials are summarized. An overview of major experimental
techniques is presented, and details of experimental methods that have been used in
this work are given in subsequent chapter.

The second part of this chapter considers computational aspects of
development of a material model. Computer programs used to numerically simulate
highly dynamic events in solid mechanics are commonly referred to as hydrocodes.
One of the reasons for using the hydrocodes is to have a numerical test-bed for
developing material models. It is therefore, very important that the code has a flexible
material interface subroutine which allows a constitutive model to be added to the
code with minimal effort. The availability of the source code provides the most
flexible environment for the user.

2. 2. Experimental techniques

2.2.1. Strain-rate regimes

Different mechanisms govern the deformation behaviour of materials within
different strain rate regimes, and general classification of strain rate regimes is
presented in figure Fig. 2.2.1.1.
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Creep Quasistatic Interr_nedmte Bar impact ngh-\{eloclty
strain-rate plate impact
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Inertia forces neglected Inertia forces important
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Fig. 2.2.1.1. Dynamic aspects of mechanical testing [35]

The range of strain-rate between 10 to 10~ s~ correspond to the creep
behaviour of materials usually observed at elevated temperatures and creep type laws
are used to describe the mechanical behaviour.

At strain rates of the order of 10~ to 10~ s, quasistatic stress-strain curve
are obtained from constant strain rate tests such as uniaxial tension, compression.
Those quasistatic stress-strain curves are often used as an inherent property of



materials. One should be aware that they are valid descriptions of materials only at the
strain rate at which test was performed.

At higher strain rates, the stress-strain properties may change and specialized

testing techniques have to be applied. The range of strain rates from 10" to 10° s™" is
known as the intermediate or medium strain—rate regime, and within this regime
strain-rate effects should be considered in most metals, although the magnitude of
such effects may be small in some cases.

Strain rates of 10° s~ or higher are generally referred as the range of high

strain rate response. Within the high strain-rate regime inertia, thermal and wave-

propagation effects become important in material behaviour. At strain rates of 10° s
and higher, we are generally dealing with shock waves propagation through material.
At these high strain-rates we have to pay attention to thermodynamic effects, because
in this region we have transition from nominally isothermal conditions to adiabatic
conditions.

2.2.2. Intermediate strain-rate tests

The simplest method for determining strain-rate sensitivity of a material is to
increase the speed of a uniaxial tension and compression test. Those tests are ideal,
because the state of stress is purely uniaxial. Various types of machines are designed

for performing tests at intermediate strain rate, and it is possible to achieve strain rates

up to approximately 10's™". Hydraulic or pneumatic devices are utilized to rapidly

accelerate a driving ram to a constant speed and then sustain that speed for the
duration of test.

Also, different types of machines are utilized for torsion mode of deformation
to achieve shear strain rates in the medium strain-rate regime. The torsional mode of
deformation allows the achievement of very large strains without geometric
instability, which is present during a tension test, and is known as necking.

2.2.3. High strain-rate tests

The Split Hopkinson Pressure Bar (SHPB) or Kolsky apparatus is one of the
most widely wused experimental configurations for high strain-rate material
measurements. The concept of the Hopkinson bar involves the determination of
dynamic stresses, strains or displacements occurring at the end of a bar through
observation of the effect from some distance away. In addition to the original SHPB
developed to measure the compressive response of a material, this technique has been
modified for loading samples in uniaxial tension and torsion.

Among the different Hopkinson bar techniques (compression, tension and
torsion) the compression bar remains the most readily analysed and least complex
method to achieve a uniform high-rate stress state. Compression bar test apparatus
consists of: pressure bars - two long symmetric bars, bearing and alignment fixtures to
allow the bars and striking projectile to move freely, but in precise axial alignment,
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striker bar, a gas gun or on alternate device for accelerating a projectile, strain gauges
mounted on both bars to measure the stress wave propagation, instrumentation and
data acquisition system to control, record and analyse wave data.

Transmitted Bar Incident Bar  Striker Bar

Sample

Sirain| Gage

£

R

Fig. 2.2.3.1. Schematic of a Split-Hopkinson-Pressure-Bar apparatus [13]

The impact of striker bar with incident bar produces a longitudinal
compressive incident wave in the incident bar & . When this wave reaches the bar —

specimen interface, a part of pulse is reflected ¢, , while the rest of the stress pulse
passes through specimen and the output bar as transmitted wave & . The time of

passage and magnitude of these three elastic pulses through the incident and
transmitted bars are recorded by strain gages. Forces and velocities at the two
interfaces of the specimen can be determined using the wave signals in the function of
time from gages. When the specimen is deforming uniformly, the strain rate within
specimen is directly proportional to the amplitude of reflected wave. The stress within
the sample is directly proportional to the amplitude of transmitted wave. The reflected
wave is also integrated to obtain strain and is plotted against stress to produce the
dynamic stress strain curve for the specimen.

2.2.4. Taylor impact test

The alternative method of probing the mechanical behaviour of materials at
high strain rates is the Taylor rod impact test. This method consists of firing a solid
cylinder of the material against a massive and rigid target. The deformation in the rod
due to impact shortens the rod as radial flow occurs at the impact end of the bar. The
dynamic flow stress of the cylinder material can be estimated by measuring the
overall length of the impacted cylinder and the length of the undeformed (rear) section
of the cylinder.

Initial
state  pina]
state
I X
Ly
777777777,

Fig. 2.1.4.1. Schematic of Taylor Impact Cylinder Test [12]
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This test has been used mostly as a validation experiment. In this approach, the
final length and cylinder profile of the sample are compared with code simulations to
validate the material constitutive model implemented in the computer code.
Comparisons with the recovered samples provide a check on how accurately the code
can calculate the gradient in the deformation stresses, strain rate and thermal effects
leading to the final strains of the sample cylinder during the impact.

2.2.5. Plate impact test

Plate impact experiments are used to study dynamic deformation and failure
modes of materials at high strain rate. The recovery configurations in these
experiments are performed with the objective of examining the microstructural
changes in the specimen after it is subjected to loading under a uniaxial strain
condition. The experiments are designed to achieve a controlled plane-wave loading
of specimens. In practice, this is limited by the finite size of the plates employed,
which generates radial release waves.

Barrel  Sabot Flyer Probe  Target holder Soft catcher  Buffer

Ny

—_— . —_— . o —. [q
TTC3

/ \ (_(-(-C’(
\

Targer / PMMA

gauge
Fig. 2.2.5.1. Schematic of a Plate Impact Test apparatus [31]
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A plate impact experiment involves the impact of a moving flat plate, called
the flyer, with another stationary plate, called the target, which is usually the
specimen. In the normal plate impact experiment, the specimen is subjected to a
compression pulse. The test is designed to provide insights into behaviour of materials
in presence of shock waves, and thus it is necessary that the material of the specimen
is under a uniaxial strain condition. In case where the diameters of both the flyer and
the target are much greater then their thicknesses, planar impact generates two one-
dimensional shock waves. One propagates into the target and the other into the flyer
plate. Those shock waves reflect as rarefaction waves from free surfaces of the flyer
and target plates respectively. The experiment can be designed so that these
rarefaction waves interact inside the target, producing a state of tension in some
region. If this tensile stress level exceeds the dynamic yield strength of the material,
fracture takes place, producing a scab from that section of the target. The velocity and
the thickness of this scab depend upon the yield strength of the target and impact
velocity.
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2.3. Numerical analysis

2.3.1. General considerations

The equations governing the impact of solids are, in general, non-linear and
cannot be solved analytically, thus, numerical analysis of the equations is used to
determine the response. All hydrocodes attempt to solve (numerically) the differential
equations that govern the dynamics of a continuous media. These equations are
established through the application of conservation laws (energy, momentum, and
conservation mass) and compatibility equations (strain, stress, displacement, etc.
relations).

All the finite difference and finite element computer program consists of three
main logical units: pre-processor, solver and post-processor. A compact description of
the computational process is shown in Fig. 2.3.1.1. The three stages listed may be
incorporated in a single computer program, or code, or may exist as a three distinct
codes, which is more usual case.

PROCESSOR
Conservation equations:

- Mass POST-PROCESSOR
PRE-PROCESSOR - Momentum - Defo_rrnatlon, stress,
_ Initial geomet - Energy strain, pressure &
- Material %escri ?i{un - Entropy temperature fields
L crip Material model: - Velocities,Accelerations
- Initial conditions X .
- Stress-strain relation - Forces, Moments
- Equation of state - Energies, Momenta

- Failure criterion
- Post failure model

Fig. 2.3.1.1. Schematic representation of the computational process [15]

The pre-processor generally generates a detailed computational mesh for the
geometry of interest from an abbreviated description provided by user. This
information is coupled to a description of the materials making up the geometric
bodies by specifying appropriate parameters for the equation of state, the stress-strain
relationship used by the code in both elastic and plastic regimes, and the failure
criteria to be used. A description of boundary and initial conditions ends this stage of
the process.

The processor, where typically large amounts of computing time are spent,
consists of several subroutines, each having a special purpose (calculate element
matrix, equation of state, etc). The conservation laws for mass, momentum and
energy, coupled to an equation of state for determination of pressures, a constitutive
relationship, a failure criterion and post-failure model are cast into finite-difference or
finite-element form and integrated in time in this phase, using information generated
by the pre-processor.
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Output of the computations is generally massive and can run into hundreds of
megabytes or even gigabytes, which are difficult to read and interpret. Recourse is
therefore made to post-processors, which are essentially computer programs that
prepare displays of the items of interest. The graphical representation includes: mesh
and contour plots of strain, stress, velocity, strain rate, pressure, temperature, etc. at
given time.

2.3.2. Mesh descriptions

Hydrocodes differ in the approach they take to arrive at a solution, and a
fundamental difference is in the use of Eulerian or Langrangian spatial discretisation.
In Lagrangian coordinates, every point in the deformed body is referred to some
reference state, and any discretisation, such as finite element mesh or finite difference
zoning used in the analysis, deforms with the material. In Eulerian coordinates,
however, the points are fixed in space and discretisation does not move with the
material.

Using the Lagrangian method, mass inside the element remains constant and
only the volume of the element changes as the material distorts. Because of the fact
that the time step is controlled by the size of the smallest element, care should be
taken that elements do not become too distorted, otherwise the iterative simulation can
diverge. The main advantage of Langrangian approach is that the code is simpler and
requires less computational time. Also, the boundary conditions can be more easily
specified and history data are easily obtained. Important feature in Langrangian codes
is their ability to model the contact interface between different materials.

Eulerian codes enable simulation of large distortions of material and because
of that problems with large deformations can be simulated easily. A computational
grid is fixed in space and code calculates the quantities that flow into and out of the
cells. The main disadvantage of this type of the code compared to the Langrangian
codes lies in the fact that it is very difficult to preserve distinct material boundaries.

Langrangian formulation is most appropriate for impact of solide bodies since
the surfaces of the bodies will always coincide with discretization and are therefore
well defined. The disadvantage is that the numerical mesh can become severely
compressed and distorted in many problems [15]. This behaviour has a very adverse
effect on the integration time step and accuracy.

2.3.3. Time integrating methods

The time stepping methods are the essence of most structural dynamics
problems. There are basically two time integration methods outside of classical
closed-form solutions available to analysis: implicit formulation and explicit
formulation. The procedure for the discretized equation of motion is called explicit if
the solution at some time t + At in the computational cycle is based on the knowledge
of the equilibrium condition at time t, and possibly at previous times. The advantage
of using the explicit method is that there is no need to calculate stiffness and mass
matrices for the complete system. Thus the solution can be carried out on the element
level and relatively little storage is required. The drawback of the method is that it is
conditionally stable in time, and the time step must be carefully chosen. The size of
the time step must be sufficiently small to accurately treat the high-frequency modes
that dominate the response in wave propagation problems.
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In an implicit scheme, the solution at any time t+ At is obtained with
knowledge of the accelerations at the same time. Implicit methods are unconditionally
stable. However, such stability is obtained at the expense of solving a set of
simultaneous equations at each time step. Time steps in implicit method can be much
lager then in explicit method, but at the expense of progessivly lower time accuracy.

2.3.4. Discretization methods

It is necessary in a computer analysis to replace a continuous physical system
by a discretized system. In the discretization process, a computational mesh replaces
the continuum. The discretization techniques most commonly used are the finite
difference, finite volume, boundary element and finite elements methods. In finite
difference techniques, differential equations are approximated directly by replacing
the derivatives by difference quotients. In the finite element method, the governing
differential equations are first cast in an integral form and then solution is sought in
the form of linear combination of algebraic polynomials defined over domain
element. A common property of both techniques is the local separation of spatial
dependence from time dependence of the dependent variable. This permits separate
treatment of the space and time grids. Since there is no basic mathematical difference
between the two methods they should have the same accuracy in numerical
computation. The main difference lies not in the methods themselves, but in data-
management structure of computer programs that implement them.

2.4. Summary

One of the main objectives of this research was development of new material
model and implementation in computer code, and hence public domain version of
Lagrangian finite element code DYNA3D [14] has been chosen as numerical test-bed.
DYNAZ3D has been used together with TRUEGRID as pre-processor and TAURUS as
a post-processor.

TRUEGRID has been used as a pre-processor, and this program tessellates a
geometric model into hexahedron brick elements and quadrilateral shell elements.
Each block is composed of 3D hexahedral, 2D quadrilateral, and 1D linear or
quadratic elements arranged in rows, columns, and layers. It has been optimised to
produce high quality, structured, multi-block hex meshes or grids and serves as a pre-
processor to most popular analysis codes.

DYNA3D is a Lagrangian, nonlinear, explicit, three-dimensional finite
element analysis code for structural/continuum mechanics problems, and it has been
used as a platform for new material model development in this research. Due to its
explicit nature, DYNA3D uses small time steps to integrate the equations of motion
and is especially efficient for the solution of transient dynamic problems. DYNA3D's
material library includes isotropic elastic, orthotropic elastic, elastic-plastic,
orthotropic elastic-plastic, rate dependent elastic-plastic, and temperature dependent
elastic-plastic, concrete, and rubber-like materials. Its element library includes solid,
shell, beam, bar, spring and damper elements. DYNA3D also has various contact
slideline options for different contact situations between two bodies.
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TAURUS has been used as a post-processor, and it reads the binary plot files
generated by the DYNA3D three-dimensional finite element analysis code and plots
contours, time histories, and deformed shapes. Contours of a large number of
quantities may be plotted on meshes consisting of plate, shell, and solid type
elements. TAURUS can compute a variety of strain measures, reaction forces along
constrained boundaries, and momentum. TAURUS has three phases: initialisation,
geometry display with contouring, and time history processing.

Second important aspect of this work was development of relatively simple
experimental methods for characterization of engineering materials, and extensive
experimental work has been undertaken. Tensile test has been used for the
characterisation of two aluminium alloys, at different levels of the strain rates and
temperatures, and for three different orientations of materials. Taylor cylinder impact
test was used as a validation experiment. Plate impact test has been used to determine
the material properties at high strain rate, and to investigate damage evolution in
impact-loaded materials. Details of experimental methods that have been used in this
work are given in the following chapter.
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3. EXPERIMENTAL WORK

3.1. Uniaxial tensile test

3.1.1. Purpose of test

The purpose of the proposed work is to perform a series of tensile tests on two
aluminium alloys at varying strain rates and temperatures. The results from these tests
will allow derivation of material constants for constitutive models and will lead to a
better understanding of aluminium alloy behaviour. This was achieved through the
design of experiments and data processing with final result in the form of input
parameters for the material constitutive models.

Several tests are proposed in order to investigate different aspects that can
influence material properties [20-23]. From material response at different
temperatures and strain levels it is possible to identify the mechanism governing the
deformation process. This allows the influence of individual mechanisms to be
determined; this information is necessary to derive constants for complex models such
as the MTS model.

Plastic deformation is controlled by the thermally activated interactions of
dislocation with obstacles. In the thermally activated regime, the interaction for short
distance obstacles are described by an Arrhenius expression, which relates strain-rate
(&) to activation energy (AG ) and temperature (T), of the form [55]:

G
) (3.1.1.1.)

é=é,exp(

The strain rate and temperature are therefore interchangeable and different
combinations will yield the same thermal activation energies. It was expected that
under those circumstances, the overall mechanical response would be very similar as
long as thermal-activated processes dominate deformation process.

Based on this idea, ranges of tensile test were performed in this work using
Instron servo hydraulic fatigue machine, fitted wit environmental chamber. The tests

were performed at temperatures between —50 and +200°C and at strain rates
between 10 *s ' and 10's™".

3.1.2. Measured variables

A standard tensile test is carried out by moving one end of specimen (via a
machine crosshead) at a constant speed, v, while holding other end fixed. The primary
variables recorded are load and extension. Load-extension variables depend on
specimen size. Since we want to measure material properties, we normalize the
measured variables to account for specimen size. The simplest way to do this is to
normalize with respect to the original specimen geometry.
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Engineering variables:

Engineering Stress S = Ai; (3.1.2.1,)
0
L, —-L
Engineering Strain e = AL 2~k ; (3.1.2.2)
LO LO

where A4, is initial cross-sectional area, L, is gage length and P is measured force.

Engineering strain rate is defined as the rate at which strain increases. This
quantity can be simply obtained by noting that all strain takes place in the deforming
length, L,, so that the crosshead speed, v, is the same as the extension rate of L, :

oo de _ dL,/L,, v _ crosshead _speed

= (3.1.2.3)
dt dt L, defor _length

If we normalize measured variables to current configuration we are able to
calculate true variables.

We can express the total true strain as a simple integral:
o tal
e= [ de= JT or e=In(L, /L,) (3.1.2.4.)
e, =0 Ly

Similarly, the real or “true” stress refers to the load divided by the current
cross sectional area:

P
== 3.1.2.5.
o= ( )

Exactly analogously to the definition of engineering strain rate, the true strain
rate is defined as de/dt, and this rate is simply related to the crosshead speed:
P de _dL,/L, v _ crosshead _speed (3.12.6)
dt dt L, current defor length

If we assume that plastic deformation produces no net change in volume, or
that plastic incompressibility can be applied, we can easily find following relationship
between true and engineering variables as follows:

Relationship between the two strain measures:
e=In(l+e) or e=exp(¢)—1 (3.1.2.7)

Relationship between the two stress measures:
o=Sexp(e) or S =oexp(—¢) (3.1.2.8.)

or, in terms of engineering strains
o=S(l+e). (3.1.2.9.)
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3.1.3. Test specimen
Materials

Selected materials for this work were commercial aluminium alloys. Materials
were supplied by Apollo Metals Corporation, as hot rolled plate form (1475mm x
1200 mm) for AA7010-T7651, and as rolled sheet form (2642 mm X 1270 mm) for
AA 2024-T3.

The choice to characterise alloys instead of pure metals has resulted from
current lack of available experimental data for anisotropic aluminium alloys loaded at
various strain rates and temperatures.

Material AA7010-T7651 was supplied in 6.35 mm thick plate form with
following chemical composition (in %): 0.04 Si, 0.08 Fe, 1.66 Cu, 0.01 Mn, 2.26 Mg,
0.78 Cr, 0.81 Ni, 6.08 Zn, 0.11 Zr, 0.03 Ti.

Material AA2024-T3 was supplied in 2.5 mm thick sheet plate form with
following chemical composition (in %): 0.09 Si, 0.19 Fe, 4.71 Cu, 0.57 Mn, 1.38 Mg,
0.01 Cr, 0.06 Zn, 0.02 Ti, 0.02 V.

Selection of test specimen

Specimens were selected and prepared taking care not to influence reliable
indication of the properties of materials [16-19]. In testing materials from metal plate,
regard should be given to the direction of rolling, and for anisotropic characterization,
tests were made on specimens which were cut parallel to the direction of rolling, on
specimens which were cut perpendicular to the direction of rolling, and on specimens
which were cut at the angle of 45° in the respect to the direction of rolling.

For each strain rate, temperature was varied, and five temperature and strain
rate levels were proposed. This is related to the analysis of isotropic characterization.
For anisotropic case, three direction of anisotropy have been considered.

For each material the number of specimens was related to the number of
specified tests and number of necessary repetitions, since each tensile test requires a
new specimen, 3 repetitions per test were proposed to ensure accuracy of the
experimental data.

Preparation of test specimen

In preparing specimens of plate, we have to satisfy requirement, that finished
specimen does not contain any of the damage material.

The finished surface of specimen from shred blanks was at least 3 mm from
shred surface and at least 6 mm from flame-cut faces.

Care was taken not to bend the piece, because working of the material tends to
change its properties.

The finish cut on mechanical metal specimens was made by turning or milling
and a fine enough surfaces were obtained.
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Test specimen geometry

Two kinds of tensile specimens are generally used for tensile test [9-11]: a
round bar for bulk material, and a flat specimen for sheet products. The gauge length
of specimen refers to the distance between ends of an extension gage put on the
specimen to measure extension between these points. The deforming length is the
length of the specimen which undergoes plastic deformation during the test and this
length may change but should always be significantly longer then the gauge length in
order to ensure that deformation is fairly uniform over gage length.

ISO standard proportional flat specimen has geometry as follows: gage length

is defined as L, =5.65S, , where S, is the specimen cross-section, and the gauge

length may be rounded off to the nearest 5 mm provided that the difference between

the computed L, and that rounded length is less than 10% of L, . Deforming length of

specimen is defined with following relation L, = L, +25,'"*.

As an alternative to the standard specimen geometry mentioned above, in this
work non-standard specimen geometry was proposed, because one of the
requirements for this test is achieving of intermediate strain rate conditions, using
standard servo hydraulic fatigue machine. The dog bone specimen proposed for this
work is shown in Fig 3.1.3.1.

Lt

1 R

N Y
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Ld

Fig 3.1.3.1. Flat (dog bone) tensile specimen

To determine specimen geometry a set of simulations has been done. A flat
specimen subjected to axial loading was studied as a testing model for the initial
determination of specimen geometry (Fig 3.1.3.2.).

i Erh A
£ i i@

H

Fig. 3.1.3.2. FE simulation of tensile test for flat specimen
The same boundary conditions as those, which will be used for the

experimental test, were imposed on the model, as a prescribed maximal velocity on
the one end of specimen of 100 mm/s, and displacement boundary conditions on the
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other end were chosen to simulate fixed end of specimen. Boundary conditions were
applied on section of specimen, which represented beginig of grep region.

Taking into account limitations of available testing equipment, following
geometrical parameters of tensile specimen were chosen for material AA7010: total
length Lt =150mm, total width W, =20mm, thickness T =6.35mm , deforming

length L, =20, gauge length L, =12.5mm . Varied parameters for material AA7010
are shown in following table.

Case I 11 111
R Radius [mm] 5 4 3
VK) Gage width [mm)] 10 12 14

Tab. 3.1.3.1. Varied geometrical parameters of flat test specimen for AA7010

On the basis of simulation, it was concluded that most uniform distribution of
stresses corresponds to the specimen with R=5mm and W, =10mm, and this

geometry was adopted as an initial geometry for material AA7010.

Similar analysis was performed for the other material AA2024, and on the
basis of simulations, geometrical similarity and requirements of existing equipment,
same specimen geometry for both materials AA7010 and AA2024, was adopted as
follows: total length Lt =170mm, total width W, =25.4mm, deforming length

L, =20, gauge length L, =12.5mm, gage width W, =10mm, radius R =8mm,

thickness of specimen for AA2024 T =2.5mm and thickness of specimen for
AA7010 T =6.35mm .

3.1.4. Testing apparatus

The selection of apparatus for particular test involves consideration of: the
purpose of the test, the accuracy required, availability and economy. On the basis of
above criterions following equipment was chosen:

Testing machine:

Instron 8032 Servo hydraulic fatigue machine, supplied with Instron 8500
controlling electronics, and with the following characteristics: 100 kN actuator with
109 kN stall force, 45 litres/minute manifold, 1 litre pressure line accumulator and 40

litres/min servo valve. This test machine can provide a maximum steady-state velocity
of 80 mm/s (Fig. 3.1.4.1.).

Crosshead speed B0 mmis

Sampling frequency
=12 KHz
Estimated test time
0.025-005s

Displacement [mm]

o T T T t t t t T T 1
000 001 002 003 004 005 006 007 008 008 010
Time [s]

Fig. 3.1.4.1. Characteristic of Instron 8032 Servo hydraulic machine
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Environmental chamber:

Instron SFL 3339-406 temperature chamber, supplied with digital control
handset Eurotherm 2408, with following characteristics: temperature range: —70°C
to +250°C , temperature stability +2°C .

This temperature chamber can provide a means of carrying out materials test
in accurately controlled air temperature environment. Chamber is equipped wit LN2
cooling module, which is required for testing at temperatures below ambient
temperature (Fig. 3.1.4.2.).

Fig. 3.1.4.2.100 KN Servo Hydraulic Fatigue Machine with
maximal steady-state velocity of 80 mm/s

LN2 supply:

Wessington PV-120 liquid nitrogen storage vessel with following
characteristics: capacity: 120 ltr, max working pressure 4.5 bar, static evaporation rate
1.2% per day. Liquid nitrogen is maintained at —196° C in an insulated Dewar flask,
which is pressure relived at no more than 1.5 bars.

Extensometer:

Instron 2620-602 dynamic strain gauge extensometer,
which is designed for use with metals, composites and
other materials, exhibiting total strains up to +20% of the
original gauge length. Application of this extensometer
include, wide operating temperature range, from —80°C to
+200°C.

Fig. 3.1.4.3. Dynamic strain gage extensometer mounted on
the dog bone specimen
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3.1.5. Measurements

For all tests, 3 items are measured and recorded with maximal sampling
frequency of 12 kHz, for the calculation of material properties:

- The load that gives access to the stress in the specimen, measured by load
cell, which is fitted as a standard to testing machine.

- The position of the crosshead that gives elongation of the free length of the
specimen.

- The longitudinal strain measured by mechanical extensometer capable for
measurements of strain on the elevated and reduced temperatures.

Fig. 3.1.5.1. Data Logger with
maximal sampling frequency of 12
kHz/channel

The temperature is measured with one Inconel sheathed 3 mm diameter type K
thermocouple, which is fitted as a standard to temperature chamber, and positioned
with its junction at the centre of the return air grid at the centre of the baffle.

3.1.6. Test matrix

Following table (Tab. 3.1.6.1.) represents proposed test matrix with maximal
practical achievable ranges for temperature and crosshead speed.

Temperature -50°C 0°C +70°C +140°C +200°C

Crosshead speed

0.008 mm/s AA2024 AA2024 AA2024 AA2024 AA2024
AA7010 AA7010 AA7010 AA7010 AA7010

0.08 mm/s AA2024 AA2024 AA2024 AA2024 AA2024
AA7010 AA7010 AA7010 AA7010 AA7010

0.8 mm/s AA2024 AA2024 AA2024 AA2024 AA2024
AA7010 AA7010 AA7010 AA7010 AA7010

8 mm/s AA2024 AA2024 AA2024 AA2024 AA2024
AA7010 AA7010 AA7010 AA7010 AA7010

80 mm/s AA2024 AA2024 AA2024 AA2024 AA2024
AA7T010 AAT7T010 AA7010 AA7T010 AA7010

Tab. 3.1.6.1. Test matrix for tensile test
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On the basis of specifications of mechanical properties for AA2024-T3
(Tensile strength R=452-463 MPa, Elongation A=18-20 %) and AA7010-T7651
(Tensile strength R=546-556 MPa, Elongation A=11-12 %)), tensile test parameters
are adopted and summarized in the following table (Tab. 3.1.6.2.).

Material | Crosshead | Engineering | Sampling Estimated | Number of
speed strain rate frequency test time samples
[mm/s] [1/s] [Hz] [s]
AA7010 0.008 6.4x 107 2 500 1000
AA2024 250 500
AA7010 0.08 6.4x 107 20 50 1000
AA2024 25 500
AA7010 0.8 6.4x 107 200 5.0 1000
AA2024 2.5 500
AA7010 8 6.4x 10" 2000 0.50 1000
AA2024 0.25 500
AA7010 80 6.4x 10° 12000 0.050 600
AA2024 0.025 300

Tab. 3.1.6.2. Tensile test parameters

Specimens and tests were named with a set of 8 characters/numbers following
the hereafter definition:

Character 1

Character 2

Character 3&4&5

Character 6&7

Character 8

2 — Material AA2024

7 — Material AA7010

L - a =45 (L direction)

T —> a=45° (LT direction)

D > a=45°

8M3 — Test speed 0.008 mm/s
8M2 — Test speed 0.08 mm/s
8M1 — Test speed 0.8 mm/s
8P0 — Test speed 8 mm/s

8P1 — Test speed 80 mm/s
M5 — Test temperature -50°C
00 — Test temperature 0°C
P7 — Test temperature +70°C
14 — Test temperature +140°C
20 — Test temperature +200°C
N — Specimen number

Figures 3.1.6.1. a-c and Fig 3 1.6.2. a-c show photographs of typical tensile
specimens used in this project.

Fig. 3.1.6.1. a-c shows AA7010 specimens: a) before, b) after the deformation
of & =20.5, and ¢) fractured specimen, tested at 140° C and 6.4x 10™*s™",

Examples of the specimens for AA2024 are shown in Fig. 3.1.6.2.

: a) before

testing, b) deformed with elongation of ¢ =20.5, and ¢) fractured specimen tested at
tested at 0° C and 6.4x 10™*s™




Fig. 3.1.6.1. Tensile specimens for material AA7010: a) Untested flat tensile
specimen for material AA7010LT, b) Specimen 7L8M3142 with elongation of
&=20.5, tested at 140° C and 6.4x 10™*s™, ¢) Fractured tensile specimen 7L8M3141
tested at 140° C and 6.4x 10*s™!

Fig. 3.1.6.2. Tensile specimens for material AA2024: a) Untested flat tensile
specimen for material AA2024LT, b) Specimen 2L8M3002 with elongation of
& =20.5, tested at 0°C and 6.4x 10™*s™ , ¢) Fractured tensile specimen 2L8M3001
tested at 0° C and 6.4x 10™*s™
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3.1.7. Tensile test results

Figures Fig. 3.1.7.1. and Fig. 3.1.7.2. show a classical strain rate dependant
response for AA7010. The effects of strain rate and temperature are clearly observed
since the difference in the flow stress between the different strain rates and

temperatures are distinct and significant.
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Fig. 3.1.7.1.

AA7010 stress-strain curves for L direction at different strain rates and

temperatures
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temperatures
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Figures Fig. 3.1.7.3. and Fig. 3.1.7.4. show stress-strain response for
AA2024.The AA2024 is not strain rate dependant, but effects of temperature is

clearly observed.
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Fig. 3.1.7.3. AA2024 stress-strain curves for L direction at different strain rates and
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Fig. 3.1.7.4. AA2024 stress-strain curves for LT direction at different strain rates and
temperatures
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Typical stress-strain plots for aluminium alloy AA2024 and AA7010 from

tensile tests performed at +70°C and at the strain rate of &=6.4x10"'s"" for three
different specimen orientations at 0°, 45° and 90°, are presented in Fig. 3.1.7.5. and

Fig. 3.1.7.6.
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Fig. 3.1.7.6. Stress-strain response for AA7010 at +70° C and & = 6.4x107*s™"!

Stress-strain plots for aluminium alloys AA2024 and AA7010 from tensile
“s to

tests performed at +70°C in the strain rate range from ¢&=6.4x10
£=06.4x10"s"" for three different specimen orientations at 0°, 45° and 90°, are

presented in Appendix A.
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3.2. Taylor cylinder impact test

3.2.1. Purpose of test

The Taylor test is a dynamic compression test, which was originally developed
to estimate the high strain rate compressive flow stresses of ductile materials and to
compare their dynamic compression failure properties. Its main use at present is the
validation of high-strain rate constitutive models, by comparing the shapes of
recovered cylinders with computer predictions [24-27]. High-speed photography is
essential for checking models if viscoelastic materials such as polymers or polymer-
bonded explosives are being studied.

G.I. Taylor proposed original cylinder impact test [12]. His method consists of
firing a solid cylinder of the material against a massive, rigid target. The dynamic
flow stress of the cylinder material can be estimated by measuring the overall length
of the impacted cylinder and the length of the undeformed (rear) section of the
projectile by means of the following simple formula:

___pVi(I-H)
2(1-1)In(1/H)
where o is the dynamic yield stress of the material of the projectile, p density, V its

(3.2.1.1))

impact velocity, | initial height and |,, H are defined in figure Fig. 3.2.1.1.
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Fig. 3.2.1.1. Schematic diagram of a Taylor impact specimen during deformation and
final state

Taylor used a very simple analysis that assumed rigid, perfectly plastic
material behaviour and simple one-dimensional wave-propagation concepts. He
assumed that deformed region is propagating away from the rigid wall at a velocity
C,, while the undeformed portion of the cylinder whose instantaneous length is h is

travelling at a decreasing velocity Vv . It is assumed that the material behaviour is rate-
independent, o = o(¢), and rigid-plastic, that is elastic strains are negligible.

However, the Taylor test, or variants such as rod-on-rod impact, have been
used and developed to the present day. It has not often been used to obtain dynamic
yield stresses of materials but for studying (a) the propagation of plastic waves, and
(b) for checking constitutive models by comparing the shapes of recovered cylinders
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with computer predictions. It has also been used for its original purpose in obtaining
the dynamic properties of (a) polymers at room temperature, (b) metals at elevated
temperatures and (c) energetic materials.

The most common experimental arrangement for this test consists of firing a
cylindrical rod specimen against a rigid target. Very high strain rates (10° to 10° s™),
with a three-dimensional stress-state, are reached near the impact face. The impacted
end deforms plastically into a mushroom-shape, while the other end remains
undeformed plastically. The plastically deformed region may reach high levels of
strain (exceeding 0.6 for ductile materials). An increasingly widely used variant on
this test is the symmetrical Taylor test where a rod of material is fired end-on and
coaxially at a rod of identical material and diameter.

High strain rate constitutive models are used in numerical codes for the
modelling of dynamic deformation of structures. They are normally derived using
data from well-defined constant strain rate techniques such as Hopkinson bars or plate
impact. It is important to note that the Taylor test alone cannot be used to derive such
constitutive models. However, it is proving to be a sensitive test of their validity.

To conclude, we can recognize two basic types of Taylor test:

- The original configuration, where a single rod is fired against a rigid target.
A variant on this is the 'reverse-ballistic' Taylor test where the target is fired at a
stationary cylinder. This is particularly useful if it is desired to study the properties of
materials at temperatures other than ambient.

- The symmetric test, where a rod is fired end-on and coaxially at a rod of
identical material and diameter. This test is more complex to perform, but is
recommended for dynamic failure evaluations and for highly rate sensitive materials
because of the lack of friction on the impact face.

3.2.2. Material description and experiment

Taylor cylinder specimens were cut out from AA7010 rolled plate. These
specimens were 9.30 mm diameter cylinders with length 46.50 mm giving the length-
to-diameter ratio L/D=5. A laboratory test frame (X, Y, Z) representing the principal
axes of impact test is adopted such that compressive impact loading is always applied
along X-axsis. The X direction was the original rolling direction for this plate (Fig
3.2.2.1).

s
Vy . ¥
v
TR =
77 s 7

Fig. 3.2.2.1. Principal axes of the Taylor impact test
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Several Taylor tests were conducted at Royal Military College of Science
Shrivenham, where cylinders were launched at velocities of 200, 214, 244, 400 m/s,
using a smooth-bore launch tube (Fig. 3.2.2.2.).

/ ﬁ’

Fig. 3.2.2.2. Gas gun fa0111ty at Royal Military College of 801ence Shrivenham

Figures, Fig 3.2.2.3. and Fig 3.2.2.4., present photographs of side profiles for
the velocities of 200 m/s and 214 m/s, respectively, along with the footprints from a
typical post-impact specimen.

Side Profile Footprint
Fig. 3.2.2.3. Photographs of the post-test geometry for the AA 7010 Taylor specimen
V=200 m/s
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| Sid roﬁle | Footprint

Fig. 3.2.2.4. Photographs of the post-test geometry for the AA 7010 Taylor specimen
V=214 m/s

Photographs show that asymmetric footprints have an eccentricity (ratio of
major [0 deg and 180 deg] to minor diameters [90 deg and 270 deg]).

Figure, Fig 3.2.2.5. presents photographs of side profiles for the velocities of
244 m/s and 400 m/s, respectively. These specimens experienced multiple fractures at
the impact end, and they have not been used for further analysis.

V=244 m/s V=400 m/s

Fig. 3.2.2.5. Photograph of the post-test side profile geometry for the AA 7010 Taylor
specimens
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3.2.3. Taylor test results

After testing, geometric profile data (Fig. 3.2.3.2.) for deformed specimens
were generated using an 3D scanning machine (Fig. 3.2.3.1.). The data consist of

digitised side profiles for minor and major dimension, and digitised footprints that
give Y-Z cross-sectional area at the impact interface.

Fig. 3.2.3.1. 3D Scanning machine

Final specimen heights are: 42.2 mm for specimen impacted at 200 m/s, and
42.1 mm for specimen impacted at 214 m/s.
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Fig. 3.2.3.2. 3D Scan of post-test geometry for the AA 7010 Taylor specimen
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Figures Fig. 3.2.3.3. and Fig. 3.2.3.4. show Taylor cylinder digitised major
and minor side profiles, impacted with velocities of 200 m/s and 214 m/s respectively,
and Fig. 18 shows comparison of minor and major side profiles of post-test geometry
plotted as radial strain vs. distance.
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Fig. 3.2.3.3. Digitised minor and major side profile of post-test geometry for the AA
7010 Taylor specimen (V=200 m/s)
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Fig. 3.2.3.4. Digitised minor and major side profile of post-test geometry for the AA
7010 Taylor specimen (V=214 m/s)
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Figure Fig 3.2.3.5. shows digitised footprints of post-test geometries for
Taylor specimens. Eccentricity (ratio of major to minor diameters) for the specimen
impacted at 200 m/s is 1.04, and eccentricity (ratio of major to minor diameters) for
specimen impacted at 214 m/s is 1.06.
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Fig. 3.2.3.5. Digitised footprint of post-test geometry for the AA 7010 Taylor
specimen

Figure Fig. 3.2.3.6. shows Taylor cylinders digitised major and minor side
profiles, and comparison of minor and major side profiles of post-test geometry for
Taylor specimens impacted at 200 m/s and 214 m/s.
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Fig. 3.2.3.6. Comparison of the major and minor side profiles of post-test geometry
for the AA 7010 Taylor specimens impacted at 200 and 214 m/s plotted as radial
strain vs. distance
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3.3. Plate impact test

3.3.1. Purpose of the test

One of the experimental configurations used to study fracturing under
dynamic conditions involves impacting a flyer plate against a target specimen of the
same or different material. This experiment is known as plate impact test [28-30].
Any impact, at any speed, results in the propagation of stress waves through a solid.
Since the stress waves propagate at finite speed, which is a material property,
gradients in strain or stress will exist in both space and time. The superposition of two
waves in the target plate, incident and reflected, sets material in tension and causes
damage leading to spallation.

The incident wave is purely elastic when the stress amplitude is below the
Hugoniot Elastic Limit (o, ). If the impact velocity, V,, is high enough, the HEL is

exceeded causing the elastic precursor and slower plastic compressive waves to
propagate toward the free surface of the target.

Measurement of free surface velocity, V /%", immediately behind the elastic

precursor wave front gives us the Hugoniot Elastic Limit as:

1
O el =§pclvf';EL (3.3.1.1.)
The Hugoniot Elastic Limit is related to the dynamic yield strength as;
1-2
oha_=( V)ao (3.3.1.2))
1-v

where v is the Poisson’s ratio, and o, is the yield limit in uniaxial stress
conditions.

Therefore, firstly an elastic precursor propagates with the elastic wave speed:
C, = Eld-y) (3.3.1.3)
pl+v)(1-2v)
which is followed by a family of plastic waves propagating with different
speeds:

1 do
C,(e,)= /——, (3.3.1.4)
pde,

where & is the plastic strain. At the same time, the identical waves propagate

in the flyer. The elastic-plastic incident wave is reflected at the target free surface as a
tensile wave. After superposition of these waves in the middle of specimen, the
material is loaded in tension. The standard phase diagram corresponding to the plate
impact experiment is shown in Fig. 3.3.1.1.

A typical experimental configuration consists of a flat flyer plate of thickness
L, = h, which is launched at velocity V,. Flyer strikes a stationary target of thickness

larger then Li, typically L, =2h. For symmetric impact, that is the target and the
flyer plates made of the same material, symmetric compressive waves are generated
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in the target and in the flayer. Reflection of the compressive incident wave from free
surface of the target produces a tensile stress wave. At the distance h from the free
surface a high tensile stress occurs before the arrival of release wave from the edges
of the plate. The compressive wave in the flayer plate is reflected by the free surface
as a tensile wave and returns to the impact surface. The time of contact is
t. =2h/C,. Consequently, duration of the tensile wave generated in the target is t. .
If the magnitude and duration of this tensile stress wave are high enough, spallation
occurs, and a new free surface is created inside the target plate. The stress amplitude
of the incident wave can be obtained from relation o = pC,V , where V is the
velocity. This is so-called acoustic approximation used frequently to analyse test data
near HEL.
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Fig. 3.3.1.1. Characteristics for plate impact experiment

When spalling initiates, the release waves emitted from the newly created free
surfaces completely change the pattern of waves inside the target plate. Part of the
pressure release wave from the flyer plate back surface, which passed the area where
the spallation occurs will reach the target plate’s rear surface and reduce the free
surface speed. The creation of the spall plane reduces tension stress inside material to
zero. This release propagates as a tension stress release wave through the sample and
finally also reaches the rear surface. Due to the nature of this wave, it causes a new
velocity increase of the material and thus of the rear surface. The pull-out speed or
stress measured after spalling at the free surface of the target is frequently used to
analyse spall dynamics. From the amount of the speed reduction the spall strength
(dynamic tension strength) can be determined.

3.3.2. Experimental

For flyer plate investigations, 10 mm thick OFHC Cu sample was impacted by
OFHC Cu flyer plate 5 mm in thickness with the impact velocity of 304 m/s. Target
was machined into circular plate 70 mm in diameter, and diameter of flyer was 50mm.
Manganin stress gauge was supported on the back of the target with 12 mm block of
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polymethylmethacrylate (PMMA). The geometry of the target and the impactor was
chosen so that the reflected wave completely released from target and flayer would
interact in the centre of the OFHC Cu plate. In such a configuration, the response time
of the gauge is approximately 20 ns, due to the close impedance matching of the
PMMA, epoxy gauge backing and the epoxy adhesive used to assemble the target
assemblies. Thus, the response time of the gauge is minimised and fine detailes in the
wave profile can be resolved.

The experiment was performed with a single-stage gas gun at Shrivenham by
3" party. The specimen was softly recovered with a specially designed catcher to
prevent any secondary damage.

This experimental technique is very useful and clean in comparison to
explosive loading because the speed and planarity of impact can be precisely
controlled to obtain an uniaxial state of deformation inside the target. In addition, an
advancement of spalling can be stopped at different levels: incipient, intermediate and
complete by using different flayer/target geometries and impact velocities.

The velocity was measured via the shorting of sequentially mounted pairs of
pins to an accuracy of approximately 0.1%. Specimen alignment was better then 1
miliradian. The gun is sufficiently accurate that control of the pressure in the breech
allowed the speeds to be repeated to + 1 m/s.

Measured stress-time history with a gauge in spalled OFHC Cu specimen is
shown in Fig. 3.3.2.1. It shows clearly the loading plateau and the signal of spallation.
The stress has been measured in PMMA since the gauge was supported on the back of
the target with 12 mm block of this material. The stress has been converted to in-
material value o, using well-known relation [34]:

Z,+Z,
X = TO'p (3321)

p

Here o, is the stress measured in the PMMA, and Z, and Z ; are the shock

impendances of the specimen and the PMMA, respectively.
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Fig. 3.3.2.1. Stress record from gauge in PMMA behind OFHC Cu specimen for
initial impact speed of 304 m/s
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3.3.3. Microstructural aspect of spalling

Spallation is one of the dynamic fracture phenomena within a material under
intense impulsive loading and is caused by high tensile stresses due to interaction of
stress waves. In ductile materials, spallation is consequence of the nucleation, growth
and coalescence of voids. Spallation in brittle materials takes place by dynamic crack
propagation without large-scale plastic deformation. We will focus our attention only
on the former case.

(b)

Fig. 3.3.3.1. Microphotographs of mechanisms of damage and failure due to
growth and coalescence of voids in the softly recovered spall specimen from an
impact experiment on OFHC Cu target

The process of spallation in ductile materials is a complex phenomenon, due

to the number of different physical effects involved. Generally dynamic growth of a
void presents some additional complications. Firstly, the heat generated by plastic
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deformation cannot dissipate itself due to high rate of deformation. Secondly, the
inertial effects associated with the displacement of the material adjoining the voids
walls become an important consideration. Thirdly, wave interactions have a bearing
on this phenomenon in the final configuration.

The spall strength data [105] clearly indicated the temperature dependency,
decreasing as the temperature increases. The yield strength and viscosity also decrease
when temperature increases.

In case of ductile separation, voids nucleate through particle-matrix debonding
or through particle cracking. Than, they grow by local plastic deformation, and finally
coalesce by the onset of local instabilities. The first stage is essentially controlled by
the critical stress level which is linked to microstructure, and the two others are
controlled by plastic deformation which is linked to temperature and the local strain
rate.

Microscopic observations of the OFHC Cu softly recovered spalled specimen
have been carried out. Figure 3.3.3.1. shows the photomicrographs of such
observation. All micrographs have been taken along central loading axis, and shock
direction is vertical. It was found that in the matrix material surrounding large voids,
there were many small voids as shown in Fig. 3.3.3.1.(a) Growth of large voids takes
place by direct impingement upon near small voids as shown in Fig. 3.3.3.1.(b)
Configuration of spall surface, shown in Fig. 3.3.3.1.(c), indicates that spalling is
generated by direct link of large voids. In addition, many voids appear near the spall
surface.

Spall

Fig. 3.3.3.2. Cross section of flyer and target impacted at velocity of 304 m/s, OFHC
Cu material

Fig. 3.3.3.2. show spallation at the macro-scale for OFHC Cu corresponding to
the impact velocity of 304 m/s. At this impact velocity, when spall is initiated, one
can also observe plastic bending of the target between the free surface and spall
surface.
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3.4. Summary

New tensile test procedure has been proposed in this research, and tensile tests
that have been carried out in this work are summarized in the table Tab. 3.4.1. Due to
limitations of Cranfield University tensile test facility, which are:

- maximal achievable strain rate range up to 10x10° 1/s,

- measurement of only longitudinal strains during tensile tests, due to usage of
mechanical extensiometer which was only available measurement technique,

need for the additional tensile tests have been identified. Those additional tests have
been carried out at Ernst Mach Institute, and they secured following:

- extended strain rate range up to 10 x 102 1/s

- contact-less optical strain rate measurement technique allowed simultaneous
measurement of both longitudinal and transverse strain during tensile tests.

Tab. 3.4.1. Tensile test summary

Tensile Test

Cranfield University — SoE Facility
5 Strain Rates : 5 Temperatures : 3 Orientations

AA7010 AA2024

165 Tests 85 Tests

Ernst-Mach-Institute Facility
1 Strain Rate : 1 Temperature : 2 Orientations

AA7010 AA2024

6 Tests -

Results from additional tensile tests are presented in Appendix B, and they
have been used for validation of constants for constitutive models, which have been
initially determined using results form tensile tests which have been carried out at
lower strain rate regime, but at different temperatures. In that way hypothesis of
interchangeability of strain rate and temperature has been validated.

Tab. 3.4.2. Cylinder impact test summary

Taylor Cylinder Impact Test

Cranfield University — RMCS Facility Cranfield University — SoE Facility
Gas Gan Facility 3D Scaning Machine
4 Launched Speeds 19 Digitised Cross-Sections per Scan
AA7010 AA7010
4 Tests 2 Scans

Simultaneous measurement of longitudinal and transverse strain of tensile
specimen during tensile test, allowed direct measurement of Lankford coefficient,
using following relationship:
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R = (3.4.1))

el +eb
and those results are presented and commented in Appendix B. It has been found that
value of Lankford coefficient R deduced using impact cylinder test, which is

presented in the Chapter 5, corresponds to the maximal value of Lankford coefficient.

Summary of Taylor cylinder and plate impact tests, with corresponding post-test
measurements and analysis are presented in tables Tab. 3.4.2. and Tab. 3.4.3.

Tab. 3.4.3. Plate impact test summary

Plate Impact Test

Cranfield University — RMCS Facility
Gas Gan Facility
1 Launched Speeds: 1 Orientation

OFHC Cu

1 Test

Post-test Micro-structural Analysis
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4. STRAIN RATE AND TEMPERATURE DEPENDENCE

4.1. Introduction

The importance of the effect of strain rate on metal material properties
depends on the specific application conditions. In metal processing and
crashworthiness problems where strain rate is in the range of 0.01 — 100 1/s, it has
been shown that this effect cannot be neglected [35]. Different materials show
different degree of strain rate dependency, but if material model is developed for
solving dynamic loading structural problems this aspect should be included. Apart
from strain rate and strain/work hardening effects the thermal effects typical for
deformation processes of metals have to be included into constitutive models.

The most complex rate dependant models define the yield stress as a function
of strain, strain rate, and temperature. These models are usually classified as empirical
or physically based, depending on their basic assumptions. Today the tendency is to
develop more physically based models that will enable application of the model to a
broader range of strains, opposite the restriction to a specific strain range when using
the less physically sound models.

There are many constitutive equations that have been proposed by different
investigators. These equations are very important because they are actually used in
computer codes to represent material behaviour.

Steinberg — Guinan [123] proposed a model that gives the definition of the
shear stress (G) dependence on the effective plastic strain, pressure and temperature in
addition to the definition of the yield strength (7).

It is assumed that a value of & exists beyond which strain rate has a minimal
effect on Y. The value of strain rate obtained experimentally and used as a limitation
value is € =10°s™". The temperature dependence of Y is assumed to be the same as
that of G. The constitutive relations for G and Y as functions of &, P and T for high
& are

G’ '
G=G,|1+| = %7{&]0—300) , (4.1.1.)
G, ) G,
o ()P (Y
Y=Y,[1+Be+e)]'| 1+ A (T -300) |. (4.1.2)
Al 0
subject to the limitation that:
Yo 2 Y[+ Be+e)] (4.1.3))

Were i is compression, defined as the initial specific volume v, divided by the
specific volumev, S and n are work-hardening parameters ande, is the initial
effective plastic strain, normally equal to zero.
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The subscript 0 refers to the reference state (7= 300 K, P=0, & = 0). Primed
parameters with the subscripts P and 7 imply derivatives of that parameter with
respect to pressure or temperature at the reference state.

Steinberg — Lund [124] proposed an improved version of the Steinberg-
Guinan model. This model extends its validity to strain rates as low as 10* s should
be taken into consideration. The modification of Steinberg-Guinan model for the
yield stress has the form

o, ={Y(¢,,T)+7, f(gp)}% (4.1.4)

Where Y, (¢,,T)is the thermally activated part of the yield strength and is a

function of ¢ and T'and Y, <Y, .

The second, athermal, term includes the work hardening term f'(e,) :

Y, f(e,)=Y,[1+ By, +&")]" <Y, (4.1.5)

Where Y, is Peierls stress for rate dependent model and Y, is work

max

hardening maximum for the rate model.

The last term is the pressure and temperature-dependent shear modulus
divided by Gy, the modulus at Standard Temperature and Pressure conditions —
reference condirions. The definition of the shear modulus stays the same.

Cowper — Symonds [125] model is based on the assumptions of dynamic,

rigid-plastic theory of beams and defines the strain rate dependence of the yield stress.
Strain rate law is defined as:

£ = DL -1y, (4.1.6))

Gy
Where o is the static yield stress, and D, p are empirical constants.

Campbell and Cooper [126] modification suggested for a uniaxial stress and
condition ¢, <& <g, is defined as:

221{ (e, —¢,)8 J 4.1.7)

G, (e-¢,)D, +(¢, —¢)D,

Whereg, is yield strain, ¢, is ultimate strain, ¢ is respective dynamic flow

stress, oy is respective static flow stress, € is strain rate, and q parametar independent
of strain.
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For small strains, € = €,

9 - 1+(Di] (4.1.8.)

(O y

For large strains and e = ¢

2 - +[DiJ (4.1.9.)

GO u

Coefficient Dy is identified as the usual coefficient for small strains while D,
is evaluated from the strain rate sensitive properties at the ultimate tensile strength of
the material.

The most widely used models today, for crashworthiness applications are the
Johnson-Cook, Zerilli-Armstrong and Mechanical Threshold Stress models. It
should be noted that the validation of these models is mainly done using materials
with pronounced strain rate/temperature dependency, usually metals and their alloys.
Validation of the rate dependant material models means that those models are used for
simulations of the experiments and afterwards for comparison of experimental and
numerical simulation results. When it comes to the application of these models to a
specific structural material, usually an alloy, the main problem is to define material
constants for the strain rate dependant model used.

Detailed descriptions of the Johnson Cook (JC), Zerilli Armstrong (ZA) and
Mechanical threshold stress (MTS) material models, are given in this chapter. Novel
procedures for calibraton of MTS and JC material models are developed and
presented in detail.

While JC and ZA have the simpler definition and require a smaller number of
constants, the MTS model is more general and consequently a more complex model.
Simpler models, such as ZA and JC models, are more widely used in simulations, as it
is easier to obtain the constants required for the models. On the other hand, the MTS
model offers better accuracy in predicting the response at higher strains and represents
a model of greater importance for the future.

The constitutive equations mentioned above have a number of parameters
defining material properties. The Johnson-Cook model has five parameters, the
Zerilli-Armstrong has five parameters and the Mechanical Threshold Stress model can
be used with two or four parameters. The parameters are experimentally determined
in tests performed over a range of strain rates and temperatures. Testing procedures
for the Johnson-Cook and Zerilli-Armstrong models do not require low temperature
tests and therefore are simpler than required for the MTS model.

The main advantage of the Johnson-Cook model over the Zerilli-Armstrong
and MTS models is in the number of materials for which the parameters are known.
At the same time the advantage of the Zerilli-Armstrong and MTS models over
Johnson-Cook model is in the fact that they are based on physical processes taking
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place in the deforming material and therefore can more accurately represent behaviour
of the material.

It is generally accepted that at large strains most metallic materials tend to
approach a finite “saturation stress” or approach a constant but small hardening rate.
Such saturation is lacking in the models like Johnson-Cook and Zerilli-Armstrong.
The MTS model contrarily uses a differential form to fit the experimental data.

The lack of saturation stress as an integral part of the models like Johnson-
Cook and Zerilli-Armstrong, makes it impossible to create a satisfactory model fit at
small strains if these models were previously optimised for large strain applications
and vice versa. The MTS model has been shown to fit the experimental results much
better [67,68,69].
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4.2. Empirical constitutive equations

4.2.1. Johnson — Cook model

The Johnson-Cook [41-43] material model is an empirical model. As most of
the models of this type it expresses the equivalent von Mises tensile flow stress as a
function of the equivalent plastic strain, strain rate, and temperature. This model is
applicable for the range of strain rates from 0.001 to 1000s™. Typical applications
include explosive metal forming, ballistic, and impact.

In the presence of low and constant strain rates conditions, metals work harden
along the well-known relationship which is known as parabolic hardening rule:

o=0,+ke" (4.2.1.1.)

where o, is the yield stress, n is work hardening exponent, and k is the
preexponential factor.

Dynamics events often involve increases in temperature due to adiabatic

heating, because of this thermal softening must be included in a constitutive model.
The effects of temperature on the flow stress can be described with following relation:

a—arll—[T_T’] ] (4.2.12))
TWI_Y—;’

Here 7, is the melting point, 7. 1is a reference temperature at which

r

o, reference stress is measured, T is temperature for which o flow stress is
calculated, and m is material dependant constant.

The strain rate effect can be simply expressed with following relationship,
which is very often observed at strain rates that are not too high.

oo lné (4.2.13.)

Johnson and Cook [41-43] based on the above dependencies, proposed the
following equation for strength model, where the von Mises flow stress is given as:

o=[A+B(&)"|[1+ Cln(eH[1-(T)"] (4.2.1.4)

Hhere A, B, C, n and m are material constants which are experimentally
determined. The expression in the first set of brackets gives the stress as a function of
strain for ¢ =1.0 and 7 =0. The expressions in the second and third sets of
brackets represent the effects of strain rate and temperature. This equation describes
very well the response of a number of metals.
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The term 7", homologous temperature, is the ratio of the current temperature
T to the melting temperature 7, :

7= L=L (4.2.1.5)
T, -T,

where 7, is the reference temperature at which o, is measured.

Dimensionless strain rate £ is given as

&=t (4.2.1.6.)

where ¢ 1s the effective plastic strain rate, &, is the reference strain rate which

can for convenience be made equal to 1 (£, =1.0s7").

One of the problems with this constitutive equation is that strain rate and
temperature effects on the flow stress are uncoupled. This implies that the strain rate
sensitivity is independent of temperature, which is not generally observed for most
metals.

Because the empirical constitutive equations are basically a curve-fitting
procedure, they are relatively easy to calibrate with minimum of experimental data in

form of few stress-strain curves at several rates and several temperature.

Johnson-Cook model also contains a damage model. The strain at fracture is
given by:

&, =[D, + D, exp(D;0)|[1+ D, In(¢")[1 - DT ] (4.2.1.7.)

where:

o is the ratio of pressure divided by effective stress o~ =

Q| |

D,,D,,D,,D,,D, are damage models parameters.

Fracture occurs when damage parameter
Ag
D=) —
>
reaches the value of 1.

Variants of Johnson-Cook model have also been developed with some
modification and simplifications.
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Simplified Johnson — Cook model

Simplified JC model is used for problems where strain rates vary over a large
range and thermal effects are ignored. Flow stress is described as:

o =[A+B(¢)"][1+ Cln(&")] (4.2.1.8))

Modified Johnson — Cook model

This model incorporates a simple modification to the JC model to better
represent the strain rate effect in a manner of exponential function. There is evidence
that strain rate influence on strength of material is not linear function of the natural
log, but rather an exponential function. On the basis of this observation [44] flow
stress can be expressed as:

o=[A+B(e)" (M- (TH"] (4.2.1.9))
4.2.2. Procedures for obtaining parameters for Johnson-Cook material model

The formulation of the JC model [43-45] is empirically based. The JC model
represents the flow stress with an equation of the form:

o =[4+ B(&)' 1+ Cln(E)][1 = (T")"] 422.1)
and the quantity T~ is defined as:

T =(T-298)/T

melt

—298) (4.2.2.2)

where T

melt

is melting temperature and taken as the solidus temperature for an alloy.

The values of A, B, C, n and m are determined from an empirical fit of flow
stress data (as a function of strain, strain rate and temperature) to flow stress equation.

The parameters in the JC material model are sensitive to the computational
algorithm used to calculate these parameters. In this chapter, procedures to obtain
constants for JC model are proposed.

The first step in this process is to determine the constants in the first set of
brackets. A is yield stress and B and n represent the effects of strain hardening. At

room temperature and for the strain rate of interest, & =1, the JC equation can be
written as:

o =[A+B(¢)'] (4.2.2.3.)

It is a straightforward procedure to obtain the appropriate constants for this strain rate.
The stress at zero plastic strain 4 = o, can be obtained from experimental data, and
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quantity o —o, plotted versus plastic strain on a log-log plot, after applying least
squares fit of the data to power law equation, gives us values for B and n constants.

The parameter C can be obtained from o —& data. At room temperature and
for constant strain, constitutive equation can be written as:

o =0 [1+CIn(")] or 6/c ~1=ClIn(&"), (4.22.4)

where o, is the stress at strain rate of interest & =1. For constant strain, value of
o, can be calculated, and o/o, —1 can be plotted versus & on a semi-log plot. A least
squares fit to the data gives as value of parameter C.

The parameter m can be determined from stress-temperature response of the
material. At constant strain rate, constitutive equation can be written as:

c=c,[1-(T)"]orol/o,=[1-(T")"] (4.2.2.5))

where o, is the stress at room temperature. For constant strain and constant strain

rate, value of o, can be calculated, and data plotted as o /o, versus T . After
applying least squares fit of the data, value of parameter m can be established.
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4.3. Physically based constitutive equations

4.3.1. Zerilli-Armstrong model

This model is based on the framework of thermally activated dislocation
motion. Zerilli and Armstrong proposed two microstructurally based constitutive
equations that show a very good match with experimental results. They analysed the
temperature and strain rate response of typical FCC and BCC metals and noticed a
difference between these materials. The BCC metals are much higher temperature and
strain rate sensitive than FCC metals.

They observed that the activation area A was dependent on strain for FCC
metals and independent of strain for BCC metals. The activation area A can be
obtained from the activation volume V.

V=Ab=1 b (4.3.1.1.)

Where b is Burgers vector, Ais the dislocation barrier width, and /" is the
dislocation barrier spacing.

This is area swept by the dislocation in overcoming an obstacle.

The principal thermal activation mechanism for BCC metals is based on
overcoming Peierls-Nabarro barriers. The spacing of these obstacles is defined with
lattice spacing and thus not affected by plastic strain.

In the case of FCC metals, the activation area decreased with increasing strain.
The spacing between dislocations decreases as the forest dislocation density increases,

thus spacing among obstacles /" decrease with plastic strain for FCC metals.

Relation between dislocation density and spacing is expressed with following
relationship:
1 1

=—orl =—
P = or \/;

The movement of arrays of dislocations will produce shear strain y. It is

(4.3.1.2)

assumed that the dislocations do not interact. Shear strain can be directly related to the
number of dislocation N, per unit area:

y:tanezNTb:AZ]?l (4.3.1.3)
where [ is a vector parallel to the dislocation line.
If density of dislocation is defined as:

N
P = (4.3.1.4)
we have following expression for shear strain:
y = pbl (4.3.1.5.)

The shear strain can be converted into a longitudinal strain by adding an
orientation factor M:

1 Meg
e=—pbl or p=—- 4.3.1.6.
ik P=" ( )
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Activation area now can be expressed as:

ho
A=Al = z(ﬂj £ 43.1.7)
M

The constitutive relation which describe thermal portion of stress proposed
from Zerilli and Armstrog [48] may be expressed as:

c, = A%f‘)eﬁ’f (4.3.1.8)
where
B=-C,+C,Iné (4.3.1.9)

p is a parameter dependant on strain rate, AG, is height of free energy

barrier at OK and 4, is activation area at 0K.

Since A4 = const for BCC metals and activation area is proportional to &>

for FCC metals, we can distinguish two different expressions:
o, =Cexp(-C,T +C,TIné) BCC (4.3.1.10.)
o, =C,e"” exp(-C,T + C,T'Iné) FCC (4.3.1.11.)
In addition to this thermal part, athermal component o, of flow stress is
added and term which describes the flow stress dependant on grain size. Yield stress
increases as the grain size decreases, and this dependence can be described by the
Hall-Petch equation:
o=kd? (4.3.1.12)
where d is grain diameter and k is constant.
The overall expression now may be written as:

oc=0,+0,+ki’ (4.3.1.13)

The separate plastic strain-hardening contribution to the flow stress of BCC
metals may be evaluated from an assumed power low dependence on strain given by:

Ao, =C" (4.3.1.14.)
Integral expressions now have following form:

o=0,+Ce"exp(-C,T + C,TIné) + kd™"* FCC (4.3.1.15)
o=0,+C, exp(-C,T +C,TIné)+C,s" +kd™* BCC (4.3.1.16.)

The main difference between those two equations is that the plastic strain is
uncoupled from strain rate and temperature for BCC metals.

Modified Zerilli — Armstrong model
This material model is a rate and temperature sensitive plasticity model [49],

which is sometimes preferred in ordnance design calculations. Flow stress is
expressed as follows:

FCC metals
o =C, +{C,(&)"*[exp((—=C, + C,In(£"))T)]+ C;}( 1) ) (4.3.1.17))
1(293)
BCC metals
o =C, + C,[exp((—=C, + C, In(€ NWT)]+[Cs(£)" + C, 1( #1) ) (4.3.1.18))
#1(293)
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where
¢ - effective plastic strain

é = % - effective plastic strain rate where &, =1,107,10° for time units of
0

seconds, milliseconds, and microseconds, respectively.

T
( /E;Q;J =B, +B,T+B,T* and B,,B,, B, are constants.
u

Combined Johnson — Cook/ Zerilli — Armstrong model

This material model combines the yield and strain hardening portion of the JC model
with temperature and strain portion of ZA model. According to [44] flow stress can be
expressed as:

o =[A+ B(&)"|[exp(~C,T + C,Tn€)] (4.3.1.19.)
4.3.2. Procedures for obtaining parameters for Zerilli-Armstrong material model

Integral expressions for ZA constitutive material model [48,50] have
following form:

oc=0;+ kd™"* + C exp(-C,T + C,TIn¢) + Cie" BCC metals (4.3.2.1.)
=0, +kd? +C,e"? exp(-C,T + C,T'Iné) FCC metals (4.3.2.2)

One can see that the plastic strain is uncoupled from strain rate and
temperature for BCC metals. This is the main difference between constitutive
equations for BCC and FCC metals.

The procedure for fitting constants, which are involved in constitutive relation
for bcc metals, is described here in brief. The first two terms are independent of
temperature, strain rate and strain. The first is attributed to the effect of the initial
dislocation density and the second is due to the hardening effect of grain boundaries.
In this work they are combined in one athermal material constant, C,, so that, in total,

six material constants need to be determined, C,, C,, C,, C,, C;, and n.

By considering the variation of yield stress with strain rate at zero plastic
strain the final term in constitutive equation can be omitted, leaving an equation for
the yield stress:

o,=C,+Cexp(-C,T+C,Tng), (4.3.2.3)

involving the four constants, C,, C,, C,, C,. By fitting the above equation to the

experimental data for yield stress over a wide range of strain rate and for different
temperatures, optimum values for these constants can be obtained. Ploting value of
yield stress versus strain rate on a semi-log plot for different temperatures, one can
find values for above constants.

The remaining two material constants C; and n, can be derived by assuming
isothermal conditions during test at the different strain rates and by fitting the relation:
oc=0,+Cé". (43.2.4)

A similar procedure can be applied for determination of constants, which are
involved in the constitutive formulation for FCC metals.
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4.3.3. Mechanical Threshold Stress Model
Thermally activated dislocation motion as a basic mechanism for MTS model

A dislocation continuously encounters obstacles as it moves though the lattice
and these obstacles make the movement of dislocations more difficult. Dislocations
themselves can oppose the movement of dislocations.

Peirls-Nabarro forces oppose the movement of dislocation at the atomic level.
When a dislocation moves from one equilibrium atomic position to the next it has to
overcome an energy barrier, that is force has to be applied to it. The stress required to
move the dislocation without any other additional external help is the Pierls-Nabarro
Stress 7py .

A moving dislocation encounters periodic barriers of different spacing and
different lengths. Temperature and strain rate response of metals are related to the
length of these barriers and to the thermal energy of the lattice. The smaller narrower
barriers are called short-range obstacles, and the larger, wider barriers are called long-
range barriers (Fig. 4.3.3.1.).

Short-range obstacle

w
(5]
o
o
w
o
o
@ Long-range
w
W obstacle
=
w
DISTANCE

Fig. 4.3.3.1. Schematically display of barrier field [37]

Thermal energy increases the amplitude of vibration of atoms and this energy
can help the dislocation to overcome obstacles.

The barrier is shown at four temperatures 7, =0< 7, <7, <T, (Fig. 4.3.3.2.).
The thermal energies AG,,AG,,AG,, have been shown by hatching, where area under
force-distance curve is an energy term.

The effect of thermal energy is to decrease the height of barrier when the
temperature increases, so effective height of the barrier decreases as the temperature
rises.

The effect of strain rate is similar, as the strain rate is increased, there is less
time available to overcome the barrier and thermal energy is less effective.

Long-range barriers cannot be overcome by thermal energy. The following
classification could be noticed: short-range obstacles, which are thermally activate
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and long-range obstacles, which are not thermally activated. Based on this, the flow
stress of a material can be expressed in a following manner:

o = o (structure) + o (T, &, structure) (4.3.3.1.)

where o term is due to the athermal barriers determined by the structure of

material, and o term is due to the thermally activated barriers, the barriers that can
be overcome by thermal energy. The principal short-range barrier is the Peierls-
Nabarro stress, which is very important for BCC metals and ceramics.

.
FORCE

or
STRESS
Fo 70"
g

Fa I

(a)

(b)

TEMPERATURE

Fig. 4.3.3.2. (a) Thermal energy, (b) Stress or force required to overcome obstacles [37]

The probability of an equilibrium fluctuation in energy greater than a given
value AG is given by statistical mechanics and is equal to [55]:

AG
= - 4.3.3.2.
Dy exp( ij ( )

The probability that dislocation will overcome an obstacle can be considered
as the ratio of the number of successful jumps over the obstacle divided by the
number of attempts. A dislocation will overcome the obstacle if it has energy equal or
higher than the energy of barrier. Those values per unit time are frequencies. Based on
this definition the probability can be expressed with following relation:

p, =2 (4.33.3)
Uy

where v, frequency with which the dislocation overcomes the obstacles and
v, vibrational frequency of dislocation. Based on this a relation between this two
frequencies can be expressed as:

AG
v =0, eXP(—k—T) (4.3.3.4)
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In case that spacing between obstacles is I, lower bound of vibrational
frequency of dislocations is estimated by Kocks as [55]:

b
=D— 4.33.5.
Uy U4l ( )

where v is the vibrational frequency of atoms and this is ground frequency of
a dislocation with wavelength 41.

Time Az taken by a dislocation to move a distance A/ between two obstacles
could be divided into a waiting time in front of obstacles 7, and running time between

obstacles ¢, :
At=t, +t, (4.3.3.6.)

The waiting time is governed by the probability that an obstacle will be
overcome by an adequately large thermal fluctuation of the free activation energy, so
the waiting time is described as:

1 1 AG
t =—=—exp — 433.7.
v exr{ kT) ( )

b Yy
In reality the waiting time is much greater then running time ¢, >>¢ and it is

possible to write:

At=t (4.3.3.8.)

Strain rate is described with well-known relation as:

de 1
E=—=—pbv 4.3.3.9.
iy ( )
where M is the orientation factor, b the dislocation Burger vector, and v the
dislocation velocity.

Using this relation it is possible to write:

Ae 1Al
26 _ Ll 433.10.
A M ( )

where Al is distance between dislocation barriers and is assumed to be 1.
Thus, using this equation we have:

¢ = LpbAl exp(— AG] (433.11)
M kT
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Preexponential term can be represented as reference strain-rate:

. U,pbAl
& :‘)T, (4.3.3.12))
and thus, the final expression can be written as:
AG
E=E,exp| ——— 4.3.3.13.
0 p( ij ( )

This expression is known as the Arrhenius expression, which relates strain-
rate to activation energy and temperature.
Activation energy AG can be calculated from activation barrier:

.
AG = AG, — [A(F)dF (4.3.3.14.)
0

where AG, is activation energy at OK and A(F) is barrier width. The

difference is the effective barrier. The shape of the activation barrier determines the
shape of the thermal portion of curve. The athermal portion of the flow curve has a
very low temperature dependence, equal to that of the shear modulus. It is easy to
rearrange the above equation to obtain the relationship between stress and strain rate
in the following manner:

. F"
&
kTIn=>= AG, - [ A(F)dF (4.3.3.15.)
&
0
This equation is the foundation for constitutive equations, which are based on
thermally assisted overcoming of obstacles.
Using this equation, assuming a simple shape for the activation barrier and
changing the integration limits from forces to stresses, it is possible to express a
constitutive equation in terms of activation volume. Activation volume is defined as:

V=I0b (4.3.3.16.)

where A is barrier width and [* barrier spacing (Fig. 4.3.3.3.).

5

I3

STRESS

n
' E* I
Fig. 4.3.3.3. Three different shapes of barriers [37]

3
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The force on the dislocation per unit length can be expressed as:
F=1b (4.3.3.17.)

where 7 is shear stress. Based on this the force per barrier is given by:

F=1bl (4.3.3.18))

According to this we can write:

F* T "

j AM(F)dF = j A(0)bl'dr =bl" j A(r)dr (4.3.3.19.)
0 0 0

If the barrier is rectangular (Fig. 4.3.3.) A = const

F* "
j A(F)dF = bmjdr =bl' A -0 =V7 (4.3.3.20.)
0 0

The stress 7~ is described as difference between stress o and base level of
stress o, and using this formulation we have:

AG =kTIh2 = AG, -V (o -0,) (4.33.21))
&

It is obvious that shape of the activation barrier determines the form of the
equation. For example if we assume a hyperbolic barrier which is determined with
following expression:

%y
C=rF—— 4.3.3.22.
i+ 2/AT )
we have following constitutive equation:
1 2

& o %
AG =kTIn=2=AG,|1- (—j (4.3.3.23))

& o,

Based on this Kocks [55] proposed a general expression for the activation
energy dependence on o in the following form:

. P
AG = kT = AG()[l - [iJ ] (4.3.3.24)
&
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The parameters p and q determine the shape of activation barrier (Fig. 4.3.3.4.)

q=3/2

Fig. 4.3.3.4. Obstacles shapes and corresponding values of p and q [55]

The mechanical threshold stress model is based on thermally activated
dislocation motion and focuses on the determination of threshold stress ¢ (F;,7,,0,).

This threshold stress is defined as the flow stress of a certain structure at OK.
Normalized total activation energy g, can be defined in the following manner [59]:

AG, = u(T)b’g, (4.3.3.25))
where u(7T) is temperature dependant shear modulus.

Substituting this expression in the above equation yields:

q
O

. P
AG = kTIn 22 = (1P’ go{l - (—j } (4.3.3.26.)
& O

Based on this formulation, the following relation between thermal component
of applied stress and the mechanical threshold stress can be found:

NN a4
o= 1—(%‘92/8)) & (4.3.3.27.)
,U(T)b 8o
where thermal activation function is defined as:
(e /) p
S = 1—(%} (4.3.3.28.)
,U(T)b 8o
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4.3.4. Procedure for determination of the Mechanical Threshold Stress strength
model parameters

The current structure of material in the MTS model is represented by an
internal state variable, the mechanical threshold &, which is defined as the flow stress

at OK. The mechanical threshold is separated into athermal and thermal components
[66-70]:

6=6,+Y.6,, (4.3.4.1)

where the athermal component characterizes the rate independent interaction
with long-range barriers such as grain boundaries, dispersoids or second phases. The
thermal component characterizes the rate dependant interactions of dislocations with
short-range obstacles such as forest dislocations, interstitial, solutes, Peirls barrier,
etc.

The flow stress can be expressed in the terms of the mechanical threshold
stress as:

O

(o2 (o2
0_0, N0 (4.3.4.2.)
7" 2 7

where  is shear modulus.
Temperature effects in MTS model are represented by a temperature and
strain-rate dependant-scaling factor S, which specifies the ratio between the applied

stress and mechanical threshold stress. This factor is derived from Arrhenius
expression relating strain-rate to activation energy and temperature:

(4.3.4.3)

~AG,(0,/6))
kT

£=&,; exp(

where €, - reference strain rate, k - Boltzmann’s constant.

Assuming that stress-dependant activation energy is [55]:
q

p; |1
AG, = g, ,ub’| 1- i/ (4.3.4.4)
O'_;/luo

where g, is normalized activation energy for the dislocations to overcome the

obstacles, b is the burgers vector, p and q are empirical constants related to an
obstacle profile with ranges 0 < p <1 and 1< ¢ <2. It is then possible to write:

o _ 1_[ kT n&} 19 (4.3.4.5.)



and the scaling factor can be expressed as:

vV

. i )"

S.(&T)=|1- sIn—+ (4.3.4.6.)
g, 1b ¢

The general form of MTS model is then:
c o o
Z a4 N'g L (4.3.4.7.)
7" 2.5, Ho

where x and g, are the temperature dependent and 0K shear moduli

respectively.
Based upon the particular material, the thermal component &, consists of the

linear summation of terms. Each of these terms describes particular mechanism:
dislocation interactions with long-range barriers, diclocation interactions with
interstitial atoms and diclocation interactions with solute atoms.

Shear modulus
The shear modulus can be calculated using following formulations:
for body-centred cubic (bcc) materials:

p=Gu= C312 ~Cu) (4.3.4.8)
for face-centred cubic (fcc) materials:
p=4C,(C,-C,)/2 (4.3.4.9)

where C; are elastic constants.

An empirical relation for shear modulus [56], could be used for reasons of
simplicity:
u=>b,— l;] , (4.3.4.10.)
exp(-2) -1
T
where
b, = 1, and b,, b, are fitting constants.

Athermal stress o,

Athermal contributions to flow stress can be associated to interactions of
dislocations with long-range barriers, i.e. Hall-Petch behavior. The “Hall-Petch”
equation has been used to describe a wide range of grain size versus yield or flow
stress data:

o=M(o, +kd™") (43.4.11))

where o flow stress, o, friction stress, d grain diameter, & - “unpinning

constant”,and M the Taylor orientation factor.
Grain size dependency of flow stress is described in the MTS model in the
athermal stress component with the following equation:
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o, =kd” (4.3.4.12)

y

where d grain size, n exponent (1/3<n<l) and constant k,6 could be
determined from Hall-Petch plot [57].

Mechanical threshold stress &, and normalized activation energy g,

Thermally activated yielding is characterized by the “intrinsic” term &, and

describes the rate dependant portion of yield stress mainly due to intrinsic barriers,
where thermal portion of yield stress is defined aso, =0, —0,.

From the equation which describes relation between applied stress and
mechanical threshold stress

o, -0 le'/'%"%?iA
o, ) a _ 1_( n(&,, ‘9)) O (4.3.4.13))

7 H ub’g,, Hy

it is possible to determine g, and &,, when mechanical data is presented in a
Fisher plot format [14], with the above equation arranged as:

_ pi A \Pi A \Pi %,- ; l‘]i
(Uy %j :(gj _(EJ (LJ {k_'flln['?_?fﬂ/ (4.3.4.14)
M Hy Ho Eoi 'Ub €

where reference strain-rate &), is an adjustable parameter, p, and ¢, are glide

obstacle profile parameters based on empirical observation [55].

Mechanical threshold stress ¢, normalized activation energy g,.

From the general form of MTS model

~%u, 5% 45 % (43.4.15.)

when the athermal hardening and intrinsic strengthening are subtracted from
overall stress, a value of o, is determined with following relation:

o =556 () =[‘7(‘9) % _g i] (4.3.4.16.)
Y7,

Hy H " 4

For each curve of o(¢) the corresponding mechanical threshold stress & (&)

can be derived from series of tests, where the material is loaded at different

62



temperatures at a fixed strain rate. Hence stress now can be plotted according to the
above equation, which can be rewritten as:

[&8) O, ¢ 6 jpg _ ( 0_(8)jp _[w]”" [L]q{w}q (4.3.4.17.)
uooon Ho Hy go. b’

The constant used in the thermal activation function

) p\ e Vpe
s =|1-| AT, /27) (4.3.4.18.)
’ ub’g

Og

like the reference strain-rate §,,, p, and ¢, glide obstacle profile parameters
are based on empirical observation [55].

In a Fisher plot, data from experiments at constant strain rate but varying
temperature should give a strait line. The intercept with zero temperature in this plot
gives the mechanical threshold normalized by shear modulus while the slope is
inversely related to the normalized activation energy g, .

The mechanical threshold stress &, (&) now can be calculated according to
following equation:

6.(6) = ﬂ(@ _Ga_g ﬁj (4.3.4.19.)
S ) Hy

Saturation stress ¢, and initial hardening rate 6,

The mechanical threshold stress &, evolves with strain due to dislocation

accumulation — work hardening and annihilation — recovery [70]. This process can be
described as:

do,

de

=0=6,-6.(T,s,6,) (4.3.4.20.)
where 6, is hardening due to dislocation accumulation and 6, is the dynamic
recovery rate.

The hardening rule presumes that material possesses an initial hardening rate,
which subsequently decreases with increasing deformation:

9. _g_o.[1-F(6.)] (4.3.421)
&

where 6, refers to the stage II strain hardening rate or the stage of rapid work

hardening, and F(&,) is an empirically derived dynamic recovery rate.
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For successful application of equation Eq. 4.3.4.21. is correct choice of
function F, which describe structure evolution is important. Several functions have
been investigated in the past and all of them are based on the simple Voce hardening
law [55]. Follansbee and Kocks [59] chose the following form, which is a modified
Voce empirical hardening rule — tanh rule:

5
tanh| ¢ ——&5—

_tanh(a)

F(6,)= (4.3.422)

where « is an empirical best-fit constant which dictates the rate at which
saturation is achieved, o, is temperature and rate-sensitive saturation stress, o,
represents the flow stress contribution from dislocation accumulation and
annihilation.

Applying fitting process on mechanical threshold stress data at all the strains
rates, usingequation Eq. 4.3.4.22., which describes hardening rule, it is possible to

determine factors 6, and o, at all strain rates.

After fitting initial hardening rate data 6, in the respect to the strain rate data

&, stage initial hardening rate €, could be expressed by an empirical relationship:
6, = a, +a,In(€) + a,é" (4.3.4.23.)
Saturation threshold stress &, (0K) and normalized activation energy g, ..

Saturation stress &, is function of temperature and strain rate [60]:

)}
. . & %
G, = O'mo(—] (4.3.4.24.)

where n=g, ub’ kT

Above equation could be easily rearranged in a following form:

1n(aﬂm)=1n(&s0)—[ ! JKT3 h{%} (4.3.4.25.)
8os ) 1D &

Normalized activation energy (saturation) g, and mechanical threshold stress
associated with saturation of evolving structure &, now could be calculated using a

Fisher-type plot approach [58].
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Adiabatic heating effects

The MTS strength model considers the effect of adiabatic heating under

dynamic — high strain rate loading conditions, for strain rates above &~500s".
Temperature increases due adiabatic heating is given by the relationship:

AT =Y [o(e)de (4.3.4.26.)
PC,

where  is percentage of the work of plastic deformation, which is converted
into heat, o and ¢ are the true stress and true strain, o is density, and C, is the

temperature dependent specific heat, that can be written in form of empirical
relationship as:

C,=dy+ AT+ 4,/T", (43.4.27)
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4.4. Results and conclusions
4.4.1. Experimental data

Figure Fig. 4.4.1.1. shows a classical strain rate dependant response for
AA7010. The effects of strain rate and temperature are clearly observed since the
difference in the flow stress between the different strain rates and temperatures are
distinct and significant. This set of data has been used for derivation of parameters for
temperature and strain rate dependent strength material models. For describing
orthotropic properties of materials, it is most convenient to choose a reference
direction when using Hill’s plastic anisotropy theory. We adopted longitudinal (L)
direction as a reference direction and parameters for JC and MTS strength models
have been derived for this set of data.

©
o |
= 450+ i
° 4
400 — + : ! 1 : ! AATO10 L directon
4 6.4x10°1/s
350 ! 6.4x10'1/s e |

“6.Ax1071/s
6.4x10"1/s
6.4%1071/s

Fig. 4.4.1.1. AA7010 stress-strain curves for L direction at different strain rates and
temperatures

4.4.2. Derivation of MTS model parameters for AA7010

On the basis of the procedure described in section 4.3.4. for determination of
MTS material model parameters, constants for AA7010 were calculated. The
following form of the MTS model is chosen to fit experimental data:

=244 5 (87)

24 S,
H o H Hy

(4.4.2.1)

All experimental data used as the input for the calculation of AA7010
constants has been obtained from uniaxial tensile test.
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4.4.2.1. Athermal stress
To fit the stress data to the above equation, the athermal stress was estimated

as: o, =10MPa.
No rigorous analysis was performed to calculate this value of o,, but

athermal stress on the order of 10MPa is not unreasonable [57]. For example Zerili
and Armstrong determined for copper a Hall-Petch constant with value of

k, =1.58x 10 GPam"*. Assuming packet of grain size on the order of 100um , the
Hall-Petch effect is k,d™''> ~10MPa .

4.4.2.2. Shear modulus
The shear modulus for face-centred cubic (fcc) materials can be calculated
using following formulations:

p=4+C,(C,-C,)/2 (4.422.1)
where C; elastic constants are defined with following definition:
C,=a-bT* /(T +c) (4.4222)

Parameters included in formulation of elastic constants are presented in the
following table:
Table 4.4.2.2.1. Elastic constants for AA7010

(jy (:31 (:32 (j44
a[10* MPa) 11.44279 6.19963 3.17067
B[10' MPa /K] 6.16193 1.05999 1.68226
K] 420.4 445.0 130.0

For reasons of simplicity empirical relation for shear modulus could be used
as:

lh
u=>b,— — (4.4.2.23)
exp(-2)—1
p()

where b, =28.83GPa shear modulus at 0K and b,=4.45GPa, b, =248.5K

are fitting constants.

30000 1\\\‘\\4

28000

26000

24000 \
22000 \ \
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18000

u [MPa]
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TK]

Fig. 4.4.2.2.1. Graf of shear modulus in function of temperature
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4.4.2.3. Thermal activation function

Constants used in the thermal activation function

RN
5 HW_HJ ] 44231)
’ :Ub3g 0¢
like reference strain-rateg,,, p, and g, glide obstacle profile parameters are based
on empirical observation, and they were determined as
p,=1,qg.=1and §,=1X10"s".

Influence of p, and ¢, glide obstacle profile parameters on the shape of the
thermal activation function is presented in the following figure (Fig. 4.4.2.3.1.).

0e4

06+

0z4 1p=1i2,g=232

00+

T T T T T T
00 02 04 08 08 10

IKTin(e /)b g, ]

Fig. 4.4.2.3.1.Thermal activation function shapes and corresponding values of p and q

The other parameters included in the definition of thermal activation function
were determined as:

k=138X10" -%{ - Boltzman’s constant and b = 0.286.X10"m - Burgers vector

where the ratio between Boltzman’s constant and Burgers vector has been found as:

k _ 5899 MPa

b3

205 T T T T T T
ons oor oos 009 010 on 0z
(KTInge, fe Mub®) ™™

Fig. 4.4.2.3.2. Normalized data for flow stress versus temperature at & = 6.4X10"s ™'

From equation Eq. 4.3.4.13., which describes relation between applied stress
and mechanical threshold stress, it is possible to determine g, . After rearranging

equation Eq. 4.3.4.13. in the form of the fitting equation,

T T
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and presenting mechanical data in a Fisher plot format (Fig. 4.4.2.3.3— Fig.
4.42.3.6.), average value of normalized activation energy has been found as

go. =1.6.
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Fig. 4.4.2.3.3. Normalized data for flow stress versus temperature at & = 6.4X107's~
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Fig. 4.4.2.3.4. Normalized data for flow stress versus temperature at & = 6.4X107s™"'
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Fig. 4.4.2.3.5. Normalized data for flow stress versus temperature at & = 6.4X107 s~
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Fig. 4.4.2.3.6. Normalized data for flow stress versus temperature at & = 6.4X10"s™
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4.4.2.4. Mechanical threshold stress &, (¢)

From the general form of MTS model when athermal hardening is subtracted
from overall stress, value of &, is determined with following relation:

6.(e) ="

&

(@ _&J (4.42.4.1)
H Hy

For each curve of (&) corresponding mechanical threshold stress & (&)

could be derived from series of tests, where material is loaded at different
temperatures at a fixed strain rate (Fig. 4.4.2.4.1 — Fig. 4.4.2.4.3).

Fig. 4.4.2.4.2. Mechanical threshold data at T=273.15 K.

Fig. 4.4.2.4.3. Mechanical threshold data at T=343.15 K.
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4.4.2.5. Hardening rule

Mechanical threshold stress &, evolves with strain and this process can be
described with modified Voce empirical hardening rule — tanh rule [59]:

I 6,
J . tanh|:a A((;]_'):|
% _g|1- I8, (4.425.1)
de tanh()

where ¢, is initial hardening rate, which subsequently decreases with

increasing deformation, « =2 is an empirical best-fit constant which dictates the rate
at which saturation is achieved and &, is temperature and rate-sensitive saturation

stress.

Applying fitting process on the above equation, which describes the hardening
rule with mechanical threshold stress data at all the strains rates, it is possible to
determine factors 6, and o, at all strain rates (Fig. 4.4.2.5.1. - Fig. 44.2.5.5.).

10000 =

anno o
Test: TLEM3PT3

T=+70°C;e=6.4x10"

o 6000
4000

2000 4

T T T
640 B60 680 700 720

Fig. 4.4.2.5.1. Variation of the strain hardening rate versus threshold stress. Hardening
curve used in MTS model at T=343.15 K and 6.4 x 10™ 1/5s.

10000 =

8000 +

6000 -

dos,'Ide

4000 +

2000 o ras 20N I M) :.'. H . - -

T T T T T
600 520 640 660 630 700 720

(1"

Fig. 4.4.2.5.2. Variation of the strain hardening rate versus threshold stress. Hardening
curve used in MTS model at T=343.15 K and 6.4 x 10~ 1/5s.
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Fig. 4.4.2.5.3. Variation of the strain hardening rate versus threshold stress. Hardening

curve used in MTS model at T=343.15 K and 6.4 x 107 1/s.
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Fig. 4.4.2.5.4. Variation of the strain hardening rate versus threshold stress. Hardening

curve used in MTS model at T=343.15 K and 6.4 x 10" 1/s.
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Fig. 4.4.2.5.5. Variation of the strain hardening rate versus threshold stress. Hardening

curve used in MTS model at T=343.15 K and 6.4 x 10° 1/s.
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4.4.2.6. Initial hardening rate 6,

It has been observed that initial hardening rate data are strongly dependant on
the strain rate, which is similar to the behaviour of OHFC Cu [59]. After fitting initial
hardening rate data 6, in the respect to the strain rate ¢, it has been found that initial

hardening rate 6, could be expressed by an empirical relationship (Fig. 4.4.2.6.1.):
6, =a,+a/n(E)+a,&" (4.4.2.6.1.)

and following parameters were determined as: a, =67604.6MPa,
a, =1816.9MPa , a, =202.3MPa and .

80000 —
?5000—-
?UUOO—‘
65000-

60000 +

0,[MPa]

55000
50000 +

45000 4

40000 ——rrrrre——rrrr—r—rrr

1E-4 1E-3 0.01 0.1 10 100

In(e)s™]

Fig. 4.4.2.6.1. Variation of §, with strain rate
4.4.2.7. Saturation threshold stress ¢, (0K)

Saturation stress &, is function of temperature and strain rate:
kT

R R & \&oaub’
o, = 0'30[_—j (4.4.2.7.1.)
&

&s0

After rearranging above equation in a form of fitting equation:

ln(&g)zln(&mo)—( ! JKY; 1{%}, (4.4.2.72.)
gO&v IUb &

and plotting experimental data in a Fisher-type plot format (Fig. 4.4.2.7.1.),
following data were determined: normalized activation energy (saturation)
Zos =9.54 and mechanical threshold stress associated with saturation of evolving

structure &, = 801.01MPa .
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Fig. 4.4.2.7.1. Arrhenius plot of the temperature and strain-rat sensitivity of saturation
stress for AA7010

4.4.2.8. Adiabatic heating effects

The MTS strength model considers the effect of adiabatic heating under

dynamic — high strain rate loading conditions, for strain rates above &~ 500s7".

Temperature increases due adiabatic heating is given by the relationship:

AT =2 [o(e)de (4.4.2.8.1)
PC,

where y =0.95 is percentage of the work of plastic deformation, which is

. ) Mg .
converted into heat, o and & are the true stress and true strain, p = 2.810—‘3g is
m

density, and C, is the temperature dependent specific heat, that can be written in form
of empirical relationship as (Fig. 4.4.2.8.1.):

C,=A,+ AT+ 4,/T*

with following parameters 4, =0.7995, 4, =0.00039 and A4, =-2775.2755, for this
material.
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Fig. 4.4.2.8.1. Dependence of specific heat on temperature
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Comparisons of experimental stress-strain curves and Mechanical Threshold
Stress model fit are given on the following graphs (Fig. 4.4.2.8.2. - Fig. 4.4.2.8.6.).
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MTSfit] 0C:6.4e+D 1/s]
MTS fit [+70 C.6 4e+0 1/5] |
350+ .

Fig. 4.4.2.8.2. Stress-strain response of AA7010 at & =6.4x10"s""
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Fig. 4.4.2.8.4. Stress-strain response of AA7010 at & = 6.4x107*s™"
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Fig. 4.4.2.8.5. Stress-strain response of AA7010 at & = 6.4x10 s
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Fig. 4.4.2.8.6. Stress-strain response of AA7010 at £ = 6.4x10 s

Comparison of the predictions of the model with experimental results showed
good agreement and the following conclusions can be made:

A two-term MTS strength model can describe very well behaviour of AA7010
in strain rate regimes from 10 to 10" s™.

The MTS model can provide robust fitting results for large strain response, as
function of temperature, strain rate and grain size.

The high strain rate and temperature sensitivity of the flow stress indicate that
the rate controlling mechanism for deformation of AA7010 at intermediate strain rate
regime [10™ - 10" s'] and at intermediate temperature regime [-50° C - +70° C] is
thermal activation, which is basic mechanism for MTS model.
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4.4.3. Derivation of JC model parameters for AA7010

On the basis of procedure described in Section 4.2.2. for determination of JC
material model parameters, the following form of the JC model wass chosen to fit
experimental data for AA7010:

o =[A+B(e)'|[1+Cln(EH][1-(T")"] (4.43.1)

where o is the effective plastic strain, & =&/ &,, 1s normalized effective plastic

strain rate, n is the work hardening exponent and A, B, C and m are constants. The
quantity 7" is defined as:

*

T =(T

' —298)/(T,

melt

—298) (4.4.3.2.)

where T

melt

is melting temperature and taken as the solidus temperature for an alloy.

At the reference temperature 7, =223.15K and for the strain rate of interest

ey = 6.4x10"s™", above equation can be written as:

o =[4+B(¢)"] (4.43.3)

The stress at zero plastic strain was obtained from current data and found to be
o0, =547.03MPa. The quantity o —o, was calculated and plotted versus plastic

strain (Fig. 4.4.3.1.). The quantities B and n were obtained from a least squares fit of
the data to a power low equation as B=601.58 MPa and n=0.65.

40 T ”- 1 4 | | T BB R
Pt £, =6.4%10" 1/

0= T T T T T T T T T 1
000 001 002 o003 004 005 008 007 008 0.09 0.10
£

Fig. 4.43.1. o — o, versus plastic strain at 7, =223.15K and ¢,,, =6.4x10"s"'

» .

The parameter C was obtained from o —¢ data. At reference temperature and
for constant strain, constitutive equation can be written as:

o =0 [1+CIn(")] or 6/ ~1=CIn(&"), (4.4.3.4)
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. . . ok .
where o, is the stress at strain rate of interest & =1. For constant strain, value of

o, can be calculated, and o/o, —1can be plotted versus & on a semi-log plot (Fig.
4.4.3.2.). A least squares fit to the data gives, as an average value, C=0.0022.
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Fig.44.3.2. o/o, versus strain rate at 7, =223.15K

The parameter m was determined from the stress-temperature response of the
alloy. At constant strain and strain rate, constitutive equation can be written as:

c=c,[1-(T")"]oro/o,=[1-(T")"] (4.4.3.5)

where o, is the stress at reference temperature. For constant strain and constant strain

rate, value of o, can be calculated, and data plotted as o/o, versus T (Fig.

4.43.2.). After applying least squares fit of the data, average value of parameter m
was found as m=1.3.
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Fig. 4.4.3.2. o/0, versus homologous temperature
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Comparisons of experimental stress-strain curves and Johnson-Cook model fit

are given on the following graphs (Fig. 4.4.3.3. — Fig. 4.4.3.7.).
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Fig. 4.4.3.3. Stress-strain response of AA7010 at & = 6.4x10°s”"'
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Fig. 4.4.3.5. Stress-strain response of AA7010 at & =6.4x107s™"
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Fig. 4.4.3.7. Stress-strain response of AA7010 at & =6.4x107*s™'

The main advantage of the Johnson-Cook model over MTS model is in the
number of materials for which the parameters are known. At the same time the
advantage of MTS model over Johnson-Cook model is in the fact that MTS is based
on physical processes taking place in deforming material and therefore can more
accurately represent the behaviour of the material.

It is generally accepted that at large strains most metallic materials tend to
approach a finite “saturation stress” or approach a constant but small hardening rate at
large strains, and we can observe that such saturation is lacking in the model like
Johnson-Cook. The MTS model contrarily uses a differential form to fit the
experimental data and it has been shown that modified form of the MTS model can fit
the experimental result much better.

The lack of saturation stress as an integral part of the models like Johnson-

Cook, makes it impossible to create a satisfactory model fit at small strains if these
models were previously optimised for large strain applications and vice versa.
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4.4.4. Taylor impact test simulation

In order to test the MTS and JC models and the calculated constants for
AA7010, a Taylor impact test simulation has been done.

Parameters for the constitutive relations were derived on the basis of tensile
tests, and used as input parameters for the numerical simulation of Taylor impact test.
The simulations were performed with DYNA3D computer code and compared with
experimental results for two different impact velocities 200 m/s and 214 m/s.

From AA7010 plate, several Taylor cylinder specimens were machined, tested
using a gas gun, and their final deformed shapes were digitised. Taylor cylinder
specimens were 9.30 mm initial diameter cylinders with initial length 46.50 mm
giving the length-to-diameter ratio L/D=5. Test cylinders have been machined and
tested by Royal Military College of Science at Shrivenem.

Definition of material model MTS in DYNA3D computer code was modified
with definition of Mechanical Threshold Stress material model in the manner, which

is previously described, and material model JC was used as implemented in
DYNA3D.

In the simulations the cm —g — us systems of units was used. MTS and JC
material models were used in the combination with a Gruneisen Equation of State.

In order to reduce the number of elements in the simulations model, and the
overall time of simulations, only quarter of Taylor cylinder was modelled with a
uniform solid butterfly mesh (Fig. 4.4.4.1.). The material parameters that were used in
the analyses are summarized in the following tables (Table 4.4.4.1. — Table 4.4.4.3.).

Table 4.4.4.1. JC model constants for AA7010

Parameter | Description Nominal value
G Shear modulus 26.0 GPa
A Yield stress constant 547.03 MPa
B Strain hardening coefficient 601.58 Mpa
n Strain hardening exponent 0.65
C Strain rate dependence coefficient 0.0022
m Temperature dependence coefficient 1.30
T Melt temperature 893.15 K

m
T Reference temperature 293.15K
£, Reference strain rate 6.4x10°1/s
C Specific heat 896 J/kgK

P
p t(o- ) Pressure cutoff (Failure stress) 1.3 GPa
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Table 4.4.4.2. MTS model constants for AA7010

Parameter | Description Nominal value
o Athermal rate independent threshold stress 10.0 MPa
o, Initial threshold stress at zero plastic strain 600.0 MPa
2, Normalized activation energy 1.606
&

& Reference strain rate 1x107 s™!

Oe
B Magnitude of Burgers vector 0.286x10”m
K Boltzmann’s constant 1.38x10% J/K
p Free energy equation exponent 1

&
q Free energy equation exponent 1

&
A Saturation stress equation material constant 5.542
G Saturation stress at zero degrees K 801.01 MPa
£y Saturation stress reference strain rate 1x10"s™
ag Hardening function constant 67604.6 MPa
a) Hardening function constant 1816.9 MPa
a, Hardening function constant 202.3 MPa
by Shear modulus at zero degrees K 28.83 GPa
b, Shear modulus constant 4.45 GPa
b, Shear modulus constant 248.5 K
T, Reference temperature 293.15 K
P Density 2810 kg/m’
C, Heat capacity 896 J/kgK

Table 4.4.4.3. Grunisen EOS constants for AA7010

Parameter | Description Nominal value
Co Bulk sound speed 0.52 cm/ s

S First Hugoniot slope coefficient 1.36

S, Second Hugoniot slope coefficient 0

Ss Third Hugoniot slope coefficient 0

7o Gruneisen coefficient 2.20

B First order volume correction coefficient 0.48

Eg Initial internal energy 0.0

Vo Initial relative volume 1.0

The simulations clearly show that the JC and MTS strength models can
simulate high strain rate deformation processes for wide range of temperatures.

Comparing the experimental shapes of the impact-interface footprints with
DYNA3D code results (Fig. 4.4.4.2. — 4.4.4.3.), we can observe that the modified
MTS material model can capture more accurately impact-interface footprint then JC

model.

The MTS flow stress model needs to be carefully characterized for the
material of interest within the strain, strain rate and temperature regime to obtain
accurate calculation results, in this case capturing the cylinder specimen heights, and
axial major and minor distributions of plastic strain. The MTS model should be
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coupled with orthotropic yield surface criterion in order to capture orthotropic

behaviour of AA7010.
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5. ANISOTROPIC METAL PLASTICITY MODEL

5.1. Introduction

There are several requirements that we have to satisfy in order to be able to
describe the state of the material during plastic deformation. First of all, it is essential
to be able to define the point at which the material will start to yield. In a one
dimensional stress state, this is straightforward, as one just has to define a value of
stress that will mark the start of yielding. This point can be determined by performing
a uniaxial tensile test. Even in this simple case this approach is limited as not all
materials exhibit a clearly defined yield point. In the case of a complex stress state
yielding is defined by a yield condition which, in general is of the form:

Floy.a)=0 (Yielding)
o (5.1.1)
F(oy.a)<0 (NoYielding)

So the yield function is dependent on the stress tensor and an initial yield
stress value oy. If the material is yielding then F= 0, and hence:

dF =0 (5.1.2)

This expression is called the consistency condition, and can be interpreted as
the condition that ensures that during a plastic deformation the corresponding stress-
state stays on the yield surface.

A second characteristic of plasticity model is that once yielding occurrs, the
yield surface has to be changed in some way. If the hardening is described using only
one material constant, it implies that the hardening behaviour is assumed to be
independent of the stress state. So the assumption is that the material hardens in the
same way regardless of direction of loading.

The equation that describes the change in yield surface is called a Hardening
Rule. The two most commonly used hardening rules are isotropic hardening and
kinematic hardening. Hardening is a function either of the effective plastic strain

&
a=g"=[de" (5.1.3.)
0
or the plastic work
a=W, = jaijdgijf" . (5.1.4)

The case where the effective plastic strain is used to calculate the increase in
radius of the yield surface r is called Strain Hardening. If the plastic work is used
the term Work Hardening is used.
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Fig. 5.1.1. Isotropic hardening

Isotropic Hardening is a uniform expansion of the initial yield surface due to
plastic deformation [Fig. 5.1.1.], and hence the isotropic response of the material to
yielding does not change during plastic deformation. The evolution of the radius of
the yield surface is then assumed to be proportional to the measure for the plastic
deformation:

F=Cé&" (5.1.5)

Another hardening model known as the Kinematic hardening model or
Prager’s model is also widely used. This model assumes that yield surface translates
as a rigid surface in stress space during the plastic deformation. Therefore the shape
of the subsequent yield surface [Fig. 5.1.2.], does not change during plastic
deformation - the shape and size of the initial yield surface is maintained.

Fig. 5.1.2. Kinematic hardening
This is achieved by introducing a so-called back stress aij, which defines the

position of the centre of the yield surface in the stress space. The evolution of o is
assumed to be in the direction of the plastic strain rate:

d; =Cy& (5.1.6.)

The last issue to be addressed is the evolution of the plastic strain. In the
current context the assumption will be made that the total strain can be decomposed
(additive decomposition) into elastic and plastic parts:
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1 1
gj =¢&jj +&} (5.1.7.)

The evolution of the plastic strain is, in general, done through use of a plastic
potential Q, which is a function of the stress and hardening variables. The evolution
of the plastic strain is assumed to be proportional to the gradient of Q:

del = 2% (5.1.8.)

80'1].

A special case of this theory is the associative plasticity where, plastic
potential is the same as the yield function, or Q = F.

Equation (Eq. 5.1.8.) can then be rewritten as:

def = R (5.1.9.)
00j;
where the plastic strain rate is normal to the yield surface. On the other hand,
if Q # F , the flow rule is called nonassociated.

Several plasticity models, which are formulated for orthotropic materials and
plane stress case, have been considered in this research.. Hill [76] proposed a
quadratic yield criterion for orthotropic materials, which is an extension of the von
Mises criterion for isotropic plasticity. Hill’s yield function reads:

f’=Fo,+Go ' +H(c,-0,)’ +2No,’ (5.1.10.)
in which o, o, and o, are non-zero stress components in plane stress.

Barlat and Lian and further developments [83] utilize non-quadratic three-
component yield criterion for rolled sheets. This criterion introduces a coupling
between normal and shear stress components, which is in agreement with findings
based on polycrystalline plasticity theory. The Barlat and Lian yield criterion, which
is considered to be suitable for aluminium alloys, is expressed in the following
equation:

f*=aK +H,)" +aK, -K,) +(2-a)2K,)* (5.1.11.)
where

o,+tho, o,—ho, ’ 5
K== Ky = | +(po,) (5.1.12))
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The constants a, h and p are fitted to experimental result. The exponent 2k is
an even number that can be determined from the crystal structure of the material, or it
is calibrated to the available experimental data.

Hill also proposed also proposed a non-quadratic yield function for planar
isotropic sheets, but later modified this to incorporate in-plane anisotropy. This
criterion is given by the following function:

m

m

m O- 2

Iz :‘O-x +0},‘ -{T—b:l ‘(O} —a},) +47))
y

(5.1.13.)

N 5 [— 2(6? -2 )+blo, -0, )2]

2 2 2
o,+to,+2t,

Here o, is the yield stress in balanced biaxial tension, 7, is the yield stress in
simple shear, and a and b are anisotropic parameters.

The yield criterion of Logan-Hosford [90], which is considered to be suitable
for fcc metals comparatively, is as follows:

_ R
fM_1+R(G’?4+0y)+1+R(G’“ Gy)

(5.1.14.)
__lsros)
O

where R is average r-value or Lankford coefficient and M is the material
constant, which is suggested as 8 for fcc materials.

Karafillis and Boyce [87] proposed a yield criterion based on the linear
combination of two convex functions

f2* =((1-c)g, +cg,) (5.1.15)

(5.1.16.)

In above equations 51, §2 and §3 are the principal values of the so-called
isotropic plasticity equivalent stress components.
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I U S
Sp=—"t +82:8,=8 (5.1.17.)

1,2 2
where

§x 1 ﬂl ﬂz 0 Jx

S o 0| o,

>l foa ) (5.1.18.)

Sz ﬂZ ﬂ3 a2 0 o-z

_Sxy_ 0 0 0 y|o,

a,—ao, —1 a, —o, —1 l-a, —«a
B, =%; B, =%; Bs =# (5.1.19.)

The constants ¢, C, «,, @, and y, are calibrated with experimental results,
while the exponent 2k is given a high value, e.g. k£ =15. Note that . =0 in plane

stress states.

Although all discussed criteria can predict very reasonably the yield stress
variation with orientation for aluminium alloys, the yield criterion chosen for this
material model development was the Hill’s yield criterion with isotropic hardening,
because of its mathematical simplicity. For aluminium alloys of interest the “strength”
aspects (yield surface shape) are much more important then the “kinematic” aspects
of plastic yielding, and assumption of isotropic hardening has been adopted.
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5.2. Orthotropic yield criterion

The proposed othotropic model is based on the following assumptions:
F(o,0y)=0, (5.2.1)

where o is the equivalent stress and o, is isotropic strain hardening yield

stress. Model considers case of associative plasticity with the Hill’s orthotropic plastic
potential.

Hill’s theory describes the yielding and plastic flow of an anisotropic metal on
a macroscopic scale. The type of anisotropy considered is that resulting from
preferred orientation. A yield criterion is similar in form to the Mises criterion for
isotropic metals, but contains six parameters specifying the state of anisotropy.

With increasing strain, a preferred orientation of crystal planes and directions
gradually develops, and the individual crystals become elongated to form a
characteristic fibrous texture in the direction of the most severe tensile strain. In this
way an originally isotropic metal becomes anisotropic in respect of many physical
properties. It is well known that fibre texture produced in the technological forming
processes, rolling, drawing, and extrusion, is sometimes the cause of undesirable
properties in the final product. Such anisotropy can be removed with difficulty by
careful heat treatment. Preferred orientation of crystal planes is not the only cause of
anisotropic plastic properties: laminar inclusions and cavities occasionally produce
similar effects. Residual or internal stresses are another cause of the anisotropy. The
present theory is, however, valid only when the anisotropy is mainly due to preferred
orientation of crystal planes. Whenever the anisotropy is present the theories of
plastic flow for isotropic metals are only valid to a first approximation.

If the criterion of yielding under combined stresses is:

f(o;) = constatnt (5.2.2)

then in the case of an anisotropic metal the form of f depends on the choice of axes
of reference. Function f is regarded as a function of the components of the stress
tensor, and involves certain parameters characterising the current state of the material.

It is assumed that the anisotropy has three mutually orthogonal directions
which may be called the principal axes of anisotropy. These axes can, and frequently
will, vary in direction at any moment form point to point within the bulk metal.

If we fix our attention on a given element in certain state of anisotropy and
choose the principal axes of anisotropy as Cartesian axes of reference, then by
analogy with the Von Mises yield criterion for isotropic metal it is natural to select
some homogeneous function quadratic in the stresses to represent the plastic potential
f. In view of the symmetry assumption terms in which any one shear stress occurs
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linearly must be rejected. It is also assumed that the hydrostatic pressure does not
influence yielding.

Hill [76] proposed a quadratic yield criterion for anisotropic materials and this
criterion carries on to be interesting for the behaviour modelling of several metallic
materials. Hill’s criterion is an extension of the von Mises criterion for isotropic
plasticity, and this criterion is given as follows:

f’=F(o,-0,)’ +G(o, -0,)* +H(o, —0,)* +2Lo,,” +2Mo,” +2No,,* (5.2.3)

where F, G, H, L, M, N are parameters characteristic of the current state of
anisotropy.

In the plane stress case with in-plane anisotropy this criterion reduces to:
f?=Fo,’+Go,’ +H(o, -0,)” +2No,,’ (5.2.4.)
which can be rearranged as:
f?=(G+H)o’x —2Ho,o, +(F +H)o?y +2No’y (5.2.5))

where o _, o,ando,, are components of the stress tensor, F, G, H and N are material

constants.

In case of plane stress state Hill’s orthotropic model requires the following
data:

e Strain hardening curve o,
e Anisotropic coefficients (F, G, H and N)

Hill’s orthotropic yield criterion with isotropic hardening can be extended to
include the concept of combined isotropic-kinematic hardening [82], and yield
function in this case is:

f? :(G‘l' H)(O'x _rx)2 _ZH(O-X _rx)(o'y —I’y)

(5.2.16.)
+(H+F)o, -1, F +2N(oy, -1, ]
where the material parameters F, G, H and N are determined by the initial state

of anisotropy of the material. The components of the back stress, r,, 7, and r,,

specify the centre of the yield surface and are directly related to the kinematic

hardening of the material. The function f specifies the size of the yield surface, and
it is an expression of isotropic hardening. The function f increases with accumulated

plastic strain.

When there is significant presence of anisotropy in the material initial values
of r., r, and r,, are not zero. In this situation, it is then desirable to fit the yield
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criterion to the experimental yield surface through an optimisation procedure. In this
way it is possible to determine the values of coefficients (F, G, H and N), and initial
back stress components.

As in classical plasticity theory, the plastic strain increments were derived
from a plastic potential which was assumed to be the yield surface, and a yield
function f(o;) is required to match the trends observed when used in conjunction

with normality rule - the plastic strain increments are normal to the yield locus:

ds? = a9 (5.2.7)

8017

where dA is scalar depending on material hardening and o, are the

components of the Cauchy stress tensor
In the above equation the yield function f is differentiated partially with

respect to the components of the stress tensor o,. The product of each differential

and scalar multiplier d4 (an incremental plastic modulus) gives the components of
the plastic strain increment tensor de .

Using the extended Hill’s yield criterion and normality rule, yields:

D’ =de? Jdt = A|(G + H)a, - Ha, |
D’ =de? [dt = i|- Ha, + (H + F)a, | (5.2.8.)

D} =de’ /dt = iNaxy

where components of the “effective stress vector” are

Q =0,-1, a,=0,-1, A, =0, —T, (5.2.9))

the plastic multiplier A is a positive scalar that may vary during the straining
process, and D}, D and D] are the plastic parts of the rate of deformation, such

that:
D =D;+D? Dy = D; + Df ny = ny + Df; (5.2.10.)

In the case of uniaxial tension test using a specimen cut out from a sheet at
angle «, measured counter-clockwise from the rolling direction, the stress
components are:

2 . _ s 2 . _ :
o,=0c0s"a;0,=0sin"a; 0, =osinacosa (5.2.11.)
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where o is the stress along the axial direction x’ of the specimen. Let " be
along the width direction of the specimen, the x'— y'—z' axes thus for a rectangular
specimen coordinate system with x" and y’ lyinginthe x—y planeand z' =z.

In this case, the rate of plastic deformation in the specimen coordinate system
is:

D! = D! cos’ a+ D! sin> @ + 2D/ sinacosa

D! = D! sin® o+ D? cos’ a —2D? sina cos (5.2.12)
1 . 2
D}, = —E(Df —D})sin”(2a) + D}, cos(2a)

Using Pragers’s kinematic hardening rule, according to which the rate of
translation of the centre of the yield surface is proportional to the plastic strain rate,
the deviatoric part of back stress rates can be found as:

FP =CD! =CA[(G+H)a, - Ha,]

' =CD! = CA[-Ha, + (H + F)a,]

. (5.2.13)
#xf =CD/{ =CANa,,
and
i+ r 4 =0 (5.2.14)
Knowing that 7. =0 for plane stress, it may be shown that
=270 + fyD and 7, = P +21>yD (5.2.15.)

The scalar parameter C characterizes the material behaviour, and if it is
assumed to be a constant, this leads to a linear-kinematic strain hardening.

The plastic strain ratio, R, for a test coupon cut at an angle o from the rolling
direction, is defined by:

D D’
R="2=d 20 (5.2.16.)
D |\ Dl+D?

where the plastic incompressibility of the material is assumed. From this
equation, the following expressions can be found:
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R - oyH—Hr. +(H+F)r,
o 0,G-Gr - Fr,

IN(G,. -2
. (045 =2r;) 1 (5.2.17.)
2| 0,(G+F)-2Gr, = 2Fr,

06 +(G+H)r, —Hr,
oyl —Gr, —Fr,

90

where o,, 0,5, 04, R,, R,, and R,, represent the yield stress and plastic

strain ratio at orientations 0, 45 and 90 degrees from the rolling direction,

respectively. In the case of , =r, =r,, =0, above equations reduce to original Hill’s
definition of plastic strain ratios given by:

H H 2N - (F+G)

Ry=—; Ryy=— and R, =

(5.2.18.)
G F 2(F +G)
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5.3. Procedures for calibration of the orthotropic yield criterion

The determination of the material constants for an anisotropic material is more
complex then for an isotropic material. Several types of tests can be performed. Hill
[76] proposes a series of simple tensile tests. If one determines the yield stress of the
material in the three principal axes of anisotropy then it is clear that:

! =G+H,
O-Y,xx

L _H4F, (5.3.1))
Ov.yy

1 =F+G,
O-Y,zz

from which one could determine F, G and H as follows:

e L1 1

O-Y,yy O-Y,zz O-Y,xx

2G = + _ (5.3.2)

2H = + -
Oy XX Oy LYY Oy ,2Z

The other three material constants for Hill’s yield criterion can be determined
from the yield stresses in shear with respect to the principal axes of anisotropy.

2L = !
O-Y,yz
1

2M = (5.3.3)
O-Y,zx
2N = !
O-Y,xy

However instead of this direct method of determining the anisotropy
parameters, it is better to measure the incremental strains in all three directions during
a tensile test. For example for a tensile test in the X-direction these strains would be in
the ratios:

de :de,:de,=(G+H):(-H):(-G) (5.3.4)
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Similarly tensile tests in Y and Z directions will provide the ratios between F
and H, and G and F:

de,:de, de, =(-H):(F+H):(-F) (5.3.5)
de, :de, de, =(-G): (-F):(F+G) (5.3.6.)

This then allows a test of the accuracy of the measurements and the theory, as
the following identity should be satisfied:

etz

This method is preferable to the direct (stress based method) method if the
yield stress is not very well defined. Or it can be used as a way to determine the
through thickness yield stress when the material is in the form of a thin sheet.

For a material with anisotropic yield properties, tensile tests using a specimen
cut out from a sheet or a plate in different material directions, result in different yield
stresses, o, where the index o denotes the specimen’s direction relative to the

extrusion direction. Considering the tensile yield stresses in the principal directions of
anisotropy one can see that the parameters in Hill’s criterion should satisfy following
relations:

=G+H

7=

(5.3.8))
=H+F

~ =
Oy

The plastic anisotropy is also characterized by a difference in plastic flow
relative to the principal anisotropy direction, and as a measure of the flow properties
of the material, the specimen’s R, ratio or Lankford coefficient is defined as the ratio

between the plastic strains in its width and thickness directions:

(5.3.9.)

where « is the angle from the extrusion direction, and & ”, &°

w t

are true, plastic strain

increments in the width and thickness directions of the specimen, respectively. Often
these increments are assumed to have the same ratio for increasing strains, enabling
the R ratio to be written as:

(5.3.10.)
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or in terms of Hill’s orthotropic parameters as:

_H+(Q2N-F-G-4H)sin’acos’a

R 5.3.11.
“ Fsin’a +Gcos’ a ( )
The above equation then yields:
R, = E ;
G
H
Ry, =7 (5.3.12)
_2N-(F+G)
BO2AF+G)

For a material exhibiting isotropic flow properties the strains in the width and
thickness direction of the specimen are known to be equal for all directions in the
material and for an isotropic material the Lankford coefficients reduces toR, =1 for

all directions « .

The R, values can be determined with uniaxial tensile tests of specimens,

which are cut out at the angle a from the rolling direction. The Lankford coefficient
thus describes the ability of the material to resist thinning, i.e. a large value implies
that the material is has high resistance to thickness changes while a low value means
that the material is has high resistance to straining in the width direction.

Measuring stress and strains in the width and length direction, true stress o,
true longitudinal strain ¢, and true strain in width direction &, can be calculated by use
of formulas:

c=8(1+¢); &=In(l+¢); ¢, =In(l+e,) (5.3.13))

where S, ¢, e

w

are the respective engineering values. Subsequently, true plastic
strains could be calculated from these values as:

81’1=€,—g; gpw=€w—£uw (5.3.14)
E E

where E is Young’s modulus and v,, is Poisson’s ratio for the width direction.

Utilising the incompressibility condition the true plastic strain in the thickness
direction of the specimen can be found as:

gpt =_(gpl+gpw) (5.315.)
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The Hill’s yield criterion in the plane stress case contains four material
coefficients, which need to be determined. This can bee done with data from uniaxial
tensile tests and biaxial tensile test [86]. However, since four material coefficients are
needed, only four properties from the tests can be considered.

For the identification of the parameters of Hill’s yield criterion the procedure
based on the experimental values of the tensile uniaxial yield stresses in 0°, 45°, 90°
directions and the balanced yield stress o, from biaxial test, give the following set of

equations [84]:

1 1 1 1
FZE 7T 22
Oy O, Oy

1{ 1 1 1
G=5 2 >t

(5.13.16.)

1 1 1
NZE( 2 2}
Oys Oy

It is possible to rearrange this set of equations in the following from:

1
ol (l+ Ry)

1 R,

G= _
0'902 %90 (1 + R90)

(5.13.17.)
__ Ry
0'902(1 + R9o)

R, —1
N:l 42‘ - 12 +—
20074 o0 oy, (1+R90)

In this case parameters included in Hill’ yield criterion can be determined
using the measured uniaxial yield stress in 0°, 45°, 90° directions and R,, strain rate

ratio at o = 90°

We can also calculate the parameters for the Hill’s criterion using the
measured uniaxial yield stress in 0?, 45°, 90° directions and Lankford coefficient
R, strain rate ratio at & = 0° utilizing following explicit solution:
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(5.13.18.)

R -1
N== j - 1 +—
200745 0 9% o, (1+RO)

Both yield stresses o, and Lankford coefficients R, may be employed for the

calibration of the yield criterion, where R, -ratio represents the gradient of the yield

surface [89]. We can choose any combination of those parameters and apply different
identification procedures as long as the points are not lying in a plane, since this will
not give solution for the constants.
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5.4. Experiments

5.4.1. Tensile test

Uniaxial tensile tests for two aluminium alloys AA2024 and AA7010 have
been performed in three different directions, namely 0° (extrusion), 45° and 90°
(transversal). Because only the longitudinal strain of flat tensile specimen has been
measured for all three different directions, Taylor test data has been used for
determination of Lankford coefficient R, for AA7010.

A plane stress state is defined in an orthogonal system (@,¢), rotated in the

plane of the sheet or plate with an angle « . The angle « is the angle between the 6 -
axis and the x — axis in the orthogonal material system (X, y), where the x — axis is
chosen in the direction of rolling. The angle « is defined positive counter clockwise.
The plane stress state may be transformed to material axes by the relation:

o cos’ o sin’ a —2sinacosa | | o,
o, |=| sin’a cos’ a 2sinacosa |x| o, (5.4.1.1)
o, | |sinacosa —sinacosa cos’a—sin’a| |o,,

In a uniaxial tensile test performed in the direction o, the stress state is
defined as o, = o and o, = 0, = 0. Choosing directions 0, 45, 90° and using above

relation, following table defines stress states referred to the material axes:

Tab. 5.4.1.1. Stress states referred to the material axes

a o, o, o,
0° o 0 0
45° o/2 o/2 c/2
90° 0 o 0

c

B

A

Stress
\“\

Strai_rlw"

Fig. 5.4.1.1. Definition of yield point
For higher temperatures, the apparent yield point disappears and determination

of the yield stress becomes difficult. There are three types of methods [81], for
determination of the yield point in a stress-strain curve as shown in Fig. 5.4.1.1.:
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A - The point where the proportional relation between stress and strain
disappears

B - The point, which is determined by the extrapolation

C — The point determined by certain off-set strain as the stress at a certain
plastic strain.

In this work, the stress at the C point was defined as the yield stress.
Permanent deformation may be detrimental, and the industry adopted 0.002 plastic
strain as an arbitrary limit that is considered acceptable by all regulatory agencies. For
tension and compression, the corresponding stress at this offset strain is defined as the
yield stress. For practical purposes, yield stress can be determined from a stress-strain
diagram by extending a line parallel to the elastic modulus line and offset from the
origin by an amount of 0.002. The yield stress is determined as the intersection of the
offset with the stress-strain curve.

5.4.2. Taylor test

Taylor test data has been used for determination of the Lankford coefficient
R, for AA7010. Taylor cylinder specimens were cut from rolled plate. The

specimens were 9.30 mm in diameter with length 46.50 mm and the length-to-
diameter ratio L/D=5.

A laboratory test frame (X, Y, Z) representing the principal axes of impact test
is adopted such that compressive impact loading is always applied along X-axsis. The
X direction was the original rolling direction for this plate.

0.05 —

Fig. 5.4.2.1. R-ratio deduced using Taylor test with initial velocity V=200 m/s

It has been found that the Lankford coefficient for AA7010 has value of
R, =0.894 for the specimen, which was launched with initial velocity of 200 m/s and

value of R, =0.778 for the specimen, which was launched with initial velocity of 214

m/s, and average value is adopted for Lankford coefficient of R, =0.836.

101



025

0.20

0.10 <

0.05 A

Fig. 5.4.2.2. R-ratio deduced using Taylor test with initial velocity V=214 m/s
5.4.3. Yield locus

Using above described procedure for identification of parameters for the Hill’s
criterion, using measured uniaxial yield stresses in 0°, 45°, 90° directions and
Lankford coefficient R,, the following values have been calculated: F=0.5524;

G=0.5447; H=0.4553 and N= 1.6870. The corresponding yield loci are plotted in Fig.
5.4.3.1 —Fig. 5.4.3.5.

[ g=6.4x10°57

Ny

— T=470C
£=64z10% e
— T=+400
£=64z10% e
T=+200C

£=6an0's™

Fig. 5.4.3.1. Yield loci for AA7010 alloy plate as predicted by Hill’s criterion at
£=64X10"s"
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Fig. 5.4.3.2. Yield loci for AA7010 alloy plate as predicted by Hill’s criterion at
£=64X10"s"
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Fig. 5.4.3.3. Yield loci for AA7010 alloy plate as predicted by Hill’s criterion at
£=64X1075"

103



o0 T

§=642107 "

T

2\
— U\

NAAY

. A
= \
S \
=
. — —“\ \
N !
e} & Esp(800)
m © Exp@C)
O Exp (H0C)
* Exp (140 C)
o Exp (+200 €)
Exp (50 C)
o Exp@0) f
1 Fup (+70 ) H

LN
m 7l Exp (41408
£ Ewp (4300 )
— 1=s0¢
E= 64107t
=00
r

!
&= 6451035 / /

e — TuT0
" PEEAL ]
— T=1M0C )f
&= 6471075 f
— T=4200C /
&= 645107050 / /
0 i f £ i
o 100 a0 00 400 00 B0 00
T, MPa)

Fig. 5.4.3.4. Yield loci for AA7010 alloy plate as predicted by Hill’s criterion
at £=64X10"5"

700 T T

E=647107 57

\

T
'\
)
/

40|
SN

00 /’.u Evp (500
o
o

Exp D)

Exp (+70C)
T Eap (+1400)
& Exp (+200C)

8] y [MPa]

Fap (411 C)
o Ep@d

200 0 Eap (+700C)
=

v Esp(+l40C)

i= &
e — T=+0C H

f=bdplot et H /
— T=HM0C H /
&= 6ax10 st H /
—_— T=+3JJS‘ / I
i=64x10¥ A/ 4

n T I “

n 100 2 Ei am S0 £00 700

G, [MPa

Fig. 5.4.3.5. Yield loci for AA7010 alloy plate as predicted by Hill’s criterion at
£=64X10"s"

Above figures show the experimental data and predicted yield loci by Hill’s

orthotropic yield criterion at —50°, 0°, +70°, +140° and +200° C. The yield loci show
remarkable temperature dependence.
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5.4.4. Yield surface

The yield stress determined from each tensile specimen is transformed into a
set of stress components o, o, and o, . These sets of stress components can then

be plotted as a yield surface in a three-dimensional stress space, with o, and o,
forming two perpendicular axes on the horizontal plane, and o, the vertical axis

normal to horizontal plane [80].

The Hill’s yield condition for plane stress state
&’ =(G+H)o’x —2Ho, o, +(F + H)o’y +2No’yy (5.4.4.1)

is for fixed x and y directions geometrically represented in the stress space
(0,,0,,0,) by an ellipsoid. The different loading conditions can be represented by

ellipses lying on the surface of the ellipsoid.

Fig. 5.4.4.1. Predicted initial yield surface for AA7010 alloy plate

Fig. 5.4.4.1. shows the yield surface which was computed with identified
anisotropic coefficient of Hill’s yield function for the AA7010 , where rolling
direction was chosen as the reference direction.

Corresponding initial yield surfaces for AA7010 alloy plate predicted by Hill’s
criterion at 7 =+70°C, and in the strain rate range from &=64X10"s" to
£=6.4X10°s"", are presented in Fig. 5.4.4.2. — Fig. 5.4.4.6.

105



£=6.4x10"5"
T=+70°C

o, [MPa]

Fig. 5.4.4.2. Yield surface for AA7010 alloy plate as predicted by Hill’s criterion at
£=64X10"s" and T =+70°C

£=64x107%"
T=+70°C

o, |MPa]

Fig. 5.4.4.3. Yield surface for AA7010 alloy plate as predicted by Hill’s criterion at
£=6.4X10"s" and T =+70°C
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o, [MPa]

Fig. 5.4.4.4. Yield surface for AA7010 alloy plate as predicted by Hill’s criterion at
£=6.4X10"7s" and T =+70°C

£=6.4x10"s5"
I'=+70"C

o, [MPa]

Fig. 5.4.4.5. Yield surface for AA7010 alloy plate as predicted by Hill’s criterion at
£=6.4X10"s" and T =+70"C
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Fig. 5.4.4.6. Yield surface for AA7010 alloy plate as predicted by Hill’s criterion at
£=64X10"s" and T =+70°C
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5.5. Validation
5.5.1. Implementation in DYNA3D

A general Anisotropic Elastic-Plastic material model is already implemented
in DYNA3D, and this material model has been chosen as the starting point for the

further development of new orthotropic material model.

The implemented model combines the orthotropic elasticity of the Orthotropic
elastic model with the Hill’s orthotropic plasticity model.

The constitutive matrix C that relates increments in global components of
stress to increments in global components of strain is defined as:

C=T"C,T, (5.5.1.1)
where T is the transformation matrix between the local material coordinate system

and the global coordinate system, and C, is the constitutive matrix defined in terms
of the material constants of the local orthogonal material axes.

L _ Vba _ Vca 0 0 0
Ea Eb Ec
Va1 Ve 0 0 0
Ea Eb Ec
_Yae Ve L 0 0 0
ci-| Ba B K 1 (5.5.1.2)
0 0 — 0 0
Gab
0 0 0 0 B 0
Gbc
0 0 0 0 0 1
L ca |
Symmetry of the elastic compliance C [1 implies
Vab — Vba Vca — Vac and Vcb — Vbc (5513)
Ea Eb ’ Ec Ea , Ec Eb

Positive definiteness of C, yields the following restriction on the elastic
constants:

/2 /2 %
v, {ﬂ} v, <[E} ,and v, {E} (5.5.1.4)
E E
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Values of the Poisson’s ratio are defined as

y = (5.5.1.5.)

where ¢ is the strain in the j " direction and &, is the strain in the i” direction in a

uniaxial stress test in the i” direction.

In the present model, only isotropic strain hardening is included in the form of
the linear strain hardening. The linear strain hardening law has the form:

o,=0,+E," (5.5.1.6.)

where the effective plastic strain £7 is given by
t
" =|de". (5.5.1.7.)
0

It is most convenient to choose a reference direction when using the Hill’s
theory, and in the implemented model the a-direction is chosen as a reference
direction.

The a-direction hardening modulus £, can be written in terms of the a-

direction tangent modulus E; as

E E°
P = (5.5.1.8.)
E,-E;

where E, is the elastic modulus in the a-direction. The plastic hardening modulus £

is the slope of the stress vs. plastic strain curve in a uniaxial stress test, and the
tangent modulus E; is the slope of the inelastic portion of a uniaxial stress vs. strain
curve.

Tangent modulus is defined as the slope of a line tangent to the stress-strain
curve at a point of interest. The tangent modulus can have different values depending
on the point at which it is determined.

For the a-direction as reference direction Hill’s criterion may be written as:

=2 _ 1 F'(O-c_O-b)z+G'(O-b_o-a)2+H'(o-a_o-c)2 (5519)
R+1 +2L'0'§C +2M'0'§kJ —1—2N'0'02a

where F',G and H' are found in terms of the anisotropy parameters R and P

as:
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(5.5.1.10.)

H =R=

QT

The shear terms L, M and N are found using:

L= (ch + %j(R +7)=

L
G

, 1 M
M =(Q,m+5j(1e+z)=5 (5.5.1.11.)

N = (Qm +%j(Z +1)=

L
G

where Z is defined as:
7 R F

> 5.5.1.12.
e ( )

The anisotropy parameters R, P, O, ., O,,, and Q. can be determined from
simple uniaxial material tension test in orthogonal directions.

In the plane stress case with in-plane anisotropy, the anisotropy parameters are
defined in terms of Lankford and Hill’s coefficients as:

R=R,= ﬁ;
G
H
P:R%:F; (5.5.1.13.)
2N—-(F+G
Qca :R45 :(—)
2(F+G)
and Hill’s criterion reduces to:
&’ =Fo, +Go,” +H(o, —0,)* +2No,’ (5.5.1.14.)

5.5.2. Numerical simulation

Numerical simulations of Taylor test experiments have been done in order to

test proposed procedure for calibration of Hill’s orthotropic yield criterion and
calculated parameters for aluminium alloy AA7010.

111



The material parameters that were used in the analyses are summarized in the
following table (Table 5.5.2.1.).

Table 5.5.2.1. Constants for AA7010 in the Hill’s General Anisotropic Model

Parameter | Description Nominal value
E, Elastic modulus 70.326 GPa
E, Elastic modulus 70.326 GPa
E, Elastic modulus 70.326 GPa
R Anisotropy coefficient 0.836

P Anisotropy coefficient 0.824

0,. Anisotropy coefficient 1

0., Anisotropy coefficient 1

0. Anisotropy coefficient 1.0377

Uy, Poisson’s ratio 0.33

v, Poisson’s ratio 0.33

v, Poisson’s ratio 0.33

AOPT Material axes option 2

o, Yield stress in a-direction 504 MPa
Yij Material angle 0

a. X component of vector a 0

a, Y component of vector a 0

a, Z component of vector a 1

d. X component of vector d 0

d, Y component of vector d 1

d. Z component of vector d 0

E’ Hardening modulus in a-direction 0.65 GPa
G, Shear modulus 26.889 GPa
G, Shear modulus 26.889 GPa
G, Shear modulus 26.889 GPa

Definition for globally orthotropic material (Fig. 7.1.) has been used in the
simulation with material axes determined by vectors defined as: c=a X d; b=c¢ X a,
and following vector orientations:

a=x (Z axis - DYNA model); @ =0i +0; + 1k

b=z (Y axis - DYNA model); b=d=0i + 1/ + 0k
c=y (X axis - DYNA model); ¢ =17 +0; + 0k

Fig. 5.5.2.1. Definition of orthotropic material axes
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Comparisons of simulated Taylor cylinder profiles with minor and major side
profiles of post-test geometry for Taylor specimens impacted at 200 m/s and 214 m/s
are presented in Fig. 5.5.2.2. and Fig 5.5.2.3.

0.10
] ' : Taylor test AAT010 V=200 m/s
0.08 4 1 = Major profile - Experiment
| \ \ < Minor profile - Experiment
T : < Major profile - Hill orthotropic
0.06 - \ \ ' { < Minor profile - Hill orthotropic
g W,
=} o T
2 004 N
= T A
J\‘;- \"\\\\
N
LN
0.02 t '"Q"\
N
NS
0.00 ? A —
T T T 1
0 10 20 30 40 50

Distance from impact end [mm]

Fig. 5.5.2.2. Major and minor side profile of post-test geometry and simulation results
for the AA7010 Taylor specimen impacted at 200 m/s plotted as radial strain vs.
distance

012 |
0.10 Taylortest AA7O10 V=214 mis [ |
<+ Major profile - Experiment
0.08 <+ Minor profile - Experiment
. < Major profile - Hill orthotropic
< Minor profile - Hill orthrotropic
Em 0.06 - i
a
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(=]
- 0.04
0.02 ! -
0.00 Dt O S S T
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Fig. 5.5.2.3. Major and minor side profile of post-test geometry and simulation results
for the AA7010 Taylor specimen impacted at 214 m/s plotted as radial strain vs.

distance
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Comparing the experimental shapes of the impact-interface footprints with
DYNA3D code results (Fig. 5.5.2.4. — Fig 5.5.2.5.), we can observe that Hill’s
orthotropic yield criterion can capture orthotropic behaviour for aluminium alloy
AA7010.

Taylor test AATO10
V=200 mis

Hill
orthotropic

Undefarmed
cross-section

p
Footprint

Me

Fig. 5.5.2.4. Comparison of footprints of the Taylor cylinder launched with initial
velocity of 200 m/s

Taylor tegt AATO10
V=214 miz

Hin
orthotroplc

Y

Fig. 5.5.2.5. Comparison of footprints of the Taylor cylinder launched with initial
velocity of 214 m/s
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5.6. Conclusions

It has been shown that the anisotropic behaviour of the aluminium alloy
AA7010 can be correctly described by Hill criteria in combination with a sound
parameter estimation procedure, and that accurate description of material behaviour
can be achieved. Simple assumption of isotropic hardening has been proven to be
sufficient to obtain good agreement with experimental data.

A novel method for calibration of orthotropic yield criterion has been
developed in this work. Parameters for the Hill’s orthotropic model under the
associated flow rule assumption have been identified using uniaxial tensile and Taylor
impact tests.

The uniaxial tensile test, used for material model calibration is cheap, simple
and robust. Tensile tests in a different material directions resulted in different yield
stresses, and those values have been used for calibration of orthotropic yield criterion.
Because of the limitations of the uniaxial tests (only longitudinal strain of flat tensile
specimen has been measured for all three different directions) results from Taylor
tests were proposed for determination of Lankford coefficients.

Numerical simulations of Taylor test experiments have been done, and results

from the simulations of the cylinder impact test (major and minor side profiles, and
impact-interface footprints) showed a good correlation to experimental results.
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6. MATERIAL FAILURE MODELLING

6.1. Introduction

Today it is very well known that material fracture depends on numerous
factors like loading time, local stress, initial temperature and microstructure. Several
formulae exist to predict material fracture, and those formulations represent three
different approaches, physical, microstatistical and phenomenological.

We may distinguish two different phenomena:
e Brittle fracture phenomena
e Phenomena associated with ductile fracture

Brittle fracture is characterised by the propagation of a crack with a sharp
front. Usually, this crack follows crystallographic orientation of the material. In some
cases crack may propagate between the individual material grains (inter-granular
mode).

Ductile fracture is a second common cause of failure in engineering structures.
A damaged ductile material consists of two parts: matrix medium and damage, e.g.
voids. Ductile failure is characterised by significant plastic deformation prior to
material failure. As a consequence the propagation of the crack requires more energy
and the crack tip becomes blunted. Ahead of the crack tip voids develop in the
material undergoing plastic deformation. The crack extends by linking with voids. In
contrast to quasi-static fracture, dynamic fracture is usually nucleated independently
at many locations.

The mode of failure that is representative for aluminium alloys is ductile
failure. From experimental studies, ductile fracture is dominated by the accumulation
of localised large strain and damage in the forms of void nucleation, growth and
coalescence.

The starting point for this work is to discuss simple criteria with the lowest
number of constants but with some physical meaning. A review of exiting dynamic
failure criteria is presented in the following chapter. These criteria are mainly used to
simulate spall failure for the planar impact test. For a cylindrical target, the stress
controlling damage formation (spall) is the stress o(¢) in the loading direction, which
is also the maximum normal stress. Therefore, a one-dimensional analysis can be used
in spall criteria. This can be extended to the three-dimensional analysis, by using for
the instance the mean stress or a combination of mean and equivalent stress.

6.2. Dynamic failure criteria

The most commonly used failure criteria are based on the assumption that time
and stress, are the important variables in predicting both microfracture and structural
failure under dynamic loading conditions. A general method presented by Tuler and
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Butcher [96] and by Gilman and Tuler [97] suggests the use of a damage function ¢
as a function of the entire stress history o ():

¢=[ flo@)dt (6.2.1)

where ¢ is selected to be any convenient function of damage and t is time. When ¢
reaches a critical value, t becomes the failure time or lifetime ¢,. For example ¢

could be total number or volume of microcracks formed.

Tuler and Butcher suggested a general criterion based on the concept of
cumulative damage and they found that function ¢ can be expressed in powers of

o —o0,, where o, is threshold stress below which no damage occurs regardless of the

stress duration. It was further suggested that one term might be expected to be
dominant. They proposed a relation between various loading conditions and spall
fracture, including time dependence of spalling in the form of generalized criterion,
where the spall stress depends on the stress pulse duration:

j(a(z) ~o,) 'dt=¢ (6.2.2))

where A4 and ¢ are material constants determined experimentally, o, is threshold

stress and ¢, is time to failure.

Freund suggested that Tuler’s and Butcher’s model could be rewritten in the
following manner:

j{&— } dt =t, with ¢ =y . (6.2.3)
o, Oy

0

where o, is threshold stress for the accumulated damage, A is a positive constant and
t., 1s the characteristic time, which is different for different materials. This criterion is
based on the overstress concept and in the limit o(#) - o,, ¢, = . This is not true

since the longest critical times observed experimentally are finite and relatively short,
and they are about several microseconds. For longest intervals of loading near the
threshold stress o, only the initial damage is usually found.

A number of criteria have been derived from the following form of the Tuler

and Butcher failure criterion:
t

1= j ["_‘70] dt (6.2.4.)

o
0 r
by introducing a damage parameter D as an internal variable, where in the original
Tuler and Butcher failure criterion o, is reference stress and ¢, is the time to failure.
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For example the modified Tuler-Butcher criterion proposed by Cagnoux is
given by:

1= ![(GLJ(GI:ZO ]Jl@ —DY ™" ar (6.2.5.)

where b and A are material parameters.

In the work of Wanjia the modified Tuler-Butcher criterion is proposed in the
following form:

1= !((Ji]ﬁ:go j]ldz (6.2.6.)

Davison and Stevens introduced a continuous measure of damage D, and
proposed a theory of compound-damage accumulation. Their function D can be
assumed to be the degree of separation along the spall interface and varies from 0
(which represents state of no incipient spall) to 1 (which represent state of complete
splall).

If a time 7, at the stress o produces a damage D, , then an increment in time

of At at the same stress level, will produce an increment in damage AD :

AD _Dy (62.7)

At 7,

where 7, decreases with increasing tensile stress o

7, =17(0). (6.2.8.)

For two or more load applications, we can write:

AD, = At, ADO . (6.2.9.)
7(0)

The sequence of load applications produces the following damage:

D:ZDFZ{??;) ) (6.2.10.)

and this discretized form after integrating can be represented as a continuous
function of time as:

tf
D(x,t)=D, j {ﬁ} (6.2.11))

Now we can use relationship between o and 7(o), which is proposed by
Tuler and Butcher:

(0'—0'0)+|0'—0'0|]'1

20,

—00

(o) = r{ (6.2.12.)
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where o, is a critical stress below which there is no damage, and we can
rearrange above equation as:

tf
D

D(x,t)=—"
T

—00

(@t —ay) +lo(t)—ay|T"

dt. (6.2.13.)
20

All of the above mentioned criteria, where time and stress history are the
important variables, are phenomenologically based. To account for the physical
mechanisms of failure, Zhurkov [98] introduced, the concept based on the
assumption that thermal activation is involved in material separation during fracture
processes. It is generally accepted that rate and temperature effects are related to the
thermally activated micromechanical processes of plasticity and fracturing. The
creation of free surfaces in a stressed body occurs with assistance of thermal
activation processes, or in other words, thermal vibration of the crystalline lattice
reduces the energy threshold, which has to be exceeded for fracture to occur.

The kinetic concept of the mechanism of fracture is understood as time
dependant process for which the rate is determined by stress and temperature.
Systematic studies of the relationship between the lifetime of solids under load and
the magnitude of the tensile tress and temperature have been carried out by Zhurkov.
The relationship observed between the lifetime 7, the critical stress o and absolute

temperature T could be written in the form of the kinetic equation:

t =t exp|l == 2.14.
e =l pU°kTw 6.2.14

where k is Boltzman’s constant, whils 7,,, U, and y represent material constants.
The physical sense of the kinetic equation is defined by the three parameters: ¢,,, U,
and y . They are as follows: ¢, coincides with the period of the natural oscillation of
atoms for the material under consideration, U, can be interpreted as the magnitude of
the energy barrier related to the probability of breaking the bonds defining strength,
and y called the activation volume, is linked to the microstructure. This constant may
be interpreted as a coefficient which takes into account the overstress on a bond as

compared to the average stress in a solid. The dependence of effective barrier energy
AU =U,—yo on the stress results in sharp acceleration of the fracture process in a

stressed body, and in a decrease of its lifetime under load.

Another approach to incorporate physical mechanisms of failure is based on
the rate theory of fracture. The rate theory of thermally activated fracture was
developed by considering the bond-breaking and establishing processes as
fundamental mechanism of fracture initiation. In this approach a fracture forms and
propagates because the rate of bond breaking is greater then the rate of bond re-
establishment. Tobolsky and Eyring [93] originally developed this theory for
polymeric threads. It has been shown by the other investigators, that theory is equally
valid for crystalline and amorphous materials.
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In this approach we can observe constant stress o, which acts on N bonds per
unit area. The work done by the force acting on a bond during its breaking is

W = % A (6.2.15.)

where A is the average distance over which the force acts during bond breaking
process. The net rate of bond breaking is approximated as:

_aN _ Nk—Texp(— ijzsin Ao (6.2.16.)

dt h
where k is Boltzmann’s constant, T is absolute temperature, h is Planck’s

constant and U is free energy of activation.

At large stresses and low temperature when the bond healing process does not
take place, the equation for net bond breaking can be written as:

_dN _ Nk_TeXp[_ Ej exp(ﬁj (6.2.17.)
dt h kT NKT

Above equation can be integrated as:

0
— iexp(—)“—"de =tck—Texp(—ij, (6.2.18.)
N N N

where ¢, is the lifetime of specimen subjected to constant stress. If the following

o Ao .
substitution is made, y = ——, we can write:
NkT

© 1 KT U
- | —exp(-g)dy =t, —exp(— —J (6.2.19.)
A0/NokT X h kT

The exponential integral on the left-hand side of this equation for large values
of y reduces to:

| L exp(c gy ~ SPED) (6.2.20.)
Ao /NokT 4 X
Therefore, at constant load the lifetime can be expressed as:

Int, :ln%+£— Ao

(6.2.21)
Ao kT NkT

One can rearrange this equation in the form, which was used by Zhurkov:
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_Jo
;= / =1, exp( — Uj (6.2.22.)

kT

Dremin and Molodets [100], have proposed a modification of the Zhurkov
criterion, to be applied in spall mechanics. They proposed modification, which takes
into account the local parameters of the fracture process. This is because the barriers
are overcome inhomogeneously at different macroscopic stress levels. The
overcoming takes place only in some microvolumes. It means that the activation
energy has to be a function of the local stress and the local activation volume. They
used the fact that during plastic deformation, failure does not occur instantaneously,
but rather after a certain cumulative time. That introduced the damage accumulation

rate function ¢ that characterizes thermally activated damage evolution:

ty
=4, eXp(k—TUj , 1= I¢dl and AU =U, — fo (6.2.23.)
0
Their assumption is that parameters ¢50 =1 s U, and B do not depend on
0

temperature, and that AU(o) is the stress-dependent free energy of damage

activation. It is also assumed that time interval of the micro crack growth is very short
(typically few nanoseconds in hard materials) in comparison to the critical time to
spalling.

Klepaczko [101], following Zhurkov’s approach, proposed cumulative
criterion for short and very short loading times. It should be noted that this criterion
has physical motivation based on thermally activated rate processes, and it can predict
very well the critical time for failure ¢, as a function of the spall stress o for different

materials.
The proposed model introduces a temperature factor that depends on the
activation energy AU,. To derive this criterion, he used the stress dependent

activation energy given by Yokobori [104]:
o
AU(c) =AU, 1n(—°j (6.2.24.)
o

where o is the local stress, o, is threshold stress, AU, is the barrier energy for non-
stressed body or its activation energy.

Substituing the expression for Yokobori’s activation energy, Eq. (6.2.24.), into

cumulative damage criterion, Eq. (6.2.23.), which was proposed by Dremin and
Molodets, Klepaczko’s cumulative failure criterion in the integral form becomes:

“( (1) a(T)
(—] dt=t,;t <t,; o220, (6.2.25.)

where:
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- t. is the time to failure and o,,?.,,(T") are three material constants at constant
temperature T
- 0, 1s threshold stress which corresponds to the characteristic time ¢,

- t, 1s the longest critical time when o (¢,,) =0, , for . 2¢,,, 0 =0, and o, = const

-a(l)= AU%T, where T is absolute temperature, AU, is activation energy, and k is

Boltzmann’s constant.

When the process is non-isothermal, as it is in the case of spalling, the
exponent «(7T") is time dependent due to changes of temperature during loading or

unloading a/(7,t). In such a case the proposed cumulative criterion must be integrated

accordingly, including the temperature history T(t).

Since this spall criterion is general, it includes both the brittle and ductile
micromechanisms of separation. Those two modes are combined in different
proportions determined by the value of exponent « . The criterion universality lies in
the fact that it has a cumulative character and the exponent « is temperature
dependent. When temperature increases more ductile micromechanisms are activated
and threshold stress for spalling increases up to a high level of ductility.

Recently, Hanim and Klepaczko [104], have introduced another effect of
temperature in this criterion by expressing the threshold stress o, as a function of

temperature:

o,(T) = o0 40 (6.2.26.)

Ho

where o’ is the threshold stress at absolute temperature near 0K, (7)) is shear
modulus as a function of temperature T, and g, is shear modulus near 0 K.

Following the work of Kocks [55], normalized activation energy u, can be
defined in the following manner:

AU, = u(T)b’u, (6.2.27.)

where b is Burgers vector, and x(7T') is temperature dependent shear modulus. We

can assume that stress dependent activation energy given by Yokobori can be written
in the following form:

0y
AU (o) = u(T)b’u, In 4 (6.2.28.)

%(T )

Substituing the above expression for activation energy into cumulative
damage criterion Eq. (6.2.23.), which was proposed by Dremin and Molodets, a
modified Klepaczko’s cumulative failure criterion in the integral form can be written
as:
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u(Mb*u,

[ o@) [ kT ]
| @ di=1, (6.2.29.)

i

To determine the parameters ¢,,, o, and u,, modified Klepaczko’s failure

criterion, could be integrated [106] and defined as a fitting equation in the following
form:

u(T)  py |\ kT ]

kT
3 (uobzﬂ(T)]
o —EHMH]%—O} (6.2.30.)

Using this fitting equation and plotting normalized critical spall stress data
o/u(T) versus critical time of loading data t., from series of plate impact tests,

parameters ?¢,,, o, and u, could be easily determined. Plate impact tests are carried

out at different impact speeds resulting in different stress levels, and with different
plates thicknesses, resulting in different loading times.

Besides those criteria, which can be generalized as Tuler-Butcher type criteria,
we can recognize second type of dynamic failure criteria and those are based on
nucleation and growth of cracks or voids. First type of these criteria are based only on
one evolution equation of damage and do not specify the mechanisms of nucleation,
growth and coalescence.

Microdamage nucleates at heterogeneities in the material such as inclusions,
grain boundaries, etc. Nucleation occurs in two stages. First, a threshold condition
must be exceeded before nucleation can begin. Second, once the threshold is met,
nucleation will occur over a size range of heterogeneities and at a material specific
rate. Growth, by definition, is the increase in size of the microscopic cracks or voids.
And finally, after the microcraks or voids have grown by an amount comparable to
the average void spacing, coalescence must begin.

Curran et al. [107] developed a physically based model involving the
nucleation, growth and coalescence of voids in a region undergoing tensile stresses.
Their approach involves expressions for the rate of nucleation N and the rate of
growth R.

In this criterion, the form of the equation for nucleation rate function is
consistent with experimental results of Zhurkov, and is expressed as:

N =N, exp(mj (6.2.31.)
O-r

where N, is the threshold nucleation rate, o, is nucleation tensile threshold

stress, and o, is reference stress or stress sensitivity for nucleation.
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This equation expresses the fact that below o,,, no nucleation is observed,

and above threshold stress the nucleation rate increases exponentially with tensile
stress o .

The growth rate is given by:
. (o-0,
R=|—=|R (6.2.32.)
4n

where R is void radius, O is the growth threshold stress, and 7 is material

viscosity. This equation states that the growth rate R is proportional to the radius of
void.

The total relative void volume Vv associated with nucleation and growth at the
end of loading time interval A¢ consists of the void nucleation volume and the void
growth volume and is given by:

a1
where V,, =8zNAtR; is relative void volume at the beginning of the time

o 0 -0,
V, =8aNAIR} +V, exp[3—Atj (6.2.33.)

interval, and R, is the radius at the beginning of the time interval.

To describe void nucleation and growth in ductile metals, a dynamic model
has been proposed by Rajendran at al [107]. In this criterion, the void nucleation
proess was modelled through a Gaussian distribution. This model is based on pressure
dependent yield criterion for compressible plastic flow and is strain rate and loading
history dependent. If we denote by f the volume fraction of voids, the evolution rate

of this fraction is given by:
f=F,6+Fé+f, (6.2.34.)

The first term in this equation represents the stress-controlled evolution where
o 1s the stress rate. The second term represents the strain-controlled evolution where
£’ 1is the plastic strain rate and the last term represents the rate of growth. Functions
F_and F, are given by the following Gaussian distributions as initially proposed by

Chu and Needleman [105]:

(6.2.35.)
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Here, o, and &, are the mean equivalent threshold stress and strain,

n

respectively, around which the nucleation stress and strain are distributed in a
Gaussian manner, respectively. The terms s, and s, are the standard deviations of

these distributions. The terms f, and f, define the maximum allowable void volume

fraction due to stress and strain nucleation, respectively. In this model, the rate of
growth of voids is given by the classical relationship:

fo=0=r)er (6.2.36.)

where ¢ 1is the trace of the plastic strain rate tensor which represents the
volumetric inelastic strain rate.

The Cochran-Banner model [108] is another representative of this group of
damage models. This model was originally developed and tested for solid elements as
a part of the 1D code. The Cochran-Banner damage model has a simple and efficient
theoretical definition, and input constants can be obtained from the uniaxial tensile
test. These arguments ensure that the model can be useful for the crashworthiness
simulations.

It is assumed that the level of resulting tensile stress controls the damage
initialisation in material. Once the certain level of tensile stress is reached, this
triggers the nucleation and growth of microscopic voids. In the final stages the micro-
voids will coalesce to form the macroscopic void. The formation of macroscopic void
represents the stage of material separation, or material failure.

The main idea behind this model is to describe the transition from undamaged
ductile material to ductile failure, i.e., to formulate the weakening process in material
influenced by the damage growth.

fail

This model is based on two parameters, o’ (tensile strength) and D,

(critical length, corresponds to total fracture):

- ¢’ is defined as the largest tensile stress that the material can withstand before any
damage in material occurs. This value can be approximated quite well from the
experimental tensile data for the material of interest.

- D, is defined as a material constant which corresponds to total fracture. D, is

proportional to the size of voids when they coalesce, and it may be related to the grain
size.

The method of statistical averaging of microscopic processes into a continuum

description of material fracture is applied in the Cochran-Banner model. Variable
D(x,t) is defined as the volume of the microcracks at a given location and time.

D(x,t)=[dV ] 4, dv>0 (6.2.37.)
0
where A is the current element cross-section normal to the loading direction.

In one dimensional finite difference calculation, the damage will be the
volume of microcracks (actual volume, not the relative value) per unit area normal to

125



the strain in a given mass zone. In a general 3D case, the damage is defined by the
volume of microcracks (actual volume, not the relative value) per average element
cross-section area.

In order to calculate the damage a simplification can be made that all

expansion that occurs after the tensile strength o/ has been exceeded could be
recognised as the microcrack volume growth. This definition allows damage to be
related directly to the other dynamic variables.

Following from theory of microvoids growth, the strength function is defined

D 2/3
F, =1- [FJ (6.2.38.)

0

as:

The value of F,, can be interpreted as a factor that reduces the cross

sectional area over which the stress acts. During the phase of damage growth material
properties are degraded. This is described by scaling of the yield strength, Young’s
modulus and shear modulus by the value of F,, , with the global effect in the

decrease in stress and flow stress increments.

The power of 2/3 comes from the cross sectional area of spherical voids being
proportional to the two-thirds power of the void volume. In this case it is assumed that
microvoids have spherical shape. This is an isotropic damage model, which can be
used for both isotropic and orthotropic materials.

To account for the physical mechanisms of failure, the concept of thermal
activation of damage and failure has been adopted as basis for this material model
development and Klepaczko’s failure criteria has been used as a starting point. This
basic assumption makes the proposed approach compatible with the Mechanical
Threshold Stress model, which was used as the strength part of the proposed
constitutive model. The developments were incorporated into public domain
DYNA3D.
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6.3. Model validation
6.3.1. Plate impact test experiment - analysis of pullback speed

Plate impact experiments are used to study dynamic deformation and failure
modes of materials at high strain of rates. Variations of the free surface speed in the
planar impact test can be directly related to the spall strength. The analysis of these
profiles provides us with the values of spall stress and time to failure. Unloading starts
at point of first maximum and continues until point of first minimum, where the new
compressive wave arrives. This wave is created by the formation of spall surface
inside the target. The amplitude of spall is signalled with second maximum (Fig.
6.3.1.1.). Four different approaches [104] for determination of spall strength and
critical time of spalling are summarized.

1) The difference of free surface speeds between the first maximum (impact
speed) and the first minimum called pull-back speedvelocity, can be directly related to
the spall strength o, by the following equation:

op = % PCLAV, (6.3.1.1)

where C,, is the speed of the rarefaction wave emitted by the spall surface. It is
assumed 1n this calculation that the rarefaction wave is purely elastic C,, = C,. This

speed can be found from the distance of the spall surface Zc to the free surface and
the travel time At, of rarefaction wave:

Zc

Co=—.
1R AtR

(6.3.1.2)

The critical time of spalling ¢, can be found from the following expression:
t.=t,—t,. (6.3.1.3)

2) The second approach is based on propagation of elasto-plastic wave with
the bilinear material behaviour, and consequently with two wave speeds, elastic C,

and plastic C, . Therefore, following formula was derived:

-1
Op = pClAVf{1+QJ : (6.3.1.4)
CP
The critical time can be calculated using the elastic and plastic slownesses
S;=1/C and §,=1/C,:
At,=Z.(S,-S5) (6.3.1.5)
where AZ_is distance between the spall surface and free surface of the target where

AV is measured.

127



3) The third is a slightly different approach for determining the critical
conditions of spalling and is based on the increment of the free surface speed 6V, and

the formula used is:

o =pPC(AV + V) (6.3.1.6)
where oV is the speed correction caused by plastic waves. When acceleration or
deceleration of the free surface speed V/;Y is determined, the final formula for the
speed correction takes the form:

oV, =AZ (S, —SP)M (6.3.1.7)

I A4

where ¥, and ¥, are accelerations of mass at the wave front before and after spalling.

4) A direct application of the acoustic approach can be used to estimate the
critical conditions of spalling. The critical time ¢, after which spall occurs can be

determined using acoustic approximation:

2L, (6.3.1.8)

where L; is thickness of flyer and C, is speed of elastic wave. This is the time

interval from beginning of tensile loading in the middle of target to the final spall.
During this interval the stress plateau is o, and applied stress can be represented with

following formula:

.
o =G (6.3.1.9)

Thus, with the input data L, and V,, two parameters can be determined after

each experiment. It means that for the given stress level o,. the spall occurs at 7, .

A
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1 I“I
\
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Free-surface velocity, V,
. AV

Time [pis] Es

Fig. 6.3.1.1. The characteristic points during variations of the free surface velocity
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6.3.2. Plate impact test simulation

In order to analyse proposed criterion for spall phenomenon, proposed
criterion was implemented in DYNA3D code and incorporated into the MTS material
model. A series of FE simulations have been performed for OFHC Cu with a circular
target plate d=70.0 mm, impacted with flayer plate with diameter of 50 mm and with
the impact speed of 304 m/s. The thickness of flyer plate was 5.0 mm, and the
thickness of the target plate was 10.0 mm. Target was supported on the back with 12
mm block of polymethylmethacrylate (PMMA). Due to radial symmetry only quarter
of the flyer and the target supported with PMMA backing have been modelled with a
uniform solid butterfly mesh (Fig. 6.3.2.1.).

Supporting plate

Fig. 6.3.2.1. FE model of the plate impact test

On the basis of published data [33] for spall strength for OFHC Cu (Fig.
6.3.2.2.), parameters, which are included in proposed failure criterion Eq. (6.2.29.)
were determined as: threshold stress o, =0.95GPa, normalized activation energy

related to the damage bond breaking u, = 0.0508 and critical time ¢,, =1.4us .
Values of the other parameters, which are included in the proposed criterion are:
Boltzmann’s constant & =1.38 X107 *%(, Burgers vector b = 0.255X10~ m, and

shear modulus x =b, — b, /(exp(%)—l], where b, =47.3GPa is shear modulus at

0K, b,=2.40GPa and b, =130K . Parameters b,, b, and b, are fittting constants.
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Fig. 6.3.2.2. Normalized critical spall stress versus
critical time of lading for OFHC Cu
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The flyer plate was modeled with Isotropic-Elastic-Plastic-Hydrodynamic model
with Grunisen Equation of State. The material constants of the OFHC Cu and PMMA
are listed in following tables.

Tab. 6.3.2.1. Material parameters for OFHC Cu used in the numerical simulation

Parameter | Description Nominal value
G Shear modulus 48.4 Gpa

o, Yield stress 150 MPa

p Density 8924 kg/m’

Tab. 6.3.2.2. Grunisen Equation of State constants for OFHC Cu

Parameter | Description Nominal value
C Bulk sound speed 0.394 cm/ us
S First Hugoniot slope coefficient 1.489 (1.51)
Sy Second Hugoniot slope coefficient 0

S; Third Hugoniot slope coefficient 0

o Gruneisen coefficient 2.02

a First order volume correction coefficient 0.47

Target plate was modelled with Mechanical Threshold Stress model in the
combination with Grunisen Equation of State. (Tab. 6.3.2.3.)

Tab. 6.3.2.3. Mechanical Threshold Stress model parameters for OFHC Cu

26, 59]

Parameter | Description Nominal value
G, Athermal rate independent threshold stress | 40.0 MPa
6, Initial threshold stress at zero plastic strain | 46.0 MPa

<, Normalized activation energy 1.6

& Reference strain rate 10" s

b Magnitude of Burgers vector 0.255x10°m
k Boltzmann’s constant 1.38x107% J/K
p Free energy equation exponent 2/3

q Free energy equation exponent 1

A Saturation stress equation material constant | 0.312

Gy Saturation stress at zero degrees K 900.0 MPa
£ Saturation stress reference strain rate 6.2x10" s
g Hardening function constant 2371 MPa
a Hardening function constant 8.295 MPa
a Hardening function constant 3.506 MPa
bo Shear modulus at zero degrees K 47.3 GPa

b, Shear modulus constant 2.40 GPa

b, Shear modulus constant 130 K

T, Reference temperature 300 K

P Density 8924 kg/m’
Cp Heat capacity 385 J/kgK
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PMMA backing was modeled with isotropic—elastic—plastic-hydrodynamics
material model with Mie-Grunisen equation of state, and value of 350 MPa was used

for dynamic yield stress.

Tab. 6.3.2.4. Material parameters for PMMA used in the numerical simulation

Parameter | Description Nominal value
G Shear modulus 2.32 GPa

o, Dynamic yield stress 350 MPa

P Density 1182 kg/m’

Tab. 6.3.2.5. Grunisen Equation of State constants for PMMA

Parameter | Description Nominal value
C Bulk sound speed 0.218 cm/ us
Si First Hugoniot slope coefficient 2.088

Sy Second Hugoniot slope coefficient -1.124

S3 Third Hugoniot slope coefficient 0

o Gruneisen coefficient 0.85

a First order volume correction coefficient 0

A uniform solid butterfly mesh was created for the parts, flyer and target plate
having identical mesh density. A sensitivity analysis used to define an appropriate
mesh density is presented in Appendix D. The density of the mesh of the PMMA
backing was twice as coarse than the backing plate mesh in the thickness direction.
Ten elements were defined through the thickness of the model of the target, and the
same ratio was applied to the model of the flayer. A fine mesh was required in order
to capture the continuous propagation of shock wave through the thickness of the
plates. A sliding contact interface was defined between the flyer and target. This type
of contact allows the surfaces to separate and move relative to each other in a
completely arbitrary fashion.

P [GPa]

5575 -- 6.000
B 5.150 -- 5.575
B 4725 -- 5.150
0 4300 -- 4.725
3875 - 4.300
3450 - 3.875
3025 - 3.450
2600 - 3.025
I 2.175 - 2.600
B 1.750 -- 2175
B 1325 -- 1,750
B 0.9000 — 1.325
0 04750 — 0.9000
0.0500 — 04750
-0.3750 - 0.0500
N -0.8000 -- -0.3750
B -1.225 —~ -0.2000
N -1.650 - -1.225
B 2075 - -1.650
I -2.500 - 2,075

Time [us]

Distance [mm]

Fig. 6.3.2.3. Time-distance diagram for OFHC Cu plate impact test simulation
without failure criterion for the 6 us response time.
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In order to analyse implemented failure criterion, Langrangian time-distance
diagrams were used, and the results from numerical simulations with and without
implemented criterion were compared. Diagrams were created for the sets of the
elements through thickness of the flayer and the target. Points whose coordinates are
calculated for the centroids of the elements represent each element.

The time-distance diagrams were constructed from pressure-time data for
each of the elements, which are positioned on the axis of the symmetry. For the
elements, the coordinate through the thickness of the material represents distance in
the time-distance diagram. The figures Fig. 6.3.2.3. and Fig. 6.3.2.4. show the time-
distance diagrams for 6 us response time.

One can observe that release waves propagating into the material from both
sides superpose inside the target plate and cause high-tension stress. When this
tension stress exceeds the dynamic tension strength of the material, the material fails
and new free surface is created inside the target plate. The creation of the spall plane —
free surface, reduces the tension stress inside the material to zero, and results in the
reflection of the reminder of the release wave as a compressive wave.

The implemented damage model detects incipient spall if the mean stress
exceeds the spall threshold stress. Once incipient spall is detected, model calculates
evaluation of damage using proposed cumulative criterion. When an element fails due
to accumulated damage, it is removed from calculation.

P [GPa]

I 5583 - 6,000
B 5.167 — 5.583
I 4.750 - 5.167
14,333 — 4.750
3.917 - 4333
3.500 ~ 3.917
13.083 ~ 3500
N 2667 - 3,083
I 2.250 ~ 2667
I 1833 - 2,250
1417 - 1833
0 1.000 — 1417
[0 0.5833 -- 1.000

Time [us]

. 01667 -- 05833
[ -0.2500 - 0.1667
B -0.6667 - -0.2500
I -1.082 - -0.6667
B -1.500 - -1.083

4 3 -2 4 0 1 2 3 4 5 6 7 8 9

Distance [mm]

Fig. 6.3.2.4. Time distance diagram for OFHC Cu plate impact test simulation with
implemented failure criterion 6 45 response time.
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Contour plots of pressure at different stages of spalling for impact speed of
304 m/s are presented in Fig. 6.3.2.5. Spall starts near external diameter where the
lateral release wave superimposes with the longitudinal release waves. However, the
spall propagates almost instantaneously, and the free surface is created.
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Flate impact-OFHC-V=3H4 m-s fringe levels
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Fig. 6.3.2.5. The pressure plots at different stages of spalling of OFHC Cu for incident
speed 304 m/s

The characteristic of the plate impact problem is that it can be reduced to a 1D
wave propagation, and building an FE model in this case is greatly simplified.

In the model that was used for the simulation the three parts were modelled as
rectangular bars (Fig. 6.3.2.6.) of 4x4 elements, and symmetry planes were applied on
all the sides. This resulted in a 1D strain state along the length of the bar. A non-
reflecting boundary condition was applied at the back of the PMMA block, and this
condition ensures that no release wave travels back through the PMMA in to the
OFHC Cu target block.

The impactor is modelled with 25 elements along the axis of impact, the test
specimen and the PMMA block are modelled with 50 and 60 elements along the axis
of impact, respectively. A contact interface was specified between the impactor and
the test specimen. This mesh is sufficient to allow the resolution of all the relevant
elastic and plastic waves in the target and the flyer.
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Fig. 6.3.2.6. FE model of the plate impact test — 1D case

The stress time history was recorded in the elements at the back of the test
specimen. In the figure Fig. 6.3.2.7. the simulated stress trace at the interface between
the target material and PMMA block, for the plate impact at 304 m/s, is presented.
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Fig. 6.3.2.7. Simulation results of 304 m/s OFHC Cu plate impact test
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6.3.3. Taylor cylinder impact test simulation

Another validation, using Taylor cylinder impact test, of the proposed criterion
for tensile failure was performed after implementation of material model into
computer code and determination of material constants for AA7010. In order to
analyse proposed criterion for tensile failure, as previously stated, proposed criterion
was implemented in DYNA3D code and incorporated into MTS material model.

A series of FE simulations of Taylor cylinder impact test have been performed
for AA7010. In the simulations the cm—g — us system of units was used. MTS
material model was used in the combination with a Gruneisen Equation of State, and
they have been presented in tables Table 4.4.3. and Table 4.4.4. The material
parameters of the failure criteria determined on the basis of published data [103], and

used in numerical simulation of Taylor impact test are summarized in the following
table (Table 6.3.3.1.).

Table 6.3.3.1. Failure criteria material parameters for AA7010

Parameter Description Nominal value
o, Threshold stress 1.05GPa
U Normalized activation energy 0.0087
teo Critical time 2 us
B Magnitude of Burgers vector 0.286x10 m
K Boltzmann’s constant 1.38x10% J/K
by Shear modulus at zero degrees K 28.83 GPa
b, Shear modulus constant 4.45 GPa
b, Shear modulus constant 248.5 K

Depending on the initial impact velocity and the material strength a very vide
range of strain rates, temperatures due to adiabatic heating, and strains can be
achieved from single test. This test provides a clean set of experimental data from
which is possible to validate the implementation, and accuracy of material model in
computer code.

Loading situations in Taylor test can obviously (Fig. 6.3.3.1.), generate
internal tensile stresses in materials, leading to internal fracture, if the amplitude and
duration are sufficient. This computer simulation shows how reflected compressive
and lateral release waves interact in a cylindrical Taylor specimen subjected to normal
impact, generating tensile stresses. Tension generated by lateral release is shown and
those tensile stresses can lead to fracturing.

Time sequence of stress fields and damage fields generated in Taylor
specimen, impacting target with velocity of 214 m/s is shown in figure Fig. 6.3.3.1.,
and damage parameter in this simulation is defined as:

[#(T)b%u}
. O—(t) kT

j JO/”(T ) dt
D= ] (6.3.3.1))

Z‘c()
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Fig. 6.3.3.1. Time sequences of stress fields and damage fields generated in Taylor
specimen impacted at 214 m/s
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In order to reduce the number of elements in the simulations model, and the overall
time of simulations, only quarter of Taylor cylinder was modelled with a uniform
solid butterfly mesh. Final damage fields generated in Taylor specimen, impacting
target with velocity of 200 m/s and 214 m/s are shown in figure Fig. 6.3.3.2.
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1. ElBE+BB]

8.819E-81—
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1.013E-@1—

—Z.581E-B2
-2.881E-p2—

V=200 m/s V=214 m/s
Fig. 6.3.3.2. Damage fields generated in AA7010 Taylor specimen

6.4. Conclusions

The presented results demonstrate that the proposed cumulative damage and
failure model based on the assumption that damage and fracture processes occur with
the assistance of thermal activation can simulate high strain rate deformation
processes and dynamic tension failure.

This basic concept of thermal activation of damage and material separation
during fracture process has been adopted as basis for this material model
development. Klepaczko failure criterion, has been modified and used as a starting
point in this research. The assumption is that creation of free surfaces in a stressed
body occurs with assistance of thermal activation processes makes the proposed
approach compatible with the Mechanical Threshold Stress model, which was used as
the strength part of the proposed constitutive model, and those developments were
incorporated into public domain DYNA3D.
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The damage model, combined with the MTS strength part of the constitutive
relation and Grunisen equation of state, can simulate high strain rate shock induced
deformation processes. Numerical analysis predicted the occurrence of spall,
including the location of initiation of spall zone and evolution of the free surface in
the interior of target for the plate impact test considered. Proposed cumulative
criterion is able to reproduce the “pull-back”™ stresses of the free surface caused by
creation of the internal spalling.

Numerical simulation clearly demonstrates the ability to predict the damage
process in Taylor impact test simulation and proposed material model enables one to
analyse numerically the damage over a wide range of impact speeds and temperatures.

Proposed material model has to be coupled with orthotropic yield criterion in
order to capture orthotropic behaviour of material of interest, and proposed
thermodynamic framework for coupling elasto-plasticity and damage is presented in
the following chapter.

139



7. COUPLING OF ANISOTROPIC ELASTOPLASTICITY
AND DAMAGE

7.1. Introduction

The nonlinear material behaviour may be attributed to two distinct mechanical
processes: plasticity and damage mechanics. The two phenomena can be described at
the continuum level by the theories of plasticity and continuum damage mechanics.
Thus, a multi-dissipative model is necessary, and this can be accomplished by
adopting two loading surfaces and two potential functions, one for plasticity and the
other for damage [120].

Ductile materials usually fail as the result of nucleation of microscopic voids,
growth of the microvoids by means of deviatoric and volumetric strain, and
coalescence of microvoids linking the growing microvoids with adjacent ones, thus
leading to complete reduction or loss of load carrying capacity of the material, as the
damage density approaches unity. Experimental observations show that the
accumulation of microdamage has a tendency to be localized. This progressive
physical process of degradation of the material mechanical properties up to complete
failure is commonly referred to as the damage process. This work is concerned with
anisotropic ductile damage.

Many models for estimation of microdamage accumulation in ductile
materials have been proposed. Some of them are based on damage micromechanics —
micromechanical damage models, while others are based on the continuum damage
theory — phenomenological damage models.

Gurson [127], formulated a model of the first type where he obtained, based
on an approximation analysis of spherical voids, a yield function for porous ductile
materials with perfectly plastic matrix. Several authors have proposed modification of
the Gurson’s model, e.g., Tvergaard and Needleman. Tvergaard [128] modified
Gurson’s model to improve the predictions at low void volume fractions. Needleman
modified Gurson’s yield function in order to account for rate sensitivity and necking
instabilities in plastically deforming solids and to provide better representation of
final void coalescence. In this way, micromechanical models are based on physical
principles and various applications have modelled microdamage growth and ductile
failure [129].

Phenomenological models are based on the concept of Kachanov [94], who
was the first to introduce for the isotropic case a scalar variable, which may be
interpreted as the effective surface density per unit volume. Kachanov pioneered the
subject of continuum damage mechanics by introducing the concept of effective
stress. This concept is based on considering a fictious undamaged configuration of a
body and comparing it with the actual damage configuration. He originally formulated
his theory using simple uniaxial tension. Following Kachanov’s work researchers in
different fields applied continuum damage mechanics to their fields, e.g., Krajcinovic
[94] for brittle materials and Lemaitre [122] for ductile materials.

Ductile materials undergo a strong plastic deformation, which has a major

influence on the damage evolution. There are many models with coupling between
plasticity and damage. The models that adopt two separate damage and plasticity
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loading surfaces with two independent associated flow rules present a way for
coupling between plasticity and damage. Those models have been extensively used by
many authors, e.g., Chow and Wang [113,114], Simo and Ju [117,118], Zhu and
Cescetto [111], etc. This approach has also been used in this development.

Second approach for coupling between plasticity and damage can be achieved
by using one single smooth generalized yield surface and an associated flow rule for
the plasticity and damage evolutions, e.g., Gurson, Tvergaard, Needleman, etc.
Those models obviously cannot describe all loadings correctly since a hydrostatic
stress will certainly cause damage before any plastic deformation can be noticed. In
addition, most of those models are restricted to low damage levels or dilute
distribution of defects and therefore they fail to account for the interaction of the
defects adequately.

Another approach to achieve this coupling is by using separate plasticity and
damage surfaces with separate non-associated flow rules in such a way that both
damage and plasticity flow rules are dependent on both the plastic and damage
potentials. This approach has been used by Voyiadjis [120].

7.2. Continuum thermodynamics

The thermodynamic relations proposed in this development follow the widely
accepted approach based on internal variable representations. This work is limited for
pure mechanical adiabatic (no internal heat generation sources and heat fluxes) and
infinitesimal deformations. This assumption allows for an additive decomposition of
the strain tensor, ¢ into elastic and plastic components, that is:

e=¢g"+¢’ (7.2.1)

The internal energy per unit mass, #, at a continuum point x, depends on a
set of internal thermodynamic state variables. In functional form, the internal energy
potential is:

u = ulx,s(x),&(x),v,(x)] (7.2.2)

where s is the entropy per unit mass and v, is a set of mechanical variables or sub-
states used to model the irreversible or dissipative processes.

The second law of thermodynamics expressed in the form of the Clausius-
Duhem inequality:

PO = pu(s,e,v,)—0c: & (7.2.3)

where p is the density, @ is the absolute temperature, and o is the Cauchy stress
tensor. The substitution of the internal energy into above equation yields:

ou ou ou
0—— s+ —p—|:&—p—v. 20 7.2.4
p( asj [0 pagj /oai i ( )
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This inequality must hold for all admissible processes. Since s and & are
arbitrary, their coefficient must vanish, resulting in two consequences. The absolute
temperature, €, is the thermodynamic variable or force conjugate to the entropy and
the stress tensor, o, is the thermodynamic force conjugate to the strain tensor, that is:

ou ou

0=— 7.2.5 =p— 7.2.6
2 (7.2.5) =P, (7.2.6)

A thermodynamic variable conjugate to an extensive parameter, such as strain,
is often called a thermodynamic force and the time rate of change of the extensive
parameter (strain rate) is termed a flux. The final term is often defined as the
dissipation rate, due to the association with the dissipative variables, v,. The

dissipation rate is defined to be the following:
y=—pJty (7.2.7)
ov,

l

Then the second law reduces to:
y2>0. (7.2.8)

The Helmholtz free energy is thermodynamic potential given by a “contact” or
Legendre transformation of the internal energy using conjugate pair (s,8). The
Helmholtz function is:

v =u(s,&e,v,)—6bs. (7.2.9)

By taking the total derivative, the following functional dependency is
obtained:

dy = du—d(6s) = as + e+ gy, —ods—ads = M ds+ Mav, —sdo (7.2.10)
Os & ov, os ov,
therefore,
l//:l//(eagavi) (7211)

Hence, the internal energy is thermodynamic potential for entropy and the
mechanical variables and the Helmholtz function is a potential for temperature and
mechanical variables. The natural choice for isentropic and isothermal processes are
the internal and the Helmholtz potentials, respectively.

For purely mechanical theories the first law of thermodynamics or balance of
energy yields:

pi=C:é (7.2.12)

This concludes the overview of the thermodynamic equations proposed in this
development of general thermodynamic framework for coupled elasto-plasticity and
damage.
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7.3. General thermodynamic framework for coupled elasto-plasticity
and damage

7.3.1. Thermodynamic variables and potentials

Since the plasticity and the damage processes are irreversible, they are by
definition dissipative, and the excess energy is dissipated in the form of heat. The
local generation of heat, which for heterogeneous deformation fields results in a flow
of heat, is not considered, because of isothermal assumption. The isothermal
assumption is a reasonable approximation when the amount of heat generated is
relatively small, or when a process occurs rapidly and the material parameters are
relatively insensitive to changes in temperature.

To describe the irreversibility associated with the plastic deformation and
damage evolution processes, a set of variables is introduced.

For plasticity, let £” be the plastic-strain tensor and introduce two second-
order tensor variables in strain space that will be used to describe the plastic
hardening phenomena. Let «” be the hardening variable that describes the shift in the
centre of the yield surface (kinematic hardening) and &' be hardening variable that
describes the shape and size of the yield surface (isotropic hardening).

To describe the damage process, a generalized damage tensor, D, is introduced
as a measure of degradation of the material integrity. Let " be the damage variable,

which describes the shift in the centre of the damage, surface and which is a tensor of
the same order as D. Furthermore, let S’ be damage variable which describes the

shape and size of the damage surface. With this definitions and assumptions, the
functional form of the Helmholtz free energy is:

v=w(se’,a,a",D,p',B"). (7.3.1.1)

The conjugate thermodynamic forces are defined by:

oy oy
o’ =— =—p——
P oer PoD
: oy : oy
o' =— Y =—p—— 73.1.2
P paﬂ, ( )
G” = _p aV/ Y” E_p al//
aa” aﬂ"

The internal energy now takes following form:

pu(s,e,e’,a",a",D,p', ") = py(e,e’,a',a",D, B, ")+ pOs  (7.3.1.3)
Based on the assumptions given above the Helmholtz free energy can be
divided as follows:

py(eel,a',a",D,B', ") =W, (¢,e",D)+ H(a',a", B, ") (7.3.1.4)
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where the stored or elastic energy function is defined to be:
1 _
We(g,gp,D)EE(g—gp):Ce(D):(g—g") (7.3.1.5)

The exact form of the damage stiffness tensor, 56, depends on the specific
damage representation theory employed, where corresponding fourth-order stiffness
tensor in undamaged state is denoted by C,. The second term in equation for
Helmholtz free energy, H(a',a", ', "), defines contribution of the hardening and
damag variables to the Helmholtz potential - dissipated energy.

This form of the Helmholtz function assumes an additive decomposition into a
stored elastic energy term and additional term related to the hardening and damaging
processes. The proposed approach may be too restrictive but it is used by others
authors [109] because the formulation is still fairly general but no so abstract that the
derivations become overly complicated.

Assuming that elastic properties of the material depend only on the
accumulated damage D, and the energies involved in the plastic flow and damaging

processes, dissipated by heat or stored in the material due hardening, are independent,
in the proposed model, the Helmholtz free energy takes following form:

py(ee’,a',a",D,p', B") =W(e,e",D)+ H ,(a'.a")+ H, (B, B")  (7.3.1.6)

where H ,(a',a") is the free energy related to plastic hardening, and

H, (p',B")is the free energy related to damage hardening.
Using choice of the variables associated with the irreversible processes as:
v, ={e*.a',a".D, B', B} (7.3.1.7)

and according to the second law of thermodynamics, the total dissipation rate
is defined as:

ymp| Wi e NV OV OV OV OV el (7318)
os” " Toa’ " e DT opl op

or using the conjugate force relations the dissipation rate can be rewritten as:
y=0cl " +o'd'+o":a"+Y :D+Y S +Y": B >0. (7.3.1.9)

Based on the assumption that mechanical and thermal dissipations are
decoupled and that energy dissipations due to plastic flow and damage processes are
independent, dissipation rate can be separated into two parts:

144



o’ &’ +o0':d'+o":a">20 (7.3.1.10)
Y:D+Y': B +Y":B">0 (7.3.1.11)

Above equations show that one can assume that there exist a plastic dissipative
potential and damage dissipative potential, i.e.

F (¢”,D,0',6")=0 (7.3.1.12)
F,(Y,Y,Y")=0. (7.3.1.13)

7.3.2. Effective stress, effective strain and damage effect tensor M(D)

The basic hypothesis in most isotropic and anisotropic models of continuum
damage mechanics is that, neglecting the details of microscopic damage growth,
damage can be viewed as a macroscopic state variable which affects the average
microscopic damage growth in the sense of “effective stress”.

Based on the concepts of the continuum damage mechanics, metals deteriorate
at different stages of loading. The deterioration, is postulated to be attributed to the
formation and realignment of dislocations, micro-cracks, voids and other types of
material defects and flaws. A damage variable, which provides a measure of the

change of an element surface area S to S due to loading, is defined as:

S—8
D=""" 7.3.2.1
S ( )

The corresponding effective Cauchy stress tensor & is postulated to be:
o = 0'% =— (7.3.2.2)

This basic hypothesis of effective stress can be formulated as [130]: there
exists a “damage effect tensor” M(D) applied to the stress tensor o which defines the
effective stress tensor o, which may be expressed in a generalized form of
anisotropic damage as:

c=M(D):c (7.3.2.3)

where the damage effect tensor M (D) is a second —order tensor or fourth —
order tensor depending on the damage tensor D . In this approach four fundamental
variables of continuum damage mechanics have been identified as: damage tensor D,
the damage effect tensor M(D), the effective stress tensor & and effective strain
tensor ¢ .

Damage induced material anisotropy may be characterized by a symmetric

second order tensor D. Because of its mathematical simplicity D has been used
extensively to study various aspect of damage problems including elasticity,
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elastoplacity, and elasto-visco-plasticity. Perhaps the most attractive property of
symmetric tensor D is that it always possesses three orthogonal principal directions
and the corresponding principal values.

There is no uniquely defined mathematical formulation of M(D) and various

formulations have been proposed. One of the simplest forms is to introduce material
damage in stress tensor principal direction only:

6, & &) =Mlo, o, o] (7.3.2.4)

with second-order of damage effect tensor:

! 0 0
1-D,
MD)=| 0 1 lD 0 (7.3.2.5)
)
0 0 !
i 1-D; |

where D,, D, and D, are damage variables in their principal axes. The
damage in the material is represented by internal variables D,, corresponding to a
material degradation in each orthotropic principal direction i, 0<D, <1, where
D, =0 corresponds to a virgin element while D, =1 corresponds to fully damaged

element. However, if stress tensor is defined in an arbitrary coordinate system, the
damage effect tensor must be suitably modified. One obvious criterion for developing
such a generalized form of the damage effect tensor is that it should reduce to scalar
for isotropic damage. This reduction should be made possible not only in principal
coordinate system but also in any coordinate system.

One formulation, which satisfies the above criterion, was proposed in the
principal coordinate system of damage as [113]:

— — — — — — r T
[0'11 Oy O3 Oy Oy 0'12] :M[O'n Oy O3 Oy Oy 0'12] (7.3.2.6)

with the symmetric tensor:

M =diag
| | . | | . (7.3.2.7)
1-D, 1-D, 1-D; Ji-D,)1-D,) J(1-D,\1-D) (1-D)1-D,)

It can be seen that first formulation is particular case of second generalized
formulation which can be readily reduced to a scalar for isotropic damage when
D, =D, =D, = D . Because of its simplicity the generalized effect tensor M(D) will
be used to derive the constitutive equations of the proposed anisotropic damage
model.

146



The stress-space variables associated with the plastic hardening are assumed to
be mapped into effective-stress space by the same operator:

c =M(D):c" (73.2.8) o' =M(D):o". (7.3.2.9)

The mapping of the stress to the effective stress is required for later derivation,
and was assumed for purely conceptual reason.

Assuming that the inverse of the effective-stress operator, M ! exist, then
the dissipation rate, equation (7.3.1.8), can be rewritten using the effective-stress
operator as:

y=c? M" M T):é"+o' M M) :a'+o" (M M) a"

T -T ~ ' T -T 21 " T -T on (732 10)
+Y M M) :D+Y' - (M M) p+Y" (M M) B

Motivated by this form of the dissipation rate, the rate forms of the plasticity
variables based in strain space are assumed to be mapped into an effective space by
the inverse of the effective-stress operator, that is:

g’=MT"(D):é",a'=MT(D):¢',a"=M" (D):&" (7.3.2.11)
and then the dissipation rate (Eq. 7.3.1.9) could be written in the following form:

y=6" "+ a'+6":a"+Y:D+Y B +Y": " >0 (7.3.2.12)
7.3.3. Hypothesis of energy equivalence

Instead of the conventional postulate of strain or stress equivalence, which has rather
limited use in the derivation of constitutive equations including progressive
deterioration of mechanical properties due to anisotropic damage, Cordebois and
Sidoroff [131] proposed a hypothesis of energy equivalence. This hypothesis states
that the complementary elastic energy for a damaged material has same form as that
of a fictitious undamaged material except that the stress is replaced by the effective
stress in the energy formulation, or mathematically,

w.(c,D)=W,(5,D) (7.3.3.1)
or

1o :C' F=lg Clio (7.3.3.2)
2 2

where C, and C, are the virgin and damaged elastic material stiffness tensor
respectively. By recalling expression for effective stress tensor:

c=M(D):o (7.3.3.3)
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it can be proved that:
C;'=M(D):C.": M(D) (7.3.3.4)

and according to the hypothesis of energy equivalence the effective elastic
strain vector is:

g, =M":¢, (7.3.3.5)
where:

M =diag
[I_Dl 1-D, 1-D, \/(I_Dz)(l_Ds) \/(I_D3)(1_Dl) \/(I_Dl)(l_Dz

7.3.3.6
) I

7.4. Anisotropic elasticity and damage

When material is damaged, the constitutive relation is:

c=C, ¢, (7.4.1)
Using the following equation:

C;'=M(D):C.": M(D) (7.4.2)
equation (7.4.1) yields:

C,=M"':C,:M" (7.4.3)

Since the elastic tensor C, is symmetric, C, is symmetric too. The elastic
tensor C, may be represented by 6x6 matrix, which for orthotropic materials is:

L _UZI _031 0 0 O
El E2 E3
_012 L _032 0 0 O
El E2 E3
U5 Uy 1
_— —= — 0 0 0
| B E, E, (7.4.4)
0 0 0 L 0 0
G23
0 0 0 0 L 0
G3l
0 0 0 0 0 L
L G12 .
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The symmetry of C, imposes the following constrains on the material

parameters:

R PR TR | B <R (7.4.5)
E E, E3 E E, E,
thus C, is defined as:
I E, (l - 032023) E, (UIZ + 013032) E, (013 + 012023) 0 0 0 ]
A, A, A,
E, (Uzl +Uz3U31) E, (1_013031) E, (Uz3 +U2IUI3) 0 0 0
AC AC AC
C =|E (031 +021032) E, (Usz +032023) E, (1_021’)12) 0 0 0 (7.4.6)
AC AC AC
0 0 0 G, 0 0
0 0 0 0 G, O
| 0 0 0 0 0 G,]
where:
A, =1-0,0)) =003 = U3 0;; = V0,305 — Uy U305, (7.4.7)

The symmetry properties, can be additionally expressed by the following
relations:

E, (021 T 0,305 ) =E, (012 T U305, )
E, (1)31 + 0, U5 ) =E, (Ul3 + 012023) (7.4.8)

E, (1)32 T UL, ) = E; (Uz3 + 021013)
In order to assure the positive definiteness of C,, the following conditions
should be satisfied:

0<A, <1,0<1-v,0,<1,0<D, <1

G,, >0, Gy, >0, G, >0 (7.4.9)

E >0,E,>0, FE,>0

7.5. Effective-stress space yield function and damage function

A generalized yield function, F,, that separates the elastic and elasto-plastic

domains in effective-stress space is assumed to be of the form:
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F . (5,5,6") =F, (6 -&")~[F,,(G)+0,]<0 (7.5.1)

where o, is a positive scalar material parameter used to describe the onset of
plastic behaviour (an initial yield stress), and scalar-value tensor functions £/, and

F,, are required to be homogeneous of degree one.

If we assume that only isotropic hardening is sufficient to describe material
behaviour, than above equation degenerates into following form:

F (5,6 =F,(5)~[F,(@E)+0,1<0 (7.5.2)

and this equation in case of Hill’s anisotropic plasticity model with isotropic
hardening becomes:

F,(G,R)=&, —[R(@)+R,]=0 (7.5.3)

where o, is effective equivalent plastic stress, R, is initial strain hardening

threshold — initial yield stress, and R(a") is isotropic constitutive relationship which
describe isotropic change in the yield surface or hardening. For sake of brevity in
further text we will use following equalitya = &' .

In a similar manner, we can consider a damage criterion that takes the
following form:

F,(V.Y\Y") = F\ (Y = Y") ~[F),(Y) + @,] <0 (7.5.4)

where @, is a positive scalar material parameter used to describe the onset of

damage behaviour (a damage energy threshold). The scalar-valued tensor functions,
F, and F,,, are likewise required to be homogeneous of degree one. The use of
tensor, Y', equal in tensor order to the damage variable is required for a general
anisotropic description of the damage surface. Many anisotropic damage theories
have been proposed that employ only a scalar variable to describe the shape of the
damage surface. A scalar can only describe an isotropic surface or equal damage
evolution in all directions, which is inadequate for description of anisotropic damage
in materials.

In the case where damage is represented only with a damage variable that
describes the shape and size of damage surface, according to the analogy with
anisotropic plasticity, damage criterion takes following form:

F, =Y, -[B(B)+B] (7.5.5)

where Y, is the equivalent damage energy release rate, B, initial damage threshold,

and B(f') is increment of damage depending on the S, damage variable that
describes the shape and size of the damage surface. In further text 8’ will be referred
as S for brevity.
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7.5.1. Anisotropic plastic yield surface

As previously stated, in the damage characterization of materials undergoing
large plastic deformations, Hill’s yield criterion [76] in stress space is expressed in the
following form:

F,(0,R)=0 -[R(@)+R;]=0 (7.5.1.1)
where R, is the initial strain hardening threshold.

The effective equivalent stress &, is:
e _ 7~
or :BET :H:E} =BGT :H:a} (7.5.1.2)

The effective plastic characteristic tensor H is given by:
H=M(D):H:M(D) (7.5.1.3)

The positive definite tensor H [76] for orthotropic materials is represented by
6x6 matrix as in the material principal coordinate system:

'G+H -H -G 0 0 0]
-H H+F -F 0 0 0
-G -F F+G 0 0 0
H= (7.5.1.4)
0 0 0 2N 0 0
0 0 0 0 2L 0
0 0 0 0 0 2M]

where F, G, H, L, M, N are parameters characterizing the current state of
plastic anisotropy. For a strain-hardening material, the uniaxial yield stress varies with
increasing plastic deformation, and therefore the anisotropic parameters should also
vary, since they are functions of the current yield stress. The consistency between the
general thermodynamic framework and treatment of anisotropic hardening require
tensor H to be a state variable. Since we work with weak degree of anisotropy, tensor
H in plastic flow rule could be treated as constant tensor.

By assuming an associated flow rule, the rate-independent damage plastic
response is characterized as follows:

Plastic flow rule:

. OF ‘H:M 0o
(C,"—ﬂ p:MHMO'ﬂ

= 7.5.1.5
P ey 20¢ P ( )
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Isotropic hardening rule:

. . dR
R=1,— 7.5.1.6
" Tu ( )

Plastic loading/unloading rule:

F, <0, 4,20, A,F, =0 (7.5.1.7)

7.5.2. Damage evolution surface

Similarly to the plastic dissipative potential, it can be assumed that there exists
a surface, F; =0, which separates the damaged from undamaged state of material

[111]. A damage criterion in a quadratic homogeneous function of the damage energy
release rate can be expressed in the following form:

Fq =Ye —[B(B)+By] (7.5.2.1)

where Y, is the equivalent damage energy release rate is defined by:
1 1/2
T.g.
Y, :{EY .J.Y} (7.5.2.2)

in which J is damage characteristic tensor.

Normally the damage characteristic tensor J seems to be a fourth order tensor
similarly to the plastic characteristic tensor H. However, since we work in the
principal coordinate system of damage as Y, =Y,, =Y, =0, it can be treated like a

second order tensor, and this tensor can be assumed to be symmetric, the operator in
its general form has six independent components.

The purpose of introducing a damage characteristic tensor J, like the
introduction of plastic characteristic tensor H in the theory of plasticity, is to take
account of the anisotropic nature of damage growth.

There are several existing formulations of J, which have been proposed by
different authors. The damage characteristic tensor J in the Cordebois-Sidoroff [131]
model was expressed as:

0 0
u 0],0<u<l (7.5.2.3)
0 u

where u is a material constant. It reduces to a scalar equation, only if x=1.
Following form of J, has also been proposed in literature [111]:
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1 u p
J=lu 1 u (7.5.2.4)
uop 1

to describe anisotropic damage evolution. However, their assumption that 4 is a

material constant is not realistic.
Recently, Chow and Lu [115], proposed the following generalized expression for J:

1 J12 J12
J=|J, 1 J, (7.5.2.5)
"]12 J12 1

and this formulation has only one unknown parameter to be determined from a
standard tensile test:

_dD,
12 dD2

_ b,
dD,

(7.5.2.6)

do,=0 do=0

However, it is only suited for the case when the virgin material properties are
isotropic. A new damage characteristic tensor J, similar to the plastic characteristic
tensor H in the theory of the plasticity, with more general properties and more rational
physical significance then the previous formulation has been proposed on the basis of
the damage energy equivalence by Zhu and Cescotto [111] as:

AL
J=20, I, I, (7.5.2.7)
\/J—3 V25 Js

In the case of damage hardening materials, the equivalent damage energy
release rate increases with increasing total damage growth, and hence, the anisotropic
parameters in definition of the damage characteristic tensor should also vary.

In much the same way as the definition of plastic flow, the evolution of
anisotropic damage is characterized as:

Damage evolution rule:

oF, __ LY, (7.5.2.8)
oY  2v

eq

D=-i,

Damage hardening rule:

. . OF. .
=1, —4= 7.5.2.9
B ‘g ( )
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B 5 _dB;

B= 7.5.2.10
ap’ =g ( )

Damage loading/unloading rule:

F, <0, 4,20, A,F, =0 (7.5.2.11)

7.6. Calibration of the damage model

The change in the equivalent energy release rate in any principal direction
depends on the total amount of damage work done in that direction. For an equivalent
variation, the damage work done in each component should be the same [110]. For the
case of a linear damage hardening, the damage work in component 1 is (Fig. 7.6.1.):

1 1(Y,-Y,) 1
Wa :ED1(Y10 +Y1):_%(Y10 +Y) = )

2 -¥2)  (76.1)
2 t1 t1

Similarly the damage work done in terms of equivalent damage energy release
rate Y, is:

1
Wy = 2_DI(Y;I - Yoz) (7.6.2.)
g Y
a
% Y, Dy
E Yoq“ _azi:‘I_Dt
B Y
g Y, damage work
L
BD
5 :
D, Deq
damage variable

Fig. 7.6.1. Equating damage work

By equating above equations, we have:

2 2
. Y,
| (j _ « (7.63)
Yl (Dtl/Dt)(qu_YO)—i_YlO
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Similarly, we have:

2 2
. Y,
JZ:( qj _ “ (7.6.4.)
Y, (D I D)Xy = Y5 ) + 1y

2 2
J = eq = qu
lry D./D)Y?-Y?)+Y2
1 ( t3 t)( eq 0) 30

(7.6.5.)

Obviously, if component 1 coincides with the reference component, then
B, =Y. B(f)=Y,~ Y, (7.6.6)
and we can write:

J, =1

_ r’
(th /Dtl )(le - Yl(z)) + Yz%)

(7.6.7.)

J,

_ Y’
(Dz3 /Dzl)(le _Y1(2))+Y3%)

Jy

In the above equations, the damage hardening rates D, are the slopes of
Y. — D, curves with component i; Y, the current equivalent damage energy release
rate corresponding to component i; Y, the initial equivalent damage energy release

1

rate corresponding to component i .

The damage characteristic tensor J may be handled as a constant tensor H, in
order to avoid complex derivation, and comparisons between simulation and
experiment show that this assumption gives interesting results.

The required curves for determination of members of damage characteristic
tensor J, are the damage energy released rate-damage ones: Y, D,. From definition for

damage energy release rate:

oy W.(o.D)
oD oD

- :M:C' :%:J (7.6.8.)

Y=-

when vector notation instead of a second order symmetric tensor is adopted, the three
principal components of Y can be expressed as:

-1

1

i= O .
1-D, (1I-D)(1-D,)

(7.6.9.)
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Applied on a tensile test in a direction i, we can get:

2
~y=—2% _ (7.6.10.)
E,(1-D))

Traditionally using loading-unloading cycles, the evolution of the effective
Young modulus E,(¢,) has been measured. In this approach damage component

evolution D, (&, )is expressed as:

E(s;)
E

1

D,(¢;)=1- (7.6.11.)

where E; is the initial value of the Young modulus.

In this work another approach has been proposed. Using cumulative damage
criterion, which was proposed by Dremin and Molodets, modified Klepaczko’s
cumulative failure criterion in the integral form can be written as follows:

(o) [«
[ _/H(T) di=1, (7.6.12.)

0 G/
Hy

For determining the parameters ¢

c0>°

o, and u, of proposed model, after

integrating modified Klepaczko’s failure criterion, it is possible to write a fitting
equation in the following form:

o KuobSﬂ(T) J_}{””bsﬂmj (7.6.13.)
/u(T) Hy kT 2

Using plate impact test data, and plotting normalized spall stress data o/ u(T)
in function of critical time of loading t. and applying above fitting equation,
parameters ¢,,, o, and u, can be easily found.

Damage component evolution D, (¢&;) using above proposed criterion can be
expressed as:

#(T)b “0

;[ a(?(T) kT )
Ho

D,(e;) == = (7.6.14)

tCO
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or in following form, which is more appropriate for interpretation of tensile
test data:

#(T)b uy
o, (1) ( kr
Di(e,-,-)=t—c ! A ) (7.6.15.)
o (( w(Dbuy ) | 0/
KT Hy

where the strain rate and strain can be correlated to the characteristic time
concept as follows:

t, =—C (7.6.16.)

where ¢, is critical strain.

So if 0, (&) curves are known by measurement and if D, (g, ) is defined by

damage criterion, using equation for damage energy released rate — damage, we can
easily produce Y, D, curves.

In a case when it is not possible to perform tensile test in the other directions
and such a direct approach cannot be applied, we can take advantage of the
measurement of the strains in the width and thickness direction of the specimen.

Values D,, where i =23, can be directly deduced using a direct algebraic
transformation of constitutive equation:

e, =C"l:0o (7.6.17.)

e e

Substituting classical Hook’s elastic tensor for orthotropic materials into
above constitutive equation Eq. 7.6.17., and combining with equation:

C;'=M(D):C.": M(D) (7.6.18.)

one can obtain following expression:

V.. O V.
D.(¢,)=1+ -l =1+-L1-D, (s ;i=23 7.6.19.
@ o S T D) (7.6.19.)

Thus the curves Y;(D,), (i =2,3) can be computed thanks to the damage work

equivalence principle. Using relation for damage energy released rate — damage, with
stress values for o, (i =2,3) produced by the Hill model and D,(s;), (i =2,3)

i’

curves we can reach the final (o,&,) behaviour for i =2,3.

il
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7.7. Results and conclusions

A novel procedure for calibration of damage model has been developed in this
research. The calibration procedure has been applied on the aluminium alloy AA7010
and results are presented on the following graphs.
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Fig. 7.7.1. (0,,&,,) Stress-strain and effective strain curves of AA7010 at & = 6.4x10"s'
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Fig. 7.7.2. (0,,&,,) Stress-strain curves of AA7010 at & = 6.4x10°s'

The figure Fig. 7.7.1. and Fig. 7.7.3. compare the experimental curves form
tensile test at different temperatures and strain rates to the simulation results. We can
observe that the simulated test, rather near the experimental one, presents a decrease
of the stress after a certain amount of strain, corresponding to a high damage growth.
Comparison between o, stress-strain and effective stress-strain curves at different

temperatures and strain rates is also presented.
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Fig. 7.7.3. (0,,&,,) Stress-strain and effective strain curve of AA7010 at & = 6.4x10""s'
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Fig. 7.7.4. (0,,&,,) Stress-strain curves of AA7010 at & = 6.4x10"'s'
From the general Hill criterion and the knowledge of the set parameters F, G,

H, N o,, stress-strain curves are produced and presented in Fig. 7.7.2. and Fig. 7.7.4.
for different temperature and strain rate levels.
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Fig. 7.7.5. Damage variable D, vs strain under simple tension
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Fig. 7.7.6. Damage variable D, vs strain under simple tension

The damage evolutions, D, and D, against true strain are reproduced and
shown in Fig. 7.7.5. and Fig. 7.7.6. respectively. From the damage-strain curves for
AA7010 through simple tension test, it is readily seen that D, in the direction of

maximum principal tensile stress grows much more rapidly then D, does, i.e.
D, > D, and at the moment D, reaches its critical value which also signifies the
fracture of the specimen, the corresponding value of D, is significantly smaller.
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&=6.4x10s"

So as o,(&;) 1s known by measurement and D,(&,) is defined by damage

results are presented in figures Fig. 7.7.7. and Fig. 7.7.8..
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criterion, using equation for damage energy released rate — damage, we can produce
Y.D, curves easily for i equal 1 and 2. In this development linear model is fitted, and



Table Tab. 7.7.1.a. and Tab. 7.7.1.b. give final set of the parameters for a
fitting using tensile tests in large strains of AA7010. As no information on
(0;;&5;) curves are available, parameters in the principal direction 3 are assumed to be

equal to parameters in referent direction.

Tab. 7.7.1.a. Material parameters — Elastic modulus

Parameter | Description Nominal value
E, Initial elastic modulus 71,1 GPa
E, Initial elastic modulus 70,3 GPa
E, Initial elastic modulus 71,1 GPa

Tab. 7.7.1.b. Damage curve parameters

Parameter | Description Nominal value

Y, Initial damage energy release rate 8.62—-0.017 MPa
D, Damage hardening 10.29 MPa

Y., Initial damage energy release rate 8.78-0.01T MPa
D, Damage hardening 5.82 MPa

Y, Initial damage energy release rate 8.62—-0.017 MPa
D, Damage hardening 10.29 MPa
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8. NUMERICAL IMPLEMENTATION

8.1. Introduction

Because one of the main objectives of this research was to offer the
improvement of the existing simulation tools used for analysis of metals and
structures, purpose of this chapter is to demonstrate that proposed anisotropic
elastoplastic damage model is suitable for large-scale computations. Developed model
of anisotropic damage growth together with proposed elastic predictor/plastic return
corrector/damage return mapping, integration algorithm can be easily implemented in
existing finite elements programs to solve practical engineering problems. LLNL-
DYNAS3D has been chosen as a numerical test bed for implementation and validation
of developed model.

General anisotropic material model has been chosen as a starting point for the
new material model development. This model is implemented as material model 33
[14] into an explicit finite element code, Cranfield University’s version of LLNL-
DYNA3D.

This model is a general anisotropic elastic-plastic material model, which was
originally developed at Lawrence Livermore National Laboratories. It combines the
orhotropic elastic model (material type 2 in LLNL-DYNA3D), with the Hill
orthotropic yield criterion. This model uses the normal return algorithm for the update
of the plastic stress, and important drawback of this stress update algorithm is that the
solution may drift away from the yield surface. The algorithm involves the calculation
of a new elastic-plastic stiffness matrix in a each time step. In this model associated
plasticity is employed and elliptic shape of the yield surface is assumed.

Following DYNA3D routines are associated with implemented General
Anisotropic material model:

- solde — subroutine processes all the solid elements, and other subroutines are
called from this subroutine for executing different tasks such as packing and
unpacking the data for the material model (hvpacl and hvpac2), loading element
stress tensor (hvpacl), storing new stress tensor (hvpac2) ,calculation of the rotated
stress tensor (rstrss), calculation the critical time step and bulk viscosity (bulkg),
calculation of the kinetic energy for every element (engbrk).

- matin —subroutine reads in the material data from the input file

- initlz — subroutine contains calls to subroutines that initialise values that are
required during the solution phase but they re not separately defined in the input file

- f3dm33 — subroutine is the main subroutine which calculates the new stress
tensor

- sets33 — subroutine which is called from subroutine matin and reads in all the
material specific data for material model 33
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- inse33 — subroutine initialise the values related to the q matrix, which is the
transformation matrix from element to material matrix

The implementation required changes to several routines in the code, not just the main
f3dm3 subroutine for the general anisotropic model, and the implemented model
requires more input parameters. In summary the additions to general anisotropic
elastoplastic material model 33 are:

e Coupling of anisotropic elastoplasticity and damage through utilisation of the
damage tensor D, the damage effect tensor M (D), the damage characteristic

tensor J , the effective plastic characteristic tensor H , and the effective elastic
stiffness tensor C,.

e Strain rate and temperature dependent isotropic strain hardening.

e Linear damage hardening with temperature dependant initial damage
threshold.

e Implementation of elastic predictor/plastic return corrector/damage return
mapping, integration algorithm.

Constitutive equations of anisotropic elastoplastic-damage model, neccesery for

numerical implementation of the proposed model, and numerical algorithm are
presented in the following sections.
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8.2. Coupled anisotropic elastoplastic-damage formulation

8.2.1. Isotropic strain hardening

Restricting our consideration to relatively simple loading histories, in this
development we employed isotropic hardening yield surface. According to the yield
criterion, and taking time derivatives we can get following expression:

R=6. (8.2.1.1.)
The stress is related to plastic strain by the hardening modulus IT. Expressed in rate
form this is:

6 =Il¢, (8.2.1.2)

The same expression holds for the relation between the equivalent stress and the
equivalent or accumulated plastic strain:

o =11¢, =Ila (8.2.1.3))

Combining this with equation Eq. 8.2.1.1., the rate of expansion of yield surface
radius becomes:

R=TIlg (8.2.1.4)

Now we can write isotropic hardening rule as:

r=R92 14 _ni, (8.2.1.5.)
da dt

and hence

R _q (8.2.1.6.)

da

Increment of strain hardening in this development is represented by mechanical
threshold stress model:

A

% %) tanh[a %

R(a)zR(ép)z‘u—(T) I_IM} 16 Gls(éaT)} s, |(82.17)

: u(T)b’g, tanh(a)

which has been discussed in details in Chapter 4, and initial yield stress R,
corresponds to the athermal component of MTS flow model:

R, =0, (8.2.1.8.)
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8.2.2. Plastic flow rule

Recalling the expression for the effective equivalent stress[Eq. 7.5.1.2.]:
1/2
I I
Of = |:EO' HO':| (8.2.2.1))

F
we can determine the relation for 8_p as:
o

oF, B Ho ~ MHMo

— — (8.2.2.2)
oo 20 20¢
Therefore the plastic flow rule can be determined as follows:
. OF :
g, =i, o0 - MIMa g (8.2.23.)
oo 20¢

8.2.3. Linear damage hardening

It has been showed that damage evolution in the aluminium alloys, which have been
considered in this investigation, could be described with linear damage hardening.
Hence linear damage evolution law was utilized in this material model development
in the following form:

dB ,_dB ;

B= Eﬂ 15 (8.2.3.1.)
Increment in damage hardening is defined as:

B(8)=B(D)= 5 D (8.2.3.2)
and because £ = 1, damage hardening modulus is defined as:

j_; -5 (8.23.3.)

where £ is equivalent or accumulated overall damage D, represented with modified
Klapezcko’s damage evolution criteria:

[umb%o]

. O'm kT

D(¢,) = “po 13 ?m (8.2.3.4)
Enc T)b 0
po[[ﬂ( k)T UOJH} Ao
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It has been found that initial damage threshold B, is in function of temperature, and
that dependence could be expressed with following relationship:

where B, and B, are material dependant constants and T is temperature.

8.2.4. Damage evolution rule

Noting that equivalent damage energy release rate is defined by:

1 1/2
Yeq = {EYTJY} (8.2.4.1.)

relation for 8(33_Yd could be found as:

oF, JY

=— (8.2.4.2)
oY  2Y
Hence the damage evolution rule can be determined as:
: . OF Y .
D=-4y -2 = —J—/ld (8.2.4.3)
oY 2Y¢q
8.2.5. Determination of plasticity multiplier /ip
Starting from the definition of plastic potential:
F,(0,R)=0r -[R(@)+R;]=0 (8.2.5.1)

and using so-called plasticity consistency condition pr =0, parameter /ip could be

determined. Hence during plastic loading one has [116]:

an . 8Fp .
b =——0+——R=0. (8.2.5.2)
oo OR
Because of the fact that:
an
—=-1 (8.2.5.3)
OR

the consistency condition could be rewritten as:

. oF, . .
F,=——0-R=0. (8.2.5.4)
oo
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Recalling the constitutive equation for the damaged material [Eq. 7.4.1.]:

=C,é&,
and noting relation for the strain decomposition:
£=¢, t+&,
we can write:
6=C,(¢6-¢& o)
Now consistency condition could be expressed as follows:

) oF, _ oF, _
=0 rCs-Crg,s,  WRa_
oo oo da dt

Using formulation for isotropic hardening rule, which is defined as:

R = ,{pd_R
da

where

a=21

and the plastic flow rule:

) 8F
_gp_
oo

the plasticity consistency equation now can be rewritten as:

) oF, — oF, — . OF, .
F, = C &E——— Cexlp——/lp—:o
oo oo oo da

an_
—C.¢
/1 80‘
P 6Fp_6Fp drR
—rc,—P-T
oo oo da

where the elastic tensor for damaged material is defined as:

C, =M (D)C,M (D).
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(8.2.5.9.)

(8.2.5.10.)

(8.2.5.11.)

(8.2.5.12.)

(8.2.5.13.)

(8.2.5.14.)



8.2.6. Effective elastoplastic-damage constitutive matrix

Assuming associative plasticity elastoplastic tangent moduli [117] could be
represented as:

_ _ oF

Cep =C.—C.—2{C,}' (8.2.6.1))

¢ do

where {C, }T is defined by the relation of the plastic multiplier dA to the strain
increment:

di={C,}" de (8.2.6.2.)
Comparing with general expression for d4

oF, _
Tpcedg
_ o
dA, = o, (8.2.6.3.)

0o ° 0o da

it is clear that {C, }T can be expressed by:

(8.2.6.4.)

one obtains the following expression for the elasto-plastic-damage constitutive
matrix:

8Fp _
C C _C an oo C.
ep — Ve Ve 60' an 6 an dR .

(8.2.6.5.)

0o ° 0o da

8.2.7. Determination of damage multiplier /id

Damage multiplier could be derived from damage consistency condition [119]:

. OF, ., OF, .
g -Fay Fapg_g (8.2.7.1))
oy | oB

where damage potential is defined as:

Fa =Ye —[B(B) +By]. (8.2.7.2)
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Because of the fact that:

Fa _ (8.2.7.3))
0B

the consistency condition can be rewritten as:

Fy = aﬂv‘ -B=0. (8.2.7.4.)
oY

Using formulation for damage hardening rule, which is defined as:

5_dBdB _dB

= EE T d (8.2.7.5.)
where
B =4 (8.2.7.6.)
the damage consistency equation now can be rewritten as:
Fy = %Y ~ Aq j—; =0. (8.2.7.7.)

This expression now can be solved for /id to obtain following expression:

oF,
v
Ay =—=5—- 8.2.7.8.
d d78 ( )
dg
8.2.8. Constitutive relations for anisotropic elastoplastic-damage
According constitutive equation for the damaged material:
o=C.e¢, (8.2.8.1)
and noting relation for the strain decomposition:

E=¢&, t+&, (8.2.8.2))

objective rate form [117] of above equation could be written as:

oF ,
(8.2.8.3.)

O-'Iée(é—ipg
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or
6=Co(6-Ay——) (8.2.8.4.)

From definition for damage energy release rate:

oy
Y=_ 8.2.8.5.
Pap ( )

and from degenerated form of the Helmholtz free energy:
py(o,D,a,f)=W(c,,D)+H (a)+Hy(B) (8.2.8.6.)

where according to the energy equivalence hypothesis, the complementary elastic
energy W,(o,D) is evaluated as:

W, (o, D) :%ETC;E:%GT MC.'Mo (8.2.8.7.)

we can write:

_OW.(0,D) _ —o' MC—la_M
- e

Y = o
oD oD

(8.2.8.8.)

Now, the coupled elastoplastic-damage constitutive equations are summarized as
below:

E=¢,+¢, (8.2.8.9.)

d:é&g‘—%@) (8.2.8.10.)
20¢

g, = MM ;. (8.2.8.11))

20¢

a=4, (8.2.8.12)

. . dR

R=j 8.2.8.13.

" Tu ( )

-Y =¢" Mc:@a (8.2.8.14.)

oD
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D=-— i 8.2.8.15.
., ( )
B=4, (8.2.8.16.)
B= d—B;id (8.2.8.17.)
ap
1. JA
F,= 5 MHMG} ~-R, - R(a) (8.2.8.18.)
_ 1
11 2
Fy = EY JY| -B,-B(p) (8.2.8.19.)

8.3. Algorithmic treatment for anisotropic damage model

The first part of the implemented numerical routine is concerned with the reading and
initialisation of all material properties. In a nonlinear finite element analysis, the
constitutive equations of the material have to be integrated locally at each time step. If
stresses, state variables, etc. are expressed in global coordinates, at the beginning of
each new step, they should be firstly transferred to the principal axes of anisotropy
using classical rules of coordinates transformations. Then, the constitutive relations
developed above could be used directly. Hence, the rotation of the stress and strain
rate tensors from global to material coordinates has been utilised. The next step is to
calculate the strains from the strain-rates by multiplying with time steps.

The elastic constitutive matrix C, is initialised, and damaged elastic constitutive

e

matrix C,is calculated as:

C,=M(D)'c,M(D)" (8.3.1.)
where:
M =diag

i-0, 1-0, 1o, JTBN-B) JI-BN-B) i BX-B]

therefore damaged elastic constitutive matrix could be calculated as:
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Cerq Ceip Cei3 0 0 0
a-pp2 a-ppa-py! a-ppla-py!
Cepq Cepn Ceps 0 0 0
a-op~ta-py™! (1-Dy)~2 (1-D2)(1-D3)
Cesp Ce3p Ces3 0 0 0
& _|a-opTa-py™ a-pyta-py! (1-D3y)72
€ Ceqq
0 0 0 D D—— 0 0
(1-Dy)7la-py)
0 0 0 0 % 0
a-py)~'a-pp

0 0 0 0 0 %
a-op~ta-opy™ |

Next step is initialisation of H matrix, where matrix constituents F, G, H, L, M, N are
calculate from anisotropy parameters R, P, Q,,, Qu., Q. This is followed with

determination of effective plastic characteristic tensor H , which is defined as:

H = M(D)HM (D) (8.3.4)
where damage effect tensor is calculated as:
M = diag

| | | 1 1 (8.3.5.)

1
1-D, 1-D, \/(1_D2X1_D3) \/(1_D3)(1_D1) \/(I_Dl)(l_Dz)

1-D,

and hence the effective plastic characteristic tensor H can be determined as:

G+H -H -G 0 0 ]
(1-Dy? (1-D)(1-D,) (1-D)(1-D;)
- H+F -F 0 0
(1-D)I-D;)  (1-D;)*  (1-Dy)(1-Dy)
-G -F F+G
: 0 0 0
=] 1-D)a-Dy) (1-D,)(1-D;) (1-D;3)
0 0 2N 0
(1-Dy)(1-D;)
(1-D;)(1-D))
L (1=-D)(1=D,) |
(8.3.6.)
The yield stress is updated using mechanical threshold stress model:
: AV tanh{a 6-‘9}
(T (6, /2, )]/ 5 (6.7
O_Y :R(ép)zlu(T) 1_ ( pg/ p) J‘H O-bs € ) dép (8.37.)
Hy u(Tp’g, tanh(a)

where £ is equivalent plastic strain, which was calculated during previous time step

at the end of the routine.
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The final step in initialisation phase of the subroutine consists of passing the stress
and strain tensor to new variables.

Using the stress tensor components from the previous time step the old equivalent
stress is calculated as:

_ Wk
o Z[%GTHG} (8.3.8.)

Two obtained values for the flow stress and equivalent stress are compared and the
largest value is stored to be used further in the routine.

The next section in the routine consists of the calculation of the stress and plastic
strain increments together with the calculation of the history variables that have to be
known in the next time step.

Firstly an elastic trail stress is calculated as follows:
o™ =" +C Ac (8.3.9.)

The equivalent trial stress is then calculated and the elastic fraction of the stress
increment is calculated. If the new equivalent stress, based on the old constitutive

matrix C,, is less then the current yield stress, then this means that increment was

completely elastic and hence that constitutive matrix that was used was correct. In this
case algorithm moves straight to the later part of the routine in which the new strains
and equivalent plastic strain are calculated. If the equivalent stress is larger then the
current yield stress however then a correction is necessary because the stress
increment was not completely inside of yield surface. Corrections to the constitutive
matrix will be necessary. The first step in this process is to determine which part of
the stress increment was elastic. The elastic part of the trial stress is calculated as a
fraction of the trail stress:

_ghh
m=Y"OF (8.3.10.)
o —of

if oy = E,t:” then the stress increment is fully plastic, and using m ratio, the stress is
updated with elastic part as:

o't TEMP _ 5l mC As (8.3.11.)

If the value obtained for m does not lie between 0 and 1 then m is set 0 or 1
respectively. The plastic part fraction of the stress increment is simply 1-m.

The following step is calculation of the plastic stress increment with the correct

constitutive matrix. In order to do this elastoplastic constitutive matrix has to be
calculated:
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-C,-C,—2{c,V (8.3.12)

or

c,-C,-C,0» __ lo
®T T e Ry o OFy _dR

oo ¢ oo da

(8.3.13.)

Using above values for the elastoplastic constitutive matrix, the new stress can be
calculated as:

O.tn+1 — O-tn + mCeAg+(l_ m)CepAg (8314)
or
_  _ oF
o'ntl = gh,TEMP (1- m)(ce -C, 8_p{C;' }T JAg (8.3.15))
(o3

This expression is used when points make elastic-to-plastic transition and do not
necessarily lie on the yield surface. For the purely plastic loading step (m=0) it is
obtained:

il =g 4| C Can{C ! lAe =o' +C, A 8.3.16
o} —0'+e—e¥,1 e=0"+C,As (8.3.16.)

Next step is the calculation of the plastic strains and the equivalent plastic strain,
where plastic strain is calculated as follows:

_ Ho Ho

de, = di, = de 8.3.17.
P25, P 25 P ( )
because
OO
dé, =—F—" 8.3.18.
o - ( )
one can write:
Ho 6 .—
dg, =—— TE Y (8.3.19.)
20 11

The effective plastic strain is updated by using the plastic stress increment and plastic
modulus:

nyZF TV (8.3.20.)
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Numerical procedure presented so far could be categorized as elastic predictor/plastic
return corrector. Once the plastic consistency condition is enforced the state variables
at the end of the plastic corrector phase become:

t t t
{0_ n+1 P n+l D n ’ Rth} (8.3.21.)

To complete the algorithm, it remains to develop an process consistent with damage
evolution that operates on initial conditions (Eq. 8.3.21.) to produce final state:

{O_tnﬂ & th41 D thel ’ R+l } (8.3.22))

Although plasticity and damage are coupled in rate equations, the algorithmic
treatment uncouples plasticity and damage, because as soon as the plasticity is
corrected, all the damage variables are fixed. Hence proposed numerical procedure
proceeds along two following steps [118].

Checking of damage loading consists of determination of damage energy release rate:

Y =-c"MC," M, (8.3.23.)
oD
which is used for calculation of equivalent damage energy release rate:
1 1/2
Yeq = {EY TJY} (8.3.24.)

and increment in damage hardening is determined utilizing linear damage hardening
rule:

B(#)=B(D)=5 D (8.3.25.)

where equivalent or accumulated overall damage D is represented as:

[ﬂ(T)b3U0J
R On kT
D(&,) = f‘” b13 O_ACF) (8.3.26.)
E e 0
w0 [(ﬂ(Tk)T UOJ”J AO

At the end of this step damage loading condition is checked:

Yeq <[B(B)+By] (8.3.27.)
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In case that above condition is satisfied algorithm moves straight to the end of the
routine. If, on another hand, damage loading condition is violated then damage
loading is taking place and correction is necessary and algorithm moves to the next
step. Hence damage return mapping is applied leading to calculation of damage

multiplier A, :

Ay = Fyy /D (8.3.28.)
oY

which is used for update of damage:

JY
2Y

D=- Ay (8.3.29.)

€q

This concludes elastic predictor/plastic return corrector/damage return mapping
algorithm and finally at the end of routine, the rotation of the stresses and strains back
to the global axes is applied.

8.4. Numerical results and conclusions

A novel constitutive anisotropic elastoplastic-damage model was developed
within the general framework of continuum thermodynamics for irreversible
processes by identifying a proper set of internal variables together with their
conjugate generalized forces.

The proposed framework is capable of accommodating: general nonlinear
elastoplastic response, coupling of damage and plasticity, temperature and strain rate
dependant isotropic strain hardening, and linear damage hardening with temperature
dependant initial damage threshold. Anisotropic damage evolution law was developed
by adopting the damage surface concept. The material anisotropy is considered for
elastic, plastic and damage response. In the elastic regime anisotropy was introduced
by the appropriate elastic constants in the elastic compliance matrix. Anisotropic
plasticity was achieved by utilising Hill’s yield function, and in the damage regime,
by introducing a damage characteristic tensor J in the damage evolution law, which
can be conveniently determined by equivalence of damage work. Plastic evolution
law and damage evolution law were derived by utilisation of the damage tensor D,
the damage effect tensor M (D), the damage characteristic tensor J , and the effective

plastic characteristic tensor H .

The new material model has been implemented in DYNA3D, using for this
purpose developed elastic predictor/plastic corrector/damage mapping, integration
algorithm. Numerical simulations of Taylor impact cylinder test for AA7010, have
been carried out to validate implemented model and simulation results are given to
illustrate the potential applicability of the proposed model (Fig. 8.4.1. and Fig. 8.4.2.).
Good agreement with experimental results was obtained. Comparison of numerical
results for purely isotropic models like as Johnson-Cook (Chapter 4), Mechanical
Threshold Stress (Chapter 4) and anisotropic elastoplastic model (Chapter 5), with
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proposed anisotropic elastoplastic-damage model illustrates significant differences in
material response. It could be concluded following: proposed model is capable to
capture more accurately major and minor distributions of plastic strains, and
furthermore, developed model can describe evolution of damage adequately.

0.10 Taylor tast AATO10 V=200 m/s
J | <+ Major profile - Experiment
\ < Minor profile - Experiment
0.08 sy < Major profile - Aniso ElastoPlastic-Damage
] \ \ == Minor profile - Aniso ElastoPlastic-Damage
0.08 %,‘\ '
s | Wk
=) AR
B ooad | SR
B Ty
] 2
o
T
0.02 S
AN
:‘"‘.x
T T T T T T T T T T
0 10 20 30 40 50
Distance from impact end [mm]

Fig. 8.4.1. Comparison of experimental and simulation results for major and minor
distributions of plastic strains of Taylor cylinder test impacted at 200 m/s

0.12
0.10 ‘\\Q\ Taylor test AAT010 V=214 m/s
] A \ <= Major profile - Experiment
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Fig. 8.4.2. Comparison of experimental and simulation results for major and minor
distributions of plastic strains of Taylor cylinder test impacted at 214 m/s
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9. CONCLUSIONS

The main objective of this thesis was development of tools for modelling of strain rate
and temperature dependant behaviour of aluminium alloys, typical for aerospace
structures with pronounced orthotropic properties, and the implementation of the tools
in computer codes. A constitutive model with an orthotropic yield criterion, damage
growth and failure mechanism has been developed and implemented into DYNA3D.
Another important aspect of this work was development of relatively simple
experimental methods for characterization of engineering materials, and the extensive
experimental work that has been undertaken.

The principal work and conclusions of the thesis are:

An iterative material model development approach has been applied. Initially the new
material model has been designed as a temperature and strain rate dependant strength
model in a simple isotopic form, and subsequently the complexity of the model has
been increased through further iterations, applying coupling of isotropic stain
hardening model with orthotropic yield criterion, then including damage evolution
and failure criteria.

Several Taylor impact cylinder tests at different impact velocities have been carried
out for AA7010 aluminium alloy using gas gun. Geometric profile data for deformed
specimens were measured using a 3D scanning machine. Following data have been
generated: digitised side profiles for minor and major direction, and digitised
footprints that give cross-sectional area at the impact interface.

Tensile tests were used for the characterisation of two aluminium alloys AA2024 and
AA7010, at five different levels of the strain rates in the intermediate regime up to
10x10° 1/s, at five different temperatures, and for three different orientations of
materials. Due to the limitations of measurement equipment, measurements of only
longitudinal strains have been taken.

Another set of tensile tests has been carried out, at higher strain rate regime 10x10?
1/s, and at ambient temperature. Contact-less optical strain rate measurement
technique allowed simultaneous measurement of both longitudinal and transverse
strain during tensile tests.

Procedures for derivation of parameters for temperature and strain rate dependant
strength models: Johnson-Cook (JC), Zerrili-Armstrong (ZA) and Mechanical
Threshold Model (MTS), were developed and parameters for JC and MTS
constitutive relations were derived on the basis of uniaxial tensile tests at intermediate
strain rate. In order to validate derived parameters for constitutive relations for JC and
MTS Taylor impact test simulation has been done, and compared with experimental
results in terms of cylinder footprints at the impact interface.

As an alternative to the standard tensile specimen geometry, in this work a non-
standard specimen geometry was proposed, because one of the requirements for
tensile test was achieving of intermediate strain rate conditions, using standard servo
hydraulic fatigue machine.
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Based on the hypothesis that strain rate and temperature are interchangeable, low
temperature tensile tests at intermediate strain rate regime, have been carried out.
Those tensile test results have been used for calibration of MTS constitutive relation.
Afterwards the MTS constitutive model has been used to predict the stress-strain
response of material at high strain of rate, and good agreement has been observed. In
that way hypothesis of interchangeability of strain rate and temperature has been
validated.

A method for calibration of orthotropic yield criterion has been developed and
parameters have been identified for the Hill’s orthotropic model under the associated
flow rule assumption. Tensile tests at intermediate strain rate regime, in three different
material directions, have been used for model calibration, together with cylinder
impact tests, which was used for derivation of Lankford coefficient.

Simultaneous measurement of longitudinal and transverse strain of tensile specimen
during tensile tests at higher strain rate regime, allowed direct measurement of
Lankford coefficient, and hence validation of proposed calibration method of
orthotropic model.

It has been shown that the anisotropic behaviour of the aluminium alloy AA7010 can
be correctly described by Hill criteria in combination with a sound parameter
estimation procedure. Numerical simulations of Taylor test experiments have been
done, and results from the simulations of the cylinder impact test: major and minor
side profiles, and impact-interface footprints have been compared with test data.
Simple assumption of isotropic hardening has been proven to be sufficient to obtain
good agreement between experimental and numerical simulation data.

To account for the physical mechanisms of failure, the concept of thermal activation
of damage and failure has been adopted as a basis for this material model
development. This basic assumption makes the proposed approach compatible with
the Mechanical Threshold Stress model, which was used as the strength part of the
proposed constitutive model in this development iteration. A method for calibration
of damage model has been proposed based on the plate impact tests. In order to
validate the model, a series of FE simulations of plate impact experiments were
performed for OFHC Cu and microscopic observations of the softly recovered spalled
specimen have been carried out. It has been proven that the proposed model is able to
reproduce typical longitudinal stress reloading observed in plate impact tests, which is
caused by the creation of the internal free surface. Plate impact tests used for model
validation were performed on a single-stage gas gun, and longitudinal stresses were
measured with stress gauges.

Another validation, using cylinder impact test for AA7010, of the proposed criterion
for tensile failure was performed, were damage fields generated in Taylor specimen
have been simulated and analysed.

In the final phase, the complexity of the model has been further increased through
coupling of hardening model with orthotropic yield criterion including damage
evolution and failure criteria. The constitutive model was developed within the
general framework of continuum thermodynamics for irreversible processes. Method

180



for derivation of damage parameters have been developed utilizing simple uniaxial
tensile test, and good correlation with parameters, which have been determined using
plate impact tests, has been found.

Developed model has been implemented in DYNA3D, using proposed elastic
predictor/plastic corrector/damage mapping, integration algorithm. Numerical
simulations of Taylor impact cylinder, have been carried out to validate implemented
model and good agreement with experimental results was obtained.

Further work can improve capability of developed material model in several areas:

Further implementation of developed model into DYNA3D, could extend usability of
material model to the other elements, like as shells and beams, and in that way it
could enable applicability of the simulation toll to analyse complex engineering
structures, which are dynamically loaded and subjected to the different levels of
temperatures and strain rates.

A modification of the Hill’s yield criterion, which allows combined isotropic-
kinematic strain hardening, could be integrated into proposed material model, using
demonstrated framework of continuum thermodynamics for irreversible processes.
This would allow applicability of the material model to other engineering materials
that exhibit kinematic strain hardening behaviour.

Similarly a kinematic type damage hardening could be introduced into material
model, and instead of linear damage evolution law, nonlinear damage hardening could
be considered, in order to extend applicability of anisotropic elastoplastic-damage
material model to other class of engineering materials.

Accuracy of the stress update algorithm could be improved by implementing fully
coupled integration scheme, i.e. elastic predictor / coupled plastic-damage corrector
integration algorithm.

Coupling between plasticity and damage could be improved by using separate
plasticity and damage surfaces with separate non-associated flow rules in such way
that both plasticity and damage flow rules are dependent on both the plastic and
damage potentials.

181



10. REFERENCES

[1] V. Panov, “1.0.1. Progress Report on Orthotropic Material Model Development”,
Cranfield University, Cranfield, 2003.

[2] V. Panov, “1.0.2. Progress Report on Orthotropic Material Model Development”,
Cranfield University, Cranfield, 2004.

[3] V. Panov, “1.0.3. Progress Report on Orthotropic Material Model Development”,
Cranfield University, Cranfield, 2004.

[4] V. Panov, “1.0.4. Progress Report on Orthotropic Material Model Development”,
Cranfield University, Cranfield, 2004.

[5] V. Panov, “2.1.0. Progress Report on Orthotropic Material Model Development”,
Cranfield University, Cranfield, 2005.

[6] V. Panov, “2.2.0. Progress Report on Orthotropic Material Model Development”,
Cranfield University, Cranfield, 2005.

[7] V. Panov, “3.1.0. Progress Report on Orthotropic Material Model Development”,
Cranfield University, Cranfield, 2006.

[8] V. Panov, R. Vignjevic, N. Bourne, J. Millet, “Material failure modelling in
Metals at High Strain Rates”, AIP Conference Proceedings SCCMO05, 2006, Vol. 845,
pp. 646-649.

[9] H. E. Davis, G. E. Troxell. G. F. W. Hauck, “The testing of engineering
materials”, New York, McGraw-Hill, 1982.

[10] V. John, “Testing of materials”, Houndmills, Macmillan Education LTD, 1992.
[11] R. D. Lohr, M. Steen, “Ultra high temperature mechanical testing”, Cambridge:
Woodhead Publishing, 1995.

[12] J. E. Field, S. M. Walley, N. K. Bourne and J. M. Huntley, “Experimental
methods at high rates of strain”, Journal de Physique IV, Colloque C8 supplement au
Journal de Physique III, Vol. 4, 1994, C8 3 —22.

[13] G. T. Gray III, “High-Strain-Rate of Materials: The Split-Hopkinson Pressure
Bar”, in Methods in Materials Research, eds., John Wiley Press, 2000.

[14] Lin J. L., “DYNA3D User Manual”, Methods Development Group Mechanical
Engineering, 1998.

[15] A. M. S. Hamouda and M. S. J. Hashmi, “Modelling the impact and penetration
events of modern engineering materials: Characteristics of computer codes and
material models”, Journal of Materials Processing Technology, Vol. 56, 1996, pp.
847-862.

[16] MIL-HDBK-5H, “Metallic Materials and Elements for Aerospace Vehicle
Structures” , Department of Defense Handbook, U.K., 1998.

[17] M. S. Binning and P. G. Partridge, “Subzero tensile properties of 7010
aluminium alloy and Ti-6A1-4V and IMIS50 titanium alloys in sheet form”,
Cryogenics, Vol. 24, No. 2, 1984, pp. 97-105.

[18] D. R. Kumar amd K. Swaminathan, “Tensile deformation behaviour of two
aluminium alloys at elevated temperatures”, Materials at High Temperatures, Vol. 16,
No. 4, 1999, pp. 161-172.

[19] D. Liu, H. V. Atkinson, P. Kapranos, W. lJirattiticharoean, H. Jones,
“Microstructural evolution and tensile mechanical properties of thixoformed high
performance aluminium alloys”, Material Science and Engineering A361, 2003, pp.
213-224.

[20] G. H. Strijbos, W. H. Kool, “Superplastic behaviour of rapidly solidified 7475
aluminium alloy”, Materials Science and Engineering, Vol. A194, 1995, pp. 129-136.

182



[21] J. H. Kim, S. L. Semiatin, C. S. Lee, “Constitutive analysis of the high-
temperature deformation of Ti-6Al-4V with a transformed microstructure”, Acta
Materialia, Vol. 51, 2003, pp. 5616-5626.

[22] K. A. Lee, C. S. Lee, “The effect of strain rate on the anomalous peak of yield
stress in B-CuZn alloy”, Scripta Materialia, Vol. 39, No. 9, 1998, pp. 1289-1294.

[23] F. D. Torre, H. V. Swygenhoven, M. Victoria, “Nanocrystalline electrodeposited
Ni: microstruture and tensile properties”, Acta Materialia, Vol. 50, 2001, pp. 3957-
3970.

[24] P. J. Maudlin, J. F. Bingert, J. W. House, S. R. Chen, “On the modelling of the
Taylor cylinder impact test for orthotropic textured materials, experiments and
simulations”, International Journal of Plasticity, Vol. 15, 1999, pp. 139-166.

[25] P. J. Maudlin, J. F. Bingert, G. T. Gray III, “Low-symmetry plastic deformation
in BCC tantalum: experimental observation, modelling and simulations”, International
Journal of Plasticity, Vol. 19, 2003, pp. 483-515.

[26] P. J. Maudlin, J. C. Foster, JR, S. E. Jones, “A continuum mechanics code
analysis of steady plastic wave propagation in the Taylor test”, Int. J. Impact Engng.,
Vol. 19, No. 3, 1997, pp. 231-256.

[27] W. K. Rule, “A numerical scheme for extracting strength model coefficients
from Taylor test data”, Int. J. Impact Engng., Vol. 19, Nos. 9-10, 1997, pp. 797-810.
[28] V. R. Ikkurthi, S. Chaturvedi, “Use of different damage models for simulating
impact-driven spallation in metals”, International Journal of Impact Engineering,
Article in Press.

[29] A. M. Rajendran, “Critical measurements for validation of constitutive equations
under shock and impact loading conditions”, Optics and Laser in Engineering, Vol 40,
2003, pp. 249-262.

[30] I. Rohr, H. Nahme, K. Thoma, “Material characterization and constitutive
modelling of ductile high strength steel for a wide range of strain rates”, International
Journal of Impact Engineering Vol. 31, 2005, pp. 401-433.

[31] L. Kruger, L.W. Meyeer, S. V. Razorenov, G. 1. Kanel, “Investigation of
dynamic flow and strength properties of Ti-6-22-22S at normal and elevated
temperatures”, International Journal of Impact Engineering, Vol. 28, 2003, pp. 877-
890.

[32] J. Zheng, Z. P. Wang, “Spall damage in aluminium alloy”, Int. J. Solids
Structures, Vol. 32, No. 8/9, 1995, pp. 1135-1148.

[33] J. N. Johnson, G. T. Gray III, N. K. Bourne, “Effect of pulse duration and strain
rate on incipient spall fracture in coper”, Journal of Applied Physics, Vol. 86, No. 9,
1999, pp. 4892 —4901.

[34] R. Vignjevic, N. K. Bourne, J. C. F. Millett, T. De Vuyst, “Effects of orientation
on the strength of the aluminium alloy 7010-T6 during shock loading: Experiment and
simulation”, Journal of Applied Physics, Vol. 92, No. 8, 2002, pp. 4342-4348.

[35] Jonas A. Zukas, “Impact Dynamics”, New York: Wiely-Interscience, 1982.

[36] Jonas A. Zukas, “High Velocity Impact Dynamics”, New York: Wiely-
Interscience, 1990.

[37] Marc A. Meyers, “Dynamic Behavior of Materials”, New York: Wiely-
Interscience, 1994.

[38] M. A. Meyers, R. W. Armstrong, H. O. K. Kirchner, “Mechanics and Materials”,
New York: Wiely-Interscience, 1999.

[39] T. Z. Blazynski, “Materials at High Strain Rates”, New York: Elsevier Applied
Science, 1987.

183



[40] L. E. Malvern, “Introduction to the Mechanics of a Continuous Medium”,
Prentice-Hall Inc., 1969.

[41] G.R. Johnson, J.M. Hoegfeldt, U.S. Lindholm, and A. Nagy, “Response of
various metals to large torsional strains over a large range of strain rates — Partl:
Ductile metals”, ASME J. Eng. Mater. Tech., Vol. 105, 1983. pp. 42-47.

[42] G.R. Johnson, J.M. Hoegfeldt, U.S. Lindholm, and A. Nagy, “Response of
various metals to large torsional strains over a large range of strain rates — Part2: Less
ductile metals”, ASME J. Eng. Mater. Tech., Vol. 105, 1983. pp. 48-53.

[43] G.R. Johnson and W.H. Cook, “A constitutive model and data for metals
subjected to large strains, high strain rates and high temperatures”, Proceedings of the
seventh international symposium on ballistic, The Hague, The Netherlands, 1983, pp.
541-547.

[44] T.J. Holmquist, G.R. Johnson, “Determination of constants and comparison of
results for various constitutive models”, Journal de Physique IV, Colloque C3, suppl.
au Journal de Physique III, Vol. 1, 1991, pp. C3-853 - C3-860.

[45] D. R. Lesuer, “Experimental investigations of material models for Ti-6Al-4V
titanium and 2024-T3 aluminium”, LLNL report No. DOT/FAA/AR-00/25, 2000.

[46] G. R. Johnson, W. H. Cook, “Fracture characteristics of three metals subjected to
various strains, strain rates, temperatures and pressures”, Engineering Fracture
Mechanics, Vol. 21, No. 1, 1985, pp. 31-48.

[47] G. R.Johnson, T. J. Holmquist, “Evaluation of cylinder-impact test data for
constitutive model constants”, J. Appl. Phys., Vol. 64, No. 8, 1988, pp. 3901-3910.
[48] F.J. Zerilli, and R.W. Armstrong, “Dislocation-mechanics-based constitutive
relations for material dynamics calculations™, J. Appl. Phys., Vol. 61, N0.5, 1987, pp.
1816-1825.

[49] B.D. Goldthorpe, “Constitutive equations for annealed and explosively shocked
iron for application to high strain rates and large strains”, Journal de Physique IV,
Colloque C3, suppl. au Journal de Physique III, Vol. 1, 1991, pp. C3-829 - C3-835.
[50] D. A. S. Macdougall, J. Harding, “A constitutive relation and failure criterion for
Ti6Al4V alloy at impact rates of strain”, Journal of the Mechanics and Physics of
Solids, Vol 47, 1999, pp. 1157-1185.

[51] J. P. Noble and J. Harding, “An evalution of constitutive relations for high-rate
material behaviour using the tensile Hopkinson-bar”, Journal De Physique, Colloque
C8, supplement au Journal de Physique II, Vol. 4, 1994, pp. C8 477-482.

[52] J. Harding, “The development of constitutive relationships for material behaviour
at high rates of strain”, Inst. Phys. Conf., Ser. No. 102, Session 5, 1989, pp. 189 —
203.

[53] A. S. Khan, R. Liang, “Behaviors of three BCC metal over a wide range of strain
rates and temperatures: experiments and modelling”, International Journal of
Plasticity, Vol. 15, 1999, pp. 1089-1109.

[54] R. Liang, A. S. Khan, “A critical review of experimental results and constitutive
models for BCC and FCC metals over a wide range of strain rates and temperatures”,
International Journal of Plasticity, Vol. 15, 1999, pp. 963-980.

[55] U.F. Kocks, A.S. Argon, and M.F. Ashby, “Thermodynamics and Kinetics of
Slip”, Prog. Mater. Sci., Vol. 19, Pergamon Press, New York, 1975.

[56] Y.P. Varshni, “Temperature Dependence of the Elastic Constants”, Phys. Rev. B,
Vol. 2, 1970, pp. 3952-3958.

[57] W. H. Gourdin, D.H. Lassila, “Flow stress of OFE copper at strain rates from

107 to 10*s™": Grain-size effects and comparison to the mechanical threshold stress
model”, Acta Metallurgica et Materialia, Vol. 39, 1991, pp. 2337-2348.

184



[58] C.W.MacGregor and J.C.Fisher, “A velocity-modified temperature for the plastic
flow of metals”, J.Appl. Mech., Vol. 68, 1946, pp. A11-Al6.

[59] P.S. Follansbee, U.F. Kocks, “A constitutive description of the deformation of
copper based on the use of the mechanical threshold stress as internal state variable”,
Acta Metallurgica, Vol. 36, 1988, pp. 81-93.

[60] U.F.Kocks, “Laws for Work-Hardening and Low-Temperature Creep”, J. Eng.
Mater. Tech., Trans. ASME, Vol. 98, 1976, pp. 76-85.

[61] P.S. Follansbee, U.F. Kocks and G. Regazzoni, “The mechanical threshold of
dynamically deformed copper and nitronic 40”, Journal-de-physique-colloque, Vol.
46, No. c-5, 1985, pp. 25-34.

[62] P. S. Follansbee, “High-Strain-Rate Deformation of FCC Metals amd Alloys”,
Conference Proceedings “Metallurgical Applications of Shok-wave and High-Strain-
Rate Phenomena”, edited by Murr, Staudhammer, Meyers, 1986, pp. 451-477.

[63] G. Regazzoni, U. F. Kocks and P.S. Follansbee, “Dislocation kinetics at high
strain rates”, Acta metal, Vol. 35, No. 12, 1987, pp. 2865-2875.

[64] P. S. follamsbee, G. Regazzoni and U. F. Kocks, “The transition to drag-
controlled deformation in copper at high strain rates”, Inst. Phys. Conf., Ser. No. 70,
1984, pp. 71-80.

[65] K. Raznjeve, “Handbook of thermodynamics table and chart”, New York:
McGraw-Hill, 1975.

[66] S.R. Chen and G.T. Gray, III, “Constitutive Behaviour of Tantalum and
Tantalum-Tungsten Alloys”, Metallurgical and Materials Transactions A, 27A, 1996,
pp- 2994-3006.

[67] S. R. Chen, G. T. Gray III, “Constitutive Behaviour of Tungsten and Tantalum:
Experiments and Modelling”, 2™ Intenational Conference on Tungsten and Refractory
Metals, 1995, pp. 489-498.

[68] D.M. Goto, J. Bingert, S.R. Chen, G.T. Gray, IIl and R.K. Garrett, Jr., “The
Mechanical Threshold Stress Constitutive Strength Model Description of HY-100
Steel”, Metallurgical and Materials Transactions A, 31(#8), 2000, pp. 1985-1996.

[69] S.R. Chen, P.J. Maudlin and G.T. Gray, III, “Mechanical properties and
constitutive relations for molybdenum under high rate deformation”, Molybdenum
and Molybdenum Alloys, 1998, pp. 155-172, edited by A. Crowson, E.S. Chen, J.A.
Shields and P.R. Subramanian (The Minerals, Metals and Materials Society,
Warrenddale, PA).

[70] G.T. Gray, III, S.R. Chen and K.S. Vecchio, “Influence of grain size on the
constitutive response and substructure evolution of monel 400”, Metallurgical and
Materials Transactions A, Vol. 30A, 1999, pp. 1235-1247.

[71] S. R. Chen, P. J. Maudlin, G. T. Gray III, “Constitutive Behavior of Model FCC,
BCC, and HCP Metals: Experiments, Modeling and Validation”, Constutive and
Damage Modelling of Inelastic Deformation and Phase Transformation, 1998, edited
by A.S. Khan, Neat Press, Maryland, USA, pp. 623-626.

[72] N. Tsuchida, Y. Tomota, H. Moriya, O. Umezawa and K. Nagai, “Application of
the Kocks-Mecking model to tensile daformation of an austentic 25Cr-19Ni stell”,
Acta mater, 49, 2001, pp. 3029-3038.

[73] D. M. Goto, J.F. Bingert, W. R. Reed and R. K. Garrett Jr., “Anisotrop-corected
MTS constitutive strength modelling in HY-100 steel”, Script mater., 42, 2000, pp.
1125-1131.

[74] L. Daridon, O. Oussouaddi, S. Ahzi, “Influence of the material constitutive
models on the adiabatic shear band spacing: MTS, power law and Johnson-Cook
models”, International Journal ofSolids and Structures, 41, 2001, pp. 3109-3124.

185



[75] D. J. Steinberg, “Equation of state and strength properties of selected materials”,
Lawrence Livermore National Laboratory, UCRL-MA-106439, 1991.

[76] Hill R., “The mathematical Theory of Plasticity”, Oxford University Press, 1950.
[77] W. Johnson, P. B. Mellor, “Engineering Plasticity”, Ellis Horwood Limited, 1983
[78] A. S. Khan, S. Huang, “Continuum Theory of Plasticity”, John Wiley & Sons,
1995.

[79] L. J. Klingler, G. Sachs, “Plastic Flow Characteristics of Aluminium-Alloy
Plate”, Journal of the Aeronautical Sciences, 15, 1948, pp. 599-604.

[80] W. Szczepinski, J. Miastkowski, “An Experimental study of the effect of the
prestraining history on the yield surfaces of an aluminium alloy”, J. Mech. Phys.
Solids, 16, 1968, pp. 153 - 162.

[81] T. Naka, Y. Nakayama, T. Uemori, R. Hino, F. Yoshida, “Effects of temperature
on yield locus for 5083 aluminium alloy sheet”, Journal of Materials Processing
Technology, 140, 2003, pp. 494-499.

[82] Han-Chin Wu, ‘“Anisotropic plasticity for sheet metals using the concept of
combined isotropic-kinematic hardening”, International Journal of Plasticity 18, 2002,
pp. 1661-1682.

[83] D. Banabic, T. Kuwabara, T. Balan, D. S. Comsa, D. Julean, “Non-quadratic
yield criterion for orthotropic sheet metals under plane-stress conditions”, Intenational
Journal of Mechanical Sciences, 45, 2003, pp. 797-811.

[84] O. Cazacu, F. Barlat, “Application of the theory of representation to describe
yielding of anisptropic aluminium alloys”, International Journal of Engineering
Science, 41, 2003, pp. 1367-1385.

[85] A. Khalfallah, H. B. Hadj Salah, A. Dogui, “Anisotropic parameter
identification using inhomogeneous tensile test”, European Journal of Mechanics
A/Solids, 21, 2002, pp. 927-942.

[86] K. A. Malo, O. S. Hopperstad, O. G. Lademo, “Calibration of anisotropic yield
criteria using uniaxial tension tests and bending tests”, Journal of Materials
Processing Technology, 80-81, 1998, pp. 538-544.

[87] O. G. Lademo, O. S. Hopperstad, M. Langseth, “An evaluation of yield criteria
and flow rules for aluminium alloys”, International Journal of Plasticity, 15, 1999, pp.
191-208.

[88] D. E. Green, K. W. Neale, S.R. MacEwen, A. Makinde, R. Perrin, “Experimental
investigation of the biaxial behaviour of an aluminium sheet”, International Journal of
Plasticity, 20, 2004, pp. 1677-1706.

[89] K. R. Gilmour, A.G. Leacock, M.T. J. Ashbridge, “The influence of plastic strain
ratios on the numerical modelling of stretch forming”, Journal of Materials Processing
Technology, 152, 2004, pp. 116-125.

[90] R. W. Logan, W. F. Hosford, “Upper-Bound Anisotropic Yield Locus
Calculations Assuming <111>-Pencil Glide”, Int. J. Mech. Sci., Vol. 22, 1980, pp.
419-430.

[91] M. Jansson, L. Nilsson, K. Simonsson, “On constutive modelling of aluminium
alloys for tube hydroforming applications”, International Journal of Plasticity, Article
in press.

[92] I. Ragai, D. Lazim, J. A. Nemes, “Anisotropy of springback in draw-bending of
stainless steel 410: experimental and numerical study”, Journal of Materials
Processing Technology, Article in press.

[93] A. S. Krausz and H. Eyring, “Deformation kinetics”, John Wiley & Sons, 1975.
[94] D. Krajcinovic, “Damage mechanics”, Elsevier Science, 1996.

186



[95] G. Maugin, “The Thermomechanics of Plasticity and Fracture”, Cambridge
Uneversity Press, 1992.

[96] F.R. Tuler, B.M. Butcher, “A criterion the time dependence of dynamic
fracture”, The international Journal of Fracture Mechanics, Vol. 4, No. 4, 1968, pp.
431-437.

[97] JJ. Gilman, F.R. Tuler, “Dynamic Fracture by Spallation in Metals”,
International Journal of Fracture Mechanics, Vol. 6, No. 2, 1970, pp. 169-182.

[98] S.N. Zhurkov, “Kinetic concept of the strength of solids”, International Journal
of Fracture Vol. 1, 1965, pp. 311-323.

[99] F. Kozin and J. L. Bogdanoft, “Cumulative damage model for mean fatigue
crack growth based on the kinetic theory of thermally activated fracture”, Engineering
Fracture Mechanics, Vol. 37, No. 5, 1990, pp. 995-1010.

[100] A. N. Dremin, A. M. Molodets, “On the spall strength of metals”, Proceedings
of the international symposium on intense dynamic loading and its effects, Beijing,
1986, pp. 13-22.

[101] J.R. Klepaczko, “Dynamic crack initiation, some experimental methods and
modelling”, In: J.R. Klepaczko, editor, “Crack dynamics in metallic materials”,
Vienna: Springer-Verlag, 1990, pp. 428 — 445.

[102] P. Chevrier, J.R. Klepaczko, “Spall fracture: Mechanical and microstructural
aspects”, Engineering Fracture Mechanics, 63, 1999, pp. 273-294.

[103] P. F. Chevrier, J. R. Klepaczko, “Spalling of aluminium alloy 7020-T6,
experimental and theoretical analyses”, Proceed. 11™ Biennial Eoropean Conference
on Fracture, Mechanisms and Mechanics of Damage and Failure, Vol. 1, 1996, pp.
693-698.

[104] S. Hanim, J.R. Klapaczko, “Numerical study of spalling in an aluminium alloy
7020-T6”, International Journal of Impact Engineering, 22, 1999, pp 649-673.

[105] S. Hanim, S. Ahzzi, “A unified approach for pressure and temperature effects in
dynamic failure criteria”, International Journal of Plasticity, 17, 2001, pp. 1215-1244.
[106] S. Bouzid, A. Nyoungue, Z. Azari, N. Bouaoudja, G. Pluvinage, “Fracture
criterion for glass under impact loading”, International Journal of Impact Engineering,
25,2001, pp. 831 —845.

[107] D.R. Curran, L. Seaman and D. A. Shockey, “Dynamic failure of solids”,
Physics reports, Vol 147, Nos. 5 & 6, 1987, pp. 253-388.

[108] S. Cocchran, D. Banner, “Spall studies in uranium”, Journal of Applied Physics,
Vol. 48, 1977, pp. 2729-2737.

[109] N. R. Hansen, H. L. Schreyer, “A thermodynamically consistent framework for
theories of elastoplasticity coupled with damage”, Int. J. Solids Structures, Vol. 31,
No. 3, 1994, pp. 359 — 389.

[110] A. M. Habraken, J. F. Charles, S. Secotto, “Calibration and validation of an
anisotropic elasto-plastic damage model for sheet metal forming”, Damage Mechancs
in Engineering Materials, Editors G. Z. Voyiadjis, J. W. W. Ju and J. L. Chaboche,
Elsevier Science, 1998, pp. 401- 420.

[111] Y. Y. Zhu, S. Cescotto, “A fully coupled elasto-visco-plastic damage theory for
anisotropic materials”, Int. J. Solids Structures, Vol. 32, No. 11, 1995, pp. 1607-1641.
[112] T. J. Ly, C. L. Chow, “On constitutive equations of inelastic solids with
anisotropic damage”, Theoretical and Applied Fracture Mechanics, Vol. 14, 1990, pp.
187 —218.

[113] C. L. Chow, J. Wang, “An anisotropic theory of elasticity for continuum
damage mechanics”, International Journal of Fracture, Vol. 33, 1987, pp. 3 — 16.

187



[114] C. L. Chow, J. Wang, “An anisotropic theory of continuum damage mechanics
for ductile fracture”, Engineering Fracture Mechanics, Vol. 27, No. 5, 1987, pp. 547 —
558.

[115] C. L. Chow, T. J. Lu, “On evolution laws of anisotropic damage”, Engineering
Fracture Mechanics, Vol. 34, No. 3, 1989, pp. 679 — 701.

[116] J. W. Ju, “’On energy-based coupled elastoplastic damage theories: constitutive
modelling and computational aspects”, Int. J. Solids Structures, Vol. 25, No. 7, 1989,
pp- 803 — 833.

[117] J. C. Simo, J. W. Ju, “Strain and stress based continuum damage models — L.
Formulation”, Int. J. Solids Structures, Vol. 23, No. 7. 1987, pp. 821 — 840.

[118] J. C. Simo, J. W. Ju, “Strain and stress based continuum damage models — II.
Computational aspects”, Int. J. Solids Structures, Vol. 23, No. 7, 1987, pp. 841 — 869.
[119] K. Hayakawwa, S. Murakamai, Y. Liu, “An irreversible thermodynamics theory
for elastic-plastic-damage materials”, European Journal of Mechanics, A/Solids, Vol.
17, No, 1, 1998, pp. 13 —32.

[120] R. K. Abu Al-Rub, G. Z. Voyiadjis, “On the coupling of anisotropic damage
and plasticity models for ductile materials”, Inernational Journal of Solids and
Structures, Vol. 40, 2003, pp. 2611 — 2643.

[121] P. Isaksson, R. Hagglund, P. Gradin, “Continuum damage mechanics applied to
paper”, International Journal of Solids and Structures, Vol. 41, 2004, pp. 4731 — 4755.
[122] J. Lemaitre, “A continuous damage mechanics model for ductile fracture”,
Journal of Engineering Materials and Technology, Vol. 107, 1985, pp. 83 — 89.

[123] Steinberg D. J, Cochran S. G., Guinan M. W., “A constitutive model for metals
applicable at high-strain rate”, Journal of Applied Physics, Vol. 51(3), 1988, pp.
1498-1504.

[124] Steinberg D. J., Lund C. M., “A constitutive model for strain rates from 10* to
10° 5™, Journal of Applied Physics, Vol. 65(4), 1988, 1528-1533.

[125] Bodner S. R., Symonds P. S., “Experimental and Theoretical Investigation if the
Plastic Deformation of Cantelever Beams Subjected to Impulsive Loading”, Journal
of Applied Mechanics, ASME, 1962, pp. 719-728.

[126] Campbell J. D., Cooper R. H., Proc. Conf. On the Physical basis of Yield and
Fracture (London: Inst. Of Phys. And Physical Soc.), 1966, pp. 77-87.

[127] Gurson, A.L., “Continum theory of ductile rupture by void nucleation and
growth. Part I: Yield criteria and flow rules for porous ductile madia”, Journal of
Engineering Materials and Technology, 1977, Vol. 99, pp. 2-15.

[128] Tvergaard V., “Material failure by void coalescence in localized shear bands”,
International Journal of Solids and Structures, 1982, Vol. 18, pp.659-672.

[129] Tvergaard V., Needleman A., “Analysis of cup-cone fracture in a round tensile
bar”, Acta Mettallurgica, 1984, 32, 57-169.

[130] Chaboche J. L., “Continuous damage mechanics — a tool to describe phenomena
before crack initiation”, Nucl. Engng. Des., 1981, 64, 233-247.

[131] Cordebois J. P., Sidoroff F., “Damage induced elastic anisotropy”, Euromech
115, Villars de Lans, 1979, pp.761-774.

188



APPENDIX A - Cranfield University Tensile Tests

Following tables (Tab. A.1. and Tab. A.2.) represent matrices for tensile tests
conducted at Cranfield University for two aluminium alloys with maximal practical
achievable ranges for temperature and crosshead speed.

Temperature -50°C 0°C +70°C +140°C +199°C[1] a
Crosshead +197°C [2,3]
Speed
0.008 mm/s 7L8M3MS1 | 7L8M3001 7L8M3P71 7L8M3141 7L8M3201 0°
7L8M3MS52 | 7L8M3002 | 7L8M3P72 7L8M3142 7L8M3202
7LEM3MS53 | 7L8M3003 | 7L8M3P73 7L8M3143 7L8M3203
TT8M3MS1 | 7T8M3001 7T8M3P71 7T8M3141 7T8M3201 90°
TTEM3MS52 | 7T8M3002 | 7T8M3P72 7T8M3142 7T8M3202
7TEM3MS53 | 7T8M3003 | 7T8M3P73 7T8M3143 7T8M3203
7D8M3P71 45°
7D8M3P72
7D8M3P73
0.08 mm/s 7L8M2MS1 | 7L8M2001 7L8M2P71 7L8M2141 7L8M2201 0°
TL8M2M52 | 7L8M2002 | 7L8M2P72 7L8M2142 7L8M2202
7LEM2MS53 | 7L8M2003 7LEM2P73 7L.8M2143 7L.8M2203
TT8M2MS51 | 7T8M2001 TT8M2P71 7T8M2141 7T8M2201 90°
TT8M2MS52 | 7T8M2002 | 7T8M2P72 T7T8M2142 7T8M2202
7T8M2MS53 | 7T8M2003 TTEM2P73 7T8M2143 7T8M2203
7D8M2P71 45°
7D8M2P72
7D8M2P73
0.8 mm/s 7L8MIMS1 | 7L8M1001 7L8M1P71 7L8M1141 7L8M1201 0°
TL8M1MS52 | 7L8M1002 | 7L&MI1P72 7L8M1142 7L8M 1202
7LEMIMS3 | 7L8M1003 7LEM1P73 7L.8M1143 7L8M1203
TT8MIMS1 | 7T8M1001 TT8M1P71 7T8M1141 7T8M1201 90°
TT8MIMS2 | 7T8M1002 | 7T8M1P72 TT8M1142 7T8M1202
TTEMIMS3 | 7T8M1003 TTEM1P73 7T8M1143 7T8M1203
7D8M1P71 45°
7D8M1P72
7DSM1P73
8 mm/s 7L8POMS1 | 7L8P0001 | 7LSPOP71 | 7L8PO141 | 7L8P0201 0°
7L8POM52 | 7L8P0002 | 7L8POP72 | 7L8P0142 | 7L8P0202
7L8POMS3 | 708P0003 | 7L8PoP73 | 7L8P0143 | 7L8P0203
TT8POMS1 7T8P0001 7T8POP71 7T8P0141 7T8P0201 90°
TT8POMS2 7T8P0002 7T8POP72 7T8P0142 7T8P0202
7T8POMS3 7T8P0003 7T8POP73 7T8P0143 7T8P0203
7D8POP71 45°
7D8POP72
7D8POP73
80 mm/s 7L8PIM51 | 7L8P1001 | 7L8PIP71 | 7L8P1141 | 7L8P1201 0°
7L8P1M52 | 7L8P1002 | 7L8PiP72 | 7L8P1142 | 7L8P1202
7L8P1M53 | 7L8P1003 | 7LsPiP73 | 708P1143 | 70L8P1203
7T8PIM51 | 7T8P1001 | 7T8P1P71 | 7T8P1141 | 7T8P1201 90°
TT8P1MS52 7T8P1002 7T8P1P72 7T8P1142 7T8P1202
7T8P1IMS3 7T8P1003 7T8P1P73 7T8P1143 7T8P1203
7D8P1P71 45°
7D8P1P72
7D8P1P73

Tab. A.1. Tensile test matrix for AA7010
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Temperature

Crosshead
Speed

-50°C

0°C

+70°C

+140°C

+199°C[1]

0.008 mm/s

2L8M3MS51

2L.8M3001

2L8M3P71
2L.8M3P72
2L.8M3P73

2L.8M3141

21.8M3201

00

2T8M3M51

2T8M3001

2T8M3P71
2T8M3P72
2T8M3P73

2T8M3141

2T8M3201

90°

2D8M3P71
2D8M3P72
2D8M3P73

45°

0.08 mm/s

2L8M2M51

2L.8M2001

2L.8M2P71
2L.8M2P72
2L.8M2P73

2L.8M2141

2L.8M2201

00

2T8M2M51

2T8M2001

2T8M2P71
2T8M2P72
2T8M2P73

2T8M2141

2T8M2201

90°

2D&M2P71
2D8M2P72
2D8M2P73

45°

0.8 mm/s

2L8M1IMS51

2L.8M1001

2L8M1P71
2L8M1P72
2L8M1P73

2L.8M1141

2L.8M1201

00

2T8M1MS51

2T8M1001

2T8M1P71
2T8M1P72
2T8M1P73

2T8M1141

2T8M1201

90°

2D&M1P71
2D&M1P72
2D8M1P73

45°

8 mm/s

2L8POMS51

2L.8P0001

2L.8POP71
2L8POP72
2L8POP73

2L.8P0141

2L.8P0201

00

2T8POMS1

2T8P0001

2T8POP71
2T8POP72
2T8POP73

2T8P0141

2T8P0201

90°

2D8POP71
2D8POP72
2T8POP73

45°

80 mm/s

2L8PIMS1

2L.8P1001

2L8P1P71
2L8P1P72
2L8P1P73

2L8P1141

2L8P1201

00

2T8P1MS51

2T8P1001

2T8P1P71
2T8P1P72
2T8P1P73

2T8P1141

2T8P1201

90°

2D8P1P71
2D8P1P72
2D8P1P73

45°

Tab. A.2. Tensile test matrix for AA2024

Yield strength values listed in tables Tab. A.3. and Tab. A.4., are determined
from CU tensile tests for AA7010 and AA2024. Tests have been conducted for five
different strain rates and temperatures, and for three different orientations for each
material.
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e[/ s] T[C] 0,[0°] [MPa] | o,[90°][MPa] | o, [45°][MPa]
6.4x 10° -50 547.0 545.8 -

6.4x 10° 0 527.3 525.6 -

6.4x 10° +70 496.7 493.5 467.4
6.4x 10° +140 467.2 465.1 -

6.4x 10° +200 392.7 387.4 -

&[l/s] T [C] c,[0°] [MPa] | o,[90°][MPa] | o [45°][MPa]
6.4x 10 -50 545.9 543.6 -

6.4x 107 0 521.1 520.6 -

6.4x 10 +70 493.9 488.4 465.3
6.4x 10 +140 459.7 457.6 -

6.4x 10™ +200 378.0 374.4 -

e[l/s] T[C] 0,[0°] [MPa] | ¢,[90°][MPa] | o, [45°][MPa]
6.4x 107 -50 540.3 535.3 -

6.4x 10~ 0 516.8 515.1 -

6.4x 10~ +70 491.1 485.5 463.8
6.4x 10~ +140 443.9 441.7 -

6.4x 10~ +200 352.1 346.7 -

&[l/s] T [C] c,[0°] [MPa] | o,[90°][MPa] | o [45°][MPa]
6.4x 10™ -50 536.2 530.1 -

6.4x 10™ 0 511.9 510.6 -

6.4x 107 +70 485.1 482.6 461.6
6.4x 10~ +140 429.5 427.8 -

6.4x 107 +200 320.2 318.8 -

&[l/s] T [C] c,[0°] [MPa] | o,[90°][MPa] | o [45°][MPa]
6.4x 10 -50 530.3 527.6 -

6.4x 10 0 509.2 507.9 -

6.4x 10™ +70 483.1 480.1 4574
6.4x 10™ +140 414.0 409.8 -

6.4x 10™ +200 295.7 289.6 -
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e[/ s] T[C] 0,[0°] [MPa] | o,[90°][MPa] | o, [45°][MPa]
6.4x 10° -50 365.32 311.27 -

6.4x 10° 0 352.98 304.26 -

6.4x 10° +70 343.20 299.85 296.74
6.4x 10° +140 333.08 289.59 -

6.4x 10° +200 318.78 280.66 -

&[l/s] T [C] c,[0°] [MPa] | o,[90°][MPa] | o [45°][MPa]
6.4x 10 -50 361.13 309.73 -

6.4x 10 0 350.49 302.01 -

6.4x 10 +70 339.22 296.84 294.85
6.4x 10 +140 317.47 274.14 -

6.4x 10™ +200 312.50 275.75 -

e[l/s] T[C] 0,[0°] [MPa] | ¢,[90°][MPa] | o, [45°][MPa]
6.4x 107 -50 356.53 307.90 -

6.4x 10~ 0 348.36 300.58 -

6.4x 10~ +70 330.84 294.42 292.35
6.4x 10~ +140 310.13 272.56 -

6.4x 10~ +200 294.97 270.29 -

&[l/s] T [C] c,[0°] [MPa] | o,[90°][MPa] | o [45°][MPa]
6.4x 10™ -50 352.72 305.15 -

6.4x 10™ 0 346.61 298.43 -

6.4x 107 +70 325.92 292.07 290.46
6.4x 10~ +140 305.96 269.09 -

6.4x 10~ +200 284.10 262.65 -

&[l/s] T [C] c,[0°] [MPa] | o,[90°][MPa] | o [45°][MPa]
6.4x 10 -50 347.90 303.01 -

6.4x 10 0 344.46 296.15 -

6.4x 10™ +70 310.67 291.04 289.85
6.4x 10™ +140 298.52 261.45 -

6.4x 10™ +200 271.75 252.21 -
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Typical stress-strain plots for aluminium alloy AA2024 from tensile tests
performed at +70°C in the strain rate range from & =6.4x10"*s™" to &=6.4x10"s"
for three different specimen orientations at 0°, 45° and 90°, are presented in Fig.
A.1.-Fig. AS.
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Fig. A.1. Stress-strain response for AA2024 at +70° C and & = 6.4x107*s™"
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Fig. A.2. Stress-strain response for AA2024 at +70° C and & = 6.4x107s™"
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Fig. A.3. Stress-strain response for AA2024 at +70° C and & = 6.4x107s™"
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Fig. A.4. Stress-strain response for AA2024 at +70° C and & = 6.4x10"'s™"
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Fig. A.5. Stress-strain response for AA2024 at +70° C and & = 6.4x10"s™"

Another set of the stress-strain plots for aluminium alloy AA7010 from tensile
tests performed at +70°C in the strain rate range from &=6.4x10"s" to
£=6.4x10"s"" for three different specimen orientations at 0°, 45° and 90°, are
presented in Fig. A.6. — Fig. A.10
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Fig. A.6. Stress-strain response for AA7010 at +70° C and & = 6.4x107*s™"
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Fig. A.7. Stress-strain response for AA7010 at +70° C and & = 6.4x107s™"
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Fig. A.8. Stress-strain response for AA7010 at +70° C and & = 6.4x107s™"
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Fig. A.9. Stress-strain response for AA7010 at +70° C and & = 6.4x10"'s™'

600 T YT T Ty
__.W'Em'*""ﬁ‘""};“-'fﬂ""s"r" e L TV 06 4ans
o ‘ﬂh‘»j}‘ﬁhw IS Saga,
500 f,. A ot
| f s= 07, T=+70° C, £=6.4x10" /s
400 + g a=90°, T=+70° C, £=6.4x10° 1/s
o E £ w =45 T=+70° C, c=6.4x10" 1/s
o g
E 300 é
b ] £
200 i
i\l
i £
100 - 3
0 ¢
0.00 0.05 0.10 0.15 0.20
A

Fig. A.10 Stress-strain response for AA7010 at +70° C and & = 6.4x10°s™"
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Values of yield stresses in 0°, 45°, 90°, directions and Lankford coefficients R,
listed in Tab. A.5. and Tab. A.6., were used to calculate parameters included in Hill’s
orthotropic criterion for AA7010 and AA2024.

Tab. A.5. Hill’s model constants for AA7010 (R=0.836)

F G H N
L R _ 1 Ry 1 4 1 R, -1
0'902 0'902(1+R0) 0'02(1+R0) 0'02(1+R0) 5(0'245 _0'290 +0'02(1+ Ro)]
0.5524 0.5447 0.4553 1.6870

Tab. A.6. Hill’s model constants for AA2024 (R=0.772)

F G H N
I R _ Ry 1 4 1 R, -1
oo’ Oo (1+Ry) | 0 (1+Ry) | &> (1+Ry) 5[0'245 o2 " o, (1+R, )J
0.7048 0.5643 0.4357 1.8457

Yield surfaces which were computed with identified anisotropic coefficients

of Hill’s yield function for the AA7010 and AA2024, where rolling direction, a = 0°,
was chosen as the reference direction, are presented in Fig. A.11.

— AAT010
— AA2024

1}
05

a5 : O'x/E

Fig. A.11. Predicted initial yield surfaces for AA7010 and AA2024
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Sets of data for adopted reference direction, & = 0°, presented in tables Tab.
A.l. and Tab. A.2. have been used for derivation of parameters for two temperature
and strain rate dependent strength material models, JC and MTS. Calculated
parameters for two aluminium alloys AA7010 and AA2024 are summarized in the

following tables (Tab. A.7. — Tab. A.9.).

Tab. A.7. JC model constants for AA7010

Parameter | Description Nominal value
G Shear modulus 26.0 GPa

A Yield stress constant 547.03 MPa
B Strain hardening coefficient 601.58 Mpa
n Strain hardening exponent 0.65

C Strain rate dependence coefficient 0.0022

m Temperature dependence coefficient 1.30

T, Melt temperature 893.15K

T. Reference temperature 293.15K

&, Reference strain rate 101/s

C, Specific heat 896 J/kgK
P..(c,) | Pressure cutoff (Failure stress) 1.30 GPa

Tab. A.8. MTS model constants for AA7010

Parameter | Description Nominal value
o, Athermal rate independent threshold stress | 10.0 MPa

o, Initial threshold stress at zero plastic strain | 600.0 MPa
Zos Normalized activation energy 1.606

o, Reference strain rate 1x10" s~

B Magnitude of Burgers vector 0.286x10°m
K Boltzmann’s constant 1.38x10% J/KK
D. Free energy equation exponent 1

q, Free energy equation exponent 1

A Saturation stress equation material constant | 5.542

Gy Saturation stress at zero degrees K 801.01 MPa
£ Saturation stress reference strain rate 1x10" s

ap Hardening function constant 67604.6 MPa
aj Hardening function constant 1816.9 MPa
a Hardening function constant 202.3 MPa
bo Shear modulus at zero degrees K 28.83 GPa

b; Shear modulus constant 4.45 GPa

b, Shear modulus constant 248.5 K

T, Reference temperature 293.15K

P Density 2810 kg/m’
Cp Heat capacity 896 J/kgK
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Tab. A.9. JC model constants for AA2024

Parameter | Description Nominal value
G Shear modulus 28.6 GPa
A Yield stress constant 369.0 MPa
B Strain hardening coefficient 684.0 Mpa
n Strain hardening exponent 0.73

C Strain rate dependence coefficient 0.0083

m Temperature dependence coefficient 1.7

T, Melt temperature 775.15 K
T. Reference temperature 293.15K
EA Reference strain rate 10'1/s

C, Specific heat 875 J/kgK
P..(c,) | Pressure cutoff (Failure stress) 1.67 GPa
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APPENDIX B - Ernst-Mach-Institute Tensile Tests

Matrix of tensile tests conducted at Ernst-Mach-Institute (Germany), is
presented on table Tab. B.1. Tests have been conducted using servo-hydraulic test
machine with maximal withdrawal velocity of 20 m/s at ambient temperature and
crosshead speed of 8 m/s for two orientation of the AA7010.

Tab. B.1. AA7010 Tensile matrix

Temperature 15°C a
Crosshead
Speed

8000 mm/s 7L8P3151 0°
7L8P3152
7L8P3153
7T8P3151 90°
7T8P3152
7T8P3153

Compared Cranfield University (CU) and Ernst-Mach-Institute (EMI), tensile
test results are presented on figures Fig. B.1. and Fig. B.2.

700 4 aaro10:e=0" | - - S 1 e EME

o'Cib.ax10"UscU

+140 C:6.4x 10 1/s:CU

Fig. B.1. AA7010 stress-strain responses for @ = 0° orientation obtained from CU
and EMI tests

+15'C{EAx10" 1 EMI |

] —
700 4 AATO10;a=80 I

___ dcedno’imcy

 [MPa]

Fig. B.2. AA7010 stress-strain responses for & = 90" orientation obtained from CU
and EMI tests
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Contact-less optical strain measurement technique has been applied (Fig.
B.3.), which allowed simultaneous measurement of both longitudinal and transverse
strain for the determination of R-value (Lankford coefficient).

t=0s t=2.60x107s t=7.80x107s

t=1.30x10™s =1.82x10"s =2.34x10s

t=2.86x10" t=3.38 x10™%s t=3.90x10

t=4.4201x10s t=4.9401x10s t=5.4601x10

t=5.9801x10"s t=6.5001x10""s t=7.0201x10™s

t=7.5401x10% t=8.0601x10s t=8.5801x10s

t=9.1001x10™s t=9.6201x10™s t=10.1401x10™s

t=10.6601 x10™s t=11.1802x10"%s t=11.7002x10"%s

t=13.2602x10™s
’

t=12.2202x10s t=12.7402x10™s

t=13.7802x10"%s t=14.3002x10"%s t=14.8202x10"%s

t=15.3402x10s t=15.8602x10s t=16.3802x10"s

t=16.9002x10"%s t=17.4202x10"%s t=17.9403x10"%s

Fig. B.3. Tensile test time sequence obtained using contact-less optical strain
measurement technique for the test 7L8P3153.

Lankford coefficient has been determined from the plastic strain using
longitudinal and strain in width direction:
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el +eb (5.1

It can be seen from figure Fig. B.4., that the R values vary with plastic
straining. Initial region of the curve was singular and was therefore omitted from this
plot. The R-values exhibit a slight increase at the onset of elastic yielding, which was
proceeded by an initial sharp reduction from the singular value (not shown on the
graph). Any detailed analysis of the R-values obtained at this low strain is only
speculative at best and should be avoided due to the considerable scatter in this
region. It can be seen that value of R =0.836 for Lankford coefficient deduced using
Taylor impact test corresponds to the maximal value of Lankford coefficient in Fig.
B.4.

Lankford coefficient R

L e e e S
0000 0025 0050 0075 0100 0125 0150 0175 0200 0225 0.250

Plastic strain <"

Fig. B.4. R value variation with plastic straining

In order to validate the hypothesis that strain rate and temperature dependence
of material are interchangeable, parameters for MTS model, which have been fitted

using AA7010 stress-strain data up to 6.4x10°s 'strain rate and temperature of

—50°C, have been used to predict stress-strain response of material at 6.4x10% strain
rate. Comparison of the prediction of the MTS model with experimental data is
presented in Fig. B.5., and good agreement has been observed.

-50 C;6.4e+0 1/s
0Ci6.de+01/s
+70 C;6.4e+0 1/s
450 +15 C;6.4e+2 1/s
+ MTS fit [-50 C;6.4e+0 1/s]

MTSfit[ 0C;6.4e+01/s]
+  MTS fit [+70 C;6.4e+0 1/5]
« MTS fit [+15 C;6.4e+2 1/s]

L L L i I L N L i
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 01
&

Fig. B.5. MTS model fit stress-strain response of AA7010
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APPENDIX C - Grunisen Equation of State

The three-dimensional stress state of material is normally modelled by
decomposing the stress into hydrostatic components (pressure term) and deviatoric
components (plasticity term). At low strain rates pressure is calculated as a mean
stress. In material characterisation of high strain rates pressure is calculated from
equation of state. Since high strain rate deformations involves the generation of high
temperatures under shock wave conditions, temperature or energy must also be
considered in the formulation.

The mathematical formulation that describes the behaviour of hydrostatic
components of stress and strain is called the equation of state and can be expressed in
the general form as:

P=f(E)V) (C.1)
where P is pressure, E is internal energy and V is relative volume.

One of the most commonly used equation s to model material behaviour under
impact conditions is the Gruneisen equation of state. It defines the pressure for
compressed materials (x> 0) as:

Poczﬂ{l‘*‘[l—};))ﬂ—;ﬂz}
P(,u,E)= { 3 } +(70 +a,u)E (C.2)

2
M H
1-(S, —1)u - -
(Sl ):U S, L+ Sy (,u+1)2

and for expanded materials (< 0) as;
P, E)= p,C* 11+ (yy + au)E (C3))

Were u is compression coefficient, which is defined as:

u==-- (C.4.)
2o

and C, is intercept of the shock velocity vs. article velocity (v, —v,) curve,
S, S,, S, are coefficients of the slope of the (v, —v,) curve, and y, is Gruneisen

gamma.
The Gruneisen equation of state is available in DYNA3D and was used in

numerical simulations. The advantage of this equation of state is that it is derived
from laboratory experiments and covers a wide range of conditions.

Values of Gruneisen EoS parameters, for aluminium alloys AA7010 and
AA2024 are summarized in following tables Tab. C.1. amd Tab. C.2.
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Table C.1.

Grunisen EOS constants for AA7010 [75]

Parameter | Description Nominal value
Co Bulk sound speed 0.52 cm/ s

S First Hugoniot slope coefficient 1.36

S, Second Hugoniot slope coefficient 0

Ss Third Hugoniot slope coefficient 0

7o Gruneisen coefficient 2.20

B First order volume correction coefficient 0.48

Table C.2. Grunisen EOS constants for AA2024 [75]

Parameter | Description Nominal value
Cy Bulk sound speed 0.5328 cm/ us
S First Hugoniot slope coefficient 1.338

S, Second Hugoniot slope coefficient 0

S5 Third Hugoniot slope coefficient 0

7o Gruneisen coefficient 2.00

B First order volume correction coefficient 0.48
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APPENDIX D - Mesh sensitivity analysis of the plate impact
FE simulation model

The mesh sensitivity study for the plate impact test numerical simulation has
been performed. Numerical simulations using the three different meshes were

performed, and those meshes are presented in the following figures Fig. D.1, Fig D.2.
and Fig. D.3.

Fig. D.1. Mesh 1

Mesh 1 (Fig. D.1.) has been used to assess influence of the mesh size of the
supporting plate. Mesh density, through the thickness direction, of the supporting
plate was twice as coarse then mesh density of the target and flyer. Mesh 2 (Fig. D.2.)
has been used as a reference mesh, and this mesh has identical mesh density through
thickness for all three parts, namely: flyer, target and supporting plate.

NI TR )

Fig. D.2. Mesh 2

Influence of the mesh size of the flyer and target plate has been assessed using
Mesh 3 (Fig. D.3.). In this mesh configuration, mesh density in the radial direction of
the flyer and target was twice as fine then in reference mesh configuration - Mesh 2.
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Fig. D.3. Mesh 3

In order to analyse mesh sensitivity of the FE model for the numerical
simulation of the plate impact test, Langrangian time-distance diagrams were used,
and results from numerical simulations were compared.

P [10°XGPal]

I 0.0555 - 0.0600
B 0.0510 - 0.0555
I 0.0465 - 0.0510
[0 0,0420 — 00465
10,0375 - 0.0420
0.0330 - 0.0375
0.02850 - 0.0330
[ 002400 - 0.02850
00 0.01950 - 002400
O 0.01500 - 0.01950
[ 001050 — 001500
[0 0.00600 — 0.01050
[0 0.001500 ~ 0.00600
[ -0.003000 - 0.001500
1 -0.00750 ~ -0.003000
[ -0.01200 -~ -0.00750
B -0.01650 - -0.01200
B -0.02100 — -0.01650
I -0.02550 - -0.02100
I -0.02000 — -0.02550

Time [us]

4 3 2 -1 0 1 2 3 4 5 6 7 8 9

Distance [mm]

Fig. D.4. Time distance diagram for OFHC Cu plate impact test numerical simulation
with Mesh 1

Diagrams were created for the sets of the elements through thickness of the
flyer and the target, which are positioned on the axis of the symmetry. The time-
distance diagrams were constructed from pressure-time data for the three different
mesh configurations (Fig. D.4. — Fig. D.6.) and for 6.5 uS response time.
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P [x10°GPal]

B 00557 - 0.0600
B 0.0515 — 0.0557
B 00472 — 00515
0 00430 — 0.0472
© 00387 - 0.0430
0.0345 - 0.0387
003025 - 0.0345
0 0.02600 ~ 0.03025
100 002175 — 0.02600
B 001750 — 0.02175
B 0.01225 — 0.01750
0 0.00900 —~ 0D.01325
100 0.00475 ~ 0.00900
[0 5E-4 - 0.00475
B -0.00375 -~ SE-4
0 -0.00800 - -0.00375
B -0.01225 — -0.00800
B -0.01650 — -0.01228
B -0.02075 — -0.01650
B -0.02500 - -0.02075

Time [us]

4 3 21012 3 4567 8 9
Distance [mm]

Fig. D.5. Time distance diagram for OFHC Cu plate impact test numerical simulation
with Mesh 2

Numerical simulations were performed using DYNA3D. All three plates,
namely flyer, target and support plate, were modelled with Isotropic-Elastic-Plastic-
Hydrodynamics material model in combination with Mie-Grunisen equation of state.

P [x10°GP]

I 0.0555 — 00600
I 0.0510 — 0.0555
I 0.0465 — 0.0510
0 0.0420 ~ 00465
© 00275 — 0.0420
0.0330 - 0.0375
0.02350 -- 0.0330
[ 0.02400 ~ 0.02850
0 0.01950 — 0.02400
0 0.01500 - 001950
O 0.01050 - 0.01500
00 0.00600 — 001050
[ 0.001500 ~ 0.00800
[ -0.003000 ~ 0.001500
[ -0.00750 ~ -0.003000
I -0.01200 ~ -0.00750
I -0.01650 ~ -0.01200
I -0.02100 ~ -0.01650
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Fig. D.6. Time distance diagram for OFHC Cu plate impact test numerical simulation
with Mesh 3
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Pressure time histories for the elements in interior of the target and for three
different mesh configurations are compared and presented in the figure Fig. D.7.
Elements in all three configurations were positioned on the axis of the symmetry and
half way through thickness of the target plate.

P [GPa]

-3 ! y ’ T T ! T T '
0 1 2 3 4 5 8 7

Time [us]

Fig. D.7. Pressure time histories for the elements in interior of the target plate for
three different mesh configurations

The effect of mesh size on the loading behaviour of target specimen has been
investigated and very limited effect was observed. Evaluating the CPU time spent in
simulations, it is possible to conclude that Mesh 1 conducts to the best compromise
present between accuracy and CPU time.
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