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Abstract

Control of the transition of laminar flow to turbulence would result in lower drag
and reduced energy consumption in many engineering applications. A spectral
state-space model of linearised plane Poiseuille flow with wall transpiration ac-
tuation and wall shear measurements is developed from the Navier-Stokes and
continuity equations, and optimal controllers are synthesized and assessed in sim-
ulations of the flow. The polynomial-form collocation model with control by rate
of change of wall-normal velocity is shown to be consistent with previous interpo-
lating models with control by wall-normal velocity. Previous methods of applying
the Dirichlet and Neumann boundary conditions to Chebyshev series are shown to
be not strictly valid. A partly novel method provides the best numerical behaviour
after preconditioning.
Two test cases representing the earliest stages of the transition are consid-

ered, and linear quadratic regulators (LQR) and estimators (LQE) are synthesized.
Finer discretisation is required for convergence of estimators. A novel estimator
covariance weighting improves estimator transient convergence. Initial conditions
which generate the highest subsequent transient energy are calculated. Non-linear
open- and closed-loop simulations, using an independently derived finite-volume
Navier-Stokes solver modified to work in terms of perturbations, agree with linear
simulations for small perturbations. Although the transpiration considered is zero
net mass flow, large amounts of fluid are required locally. At larger perturbations
the flow saturates. State feedback controllers continue to stabilise the flow, but
estimators may overshoot and occasionally output feedback destabilises the flow.
Actuation by simultaneous wall-normal and tangential transpiration is derived.

There are indications that control via tangential actuation produces lower highest
transient energy, although requiring larger control effort. State feedback controllers
are also synthesized which minimise upper bounds on the highest transient energy
and control effort. The performance of these controllers is similar to that of the
optimal controllers.

Keywords: Optimal Control, Channel Flow, Navier-Stokes Equations, Spectral
Methods, State-Space Model, Finite-Volume Discretisation Method, Linear Matrix
Inequality

iii



iv



Acknowledgments

This thesis communicates the results of research carried out under the supervi-
sion of Dr James Whidborne during the period October 2002 to December 2003
at King’s College London, and from January 2004 to March 2006 at Cranfield
University, the author having followed Dr Whidborne there. Funding from the
Department of Mechanical Engineering at King’s College, and from the School of
Engineering at Cranfield University, is gratefully acknowledged.
My grateful thanks to Dr Whidborne for his inspiring and enlightening super-

vision, and also to Dr George Papadakis of King’s College London, for his generous
advice on matters of fluid mechanics and the use of his finite volume Navier-Stokes
solver. The use of the linear spectral computer code written by Dr Satish Reddy
(Oregon State University), to be found in Schmid and Henningson (2001, appendix
A), is also acknowledged.
My gratitude is also due to Professor Thomas Bewley (University of Califor-

nia San Diego) and Dr Ole Morten Aamo (Norwegian University of Science and
Technology) for copies of their theses, and to Cranfield Students-off-site service
for the forwarding of material from the exceptional library. This thesis is typeset
in LATEX2εusing MiKTeX and TeXnicCentre.
My deepest thanks to my wife Kate, for her love and support, and to Edward,

whose arrival on 14th July 2004, brought with it much joy.

Theydon Bois, March, 2006 John McKernan

v



vi



Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Objectives and Methods . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 A Linear State-Space Representation of Plane Poiseuille Flow 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Flow Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 The Incompressible Navier-Stokes and Continuity Equations 16
2.2.2 Perturbations About a Base Flow . . . . . . . . . . . . . . . 17
2.2.3 The Base Flow: Plane Poiseuille Flow . . . . . . . . . . . . . 17
2.2.4 Linearization About Plane Poiseuille Flow . . . . . . . . . . 18
2.2.5 Non-Dimensionalisation . . . . . . . . . . . . . . . . . . . . 19
2.2.6 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 System Formulations . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Velocity-Vorticity Formulation . . . . . . . . . . . . . . . . 20
2.3.3 Boundary Conditions in Velocity-Vorticity Formulation . . . 21

2.4 Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Streamwise and Spanwise Discretisation . . . . . . . . . . . 22
2.4.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.4 Polynomial Discretization in the Wall-Normal Direction . . . 27
2.4.5 The Interpolating Basis . . . . . . . . . . . . . . . . . . . . 28
2.4.6 Resulting Equations . . . . . . . . . . . . . . . . . . . . . . 29
2.4.7 Schmid and Henningson Form . . . . . . . . . . . . . . . . . 30
2.4.8 Discretised Measurement . . . . . . . . . . . . . . . . . . . . 31

2.5 Boundary Conditions and the Introduction of Wall Transpiration . 31
2.5.1 Inhomogeneous Form . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2 Redundant Equations . . . . . . . . . . . . . . . . . . . . . . 34

2.6 State-Space Representation . . . . . . . . . . . . . . . . . . . . . . 35
2.6.1 State-Space Form . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



2.6.2 State Variables . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.3 Control Variables . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.4 Measurement Variables . . . . . . . . . . . . . . . . . . . . . 38
2.6.5 Bewley’s Derivation . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.6 State-Space Realization Matrices . . . . . . . . . . . . . . . 41

2.7 Implementation of Model . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7.3 Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.8 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.8.1 System Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.8.2 Model Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 49

2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Wall-Normal Direction Discretisation 73

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2 Spectral Collocation . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.1 Equations Discretised in Streamwise and Spanwise Directions 74
3.2.2 Subscript Convention . . . . . . . . . . . . . . . . . . . . . . 74
3.2.3 Cardinal or Interpolating Function Basis . . . . . . . . . . . 74
3.2.4 Polynomial Basis . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.5 Chebyshev Functions . . . . . . . . . . . . . . . . . . . . . . 75
3.2.6 Evaluation at Collocation Points . . . . . . . . . . . . . . . 77
3.2.7 Derivatives at Collocation Points . . . . . . . . . . . . . . . 77
3.2.8 Discretised Form of Equations . . . . . . . . . . . . . . . . . 77

3.3 Linear Algebraic Bases . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.1 The Requirements of a Basis . . . . . . . . . . . . . . . . . . 78
3.3.2 The Unmodified Chebyshev Basis . . . . . . . . . . . . . . . 78
3.3.3 Boundary Conditions and Basis Modification . . . . . . . . . 79

3.4 The Tools of Basis Modification . . . . . . . . . . . . . . . . . . . . 80
3.4.1 Basis Modification via Elementary Matrix Operations . . . . 80
3.4.2 Partitioning of Bases . . . . . . . . . . . . . . . . . . . . . . 81
3.4.3 State-Space Form . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Methods of Basis Modification Considered . . . . . . . . . . . . . . 82
3.5.1 Heinrichs’ Method . . . . . . . . . . . . . . . . . . . . . . . 82
3.5.2 Joshi’s Method . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.5.3 Combined Method 1 . . . . . . . . . . . . . . . . . . . . . . 87
3.5.4 Combined Method 2 . . . . . . . . . . . . . . . . . . . . . . 92
3.5.5 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.6 Conditioning Results and Discussion . . . . . . . . . . . . . . . . . 95
3.6.1 Conditioning of Spectral Coefficient Conversions . . . . . . 96
3.6.2 Conditioning of the Second Derivative . . . . . . . . . . . . 98
3.6.3 Conditioning of the Discrete Laplacian . . . . . . . . . . . . 99
3.6.4 Conditioning of the Fourth Derivative Matrix . . . . . . . . 100
3.6.5 Wall Preconditioning . . . . . . . . . . . . . . . . . . . . . . 101
3.6.6 Conditioning of the Eigensystem . . . . . . . . . . . . . . . 101

viii



3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4 Linear Quadratic Controller Synthesis and Simulations 107

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Controller Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.1 Optimal State Feedback . . . . . . . . . . . . . . . . . . . . 108

4.2.2 Optimal Estimation . . . . . . . . . . . . . . . . . . . . . . . 112

4.2.3 Optimal Output Feedback . . . . . . . . . . . . . . . . . . . 114

4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.1 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.2 Linear Simulations . . . . . . . . . . . . . . . . . . . . . . . 120

4.3.3 Non-Linear Simulations . . . . . . . . . . . . . . . . . . . . 120

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4.1 Controller synthesis . . . . . . . . . . . . . . . . . . . . . . . 128

4.4.2 Estimator synthesis . . . . . . . . . . . . . . . . . . . . . . . 130

4.4.3 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . 138

4.4.4 Linear Simulations . . . . . . . . . . . . . . . . . . . . . . . 147

4.4.5 Summary of Diachronic Transient Energy Bound θ Results . 165

4.4.6 Choice of Controller Discretisation in Non-Linear Simulations165

4.4.7 Non Linear Simulations . . . . . . . . . . . . . . . . . . . . 166

4.4.8 Summary of Simulation Results . . . . . . . . . . . . . . . . 189

4.4.9 Engineering Practicalities . . . . . . . . . . . . . . . . . . . 191

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5 Tangential Actuation 197

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.2 Modifications to the State-Space Model . . . . . . . . . . . . . . . . 198

5.2.1 The Velocity and Vorticity Representation . . . . . . . . . . 198

5.2.2 SimultaneousWall-Normal and Tangential Wall Velocity Bound-
ary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.2.3 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.2.4 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.2.5 The Functions gu and gl . . . . . . . . . . . . . . . . . . . . 201

5.2.6 Comparison of v and u,w Actuation . . . . . . . . . . . . . 202

5.3 Results from Linear Simulations and Discussion . . . . . . . . . . . 203

5.3.1 u- and w-Actuation Model Dynamics . . . . . . . . . . . . . 203

5.3.2 u- and w-Actuation Controller Synthesis . . . . . . . . . . . 205

5.3.3 u- and w-Actuation Diachronic Transient Energy Bound θ
and Initial Conditions . . . . . . . . . . . . . . . . . . . . . 207

5.3.4 u- and w-Actuation Transient Simulations . . . . . . . . . . 216

5.4 Results from Non-linear Simulations and Discussion . . . . . . . . . 222

5.4.1 u-Actuation on Small Initial Perturbations . . . . . . . . . . 222

5.4.2 u-Actuation on Large Initial Perturbations . . . . . . . . . . 224

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

ix



6 LMI Controller Synthesis and Simulations 229

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
6.2 Synthesis of LMI Controllers . . . . . . . . . . . . . . . . . . . . . . 230

6.2.1 Transient Growth . . . . . . . . . . . . . . . . . . . . . . . . 230
6.2.2 Closed Loop Transient Growth . . . . . . . . . . . . . . . . 231
6.2.3 Limited Control Effort . . . . . . . . . . . . . . . . . . . . . 232

6.3 Example Problem - The Lorenz Equations . . . . . . . . . . . . . . 234
6.3.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.3.2 Results of Linear Simulations and Discussion . . . . . . . . . 235
6.3.3 Investigation of Diachronic Transient Energy Bound θ, as

Determined by Eigenvector Non-normality and Eigenvalues . 241
6.3.4 Results of Non-Linear Simulations and Discussion . . . . . . 244

6.4 LMI Control of Plane Poiseuille Flow . . . . . . . . . . . . . . . . . 245
6.4.1 LMI Controller Synthesis . . . . . . . . . . . . . . . . . . . . 245
6.4.2 Results of Linear Simulations and Discussion . . . . . . . . . 250
6.4.3 Results of Non-Linear Simulations and Discussion . . . . . . 254

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

7 Conclusions and Future Work 259

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.1.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.1.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.1.3 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.1.4 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
7.1.5 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
7.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

7.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
7.2.1 Short Term Work . . . . . . . . . . . . . . . . . . . . . . . . 264
7.2.2 Medium Term Work . . . . . . . . . . . . . . . . . . . . . . 265
7.2.3 Long Term Work . . . . . . . . . . . . . . . . . . . . . . . . 267

References 268

A Y-Discretisation Conditioning 277

B Linear Transient Energy E Plots 283

C Effect of Symmetric and Anti-Symmetric Control Signals 289

x



List of Figures

1.1 The Flow Control Scheme . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Co-ordinate System for Plane Poiseuille Flow . . . . . . . . . . . . 18
2.2 The Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 Case 1 Open-Loop Singular Values vs Frequency . . . . . . . . . . 45
2.4 Case 1 Open-Loop Singular Values vs Frequency (detail) . . . . . . 46
2.5 Case 2 Open-Loop Singular Values vs Frequency . . . . . . . . . . 47
2.6 Case 2 Open-Loop Singular Values vs Frequency (detail) . . . . . . 47
2.7 Case 1 Error in Open-Loop Eigenvalues . . . . . . . . . . . . . . . . 49
2.8 Case 1 Reciprocal of Boyd’s Ordinal Difference . . . . . . . . . . . 50
2.9 Case 2 Reciprocal of Boyd’s Ordinal Difference . . . . . . . . . . . 50
2.10 Case 1 Pole-Zero Map (detail) . . . . . . . . . . . . . . . . . . . . 51
2.11 Case 2 Pole-Zero Map (detail) . . . . . . . . . . . . . . . . . . . . 51
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4.38 Case 2 Open-Loop ũ(y) vs Time . . . . . . . . . . . . . . . . . . . . 151
4.39 Case 2 Open-Loop Transient Energy vs Time . . . . . . . . . . . . 152
4.40 Case 2 Open-Loop Mode Transient Energy Components vs Time . . 152
4.41 Case 1 LQR Transient Energy vs Time . . . . . . . . . . . . . . . . 153
4.42 Case 1 LQR Initial Mode Amplitudes . . . . . . . . . . . . . . . . . 154

xii



4.43 Case 1 LQR Upper Wall Control vs Time . . . . . . . . . . . . . . . 154
4.44 Case 1 LQR Wall Velocity Coefficient vs Time . . . . . . . . . . . . 155
4.45 Case 1 LQR Fluid Depth Transpired vs Time . . . . . . . . . . . . 156
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Notation

Variables are real scalars unless stated otherwise. RM denotes a real column vector
of size M . CM×P denotes a complex array of size M × P . For clarity, large
dimensions are shown as approximate nominal values. Where the systems are
complex K ≡ C, where they are real K ≡ R.
For the system generated for test case 1, where complex, the number of state

variablesM is approximately the discretisation parameter N , the number of inputs
P is 2, and the number of outputs Q is 2. For test case 2 the corresponding values
are M ≈ 2N ,P = 2, and Q = 4. When the matrices of case 1 are made real, their
dimensions double in size, but those of case 2 do not (see section 2.7).
Variables h, Ucl, ρ, µ retain their dimensions, and are used to non-dimensionalise

the remainder as described in section 2.2.5, and in so doing introduce the non-
dimensional Reynolds number R.
Variables δx and δt retain their dimensions and are used together with µ and

dimensionalised velocities to calculate the non-dimensional Courant C and Peclet
Pe numbers in section 4.4.7.
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Roman Symbols

an ∈ K := multiplying co-efficient for nth Chebyshev polynomial
av ∈ KN := co-efficients for velocity
aη ∈ KN := co-efficients for vorticity
C := Courant number, C = uδt/δx
ci := amplitude of mode i
Dn ∈ RN×N := matrix of nth derivative of Chebyshev polynomials

at collocation points
DnD ∈ RN×N := modified Dn with Dirichlet boundary conditions
DnDN ∈ RN×N := modified Dn with Dirichlet and Neumann boundary

conditions
D ∈ RN×N := interpolating basis derivative matrix, D1D0−1

D := y differentiation operator
δx := mesh cell size
δt := timestep
E(t) := transient energy, X TQX , at time t
EEst(t) := estimated transient energy, X̂ TQX̂ , at time t
EError(t) := error energy

(

X − X̂
)T

Q
(

X − X̂
)

, at time t

EC1 := E of case 1 worst open-loop perturbation
of max v = 0.0001, at t = 0, value 8.23× 10−8

EC2 := E of case 2 worst open-loop perturbation
of max v = 0.0001, at t = 0, value 2.26× 10−9

Epair,bound := upper bound on mode pair energy growth
fl := inhomogeneous function at lower wall
fu := inhomogeneous function at upper wall
gl := inhomogeneous gradient function at lower wall
gu := inhomogeneous gradient function at upper wall
h := channel wall to centre-line separation
I := identity matrix
 :=

√
−1

k :=
√

α2 + β2

L ∈ KM×M := discrete form of Laplacian operator
N := highest Chebyshev polynomial degree used,

final collocation point index
Pe := Peclet number, Pe = ρuδx/µ
P := pressure
Pb := steady base flow pressure
p := pressure perturbation

(continued)
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Roman Symbols, Continued

ql ∈ K := v actuation at lower wall
qu ∈ K := v actuation at upper wall
qul ∈ K := u actuation at lower wall
quu ∈ K := u actuation at upper wall
qwl ∈ K := w actuation at lower wall
qwu ∈ K := w actuation at upper wall
R := Reynolds number, R = ρUclh/µ
r := control weight multiplier
s := measurement noise weight multiplier
T ∈ KM×M := matrix for conversion from state variables to ṽ, η̃
Tcp ∈ KM×M := invertible matrix for conversion between state variables

and ṽ, η̃, excludes next-to-wall velocities and vorticities
t := time
x, y, z := streamwise, wall-normal and spanwise co-ordinates
~U = (U, V,W ) := fluid velocity vector
U, V,W := fluid velocity in x, y, z directions
~Ub = (Ub, Vb,Wb) := steady base fluid velocity in x, y, z directions
Ucl := Ub at centreline
~u = (u, v, w) := fluid velocity perturbation vector
u, v, w := fluid velocity perturbations in x, y, z directions
ũ, ṽ, w̃ ∈ K := u, v, w Fourier coefficients at wavenumber pair α, β
ṽl, ṽu ∈ K := v Fourier coefficients at lower and upper walls

i.e. ṽl(t) = ṽ(y = −1, t) & ṽu(t) = ṽ(y = 1, t)
yn := y at nth Chebyshev-Gauss-Lobatto collocation point
ṽn := ṽ at nth Chebyshev-Gauss-Lobatto collocation point
vh := homogeneous component of wall-normal velocity
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Calligraphic Symbols

A ∈ KM×M := system matrix
B ∈ KM×P := input matrix
C ∈ KQ×M := output matrix
D ∈ KQ×P := direct transmission matrix
E ∈ KM×P := input derivative matrix
G := state-space system (A,B, C,D)
K ∈ KP×M := state feedback gain matrix
L ∈ KP×M := estimator gain matrix
P ∈ KM×M := solution to algebraic Riccati equations and

Lyapunov equations
Q ∈ KM×M := state variable weighting (energy) matrix
R ∈ KP×P := control weighting matrix
S ∈ KM×M := P−1
T ∈ KM×M := balancing transformation
U ∈ KM := control vector
V ∈ KQ×Q := measurement noise power spectral density
W ∈ KM×M := process noise power spectral density
X ∈ KM := state variable vector

X̂ ∈ KM := state estimates vector

XError ∈ KM := estimate error vector, X − X̂
XWorst ∈ KM := X (t = 0) which generates θ
XError,Worst ∈ KM := XError(t = 0) which generates θError
Xcp ∈ KM := X transformed to ṽ, η̃ values at collocation points
X̃ ∈ KM := state variables transformed to Q1/2X ,

thus E = X̃ T X̃
Y ∈ KQ := measurement vector
Z ∈ KP×M := KS
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Greek Symbols

α := streamwise(x) wave number, cycles per 2π distance
β := spanwise(z) wave number, cycles per 2π distance
Γn(y) := nth Chebyshev polynomial of the first kind,

cosn(arccos(y))
ΓMn (y) := modified nth Chebyshev polynomial
ΓDn (y) := ΓMn (y) which satisfies Dirichlet boundary conditions

ΓMn (y = ±1) = 0
ΓDNn (y) := ΓMn (y) which satisfies Dirichlet and Neumann

boundary conditions ΓMn (y = ±1) = ΓMn (y = ±1)′ = 0
δi := Boyd’s ordinal difference
ε(t) := synchronic transient energy bound at time t
εError(t) := synchronic error energy bound at time t
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eigensystem
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λi ∈ C := ith eigenvalue
Λ ∈ CM×M := diagonal eigenvalue matrix
µ := molecular or kinematic viscosity
ν := upper bound on control effort
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conditions
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ω ∈ C := frequency
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ḟ := differentiation of f with respect to t
f, (fn) := array with elements f
fT := conjugate transpose of f
=(f) := imaginary part of f
<(f) := real part of f
∥

∥

∥

~f
∥

∥

∥

2
:= vector 2-norm,

√

∑

i |fi|
2

‖A‖max := max element norm, maxi,j |aij|

Acronyms

ARE := Algebraic Riccati Equation
CFD := Computational Fluid Dynamics
FFT := Fast Fourier Transform
LEBU := Large Eddy Breakup device
LMI := Linear Matrix Inequality
LQE := Linear Quadratic Estimator
LQG := Linear Quadratic Gaussian controller
LQR := Linear Quadratic Regulator
MEM := Micro-Electrical Machine
ODE := Ordinary Differential Equation
PDE := Partial Differential Equation

xxiv



Chapter 1

Introduction

1.1 Introduction

In its widest sense ‘flow control’ is the manipulation of fluid flow fields, by passive
or active means, in order to achieve beneficial results (Gad-el-Hak, 1998, p1), if we
exclude the sense associated with the metering of flows. Examples of flow control
in this sense are the design of cars to reduce drag, or of aerofoils to maximise lift.
More specifically, practical control of fluid flows involves boundary layer transi-

tion delay, separation control and drag reduction. Historically, it has been achieved
by experiment and intuition, and has mainly focused upon the introduction of fea-
tures to achieve steady-state manipulation of boundary layer base flows, i.e. control
in a spatial sense, with any temporal disturbances being manipulated in the pro-
cess. Amongst other successes, this control of flow fields has contributed to the
era of modern flight. Such flow control may be passive, for example, separation
control by careful shaping (Gad-el-Hak, 1998, p33) or predetermined active con-
trol, whereby energy is expended in order to obtain beneficial results, for instance
steady suction to remove boundary layers and maintain laminar skin-friction as
reviewed by Joslin (1998).
Developments in flow visualisation and simulation have revealed details of the

transient behaviour in fluid flow, in particular the structures which appear during
the separation of flow and the transition to turbulence, and the disturbances on
various length and time-scales in turbulent flow, as shown for example by Van
Dyke (1982). Micro-electrical machines (MEMs), as described by Ho and Tai
(1998), Gad-el-Hak (1999) and Lofdahl and Gad-el-Hak (1999), have also been
developed, and are able to sense and deflect fluid flow on boundaries at the small
length scales encountered in flows of engineering interest.
Fluid transient disturbances may be manipulated by passive means, for ex-

ample by riblets (Bushnell, 2003, p7) or large eddy breakup devices (LEBUs)
(Gad-el-Hak, 1998, p65) in turbulent flow, or by ad-hoc active means, for example
wave cancellation techniques as described by Gaster (2000) and Sturzebecher and
Nitsche (2003) in laminar flow. However, the disturbances may also be altered by
means that measure them and react to them. This introduces ‘control’ in the sense
of the usual application of modern systems control theory, i.e. the reactive control
of systems in a temporal setting, and this is the sense used in this thesis. Unlike
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passive or ad-hoc active flow control, reactive flow control responds appropriately
to disturbances as they occur.

Abergel and Temam (1990) were amongst the first to suggest the application
of systems control theory to the Navier-Stokes equations. In conjunction with the
advent of MEMs devices, systems theory flow control attempts to improve flow
control performance over that of passive and ad-hoc active control, for which Collis
et al. (2004) note that, to date, progress has been erratic. Systems theory flow
control aims to synthesize controllers for flows which provide certain guarantees
regarding the stability, performance and robustness of the controlled system. The
controllers are synthesized by applying mathematical techniques to a model of the
system derived from its physical equations or measured dynamical properties.

The aim of this thesis is to investigate, using systems theory approaches, the
control of plane Poiseuille flow in the very earliest stages of transition from laminar
flow to turbulence, with an emphasis on modelling the flow, reducing its transient
energy growth, and comparing methods of actuation. The application of feedback
control to the problem of transition brings the prospect of the attenuation of
unknown and variable disturbances in imprecise flow conditions, and mathematical
modelling and optimal solution of the problem may lead the way to practical
configurations.

Flows which are linearly stable nonetheless undergo transition to turbulence,
and the explanation is believed to be the large transient growth of perturbation ki-
netic energy taking the system into a non-linear regime, for example as described
by Trefethen and Embree (2005, p210). In a state-space setting, the transient
energy is a weighted sum of the squares of the state variables. Many systems ex-
perience initial excursions of transient energy before settling down to stable states.
The control of the transient behaviour of systems has recently been investigated
by Hinrichsen and Pritchard (2000) and Hinrichsen et al. (2002).

The benefits of laminar fluid flow over turbulent flow include lower skin fric-
tion and less noise, and methods of preventing the transition of laminar flow to
turbulent flow would yield significantly lower energy costs and carbon emissions
in many kinds of transportation, as reviewed by Wood (2003). Gad-el-Hak (1998,
p79) estimates that skin friction accounts for 50,90, and 100% of drag on commer-
cial aircraft, underwater vehicles and pipelines respectively, and Joslin (1998, p3)
notes that laminar drag can be as low as 10% of turbulent drag.

However, the governing fluid flow equations are infinite dimensional, non-linear
and coupled, and exhibit complex behaviour during the transition from smoothly
shearing laminar flow to the chaotic limit-cycle type behaviour on various length
and timescales that is turbulence. Hogberg and Bewley (2000) note that descrip-
tions of the transition in terms of phenomena are incomplete. The earliest transi-
tion behaviour can be modelled by linearisation of the equations, also making the
equations amenable to rigorous modern controller synthesis techniques. Further-
more, any control of full turbulence would also need to control the early stages in
order to achieve laminar flow, but Hogberg et al. (2003a, p154) note that linear
control of the early stages may obviate the need for control of the later non-linear
ones. It would also seem reasonable to control the large slow moving disturbances
at the beginning of the turbulence cascade (Tritton, 1988, p314) rather than the
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Figure 1.1: The Flow Control Scheme

fast small eddies which finally dissipate energy, and which require many more
degrees of freedom to model. Joslin (1998, p2) estimates that the energy require-
ments for relaminarization could be an order of magnitude greater than those for
laminar flow control.

In non-phenomenological terms, controlling the growth of the transient energy
of disturbances in laminar flow is crucial to the suppression of non-linear effects
and the transition to turbulence. In a linear setting, an upper bound on the growth
of the transient energy of disturbances of a system is given by the highest subse-
quent transient energy possible from initial conditions of unit energy. Transient
energy growth is associated with non-normal system eigenvectors, as investigated
by Trefethen et al. (1993).

The geometry of the boundary surfaces over which transition to turbulence
takes place are many and varied, generally with complex boundary conditions and
boundary layer profiles without closed form solutions. Plane Poiseuille (channel)
flow has simple flow geometry, boundary conditions and velocity profile, making it
a suitable choice for the investigation of flow control. The control of flow separation
is another subject, and such separation does not generally occur in channel flow.

The use of MEMs devices providing almost continuous detection of disturbances
and variation of the wall boundary conditions of plane Poiseuille flow under con-
trol, is depicted schematically in figure 1.1. The figure shows plane Poiseuille flow
between two horizontal boundary walls, which contain distributed sensors and ac-
tuators. A flow disturbance is sensed, and fed to the controller which computes an
appropriate transpiration actuation to render the disturbance stable, with further
dynamic properties, e.g. minimised transient energy growth.
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1.2 Previous Work

What follows is an overview of recent research in the systems theory feedback
control of laminar plane Poiseuille flow. For other more general reviews of flow
control research, see the articles by Moin and Bewley (1994), Lumley and Blossey
(1998), Bewley (2001) and Collis et al. (2004), and the books by Gad-el-Hak (1998,
2000). Rempfer (2003) provides a review of modelling transition.

Hu and Bau (1994) and Pabiou et al. (2004) demonstrate how the linear stabil-
ity of plane Poiseuille flow may be modified by proportional feedback control from
wall shear stress measurements to wall temperature actuation. Joshi et al. (1995,
1997, 1999) were amongst the first to consider the problem of applying modern
control theory to linearised plane Poiseuille flow. Using a stream function formula-
tion, which restricts flow perturbations to the streamwise/wall-normal plane, the
authors model the flow spectrally assuming a periodic Fourier series variation in
the unbounded streamwise direction, and a Chebyshev series variation in the wall-
normal direction. They use a Galerkin method to form a system with Chebyshev
coefficients as state variables, and which assumes temporal but not spatial growth
of disturbances. As the authors transform their homogeneous system with inho-
mogeneous boundary conditions into a inhomogeneous system with homogeneous
boundary conditions, their control input is via rate of change of wall-normal ve-
locity. Their measurements are wall shear stress. The authors propose distributed
actuation and sensing in order to make unmodelled wavenumber dynamics un-
controllable and unobservable respectively, although they employ point sensing in
their linear simulations which show the effectiveness of integral and linear optimal
controllers with prescribed stability, in terms of shear settling time and the re-
quired control effort, from unit initial state variables. Controllers from low-order
models are seen to be as effective as those from high order models.

Cortelezzi and Speyer (1998) and Cortelezzi et al. (1998a,b) employ similar
methods to those of Joshi et al., and point out that distributed actuation and
sensing makes the linearised equations decouple by wavenumber. In their linear
quadratic regulator (LQR) controller synthesis the authors chose to minimise the
wall shear stress, and like Joshi use the power spectral densities of the estimator
in their linear quadratic estimator (LQE) synthesis as design parameters to intro-
duce robustness via the loop transfer matrix. A combined model covering several
wavenumbers is used for the synthesis of a controller, which is then reduced by se-
lection of controllable and observable rows and columns from the Jordan canonical
form. The authors compute initial conditions which lead to the worst wall shear
stress, and achieve a significant reduction in non-linear simulations, but being two-
dimensional it does not fully represent turbulence. Lee et al. (2001) extend the
controller into the spanwise direction in an ad-hoc manner.

In their seminal paper, Bewley and Liu (1998) adopt a wall-normal velocity-
vorticity formulation, capable of representing three-dimensional disturbances, dis-
cretised by spectral collocation in the wall-normal direction to yield the state
variables as values at collocation points. Unfortunately, although their implemen-
tation of the boundary conditions allows control directly by wall-normal velocity,
it also introduces spurious system modes. The authors synthesize linear quadratic
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Gaussian (LQG) controllers using the transient energy plus control effort as an
LQR cost function, seeking to minimise transient energy growth and consequent
non-linearity, as a precursor to transition, rather than the immediate but short
term benefit of reduced wall shear as sought by Joshi et al. and Cortelezzi et al.
The authors also synthesize H∞ robust controllers, which are insensitive to un-
certainties. They compute initial conditions which produce the worst subsequent
transient energy growth as derived by Butler and Farrell (1992), and perform lin-
ear simulations on two test cases, an unstable two-dimensional flow perturbation,
and the stable three-dimensional perturbation which produces the largest overall
transient energy growth. The authors emphasize the role of non-modal transient
energy growth associated with non-orthogonal system eigenvectors, and show the
superiority of modern control methods over more conventional ones. By reformu-
lating the boundary conditions, Aamo (2002) is able to avoid the spurious modes.

Balogh et al. (1999, 2000, 2001) derive controllers for global Lyapunov (non-
linear) stabilization of two-dimensional channel flow. The intractability of the
problem is shown by the results only being applicable to low Reynolds number,
R < 1/8, although the flow is known to be stable uncontrolled to R ≈ 1000, for ex-
ample as shown by Carlson et al. (1982). The authors’ controllers achieve laminar
flow in non-linear simulations at much higher Reynolds numbers, R = 7500 and
15000. They use tangential actuation with local shear stress measurements and
perform non-linear simulations with both finite-volume and spectral Navier-Stokes
solvers, from initial random perturbations allowed to grow for some time. Sub-
sequently Aamo et al. (2003) formulate controllers for achieving global Lyapunov
stabilization using wall-normal actuation and pressure measurements, which are
similarly restricted to low Reynolds numbers but are seen to achieve laminar flow
at much higher ones. Reversal of the feedback sign leads to enhanced instability
and mixing as compared to open-loop flow. Bewley and Aamo (2004) observe
low drag transients in the controlled flow, but find that they are unsustainable,
and conjecture that the lowest possible sustainable drag in channel flow is that of
laminar flow.

Bamieh and Dahleh (1999, 2001) show that subcritical streamwise constant
disturbance energy amplification is O(R3) and is due to the coupling between ve-
locity and vorticity, as a consequence of the non-normality of the Orr-Sommerfeld
operator. Subsequently Bamieh et al. (2002) demonstrate that optimal controllers
inherit the spatial invariance of the plant under a variety of performance criteria,
and furthermore that convolution kernels, arising from many controllers at contin-
uous wavenumbers in Fourier space, decay exponentially with physical distance,
i.e. only local variables affect the control, thus resulting in localised control.

Hogberg and Bewley (2000), motivated to derive control ‘bypassing phenomeno-
logical descriptions of transition which are still incomplete’, generate convolution
kernels for the LQR control of linearised plane Poiseuille flow, and find that they
do generally decay exponentially and result in localised control. The authors’ flow
model is a development of Bewley and Liu (1998), using the differentiation matrix
suite of Weideman and Reddy (2000) and, akin to Joshi et al. (1995), forming
an inhomogeneous system with homogeneous boundary conditions (as also recom-
mended by Boyd (2001)), the authors use control by rate of change of wall-normal
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velocity, and find no spurious modes. Direct numerical simulations on oblique
waves (which generate streamwise vortices and thus streaks) and random initial
conditions, both of initial energy well above the known transition energy thresh-
olds determined by Reddy et al. (1998), demonstrate that the resulting controllers
bring the flow back to the laminar state.

Hogberg et al. (2003a) show that although convolution kernels decay, and trun-
cation does not degrade state feedback control significantly, convolved output
feedback performance is degraded. The authors also quantify the improvement
in transition thresholds when feedback is applied, by non-linear simulations us-
ing the widely cited code of Bewley et al. (2001, p193), which is pseudospectral
streamwise and spanwise, and finite difference in the wall-normal direction, with
time advancement by hybrid Crank-Nicholson/Runge-Kutta methods. Oblique
waves are known to have a lower transition threshold than streamwise vortices or
random perturbations in uncontrolled flow as shown by Reddy et al. (1998), and
control significantly increases the transition thresholds. Streamwise vortices are
seen to have the lowest transition threshold in state feedback controlled flow. The
controllers are unable to relaminarize turbulent flow. Hogberg et al. (2003b) re-
port the successful non-linear simulation of relaminarization of turbulent channel
flow, using the gain scheduling of linear state feedback kernels derived for different
mean flow profiles as the flow field is made laminar.

The importance of the linear transient energy growth mechanism is stressed
by Reddy and Henningson (1993, p236). Hogberg and Bewley (2000) note that
non-linear terms only redistribute energy. Kim and Lim (2000) and Kim (2003)
emphasize the importance of the linear terms in maintaining turbulence.

Bewley et al. (2001) successfully control a turbulent channel flow simulation
using non-linear predictive optimal control to optimize actuation over a finite pre-
diction horizon. The method uses a cost function gradient computed from the
adjoint flow field, requiring an intensive online calculation. Thus the authors see
the result as a benchmark for more practical controllers. Hogberg et al. (2001)
compare optimal linear control and non-linear predictive optimal control on oblique
waves in channel flow. LQR controller performance is found to be very similar to
predictive controller performance, and LQG controller performance is not as good,
although it may be improved with better initial estimates. The authors identify
the need for estimators with faster convergence.

Bewley and Protas (2004) show that, in theory, measurements of wall shear
stresses and pressure over a short interval of time are sufficient to determine the
exact state of turbulent flow, and the stresses alone are sufficient for determining
the state of linearised flow, without any knowledge of the initial conditions of the
flow. However, poor estimator convergence is found in non-linear simulations, and
the authors present an adjoint based algorithm which utilises the Navier-Stokes
equations as a filter and is better behaved, especially with regard to measurement
noise, since it does not perform differentiation. Chevalier et al. (2004) gather sta-
tistical data from direct numerical simulations of turbulence in Poiseuille flow, in
order to compute the covariance of the process noise. For individual wavenumber
pairs and in terms of velocity components, the variance is found to be stronger
near the walls, and the covariance decreases as the wall-normal distance between
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the points increases. The authors then compute optimal estimator gains for an
extended Kalman filter based on the linearised Navier-Stokes equations, and test
the resulting estimator on turbulent Poiseuille flow simulations. The estimators
show better correlation with simulated turbulent flow than do estimators from pre-
vious studies which use a spatially uncorrelated covariance, in terms of maximum
correlation and distribution in the channel. Hœpffner et al. (2005, 2006) assume
a parameterised covariance which decreases exponentially as the wall-normal dis-
tance between the points increases. The authors then compute optimal estimator
kernel gains for a Kalman filter for a number of simultaneous wavenumbers, which
converge upon grid refinement. The resulting estimators are tuned, in part by
physical arguments, and found to be effective in linear and non-linear simulations
of perturbed laminar flow. The authors show that extended filters incorporating
non-linearity perform better for large disturbances, and that time varying estima-
tor gains lead to faster convergence.

Baker and Christofides (1999), Baker et al. (2000a,b) and Baker and Christofides
(2002) synthesize non-linear finite-dimensional output feedback controllers for two-
dimensional channel flow. The controllers measure wall shear stresses and generate
Lorentz electromagnetic body force actuation, which requires a conducting fluid.
The non-linear channel equations are modelled using a stream function formula-
tion, and discretised by a Galerkin method utilising approximate inertial manifolds,
assuming periodicity of several wavenumbers in the streamwise direction, and using
linear combinations of Chebyshev polynomials in the wall-normal direction that
satisfy the homogeneous boundary condition. Controllers are synthesised using ge-
ometric methods. The authors also synthesize linear output feedback controllers,
and show the superiority of the non-linear control using a transient performance
index related to system energy.

Using a two-dimensional modified stream function formulation, Baramov et
al. (2000, 2002) model Poiseuille flow with discrete wall shear stress measure-
ments, and both harmonic and panel transpiration, with included actuator dy-
namics. Since the panel actuation boundary conditions are not harmonic, sev-
eral wavenumbers are modelled simultaneously. The high order model from a
Galerkin discretisation of the linearised Navier-Stokes equations is reduced in or-
der by Hankel-optimal reduction. The flow model consists of an interconnection
of the reduced order model and a perturbation, and H∞ controllers are synthe-
sized using appropriate frequency weightings. The controllers are tested on the
high order model with random initial conditions. The controllers satisfy the ro-
bust stability condition, and significantly attenuate wall shear stress. Panel ac-
tuation introduces an unstable zero and thus has a large H∞ performance index,
but requires less control effort than harmonic actuation. The authors’ use of fre-
quency domain analysis provides an alternative insight into the system dynamics
to transient analysis, but the existence of non-modal transient energy growth is
not as apparent. Jovanovic and Bamieh (2005) find the existence of input-output
resonances in linearised plane Poiseuille flow spatial-temporal frequency responses
which correspond to the known growth mechanisms of Tollmien-Schlichting waves,
streamwise vortices and oblique waves.

Subsequently Baramov et al. (2001, 2003, 2004) model two-dimensional non-
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periodic spatially evolving disturbances by coupling systems representing segments
of channel. Each segment is a finite difference discretisation of the channel in the
streamwise direction with a Chebyshev expansion in the wall-normal direction.
Additional segments are added to avoid end effects. Segments are combined using
the Redheffer star product on their frequency domain data. A low-order transfer
function matrix is fitted to the combined frequency domain data, and a distur-
bance model is designed and H∞ controllers are synthesized, using appropriate
frequency weights which achieve robust stability. The resulting high order con-
troller is reduced in order by Hankel-optimal reduction. Closed-loop frequency
domain tests show that the controller significantly reduces incoming wall shear
stress. Further evaluations using a finite-difference non-linear Navier-Stokes solver
also show significant shear reduction downstream of the actuation panels, from
incoming disturbances.
Veres et al. (2003) iteratively synthesize low order controllers for a similar model

of Poiseuille flow by the technique of unfalsification. The forms of a parameterised
model and of robust controllers are assumed, and unsuitable parameter vectors
are discarded by using a priori knowledge of the physical plant and by assessing
the controller robust performance. Bewley et al. (2000) propose a mathematical
framework for the robust control of two-dimensional and three-dimensional infinite
dimensional linear and non-linear fluid flows, and suggest a numerical algorithm
based on repeated computations of an adjoint field.
Researchers have also used techniques developed on Poiseuille flow to model and

control spatially developing boundary layers, for example Hogberg and Henningson
(2002). This requires a different base flow and the introduction of a free-stream
boundary condition. Actuation is solely at the remaining wall and the authors
assume that non-parallel flow effects are small.

1.3 Objectives and Methods

1.3.1 Objectives

With the aims of investigating systems theory control of plane Poiseuille flow
in the very earliest stages of transition from laminar flow to turbulence, with
an emphasis on modelling the flow, reducing its transient energy growth, and
comparing methods of actuation, the objectives of this thesis are as follows.

• The first objective is to obtain models of the flow that are in a form suitable
for the synthesis and analysis of controllers using standard modern control
methods. The available literature shows that the spectral modelling of plane
Poiseuille flow for controller synthesis has used a number of different tech-
niques, for example stream function vs. velocity-vorticity formulations, and
polynomial vs. interpolating discretisation. Thus, this objective is to com-
bine several of the most beneficial techniques into a single state-space model.

• The next objective is to analyze the physical and numerical properties of
the developed models. The correctness of the model dynamics with respect
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to previous results is to be established, and appropriate discretisation deter-
mined. Regarding wall-normal discretisation of the channel, several ways of
applying Dirichlet and Neumann boundary conditions to Chebyshev polyno-
mials have been published. More specifically, this objective is to examine in
detail some of these methods of wall-normal discretisation, with particular
emphasis on the numerical conditioning of the resulting matrices.

• A further objective is to design feedback controllers using standard control
techniques, and to test them using an independent model. Linear quadratic
regulators and estimators will be synthesized using the state-space model,
as these have been seen to be amongst the feasible controllers in previous
work. To date, spectral controllers for linearised plane Poiseuille flow have
generally been synthesized and then tested using similar spectral codes, albeit
with variations in the order of the synthesis and verification models, and
sometimes with non-linear terms included in the verification model. In more
detail, this objective is to synthesize linear optimal controllers for the state-
space model, and to test the performance of the controllers in non-linear
simulations that employ independent methodologies to the spectral synthesis
model.

• An additional objective is to investigate whether control can be improved
by consideration of alternative actuation. Although to date much work has
been performed on flow control via wall-normal transpiration, little has been
done on the use of tangential actuation. Although wall-normal actuation acts
by convection and might be considered to be more effective than tangential
actuation which acts by diffusion, laminar plane Poiseuille flow is dominated
by diffusion. To summarise, this objective is to assess the suitability of
tangential actuation for flow control of plane Poiseuille flow.

• The final objective is to analyze the transient energy growth of the controlled
systems and to consider recent control methods that explicitly reduce this
property. Several researchers have identified the highest transient energy
growth (over all unit energy initial conditions, and over all subsequent time)
as an appropriate index of controller performance, but have synthesized con-
trollers which minimise the time integral of transient energy. Hence this
objective is to synthesise controllers which attempt to minimise the highest
transient energy growth, and assess their performance in linear and non-
linear simulations.

The objectives of this thesis may be summarised as: to generate a state-space
model of linearised plane Poiseuille flow, and to investigate the wall-normal dis-
cretisation, furthermore to synthesize linear optimal estimators and controllers,
and to test their performance in open- and closed-loop independent non-linear
simulations, and in addition to investigate tangential actuation, and finally to
synthesize and test controllers which minimise the transient energy growth.
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1.3.2 Methods

Regarding the methods employed is this thesis in order to reach the objectives,
linearised plane Poiseuille flow is modelled spectrally for control synthesis, since
spectral methods are known to be the most suitable for modelling flow in simple
domains (Ferziger and Peric, 2002, p62). With regard to the techniques employed
in the spectral model, a polynomial form of collocation will be employed that allows
approximation, on a velocity-vorticity formulation that models three-dimensional
disturbances, and the problem will be transformed into an inhomogeneous one
with homogeneous boundary conditions to allow the straightforward application of
boundary conditions and avoid the introduction of spurious modes. The resulting
equations will be transformed into conventional state-space form by inversion of
the Laplacian, and integrators will be introduced to regularise the inputs.

For the investigation of wall-normal discretisation, the methods for applying
boundary conditions to Chebyshev series by Joshi (1996) and Heinrichs (1989,
1991) are compared with recombinations of Chebyshev series, partly by Weideman
and Reddy (2000) and Boyd (2001), and in part novel. The validity of the methods
are compared from a linear algebraic viewpoint and subsequently their numerical
conditioning is examined by investigation of their maximum and minimum singular
values.

LQR controllers and LQE estimators will be synthesized using the state-space
model, for various design weightings and model discretisations, and for two test
cases. The first test case represents linearly unstable streamwise/wall-normal ve-
locity perturbations, commonly known as Tollmien-Schlichting waves. The second
test case represents streamwise vortices, which are linearly stable, but have been
shown by Butler and Farrell (1992) to generate the highest subsequent transient
energy growth over all initial perturbations and subsequent time.

Although spectral models have been used for controller synthesis then simu-
lation, and finite difference models have been used for synthesis then simulation,
little work has been done using finite-volume methods, which are in widespread
use in other fields, see for example the work by Yeoh et al. (2004). Thus the per-
formance of the controllers synthesised using a spectral model is determined via
non-linear simulations using a finite-volume computational fluid dynamics (CFD)
Navier-Stokes solver. The CFD solver is independently derived from the spectral
model, and is capable of modelling the flow in simple and complex geometries. Suc-
cessful implementation of the controllers into such a finite-volume code will provide
useful information when the controllers and code are applied to more complicated
geometries than the plane channel considered here.

Tangential actuation will be introduced into the state-space model of linearised
plane Poiseuille flow by the derivation of the boundary conditions in velocity-
vorticity form and the selection of appropriate actuation basis functions that en-
force them. Controllers will be synthesised and their performance compared to that
of wall-normal actuation controllers in terms of highest transient energy growth.
The controllers will also be tested in linear and non-linear simulations.

The largest transient energy growth possible at any particular time may be
cast as the square of the spectral norm of the state transition matrix. Hinrichsen
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and Pritchard (2000) derive estimates for the maximum over time of the spec-
tral norm of the state transition matrix of a stable system, and show how it can
be reduced by state feedback. Hinrichsen et al. (2002) introduce the concept of
(M,β) stability, which describes both long term stability and transient behaviour,
and Plischke and Wirth (2004) present sufficient conditions for state feedback to
satisfy the exponential growth bound. An upper bound for the transient energy
growth has been derived by Whidborne et al. (2004), who also provide linear ma-
trix inequality (LMI) methods for synthesizing state feedback controllers which
minimise the upper bound. Whidborne et al. (2005) have derived output feedback
controllers which minimise the transient energy growth itself.
In order to synthesize controllers which minimise upper bounds on highest

transient energy growth and peak control effort, the published system of linear
matrix inequalities (LMIs) by Whidborne et al. (2004) will be modified to include
a constraint on peak control effort. The system of LMIs is subsequently solved in
order to synthesise controllers for the linearised Lorenz equations and the model of
plane Poiseuille flow. The controllers are subject to linear and non-linear simula-
tions, and the results for plane Poiseuille flow are compared to those of controllers
which minimise the time integral of transient energy.

1.4 Outline of Thesis

The outline of this thesis is as follows. Chapter 2 models plane Poiseuille flow
using spectral methods, and examines the resulting model in detail with regard
to discretisation, controllability and observability. Chapter 3 investigates wall-
normal discretisation in depth, comparing the numerical conditioning of several
methods of applying the boundary conditions. In chapter 4 linear optimal con-
trollers are synthesized using the flow model, and detailed linear and non-linear
closed-loop simulations performed. Chapter 5 derives generalised wall boundary
conditions and synthesizes controllers using tangential actuation, which are sub-
sequently assessed in closed-loop linear and non-linear simulations. In chapter 6
state feedback controllers which minimise upper bounds on the transient energy
growth and control effort are derived, and controllers for the Lorenz equations, as
an example problem, are synthesised and tested. Minimising controllers for the
plane Poiseuille flow model are also synthesized and assessed by further simula-
tions. Finally chapter 7 draws conclusions from the work described in this thesis
and suggests possible directions for future work.

1.5 Achievements

The following papers and report have been written to disseminate the results of
the research described in this thesis.

McKernan, J., Whidborne, J.F. and Papadakis, G. (2006). Linear
Quadratic Control of Plane Poiseuille Flow - the Transient Be-
haviour, International Journal of Control, submitted.
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McKernan, J., Whidborne, J.F. and Papadakis, G. (2006). A Linear
State-Space Representation of Plane Poiseuille Flow for Control De-
sign - A Tutorial, International Journal of Modelling, Identification
and Control, accepted.

McKernan, J., Papadakis, G. and Whidborne, J.F. (2006). Wall-
normal Discretisation of Linearised Plane Poiseuille Flow for Bound-
ary Control, Journal of Computational Physics, to be submitted.

McKernan, J., Whidborne, J.F. and Papadakis, G. (2004). Optimal
Control of Plane Poiseuille Flow, Proc. UKACC International Con-
ference Control 2004, September 2004, Bath, UK.

McKernan, J., Whidborne, J.F. and Papadakis, G. (2004). Optimal
Control of Plane Poiseuille Flow, Proc. First European Forum on
Flow Control, October 2004, Poitiers, France.

McKernan, J., Whidborne, J.F. and Papadakis, G. (2005). Minimisa-
tion of Transient Perturbation Growth in Linearised Lorenz Equa-
tions, Proc. 16th IFAC World Congress, July 2005, Prague.

McKernan, J., Papadakis, G. and Whidborne, J.F. (2003). Modelling
plane Poiseuille flow for feedback control design, Technical Report
EM/2003/01, Centre for Mechatronics and Manufacturing Systems,
Department of Mechanical Engineering, King’s College, London.

The major achievements arising from this thesis are:

1. The development of a polynomial-form state-space model of three-dimensional
linearised plane Poiseuille flow, with a detailed investigation of convergence
with the degree of discretisation, of controllability and observability, and of
consistency with a previously published interpolating-form model. The effect
of input integrators on state-space system observability and controllability
has been derived.

2. The investigation of the numerical conditioning of four methods of basis
recombination in order to fulfill Dirichlet and Neumann boundary condi-
tions. A novel recombination is proposed for the simultaneous Neumann and
Dirichlet boundary conditions, that extends a published Dirichlet boundary
condition method. In association with derived pre-conditioning, this recom-
bination yields the best numerical conditioning of the four methods for in-
version of the discrete Laplacian, which is required to form the state-space
model.

3. The synthesis of linear quadratic regulators and estimators for the state-
space model of plane Poiseuille flow, and the calculation of the worst initial
conditions, with investigations of the selection of weighting matrices, and of
the convergence with discretisation. A novel estimator weighting is proposed
which results in improved convergence over an identity matrix. Subsequent
linear simulations show the requirement for large local displacement of tran-
spiration fluid to stabilise the selected test cases. The simulations also show
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that the best controllers in terms of lowest transient growth do not change
the system eigenvector orthogonality appreciably.

4. Non-linear simulations using an independently derived finite-volume Navier-
Stokes solver, modified to model small perturbations accurately, show agree-
ment with open- and closed-loop linear results at low initial perturbation
energy levels, and generally saturation and closed-loop stabilisation at larger
initial energy levels.

5. The derivation of generalised boundary conditions, allowing simultaneous
tangential and wall-normal transpiration, and the synthesis and closed-loop
simulation of controllers which utilise tangential actuation. Despite numer-
ical difficulties with tangential actuation, and its equivocal performance as
compared to wall-normal actuation, it may be more feasible in practice,
since although mechanisms such as rollers have constraints on velocity and
acceleration, as do wall-normal jets, unlike jets they have no constraint on
displacement.

6. The addition of limited control effort to a system of linear matrix inequalities
for synthesizing controllers with a minimised upper bound on transient en-
ergy growth, and the resulting generation and closed-loop simulation of such
controllers on both the linearised Lorenz equations and the plane Poiseuille
flow model. For the latter, the performance of the controllers is close to that
of linear optimal controllers. For the Lorenz system, it is again found that
transient energy growth does not correlate well with system orthogonality.

13



14



Chapter 2

A Linear State-Space

Representation of Plane Poiseuille

Flow

2.1 Introduction

This chapter derives a linear state-space representation of linear perturbations in
plane Poiseuille flow. The representation takes the form

Ẋ = AX + BU
Y = CX (2.1)

where U represents control inputs, Y represents measurement outputs, X are state
variables, and A,B and C are the system, input and output matrices respectively.
Section 2.2 presents the Navier-Stokes equations and their boundary condi-

tions, as well as the procedure for linearisation about plane Poiseuille (channel)
flow. Subsequently the section describes non-dimensionalisation of the linearised
equations and the derivation of wall shear stress measurement vector. In section 2.3
appropriate formulations of the linearised Navier-Stokes equations are discussed
and the velocity-vorticity formulation selected for the present work. The boundary
conditions are restated in this formulation. Section 2.4 describes the spectral dis-
cretisation of the linearised equations in the streamwise, spanwise and wall-normal
directions. Periodic behaviour is assumed in the spanwise and streamwise direc-
tions, and non-periodic behaviour in the wall-normal direction. The wall shear
stress measurements are also discretised in this section.
The introduction of wall-transpiration boundary conditions into the discretised

equations is described in section 2.5, with the subsequent transformation of the
equations into an inhomogeneous or forced form with homogeneous (zero-valued)
boundary conditions. The homogeneous boundary conditions are fulfilled by the
use of the recombined Chebyshev polynomials described in chapter 3. In section
2.6, the inhomogeneous terms are extracted as the control inputs during manipula-
tion of the equations into state-space form, and the system matrices and variables
are identified. Finally the section compares the derivation of the state-space form
with a previously published derivation.
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Section 2.7 describes two relevant test cases, and the implementations of the
state-space model appropriate for each of them such that the minimum number
of variables are required. Investigations into the accuracy and convergence of
the resulting state-space model are presented and discussed in section 2.8. Com-
parisons are made with published data, and discrepancies investigated. Finally
section 2.9 draws conclusions regarding the development and implementation of
the state-space model of linearised plane Poiseuille flow.

2.2 Flow Equations

This section derives the flow equations of linearised plane Poiseuille flow. The
Navier-Stokes and continuity equations are introduced, and the perturbation equa-
tions developed. The base plane Poiseuille flow is described, and substituted into
the perturbation equations. Finally the resulting linearised plane Poiseuille flow
equations are non-dimensionalised, and appropriate flow measurements defined.

2.2.1 The Incompressible Navier-Stokes and Continuity Equa-

tions

The flow of a Newtonian fluid is described by the Navier-Stokes and continuity
equations. The Navier-Stokes equations form a set of three coupled, non-linear,
partial differential equations representing conservation of momentum, and the con-
tinuity equation is an additional constraint representing the conservation of mass.
The equations are infinite dimensional in each spatial direction, in the sense that
the fluid is treated as a continuum.
For an incompressible fluid with uniform density ρ and viscosity µ, in the ab-

sence of body forces, in cartesian co-ordinates (x, y, z), the Navier-Stokes equations
are

∂~U

∂t
+
(

~U · ∇
)

~U = −1
ρ
∇P + µ

ρ
∇2~U (2.2)

where ~U(x, y, z, t) and P (x, y, z, t) are the instantaneous velocity and pressure
respectively. The continuity equation for an incompressible fluid in the absence of
sources and sinks is

∇ · ~U = 0 (2.3)

These equations are accurately representative of the behaviour of many real fluids,
such as air and water at normal pressures and temperatures, and low velocities.
The usual boundary conditions specify no slip, i.e. zero relative velocity, normal

and tangential, at solid boundaries. Ultimately, for control purposes, a time-
dependent velocity is specified on the boundaries, representing the injection or
suction of fluid through porous walls known as transpiration.

For a steady base flow
(

~Ub, Pb

)

, ∂~Ub/∂t = 0 and so the Navier-Stokes and

continuity equations (2.2,2.3) become
(

~Ub · ∇
)

~Ub = −1
ρ
∇Pb +

µ

ρ
∇2~Ub (2.4)
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and

∇ · ~Ub = 0 (2.5)

respectively.

2.2.2 Perturbations About a Base Flow

Upon substituting a steady base flow (~Ub = (Ub, Vb,Wb) , Pb) plus a transient flow
perturbation (~u = (u, v, w) , p) into the Navier-Stokes and continuity equations
(2.2,2.3), they become

∂
(

~Ub + ~u
)

∂t
+
((

~Ub + ~u
)

· ∇
)(

~Ub + ~u
)

= −1
ρ
∇ (Pb + p) +

µ

ρ
∇2
(

~Ub + ~u
)

(2.6)

∇ ·
(

~Ub + ~u
)

= 0 (2.7)

Since the base flow is steady and its terms themselves satisfy the Navier-Stokes
and continuity equations (2.4,2.5), these equations may be simplified to

∂~u

∂t
+
(

~Ub · ∇
)

~u+ (~u · ∇) ~u+ (~u · ∇) ~Ub = −1
ρ
∇p+ µ

ρ
∇2~u (2.8)

∇ · ~u = 0 (2.9)

The boundary condition on perturbation velocities is the no slip condition.

2.2.3 The Base Flow: Plane Poiseuille Flow

There are few exact solutions to the base flow system of equations (2.4,2.5), but
one that does exist is that for laminar plane Poiseuille flow, the fully developed
plane steady flow between infinite parallel planar stationary boundaries. Assuming
flow is in the x-direction, then Vb = Wb = 0 and the base flow equations reduce to

−1
ρ

∂Pb
∂x

+
µ

ρ

(

∂2Ub
∂y2

)

= 0,
∂Pb
∂y

= 0,
∂Pb
∂z

= 0 (2.10)

and

∂Ub
∂x

= 0 (2.11)

Assuming the planar boundaries are located at y = ±h, the boundary conditions
are ~Ub(x,±h, z, t) = 0. The solution of (2.10) and (2.11) is a parabolic velocity
profile in y and a linear pressure gradient in x

~Ub =

((

1− y2

h2

)

Ucl, 0, 0

)

,
dPb
dx

= −2Uclµ
h2

(2.12)

where Ucl is the centre-line velocity. This flow may be physically realised at low
Reynolds numbers (R = ρUclh/µ, based on centreline velocity and channel half-
height), when the flow is laminar. At higher Reynolds numbers the flow becomes
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Figure 2.1: Co-ordinate System for Plane Poiseuille Flow

turbulent, with associated large increases in skin friction and heat transfer. The
present work is applicable only to laminar flow.
Henceforth the x direction is referred to as the streamwise direction, the y

direction is referred to as the wall-normal direction, and the z direction is referred
to as the spanwise direction. The coordinate system is shown in figure 2.1.

2.2.4 Linearization About Plane Poiseuille Flow

The Navier-Stokes perturbation equations (2.8), are linearised by discarding the

second order quantity (~u · ∇) ~u, which is small compared to
(

~Ub · ∇
)

~u+(~u · ∇) ~Ub
in (2.8) when ~u¿ ~Ub, resulting in the linearised Navier-Stokes equations

∂~u

∂t
+
(

~Ub · ∇
)

~u+ (~u · ∇) ~Ub = −1
ρ
∇p+ µ

ρ
∇2~u (2.13)

The continuity perturbation equation, ∇ · ~u = 0 (2.9), is already linear. The
boundary condition on perturbation velocities remains the no slip condition. This
linearization is the first in a series of approximations. Although the behaviour of a
real fluid is non-linear, a linear model can still capture critical unstable behaviour,
as noted by Trefethen et al. (1993).

If the plane Poiseuille base flow (2.12) is substituted for ~Ub, the equations (2.13)
become the Navier-Stokes equations linearised about plane Poiseuille flow

∂u

∂t
+ Ub

∂u

∂x
+ v

∂Ub
∂y

= −1
ρ

∂p

∂x
+
µ

ρ
∇2u

∂v

∂t
+ Ub

∂v

∂x
= −1

ρ

∂p

∂y
+
µ

ρ
∇2v

∂w

∂t
+ Ub

∂w

∂x
= −1

ρ

∂p

∂z
+
µ

ρ
∇2w (2.14)
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where Ub =
(

1− y2

h2

)

Ucl.

2.2.5 Non-Dimensionalisation

Non-dimensionalising length scales by the channel half-height, h, velocities by the
centre-line velocity, Ucl, pressure by ρU

2
cl, such that p

∗ = p/ρU 2cl, t
∗ = tUcl/h, u

∗ =
u/Ucl, ū

∗ = ū/Ucl, x
∗ = x/h etc, the Navier-Stokes equations linearised about plane

Poiseuille flow (2.14) become

∂u∗

∂t∗
+ U ∗b

∂u∗

∂x∗
+ v∗

∂U∗b
∂y∗

= −∂p
∗

∂x∗
+
1

R
∇2u∗

∂v∗

∂t∗
+ U ∗b

∂v∗

∂x∗
= −∂p

∗

∂y∗
+
1

R
∇2v∗

∂w∗

∂t∗
+ U ∗b

∂w∗

∂x∗
= −∂p

∗

∂z∗
+
1

R
∇2w∗ (2.15)

where R is the Reynolds number, ρUclh/µ. The base velocity profile (2.12) becomes

U∗b = 1− y∗2 (2.16)

and the continuity equation (2.9) becomes

∂u∗

∂x∗
+
∂v∗

∂y∗
+
∂w∗

∂z∗
= 0 (2.17)

The asterisk will be dropped for notational convenience for the remainder of this
work. In non-dimensional co-ordinates the upper and lower walls are at y = ±1
respectively.

2.2.6 Measurement

In a real system, the dimensionalised measurements would be the shear stresses
τyx, τyz in the x and z directions respectively, on the upper and lower walls, where

τyx = µ

(

∂u

∂y
+
∂v

∂x

)

τyz = µ

(

∂w

∂y
+
∂v

∂z

)

(2.18)

Non-dimensionalising the stresses by ρU 2cl, velocities by Ucl and distances by h as
previously, the equations become

τyx =
1

R

(

∂u

∂y
+
∂v

∂x

)

τyz =
1

R

(

∂w

∂y
+
∂v

∂z

)

(2.19)

Since the velocity v at the walls is set by the boundary conditions, it is known
and its derivatives can be subtracted out. Thus it is appropriate to define a
measurement vector y similar to that used by Bewley and Liu (1998)

y =
1

R



















∂u
∂y

∣

∣

∣

y=+1

∂u
∂y

∣

∣

∣

y=−1

∂w
∂y

∣

∣

∣

y=+1

∂w
∂y

∣

∣

∣

y=−1



















(2.20)
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Strictly speaking, the shear stress measurement on the upper wall should be
negated, as these values refer to the lower surface at any shear plane, but this
omission has no consequences, as it has been treated consistently.

2.3 Formulation

In this section a suitable formulation of the linearised plane Poiseuille flow equa-
tions is selected and developed, and the boundary conditions restated in the se-
lected formulation.

2.3.1 System Formulations

The equations (2.15,2.17) form a system of 4 linear partial differential equations,
in four flow variables (u, v, w, p), in which the continuity equation has no time
derivative, and acts as a spatial differential constraint. The constraint is enforced
by ∇p acting as a Lagrange multiplier, keeping the velocity field divergence free.
If ordinary differential equations are formulated from the system by discretisation,
they are singular, as noted by Bewley (2001), since the continuity equation has
no time derivative and thus the matrix L in the differential algebraic equation
(or DAE, as described by Campbell and Marszalek (1999, p25,p38)) or descriptor
form

LẊ = A#X + B#U (2.21)

where A# and B# are related forms of A and B, cannot be inverted to pro-
duce the conventional state-space form of equation (2.1). To proceed further
the system (2.15,2.17) can be reformulated in terms of only two flow variables,
a so-called divergence free basis in which continuity is implicitly enforced. The
variables (u, v, w, p) are transformed to eliminate the continuity equation and thus
the differential constraint. This eliminates the algebraic constraints in the dis-
cretised form (2.21), reduces the order of X and L becomes non-singular. There
are several possible formulations: vorticity-stream function, velocity-vorticity, and
velocity-pressure (provided the continuity equation is used to derive pressure), as
described by Peyret (2002). The current work employs a velocity-vorticity formu-
lation as it is convenient for the application of boundary conditions in this simple
geometry, as noted by Bewley (2001).

2.3.2 Velocity-Vorticity Formulation

The pressure perturbation is eliminated from the Navier-Stokes perturbation equa-
tions by forming its gradient, (∂p/∂x, ∂p/∂y, ∂p/∂z), from the three perturbation
equations (2.15), taking the divergence of the result, and substituting the result-
ing Laplacian into the Laplacian of the second perturbation equation to yield a
‘wall-normal velocity’ equation, as described by Schmid and Henningson (2001,
p56)

∂(∇2v)
∂t

+ Ub
∂(∇2v)
∂x

− ∂2Ub
∂y2

∂v

∂x
− 1

R
∇2(∇2v) = 0 (2.22)
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having employed the continuity perturbation equation (2.17) in the process by
substitution. A second equation is required to completely describe a 3-d perturba-
tion. Vorticity is the curl of the velocity field, ∇×~u, and defining the wall-normal
vorticity, η, as

η =
∂u

∂z
− ∂w

∂x
(2.23)

it represents twice the angular velocity of a fluid particle with respect to an axis in
the wall-normal direction. The z differential of the first perturbation equation of
(2.15) minus the x differential of the third equation yields a ‘wall-normal vorticity’
equation

∂η

∂t
+
∂Ub
∂y

∂v

∂z
+ Ub

∂η

∂x
− 1

R
∇2η = 0 (2.24)

The velocity equation (2.22) contains the time derivative of the Laplacian of
velocity, which will need to be inverted to produce the form of (2.1). The equations
are one-way coupled, in the sense that (2.22) can be solved independently of (2.24),
and its solutions for v (including v = 0) then used to derive the solution of (2.24)
for η.

2.3.3 Boundary Conditions in Velocity-Vorticity Formula-

tion

The no-slip boundary conditions in the velocity-vorticity formulation become

Dirichlet Boundary Conditions on v. The wall-normal velocity at the walls,
v(y = ±1), is zero in plane Poiseuille flow, and thus the boundary condi-
tions are homogeneous. The introduction of wall transpiration will make the
velocities non-zero and thus the boundary conditions inhomogeneous

v(y = 1) = qu

v(y = −1) = ql (2.25)

where qu and ql are determined by the controller.

Homogeneous Neumann Boundary Conditions on v. The equation of con-
tinuity at the walls states

∂u

∂x

∣

∣

∣

∣

y=±1

+
∂v

∂y

∣

∣

∣

∣

y=±1

+
∂w

∂z

∣

∣

∣

∣

y=±1

= 0 (2.26)

Thus, substituting the zero streamwise (x) and spanwise (z) velocity pertur-
bations, the y derivative of wall-normal velocity perturbations is zero at the
walls

∂v

∂y

∣

∣

∣

∣

y=±1

= 0 (2.27)
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Homogeneous Dirichlet Boundary Conditions on η. The streamwise (x) and
spanwise (z) velocity perturbations (u,w) are zero at the wall, so the wall-
normal vorticity at the walls is also zero

η(y = ±1) = ∂u

∂z

∣

∣

∣

∣

y=±1

− ∂w

∂x

∣

∣

∣

∣

y=±1

= 0 (2.28)

There are four boundary conditions for the fourth order velocity equation, and
two boundary conditions for the second order vorticity equation, thus forming a
well-posed mathematical problem.

2.4 Discretisation

This section describes the discretisation of the linearised system of equations in
the streamwise, spanwise and wall-normal directions.

2.4.1 Introduction

Since the flow problem is infinite dimensional in spatial coordinates, in order to
work with a system with a finite number of state variables, the linearized system
must be discretised in space, which is the second approximation in the process of
generating the plant model, linearisation being the first. Several methods of spatial
discretisation of PDE’s exist, e.g. spectral, finite difference, finite element, and fi-
nite volume methods. The system of partial differential equations is approximated
and replaced by a system of ordinary differential equations.

Spectral collocation discretisation methods are used here. Spectral methods
belong to the class of weighted residual methods in which the weighted residual
from evaluating the PDE using an approximate solution is set to zero. Spectral
methods approximate the solution by a truncated series of orthogonal functions.
Using a Fourier series for the orthogonal functions assumes a periodic solution,
using a Chebyshev polynomial series assumes a non-periodic one. Collocation
involves setting the residual to zero at specific points, as compared to the Galerkin
method which sets the average residual to zero, as described by Peyret (2002).

2.4.2 Streamwise and Spanwise Discretisation

The variation of the solution in the streamwise and spanwise dimensions is ap-
proximated by terms from a truncated Fourier series. The use of a Fourier series
assumes a periodic solution for all variables in the dimensions to which it is ap-
plied, and Rempfer (2003, p237) notes thats its use in these dimensions assumes
a temporally rather than spatially growing perturbation. Truncation of the series
approximates infinite dimensional behaviour by finite dimensional behaviour.

For mathematical convenience, complex solutions vc and ηc are generated for
the wall-normal velocity and vorticity equations, bearing in mind that the real
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solutions

v = <(vc)
η = <(ηc) (2.29)

are ultimately required. Thus solutions to (2.22) and (2.24) are approximated by
truncated complex Fourier series

vc(x, y, z, t) =
Nst
∑

nst=0

Nsp
∑

nsp=0

ṽ(y, t, nst, nsp)e
2πnstx/Lxe2πnspz/Lz (2.30)

ηc(x, y, z, t) =
Nst
∑

nst=0

Nsp
∑

nsp=0

η̃(y, t, nst, nsp)e
2πnstx/Lxe2πnspz/Lz (2.31)

where nst is the streamwise harmonic number, nsp is the spanwise harmonic num-
ber, and Lx and Lz are fundamental wavelengths in the streamwise and spanwise
directions (see figure 2.1). Nst and Nsp are finite and represent the truncation of
the series.
The linearized equations decouple by harmonic number pair and thus it is

possible to treat each harmonic number pair separately, bearing in mind that
in so doing, all dependent variables will vary at the selected frequencies in the
streamwise and spanwise directions. For convenience, a streamwise wavenumber,
α = 2πnst/Lx, and spanwise wavenumber, β = 2πnsp/Lz, are defined in cycles per
2π distance, and then the solution at each wavenumber pair is assumed to be of
the form

vc(x, y, z, t) = ṽ(y, t)e(αx+βz) (2.32)

ηc(x, y, z, t) = η̃(y, t)e(αx+βz) (2.33)

where ṽ(y, t) and η̃(y, t) are wall-normal velocity and vorticity perturbation Fourier
coefficients, henceforth referred to simply as velocity and vorticity coefficients.
These are complex and convey the wall-normal (y) and temporal (t) variation of
vc and ηc at real streamwise and spanwise wavenumber pair α, β.
Substituting the assumed solutions (2.32,2.33) into the partial differential equa-

tions for wall-normal velocity (2.22), and wall-normal vorticity (2.24), results in
wall-normal velocity perturbation and vorticity perturbation Fourier-space equa-
tions in ṽ and η̃ respectively

(

−Ubk2 −
∂2Ub
∂y2

− k4

Rα

)

ṽ +

(

Ub +
2k2

Rα

)

∂2ṽ

∂y2
−
(

1

Rα

)

∂4ṽ

∂y4

=


α

(

∂3ṽ

∂y2∂t
− k2∂ṽ

∂t

)

(2.34)

and
(

αUb +
k2

R

)

η̃ − 1

R

∂2η̃

∂y2
+ βṽ

∂Ub
∂y

= −∂η̃
∂t

(2.35)

where k2 = α2 + β2.
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These wall-normal velocity and vorticity perturbation Fourier-space equations
will henceforth be referred to as the velocity and vorticity equations. If an expo-
nential time variation is assumed, the classical Orr-Sommerfeld (Orr, 1907) and
Squire equations result. The fluid mechanics community assume a time variation
ṽ = fv(y)e

−ωt, η̃ = fη(y)e
−ωt, implying a temporal frequency −< (ω), and damp-

ing = (ω) but the control community assume a variation ṽ = fv(y)e
λt, η̃ = fη(y)e

λt,
and the latter convention is adopted here for all time variations. With the lat-
ter time variation, solutions to the Orr-Sommerfeld and Squire equations exist at
particular eigenvalues λi (damping < (λi) and temporal frequency ω = = (λi)), for
the ith eigenfunction pair denoted (fv(y), fη(y))i.

The velocity and vorticity equations become independent if β is zero. For
non-zero β the vorticity equation is driven by solutions of the velocity equation.
Solutions with zero velocity are known as Squire modes, those with non-zero veloc-
ity as Orr-Sommerfeld modes, as defined in Schmid and Henningson (2001, p58).
The Squire modes are all known to be stable, whereas the first Orr-Sommerfeld
mode for R > 5772 is unstable. Stability is not the only control criterion, as large
transient energy growth may invalidate assumptions about linearity and ultimately
cause transition to turbulence, as noted by Aamo and Fossen (2002, p42).

Returning to the solutions for v and η, they are given by substituting (2.32,2.33)
into (2.29)

v(x, y, z, t) = <(vc) = <
(

ṽ(y, t)e(αx+βz)
)

(2.36)

η(x, y, z, t) = <(ηc) = <
(

η̃(y, t)e(αx+βz)
)

(2.37)

The appropriate boundary conditions on v and η (2.25,2.27,2.28) translate to

vc(y = 1) = qu + 0

vc(y = −1) = ql + 0

v′c(y = ±1) = 0 + 0

ηc(y = ±1) = 0 + 0 (2.38)

on vc and ηc, since the imaginary solutions =(vc),=(ηc) are of no interest, and
these translate to

ṽ(y = 1) = q̃u

ṽ(y = −1) = q̃l

ṽ′(y = ±1) = 0 + 0

η̃(y = ±1) = 0 + 0 (2.39)

on ṽ and η̃, where qu = <(q̃ue(αx+βz)) and ql = <(q̃le(αx+βz)) by analogy with
(2.32) i.e. the actuation varies sinusoidally in the streamwise and spanwise direc-
tions. Although v, η, qu and ql are real, ṽ, η̃, q̃u and q̃l are complex. For the present,
until transpiration is introduced in section 2.5, qu, ql, q̃u and q̃l are assumed to be
zero.
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Useful Relationships

Several useful relationships by Aamo and Fossen (2002, p38) are rederived in the
present context. For mathematical convenience, the complex expressions

uc(x, y, z, t) = ũ(y, t)e(αx+βz)

vc(x, y, z, t) = ṽ(y, t)e(αx+βz)

wc(x, y, z, t) = w̃(y, t)e(αx+βz)

ηc(x, y, z, t) = η̃(y, t)e(αx+βz) (2.40)

are assumed, where u = <(uc), v = <(vc), w = <(wc) and η = <(ηc) by extensions
of (2.32) and (2.29).
The continuity equation (2.17) states

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.41)

Substituting (2.40) into the continuity equation yields

αũ+
∂ṽ

∂y
+ βw̃ = 0 (2.42)

The definition of vorticity (2.23) states

η =
∂u

∂z
− ∂w

∂x
(2.43)

and substituting in (2.40) yields

η̃(y, t) = βũ− αw̃ (2.44)

Solving (2.40,2.44) for ũ and w̃ yields

ũ =


α2 + β2

(

α
∂ṽ

∂y
− βη̃

)

w̃ =


α2 + β2

(

β
∂ṽ

∂y
+ αη̃

)

(2.45)

2.4.3 Measurement

In Fourier space the measurement vector (2.20) becomes

ỹ =
1

R



















∂ũ
∂y

∣

∣

∣

y=+1

∂ũ
∂y

∣

∣

∣

y=−1

∂w̃
∂y

∣

∣

∣

y=+1

∂w̃
∂y

∣

∣

∣

y=−1



















(2.46)
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Thus for physical measurement of ỹ, a Fourier transform is necessary, since at a
particular wavenumber pair, ∂ũ/∂y for example, is given by

∂ũ(y, t)

∂y
=
1

Lx

1

Lz

∫ a+Lx

a

∫ b+Lz

b

∂u(x, y, z, t)

∂y
eαxeβzdxdz (2.47)

which requires distributed sensing of shear stress component ∂u/∂y and subsequent
integration. In practice a number of discrete sensors would be used, and a fast
Fourier transform (FFT) performed on their signals. The FFT’s are in space rather
than the usual application of FFT’s in time.
Regarding the development of a measurement equation Y = CX , in (2.1) the

measurement vector can be expressed in terms of derivatives of ṽ and η̃, as per-
formed by Aamo and Fossen (2002). Taking derivatives of (2.45) and substituting
into (2.46) leads to

ỹ =
1

R



α2 + β2



















α∂2ṽ
∂y2 − β ∂η̃

∂y

∣

∣

∣

y=+1

α∂2ṽ
∂y2 − β ∂η̃

∂y

∣

∣

∣

y=−1

β ∂2ṽ
∂y2 + α

∂η̃
∂y

∣

∣

∣

y=+1

β ∂2ṽ
∂y2 + α

∂η̃
∂y

∣

∣

∣

y=−1



















(2.48)

which, after taking into account no negation of shear at the upper wall, is consistent
with the work of Aamo (2002, p59), but slightly different to that of Bewley and
Liu (1998, p311), in respect of the sign of β in the lower two terms.
The wall pressures are also useful measurements, and may be expressed avoid-

ing the inversion of the Laplacian suggested previously by Bewley and Liu (1998,
p309), as follows. When represented in Fourier space, such that p = p̃e(αx+βz) and
similarly for ũ, ṽ and w̃, the linearised x and z-momentum Navier-Stokes equations,
from (2.15), become

αp̃ =
1

R

(

∂2ũ

∂y2
− α2ũ− β2ũ

)

− Ubαũ− ṽ
∂Ub
∂y
− ∂ũ

∂t

βp̃ =
1

R

(

∂2w̃

∂y2
− β2w̃ − α2w̃

)

− ∂w̃

∂t
(2.49)

Adding, and noting that at the wall ũ = w̃ = 0

 (α + β) p̃|y=±1 =
1

R

(

∂2ũ

∂y2
+
∂2w̃

∂y2

)

− ṽ ∂Ub
∂y

(2.50)

Substituting (2.45) yields

p̃|y=±1 =
1

α2 + β2
1

R

(

∂3ṽ

∂y3
+
α− β
α+ β

∂2η̃

∂y2

)

+


α + β
ṽ
∂Ub
∂y

(2.51)

Thus the wall pressure contains one higher derivative of ṽ and η̃ than the shear
stress measurement (2.48).
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2.4.4 Polynomial Discretization in the Wall-Normal Direc-

tion

Discretisation in the wall-normal direction is based on Chebyshev polynomial series
as performed by Joshi et al. (1995) and Schmid and Henningson (2001). These
series do not make an assumption of periodicity. Chebyshev polynomials, Γn(y),
of the first kind, are of the form (R̊ade and Westergren, 1999, p260)

Γn(y) = cos (n arccos (y)) (2.52)

where −1 ≤ y ≤ 1 (conveniently the same as the full non-dimensionalised channel
height). So, for instance

Γ0(y) = 1 Γ1(y) = y Γ2(y) = 2y
2 − 1

Chebyshev polynomials have many useful properties e.g. the minimax property
of minimising the maximum error when approximating continuous functions, as
noted by Fox and Parker (1968), and are recommended by Boyd (2001, p10) where
periodic boundary conditions are not applicable. ṽ is approximated by a finite
Chebyshev series

ṽ(y, t) =
N
∑

n=0

av,n(t)Γn(y) (2.53)

as is η̃

η̃(y, t) =
N
∑

n=0

aη,n(t)Γn(y) (2.54)

The derivatives of the approximations with respect to y are obtained by differen-
tiating the Chebyshev polynomials, for example

ṽ′ =
N
∑

n=0

av,n(t)Γ
′
n(y) (2.55)

Recursion formulae exist for calculating the derivatives of Chebyshev polynomials,
e.g. as provided by Schmid and Henningson (2001, p485). The derivatives are
known to become large at the ends of the range, for large N and high order
derivative, as noted by Boyd (2001, p142).
The partial differential equations are expressed on a grid of N + 1 Chebyshev-

Gauss-Lobatto points (Chebyshev collocation points), yk, where

yk = cos(πk/N), k = 0, . . . , N (2.56)

in the technique known as collocation. This distribution of points is particularly
favourable for spectral accuracy, and appropriately for the present problem, in-
cludes the boundary points (Peyret, 2002, p46). On this distribution of points
equation (2.53) becomes







ṽ(y0, t)
...

ṽ(yN , t)






=







Γ0(1) . . . ΓN(1)
...

. . .
...

Γ0(−1) . . . ΓN(−1)













av,0
...

av,N






(2.57)
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and equation (2.55) becomes







ṽ′(y0, t)
...

ṽ′(yN , t)






=







Γ′0(1) . . . Γ′N(1)
...

. . .
...

Γ′0(−1) . . . Γ′N(−1)













av,0
...

av,N






(2.58)

2.4.5 The Interpolating Basis

An alternative use of Chebyshev series is via an interpolating or cardinal function
basis, where the series are used to interpolate values of velocity, and in so doing
can also provide derivatives, as used by Bewley and Liu (1998). In this basis







ṽ′(y0, t)
...

ṽ′(yN , t)






= D







ṽ(y0, t)
...

ṽ(yN , t)






(2.59)

where, conceptually

D =







Γ′0(1) . . . Γ′N(1)
...

. . .
...

Γ′0(−1) . . . Γ′N(−1)













Γ0(1) . . . ΓN(1)
...

. . .
...

Γ0(−1) . . . ΓN(−1)







−1

(2.60)

,







D0,0 . . . D0,N
...

. . .
...

DN,0 . . . DN,N






(2.61)

although this is not the preferred numerical form, for which see the form by Tre-
fethen (2000, p54).
There is an important distinction between the two forms regarding approxi-

mation. The polynomial basis is amenable to approximation. For instance, if two
state variables are to be discarded and the derivative of the wall velocities is not
to be calculated







ṽ′(y1, t)
...

ṽ′(yN−1, t)






≈







Γ′0(y1) . . . Γ′N−2(y1)
...

. . .
...

Γ′0(yN−1) . . . Γ′N−2(yN−1)













av,0
...

av,N−2






(2.62)

whether or not ṽ is homogeneous (ṽ(y0,N = ±1) = 0)). In the present work, it so
happens that the bases used are homogeneous (see section 2.5). The approximation
holds because it is just a truncation of the high order terms of the Chebyshev series,
and the coefficients decay spectrally. A similar approximation does not hold for
the interpolating form







ṽ′(y1, t)
...

ṽ′(yN−1, t)






6=







D1,1 . . . D1,N−1
...

. . .
...

DN−1,1 . . . DN−1,N−1













ṽ(y1, t)
...

ṽ(yN−1, t)






(2.63)
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if ṽ in inhomogeneous (ṽ(y0,N = ±1) 6= 0)). The reason is that this form performs
high order curve fitting on ṽ(yk), and then algebraic differentiation, as can be seen
from (2.60). If ṽ(y0) or ṽ(yN) are absent, they are taken to be zero (homogeneous).
If this is not correct, for instance in the controlled setting, the curve fitting oscil-
lates wildly, and the derivatives, although algebraic, have very large values. If the
missing variables have simply been partitioned to another term in an expression,
overall the expression still holds.
Bewley and Liu (1998, p311) partition the terms ṽ(y0,N ) from the system matrix

into the control input matrix, but also discard the terms from the energy matrix.
Thus no attempt is made in this thesis to compare any closed loop results with
those from this source. See section 4.2.1 for further details.

2.4.6 Resulting Equations

Upon substitution of the Chebyshev polynomial series, the velocity and vorticity
equations (2.34,2.35) become those presented by Schmid and Henningson (2001,
p488)

(

−Ubk2 −
∂2Ub
∂y2

− k4

αR

) N
∑

n=0

av,n(t)Γn(y) +

(

Ub + 2
k2

αR

) N
∑

n=0

av,n(t)Γn
′′(y)

− 1

Rα

N
∑

n=0

av,n(t)Γn
′′′′(y) =



α

(

−k2
N
∑

n=0

ȧv,n(t)Γn(y) +
N
∑

n=0

ȧv,n(t)Γn
′′(y)

)

(2.64)

and

(

αUb +
k2

R

) N
∑

n=0

aη,n(t)Γn(y)−
1

R

N
∑

n=0

aη,n(t)Γn
′′(y)

+ β
∂Ub
∂y

N
∑

n=0

av,n(t)Γn(y) = −
N
∑

n=0

ȧη,n(t)Γn(y) (2.65)

After multiplying the equations by α and − respectively, and the evaluation of
both equations at each of the collocation points yk, and noting that Ub = 1 − y2,
the equations may be assembled as

(

A11 A12

A21 A22

)

a =

(

L11 L12
L21 L22

)

ȧ (2.66)

where

a =



















av,0
...

av,N
aη,0
...

aη,N



















(2.67)
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and where the following submatrices all have dimensions N + 1 by N + 1 and are

A11 =

(

−αūk2 − αū′′ − Ik4

R

)

D0+

(

αū+
2Ik2

R

)

D2− D4

R

A12 = [0]

A21 = βū′D0

A22 =

(

αū+
Ik2

R

)

D0− D2

R

L11 = 
(

−k2D0+D2
)

L12 = [0]

L21 = [0]

L22 = D0 (2.68)

Matrix L is the discrete form of the Laplacian ∇2 which operates on the wall-
normal velocity time derivative in (2.22). The elements of derivative matrices Dn
and diagonal base flow matrices ū, ū′, ū′′ are

D0kj = Γj(yk) D2kj = Γj(yk)
′′ D4kj = Γj(yk)

′′′′

Ubkk = (1− y2k) Ub′kk = −2yk Ub′′kk = −2 (2.69)

2.4.7 Schmid and Henningson Form

Schmid and Henningson (2001, p489) discard equations at and next to the walls
and replace them with algebraic equations representing the homogeneous Dirichlet
and Neumann conditions, in a technique named ‘boundary bordering’ by (Boyd,
2001, p111). The technique introduces spurious eigenvalues, which may be moved
to highly damped locations in the complex plane by suitable choice of algebraic
coefficients. The technique of boundary bordering is not required when the form
of wall transpiration to be described shortly is applied.

As Schmid and Henningson solve the Orr-Sommerfeld/Squire equations, they
assume a time dependence e−ωt for coefficients a and arrive at a final form

(

A11 A12

A21 A22

)

a = −ω
(

L11 L12
L21 L22

)

a (2.70)

The solution of this system of equations provides highly accurate eigenvalues and
eigenfunctions for periodic linearised plane Poiseuille flow, in the absence of any
wall transpiration.
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2.4.8 Discretised Measurement

Upon substitution of the Chebyshev series the measurement equation (2.48) be-
comes

ỹ =
1

R



α2 + β2









α
∑N

n=0 av,n(t)Γ
′′
n(y = +1)− β

∑N
n=0 aη,n(t)Γ

′
n(y = +1)

α
∑N

n=0 av,n(t)Γ
′′
n(y = −1)− β

∑N
n=0 aη,n(t)Γ

′
n(y = −1)

β
∑N

n=0 av,n(t)Γ
′′
n(y = +1) + α

∑N
n=0 aη,n(t)Γ

′
n(y = +1)

β
∑N

n=0 av,n(t)Γ
′′
n(y = −1) + α

∑N
n=0 aη,n(t)Γ

′
n(y = −1)









(2.71)

or

ỹ =
1

R



α2 + β2

(

C11 C12

C21 C22

)

a (2.72)

where

C11 = α

[

Γ′′0(y = +1), . . . , Γ′′N(y = +1)
Γ′′0(y = −1), . . . , Γ′′N(y = −1)

]

(2.73)

and similarly for C12, C21 and C22.

2.5 Boundary Conditions and the Introduction

of Wall Transpiration

Without transpiration the velocity equation (2.34) is homogeneous and thus may
be expressed in the form

F (ṽ) = 0 (2.74)

and has homogeneous boundary conditions

ṽ(y = ±1, t) = 0

ṽ′(y = ±1, t) = 0 (2.75)

Non-zero wall-normal velocity due to transpiration introduces inhomogeneous Dirich-
let boundary conditions:

ṽ(y = 1, t) = q̃u(t)

ṽ(y = −1, t) = q̃l(t)

ṽ′(y = ±1, t) = 0 (2.76)

where q̃u(t) is the upper wall transpiration fluid wall-normal velocity, and q̃l(t)
the lower. Since it is linear, the homogeneous equation (2.74) with inhomogeneous
boundary conditions (2.76) can be transformed to an inhomogeneous equation with
homogeneous boundary conditions, by a suitable change of variable, as noted by
Boyd (2001, p112). Defining

ṽ(y, t) = ṽh(y, t) + fu(y)q̃u(t) + fl(y)q̃l(t) (2.77)
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then providing

ṽh(±1, t) = ṽ′h(±1, t) = 0
fu(y = 1) = fl(y = −1) = 1

fu(y = −1) = fl(y = 1) = 0

f ′u(y = ±1) = f ′l (y = ±1) = 0 (2.78)

the boundary conditions (2.76) are satisfied. After the substitution the equation
(2.74) becomes inhomogeneous

F (ṽh) = −F (fu(y)q̃u(t) + fl(y)q̃l(t)) (2.79)

and its boundary conditions homogeneous

ṽh(y = ±1, t) = 0

ṽ′h(y = ±1, t) = 0 (2.80)

Joshi et al. (1995) employed this method on a stream function formulation, and
Hogberg et al. (2003a) on a velocity-vorticity formulation using on an interpolating
basis.
Polynomials that satisfy the conditions for fu(y) and fl(y) (2.78) are

fu(y) =
−y3 + 3y + 2

4
fl(y) =

y3 − 3y + 2
4

(2.81)

which are simpler than those used previously by Joshi

fl(y) =
2y4 + y3 − 4y2 − 3y + 4

4
(2.82)

The vorticity equation (2.35) is homogeneous both without and with transpi-
ration

Fη(η̃) = 0 (2.83)

and has homogeneous boundary conditions

η̃(y = ±1, t) = 0 (2.84)

and thus requires no change of variables.
The homogeneous Dirichlet boundary conditions on η̃, (y = ±1) = 0, are

implemented by the use of basis functions ΓD which individually satisfy the ho-
mogeneous conditions, i.e.

ηh(y, t) =
N
∑

0

ΓDn (y)aη,n(t) (2.85)

where ΓDn (y = ±1) = 0, as recommended by Boyd (2001, p114).
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The simultaneous homogeneous Dirichlet and Neumann boundary conditions
on ṽ, ṽh(y = ±1, t) = ṽ′h(y = ±1, t) = 0, are also implemented directly, by the use
of basis functions ΓDN which individually satisfy the conditions, i.e.

ṽh(y, t) =
N
∑

0

ΓDNn (y)av,n(t) (2.86)

where ΓDNn (y = ±1) = ΓDNn (y = ±1)′ = 0. Thus the final expressions for velocity
and vorticity with wall transpiration present are

ṽ(y, t) =
N
∑

0

ΓDNn (y)av,n(t) + fu(y)q̃u(t) + fl(y)q̃l(t) (2.87)

η̃(y, t) =
N
∑

0

ΓDn (y)aη,n(t) (2.88)

In the present work, ΓD and ΓDN are the modified Chebyshev polynomials Θ and
Ξ, and their derivation is described in chapter 3.

2.5.1 Inhomogeneous Form

After the change of variable (2.77) and substitution of the modified Chebyshev
series ΓDn ,Γ

DN
n in (2.64,2.65), and evaluation of the equations at the collocation

points yk, the equations may be assembled as

(

A11 A12

A21 A22

)

a+

(

B11 B12

B21 B22

)

q =

(

L11 L12
L21 L22

)

ȧ+

(

E11 E12
E21 E22

)

q̇ (2.89)

where q = (q̃u, q̃l)
T . Rearranging, an additional term, as compared to (2.1), due

to the rate of change of control q̇u, becomes apparent

(

L11 L12
L21 L22

)

ȧ =

(

A11 A12

A21 A22

)

ȧ+

(

B11 B12

B21 B22

)

q−
(

E11 E12
E21 E22

)

q̇ (2.90)

The additional submatrices cf. (2.66) are N + 1 by 1 vectors and are

B11 =

(

−αūk2 − αū′′ − Ik4

R

)

fu +

(

αū+
2k2I

R

)

f′′u

B12 =

(

−αūk2 − αū′′ − Ik4

R

)

fl +

(

αū+
2k2I

R

)

f′′l

B21 = βū′fu

B22 = βū′fl

E11 = 
(

−k2fu + f′′u
)

E12 = 
(

−k2fl + f′′l
)

E21 = (0)

E22 = (0) (2.91)
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The elements of derivative matrices DnD which replace Dn previously used in A22

and L22 are

D0Dkj
= ΓDj (yk) D2Dkj

= ΓDj (yk)
′′ (2.92)

The elements of derivative matrices DnDN which replace Dn previously used in
the remainder of A and L are

D0DNkj
= ΓDNj (yk) D2DNkj

= ΓDNj (yk)
′′ D4DNkj

= ΓDNj (yk)
′′′′

(2.93)

The elements of the dimension N + 1 vectors fu, fl, f
′
u, f

′
l, f
′′
u, f

′′
l are the values or

derivatives of fu and fl, for example

fuk
= fu(yk)

f ′uk
= fu(yk)

′ (2.94)

The measurement equation (2.72) becomes

ỹ =


α2 + β2

(

C11 C12

C21 C22

)

a+


α2 + β2

(

D11

D21

)

q (2.95)

where

D11 =
α

α2 + β2

[

f ′′u (y = +1) f ′′l (y = +1)
f ′′u (y = −1) f ′′l (y = −1)

]

(2.96)

and

D21 =
β

α2 + β2

[

f ′′u (y = +1) f ′′l (y = +1)
f ′′u (y = −1) f ′′l (y = −1)

]

(2.97)

Expressing (2.90) and (2.95) more succinctly we have

Lȧ = Aa+Bq− Eq̇
ỹ = Ca+Dq (2.98)

2.5.2 Redundant Equations

The homogeneous vorticity and velocity components are given in terms of the state
variable coefficients by (2.85) and (2.86). Chapter 3 shows that the modification
of the bases to impose the Dirichlet boundary conditions reduces their size from
0 . . . N to 0 . . . N−2. This need not lead to a significant approximation error, since
due to the spectral convergence of the Chebyshev series (Fox and Parker, 1968),
the values of av,n and aη,n become ever smaller as n increases, and thus the use of
slightly fewer terms does not introduce significant error, providing N is large.
This leaves the prototype system matrix A non-square, and to rectify this,

some equations must also be discarded. The inhomogeneous Dirichlet boundary
conditions on velocity, and homogeneous Dirichlet boundary conditions on vortic-
ity mean that velocity and vorticity equations at the walls are redundant, since
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the vorticity at the walls is zero, and the wall-normal velocity is set by the control
input. Therefore it is appropriate to discard these equations.
Chapter 3 shows that the modification of the velocity basis to impose the

Neumann boundary conditions reduces its size by a further 2, in the limit of in-
finitesimal discretisation. Again, due to the spectral convergence of the Chebyshev
series, the use of slightly fewer terms does not introduce significant error, providing
N is large.
This again leaves the prototype system matrix A non-square. The homoge-

neous Neumann boundary conditions on velocity means that the velocity equa-
tions next to the walls are in some sense close to redundant if N is large, since
the wall-normal velocity at the wall is set by the control input, and its gradient
there is zero. After careful examination of the issues in chapter 3, it is considered
appropriate to discard these equations also.

2.6 State-Space Representation

This section manipulates the system into conventional state-space from, identifies
the state, control and measurement variables, and derives the final form of the
system, input and output matrices.

2.6.1 State-Space Form

It is evident that some manipulation is required to achieve the state-space form
(2.1) from (2.98). The first step is to invert L

ȧ = L−1Aa+ L−1Bq− L−1Eq̇
ỹ = Ca+Dq (2.99)

The system now has two input vectors, q and q̇, which are not independent. Hence
the system is recast so that q is no longer an input vector, but part of the state
variable vector, and that the control input is the rate of change of wall velocity q̇,
as found by Hogberg et al. (2003a)

(

ȧ

q̇

)

=

(

L−1A L−1B

0 0

)(

a

q

)

+

(

L−1E

I

)

q̇

ỹ =
(

C D
)

(

a

q

)

(2.100)

Comparison of the unrecast system matrix L−1A and state variables a with
the recast system matrix

(

L−1A L−1B

0 0

)

(2.101)

and state variables
(

a

q

)

(2.102)
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shows that the recast form has the same eigenvalues, plus two new zero values,
since q has dimension 2 × 1. The unrecast eigensystem is L−1AΨ = ΨΛ, where
Λ is a diagonal matrix of eigenvalues and Ψ is the matrix of right eigenvectors,
which, being composed solely of state variables a without q cannot represent a
non-zero wall-normal velocity. The eigensystem of the recast system is

(

L−1A L−1B

0 0

)(

Ψ Ψa

0 Ψq

)

=

(

Ψ Ψa

0 Ψq

)(

Λ 0

0 0

)

(2.103)

The recast form eigenvectors are based on state variables (a,q)T , and comprise the

previous eigenvectors Ψ augmented with zeros, plus new eigenvectors
(

ΨT
a ,Ψ

T
q

)T
.

The new eigenvectors represent transpiration at each wall, since AΨa +BΨq = 0,
and thus ΨT

q is non-zero, and are steady-state since the associated new eigenvalues
are zero. Thus the system dynamics now include steady-state transpiration modes.
The new form also has a zero direct transmission matrix, which is necessary for

the standard linear quadratic Gaussian optimal control problem, e.g. as presented
by Skogestad and Postlethwaite (1996, p353).

2.6.2 State Variables

Comparing (2.1) and (2.100) it can be seen that the state variables are given by

X =
(

a

q

)

(2.104)

These state variables are not unique, and may be transformed by any invertible
constant matrix, without changing the system input-output behaviour (Skogestad
and Postlethwaite, 1996, p114). A possible choice for the homogeneous part is
to use the values of velocity and vorticity at the collocation points, e.g. ṽk =
∑

Γn(yk)an, by means of an interpolating basis, as used by Weideman and Reddy
(2000). The state variables considered here for the homogeneous part are simply
the coefficients an which multiply the Chebyshev polynomial basis, as used by
Schmid and Henningson (2001). Although less intuitive than the collocation point
values, the coefficients multiplying Chebyshev polynomials may be reduced in
number when required. For example, when the bases are reduced in size due
to the modifications necessary for the boundary conditions, the use of slightly
fewer terms introduces negligible error, due to the fast convergence of Chebyshev
series, as noted by Fox and Parker (1968, p25).
The velocities and vorticities may be recovered from the state variables via

(

ṽ(yk1, t)
η̃(yk2, t)

)

=

(

ΓDNn1 (yk1) 0 fu(yk1) fl(yk1)
0 ΓDn2(yk2) 0 0

)









av,n1(t)
aη,n2(t)
q̃u(t)
q̃l(t)









, T









av,n1(t)
aη,n2(t)
q̃u(t)
q̃l(t)









(2.105)
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where k1 = 0 . . . N , k2 = 0 . . . N , n1 = 0 . . . N−4, and n2 = 0 . . . N−2. T is useful
for the plotting of eigenvectors and initial conditions, but being (2N+2)×(2N−2)
is not invertible. An invertible form may be made by discarding the next-to-wall
velocities and wall vorticities from the output. The wall vorticities are zero, due
to the Dirichlet boundary condition, and the next-to-wall velocities are close to
those at the wall on account of the Neumann boundary condition and the close
spacing of the collocation points at the wall. With this change

(

ṽ(yk1, t)
η̃(yk2, t)

)

=

(

ΓDNn1 (yk1) 0 fu(yk1) fl(yk1)
0 ΓDn2(yk2) 0 0

)









av,n1(t)
aη,n2(t)
q̃u(t)
q̃l(t)









, Tcp









av,n1(t)
aη,n2(t)
q̃u(t)
q̃l(t)









(2.106)

where n1 = 0 . . . N − 4, n2 = 0 . . . N − 2 as in (2.105) but k1 = 0, 2 . . . N − 2, N ,
and k2 = 1 . . . N − 1. Defining Xcp as the collocation point velocity and vorticity
form of the state variables

Xcp =

(

ṽ(yk1, t)
η̃(yk2, t)

)

(2.107)

(2.106) becomes

Xcp = TcpX (2.108)

Tcp is inverted as

T−1cp =









ΓDN−1n1 (yk1) (I− fu(yk1)r1 − fl(yk1)r2) 0

0 ΓD−1n2 (yk2)
r1 0

r2 0









(2.109)

where r1 = (1, 0 . . . 0, 0) and r2 = (0, 0 . . . 0, 1), both being of size 1× (N − 1).
Figure 2.2 shows the basis functions associated with the state variables. Those

functions associated with homogeneous velocity coefficients e.g. ΓDN0 have Neu-
mann and Dirichlet boundary conditions, those associated with vorticity coef-
ficients e.g. ΓD0 have Dirichlet boundary conditions, and those associated with
control by wall-normal velocity (derivative) e.g. fu have Neumann boundary con-
ditions.

2.6.3 Control Variables

Comparing (2.1) and (2.100) it can be seen that the control variables are given by

U = q̇ (2.110)
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Figure 2.2: The Basis Functions Associated with the State Variables (Peak mag-
nitudes over system for N = 100 in parenthesis)

These control variables are the rate of change of wall-normal velocity values on
the upper and lower walls, ˙̃qu and ˙̃ql. As q̃u and q̃l are Fourier coefficients, phys-
ically they correspond to sinusoidal distributions of transpiration velocity in the
streamwise and spanwise directions, at the selected wavenumber pair. Since the
distributions are sinusoidal, zero-net mass transpiration is achieved.

Control is via the rate of change of wall-normal velocities, as performed by
Hogberg et al. (2003a). These signals must be integrated in order to set the wall
transpiration velocities.

2.6.4 Measurement Variables

Comparing (2.1) and (2.100) it can be seen that the measurement variables are
given by

Y = ỹ (2.111)

Thus the measurement variables in the present work are the wall shear stress
Fourier co-efficients on the upper and lower walls, at the selected wavenumber
pair.

2.6.5 Bewley’s Derivation

It is instructive to compare the derivation of Bewley and Liu (1998) for case 1
(Tollmien-Schlichting waves) with the present one. Bewley’s uncontrolled system
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uses an interpolating Chebyshev basis, so the state variables are the velocities at
the collocation points v

LC v̇ = ACv

ỹ = CCv (2.112)

where the subscript C indicates the use of the interpolating basis. This form is
equivalent to the velocity part of (2.66), with the basis interpolating rather than
polynomial. Bewley applies the Neumann boundary condition within L by mod-
ification of the differentiation matrix (Bewley and Liu, 1998, p310). Expanding
this equation to consider the lower wall velocity vw separately

(

LC11 LC12
LC21 LC22

)(

v̇

v̇w

)

=

(

AC11 AC12

AC21 AC22

)(

v

vw

)

(2.113)

Bewley inverts the Laplacian LC to produce

(

v̇

v̇w

)

=

(

LC11 LC12
LC21 LC22

)−1(
AC11 AC12

AC21 AC22

)(

v

vw

)

≡
(

M11 M12

M21 M22

)(

v

vw

)

(2.114)

and discards the equation at the wall, as it is redundant, leaving

v̇ =
(

M11 M12

)

(

v

vw

)

(2.115)

and finally partitions out the control, vw, to form

v̇ = M11v+M12vw (2.116)

Now, by the Schur complement (Skogestad and Postlethwaite, 1996, p499)

(

LC11 LC12
LC21 LC22

)−1

=

(

L−1C11 + L−1C11LC12X
−1LC21L

−1
C11 −L−1C11LC12X−1

−X−1LC21L
−1
C11 X−1

)

(2.117)

ifX−1 and L−1C11 are assumed to exist, whereX is the scalar
(

LC22 − LC21L−1C11LC12
)

.
Thus

v̇ = L−1C11
((

I+ LC12X
−1LC21L

−1
C11

)

AC11 − LC12X−1AC21

)

v

+ L−1C11
((

I+ LC12X
−1LC21L

−1
C11

)

AC12 − LC12X−1AC22

)

vw (2.118)

This final form has no explicit integrators.
If applied to Bewley’s form, the approach adopted here would first partition

out vw and v̇w in (2.113)

(

LC11
LC21

)

v̇+

(

LC12
LC22

)

v̇w =

(

AC11

AC21

)

v+

(

AC12

AC22

)

vw (2.119)
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and then the approach would discard the equation at the wall, as it is redundant,
leaving

LC11v̇+ LC12v̇w = AC11v+AC12vw (2.120)

The current approach would then invert the Laplacian LC11, and collect control
inputs vw and v̇w together

v̇ = L−1C11AC11v+ L−1C11AC12vw − L−1C11LC12v̇w (2.121)

The current approach notes that vw and v̇w are not independent, and so the next
step is to make vw a state variable, and in so doing introduce an integrator

(

v̇

v̇w

)

=

(

L−1C11AC11 L−1C11AC12

0 0

)(

v

vw

)

+

(

−L−1C11LC12
1

)

v̇w

(2.122)

The integration is not purely on the input signal v̇w, as this would require the term
L−1C11LC12 to be zero. As it is not, the input signal is also utilised unintegrated.
The two forms (2.118) and (2.122) may be reconciled as follows. From (2.114)

and (2.117)

v̇w = X−1
(

AC21 − LC21L−1C11AC11

)

v+X−1
(

AC22 − LC21L−1C11AC12

)

vw

(2.123)

and substituting this result in (2.118) results in (2.121). Thus the two forms are
consistent, up to the point where integrators are introduced in the final stage of
the current approach.
It is straightforward to extend the expressions presented here to cover control

at both walls, and include the vorticity equation. Numerical experiments with
N = 100 for case 1 in Matlab (MathWorks Inc., 1998) show a spurious eigenvalue
of −0.024413+ 1.5273 for system (2.116), a similar value to one found by Bewley
and Liu (1998), as might be expected in a reproduction of their method. How-
ever, the system (2.122) is not immune to spurious eigenvalues, for example they
occur at 2.9048 + 107.87 and 2.8841 + 108.165. That is to say, conversion of
Bewley’s system into integrator form with control by derivative of wall velocity v̇w
as described here does not per se remove spurious eigenvalues. Both forms (2.116)
and (2.122) produce eigenvalues generally within Orszag’s last significant figure.
The Schur form (2.118) is not this accurate, although it does serve to show subtle
algebraic differences between the two forms (2.116) and (2.122). The extra term
L−1C11

(

LC12X
−1LC21L

−1
C11AC11 − LC12X−1AC21

)

in Bewley’s form system matrix is
not negligible, but appears not to influence significantly any of the first 30 genuine
modes for case 1, or 110 modes for case 2, for N = 100.
Bewley’s method performs invert-discard-partition, whereas the approach adopted

in the current work performs partition-discard-invert. Discarding the equations
and partitioning them are independent stages in reducing their size, so one crucial
difference between the methods is whether the equations are inverted then reduced,
or reduced then inverted. Another crucial difference is the choice of basis.

40



Generally the application of a simple Dirichlet boundary condition to a basis
makes it singular and requires it to be reduced in order before it can be inverted,
but a Neumann condition only makes the basis singular in the limit of infinitesimal
discretization, as described in chapter 3. Thus Bewley’s introduction of the Neu-
mann boundary condition does allow invert and then reduce. It has been shown
here that applying reduction then inversion in Bewley’s method does not cure the
spurious eigenvalues.
The approach used in this work applies both the Dirichlet and Neumann con-

ditions to the basis, making it singular. Thus the reduction must occur before
the inversion, ultimately leading to the current form. The absence of spurious
eigenvalues is thought to be due to the basis, and in particular, its treatment of
the Neumann boundary condition. The Neumann boundary condition has been
identified as the source of the spurious modes by Hogberg et al. (2003a), and Aamo
(2002). More information about the basis selected for the present work is given in
chapter 3.

2.6.6 State-Space Realization Matrices

System Matrix Comparing (2.1) and (2.100), the system matrix A is given by

A =

(

L−1A L−1B

0 0

)

(2.124)

The input matrix B is given by

B =

(

L−1E

I

)

(2.125)

The output matrix C is given by

C =
(

C D
)

(2.126)

The direct transmission matrix D in Y = CX + DU is zero, due to the selection
of control by rate of change of wall-normal velocities. This also ensures that the
system has integral action.

2.7 Implementation of Model

2.7.1 Test Cases

Two test cases are considered in the present work. The first is Case 1 as used by Be-
wley and Liu (1998), with Reynolds number (Re = ρUclh/µ) of 10

4, and streamwise
wavenumber pair (α, β) of (1, 0). For this test case the system matrix has distinct
eigenvalues, one of which is unstable (approximately 0.00373967 − 0.23752649),
and is known as a Tollmien-Schlichting wave (Schmid and Henningson, 2001).
Although unstable, this mode grows relatively slowly as compared to non-modal
transient growth. This Reynolds number corresponds to centreline base velocity
15 m/s for air (assuming viscosity 0.000018 Pa s, density 1.2 kg/m3) in a channel
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of half-height 0.01m, and 1 m/s for water (assuming viscosity 0.001 Pa s, density
1000 kg/m3 (Calvert and Farrar, 1999, p7-2)).
For this test case the vorticity equation is decoupled from the velocity equation

since β = 0 in (2.35). Since there is no spanwise variation, if it is assumed that the
spanwise velocity w is zero, the vorticity (2.23) is zero, and the vorticity equation
may be discarded, reducing the system size to one quarter. The remaining velocity
equation represents a two component flow field (u, v) varying in two dimensions
(x, y), a problem denoted 2D − 2C by Reynolds and Kassinos (1995).
The system matrices are initially complex, due to use of the Fourier method

during the assumption of periodicity, and for this case are split into real and
imaginary parts to allow the use of Matlab (MathWorks Inc., 1998) state-space
models, and enable the solution of the required algebraic Riccati equations (AREs)
necessary for controller synthesis. Thus Ẋ = AX + BU becomes
(

<(Ẋ )
=(Ẋ )

)

=

[

<(A) −=(A)
=(A) <(A)

](

<(X )
=(X )

)

+

[

<(B) −=(B)
=(B) <(B)

](

<(U)
=(U)

)

(2.127)

using the real representation of a complex matrix given by Hinrichsen and Pritchard
(2005, p720). There are now twice as many state variables (2N −2), 4 inputs (up-
per and lower wall, real and imaginary wall-normal velocities ) and 4 outputs
(upper and lower, real and imaginary wall streamwise shears ).
This splitting of the equations is equivalent to the addition/subtraction of the

conjugate equation, as performed by Aamo (2002, p48), but also provides some
information about the dynamics of the system when made real. The eigensystem
AΨ = ΨΛ, where Ψ is the matrix of right eigenvectors and Λ a diagonal matrix of
eigenvalues, becomes

[

<(A) −=(A)
=(A) <(A)

] [

Ψ Ψ̄
−Ψ Ψ̄

]

=

[

Ψ Ψ̄
−Ψ Ψ̄

] [

Λ 0

0 Λ̄

]

(2.128)

Thus the system eigenvalues are joined by their complex conjugates. Since, from
(2.106)

(

ṽ(yk, t)
η̃(yk, t)

)

= TX =
[

T T
]

[

< (X )
= (X )

]

(2.129)

the eigenmodes in velocity/vorticity form, TΨ, become

[

T T
]

[

Ψ Ψ̄
−Ψ Ψ̄

]

=
[

2TΨ 0
]

(2.130)

thus the eigenvectors associated with the conjugate modes evaluate to zero veloc-
ity/vorticity, leading to a singular right velocity/vorticity form eigenvector matrix.
Thus it is not possible to invert this to produce the left velocity/vorticity eigen-
vectors, which are required for controllability calculations. Also some eigensolvers
may fail to compute the conjugate modes correctly, e.g. Matlab returns not the
conjugates but the original eigenvectors multiplied by −. The conjugate modes
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represent a zero perturbation, and arise purely from creating a real system. How-
ever, to avoid the complications they introduce, the complex system is used for
the subsequent eigensystem results in section 2.6.6.

The second case is Case 2 as used by Bewley and Liu (1998), with Reynolds
number Re = 5000, and streamwise wavenumber α = 0, β = 2.044. For this test
case the system matrix has distinct eigenvalues, all of which are stable, and has
the largest transient energy growth (named and defined more precisely in section
4.3.1) over α, β and R, as determined by Butler and Farrell (1992).

For this test case the vorticity equation is coupled to the velocity equation
since β 6= 0 in (2.35). Since α is zero, there is no variation in the x direction. The
velocity and vorticity equations represent a three component flow field (u, v, w)
varying in two dimensions (y, z), a problem denoted 2D − 3C by Reynolds and
Kassinos (1995).

Although case 2 has the vorticity equation in addition to the velocity equation,
it can be reduced to approximately the size of case 1. Like case 1 the system is
complex, and must be split into real and imaginary parts to allow the use of Matlab
state-space models, and to solve the controller synthesis AREs. By inspection of
(2.34) and (2.35), and noting that α is zero, it can be seen that the velocity equation
coefficients all have the same phase, and that the vorticity equation coefficients
are real, except for the coupling velocity coefficient which is imaginary. Thus it is
valid to assume that the velocity and vorticity are π/2 out of phase, but otherwise
of phase determined by the boundary conditions. By applying imaginary velocity
boundary conditions, (i.e. making q imaginary) the velocity can be assumed to
be imaginary, and the vorticity real, and the real velocity and imaginary vorticity
state variables can be discarded, thus reducing the system size to one quarter.
Noting α = 0 in (2.45), this choice makes the streamwise velocity ũ and shear
stress 1/R ∂ũ/∂y imaginary, and spanwise velocity w̃ and shear stress 1/R ∂w̃/∂y
real.

Case 2 finally has 2N − 2 state variables, 2 inputs (upper and lower wall
imaginary wall-normal velocities) and 4 outputs (upper and lower wall, imaginary
streamwise and real spanwise shears).

Both test cases are two-dimensional, since either α or β is zero. Wavenumber
pairs in general, with non-zero α and β, result in a three-dimensional problem,
with consequent increase in complexity. The present system size could be reduced
still further, by assuming either symmetric or asymmetric disturbance behaviour,
but this has not been performed.

2.7.2 Software

The Matlab model of plane Poiseuille flow by Schmid and Henningson (2001, p489)
was taken as a starting point for the development of the software. The code was
written and executed in Matlab version 5.3 (MathWorks Inc., 1998) on a Pentium
IV based personal computer.
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2.7.3 Balancing

The state-space system (2.1) is balanced by a diagonal similarity transformation
T to produce approximately equal row and column norms in

[

T AT −1 T B
CT −1 0

]

(2.131)

by using Matlab ssbal, in order to reduce the range of numerical values. Such
balancing is feasible for stable (case 2) and unstable (case 1) systems. In bal-
anced form the state variables an,v, an,η do not necessarily display their spectral
behaviour, i.e. do not decay with n as fast as in the unbalanced form.

2.8 Results and Discussion

2.8.1 System Size

Variation of Principal Gains with System Size

The state-space system with m inputs and l outputs

Ẋ = AX + BU
Y = CX (2.132)

has transfer function form (Skogestad and Postlethwaite, 1996, p115)

Y(s) =
(

C (sI − A)−1 B
)

U
= G(s)U (2.133)

where the transfer function G is a function of the Laplace variable s. In the
frequency domain, the transfer function becomes G(ω)

Y(ω) =
(

C (ωI − A)−1 B
)

U
= G(ω)U (2.134)

It is possible to perform a singular value decomposition of the matrix G(ω) into

G(ω) = U(ω)Σ(ω)VT (ω) (2.135)

where U(ω) is an l × l unitary matrix of output singular vectors ui, V(ω) is an
m ×m unitary matrix of input singular vectors vi, and Σ(ω) is a unique l ×m
matrix consisting of zeros except for k = min (l,m) non-negative singular values
σi(ω) in descending order on its main diagonal (Skogestad and Postlethwaite,
1996, p72).
A each frequency ω, σi(ω) represents a principal gain, i.e. the gain of a signal

entering the system with direction vi, where the vi are orthogonal and are the
directions which yield the extremal gains (Zhou et al., 1996, p33). Thus a singular
value plot of a multiple input multiple output (MIMO) system versus frequency
displays the variation of the system principal gains, and provides a useful indicator
of the system input-output behaviour. As the model considered here is based on a
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Figure 2.3: Case 1 Open-Loop Singular Values vs Frequency

truncated spectral discretisation in the wall-normal direction, it is to be expected
that the system input-output behaviour will converge with an increasing number
of terms in the discretisation.

Figure 2.3 shows a plot of singular values in dB (20log10(σi(ω))) against log-
arithm of frequency (log10(ω)) for case 1, for four model discretisations, N =
50, 70, 100, 130. Each discretisation has 4 singular values at each frequency, the
minimum number of the 4 outputs, and 4 inputs. It can be seen that at low
frequencies, all four discretisations agree, and convergence has occurred. Fine de-
tail in shown in figure 2.4 where discretisation N = 50 has not converged above
approximately 2 rad/s, N = 70 has not converged above 10 rad/s and N = 100
has not converged above 40 rad/s. It is noteworthy that the lower discretisations
consistently underestimate the singular values at high frequencies.

The plot has an underlying gradient of -20 dB per decade of frequency (dB/decade)
corresponding to that of the integrator, with a peak at the unstable eigenmode,
approximately 0.237 rad/s.

Figure 2.5 shows a singular value plot against frequency for case 2, for the same
four model sizes. Each discretisation has 2 singular values at each frequency, the
minimum number of the 4 outputs, and 2 inputs. Again, it can be seen that at
low frequencies, all four discretisations agree, and convergence has occurred. Fine
detail is shown in figure 2.6 where discretisation N = 50 has not converged above
approximately 5 rad/s, N = 70 has not converged above 20 rad/s and N = 100
has not converged above 100 rad/s. As with case 1, the coarser discretisations
consistently underestimate the singular values at high frequencies.

The plot has a low frequency gradient of approximately -28 dB/decade, and a
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Figure 2.4: Case 1 Open-Loop Singular Values vs Frequency (detail)

high frequency gradient or roll-off of -20 dB/decade corresponding to that of the
integrator.
For controller synthesis the plant model should be accurate at frequencies above

the closed-loop bandwidth, and here a conservative approach of accuracy at 10
times the bandwidth is used. The closed-loop bandwidth is at this stage unknown,
but it needs to be larger than the magnitude of any unstable plant poles for
reasonable performance (Skogestad and Postlethwaite, 1996, p185), and another
conservative approach of the bandwidth being 10 times larger than the magnitude
of the unstable plant pole is applied here.
Case 1 has an unstable pole of magnitude |0.00373967− 0.23752649| ≈ 0.2376.

Thus these results indicate that in order to achieve accurate plant model behaviour
up to 100 times the unstable eigenvalue magnitude, i.e. approximately 24 rad/s,
approximately N = 100 terms are required in the wall-normal discretisation.

Discretisation Accuracy

Some explanation for the need for such a fine discretisation can be obtained by
examining the process of spectral collocation. Collocation applies the equation
being modelled exactly at the collocation points, but only approximately in be-
tween. Thus the more points the better the overall accuracy, until rounding effects
predominate.
The function cos(πy) + 1 has homogeneous Dirichlet and Neumann boundary

conditions at the ends of the range y = ±1. A very good approximation of the
function can be obtained with N = 20 modified Chebyshev polynomials, with
a maximum error of 10−15, slightly larger than machine floating point relative
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accuracy 2× 10−16 (Matlab eps).
For a more complex function cos(3πy)+1, with the same boundary conditions,

the best accuracy achievable is around 10−14 for N = 32. However, the accuracy
decreases markedly with derivative. The best accuracy of the fourth spectral
derivative is 10−8 with N = 36.
As the velocity equation (2.34) contains the fourth derivative, the results for

the simpler equation cos(3πy)+1 indicate that a fine level of discretisation is likely
to be required.

Eigenvalue Accuracy at N = 100

The system gains two integrators when recast to a form with wall-normal velocity
derivative control inputs (2.100), which are associated with steady-state modes due
to non-zero wall-normal velocities. Thus it is more appropriate to use the eigen-
values of the unconverted system (2.99) when comparing eigenvalues with those of
an uncontrolled system, which by definition has zero wall-normal velocities.
Although spectral models are unable to produce more than the lowest N/2

eigenvalues accurately, as noted by Boyd (2001, p132), a model size of N = 100
Chebyshev polynomials produces very accurate values for these. Figure 2.7 com-
pares case 1 open-loop eigenvalues with the 32 published values of Orszag (1971)
plus the additional eigenvalue discovered by Dongarra et al. (1996), as relative
fractional error. Also shown is the accuracy of Orszag’s calculation, in the form of
the fractional error due to one unit in the his least significant digit. The eigenval-
ues are seen to be close to the results of Orszag to within the computational error
quoted, and thus it can be concluded that the physics of linearised plane Poiseuille
flow have been modelled correctly.
Boyd (2001, p139) notes that spectral discretisations are susceptible to spurious

eigenvalues, for example as found by Bewley and Liu (1998). Typically these
eigenvalues are sensitive to N , and have eigenvectors which are not physically
realistic due to oscillations. Boyd’s ordinal differences δi (Boyd, 2001, p138), are
a measure of the sensitivity of the eigenvalues λ to N

δi = |λi (N1 )− λi (N2 )| /υi (2.136)

where N1 and N2(> N1) are different values of N and υi is the intermodal separa-
tion

υ1 = |λ1 − λ2|
υi = 0.5 (|λi − λi−1|+ |λi+1 − λi|) , 1 < i < N1 (2.137)

Eigenvalues i > N1/2 are inadequately resolved, and thus show a large sensitivity
δi, but those i < N1/2 should be resolved well, unless they are spurious.
Figure 2.8 plots the reciprocal of sensitivity δi for case 1, with N1 = 100

and N2 = 133, for the complex system (2.98). The figure shows that although
sensitivity rises with i, there are no exceptionally sensitive modes belowN1/2 = 50.
Figure 2.9 plots the reciprocal of sensitivity δi for case 2, also from (2.98). For
case 2 this system contains both the vorticity and velocity equations, and is thus
twice as large as for case 1, for the same N1. This figure shows low sensitivity for
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Figure 2.7: Case 1 Error in Open-Loop Eigenvalues (solid) and Accuracy of Ref-
erence Data (dotted) vs Mode

all modes below N1/2 = 50. The sensitivity shown in figures 2.8 and 2.9 for modes
up to N1/2 indicates that no spurious modes occur in the present test cases.

2.8.2 Model Dynamics

Poles and Zeros

Figure 2.10 shows the poles and zeros for case 1. As sorted by stability, i.e. from
right to left, the highest N/2 poles (corresponding to Re(λ) < −0.55) are inac-
curate, as is to be expected using spectral methods, as noted by Boyd (2001).
The rightmost pole is unstable, within one decimal place of the well-known re-
sult 0.00373967,−0.23752649 for the Orr-Sommerfeld equations as calculated by
Orszag (1971). There are several zeros in the state-space system derived here, but
none are unstable. Several zeros are close to cancelling poles, and so the system
is close to being non-minimal, as was found by Joshi et al. (1995). The Matlab
function minreal, which eliminates non-minimal state dynamics, would remove
36 state variables at the default tolerance of 1.5 × 10−8, but none at a tighter
tolerance of 10−10, for N = 100.

Figure 2.11 shows poles and zeros for case 2. All poles are real and stable, as
found by Bewley and Liu (1998). There are no zeros in the state-space system
derived in the present work.
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Part (dot-dashed)

Eigenvectors

Figure 2.12 shows the first twenty wall-normal velocity (ṽ) right eigenvectors ψi for
case 1, normalised consistently as per Bewley and Liu (1998) (ψTi ψi = N/π,∀i),
and generated from the complex system (2.6.6), to avoid introducing the conju-
gate modes. Both real (solid) and imaginary (dot-dashed) components are shown.
Mode 1 is the well-documented unstable mode, symmetrically filling the whole
channel height. Modes 2 and 3 are associated with the integrators in (2.100), each
representing steady-state transpiration from the upper and lower walls respectively,
as shown by the non-zero wall velocities, and thus each is a reflection of the other
about the centre-line, (ṽ2(+y) = ṽ3(−y)). These modes fill the whole channel and
are unusual in being real. The following modes are naturally occurring, and are
symmetric (ṽ(+y) = ṽ(−y)) or antisymmetric (ṽ(+y) = −ṽ(−y)), and either fill
the whole channel or are concentrated in the central portion.

Figure 2.13 shows the first twenty streamwise perturbation velocity (ũ) eigen-
vectors for case 1, normalised consistently with the ṽ modes, then uniformly scaled
by 1/25. The ũ modes are generally much larger than the ṽ modes (noting the
scaling applied as compared to figure 2.12), and of opposite symmetry, e.g. sym-
metric ṽ modes are antisymmetric in ũ and vice versa. Both ũ and ṽ modes are
complex. In figure 2.14 the first and unstable ṽ eigenvector of case 1 normalised to
unit magnitude, is compared with that of Thomas (1953). The agreement of both
imaginary and real components is very good. Figure 2.15 shows the streamwise (u)
and wall-normal velocity (v) flow fields associated with mode 2 in figure 2.12, one
of the integrator modes, normalised to unit maximum v for case 1 with R = 500.
For this figure, the Reynolds number is reduced below the critical value of ap-
proximately 5772 (Schmid and Henningson, 2001, p73), below which the system is
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Figure 2.15: Case 1, N = 100, Streamwise (upper) and Wall-Normal (lower)
Velocity Fields Associated with Zero Value Eigenvalue of State-Space Model, R =
500

linearly stable, to assist in comparisons with non-linear simulation results in chap-
ter 4. Sinusoidal transpiration is clearly evident from the upper wall (y = 1) in
the v contours, as is the periodic behaviour of the flow in the streamwise direction
in general.

Figure 2.16 shows the first twenty wall-normal velocity (ṽ) eigenvectors for case
2, normalised consistently ([ṽi, η̃i]

T [ṽi, η̃i] = N/π,∀i). All the modes are purely
imaginary. Modes 1 and 2 are associated with the integrators, each representing
steady-state transpiration from the upper and lower walls respectively, and like the
transpiration modes in case 1, they fill the whole channel and are unusual in being
neither symmetrical nor antisymmetric. The following modes are naturally occur-
ring. Alternate modes have zero velocity, whereas the remainder are symmetric or
antisymmetric, and fill the whole channel.

The first twenty vorticity (η̃) eigenvectors, normalised consistently with the ṽ
modes, then uniformly scaled by 1/550, are shown in figure 2.17. The η̃ modes
are all purely real and much larger than the ṽ modes (noting the scaling applied
as compared to figure 2.16), and none have zero vorticity. Where the ṽ modes are
non-zero, the η̃ modes are of opposite symmetry. After the two integrator modes,
the η̃ modes come in almost identical pairs, one associated with a zero velocity
mode, the other with a non-zero velocity mode. Bewley and Liu (1998, p329)
have explained these near identical pairs in terms of the discretised velocity and
vorticity equations (2.66), which are similar after the inversion of the Laplacian,
when α = 0, differing only in the velocity equation requiring a Neumann boundary
condition in addition to the Dirichlet one, and the vorticity equation having a
coupling velocity term.
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Model Reduction

Model reduction techniques, to lessen the size of the arrays, which lose the physical
relevance of the state variables would need to be applied with care since calcula-
tions of the kinetic energy of the system based on the variables are to be performed
in subsequent chapters. In theory, the model size could be reduced by performing
a balanced realization, and examining its Gramian to determine which state vari-
ables in the balanced realization have little effect on its input-output behaviour
and could be discarded (Skogestad and Postlethwaite, 1996, p452). The effect of
discarding these balanced state variables on the energy calculation would need to
be investigated. Also, this procedure is only suitable for stable plant, and thus for
case 1 open loop, the unstable modes would have to be factored out beforehand,
further complicating the energy calculation. Furthermore the effects of model re-
duction on non-normal transient energy growth are unclear. The approach adopted
in this work is that the discretization process itself can be viewed as model reduc-
tion of the infinite dimensional system, and the inspection of convergence with
discretisation can achieve a degree of model reduction, without causing difficulties
in the calculation of the system energy.

Observability and Controllability

A system is state observable if and only if Cψi 6= 0,∀i, where ψi is a right eigenvec-
tor, Aψi = λiψi (Skogestad and Postlethwaite, 1996, p126). The degree to which
a mode i is observable may be assessed by examining the magnitude of Cψi, since
it represents the outputs Y arising from mode i, i.e. from substituting X = ψi in
(2.1). Bewley and Liu (1998) have presented a numerically convenient measure
of observability for discretised Poiseuille flow, κo = R

√

ψTi CTCψi. This measure
is based on an eigenvector normalisation which converges with discretisation N ,
ψTi ψiπ/N = 1. Other normalisations which are independent of discretisation are
possible e.g maxi (ψi) = 1. The magnitudes of the right eigenvectors, and thus
their observability, depend on the normalisation employed. Here, to facilitate com-
parison with Bewley’s results, his normalisation is used.
Figure 2.18 plots Bewley’s observability measure for the present model case

1. The complex model of section 2.6.6 is used to avoid introducing the conjugate
modes. The system measurements are based on the wall shear stresses (2.19), and
for case 1 matrix C computes ∂u/∂y at the upper and lower walls from the state
variables. Figure 2.19 shows the upper wall detail of the u modes, normalised as
for observability. The u gradient at the wall shows a clear correlation with the
observability of figure 2.18. Modes 5,8,10,12,16,18 have small u gradient at the
wall, and small observability. These modes are antisymmetric in u, centre-span
modes, and thus would be expected to have low wall gradients. Figure 2.18 also
shows Bewley’s results, where the mode numbering of Bewley’s results has been
adjusted to allow for the 2 integrators added to the present system for case 1, and
it is evident that the agreement with Bewley’s results is good.
Figure 2.20 plots the observability results for case 2. For case 2 measurements

at the wall are ∂u/∂y and ∂w/∂y, and figures 2.21 and 2.22 show near-wall detail
of the u and w modes respectively, normalised as for observability. Noting the 40
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Figure 2.20: Case 2 Observability

times scaling applied to the w modes, it is seen that the w mode gradients are much
smaller than the umodes, and contribute comparatively little to the measurements.
Integrator mode 1 has a large u gradient at the upper wall, and this correlates with
its high observability. Mode 2 has a small upper wall u gradient, but being an
integrator mode is asymmetric, and has a high wall gradient at the lower wall
(not shown), which accounts for its good observability. The subsequent naturally
occurring modes increase in wall u gradient as they become more complex with
mode number, as shown in figure 2.16, and this correlates with their increasing
observability. Bewley’s results, with the mode numbering adjusted to allow for
the integrators added to the present system, are also shown. The agreement with
Bewley’s results is good.
A system is state controllable if and only if BTφi 6= 0,∀i, where φi is a left

eigenvector, φTi A = λiφ
T
i (Skogestad and Postlethwaite, 1996, p122) and the degree

to which a mode i is controllable may be assessed by examining the magnitude
of BTφi. This result may be interpreted as follows (Bewley and Liu, 1998, p322).
Considering the system (2.1), repeated here

Ẋ = AX + BU
Y = CX (2.138)

with left eigensystem ΦTA = ΛΦT where ΦT is the matrix of left eigenvectors φTi
and Λ a diagonal matrix of eigenvalues λi, and right eigensystem AΨ = ΨΛ where
Ψ is the matrix of right eigenvectors ψi. Bewley’s eigenvector normalisation which
converges with discretisation N is assumed, φTi ψiπ/N = 1 where ψTi ψiπ/N =
1. Other normalisations which are independent of discretisation are possible e.g
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Figure 2.21: Case 2 ũ Mode Wall Detail (imaginary)
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Figure 2.22: Case 2 w̃ Mode Wall Detail (real), Scaled by 40 c.f. Figure 2.21
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maxi (ψi) = 1, φTi ψi = 1. The magnitudes of the left and right eigenvectors,
and thus their controllability, depend on the normalisation employed. Here, to
facilitate comparison with Bewley’s results, his normalisation is used.
Any state may be represented

X = Ψχ (2.139)

where χ is a vector of initial modal amplitudes, [ci, . . . , cN ]
T . Substituting this

expression in the first equation of (2.138) yields

Ψχ̇ = AΨχ+ BU (2.140)

Since AΨ = ΨΛ, the equation becomes

Ψχ̇ = ΨΛχ+ BU (2.141)

Premultiplying by ΦT yields

χ̇ = Λχ+ π/NΦTBU (2.142)

since ΦTΨ = N/πI, due to the normalisation imposed and the orthogonality of
left and right eigenvectors. Equation i of this system is

ċi = λici + π/Nφ
T
i BU (2.143)

and thus the effect of the input U on rate of growth of the amplitude of mode i,
ċi, depends upon the magnitude of φ

T
i B. Bewley and Liu (1998) have presented a

convenient measure of controllability

κc = π
√

φTi BBTφi/N (2.144)

for discretised Poiseuille flow.
Figure 2.23 plots this controllability measure for the current model for each

mode i for case 1. Considering the initial modes, since high modes are known to
be inaccurate, the controllability of whole-span modes (e.g. 1,2,6,13 in figure 2.12)
is higher than that of centre-span modes (e.g. 4,5,7,8,9), as might be expected with
actuation at the walls. The controllability of the centre-span modes increases with
mode number as the the centre-span modes increase in spanwise extent. Asym-
metric v centre-span modes (e.g. 4,7,9,11) are more controllable than neighbouring
symmetric v centre-span modes (5,8,10,12), which is consistent with their having
small magnitudes outside the central of the span, unlike the symmetric modes.
The figure also presents Bewley’s own results, with the mode numbering adjusted
as previously, and shows that the agreement with Bewley’s results is good.
Figure 2.24 plots the same results for case 2. The controllability decreases

with increasing mode number, which is consistent with the mode shapes becoming
more complex. The zero-velocity modes (e.g. 5,7,9,11) are less controllable than
their non-zero-velocity similar partners (4,6,8,10), as might be expected with wall
velocity actuation. The figure also shows Bewley’s own results, with the mode
numbering adjusted as previously. The agreement with Bewley’s results is poor,
the current model being several orders of magnitude more controllable.
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Figure 2.23: Case 1 Controllability
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Figure 2.24: Case 2 Controllability
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Investigation of the Effect of Integrators on Bewley’s Model

It is straightforward to reproduce Bewley’s model and open loop results. The spu-
rious modes may be identified by their saw-tooth appearance, oscillating between
grid points. For case 1 spurious modes occur at −0.024413 + 1.5273, and for
case 2 at −0.00083558, for N = 100, which are shifted to −500, 0, with no other
spurious modes within the first half eigenvalues. Spurious modes are more difficult
distinguish in the second half eigenmodes, as the eigenmodes become discretised
less accurately. No attempt is made to adjust any second-half modes, which are
known to be inaccurate in a spectral model anyway.
Bewley’s model is reproduced to examine the effect of transforming it from the

original form (2.118), reproduced here

v̇ = L−111
((

I+ L12X
−1L21L

−1
11

)

A11 − L12X−1A21

)

v

+ L−111
((

I+ L12X
−1L21L

−1
11

)

A12 − L12X−1A22

)

vw (2.145)

to the integrator form (2.122), also reproduced here
(

v̇

v̇w

)

=

(

L−111A11 L−111A12

0 0

)(

v

vw

)

+

(

−L−111 L12
1

)

v̇w (2.146)

This transformation alters the observability and controllability as follows. Figures
2.25 and 2.26 show how the introduction of the integrators does not affect the the
observability of the first half modes of Bewley’s model in either case 1 or case 2.
Also, the agreement with the current model shows that the presence of the shifted
spurious eigenmodes need not necessarily compromise the results of the genuine
modes.
Figure 2.27 shows how the introduction of the integrators does not generally

affect the the controllability of Bewley’s first half modes for case 1. However,
the integrators do increase the controllability of the first half modes substantially
for case 2, as shown in figure 2.28, and produce values in good agreement with
those of the current model. These results show that the discrepancy between
the controllability of the current model for case 2 and that of Bewley’s results is
purely due to the introduction of the integrators. Again, the agreement with the
current model shows that the presence of the shifted spurious eigenmodes need
not necessarily compromise the results of the genuine modes.

Investigation of the Effect of Integrators on Observability and Control-

lability

Considering the system

Ẋ = AX + BU
Y = CX +DU (2.147)

with left eigensystem ΦTA = ΛΦT where ΦT is the matrix of left eigenvectors
φTi and Λ a diagonal matrix of eigenvalues λi, and right eigensystem AΨ =
ΨΛ where Ψ is the matrix of right eigenvectors. The system has controllability
π/N

√

φTi BBTφi, lT ∈ ΦT and observability R
√

ψTi CTCψi, ψi ∈ Ψ.
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Figure 2.25: Case 1 Observability of Integrator and Non-Integrator Forms
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Figure 2.26: Case 2 Observability of Integrator and Non-Integrator Forms
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Figure 2.27: Case 1 Controllability of Integrator and Non-Integrator Forms
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Figure 2.28: Case 2 Controllability of Integrator and Non-Integrator Forms
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If integrators are introduced onto the system inputs it becomes
(

Ẋ
U̇

)

=

(

A B
0 0

)(

X
U

)

+

(

0

I

)

U̇

Y =
(

C D
)

(

X
U

)

(2.148)

By inspection, the right eigensystem of (2.148) is
[

A B
0 0

] [

Ψ Ψ1
0 Ψ2

]

=

[

Ψ Ψ1
0 Ψ2

] [

Λ 0

0 0

]

(2.149)

i.e. as compared to (2.147), each eigenvector ψi ∈ Ψ is augmented by as many

zeros as inputs, and new integrator modes
[

ΨT
1Ψ

T
2

]T
are added. The observability

of non-integrator mode i is

R

√

[

ψTi 0T
]

[

CT
DT

]

[

C D
]

[

ψi
0

]

= R
√

ψTi CTCψi, ψi ∈ Ψ (2.150)

i.e. the observability of the non-integrator mode i is identical to that of the mode in
the system without integrators, (2.147). By inspection, the system left eigensystem
is

[

ΦT ΦT3
0 D

] [

A B
0 0

]

=

[

Λ 0

0 0

] [

ΦT ΦT3
0 D

]

(2.151)

i.e. as compared to (2.147), the left eigenvectors ΦT are augmented with ΦT3 , and
new integrator modes [0,D] added, where the diagonal matrix D ensures that
the new left and right integrator eigenvectors are normalised consistently with the
other eigenvectors. The controllability of the non-integrator mode i is given by

π

N

√

[

φTi φT3,i
]

[

0

I

]

[

0 I
]

[

φi
φ3,i

]

(2.152)

which simplifies to

π

N

√

φT3,iφ3,i (2.153)

Now from (2.151) ΦTB = ΛΦT3 , so φ3,i = BTφi/λTi and so the controllability of
mode i is

π

N

√

φTi BBTφi/ (λTi λi) (2.154)

Thus compared to the controllability, π/N
√

φTi BBTφi of (2.147) the controllability
of original mode i changes by a factor of 1/

√

λTi λi. If the eigenvalue λi of a mode
has a magnitude smaller than unity, it is possible to improve the controllability by
placing integrators on the system inputs.
This simple analysis shows how the introduction of integrators into a system can

leave the observability unchanged, and yet alter the controllability. This analysis
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is not strictly applicable to Bewley’s model, since the control input is related to
the state variables by

U̇ = EX + FU (2.155)

from (2.123) and the equations become
(

Ẋ
U̇

)

=

(

A− B2E B − B2F
0 0

)(

X
U

)

+

(

B2
I

)

U̇

Y =
(

C D
)

(

X
U

)

(2.156)

upon introduction of integrators to make U a state variable. B2 is the control
derivative input matrix, which can be incorporated into the previous controllability
analysis in a straightforward manner. However, because the system matrix gains
the extra term B2E , it is not straightforward to predict the effects on observability
and controllability of changing to the integrator form.
Regarding Bewley’s model, the extra system matrix term does not alter the

first 30 eigenmodes significantly, but does alter the left eigenvectors greatly.

Observability and Discretisation

Figure 2.29 shows the case 1 u mode 1 to 20 wall details for discretisations of
N=50,70,100 and 130. It can be seen that the N=100 and 130 results are in agree-
ment and thus N=100 can be taken as converged in terms of wall gradient for
modes 1 to 20. It is also evident that from mode 9 on, the N=50 discretization
produces wall gradients that are too high, and that the N=70 discretization is
not converged at mode 18. This correlates with figure 2.30 of the corresponding
observabilities, where the N=100 and N=130 results are converged, as far as mode
40, but the N=50 results are over-estimates of observability from mode 9 onward.
(Modes 5 and 8 also have overestimated observability, but its magnitude is too
small to detect in figure 2.29.) Discretisation N=70 is not converged in terms
of observability above mode 15, which is slightly different to the degree of con-
vergence as measured in terms of wall gradients, and shows greater sensitivity of
observability to convergence, as might be expected, since graphical wall gradients
are difficult to interpret accurately when near vertical. Both measures indicate
non-convergence at mode 18 and beyond.
It may be concluded that accurate measurement modelling is dependent on

accurate gradient information close to the wall, and this requires a high level of
discretisation, approximately N = 100, to accurately represent the gradient of
the first 20 modes of case 1. Since pressure measurements (2.51) require higher
derivatives at the wall, modelling them accurately is likely to require even higher
levels of discretisation.

Investigation of Left Eigenvectors

It can be shown that system non-normality leads to increased magnitudes of the
left eigenvectors, and thus, all other things being equal, larger controllability. First
a procedure is presented for computing individual left eigenvectors.
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The left eigenvector matrix ΦT may be computed via the inverse of the right
eigenvector matrix, Ψ, since ΦTΨ = IN/π. Any individual left eigenvector may
also be computed by a procedure akin to Gram-Schmidt orthogonalization (R̊ade
and Westergren, 1999, p104) as follows. Since φi is perpendicular to all ψj, except
j = i

φi = f
N
∏

j=1,j 6=i

ψj (2.157)

ψTi φi =
N

π
(2.158)

where f is a normalising scalar, and Π represents the product of (N − 1) N -
dimensional vectors which is orthogonal to each of them, extending the concept
of the vector product beyond 3 dimensions. Premultiplying (2.157) by ψTi , and
substituting in (2.158) gives

f =
N

π

1

ψTi
∏N

j=1,j 6=i ψj
(2.159)

and substituting for f in (2.157) gives an expression for the left eigenvector φi

φi =
N

π

1

ψTi
∏N

j=1,j 6=i ψj

N
∏

j=1,j 6=i

ψj (2.160)

The procedure is as follows. First φi is initialised to [1, 1, 1, . . . ]
T , and then since

φi is perpendicular to ψj, for j 6= i, any components in direction ψj are subtracted,
both from φi and ψk,k>j

φi = φi −
π

N
ψTj φiψj ∀j 6= i (2.161)

ψk =
ψk − ψTj ψkψj
∣

∣ψk − ψTj ψkψj
∣

∣

√

N

π
∀k > j (2.162)

where π/N appears in (2.161) due to the chosen normalisation of the dot product
of left and right eigenvectors, and ψk is renormalised in (2.162). Finally φi must
be normalised such that φTi ψi = N/π. This procedure produces φi within 10

−8 of
those from matrix inversion.
This approach also shows how the magnitude of left eigenvectors can be greater

than the corresponding right eigenvector,
√

N/π, when the right eigenvectors are
non-normal, as follows. Now

ψTi ψj =
N

π
cos(θ) (2.163)

where θ is the angle between ψi and ψj. Also

φTi ψi =
∣

∣φTi
∣

∣ |ψi| cos(α) (2.164)

where α is the angle between φi and ψi, but

φTi ψi =
N

π
(2.165)
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and |ψj| =
√

N/π from (2.163), thus

∣

∣φTi
∣

∣ =
1

cos(α)

√

N

π
(2.166)

As ψi lies on a cone of semi-angle θ about ψj, and yet φi is perpendicular to ψj,
then

π

2
− θ ≤ α ≤ π

2
+ θ (2.167)

If θ is small

cos
(π

2
+ θ
)

≤ cos(α) ≤ cos
(π

2
− θ
)

(2.168)

or

− sin (θ) ≤ cos(α) ≤ sin (θ) (2.169)

Now from (2.163) and (2.166)

sin(θ) =

√

1− π

N
ψTi ψj (2.170)

cos(α) =
1

|φTi |

√

N

π
(2.171)

Substituting these in (2.169), we have finally

|φi| ≥
√

N

π

1
√

1− ψTi ψjπ/N
∀j 6= i (2.172)

Thus the magnitude of the ith left eigenvector |φi| is greater than that of the right
(|ψi| =

√

N/π), by a factor depending on the highest non-normality of the right
eigenvector, and thus, all other things being equal, larger controllability follows
from non-normality. In practice this lower bound on |φi| is conservative for the
large systems employed here.

2.9 Conclusions

This chapter has derived a linear state-space representation of linear spatially
periodic perturbations in plane Poiseuille flow. The Navier-Stokes equations were
presented and linearised about the base flow, and suitably reformulated into wall-
normal velocity and vorticity form in sections 2.2 and 2.3.
Section 2.4 described the discretisation of the linearised equations in the stream-

wise, spanwise and wall-normal directions. Following the description of Fourier
streamwise and spanwise discretisation of the equations and wall shear stress mea-
surements, the Fourier discretised form of wall pressure measurements avoiding
the inversion of a Laplacian was derived. It was seen that pressure measurements
involve higher wall-normal derivatives of the velocity and vorticity perturbations
than shear stress measurements do. It may be concluded that state-space models
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based on pressure measurements will require more careful wall-normal discretisa-
tion to achieve the same accuracy as those based on shear stress measurements.

This section also drew an important distinction between interpolating (car-
dinal function) and polynomial (coefficient) forms of Chebyshev collocation for
wall-normal discretisation. The polynomial form and its derivatives are amenable
to approximation by truncation of the highest order terms, but derivatives of
the interpolating form are very sensitive to the loss of data at any collocation
points. The introduction of wall-transpiration boundary conditions into the fully
discretised equations was described in section 2.5, and the transformation to an
inhomogeneous form with homogeneous boundary conditions. The homogeneous
boundary conditions were fulfilled by the use of the recombined Chebyshev poly-
nomials to be presented in chapter 3.

In section 2.6, the inhomogeneous terms were extracted as the control inputs
during manipulation of the equations into state-space form. The introduction of
integrators during the manipulation was apparent, and their associated eigenvec-
tors were shown to be steady-state modes associated with transpiration from either
wall.

The system of state-space equations was generated by partitioning, then in-
version of the Laplacian operator. This manipulation of the equations was also
performed on the interpolating model of Bewley and Liu (1998) as an alternative
to inversion then partitioning, and the two manipulations were shown to be con-
sistent, even though the latter generates no integrator modes. The application
of partitioning then inversion to the form produced by Bewley did not remove
the spurious eigenvalues associated with that form. This is consistent with the
accepted view that the spurious eigenvalues found by Bewley are caused by the
particular application of the Neumann boundary conditions.

Section 2.7 described the two test cases. A real state-space model for case 1 was
implemented by splitting the equations into real and imaginary parts, and it was
demonstrated that the split caused the system eigenvalues to be joined by their
conjugates, and expressions for the eigenvectors of the split system were derived.
Furthermore, it was shown how the eigenvectors associated with the conjugate
modes evaluate as zero in terms of velocity and vorticity. Regarding test case
2, section 2.7 showed how it may be implemented as a real system in terms of
imaginary velocity and real vorticity components, thus reducing the system size
from approximately (2N)× (2N) to N ×N .
Section 2.8 showed how the singular values of the state-space system gener-

ated converge up to ever higher frequencies as the wall-normal discretisation N
is refined. The first 32 system eigenvalues for discretisation N = 100 on case 1
were found to compare well with published data, as compared to the 15 quoted in
earlier works, and the use of Boyd’s ordinal differences (Boyd, 2001, p139) showed
that no spurious modes were present. The eigenvector of the case 1 unstable
mode was found to compare well with published data, and the velocity flow-field
from the integrator modes was plotted to confirm that they do represent steady
transpiration.

Although many techniques exist for the reduction of model size, for example
balanced residualisation and truncation (Skogestad and Postlethwaite, 1996, p452),
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none have been applied here, since the controller performance criteria to be applied
is the minimisation of the energy growth of the system, and the calculation of the
system energy requires that the state variables remain physically meaningful.

Taking the extra integrator modes into account, good agreement with Bew-
ley’s observability (Bewley and Liu, 1998), based on right eigenvectors, was shown
for both test cases, and a clear correlation established between eigenmode wall
gradient and its observability. Good agreement was also achieved for case 1 with
Bewley’s controllability, based on left eigenvectors, but not for case 2.

Bewley’s model and open loop results were reproduced. When his model was
recast into partition-then-inversion form, with its associated integrators, it was
found to produce observability and controllability in good agreement with the
model here developed, demonstrating that the form was the cause of the discrep-
ancy in case 2 controllability.

This section also showed that convergence of wall-gradients and of observability
requires a high level of discretisation N , the wall gradient being accurate only
with collocation points very close to the wall. The poor detection of modes in the
centre of the channel via measurements very close to the channel walls was found
by Bewley and Liu (1998, p328), and these results quantify the discretisation
required. For case 2, the gradient of ∂w/∂y at the wall was found to be small
and contribute little to observability. This explains the lack of consequences from
the discrepancy found in the measurements, in terms of wall-normal velocity and
vorticity, in equation (2.48).

Section 2.8 also investigated the effect of input integrators on system control-
lability and observability. It was demonstrated how integrators have no effect on
the observability of the mode i, but alter its controllability by a factor 1/

√

λTi λi,
where λi is its eigenvalue. This result is believed to be novel but is not applicable
to the current systems, since the integrators do not act purely on the inputs.

Finally this section introduced a procedure for the calculation of individual left
eigenvectors, and it was demonstrated that the magnitude of left eigenvectors is
greater than that of the right, when the right eigenvectors are non-normal. All
other things being equal, this would lead to larger controllability in non-normal
systems.

Thus this chapter has described the development of a polynomial-form spec-
tral state-space model of linearised plane Poiseuille flow which is free of spurious
modes and which has been shown to be consistent with previous models in terms of
eigenvalues, observability and controllability and yet is also amenable to approxi-
mation by truncation of the polynomial coefficients, for use in controller synthesis
and simulation in chapter 4. The zero eigenvalue modes of the model have been
shown to correspond to steady-state sinusoidal transpiration, and thus the flow-
field of linearised transpiration has been determined, as an aid to verifying subse-
quent computational fluid dynamics calculations. The convergence of the model
dynamics with discretisation has been investigated, and the slow convergence of
observability traced to the need for fine discretization of the velocity profile at
the wall, in order to determine the appropriate discretisation for use in chapter 4.
Pressure measurements have been derived and shown to require still finer discreti-
sation than wall shear stress measurements. A method for halving the dimensions
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of the discretised model for test case 2, in order to reduce the resources required
for subsequent controller synthesis and simulation, has also been presented.
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Chapter 3

Wall-Normal Direction

Discretisation

3.1 Introduction

This chapter describes in detail the discretisation of the model in the wall-normal
direction, as introduced in section 2.4.4. For plane Poiseuille flow, the wall-normal
direction is bounded, unlike the streamwise and spanwise directions. The inhomo-
geneous (non-zero at the walls) component of wall-normal velocity is extracted to
form the control input. Whereas for the streamwise and spanwise boundaries peri-
odic boundary conditions on velocity and vorticity suffice, for the wall boundaries
the boundary conditions on the vorticity are Dirichlet, and on the remaining homo-
geneous component of wall-normal velocity they are Dirichlet and Neumann. The
non-periodic behaviour in the wall-normal direction is not decoupled by wavenum-
ber but rather represented by a modified Chebyshev basis evaluated at a number
of collocation points, in order to form a system of equations.

Section 3.2 presents the equations to be discretised, and proceeds to discretise
them by spectral collocation. In section 3.3 the requirements of a valid linear
algebraic basis are stated, and Chebyshev basis functions are described. Basis
modification in order to impose the boundary conditions is then introduced. The
tools used for basis modification, namely matrix operations and partitioning, are
described in section 3.4.

In section 3.5 four methods of basis modification are described. The first is
due to Heinrichs (1989) and the second by Joshi (1996). The third is a combined
method, partly as described by Boyd (2001, p113,143) and partly believed to be
novel. The fourth and final method is also a combined method, partly as described
by Boyd (2001, p113,143) and partly as described by Weideman and Reddy (2000,
p499).

Section 3.6 compares condition numbers of various derivative matrices which
arise in the discretised system, for each of the four methods. Finally section 3.7
draws conclusions about the methods of basis modification.
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3.2 Spectral Collocation

3.2.1 Equations Discretised in Streamwise and Spanwise

Directions

Once the Fourier assumption has been applied in the x and z dimensions, the lin-
earised plane Poiseuille flow problem reduces to one spatial dimensional variation,
in the wall-normal (y) direction, plus time variation, as shown in equations (2.34)
and (2.35), rearranged here with the time variations on the left as



α

(

∂3ṽ

∂y2∂t
− k2∂ṽ

∂t

)

=

(

−Ubk2 −
∂2Ub
∂y2

− k4

Rα

)

ṽ +

(

Ub +
2k2

Rα

)

∂2ṽ

∂y2
− 1

Rα

∂4ṽ

∂y4

(3.1)

−∂η̃
∂t

=

(

αUb +
k2

R

)

η̃ − 1

R

∂2η̃

∂y2
+ βṽ

∂Ub
∂y

(3.2)

The equations may be written more succinctly, using D to represent the operator
∂/∂y and ˙ to represent ∂/∂t

(

D2 − k2
)

˙̃v =
(

f1 + f2D
2 + f3D

4
)

ṽ

˙̃η =
(

f4 + f5D
2
)

η̃ + f6ṽ (3.3)

where f1, . . . , f6 are known functions of parameters α, β,R and dimension y alone.

3.2.2 Subscript Convention

The collocation may be expressed in a polynomial function basis or a cardinal
function (interpolating) basis. The usual subscript convention for collocation is
n = 0 to N . However, for the remainder of this chapter the convention m = 1
to M is used, to assist in the application of linear algebra, where m in Rm is
conventionally 1 for a one-dimensional space. Thus m = n+ 1 and M = N + 1.

3.2.3 Cardinal or Interpolating Function Basis

In the spectral collocation cardinal function method the variables ṽ and η̃ are
interpolated at the collocation points ym, chosen to enhance the accuracy of the
procedure, by the M cardinal functions Cm e.g.

ṽM =
M
∑

m=1

Cm(y)ṽ(ym)

η̃M =
M
∑

m=1

Cm(y)η̃(ym) (3.4)

as described by Gottlieb et al. (1984, p13) where ṽM and η̃M are approximations
to ṽ and η̃ respectively, and the unknowns become the interpolated values ṽ(ym).
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3.2.4 Polynomial Basis

In the spectral collocation polynomial function method the variables ṽ and η̃ are
approximated by a sum of m = 1, . . . ,M spectral basis functions Γm(y), weighted
by unknown spectral coefficients am e.g.

ṽM =
M
∑

m=1

Γm(y)av,m

η̃M =
M
∑

m=1

Γm(y)aη,m (3.5)

A zero residual is enforced at a number of collocation points ym and the unknowns
become the spectral coefficients.
The cardinal and polynomial methods are equivalent (Boyd, 2001, p 115), al-

though they lead to different state variables in the state-space form, with impor-
tant consequences (see section 4.2.1). Here the polynomial method is used, with
Chebyshev spectral basis functions.

ṽM(ym) and η̃M(ym) are good approximations to ṽ(ym) and η̃(ym) in (3.4) and
(3.5), since these equations just interpolate them. This good approximation is
not necessarily the case for the solution of (3.1) and (3.2) where, for example,
convergence with M , and accurate derivatives, are required for accurate results.

3.2.5 Chebyshev Functions

Here, the y variation is aperiodic, and so Chebyshev polynomials

Γm(y) = cos ((m− 1) arccos(y)) (3.6)

are a suitable choice of basis function (Boyd, 2001), here presented using the
current non-standard subscript convention. The Gauss-Lobatto points

ym = cos ((m− 1)π/(M − 1)) ,m = 1, . . . ,M (3.7)

are an appropriate choice for collocation. These points have range −1 ≤ y ≤ 1,
since y1 = 1, yM = −1. This range is conveniently the same as the full non-
dimensionalised channel height. This distribution is particularly favourable for
spectral accuracy, and appropriately for the present problem, includes the bound-
ary points (Peyret, 2002, p46).
The first four Chebyshev polynomials are

Γm=1(y) = 1

Γm=2(y) = y

Γm=3(y) = 2y2 − 1
Γm=4(y) = 4y3 − 3y

Some Chebyshev polynomials and their derivatives are shown in figure 3.1.
Their peak magnitudes, over all the collocation points for the domain, are also
given.
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3.2.6 Evaluation at Collocation Points

The discretised form of ṽ is the values at the collocation points















ṽM(y1, t)
...

ṽM(ym, t)
...

ṽM(yM , t)















=















Γ1(y1) . . . Γm(y1) . . . ΓM(y1)
...

. . .
...

. . .
...

Γ1(ym) . . . Γm(ym) . . . ΓM(ym)
...

. . .
...

. . .
...

Γ1(yM) . . . Γm(yM) . . . ΓM(yM)





























av,1
...

av,m
...

av,M















or ~̃vM = D0av(t) (3.8)

and similarly for η̃















η̃M(y1, t)
...

η̃M(ym, t)
...

η̃M(yM , t)















=















Γ1(y1) . . . Γm(y1) . . . ΓM(y1)
...

. . .
...

. . .
...

Γ1(ym) . . . Γm(ym) . . . ΓM(ym)
...

. . .
...

. . .
...

Γ1(yM) . . . Γm(yM) . . . ΓM(yM)





























aη,1
...

aη,m
...

aη,M















or ~̃ηM = D0aη(t) (3.9)

3.2.7 Derivatives at Collocation Points

The derivatives of the discretised variables with respect to y are obtained by dif-
ferentiating the Chebyshev polynomials, for example (2.55), repeated here















ṽ′M(y1, t)
...

ṽ′M(ym, t)
...

ṽ′M(yM , t)















=















Γ1(y1)
′ . . . Γm(y1)

′ . . . ΓM(y1)
′

...
. . .

...
. . .

...
Γ1(ym)

′ . . . Γm(ym)
′ . . . ΓM(ym)

′

...
. . .

...
. . .

...
Γ1(yM)

′ . . . Γm(yM)
′ . . . ΓM(yM)

′





























aη,1
...

aη,m
...

aη,M















or ~̃v′M = D1aη(t) (3.10)

and similarly for higher derivatives D2 and D4. Recursion formulae are used for
accurately calculating the derivatives of Chebyshev polynomials, e.g. as presented
by Schmid and Henningson (2001, p485).

3.2.8 Discretised Form of Equations

In discretised form the equations (3.3) become
(

D2− k2D0
)

ȧv = (F1D0+ F2D2+ F3D4) av

D0ȧη = (F4D0+ F5D2) aη + F6D0av (3.11)

where F1, . . . ,F6 are diag(f1(ym),m = 1, . . . ,M), . . . , diag(f6(ym),m = 1, . . . ,M)
respectively. The Laplacian term L = (D2− k2D0) is very poorly conditioned
without boundary conditions applied, as noted by Bewley (2001, p23). In the
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present context this is due to some of its columns being almost linearly dependent.
For example and noting the present subscript convention and domain −1 ≤ y ≤ 1,
for test case 1 k = 1, and thus column 1 is Γ′′1 − Γ1 = −1, and column 3 is
Γ′′3 − Γ3 = 5− 2y2, similarly column 2 is Γ′′2 − Γ2 = −y and column 4 is Γ′′4 − Γ4 =
27y − 4y3, with the result that the condition number is around 1019 for M = 100
in double precision arithmetic. Here the poor conditioning arises inevitably since
double differentiation of high order Chebyshev polynomials yields large magnitude
polynomials of lower degree (e.g. Γ′′4 = 24y), which are similar in shape to other
lower order undifferentiated Chebyshev polynomials (Γ2 = y), which themselves
have small double differentials on account of their lower order (Γ′′2 = 0).

3.3 Linear Algebraic Bases

3.3.1 The Requirements of a Basis

When the basis functions are evaluated at theM collocation points, they generate
a basis of vector space RM in the linear algebraic sense. In this sense, bases fulfill

several properties. If V is any vector space, and B =
{

~b1, . . . ,~bm, . . . ,~bM

}

, then

B is a basis for V if (Anton, 1991, p181)

1. B is linearly independent i.e.

M
∑

m=1

αm~bm = 0 only if αm = 0∀m (3.12)

2. B spans V , that is, every vector in V is expressible as a linear combination
of the vectors ~bm of B.

If follows that any vector ~v ∈ V is a unique weighted sum of the elements of B. All
bases of the vector space RM have M vectors of size (M × 1) i.e. are of dimension
M , and any linearly independent set of M vectors in RM span RM and form a
basis. The vectors of a basis need not be orthogonal, i.e. ~bTi

~bj = 0 is not required.

3.3.2 The Unmodified Chebyshev Basis

D0 in the velocity and vorticity discretisation systems of equations (3.8,3.9) is
represented in column form as

[

~Γ1(y), . . . , ~ΓM(y)
]

(3.13)

where y = (y1 . . . yM)
T . Now the vectors diag(1/2, 1, . . . , 1, 1/2)~Γm(y),m = 1, . . . ,M

are orthogonal (Hamming, 1973) and thus linearly independent. Multiplication by
diag(1/2, 1, . . . , 1, 1/2) is valid matrix row operation (see section 3.4) and thus the

vectors ~Γm(y) are also linearly independent and therefore form a basis of RM .
Thus they span the whole of vector space RM , any distribution of ṽM(y, t) over
the points y may be represented by the coefficients av, and similarly for η̃M(y, t).
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3.3.3 Boundary Conditions and Basis Modification

In the uncontrolled channel, the boundary conditions are homogeneous Dirichlet
conditions on η̃, and homogeneous Dirichlet and Neumann conditions on ṽ

η̃(y1, t) = η̃(yM , t) = 0

ṽ(y1, t) = ṽ(yM , t) = 0

∂ṽ(y1, t)

∂y
=
∂ṽ(yM , t)

∂y
= 0 (3.14)

In the controlled channel, the boundary condition on ṽ is inhomogeneous, but may
be converted to a homogeneous form by a change of variable, see section 2.5.1.
The boundary conditions require the equations (3.11) to be modified to
(

D2DN − k2D0DN
)

ȧv = (F1D0DN + F2D2DN + F3D4DN) av

D0Dȧη = (F4D0D + F5D2D) aη + F6D0DNav (3.15)

where subscripts D and N show matrices where the Dirichlet and Neumann bound-
ary conditions are required respectively. When a cardinal function basis is used,
it is recommended practice to only apply the Dirichlet boundary conditions to the
term (D2DN − k2D0DN) of the velocity equation in (3.15), as this term is only
second order (Boyd, 2001, p141). This is not appropriate when the polynomial
basis is used, as the spectral coefficients must be consistent throughout the system.
There are two strategies for imposing these homogeneous boundary conditions,

boundary bordering and basis modification, as described by Boyd (2001, p110).
Boundary bordering involves the replacement of equations at the boundaries, m =
1,m = M , with equations that explicitly enforce the boundary conditions. Since
the homogeneous boundary conditions are time invariant, this leads to the addition
of algebraic constraints to the system, and can lead to spurious eigenvalues, for
example see Schmid and Henningson (2001, p489).
Basis modification involves the replacement of the original basis functions with

modified ones that each satisfy the homogeneous boundary conditions, and is the
method adopted in the present work.

The Basis Modification Required on the Vorticity Representation

The first requirement of basis modification is to produce a vorticity system in
which η̃M(y1, t) = 0, η̃M(yM , t) = 0,∀aη, that is, the span of the new vorticity
basis Θ is reduced to RM−2, a subspace of RM















η̃M(y1, t) = 0
η̃M(y2, t)
...
η̃M(yM−1, t)
η̃M(yM , t) = 0















=















Θ1(y1) . . . Θm(y1) . . . ΘM(y1)
...

. . .
...

. . .
...

Θ1(ym) . . . Θm(ym) . . . ΘM(ym)
...

. . .
...

. . .
...

Θ1(yM) . . . Θm(yM) . . . ΘM(yM)





























aη,1
...

aη,m
...

aη,M















, D0D aη(t) (3.16)

This may be achieved by ensuring Θm(y1) = Θm(yM) = 0,∀m. In chapter 2, Θ is
denoted ΓD.
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The Basis Modification Required on the Velocity Representation

The second requirement of basis modification is to produce a velocity system in
which ṽM(y1, t) = 0, ṽM(yM , t) = 0, ṽM(y1, t)

′ = 0, ṽM(yM , t)
′ = 0,∀av i.e.















ṽM(y1, t) = 0
ṽM(y2, t)
...
ṽM(yM−1, t)
ṽM(yM , t) = 0















=















Ξ1(y1) . . . Ξm(y1) . . . ΞM(y1)
...

. . .
...

. . .
...

Ξ1(ym) . . . Ξm(ym) . . . ΞM(ym)
...

. . .
...

. . .
...

Ξ1(yM) . . . Ξm(yM) . . . ΞM(yM)





























av,1
...

av,m
...

av,M















, D0DN av(t) (3.17)

and














ṽM(y1, t)
′ = 0

ṽM(y2, t)
′

...
ṽM(yM−1, t)

′

ṽM(yM , t)
′ = 0















=















Ξ1(y1)
′ . . . Ξm(y1)

′ . . . ΞM(y1)
′

...
. . .

...
. . .

...
Ξ1(ym)

′ . . . Ξm(ym)
′ . . . ΞM(ym)

′

...
. . .

...
. . .

...
Ξ1(yM)

′ . . . Ξm(yM)
′ . . . ΞM(yM)

′





























av,1
...

av,m
...

av,M















, D1DN av(t) (3.18)

This may be achieved by ensuring Ξm(y1) = Ξm(yM) = Ξm(y1)
′ = Ξm(yM)

′ =
0,∀m. It is evident that the span of the new velocity basis Ξ is reduced to RM−2,
by the Dirichlet conditions, ṽM(y1, t) = 0, ṽM(yM , t) = 0. In the limit M →
∞ the Neumann conditions, ṽM(y1, t)

′ = 0, ṽM (yM , t)
′ = 0, produce ṽM(y2, t) =

0, ṽM(yM−1, t) = 0, so new velocity basis Ξ is required to be reduced by a further
2 to RM−4 in the limiting case. In chapter 2, Ξ is denoted ΓDN .

3.4 The Tools of Basis Modification

Basis modification is achieved by the sequential execution of a series of elementary
matrix operations and partitions/deletions on the system.

3.4.1 Basis Modification via Elementary Matrix Opera-

tions

The elementary matrix row operations are (Cameron, 1998, p120)

1. Multiplication of a row by a non-zero constant.

2. Interchange of two rows.

3. Addition of a multiple of one row to another.

These operations represent manipulation of individual equations. The elementary
matrix column operations are (Cameron, 1998, p125)
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1. Multiplication of a column by a non-zero constant.

2. Interchange of two columns.

3. Addition of a multiple of one column to another.

These operations represent substitution of variables.
The elementary matrix operations produce an equivalent system, in the sense

that the results of the modified system are the same as those of the original. Thus
the elementary matrix operations do not modify the span of the basis or the linear
independence of their vectors, although they may modify the directions of the
vectors. In the present context this means that the elementary operations do not
alter the distribution of ṽM(ym, t) over the points ym that may be represented by
the coefficients av, although the directions of Γm(ym),m = 1, . . . ,M change and
also the values of av required to represent any particular distribution change, and
similarly for η̃M(ym, t).
It is noteworthy that the operations are applied sequentially, not simultane-

ously. For instance, simultaneously subtracting two rows or columns from one
another will make any matrix singular.

3.4.2 Partitioning of Bases

If the elementary matrix operations are able to manipulate the vectors of a basis
such that one vector alone is capable of producing an output at a particular y
location, for instance











ṽM(y1, t)
ṽM(y2, t)

...
ṽM(yM , t)











=











Ξ1(y1) 0 . . . 0
Ξ1(y2) Ξ2(y2) . . . ΞM(y2)
...

...
. . .

...
Ξ1(yM) Ξ2(yM) . . . ΞM(yM)





















av,1
av,2
...

av,M











(3.19)

where modified vector (Ξ1(y1) . . .Ξ1(ym) . . .Ξ1(yM))
T alone may cause ṽM(y1, t) to

be non-zero, it is possible to partition the system into

(

ṽM(y1, t)
)

=
[

Ξ1(y1)
] (

av,1
)

(3.20)

and






ṽM(y2, t)
...

ṽM(yM , t)






=







Ξ1(y2) . . . ΞM(y2)
...

. . .
...

Ξ1(yM) . . . ΞM(yM)













av,1
...

av,M






(3.21)

Now if ṽM(y1, t) is required to be zero, av,1 = 0 and system (3.20) is simply
discarded. System (3.21) becomes







ṽM(y2, t)
...

ṽM(yM , t)






=







Ξ2(y2) . . . ΞM(y2)
...

. . .
...

Ξ2(yM) . . . ΞM(yM)













av,2
...

av,M






(3.22)
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Now since the array in (3.19) is square, the remaining condition for it to be a valid
basis is linear independence (3.12), i.e. the only solutions of











Ξ1(y1) 0 . . . 0
Ξ1(y2) Ξ2(y2) . . . ΞM(y2)
...

...
. . .

...
Ξ1(yM) Ξ2(yM) . . . ΞM(yM)





















α1
α2
...
αM











=











0
0
...
0











(3.23)

are αi = 0,∀i. Inspection shows α1 = 0, and substituting this gives






Ξ2(y2) . . . ΞM(y2)
...

. . .
...

Ξ2(yM) . . . ΞM(yM)













α2
...
αM






=







0
...
0






(3.24)

which must have only the solution αi = 0,∀i. Now this is the same condition that
(3.22) requires to be linearly independent, and thus a basis for RM−1. That is to
say if (3.19) is a valid basis for RM , then (3.22) is for RM−1.
Partitioning operations also maintain equivalence of the system of equations,

but the deletion of equations may lead to approximations. Assuming ṽM(y1, t) = 0
is required, no approximation is involved here.

3.4.3 State-Space Form

To form the state-space form the equations (3.15) must be inverted to

ȧv = L−1 (F1D0DN + F2D2DN + F3D4DN) av

ȧη = D0−1D (F4D0D + F5D2D) aη +D0−1D F6D0DNav (3.25)

Where the conditioning of L = (D2DN − k2D0DN) is improved over that in (3.11)
by the application of boundary conditions. The degree of improvement is the
subject of the present study.

3.5 Methods of Basis Modification Considered

Four methods of basis modification are considered

3.5.1 Heinrichs’ Method

Elementary Matrix Operations

The method described by Heinrichs (1989, 1991), involves multiplying each Cheby-
shev polynomial by another function f which has the required number of roots at
y = ±1: one root for the Dirichlet boundary condition, two for the simultaneous
Neumann and Dirichlet boundary conditions, and no other real roots in [−1, 1].
This multiplication is an invalid application of elementary matrix row operation
1, multiplication of a row by a non-zero constant. The fact that the constant is
zero at the walls y = ±1, requires special consideration.
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The simplest functions are (1 − y2) for the Dirichlet condition, and (1 − y2)2
for the Neumann condition also, although many other functions would suffice e.g.
(1− y2k) and (1− y2k)2.
Using the simplest functions, the modified Chebyshev polynomials Θ and Ξ

which enforce the Dirichlet and Dirichlet/Neumann boundary conditions respec-
tively are

Θm = (1− y2)Γm
Ξm = (1− y2)2Γm (3.26)

These new bases are normalised to a peak value of approximately 1 at high m,
since its components Γm and (1− y2) are so normalised.
The new basis has first derivatives

Θ′m = −2yΓm + (1− y2)Γ′m
Ξ′m = 4y(y2 − 1)Γm + (1− y2)2Γ′m (3.27)

and second derivatives

Θ′′m = −2Γm − 4yΓ′m + (1− y2)Γ′′m
Ξ′′m = (12y2 − 4)Γm + 8y(y2 − 1)Γ′m + (1− y2)2Γ′′m (3.28)

Thus at the ends of the domain, (y = ±1), the second derivatives become

Θ′′m(±1) = −2Γm(±1)∓ 4yΓ′m(±1)
Ξ′′m(±1) = 8Γm(±1) (3.29)

It is noteworthy that |Ξm(±1)′′| is a constant, for all m (see equation (3.40)).

The Span of the Transformed Basis

For the Dirichlet boundary condition, the new basis Θ has been generated by
multiplying the rows of Γ by 1 − y2. This is zero at the walls, and violates the
condition of requiring a non-zero multiplicand, thus the span of the new basis
may be less than RM . Inspection shows that the new column span is RM−2 at
most, since no non-zero wall values can be generated. Similarly, the Dirichlet and
Neumann basis Ξ has been generated by multiplication by (1− y2)2, which is zero
at the walls, and inspection shows its span is RM−2 at most.

Partitioning Operations

The equations at the walls can be discarded, since the boundary condition is
implicitly enforced, and thus the solution at the walls is already known. Thereafter
Θ is an invalid basis, since it contains M vectors of length (M − 2), which cannot
be linearly independent. An attempt to remedy this is made by discarding the
highest two basis vectors, although this may not render the remaining vectors
linearly independent. Thus the final span of the new basis may still be less than
RM−2. The same reasoning is applied to the simultaneous Dirichlet and Neumann
basis Ξ.
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Figure 3.2: Heinrichs’ Basis Functions and Their Derivatives (Peak magnitudes
over circled relevant collocation points for M = 11 in parenthesis)

Derivative Matrices

Thus for this basis modification after partitioning, the zero derivative matrices of
the state-space form (3.25) in terms of the basis functions are

D0D =







Θ1(y2) . . . ΘM−2(y2)
...

. . .
...

Θ1(yM−1) . . . ΘM−2(yM−1)







D0DN =







Ξ1(y2) . . . ΞM−2(y2)
...

. . .
...

Ξ1(yM−1) . . . ΞM−2(yM−1)






(3.30)

and differentiation of Θ and Ξ by y yields the required higher derivative matrices,
D1,D2 and D4. Some of the basis functions and their derivatives are shown in
figure 3.2.
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3.5.2 Joshi’s Method

Elementary Matrix Operations

The method described by Joshi (1996) applies only to the simultaneous Dirichlet
and Neumann boundary conditions, and involves performing a recombination of
sequences of 5 consecutive polynomials

Ξm = AΓm +BΓm+1 + CΓm+2 +DΓm+3 + Γm+4 (3.31)

The coefficients A,B,C,D can be obtained by solving a linear system which
enforces the Dirichlet and Neumann boundary conditions









Γm(y1) Γm+1(y1) Γm+2(y1) Γm+3(y1)
Γm(y1)

′ Γm+1(y1)
′ Γm+2(y1)

′ Γm+3(y1)
′

Γm(yM) Γm+1(yM) Γm+2(yM) Γm+3(yM)
Γm(yM)

′ Γm+1(yM)
′ Γm+2(yM)

′ Γm+3(yM)
′

















A
B
C
D









= −









Γm+4(y1)
Γm+4(y1)

′

Γm+4(yM)
Γm+4(yM)

′









(3.32)

Some of Joshi’s coefficients A,B,C,D are reproduced in table 3.1. Odd and even
Chebyshev polynomials are uncoupled in the sense that the odd ones are sym-
metric and even ones are asymmetric (in the current subscript convention), thus
coefficients B and D of opposite parity to A are always zero. Thus a combination
of three polynomials of the same parity suffices to form Ξ in (3.31). By inspec-
tion it can be seen that A = (m + 2)/m,B = 0, C = −(2m + 2)/m,D = 0,
and this can be verified since Γm1 = (m − 1)2 and so the start gradient becomes
(m− 1)2(m+ 2)/m− (m+ 1)2(2m+ 2)/m+ (m+ 3)2 which equates to zero.
The basis modification appears to correspond to elementary matrix column

operation 3, addition of a multiple of one column to another, but does not apply
it validly, since the operations are not applied sequentially, but simultaneously:
all of the original basis vectors are simultaneously transformed to the new basis
vectors.
The final recombinations also present some difficulties. Joshi (1996) took no

special measures, and used the procedure for ΞM (3.31) using ΓM , . . . ,ΓM+4 on

m A B C D
1 3 0 -4 0
2 2 0 -3 0
3 5/3 0 -8/3 0
4 3/2 0 -5/2 0
5 7/5 0 -12/5 0
6 4/3 0 -7/3 0
...

...
...

...
...

240 121/120 0 -241/120 0
241 243/241 0 -484/241 0

Table 3.1: Joshi’s Coefficients
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M collocation points. However, regarding the discretised equations, the values
of ΓM+1 at collocation points ym = cos ((m− 1)π/(M − 1)) ,m = 1, . . . ,M are
identical to those of ΓM−1, as ΓM+1 aliases ΓM−1 at these points, and similarly
ΓM+2,ΓM+3,ΓM+4 alias ΓM−2,ΓM−3,ΓM−4. This aliasing invalidates the basis,
since not all vectors are linearly independent, and it makes D0DN singular, and
thus it is not possible to transform spectral velocity coefficients av,m to velocities
vM(ym).
It is more appropriate to cycle the recombinations, for example such that

ΞM−1 = AΓM−1 +BΓM + CΓ1 +DΓ2 + Γ3 (3.33)

ΞM = AΓM +BΓ1 + CΓ2 +DΓ3 + Γ4 (3.34)

and thus the use of Γm where m > M is avoided, and D0DN is not singular. This
recycling is incorporated into the present work.
This basis modification is approximately Γm − 2Γm+2 at high m, and is nor-

malised to a peak value of approximately 4 as shown by inspection of plots of the
basis functions at the collocation points for high m (not shown).

The Span of the Transformed Basis

The use of an invalid sequence of elementary matrix operations produces no guar-
antees regarding the span of the new basis. This is a consequence of operating
on all the basis vectors simultaneously. Inspection shows that the span is RM−2

at most because all vectors have zero first and last elements, due to the Dirichlet
boundary condition, and is unable to represent velocity fields with non-zero wall
velocities.

Partitioning Operations

The equations at the walls can be discarded, since the boundary condition is im-
plicitly enforced, and thus the solution at the walls is already known. The highest
two basis vectors are also discarded. There is no guarantee that the remaining
vectors are linearly independent, and thus the final span of the basis may be less
than RM−2.

Derivative Matrices

In terms of the basis functions, for this basis modification, the zero derivative
matrices of the state-space form (3.25) are

D0DN =







Ξ1(y2) . . . ΞM−2(y2)
...

. . .
...

Ξ1(yM−1) . . . ΞM−2(yM−1)






(3.35)

and differentiation yields the higher derivative matrices. Some of the basis func-
tions and their derivatives are shown in figure 3.3. Unlike the other plots in this
chapter, this plot uses linear interpolation between the collocation points. The
other plots employ the lower basis functions from a higher order system to obtain
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Figure 3.3: Joshi’s Basis Functions and Their Derivatives (Peak magnitudes over
circled relevant collocation points for M = 11 in parenthesis)

the spectral interpolation as this gives the data at more collocation points. How-
ever, for the present implementation of Joshi’s method a particular basis function
changes depending on whether it is the final one or not, so a basis function from a
higher order system is not the same as when it is the last basis function in a lower
order system.

3.5.3 Combined Method 1

The first combined method uses a standard method for the Dirichlet boundary con-
dition, and derives a method for the combined Dirichlet and Neumann conditions
as follows.
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Elementary Matrix Operations

For the Dirichlet boundary condition, this recombination by Boyd (2001, p113,143)
is used

Θ1 = Γm=1 = 1 (3.36)

Θ2 = Γm=2 = y (3.37)

Θm>1,odd = Γm − Γ1 (3.38)

Θm>2,even = Γm − Γ2 (3.39)

This recombination employs elementary matrix column operation 3 on D0, ad-
dition of a multiple of one column to another, and thus yields a valid basis of
RM . The basis is normalised to a peak value of approximately 2 at high m, by
inspection of its components, and satisfies the homogeneous Dirichlet boundary
condition for m > 2 since

Γm(±1) = (±1)m−1 (3.40)

as shown by Gottlieb and Orszag (1993, p159) (with a change of parity associated
with the present subscript convention), so

Γmodd
(±1) = Γ1(±1)

Γmeven(±1) = Γ2(±1) (3.41)

and thus

Θm>2(±1) = 0 (3.42)

Boyd (2001, p143) points out that this recombination’s second derivative is another
Chebyshev polynomial, which may lead to poor conditioning. For the simultane-
ous Neumann and Dirichlet boundary conditions, this recombination is proposed,
which extends Boyd’s method for the Dirichlet boundary condition

Ξ1 = Γ1 (3.43)

Ξ2 = Γ2 (3.44)

Ξ3 = Γ3 − Γ1 (3.45)

Ξ4 = Γ4 − Γ2 (3.46)

Ξm>4,odd = (Γm − Γ1)−
(m− 1)2 (Γm−2 − Γ1)

(m− 3)2 (3.47)

Ξm>4,even = (Γm − Γ2)−
((m− 1)2 − 1) (Γm−2 − Γ2)

(m− 3)2 − 1 (3.48)

This recombination employs elementary matrix column operation 3, addition of
a multiple of one column to another, which can be applied sequentially starting
at ΓM , and thus yields a valid basis. For m > 2, this recombination satisfies the
homogeneous Dirichlet boundary conditions, since it is composed of terms from
(3.39). For m > 4 it satisfies the homogeneous Neumann boundary condition since

Γ′1(±1) = 0

Γ′m>1(±1) = (±1)m−2(m− 1)2 (3.49)
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as shown by Gottlieb and Orszag (1993, p159), so

Ξ′m>4,odd(±1) = (±1)m−2(m− 1)2 − (m− 1)
2(±1)m−4(m− 3)2
(m− 3)2 (3.50)

Ξ′m>4,even(±1) =
(

(m− 1)2 − 1
)

− ((m− 1)
2 − 1) ((m− 3)2 − 1)
(m− 3)2 − 1 (3.51)

and thus

Ξ′m>4(±1) = 0 (3.52)

For m ≤ 4

Ξ1(±1) = 1

Ξ2(±1) = ±1
Ξ3(±1) = 0

Ξ4(±1) = 0

Ξ′1(±1) = 0

Ξ′2(±1) = 1

Ξ′3(±1) = ±4
Ξ′4(±1) = 8 (3.53)

This basis modification is approximately Γm − Γm−2 at high m, and is normalised
to a peak value of approximately 2 as shown by inspection of plots of the basis
functions at the collocation points for high m (not shown).

The Span of the Transformed Bases

The use of a valid sequence of elementary matrix operations guarantees that the
span of the new bases are both RM .

Partitioning Operations

Both recombinations lead to valid bases, but neither fully enforce the boundary
conditions, since

Θm≤2(±1) 6= 0
Ξm≤2(±1) 6= 0
Ξ′m≤4(±1) 6= 0 (3.54)

Both Θm≤2 and Ξm≤2 are the only vectors in their respective bases that generate
non-zero wall vorticities and velocities. This presents an opportunity to form a
basis for subspace RM−2 of RM , using partitioning as described in section 3.4.2.
For vorticity the system becomes







η̃M(y2, t)
...

η̃M(yM−1, t)






=







Θ3(y2) . . . ΘM(y2)
...

. . .
...

Θ3(yM−1) . . . ΘM(yM−1)













aη,3
...

aη,M






(3.55)
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and for velocity







ṽM(y2, t)
...

ṽM(yM−1, t)






=







Ξ3(y2) . . . ΞM(y2)
...

. . .
...

Ξ3(yM−1) . . . ΞM(yM−1)













av,3
...

av,M






(3.56)

These reduced new bases enforce the Dirichlet boundary condition, since Θ1 and
Θ2 and Ξ1 and Ξ2 are absent. The system has lost the equations at the walls, but
these are redundant, since ṽ and η̃ are zero there whether or not the equations are
solved.

The reduced velocity basis Ξ does not enforce the required Neumann boundary
condition, since Ξ3 and Ξ4 are still present. However, values of Ξ5(y1) to ΞM(y1),
and Ξ5(yM−1) to ΞM(yM−1) are small for high M due to Ξ5 to ΞM enforcing the
Neumann boundary condition, and y2 and yM−1 being very close to y1 and yM
respectively, where the Dirichlet boundary condition is enforced. So the velocity
system is actually















ṽM(y2, t)
...

ṽM(ym, t)
...

ṽM(yM−1, t)















=















Ξ3(y2) Ξ4(y2) Ξ5(y2) ≈ 0 . . . ΞM(y2) ≈ 0
Ξ3(y3) Ξ4(y3) Ξ5(y3) . . . ΞM(y3)
...

...
...

. . .
...

Ξ3(yM−2) Ξ4(yM−2) Ξ5(yM−2) . . . ΞM(yM−1)
Ξ3(yM−1) Ξ4(yM−1) Ξ5(yM−1) ≈ 0 . . . ΞM(yM−1) ≈ 0





























av,3
...

av,m
...

av,M















(3.57)

Now if Ξ5(y2) to ΞM(y2), and Ξ5(yM−1) to ΞM(yM−1) are small enough, then
using partitioning as described in section 3.4.2 to produce







ṽM(y3, t)
...

ṽM(yM−2, t)






=







Ξ5(y3) . . . ΞM(y3)
...

. . .
...

Ξ5(yM−2) . . . ΞM(yM−2)













av,5
...

av,M






(3.58)

will be a valid basis for RM−4.

Now y1 − y2 = 1 − cos(π/(M − 1)) from (3.7), so for large M then y1 − y2 ≈
(π/(M−1))2/2 e.g. forM = 101 when y1−y2 ≈ 5×10−4, and so the approximation
would seem reasonable. Thus the reduced basis is therefore adopted, and in so
doing the next-to-wall equations are also discarded and thus the residual is not
forced to zero at the y2 and yM−1 collocation points, but since they are so close to
the walls, the effect on the system of discretised equations is small.
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Figure 3.4: Combination 1 Basis Functions and Their Derivatives (Peak magni-
tudes over circled relevant collocation points for M = 11 in parenthesis)

Derivative Matrices

In terms of the basis functions, for this basis modification, the zero derivative
matrices of the state-space form (3.25) are

D0D =







Θ3(y2) . . . ΘM(y2)
...

. . .
...

Θ3(yM−1) . . . ΘM(yM−1)







D0DN =







Ξ5(y3) . . . ΞM(y3)
...

. . .
...

Ξ5(yM−2) . . . ΞM(yM−2)






(3.59)

and differentiation yields the higher derivative matrices. Some of the basis func-
tions and their derivatives are shown in figure 3.4. The first derivative of the final
Dirichlet basis is zero at the interior collocation points, since the collocation points
are at the ends and extrema of the undifferentiated basis. This makes the D1D
singular, but this matrix is not used in either of the velocity or vorticity equations
in (3.25).
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3.5.4 Combined Method 2

Its is evident that a weakness in the formulation of the bases created using meth-
ods from Heinrichs and Joshi is the arbitrary final partitioning during which the
equations at the wall and the two highest basis coefficients are discarded. Com-
bined method 1 has shown a more rigorous derivation of the Dirichlet basis (3.55),
and this will be used here.

Weideman and Reddy (2000, p499), working on an interpolating scheme rather
than a polynomial scheme, are able to avoid any final partitioning by applying
Heinrichs method to a reduced basis on the interior points. Now the rigorous
Dirichlet basis is a valid basis of RM−2 on the interior points. Thus here Heinrichs’
method is applied to the rigorous Dirichlet basis in order to form a Dirichlet and
Neumann basis.

Elementary Matrix Operations

The basis (3.55) does not include the wall locations, although the polynomials from
which it was formed (3.39) evaluate to zero at the walls. For these polynomials
to also fulfill the Neumann boundary condition at the wall, they require further
roots there. This may be achieved by multiplication by (1 − y2) as per Heinrichs
(1989), thus

Ξm = (1− y2)Θm (3.60)

This new basis function is normalised to a peak value of approximately 2 at high
n, since Θm is so normalised.

Now since the basis (3.55) does not include the walls, it is a valid elementary
matrix operation to multiply by (1 − y2), since this is now never zero, resulting
in a new basis for velocity which fulfills the Neumann and Dirichlet boundary
conditions







ṽM(y2, t)
...

ṽM(yM−1, t)







=







Θ3(y2)(1− y22) . . . ΘM(y2)(1− y22)
...

. . .
...

Θ3(yM−1)(1− y2M−1) . . . ΘM(yM−1)(1− y2M−1)













av,3
...

av,M







=







Ξ3(y2) . . . ΞM(y2)
...

. . .
...

Ξ3(yM−1) . . . ΞM(yM−1)













av,3
...

av,M







(3.61)

This basis continues to span RM−2, as the matrix operation is valid. Some of the
basis functions and their derivatives are shown in figure 3.5.
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Figure 3.5: Combination 2 Basis Functions and Their Derivatives (Peak magni-
tudes over circled relevant collocation points for M = 11 in parenthesis)
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3.5.5 Preconditioning

The magnitude of values of the derivatives of Γm are known to be large, for example
the end values (at y = ±1) of the derivatives have a magnitude

∣

∣

∣

∣

dpΓM
dxp

(±1)
∣

∣

∣

∣

≈ (M − 1)2p
p
∏

k=1

1

2k + 1

(

1 +O
(

1/(M − 1)2
))

(3.62)

where p is the order of derivation, and thus can be very large as shown by Boyd
(2001, p142). Boyd shows that Heinrichs’ method reduces end 2nd derivatives from
(m − 1)4 to (m − 1)2 behaviour. However, in the present work, the ends of the
range are the wall values and these equations are discarded. Thus the maximum
magnitude of the derivative matrix elements lies somewhere between that at the
ends and in the interior.
For the derivatives of Γm(y) on the interior of the domain

Γm = cos ((m− 1) x)

i.e. Γm =
ei(m−1)x + e−i(m−1)x

2

so
dpΓm
dxp

=
(i (m− 1)x)pei(m−1)x + (−i (m− 1)x)pe−i(m−1)x

2
(3.63)

where y = cos(x). Now so long as dyn/dxn 6= 0 i.e. y 6= 0,±1
dΓm
dy

=
dΓm
dx

dx

dy

d2Γm
dy2

=
d2Γm
dx dy

dx

dy
+
dΓm
dx

d2x

dy2

d3Γm
dy3

=
d3Γm
dx dy2

dx

dy
+ 2

d2Γm
dx dy

d2x

dy2
+
dΓm
dx

d3x

dy3
(3.64)

and so on. Thus the interior derivatives are proportional to dpΓm/dx
p, i.e. to

(m− 1)p, in general, i.e. not specifically at collocation points since the latter are
the extrema of the highest polynomial ΓM but not of the lower ones. This result is
not unexpected, since Γm has a leading term proportional to y

m−1, and ym−1 has a
pth derivative (m− 1) . . . (m− p)ym−1−p for p > 1, which is therefore proportional
to mp.
Now the numerical conditioning of a matrix is partly dependent on the maxi-

mum singular value, for which a good approximation is the maximum magnitude
matrix element (Skogestad and Postlethwaite, 1996, p521). Therefore it may be
possible to improve the conditioning of an array, or any subarray of,







Γ1(y1)
′′ . . . ΓM(y1)

′′

...
. . .

...
Γ1(yM)

′′ . . . ΓM(yM)
′′






(3.65)

by reducing the magnitude of the maximum element by postmultiply-
ing by diag([1, 1/ (m− 1)4m=2:M ]) (henceforth the ‘wall preconditioning’) or
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diag([1, 1/ (m− 1)2m=2:M ]) (henceforth the ‘interior preconditioning’) depending on
whether the wall or interior derivatives predominate, and similarly improve







Γ1(y1)
′′′′ . . . ΓM(y1)

′′′′

...
. . .

...
Γ1(yM)

′′′′ . . . ΓM(yM)
′′′′






(3.66)

by postmultiplying by diag([1, 1/ (m− 1)8m=2:M ]) or diag([1, 1/ (m− 1)
4
m=2:M ]). This

preconditioning is likely to assist Joshi’s and the combined method, as they are
composed of sums of Chebyshev polynomials of similar m. The interior precondi-
tioning may possibly assist Heinrichs’ method away from the walls, as the (1− y2)
and (1− y2)2 factors do not alter the interior derivative variation with m.

3.6 Conditioning Results and Discussion

This section investigates the numerical conditioning of the bases generated, with
particular reference to the square matrices required in (3.15). The condition num-
ber κ(A) of an M × M matrix A employed here is the ratio of the maximum
and minimum singular values σ1(A)/σM(A). The singular values are interpreted
in this section as the M extremal matrix gains from an input of unit magnitude
(Skogestad and Postlethwaite, 1996, p72-74), i.e. σi = ‖A~xi‖2 / ‖~xi‖2, for non-zero
principal input directions ~xi.
A large condition number indicates sensitivity in the inversion of A with regard

to any errors in A, and in the evaluation of ~x in A~x = ~b with regard to errors in
A or ~b (Horn and Johnson, 1985, pp336–338). Since the condition number chosen
here also measures the elongation of the hyperellipsoid {A~x : ‖~x‖2 = 1} (Golub
and Van Loan, 1990, p81), it also indicates sensitivity in the evaluation of A~x to
errors in A and ~x.
Singular matrices contain linearly dependent vectors which do not span RM .

That is to say, a unit magnitude input or linear combination of those linearly
dependent vectors produces zero output. Hence one or more minimum singular
values are zero, σM(A) = 0, and the condition number is infinite. Near singular
matrices are capable of producing a small output from a unit magnitude input, and
thus have a small minimum singular value σM(A) and a large condition number,
and are prone to significant inaccuracy during inversion. A matrix will typically
loose around log10(κ) digits of accuracy during inversion (MathWorks Inc., 1998).
A matrix with a zero row is able to generate a zero output, since the reduced

homogeneous system without the row, A′~x = 0, has a solution which depends
upon a free variable (R̊ade and Westergren, 1999, p92). The free variable becomes
set once the input ~x is normalised to unit magnitude, and the system has a zero
minimum singular value. Similarly, matrices with small rows have small minimum
singular values and thus large condition numbers. Matrices with a zero column can
produce zero output, and thus have a zero minimum singular value. A matrix with
a small column δ1, . . . , δM can produce a small output with gain ‖δ1, . . . , δM‖2,
and thus have a similar minimum singular value. Since σi(A) = σi(A

T ), the
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result confirms that for matrices with a small row. More general row and column
degeneracies leading to loss of linear independence are harder to analyze, other
than through the minimum singular value itself.
Matrices with large magnitude elements have large maximum singular values

σ1(A), since (Skogestad and Postlethwaite, 1996, p520)

‖A‖max ≤ σ1 (A) ≤
√
lm ‖A‖max (3.67)

where ‖A‖max is the largest magnitude element in l × m matrix A. Thus such
matrices will tend to have large condition numbers (providing their minimum
singular value is not equally as large), and show sensitivity in the evaluation of
products A~x.
The lower inequality in (3.67) is approached when the matrix has an element

much larger in magnitude than the others, for example

σ1

(

104 1
1 1

)

= 1.00000001× 104 (3.68)

for which ‖A‖max = 104, whereas the upper inequality is reached when all elements
have a similar magnitude, e.g.

σ1

(

104 104

104 104

)

= 2× 104 (3.69)

In other words, for a given ‖A‖max, the ‘flatter’ the matrix peak values, the higher
the maximum singular value. An M ×M matrix with a maximum element mag-
nitude proportional to M a with therefore have a maximum singular value which
varies between Ma and Ma+1.

3.6.1 Conditioning of Spectral Coefficient Conversions

Since the spectral coefficients need to be transformed to velocities and vorticities,
for example during the calculation of worst initial conditions for CFD simulations
(section 4.3.1), and vice versa, for example during the operation of a state-space
controller (section 4.3.3), the numerical conditioning of matrix D0D and D0DN
are of interest.
Table 3.2 shows the variation in the maximum matrix element magnitude

‖A‖max, maximum singular value σ1, minimum row and column magnitudes, min-
imum singular value σM and condition condition number κ of the Dirichlet bound-
ary condition matrix D0D with problem size M , for Chebyshev polynomials Γ,
and the three basis modification methods which provide D0D.
The variations are calculated by linear regression on the logarithm of the raw

data, for M between approximately 16 and 160. The raw data for all the tables
in this chapter are plotted in appendix A. For M ≈ 100 the relative conditioning
between methods is dominated by the growth rate of M rather than the constant
factor. All methods for basis modification show the expected variation of ‖A‖max,
given by the normalisation of the polynomials. All methods have a similar variation
in maximum singular value, bounded between that of ‖A‖max and M times as
great. For D0D, combination 2 is identical to combination 1.
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Method ‖A‖max σ1 min row min col σM κ
mag mag

Γ 1 1.2 0.76 0.76 0.65 1.8
×M0 ×M0.47 ×M0.49 ×M0.49 ×M0.52 ×M−0.044

Heinrichs 1 0.72 7.1 0.23 5 0.14
×M0 ×M0.52 ×M−1.5 ×M0.52 ×M−1.5 ×M2.1

Comb’n 1 2 0.66 0.96 0.93 0.65 1
×M0 ×M1 ×M0.51 ×M0.52 ×M0.52 ×M0.5

Comb’n 2 2 0.66 0.96 0.93 0.65 1
×M0 ×M1 ×M0.51 ×M0.52 ×M0.52 ×M0.5

Table 3.2: Conditioning of D0D for the Various Basis Modification Methods

Method ‖A‖max σ1 min row min col σM κ
mag mag

Γ 1 1.2 0.76 0.76 0.65 1.8
×M0 ×M0.47 ×M0.49 ×M0.49 ×M0.52 ×M−0.044

Heinrichs 1 0.69 92 0.15 65 0.011
×M0 ×M0.52 ×M−3.6 ×M0.52 ×M−3.6 ×M4.1

Comb’n 1 8 3.9 21 1.6 16 0.25
×M0 ×M0.52 ×M−0.61 ×M0.4 ×M−0.58 ×M1.1

Comb’n 2 2 0.46 16 0.33 11 0.042
×M0 ×M0.99 ×M−1.6 ×M0.52 ×M−1.6 ×M2.6

Table 3.3: Conditioning of D0DN for the Various Basis Modification Methods

Heinrichs’ method has a lower minimum row magnitude variation withM than
the other methods, and this correlates with a lower minimum singular value and
higher condition number variation with M . Boyd (2001, p144) also notes that
Heinrichs’ method causes the conditioning of the undifferentiated (D0D) basis to
deteriorate as compared to the Chebyshev basis. The basis becoming closer to
singular may be due to the modulation of all the basis functions by the factor
(1 − y2), or by the present implementation of Heinrichs’ method failing to select
a reduced basis of linearly independent basis vectors. Modulation of all the basis
functions by multiplication by (1− y2) causes them to become more similar, and
thus they become less linearly independent. In addition, matrix rows close to the
walls may become small, leading to a small minimum row magnitude and thus
smaller minimum singular value. As Heinrich’s method does have a deterioration
in minimum row magnitude, this would indicate that the increased singularity is
probably due to modulation.
Table 3.3 shows the same results for the Dirichlet and Neumann matrix D0DN

with problem size M . The expected variation of ‖A‖max, is again given by the
normalisation of the polynomials. The basis for combination 1 is normalised to 2
at highm, but reaches 8 form = 1, as shown in figure 3.4. Again, all methods have
a similar variation in maximum singular value, bounded between that of ‖A‖max
and M times as great.
Heinrichs’ methods now shows greater deterioration in minimum row mag-
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Method ‖A‖max σ1 min row min col σM κ
mag mag

Heinrichs 0.38 0.2 0.12 1.7 1.5 0.13
×M2.2 ×M2.8 ×M2.7 ×M0.53 ×M0.52 ×M2.3

Comb’n 1 0.057 0.035 0.31 3.4 2.6 0.013
×M4.1 ×M4.6 ×M2.5 ×M0.53 ×M0.52 ×M4

Comb’n 2 0.057 0.035 0.31 3.4 2.6 0.013
×M4.1 ×M4.6 ×M2.5 ×M0.53 ×M0.52 ×M4

Heinrichs (i) 5.6 3.2 1.1 0.46 1.7 1.8
×M0.016 ×M0.59 ×M0.41 ×M0.58 ×M0.015 ×M0.57

Comb’n 1(i) 0.23 0.22 3.9 3.4 2 0.11
×M1.8 ×M2.3 ×M0.2 ×M0.53 ×M0.28 ×M2

Comb’n 2(i) 0.23 0.22 3.9 3.4 2 0.11
×M1.8 ×M2.3 ×M0.2 ×M0.53 ×M0.28 ×M2

Table 3.4: Conditioning of D2D for the Various Basis Modification Methods.(i)
indicates interior preconditioning.

nitude with increasing M than for matrix D0D, and a greater deterioration in
minimum singular value. The increased singularity of the matrix with Dirichlet
and Neumann boundary conditions correlates with the stronger modulations of
the basis functions by (1−y2)2 as compared to (1−y2) for the Dirichlet boundary
condition.
Combination 2, which selects a rigorous reduced basis before the application

of modulating factor (1−y2), shows a deterioration in conditioning approximately
midway between Heinrichs and the unmodified Chebyshev basis, and deterioration
of the minimum singular value is similarly reduced, indicating reduced singularity.
Despite the approximation in the selection of the reduced basis for combination
1, its minimum singular value variation remains closer to that of the unmodified
Chebyshev basis, indicating little increase in singularity.
For the spectral conversion conditioning, and indeed all the higher derivative

matrices, Joshi’s method, as implemented here, produces results in between those
of Heinrichs’ method and combination 1. For the spectral conversion and most of
the higher derivative matrices removal of the next-to-wall equations from combi-
nation 2 produces a small beneficial effect on conditioning (not shown), not nearly
so large as to make it comparable with combination 1. Thus the performance of
combination 1 is not believed to be due to its loss of the next-to-wall equations.

3.6.2 Conditioning of the Second Derivative

Table 3.4 shows the variation in the condition number κ of the matrix D2D with
problem sizeM . For D2D, combination 2 is identical to combination 1. ‖A‖max of
combination 1 grows close the expected rate for the end derivatives M 4, whereas
Heinrichs’ method grows close to the predicted rate of M 2. Their singular values
grow a little faster, but within the bounds predicted. Neither method shows any

98



Method ‖A‖max σ1 min row min col σM κ
mag mag

Heinrichs 0.4 0.19 7.3 2.7 7.5 0.026
×M2.2 ×M2.7 ×M0.55 ×M0.59 ×M−1.1 ×M3.8

Comb’n 1 0.18 0.11 0.64 15 15 0.0077
×M3 ×M3.5 ×M2.5 ×M0.7 ×M0.5 ×M3

Comb’n 2 0.8 0.71 0.33 7 3.8 0.18
×M2 ×M2.6 ×M2.5 ×M0.57 ×M0.64 ×M1.9

Heinrichs (i) 6.4 3.5 2.7 0.51 92 0.039
×M0.049 ×M0.57 ×M0.11 ×M0.46 ×M−3.1 ×M3.7

Comb’n 1(i) 29 20 32 5.7 47 0.42
×M0.33 ×M0.76 ×M0.07 ×M0.27 ×M−0.58 ×M1.3

Comb’n 2(i) 20 11 7.1 0.71 8.7 1.2
×M0.1 ×M0.6 ×M0.11 ×M0.5 ×M−1.3 ×M1.9

Table 3.5: Conditioning of L for the Various Basis Modification Methods. (i)
indicates interior preconditioning.

particular deterioration in row or column magnitude, and the condition number is
dominated by ‖A‖max.
Interior preconditioning by diag(1/ (m− 1)2) reduces the growth of ‖A‖max of

both methods by approximatelyM 2, and that of σ1 by a similar amount. It causes
no deterioration in the minimum row and column magnitudes. Thus Heinrichs
condition number grows as M 0.57, whereas combination 1 grows as M 2.

3.6.3 Conditioning of the Discrete Laplacian

The variation in the condition number κ of the matrix D2DN with problem size
M is almost identical to that of the Laplacian L = D2DN −D0DN which is now
considered. Since the discrete Laplacian operator L has to be inverted in order to
generate the state-space system, its numerical conditioning is of particular interest.
Table 3.5 shows the variation in the condition number κ and associated data for
the matrix with problem size M .
‖A‖max of combination 1 grows at M 3, lower than the expected rate for the

end derivatives M 4, and closer to the rate of the interior derivatives M 2, possibly
since the end derivatives have a Neumann condition. Heinrichs’ method grows
close to its predicted rate of M 2. Their singular values grow at little faster, but
within the bounds predicted. Neither method shows any particular deterioration
in row or column magnitude, but the minimum singular value of Heinrich’s method
deteriorates. Heinrich’s matrix becomes more singular with M but not via small
rows or columns, but a more general loss of linear independence possibly due to the
modulating effect of the factor (1−y2)2 on the basis. Combination 2 has the lowest
‖A‖max growth of the recombinations, lower even than Heinrichs’ upon which it is
partly based, and uses only a modulation of (1− y2) leading to reasonable growth
of minimum singular value, and the best overall conditioning for this matrix.
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Method ‖A‖max σ1 min row min col σM κ
mag mag

Heinrichs 0.8 0.47 0.079 20 16 0.029
×M4.2 ×M4.7 ×M4.7 ×M0.53 ×M0.52 ×M4.1

Comb’n 1 0.0004 0.00049 0.29 1.3e2 1.2e2 4.1e− 6
×M7.5 ×M7.7 ×M4.6 ×M0.57 ×M0.52 ×M7.2

Comb’n 2 0.081 0.048 0.25 41 30 0.0016
×M6.2 ×M6.6 ×M4.5 ×M0.53 ×M0.52 ×M6

Heinrichs (i) 1.1e2 66 24 3.6 3 22
×M0.016 ×M0.56 ×M0.02 ×M0.1 ×M0.013 ×M0.54

Comb’n 1(i) 85 48 2.2e2 0.25 22 2.2
×M1 ×M1.5 ×M0.0023 ×M1.9 ×M−0.069 ×M1.6

Comb’n 2(i) 37 25 53 14 6.5 3.8
×M0.86 ×M1.4 ×M0.0063 ×M0.75 ×M0.032 ×M1.3

Table 3.6: Conditioning of D4DN for the Various Basis Modification Methods. (i)
indicates interior preconditioning.

Interior preconditioning by diag(1/ (m− 1)2) reduces the growth of ‖A‖max of
all methods to less than M 1, and the maximum singular value stays within this
also. The preconditioning causes deterioration of minimum row magnitude, and
this is reflected in deterioration of the minimum singular values, particularly for
Heinrichs’ method. Overall there is no benefit for Heinrichs’ method, or for com-
bination 2, but a reasonable improvement for combination 1, which then achieves
the best overall conditioning for L.

3.6.4 Conditioning of the Fourth Derivative Matrix

High derivatives of Chebyshev polynomials are prone to be ill-conditioned, and
the interior derivatives scale as (M − 1)p, where p is the order of the derivative, as
derived in section 3.5.5. Matrix D4DN appears in the right hand side of the state-
space form (3.25), where inaccuracies in av are magnified by any ill-conditioning it
may have. Table 3.6 shows the variation in the condition number κ of the matrix
D4DN with problem size M .
The strength of Heinrichs’ method for high derivatives is shown in variation of

‖A‖max close to M 4, as compared to almost M 8 for combination 1. There is no
deterioration in minimum row or column magnitude for either method, and the
overall condition number reflects ‖A‖max. Combination 2, which uses only factor
(1− y2), lies between Heinrichs’ and combination 1, as might be expected.
Interior preconditioning by postmultiplying by diag(1/ (m− 1)4) has a remark-

able effect on the ‖A‖max of all methods, reducing Heinrichs’ fromM 4.20 toM0.016,
and combination 1 from M 7.50 to M1, with maximum singular values growing
slightly faster. There is some deterioration in minimum row magnitude and mini-
mum singular values, but overall conditioning reflects the maximum singular val-
ues, leaving Heinrichs’ method with the best conditioning.
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Method ‖A‖max σ1 min row min col σM κ
mag mag

Heinrichs 0.38 0.2 0.12 1.7 1.5 0.13
×M2.2 ×M2.8 ×M2.7 ×M0.53 ×M0.52 ×M2.3

Comb’n 1 0.057 0.035 0.31 3.4 2.6 0.013
×M4.1 ×M4.6 ×M2.5 ×M0.53 ×M0.52 ×M4

Comb’n 2 0.057 0.035 0.31 3.4 2.6 0.013
×M4.1 ×M4.6 ×M2.5 ×M0.53 ×M0.52 ×M4

Heinrichs (i) 5.6 3.2 1.1 0.46 1.7 1.8
×M0.016 ×M0.59 ×M0.41 ×M0.58 ×M0.015 ×M0.57

Comb’n 1(i) 0.23 0.22 3.9 3.4 2 0.11
×M1.8 ×M2.3 ×M0.2 ×M0.53 ×M0.28 ×M2

Comb’n 2(i) 0.23 0.22 3.9 3.4 2 0.11
×M1.8 ×M2.3 ×M0.2 ×M0.53 ×M0.28 ×M2

Heinrichs (w) 5.6 3.3 2 1.3 4.2 0.79
×M0.016 ×M0.55 ×M7.8e−6 ×M−1.6 ×M−2.1 ×M2.7

Comb’n 1(w) 22 13 4.1 0.66 9.5 1.4
×M0.016 ×M0.55 ×M3.3e−6 ×M−0.31 ×M−2 ×M2.6

Comb’n 2(w) 22 13 4.1 0.66 9.5 1.4
×M0.016 ×M0.55 ×M3.3e−6 ×M−0.31 ×M−2 ×M2.6

Table 3.7: Wall Pre-conditioning of D2D for the Various Basis Modification Meth-
ods.(i) and (w) indicate interior and wall preconditioning respectively.

3.6.5 Wall Preconditioning

The wall preconditioning, diag(1/ (m− 1)2p), where p is the order of the deriva-
tive, is also applied. It is found to reduce the maximum singular values, but the
minimum singular values fall drastically. The explanation is that such heavy pre-
conditioning causes falling minimum column magnitudes. For Heinrichs’ method
the wall derivatives only grow at mp. For the other methods the peak matrix
derivatives do not usually grow as fast as m2p since the wall equations are dis-
carded. Overall, this preconditioning occasionally improves matrix conditioning
over that of a non-preconditioned matrix, but never achieves the results of interior
preconditioning, as shown in tables 3.7, 3.8 and 3.9.

3.6.6 Conditioning of the Eigensystem

Figure 3.6 shows Boyd’s ‘ordinal differences’ presentation of eigenvalue numeri-
cal stability (Boyd, 2001, p138), as described in section 2.8.1. In the figure the
abscissa is the mode number, as ordered by increasing dynamical stability, and
the ordinate is the eigenvalue spacing divided by the absolute difference in eigen-
value from calculations with 101 and 134 polynomials. Large ordinates indicate
good numerical stability, since the eigenvalues change little when the number of
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Method ‖A‖max σ1 min row min col σM κ
mag mag

Heinrichs 0.4 0.19 7.3 2.7 7.5 0.026
×M2.2 ×M2.7 ×M0.55 ×M0.59 ×M−1.1 ×M3.8

Comb’n 1 0.18 0.11 0.64 15 15 0.0077
×M3 ×M3.5 ×M2.5 ×M0.7 ×M0.5 ×M3

Comb’n 2 0.8 0.71 0.33 7 3.8 0.18
×M2 ×M2.6 ×M2.5 ×M0.57 ×M0.64 ×M1.9

Heinrichs (i) 6.4 3.5 2.7 0.51 92 0.039
×M0.049 ×M0.57 ×M0.11 ×M0.46 ×M−3.1 ×M3.7

Comb’n 1(i) 29 20 32 5.7 47 0.42
×M0.33 ×M0.76 ×M0.07 ×M0.27 ×M−0.58 ×M1.3

Comb’n 2(i) 20 11 7.1 0.71 8.7 1.2
×M0.1 ×M0.6 ×M0.11 ×M0.5 ×M−1.3 ×M1.9

Heinrichs (w) 6.4 3.5 3.8 2 4.1e2 0.0087
×M0.049 ×M0.57 ×M−0.1 ×M−1.8 ×M−5.2 ×M5.8

Comb’n 1(w) 29 20 37 39 78 0.26
×M0.33 ×M0.75 ×M−0.097 ×M−2.1 ×M−2.4 ×M3.1

Comb’n 2(w) 20 11 9.3 3 35 0.31
×M0.1 ×M0.59 ×M−0.097 ×M−1.8 ×M−3.5 ×M4.1

Table 3.8: Wall Pre-conditioning of L for the Various Basis Modification Meth-
ods.(i) and (w) indicate interior and wall preconditioning respectively.
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Method ‖A‖max σ1 min row min col σM κ
mag mag

Heinrichs 0.8 0.47 0.079 20 16 0.029
×M4.2 ×M4.7 ×M4.7 ×M0.53 ×M0.52 ×M4.1

Comb’n 1 0.0004 0.00049 0.29 1.3e2 1.2e2 4.1e− 6
×M7.5 ×M7.7 ×M4.6 ×M0.57 ×M0.52 ×M7.2

Comb’n 2 0.081 0.048 0.25 41 30 0.0016
×M6.2 ×M6.6 ×M4.5 ×M0.53 ×M0.52 ×M6

Heinrichs (i) 1.1e2 66 24 3.6 3 22
×M0.016 ×M0.56 ×M0.02 ×M0.1 ×M0.013 ×M0.54

Comb’n 1(i) 85 48 2.2e2 0.25 22 2.2
×M1 ×M1.5 ×M0.0023 ×M1.9 ×M−0.069 ×M1.6

Comb’n 2(i) 37 25 53 14 6.5 3.8
×M0.86 ×M1.4 ×M0.0063 ×M0.75 ×M0.032 ×M1.3

Heinrichs (w) 1.1e2 66 24 28 24 2.8
×M0.016 ×M0.55 ×M0 ×M−4.3 ×M−4.4 ×M4.9

Comb’n 1(w) 1.4e3 6.6e2 1.9e2 2.2 9.7e2 0.69
×M0.066 ×M0.65 ×M0 ×M−2.4 ×M−4.8 ×M5.5

Comb’n 2(w) 4.5e2 2.6e2 48 7 1e2 2.6
×M0.016 ×M0.55 ×M0 ×M−2.7 ×M−4.5 ×M5.1

Table 3.9: Wall Pre-Conditioning of D4DN for the Various Basis Modification
Methods. (i) and (w) indicate interior and wall preconditioning respectively.

103



10 20 30 40 50 60 70 80 90

10
0

10
5

10
10

10
15

mode i

1/
δ i

Heinrichs    
Combination 1
Combination 2

Figure 3.6: Eigenvalue Ordinal Differences Presentation

polynomials is increased.
Results from all methods except Joshi’s are shown in figure 3.6. All three

show an increasing sensitivity with mode number, but all methods have sensitivity
less than 1 part in 1000 for the first 40 modes between bases with M = 101 and
M = 134 vectors. It is therefore reasonable to assume that no spurious modes
are present in the first 40 modes. The combined methods are the least sensitive
over the first 40 modes, but all methods are very insensitive. Modes over M/2 are
known to be inaccurate for spectral methods, so the large sensitivity for modes
over 50 is to be expected.
Figure 3.7 shows the relative magnitude of the difference between the first

33 eigenvalues and the 32 published values of Orszag (1971) plus the additional
eigenvalue discovered by Dongarra et al. (1996), for all three methods. Also shown
is the accuracy of Orszag’s calculation, in the form of the fractional error due to
one unit in the his least significant digit. All methods produce eigenvalues which
deviate less than one unit, in Orszag’s least significant digit, from his results. The
existence of errors in the code implementing the methods is thus unlikely.

3.7 Conclusions

This chapter has investigated in detail the wall-normal discretisation of the lin-
earised Navier-Stokes equations by spectral collocation, examining in particular
the numerical conditioning of terms in the resulting system of equations.
Section 3.2 described the discretisation of the linearised Navier-Stokes equa-

tions by spectral collocation. Section 3.3 stated the requirements of a valid linear
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Figure 3.7: Eigenvalues Compared with Orszag (1971) and Dongarra et al. (1996)

algebraic basis, and introduced Chebyshev basis functions and basis modification
in order to impose the boundary conditions. The use of matrix operations and
partitioning for basis modification were described in section 3.4.

Section 3.5 described four methods of basis modification. The first was by Hein-
richs (1989) and the second by Joshi (1996). The third was a combined method,
having the Dirichlet condition as by Boyd (2001, p113,143) with a novel extension
for the simultaneous Neumann boundary condition, and the fourth method was
partly due to Boyd (2001, p113,143) and partly as described by Weideman and
Reddy (2000, p499). Only the combined methods led to a strictly correct basis of
RM−2 for the Dirichlet boundary condition, and only the second combined method
led to a strictly accurate basis of RM−4 for the Dirichlet and Neumann boundary
condition. The first combined method was rigorous in the sense that the source of
the approximation was identified, whereas the present implementation of Joshi’s
and Heinrichs’ methods arbitrarily discarded supernumerary basis vectors, albeit
a tiny fraction of the dimension at large M .

Section 3.6 compared the condition numbers of the various derivative matri-
ces which arose in the discretised system, for three of the four methods. The
results from Joshi’s method generally fell in the midst of the others and thus were
not described. The analysis of the results showed a complex interplay of interior
and wall derivative magnitudes, and of minimum and maximum singular values.
Combination 1 conditioning was superior for matrices D0D and D0DN , primarily
because it avoided the growth in singularity that accompanied modulation of the
basis vectors in Heinrichs’ method and combined method 2.

The strength of Heinrichs’ method for specific high derivative matrices was
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apparent in the conditioning of D2D and D4DN , but for other derivatives of the
matrices other methods were superior. For D2DN and L, combined method 2 had
the lowest conditioning.
Preconditioning by postmultiplying by diag([1, 1/(m− 1)derivative orderm=2:M ]) helped

remarkably in high derivative cases, possibly as the interior derivative was propor-
tional to (m − 1)derivative order, and thus the overall matrix derivative was at least
this large. For low derivatives, the preconditioning helped only the first combined
method, making it the superior choice for the inversion of the discrete Laplacian L.
Preconditioning by postmultiplying by diag([1, 1/(m− 1)2×derivative orderm=2:M ]) was gen-
erally not as successful. The peak matrix derivatives did not generally grow at the
rate of the wall-derivatives, and undue reduction of the column magnitude seemed
to occur, leading to a growth in singularity and not such a large improvement in
conditioning as interior preconditioning achieved.
All methods produced eigenvalues in close agreement with all 32 calculated by

Orszag (1971), if the extra eigenvalue found by Dongarra et al. (1996) was also
included in the comparison.
To summarise, this chapter has investigated four methods of modification of the

Chebyshev basis for the imposition of Dirichlet and Neumann boundary conditions.
The boundary conditions are required in the state-space model of plane Poiseuille
flow developed in chapter 2, and here the operations applied during the methods,
and the conditioning of the resulting matrices and derivative matrices have been
examined in particular. It was found that the operations must be applied with
care in order to strictly produce modified bases with the required span. Analysis
of the conditioning of the resulting matrices showed a complex interplay of high
element magnitudes and low row and column magnitudes. Preconditioning was
able to reduce condition numbers significantly, and thus assist in the inversion
of the Laplacian, which is required to form the state-space model. A method
comprising preconditioning of a novel extension of the Dirichlet boundary condition
to cover the Neumann condition was found to produce the lowest conditioning of
the Laplacian of any of the four methods.
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Chapter 4

Linear Quadratic Controller

Synthesis and Simulations

4.1 Introduction

This chapter describes the synthesis of controllers and estimators for the linear
state-space representation of plane Poiseuille flow developed in chapter 2, and
subsequent linear and non-linear simulations of the open- and closed-loop systems.
Section 4.2 describes the synthesis of optimal state feedback controllers and

optimal state estimators. The controllers are linear quadratic regulators (LQR),
which are optimal in the sense of minimising a quadratic cost functional of the
weighted state variables and control inputs. The estimators are linear quadratic
estimators (LQE), which are optimal in the sense of minimising the expectation of
the state estimation errors, given weighting matrices which represent the process
and measurement noise covariances. The section also describes the selection of
appropriate weighting matrices.
In section 4.3 the linear and non-linear simulations undertaken on the open-

and closed-loop systems are described. The open-loop (OL) systems comprise the
plant model with an LQE state estimator and the closed-loop systems comprise
the plant model with state feedback LQR control, and with output feedback linear
quadratic Gaussian (LQG) control, the latter formed by employing both the LQE
estimator and LQR controller.
The performance of the controllers is to be judged by examining the growth

of the system open- and closed-loop transient kinetic energy density, which also
depends on the simulation initial conditions. For an unstable system the highest
growth of transient energy is unbounded, but for a stable system methods exist
for computing the highest transient energy growth. The highest transient energy
that a system may reach at a particular time from initial conditions of unit energy
is here termed the synchronic transient energy bound, and the maximum transient
energy that a stable system may reach over all time from initial conditions with
unit energy is here termed the diachronic transient energy bound. In flow control
this is a measure which is often considered in connection with non-linear effects
triggering transition to turbulence. Here, the initial conditions which generate the
diachronic transient energy bound are calculated, using results from Butler and
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Farrell (1992).
Next section 4.3 describes the code modifications and data preparation neces-

sary for the open and closed-loop non-linear computational fluid dynamics (CFD)
simulations. The code used is a finite-volume Navier-Stokes solver, which makes
no assumption of spectral behaviour, and solves the full non-linear Navier-Stokes
equations, being completely independent of the linear code used for the controller
synthesis and linear simulations.
Section 4.4 presents and discusses the results obtained during the synthesis

of controllers and estimators and from the linear simulations. The results of non-
linear simulations on small initial perturbations are compared to the linear simula-
tion results. Work undertaken to ensure the accuracy of the non-linear simulations
is presented, followed by analysis of the results of the non-linear simulations on
larger perturbations. Finally section 4.5 draws conclusions regarding the controller
and estimator synthesis, and the controller and estimator performance in the linear
and non-linear simulations.

4.2 Controller Synthesis

4.2.1 Optimal State Feedback

The standard LQR control problem states that given the real open-loop system or
‘plant’

Ẋ = AX + BU
Y = CX (4.1)

the feedback control signal that minimizes
∫ ∞

0

(

X (t)TQX (t) + U(t)TRU(t)
)

dt (4.2)

whereQ = QT ≥ 0 andR = RT > 0 are weighting matrices, is given by U = −KX
where K = R−1BTP and P = PT ≥ 0 is the solution of the algebraic Riccati
equation

ATP + PA− PBR−1BTP +Q = 0 (4.3)

The closed-loop state feedback LQR system is

Ẋ = (A− BK)X
Y = CX (4.4)

The state feedback controller K is the optimal for all initial conditions (Skogestad
and Postlethwaite, 1996, p354). The controller has no prescribed degree of stabil-
ity, but this could be added by modifying the cost functional (4.2), as performed
by Joshi et al. (1999). Figure 4.1 shows a block diagram of LQR state feedback.
In most problems the weighting matrices are tuned by hand. However, for a

fluid system this is not practical because of the large number of state variables.
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Plant
Ẋ = AX + BU
X (t = 0) = X0

-

State Variables X (t)
LQR Controller
U(t) = −KX (t)

6

Control Signal U(t)

Figure 4.1: A Block Diagram of LQR State Feedback

Furthermore, it is useful to employ a weighting matrix Q that is defined indepen-
dently of the chosen state basis since then the there is freedom to alter either. It is
also helpful if the weights are defined independently of the level of discretisation,
in order to make interpretation of results easier, as noted by Lauga and Bewley
(2004). It is suggested by Bewley and Liu (1998) that a natural choice for the
matrix Q is such that X TQX equals the transient energy E,

E =
1

V

∫

vol=V

ρ
~uT~u

2
dvol (4.5)

where E has dimensions energy per unit volume, and ~u is the perturbation velocity
vector. This choice of Q is independent of the definition of the state variables, is
independent (in the limiting case) of the discretisation N , and also means that the
LQR problem (4.2) minimises E in some sense. Furthermore no particular fluid
flow phenomena are assumed. In the linearised Navier-Stokes equations (2.13),

the base flow provides energy via ~Ub, and the viscosity term dissipates energy.
Expanding (4.5) in terms of velocity components, the energy density E of a flow
perturbation at wave numbers α, β, as performed by Bewley and Liu (1998, p312),
is

E =
1

V

∫ 1

y=−1

∫ 2π/α

x=0

∫ 2π/β

z=0

(u2 + v2 + w2)

2
dz dx dy (4.6)

assuming a unit mass density ρ, as did Butler and Farrell (1992). The volume V is
that of one streamwise period, by one spanwise period, by the channel full-height

V = 8π2/(αβ), αβ 6= 0 (4.7)

When α is zero, 2π/α can be replaced by any finite length in the both expressions
(4.6,4.7), since there is no streamwise variation, and similarly for β. Now from
(2.36)

v = <
(

ṽ(y, t)e(αx+βz)
)

(4.8)
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Thus

v2 =
2ṽṽT + ṽṽe2(αx+βz) + ṽT ṽT e−2(αx+βz)

4
(4.9)

and
∫ 2π/α

x=0

∫ 2π/β

z=0

v2

2
dz dx =

π2ṽṽT

αβ
(4.10)

with similar results for u and w. Thus the energy density becomes

E =
1

V

∫ 1

y=−1

π2
(

ũũT + ṽṽT + w̃w̃T
)

αβ
dy =

1

8

∫ 1

y=−1

(

ũũT + ṽṽT + w̃w̃T
)

dy (4.11)

Now ũ and w̃ are functions of ṽ and η̃ from (2.45)

ũ =


α2 + β2

(

α
∂ṽ

∂y
− βη̃

)

(4.12)

w̃ =


α2 + β2

(

β
∂ṽ

∂y
+ αη̃

)

(4.13)

So

ũũT + w̃w̃T =

∂ṽ
∂y

T ∂ṽ
∂y
+ η̃T η̃

α2 + β2
(4.14)

and the energy density becomes

E =
1

8k2

∫ 1

−1

(k2ṽT ṽ +
∂ṽ

∂y

T ∂ṽ

∂y
+ η̃T η̃)dy (4.15)

Curtis-Clenshaw quadrature employs a set of abscissa yn = cos(πn/N), n = 1, N−1
for approximate evaluation of the integral (as described by Boyd (2001, p456), but
here the limits are 1 and N − 1, since here the collocation points run from 0 to N)

∫ 1

−1

f(y)dy ≈
N−1
∑

1

wnf(yn) (4.16)

These abscissa are equal to the internal Gauss Lobatto points, at which evaluation
of the system equations has been performed. The weights wn are

wn =
2

N

√

1− y2n
N−1
∑

m=1

1

m
sin(mπn/N) (1− cos(mπ)) , n = 1, . . . , N − 1

(4.17)

Thus

∫ 1

−1

ṽT ṽdy ≈
N
∑

0

ṽT (yn)ṽ(yn)wn (4.18)
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if boundary weights w0 = wN = 0 are defined. In discretised form E becomes

E =
(ṽn)

T
Q (ṽn) + (∂ṽn/∂y)

T
Q (∂ṽn/∂y) + (η̃n)

T
Q (η̃n)

8k2
, n = 0, . . . , N (4.19)

where Q contains the quadrature weights

Q =







w0 0
. . .

0 wN






(4.20)

The velocity and vorticity are available from (2.105)

(

ṽ(yk, t)
η̃(yk, t)

)

= T









av,n(t)
aη,n(t)
qu(t)
ql(t)









(4.21)

and (∂ṽn/∂y) from its y derivative

(

∂ṽ(yk, t)/∂y
∂η̃(yk, t)/∂y

)

=
∂T

∂y









av,n(t)
aη,n(t)
qu(t)
ql(t)









(4.22)

Thus

E =
1

8k2
X T

(

TT

[

Q 0

0 Q

]

T+ (∂T/∂y)T
[

Q 0

0 0

]

(∂T/∂y)

)

X

, X TQX (4.23)

Independent analytical and numerical tests validate this expression for various
distributions of velocity and vorticity with the appropriate boundary conditions.
R is set as R = r2I, thus allowing variation of control magnitude, while main-

taining equivalent real and imaginary control effect on both walls.

Bewley’s Energy Matrix

The energy calculation by Bewley and Liu (1998, p312) is based on the interpo-
lating Chebyshev form

1

8

(

ṽT η̃T
)

(

Ω + 1
k2DT

c ΩDc 0

0 1
k2Ω

)(

ṽ
η̃

)

(4.24)

where Ω is a matrix of quadrature weights and Dc is a derivative matrix with the
wall values omitted. Truncating the matrix when the wall values are not zero leads
to the high order interpolation assuming zero wall values, and this produces large
and inaccurate derivatives throughout the domain (see 2.4.5). For this reason no
meaningful comparison can be made with Bewley’s closed-loop results.
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4.2.2 Optimal Estimation

The standard LQE control problem assumes that the system has disturbance and
measurement noise input processes wd and wn respectively

Ẋ = AX + BU + wd
Y = CX + wn (4.25)

and that the noise inputs are uncorrelated, zero-mean, Gaussian stochastic pro-
cesses with constant power spectral density matrices V and W (Skogestad and
Postlethwaite, 1996, p353). Thus wd and wn are white noise processes with covari-
ances

Exp
{

wT
d wd

}

= Wδ(t− τ)
Exp

{

wT
nwn

}

= Vδ(t− τ)
Exp

{

wT
d wn

}

= 0

Exp
{

wT
nwd

}

= 0 (4.26)

where δ is a delta function and Exp is the expectation operator. The theory states
that for an LQE state estimator

˙̂X = AX̂ + BU + L
(

Y − CX̂
)

(4.27)

where X̂ are the estimated state variables, the optimal estimator gain L that
minimizes

Exp

{

[

X̂ − X
]T [

X̂ − X
]

}

(4.28)

is given by L = PCTV−1 where P = PT ≥ 0 is the solution of the algebraic Riccati
equation

PAT +AP − PCTV−1CP +W = 0 (4.29)

Figure 4.2 shows a block diagram of LQE state estimation. For open-loop simu-
lations the input U is zero.
The statistical properties of the noise inputs on the present system are un-

known, and the matrices V and W can be treated as tuning parameters, in order
to achieve an estimator of acceptable performance. A general rule of thumb is
that for acceptable estimator accuracy, the slowest estimator pole should be 5-10
times faster than the fastest system pole, for example see Lewis and Syrmos (1995,
p456). Unfortunately, the present system has a large number of poles, the faster
half of which are known to be inaccurate due to the use of a spectral method, and
are unlikely to be excited. It is impractical to attempt to make the large number
of estimator poles all faster than these.
Reasonable tuning assumptions can be made if the system state variables X

are transformed from velocity and vorticity Chebyshev coefficients into velocity
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Plant
Ẋ = AX + BU + wd
Y = CX + wn
X (t = 0) = X0

-
Measurements Y(t) LQE Estimator

˙̂X (t) =
(A− LC) X̂ (t)
+LY(t) + BU(t)
X̂ (t = 0) = X̂0

?

Estimated
States
X̂ (t)

6

Input U(t)

-

Figure 4.2: A Block Diagram of LQE State Estimation

and vorticity values at the collocation points Xcp by means of the transformation
Tcp (2.106). The system becomes

Ẋcp = TcpAT−1cp Xcp +TcpBU + wd
Y = CT−1cp Xcp + wn (4.30)

In general it is reasonable to assume that the process noise power spectral density
W is a unit matrix, and estimators synthesized using this assumption will be
referred to as ‘uniform’ estimators. These estimators, as used by Bewley and Liu
(1998), assume a spatially uncorrelated disturbance model.
A more informed choice is

W =

[

(1− yk1)2(1− yk2)2 0

0 (1− yk1)2(1− yk2)2
]

(4.31)

Since W operates on the transformed state variables Xcp, this choice implies that
the covariance between velocity state variables is (1−yk1)2(1−yk2)2, where yk1, yk2
are the locations of the state variables, and similarly between vorticity state vari-
ables. Estimators synthesized using this assumption will henceforth be referred to
as ‘tuned’ estimators.
For tuned estimators, when k1 = k2,W represents the variance of the noise on

a single state variable, which therefore varies as (1−yk1)4. Thus disturbances on a
single state variable have a higher standard deviation (the positive square root of
variance) at the centreline (y = 0), than near the walls (y = ±1). These variances
are compatible with velocity disturbances near the centreline being more variable
than those near the walls and similarly for vorticity disturbances. At the walls, the
velocities are set reasonably accurately by the controller, so they are given small
variance (10−3).
When k1 6= k2, W represents the covariance of a pair of state variables. Pairs

close to the walls have low covariances, whereas pairs close to the centreline (y = 0)
have high covariances. Pairs where one state variable is near a wall, and the other
near the centreline have covariances in between. These covariances are compatible
with velocity disturbances near the centreline being physically larger than those
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near the walls and similarly for vorticity disturbances. The covariance between
velocity and vorticity state variables is set to zero.
These covariances vary smoothly over the collocation point state variables,

and many other such distributions are possible e.g. the exponential variations
used by Hœpffner et al. (2005, p271). Chevalier et al. (2004) calculate covariances
from non-linear simulations of turbulent channel flow. These simulations differ
qualitatively from the assumptions for the tuned estimator made here, since here
estimation is of the earliest stages of transition.
By the symmetry and independence of the measurements (upper and lower

wall, real and imaginary Fourier components of shear stress), it is reasonable to
assume that the measurement noise covariance is V = sI, where s is a positive
tuning parameter, which scales the measurement noise against the process noise.
An estimator L designed in terms of these velocity and vorticity state variables,

may be transformed back for use on the untransformed state variables as T−1cp L.

4.2.3 Optimal Output Feedback

The combined plant, LQR controller and LQE estimator may be combined into
an LQG output feedback system, with dynamics

[

Ẋ
˙̂X

]

=

[

A −BK
LC A− BK − LC

] [ X
X̂

]

+

[

I 0

0 L

] [

ωd
ωn

]

(4.32)

where the estimate and state dynamics are not independent but are intentionally
coupled. If the system is recast in terms of estimator error XError = X − X̂ they
become

[

Ẋ
Ẋ − ˙̂X

]

=

[

A− BK BK
0 A− LC

] [ X
X − X̂

]

+

[

I 0

I −L

] [

ωd
ωn

]

(4.33)

and thus the estimator error dynamics are independent of the state dynamics, as
predicted by the separation theorem (Skogestad and Postlethwaite, 1996, p353).
Figure 4.3 shows a block diagram of LQG output feedback.

4.3 Simulations

4.3.1 Initial Conditions

Plant Worst Initial Conditions

The maximum transient energy that a stable system achieves over all time from all
possible initial conditions with unit energy is here termed the diachronic1 transient
energy bound . In flow control this is a measure which is often considered in con-
nection with non-linear effects triggering transition to turbulence. Here, the initial
conditions which generate the diachronic transient energy bound are calculated, as
performed by Bewley and Liu (1998) using results from Butler and Farrell (1992).

1diachronic: From the Greek dia through, chronos time, from linguistics (Sykes, 1976)
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Ẋ = AX + BU + wd
Y = CX + wn
X (t = 0) = X0

-
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(A− LC) X̂ (t)
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LQR Controller
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-

6

Control Signal U(t)

Figure 4.3: A Block Diagram of LQG Output Feedback

Following these derivations, the transient energy

E(t) = X T (t)QX (t) (4.34)

is defined as measure of how far the state is from the equilibrium point, since
it considers all the state variables (in a weighted sum of squares sense). The
largest possible value at time t after starting from unit initial transient energy but
otherwise unknown state variables X (0)

ε(t) = max
E(0)=1

E(t) (4.35)

is here termed the synchronic2 transient energy bound . The diachronic transient
energy bound θ is defined as the largest synchronic transient energy bound possible
over all time

θ = max
t≥0

ε(t) (4.36)

This may be determined as follows. If the system is diagonalizable, which the
state-space models generated in chapter 2 are, the state variables evolve with time
t as

X (t) = ΨeΛtχ0 (4.37)

where Λ is a diagonal matrix of the eigenvalues, Ψ is the right eigenvector matrix,
and χ0 is a vector of unknown initial modal amplitudes.

2synchronic: From the Greek syn alike, chronos time, from linguistics (Sykes, 1976)
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Thus

ε(t) = max
χT

0 Ψ
TQΨχ0=1

χT0 e
ΛT tΨTQΨeΛtχ0 (4.38)

and ε(t) is given by a solution of

∂/∂χ0

(

χT0 e
ΛT tΨTQΨeΛtχ0 − ζ

(

X T (0)QX (0)− 1
)

)

= 0 (4.39)

by the method of Lagrange multipliers, where ζ is the multiplier of the constraint
equation. After differentiation by χ0

(

eΛ
T tΨTQΨeΛtχ0 +

(

χT0 e
ΛT tΨTQΨeΛt

)T
)

−ζ
(

ΨTQΨχ0 +
(

χT0Ψ
TQΨ

)T
)

= 0

(4.40)

Noting Q is symmetric, the final form is a generalised eigenproblem with eigen-
vector χ0,i and eigenvalue ζi

eΛ
T tΨTQΨeΛtχ0,i = ζiΨ

TQΨχ0,i (4.41)

Premultiplying by χT0,i, it is evident that ε(t) = maxi ζi. The initial state variables
which generate this synchronic transient energy bound are given by Xworst = Ψχ0,i.
The synchronic transient energy bound may also be cast as the square of the

spectral norm of the state transition matrix eAt, as noted by Lim and Kim (2004)
and Whidborne et al. (2004),

ε(t) = σ̄2
(

eAt
)

(4.42)

where A = Q1/2AQ−1/2. This form requires full matrix exponential evaluations,
which Moler and Van Loan (2003) show may be unreliable, whereas in (4.41) Λ is
diagonal, and the terms of the exponential matrix may be evaluated as scalars.
For a stable system the diachronic transient energy bound θ of ε(t) over all time

t, can be found by a search technique. Henceforth the associated initial conditions
are referred to as the “worst” initial conditions. Difficulties arise for an unsta-
ble system since the synchronic transient energy bound ε(t) increases with time
without bound. In practice, for the unstable open-loop case 1 system described
here, the long term behaviour is dominated by the single unstable eigenvalue, so
for large times, the worst initial conditions are independent of t. These initial
conditions are not simply the unstable eigenvector, as other modes may be present
initially.
For the open-loop system worst initial conditions, Λ and Ψ are the eigenvalues

and eigenvectors of the system matrixA. To prevent the involvement of the steady-
state transpiration modes, the system matrix must be taken from the initial form
(2.99) rather than the recast form (2.100), since the latter gains integrator modes
representing steady-state transpiration. For the state feedback system, Λ and Ψ
are the eigenvalues and eigenvectors of the closed-loop system matrix (A− BK).
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Estimator Energy

In a similar manner to the transient energy (4.34), the estimated transient energy
may be defined

EEst(t) = X̂ T (t)QX̂ (t) (4.43)

as a measure of the energy that the estimates X̂ represent. The growth of the
estimates is related to the growth of the state variables they attempt to reproduce
(4.32), and this measure of estimator performance is used in the presentation
of simulation results. Proximity of plant energy and estimated energy does not
guarantee that their states are also close.
The error energy may be defined

EError(t) = X T
Error(t)QXError(t) (4.44)

as a measure of how far the estimates X̂ , are from the actual state variables X ,
where XError = X − X̂ . The growth of the estimator errors XError and thus
of EError is independent of the growth of the state variables that the estimator
attempts to reproduce (4.33). This measure of estimator performance is used in
the tuning of estimator weights.

Estimator Zero Initial Conditions

The Estimated Energy Bound θEst is defined as the largest error energy EError

during a simulation of the system from the worst plant initial conditions XWorst,
and zero estimator initial conditions, X̂ (0) = 0, that is XError(0) = XWorst(0).

Estimator Worst Initial Conditions

The largest possible value of error energy EError at time t after starting from unit
initial error energy but with otherwise unknown estimator error X (0)Error is given
by the synchronic error energy bound

εError(t) = max
EError(0)=1

EError(t) (4.45)

The Diachronic Error Energy Bound θError is defined as the largest synchronic
error energy bound growth possible over all time

θError = max
t≥0

εError(t) (4.46)

The synchronic error energy bound may be determined from the generalised eigen-
problem with eigenvector χ0,i and eigenvalue ζi

eΛ
T tΨTQΨeΛtχ0,i = ζiΨ

TQΨχ0,i (4.47)

where Ψ and Λ are the right eigenvectors and eigenvalues respectively of the estima-
tor system matrix A−LC. The synchronic error energy bound εError is maxi ζi and
the initial estimator errors which generate this are given by XError,Worst = Ψχ0,i.
The diachronic error energy bound θError may be determined by a similar search

of εError over time to that used for the diachronic transient energy bound θ.
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Modal and Non-Modal Components of Kinetic Energy Density in a

System Transformed such that Q = I

If the state variables X are transformed to X̃ such that
E(t) = X̃ T X̃ (4.48)

then

X̃ = Q1/2X (4.49)

and the state-space form (4.1) becomes

˙̃X = Q1/2AQ−1/2X̃ + BU
Y = CQ−1/2X̃ (4.50)

Substituting the expression for the evolution of state variables (4.37) into the
expression for perturbation energy (4.34) produces

E(t) = χ̃T0 e
ΛT tΨTΨeΛtχ̃0 (4.51)

where Ψ is the matrix of right normalised eigenvectors ψi of Q1/2AQ−1/2, and Λ
is a diagonal matrix containing the eigenvalues λi, which are all assumed stable.
If these eigenvectors are orthogonal, i.e. ΨTΨ = I, then

E(t) = χ̃T0 e
(ΛT+Λ)tχ̃0 (4.52)

which decays monotonically for all χ0, as the eigenvalues Λ are stable, and thus
the diachronic transient energy bound θ is unity as shown by Whidborne et al.
(2004). If the eigenmodes are not orthogonal

ΨTΨ =











1 (ψ1 · ψ2) (ψ1 · ψ3) . . .
(ψ2 · ψ1) 1 (ψ2 · ψ3) . . .
(ψ3 · ψ1) (ψ3 · ψ2) 1 . . .

...
...

...
. . .











(4.53)

where (ψi · ψj) = ψTi ψj. The energy can then be represented as

E(t) =
N
∑

i=1

cTi cie
(λT

i +λi)t +
N
∑

i=1

N,j 6=i
∑

j=1

cTi cj(ψi · ψj)e(λ
T
i +λj)t (4.54)

where χ̃0 = (c0, . . . , cN)
T . The terms of the first summation of (4.54)

N
∑

i=1

cTi cie
(λT

i +λi)t (4.55)

are the modal terms. They are positive for all ci and decay monotonically, and
cannot lead to any energy increase. The terms of the second summation

N
∑

i=1

N,j 6=i
∑

j=1

cTi cj(ψi · ψj)e(λ
T
i +λj)t (4.56)

are non-modal. They decay in magnitude, at different rates to the first summation,
and can lead to energy increase when either
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i) they are negative, that is if cTi cj(ψi · ψj) is negative. The second term in
(4.54) provides an upper bound Epair,bound = max(0,−<(cTi cj(ψi · ψj))) on
the energy growth possible from ordered mode pair i, j.

ii) they oscillate, that is if =(λTi + λj) 6= 0. The second term in (4.54) provides
an upper bound Epair,bound =

∣

∣cTi cj(ψi · ψj)
∣

∣ on the energy growth possible
from ordered mode pair i, j.

Of course, all dissimilar-mode pairs in the system may contribute to the aggregate
energy growth, or reduce energy growth by simply decaying, as all the individ-
ual modes do, and, in the absence of repeated eigenvalues, all at different time
constants.
It is noteworthy that if the system eigenvectors cannot be made accurately

orthogonal by the introduction of control, selecting instead a system with the
lowest dot products (ψi · ψj) will not necessarily lead to the lowest diachronic
transient energy bound due to the presence of the other factors cTi cj and e

(λT
i +λj)t

in (4.54), and since, for the bound, ci are selected to maximise the transient energy
growth, within the overall constraint E(0) = (c0, . . . , cN)Ψ

TΨ(c0, . . . , cN) = 1.
Differentiating (4.55) the modal energy growth rate terms are

N
∑

i=1

cTi ci
(

λTi + λi
)

e(λ
T
i +λi)t (4.57)

which have an upper bound of zero, whereas the non-modal growth rate terms are

N
∑

i=1

N,j 6=i
∑

j=1

cTi cj(ψi · ψj)
(

λTi + λj
)

e(λ
T
i +λj)t (4.58)

which are not bounded above by zero.

Modal and Non-Modal Components of Kinetic Energy Density in a

System with Q 6= I

If the state variables X are not transformed, then substituting the expression for
the evolution of state variables (4.37) into the expression for perturbation energy
(4.34) produces

E(t) = χ0
T eΛ

T tΨTQΨeΛtχ0 (4.59)

where Ψ is the matrix of right normalised eigenvectors ψi of A, and Λ is a di-
agonal matrix containing the eigenvalues λi, which are all assumed stable. The
condition which guarantees modal and therefore monotonic decay is ΨTQΨ =
diag(d1, . . . , dN), di > 0∀i, since then

E(t) = χ0
T eΛ

T tdiag(d1, . . . , dN)e
Λtχ0

=
N
∑

i=1

cTi e
λT

i tdie
λitci (4.60)
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which decays monotonically for all χ0. This may be interpreted as Ψ
TQΨ not

coupling any modes by being diagonal and thus preventing non-modal behaviour,
and also being positive definite, and thus ensuring modal energy decay rather than
growth.

4.3.2 Linear Simulations

The state-space model is coded in Matlab, and controllers and estimators syn-
thesized for a range of weighting parameters for both test cases 1 and 2. Final
controllers and estimators are selected for each test case on the grounds of lowest
energy bounds. Detailed linear simulations are performed for the open-loop, state
feedback and output feedback systems, from the worst initial conditions, using the
Matlab function lsim.

4.3.3 Non-Linear Simulations

A finite-volume computational fluid dynamics (CFD) Navier-Stokes solver is used
for the non-linear simulations. This solver makes no assumption of spectral be-
haviour, solves the full non-linear Navier-Stokes equations, and is completely inde-
pendent of the spectral code used for the controller synthesis and linear simulations.

Code

The full Navier-Stokes solver employs an unstructured, collocated grid, and is ca-
pable of representing complex geometry, for example as utilised by Yeoh et al.
(2004), although a simple structured mesh of the channel is used in the present
work. A second order central differencing scheme is used to discretise the spatial
terms and first and second order Euler implicit schemes are used for time march-
ing. These schemes are unconditionally stable (Ferziger and Peric, 2002, p148),
although the second order scheme is more accurate in time. The schemes may
produce oscillatory solutions for large cell Peclet numbers in the presence of large
solution gradients, where the cell Peclet number Pe is

Pe =
ρu

µ/δx
(4.61)

for the x-direction, and similarly for the y- and z-directions, and is a measure of
the relative strengths of convection and diffusion at work in a mesh cell of side δx
(Versteeg and Malalasekera, 1995, p112). The PISO algorithm is used to handle
pressure-velocity coupling.

Modifications to the Code

It is difficult, even with the code converted to double precision and very fine
meshes, to get agreement between linear and non-linear results for small perturba-
tions if the solution algorithm provides the total velocity components ~U = ~Ub+ ~u.
This occurs even for a static simulation of channel flow with transpiration. The
reason is that the discretisation errors in ~Ub are of the same order of magnitude
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as ~u. Therefore the existing full Navier-Stokes CFD code is modified to solve for
the non-linear perturbation (2.8,2.9) by the addition of extra convection terms
(

~Ub · ∇
)

~u and (~u · ∇) ~Ub. These are incorporated as convection and source terms
respectively in the finite-volume scheme, as follows.
The Navier-Stokes equations in conservative or divergence form (Versteeg and

Malalasekera, 1995, p24), for an incompressible fluid are

U̇ +∇ ·
(

U ~U
)

= −1
ρ

∂P

∂x
+
µ

ρ
∇ · (∇U)

V̇ +∇ ·
(

V ~U
)

= −1
ρ

∂P

∂y
+
µ

ρ
∇ · (∇V )

Ẇ +∇ ·
(

W ~U
)

= −1
ρ

∂P

∂z
+
µ

ρ
∇ · (∇W ) (4.62)

Integrating over a control volume Ω yields the finite volume form
∫

Ω

U̇dΩ +

∫

Ω

∇ ·
(

U ~U
)

dΩ = −
∫

Ω

1

ρ

∂P

∂x
dΩ +

∫

Ω

µ

ρ
∇ · (∇U) dΩ

∫

Ω

V̇ dΩ +

∫

Ω

∇ ·
(

V ~U
)

dΩ = −
∫

Ω

1

ρ

∂P

∂y
dΩ +

∫

Ω

µ

ρ
∇ · (∇V ) dΩ

∫

Ω

ẆdΩ +

∫

Ω

∇ ·
(

W ~U
)

dΩ = −
∫

Ω

1

ρ

∂P

∂z
dΩ +

∫

Ω

µ

ρ
∇ · (∇W ) dΩ (4.63)

Gauss’ Theorem states that the integral of a divergence of a continuously differ-
entiable vector ~F over a volume Ω is equal to the integral of the normal component
of ~F over the surface S of Ω

∫

Ω

∇ · ~F dΩ =

∫

S

~F · ~n ds (4.64)

where unit vector ~n is normal to surface element ds, and points outwards from Ω.
After applying Gauss’ Theorem to the integrals of a divergence in (4.63)

∫

Ω

U̇dΩ +

∫

S

(

U ~U
)

· ~n ds = −
∫

Ω

1

ρ

∂P

∂x
dΩ +

∫

S

µ

ρ
(∇U) · ~n ds

∫

Ω

V̇ dΩ +

∫

S

(

V ~U
)

· ~n ds = −
∫

Ω

1

ρ

∂P

∂y
dΩ +

∫

S

µ

ρ
(∇V ) · ~n ds

∫

Ω

ẆdΩ +

∫

S

(

W ~U
)

· ~n ds = −
∫

Ω

1

ρ

∂P

∂z
dΩ +

∫

S

µ

ρ
(∇W ) · ~n ds (4.65)

Since U, V,W are scalars
∫

Ω

U̇dΩ +

∫

S

U
(

~U · ~n
)

ds = −
∫

Ω

1

ρ

∂P

∂x
dΩ +

∫

S

µ

ρ
(∇U) · ~n ds

∫

Ω

V̇ dΩ +

∫

S

V
(

~U · ~n
)

ds = −
∫

Ω

1

ρ

∂P

∂y
dΩ +

∫

S

µ

ρ
(∇V ) · ~n ds

∫

Ω

ẆdΩ +

∫

S

W
(

~U · ~n
)

ds = −
∫

Ω

1

ρ

∂P

∂z
dΩ +

∫

S

µ

ρ
(∇W ) · ~n ds (4.66)
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If the finite volumes are polyhedral cells, the volume integrals may be approximated
by the value at the centroid (subscript p) multiplied by the cell volume vol, and
the surface integrals may be approximated by the sum of the values at the face
centres (subscript f ) multiplied by the face areas areaf

U̇pvol +
∑

facesf

Uf

(

~Uf · ~nf
)

areaf = −1
ρ

∂Pp
∂x

vol +
∑

facesf

µ

ρ
(∇Uf ) · ~nf areaf

V̇pvol +
∑

facesf

Vf

(

~Uf · ~nf
)

areaf = −1
ρ

∂Pp
∂y

vol +
∑

facesf

µ

ρ
(∇Vf ) · ~nf areaf

Ẇpvol +
∑

facesf

Wf

(

~Uf · ~nf
)

areaf = −1
ρ

∂Pp
∂z

vol +
∑

facesf

µ

ρ
(∇Wf ) · ~nf areaf

(4.67)

The common terms
(

~Uf · ~nf
)

areaf are the convective fluxes through each cell

face, convf

U̇pvol +
∑

facesf

Ufconvf = −1
ρ

∂Pp
∂x

vol +
∑

facesf

µ

ρ
(∇Uf ) · ~nf areaf

V̇pvol +
∑

facesf

Vfconvf = −1
ρ

∂Pp
∂y

vol +
∑

facesf

µ

ρ
(∇Vf ) · ~nf areaf

Ẇpvol +
∑

facesf

Wfconvf = −1
ρ

∂Pp
∂z

vol +
∑

facesf

µ

ρ
(∇Wf ) · ~nf areaf (4.68)

Now the Navier-Stokes perturbation equations in conservative form are

u̇+∇ ·
(

(Ub + u)
(

~Ub + ~u
))

= −1
ρ

∂p

∂x
+
µ

ρ
∇ · (∇u)

v̇ +∇ ·
(

v
(

~Ub + ~u
))

= −1
ρ

∂p

∂y
+
µ

ρ
∇ · (∇v)

ẇ +∇ ·
(

w
(

~Ub + ~u
))

= −1
ρ

∂p

∂z
+
µ

ρ
∇ · (∇w) (4.69)

simplifying, noting ∇ ·
(

Ub~Ub

)

= 0

u̇+∇ · (Ub~u) +∇ ·
(

u~Ub

)

+∇ · (u~u) = −1
ρ

∂p

∂x
+
µ

ρ
∇ · (∇u)

v̇ +∇ ·
(

v~Ub

)

+∇ · (v~u) = −1
ρ

∂p

∂y
+
µ

ρ
∇ · (∇v)

ẇ +∇ ·
(

w~Ub

)

+∇ · (w~u) = −1
ρ

∂p

∂z
+
µ

ρ
∇ · (∇w) (4.70)

Comparing the conservative form of the Navier-Stokes equations in U, V,W, P
(4.62) with the conservative form of the Navier-Stokes perturbation equations in
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u, v, w, p (4.70), it is evident that there are extra terms in the perturbation form.
The x-momentum perturbation equation has the extra terms

∇ · (Ub~u) +∇ ·
(

u~Ub

)

(4.71)

The y-momentum perturbation equation has the extra term

∇ ·
(

v~Ub

)

(4.72)

The z-momentum perturbation equation has the extra term

∇ ·
(

w~Ub

)

(4.73)

Now in (4.71)

∇ · (Ub~u) =
∂Ubu

∂x
+
∂Ubv

∂y
+
∂Ubw

∂z

= Ub
∂u

∂x
+ Ub

∂v

∂y
+ Ub

∂w

∂z
+ u

∂Ub
∂x

+ v
∂Ub
∂y

+ w
∂Ub
∂z

= Ub

(

∂u

∂x
+
∂v

∂y
+
∂w

∂z

)

+ u
∂Ub
∂x

+ v
∂Ub
∂y

+ w
∂Ub
∂z

= v
∂Ub
∂y

(4.74)

on expanding, and applying the perturbation continuity equation (2.9), and noting
that Ub only varies with y. Employing this result and integrating over a control
volume Ω, the x-momentum extra terms (4.71) are

∫

Ω

v
∂Ub
∂y

dΩ +

∫

Ω

∇ ·
(

u~Ub

)

dΩ (4.75)

and the y-momentum extra term (4.72) and z-momentum extra term (4.73) are
∫

Ω

∇ ·
(

v~Ub

)

dΩ (4.76)

∫

Ω

∇ ·
(

w~Ub

)

dΩ (4.77)

respectively.

Gauss’ theorem is applied to the extra terms containing ∇ ·
(

ui~Ub

)

. The x-

momentum extra terms (4.75) are then
∫

Ω

v
∂Ub
∂y

dΩ +

∫

S

u
(

~Ub · ~n
)

ds (4.78)

and the y-momentum extra term (4.76) and z-momentum extra term (4.77) are
∫

S

v
(

~Ub · ~n
)

ds (4.79)
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∫

S

w
(

~Ub · ~n
)

ds (4.80)

respectively.
For polyhedral cells, the extra term volume and surface integrals are approxi-

mated as previously in (4.67). The x-momentum extra terms (4.78) are then

vp
∂Ub
∂y

∣

∣

∣

∣

p

vol +
∑

facesf

uf

(

~Ub · ~n
)

f
areaf (4.81)

and the y-momentum extra term (4.79) and z-momentum extra term (4.80) are

∑

facesf

vf

(

~Ub · ~n
)

f
areaf (4.82)

∑

facesf

wf

(

~Ub · ~n
)

f
areaf (4.83)

respectively. The extra terms in (4.81,4.82,4.83)

∑

facesf

uf

(

~Ub · ~n
)

f
areaf ,

∑

facesf

vf

(

~Ub · ~n
)

f
areaf ,

∑

facesf

wf

(

~Ub · ~n
)

f
areaf

(4.84)

may be incorporated by augmenting the convective flux in (4.68)

convf =
(

~Uf · ~nf
)

areaf (4.85)

to perturbation form

convf =
((

~uf + ~Ub

)

· ~nf
)

areaf (4.86)

Since ~Ub = (Ub, 0, 0) this becomes

convf = (~uf · ~nf ) areaf + Ub,fnf,xareaf (4.87)

where ~nf = (nf,x, nf,y, nf,z). The extra term

vp
∂Ub
∂y

∣

∣

∣

∣

p

vol (4.88)

is incorporated with the other (4.68) x-momentum right hand side terms (so-called
‘source’ terms), so they become

−vp
∂Ub
∂y

∣

∣

∣

∣

p

vol − 1
ρ

∂pp
∂x

vol +
∑

facesf

µ

ρ
(∇uf ) · ~nf areaf (4.89)

Comparing the conservative form of the continuity equation in U, V,W

∇ · Ū = 0 (4.90)
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Figure 4.4: External View of Case 1 CFD Mesh

with the conservative form of the continuity perturbation equation in u, v, w

∇ · ū = 0 (4.91)

it is evident that there are no extra terms in the perturbation form to be incorpo-
rated.
The code is also modified to calculate the channel perturbation mass flow and

momentum accurately by integration, for use in normalising the iteration residuals,
and to non-dimensionalise the results prior to writing them out, as in section 2.2.5.

Meshes

The meshes employed here are structured, and nominally two-dimensional, the
third dimension being only one cell deep, since both test cases are two-dimensional.
Since the meshes are so simple, they are created by a short Fortran program.
The mesh for case 1 is shown in figure 4.4, and covers one streamwise period,

x = 0, 2π, with 27 = 128 uniform cells, an appropriate scheme for fast Fourier
transform data, and contains 99 cells in the wall-normal direction, −h ≤ y ≤
h, based on the Gauss-Lobatto collocation points (h = 1), thus producing cell
refinement in the near wall region, and also avoiding the need for interpolation
onto the location of the state variables. The mesh covers only one cell in the
spanwise direction, since there is no flow in this direction, with a cell width equal
to that in the streamwise direction. The maximum cell aspect ratio is 49.7, at the
wall.
The mesh for case 2 is shown in figure 4.5, and covers one spanwise period,

z = 0, 2π/2.044, with 26 = 64 uniform cells, also an appropriate scheme for fast
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Figure 4.5: External View of Case 2 CFD Mesh

Fourier transform data, and also contains 99 cells in the wall-normal direction. The
mesh covers only one cell in the streamwise direction, since there is no variation
in this direction. The maximum cell aspect ratio for this mesh is 48.7.
Neither of the non-linear simulations of test cases 1 and 2 may lead to true

turbulence, since the meshes are effectively two-dimensional.

Fluid Properties and Initial Conditions

The CFD input data is dimensionalised, and represents a fluid with density 1kg/m3,
viscosity 0.003 Pa s, flowing between walls 2m apart. The base flow centreline
velocity is 30m/s for test case 1, and 15m/s for test case 2. The worst initial
conditions calculated from the spectral code are dimensionalised and assigned to
the cell centroids and boundary faces.

Boundary Conditions

The boundary conditions for case 1 are shown in figure 4.6, and are cyclic in
the streamwise direction, allowing not just the fundamental streamwise mode but
also harmonics, and are symmetric in the spanwise direction. The wall boundary
conditions are modified to simulate wall transpiration, using inlet type boundary
conditions.
The boundary conditions for case 2 are shown in figure 4.7, and are cyclic in

the streamwise direction, which enforces zero gradient, as the mesh is only one
cell wide in this direction, and are cyclic in the spanwise direction. Again the wall
boundary conditions are modified to simulate wall transpiration, using inlet type
boundary conditions.
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Figure 4.6: External View of Case 1 CFD Boundary Conditions
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Figure 4.7: External View of Case 2 CFD Boundary Conditions

127



Implementation of the Controller in the Non-linear Simulation

The full Navier-Stokes CFD code is further modified to initially store the controller
matrix K, estimator matrices A,B, C,L and the matrices necessary for calculating
the state variables and energy from the flow-field, T, T ,Q.
At each timestep the code provides a velocity flow-field. The measured wall

shears, 1/R (∂u/∂y) and 1/R (∂w/∂y), are calculated by a first order finite differ-
ence method, as the collocation points are very closely spaced at the walls, and for
case 2 the vorticity flow-field is calculated by a second order method (R̊ade and
Westergren, 1999, p393), since in the interior of the channel the points are further
apart.
Fast Fourier transforms are then performed on the velocity and vorticity flow-

fields and wall shears, in the streamwise direction for case 1, and spanwise direction
for case 2. Pairs of transforms are performed simultaneously using subroutine
TWOFFT from Press et al. (1986, p398). The Fourier coefficients ṽ(yk), η̃(yk) at
the non-zero streamwise or spanwise wavenumbers α or β are selected from the
results. The measurement vector ỹ is also composed from the results of fast Fourier
transforms on the wall shears (2.46,2.47).
The state variables X are then calculated from ṽ(yk), η̃(yk) using the inverse of

matrix Tcp (2.106), and from these the transient energy E = X TQX . Estimated
state variables X̂ are calculated from the measurement vector ỹ, and control vector
U by integrating (4.27), using the initial estimated state variables X̂ (t = 0) as the
constant of integration, via an implicit method (Press et al., 1986, p575), as the
equation system was found to be stiff for case 2.
For state feedback the control signals ˙̃vu, ˙̃vl are calculated as U = −KX ,

whereas for output feedback they are calculated as U = −KX̂ . The control signals
are integrated to become ṽu, ṽl, using the initial conditions ṽu(0) and ṽl(0), and
the wall transpiration velocities vu, vl are set as

vu(x, z) = <
(

ṽue
(αx+βz)

)

vl(x, z) = <
(

ṽle
(αx+βz)

)

(4.92)

for the duration of the subsequent time step, using (2.32,2.29).

4.4 Results and Discussion

This section describes the results of controller and estimator synthesis, and linear
and non-linear simulations of the open-loop, state feedback and output feedback
systems from the worst initial conditions. A wall-normal discretisation of N = 100
is used, to ensure convergence with N , except where the issue of convergence itself
is investigated.

4.4.1 Controller synthesis

LQR controllers are synthesized for a range of control weights r, by solving the
algebraic Riccati equation (ARE) (4.3) with R = r2I, for discretisation N = 100.
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Figure 4.8: Case 1 LQR ARE Relative Residual vs Control Weight r, N = 100

The Matlab Release 11 functions care (called via lqr) and aresolv, with both
eigen and schur options, are used to investigate which performs best on such a
large system. For case 1, the Matlab function care, based on the Hamiltonian ma-
trix, produces the lowest relative residuals i.e. the Frobenius norm of the residual
divided by that of the solution ‖ric(P)‖F / ‖P‖F . These residuals are shown in
figure 4.8, and are of acceptably small magnitude, implying no particular problems
solving the equation for such a large system, at least for this system and range
of weights, although numerical problems arise outside this range. Other library
routines, such as Slicot slcares (Benner et al., 1999; Van Huffel et al., 2004), and
newer techniques, such as those of Morris and Navasca (2005), may be able to
extend the range of weights.

The variation of diachronic transient energy bound with control weight r for
case 1 is shown in figure 4.9, for several discretizations N = 30, 40, 50, 70, 100.
Convergence with N is relatively fast, and has occurred by N = 30. The continued
convergence at high N again demonstrates the existence of few problems solving
this particular system when very large. The range of weights is appropriate for
controller synthesis, since it covers convergence at low r, where the control effort
is large and the energy is small. As the control weight rises, the control effort
falls, and thus the energy bound rises. The variation here is monotonic, but need
not be if very high control (very low weight) itself increases transient energy, as
further investigated in section 6.3.2. A value of r = 0.25 is selected for subsequent
simulations, as this produces almost the lowest diachronic transient energy bound,
without being unnecessarily small, which would lead to unnecessarily large control
effort. Low diachronic transient energy bound implies low transient energy over
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all unit energy initial conditions and all time, thus reducing the possibility of
non-linear behaviour and transition to turbulence.
For case 2, the Matlab function care generally produces the lowest relative

residuals. These residuals are shown in figure 4.10, and are again of acceptably
small magnitude, and the function reports that the problem is well posed. The
variation of diachronic transient energy bound with control weight r for case 2
is shown in figure 4.11. Several discretisations N are shown, and, as for case 1,
convergence has occurred by N = 30. A control weight of r = 128.0 is selected
for further work, as this produces almost the lowest diachronic transient energy
bound.

4.4.2 Estimator synthesis

Residuals

LQE estimators are synthesized for a range of measurement noise weights s, by
solving the algebraic Riccati equation (ARE) (4.29) with V = sI, using the Matlab
functions care (called via lqe) and aresolv, with both eigen and schur options,
for N = 100. For case 1, the Matlab function care generally produces the lowest
relative residuals, as shown in figure 4.12 for the tuned estimator. The residuals
are of acceptably small magnitude, but not as small as those found during the
synthesis of controllers.
For case 2, the Matlab function aresolv option eigen generally produces the

lowest relative residuals, as shown in figure 4.13 for the tuned estimator, and
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Figure 4.12: Case 1 LQE ARE Relative Residual vs Measurement Noise Weight
s, for Tuned Estimator, N = 100

again are of acceptably small magnitude, and the function reports that the problem
is well posed.

Poles

The variation of the maximum real part of the estimator poles with measurement
noise weight s for case 1 is shown in figure 4.14, for both uniform and tuned
estimators. Case 2 is shown in figure 4.15. The maximum real part of the estimator
poles corresponds to the slowest estimator convergence rate.
Good estimator performance requires that the estimator poles be faster (real

part more negative) than the plant poles. However, the current plant has a large
number of poles, the faster ones of which are not known accurately, and it is not
feasible to make the slowest estimator poles faster than these. At small s, the
slowest pole of the tuned estimator is faster than that of the uniform estimator for
case 1, but not quite as fast for case 2. Small s represents low measurement noise
i.e. reliable measurements.

Estimated Energy Bound θEst from Estimator Zero Initial Conditions

The variation of estimated energy bound with measurement noise weight for the
case 1 tuned estimator is shown in figure 4.16. The initial conditions are zero
estimated state variables, and plant worst diachronic transient energy bound initial
state variables. Thus the initial estimator error is equal to the plant worst initial
conditions. Several different discretisations N are shown. Convergence with N is
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Figure 4.13: Case 2 LQE ARE Relative Residual vs Measurement Noise Weight
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Figure 4.15: Case 2 LQE maxi(<(λi,estimator)) vs Measurement Noise Weight s,
N = 100

relatively slow, as compared to that of the controller in figure 4.9, and does not
occur until N = 70, which is consistent with the behaviour of the wall eigenvector
gradients used for observation in section 2.8.2.
The same variation for case 2 is shown in figure 4.17, from equivalent initial

conditions. Convergence with N is better than for case 1, but does not fully occur
until N = 70.
The variation of estimated energy bound with measurement noise weight for

case 1 uniform and tuned estimators is shown in figure 4.18. This variation for
case 2 is shown in figure 4.19. At low measurement noise weight, corresponding to
more reliable measurements, the tuned estimator provides a significantly smaller
estimated energy bound than the uniform estimator for both test cases. This
implies that if the estimators are initialised with zero estimates, and the plant is
initialised with its worst initial conditions, the tuned estimates will diverge less
than the uniform estimates from the plant state variables, in terms of error energy.
At high measurement noise weight, the two estimators perform similarly.

Diachronic Error Energy Bound θError from Estimator Worst Initial Con-

ditions

The variation of Diachronic Error Energy Bound θError with measurement noise
weight for cases 1 and 2 are shown in figures 4.20 and 4.21 respectively, starting
from the worst initial estimator error conditions. At low measurement noise weight
the tuned estimator produces considerably higher Diachronic Error Energy Bound
θError than the uniform estimator for both test cases. This implies that the tuned
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Figure 4.16: Case 1 Tuned LQE Estimated Energy Bound θEst vs Measurement
Noise Weight s, for Discretisations N , from zero estimates i.e. X̂ = 0, XError =
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Figure 4.17: Case 2 Tuned LQE Estimated Energy Bound θEst vs Measurement
Noise Weight s, for Discretisations N , from zero estimates i.e. X̂ = 0, XError =
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Figure 4.18: Case 1 LQE Estimated Energy Bound θEst vs Measurement Noise
Weight s, from zero estimates i.e. X̂ = 0, XError = XWorst, N = 100
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Figure 4.19: Case 2 LQE Estimated Energy Bound θEst vs Measurement Noise
Weight s, from zero estimates i.e. X̂ = 0, XError = XWorst, N = 100
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Figure 4.20: Case 1 LQE Diachronic Error Energy Bound θError vs Measurement
Noise Weight s, from worst estimates XError = XError,Worst, N = 100

estimator is capable of diverging further from the plant state variables than the
uniform estimator would diverge, if each is initialised with their worst estimator
state variables of unit error energy.

Discussion

The worst estimator initial error conditions XError,Worst are considered very exact-
ing, since they lead to growth of diachronic error energy bound θError of comparable
magnitude to the plant diachronic transient energy bound, if not greater. Since
the estimators are stable and their state variables converge upon the plant state
variables, it is difficult to see how such estimator initial conditions could occur. In
contrast, zero estimates X̂ = 0, as used by Hogberg et al. (2003a, p169), are to be
expected upon initialisation of the estimators, implying initial errors equal to the
plant initial conditions, XError = XWorst.

Furthermore, for the LQG controller, both plant and estimator initial condi-
tions need to be selected. It is not clear how to select the relative magnitudes
of the initial plant energy and estimator error energy, since the plant energy is a
physical quantity which leads to transition, whereas the estimator error energy is
not. Again, zero initial estimates are a reasonable assumption to make.

Accordingly, zero initial estimates are selected in preference to the worst estima-
tor initial error conditions for further simulations in the present work. Discounting
the diachronic error energy bound produced from the worst estimator initial con-
ditions, the remaining plots of estimated energy bound and slowest estimator pole
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Figure 4.21: Case 2 LQE Diachronic Error Energy Bound θError vs Measurement
Noise Weight s, from worst estimates XError = XError,Worst, N = 100

favour the use of the tuned estimator over the uniform estimator, at low measure-
ment noise. For case 1, a weight of s = 2−10 ≈ 10−3 is selected for further work,
as this produces close to the lowest estimated energy bound and similarly for case
2, a weight of s = 2−6 ≈ 0.0156 is chosen.

4.4.3 Initial Conditions

The correct calculation of diachronic transient energy bound and the associated
initial conditions are critical in the present work. For example, if the location
of the maximum of the synchronic transient energy bound is incorrectly identi-
fied, simulations starting from those initial conditions will simply repeat the same
erroneous energy growth.

Synchronic Transient Energy Bound ε vs Time

Two plots of synchronic transient energy bound against time are presented to
provide some insight into the diachronic transient energy bound calculation.

Figure 4.22 shows a logarithmic plot of case 1 open-loop synchronic transient
energy bound, ε(t), against time. ε(t) always has unit value at time zero, and
in this case increases without bound as the system is unstable. After a short
time the rate of increase of log(ε(t)) is linear, and corresponds to the energy
growth of the single unstable mode. Since the plot has no maximum, no value
can be assigned to the diachronic transient energy bound θ, although the initial
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Figure 4.22: Case 1 Open-Loop Synchronic Transient Energy Bound ε vs Time t,
N = 100

conditions which produce the highest synchronic transient energy bound after a
long time (E(t = 700) = 5369.0) can be extracted. They are found not to vary
with the precise time.
As shown from (4.42), the synchronic transient energy bound can be expressed

as the square of the spectral norm of the state transition matrix

ε(t) = σ̄2
(

eQ
1/2AQ−1/2t

)

(4.93)

where σ̄ is the spectral norm. The Frobenius norm (Skogestad and Postlethwaite,
1996, p517) is defined

‖A‖F =
√

∑

ij

∣

∣a2ij
∣

∣ (4.94)

The Frobenius norm and the spectral norm σ̄(A) obey

σ̄ (A) ≤ ‖A‖F ≤
√

min (l,m)σ̄ (A) (4.95)

where A is (l×m) (Skogestad and Postlethwaite, 1996, p520). Thus the Frobenius
norm squared provides a upper bound on the synchronic transient energy bound,
and 1/min (l,m) times the Frobenius norm squared provides a lower bound. Figure
4.22 also shows the Frobenius norm of the state transition matrix

∥

∥

∥eQ
1/2AQ−1/2t

∥

∥

∥

F
(4.96)
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Figure 4.23: Case 2 Open-Loop Synchronic Transient Energy Bound ε vs Time t,
N = 100

and it can be seen that the synchronic transient energy bound ε(t) lies within the
correct bounds. Since the Frobenius norm is independent of direction, whereas
the spectral norm computes an optimal direction, a comparison between the two
norms provides an insight into the direction dependence of the initial conditions.
Here the Frobenius norm squared is at least twice as large as the spectral norm
squared, showing that the initial conditions are slightly sensitive to direction.
Figure 4.23 shows case 2 open-loop synchronic transient energy bound, ε(t),

against time. As the eigenvalues in the case are real and stable, the only mechanism
for growth is non-modal, and this is confirmed by the non-linear nature of the
logarithmic plot. The graph of the synchronic transient energy bound against
time is convex, and so there are no root bracketing problems. A golden section
search (Press et al., 1986, p277) produces a maximum at 4896.94 at t = 379.16
and thus θ = 4896.94. This value compares well with θ = 4897 at t = 379
as reported by Butler and Farrell (1992, p1647). A binary search based on the
criteria X TAX = 0, as described by Whidborne et al. (2004), proves inaccurate
in this case. The plot also shows that the Frobenius norm squared is at least 1.4
times as large as the spectral norm squared, showing that the initial conditions are
slightly sensitive to direction. The corresponding plots for the LQR controlled
systems are qualitatively similar to figure 4.23.

Summary of Diachronic Transient Energy Bound θ Results

Table 4.1 shows a summary of the diachronic transient energy bound values of the
open-loop and LQR state feedback systems. The LQR controller stabilises case
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Table 4.1: Open-Loop and LQR Diachronic Transient Energy Bound θ, N = 100
Test case Open-Loop LQR

1 (unstable) 12.65
2 4896.94 848.81
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Figure 4.24: (Left) Case 1 LQRWorst <(ṽ(t = 0)) vs y, (Right) Detail Near y = 1,
N = 100, Before and After Filtering

1 and produces a diachronic transient energy bound of 12.65. Case 2 is open-
loop stable, and the controller reduces the diachronic transient energy bound from
4896.94 to 848.81.

Inspection of Worst Initial States

The left plot of figure 4.24 shows the initial real wall-normal velocity conditions
(<(ṽ(t = 0)) vs y) associated with the diachronic transient energy bound of case
1 with LQR state feedback, normalised to a maximum wall-normal velocity of
(1 + 0). These worst initial conditions are a complicated perturbation flow-field
composed of many eigenvectors. The right plot (marked unfiltered) shows a de-
tailed view near the upper wall y = 1, and it can be seen that the wall-normal
velocity at the wall is not zero. This is because the state-feedback controller acts
on the non-zero state variables at time zero, and provides control at the walls.
The left plot of figure 4.25 shows the initial real streamwise velocity conditions

(<(ũ(t = 0)) vs y). The right plot (marked unfiltered) shows a detailed view
near the upper wall and it can be seen that the streamwise velocity at the wall
is zero due to the non-slip boundary condition on u. These plots interpolate
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Figure 4.25: (Left) Case 1 LQRWorst <(ũ(t = 0)) vs y, (Right) Detail Near y = 1,
N = 100, Before and After Filtering

linearly the velocity values at the collocation points, and spectral interpolation, as
assumed in the solution of the equations, would produce a smoother result in the
interior of the domain. However, some oscillation is apparent in the results close
to the wall, which is non-physical, since it changes sign at alternate grid points,
and thus has wavelength twice the local grid spacing, being the so-called ‘two-h
waves’ described by Boyd (2001, p206). The oscillations do not appear on the
low frequency system eigenvectors shown in figure 4.26, but are peculiar to the
solution of the eigensystem (4.41).

The oscillation causes inaccuracy in the calculation of the wall shear stress
in finite difference schemes, since to first order the stress depends on the values
of ũ at the wall and next-to-wall-collocation points. This inaccuracy is reflected
in the performance of the output feedback controller in subsequent non-spectral
simulations described in section 4.3.3. The non-physical oscillation is removed
by filtering or anti-aliasing the spectral results (Boyd, 2001, p212) using the two-
thirds rule, which sets the upper 1/3 real and imaginary spectral coefficients to
zero. Figure 4.27 shows the magnitude of the unbalanced state variables. There
are (N − 1) real state variables ((N − 3) Chebyshev coefficients, plus two wall
velocities), followed by (N − 1) imaginary ones. Some of the upper 1/3 real and
imaginary Chebyshev coefficients (shown in dash-dot) are showing non-spectral
behaviour by increasing in magnitude with (recombined) Chebyshev polynomial
n, and are zeroed by the filtering (filtered state variables shown solid). The total
energy content of the initial conditions is changed by no more than 0.01% by the
filtering for the stable systems, and no more than 1% for the unstable open-loop
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Figure 4.26: Case 1 LQR u Eigenvectors at Upper Wall

case 1 system.

The smoothing effect of the filtering on the velocity profiles at the walls is
shown in the filtered results in figures 4.24 and 4.25. No changes occur in the
interior of the domain. Filtering is also required on the case 2 initial conditions
(not shown).

Investigation of Case 2 Open-Loop and Closed-Loop Diachronic Tran-

sient Energy Bound θ

Investigations of the modes which lead to maximum open-loop diachronic transient
energy bound are not appropriate for case 1, since although many modes are
present initially, only the unstable mode ultimately remains, and its energy growth
is unbounded. Investigations for case 2 are appropriate as no modes are unstable.
For the remainder of this section, the state variables employed are transformed
to X̃ , as defined in section 4.3.1 such that E = X̃ X̃ , and the eigenvectors are
expressed in the same state variables, and normalised to unit magnitude, unless
stated otherwise.

Figure 4.28 shows a bar chart of the dot product between pairs of modes from
1 to 25. The main diagonal has unit magnitude, due to the normalisation cho-
sen. The next highest dot products are on the adjacent diagonals, corresponding
to mode pairs comprising alternative consecutive modes. The dot products of
consecutive open-loop X̃ modes, together with the vorticity η̃ eigenvectors (the
velocity eigenvectors are much smaller in magnitude) appear in figure 4.29. It can
be seen that a high dot product corresponds to vorticity eigenvectors of similar
shape (within reflection), which is to be expected since similar mode shapes imply
similar state variable vectors, and thus high dot products.

Figure 4.30 shows the same plot for the LQR system, for which the diachronic
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Figure 4.28: Case 2 Open-Loop Bar Chart of Mode Pair Dot Products, N = 100
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transient energy bound is reduced. It can be seen that in general the modes
have comparable dot-products as in the open-loop figure 4.29 and thus remain as
non-normal or non-orthogonal as in the open-loop case. The diachronic transient
energy bound is known to be minimised to a value of unity when the modes are
made precisely orthogonal but when precise orthogonality is not achieved, as here,
the effect of increasing orthogonality may not produce the lowest energy, as shown
in section 4.3.1. Thus the absence of a distinct reduction of non-normality is
not surprising, although the LQR controller failing to directly affect the modal
orthogonality is contrary to the discussion of Bewley and Liu (1998, p343). Figure
4.31 shows a bar chart of the dot product between pairs of LQR modes from 1 to 25.
As compared to the open-loop chart, figure 4.28, the low alternative consecutive
mode pairs on the superdiagonal are not significantly less parallel, although some
of the higher pairs (i, j ≥ 12) are less parallel. The particular structure of the non-
normality shown in figure 4.28 has been lost by applying control, with increased
non-normality away from the main diagonals.

The upper bounds on mode pair energy growth Epair,bound, calculated using
the expressions derived in section 4.3.1, from the worst initial conditions, are pre-
sented in figure 4.32. As would be expected, the chart is symmetrical. Few mode
pairs appear to have a significant potential for transient energy growth, with the
exception of pair 4,5.

Figure 4.33 shows the upper bounds on mode pair energy growth for case 2
after the application of LQR control, from the worst initial conditions. More
mode pairs have a significant potential for transient energy growth, those with
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Figure 4.31: Case 2 LQR Bar Chart of Mode Pair Dot Products, N = 100
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Figure 4.32: Case 2 Open-Loop Upper Bound on Mode Pair Energy Growth
Epair,bound, N = 100

the largest potential being 1,5 and 1,4. These significant pairs are not consecutive
modes, unlike the open loop significant pair 4,5. The largest upper bound of all
the pairs has fallen from approximately 2.5×105 to 3×103, due to the application
of LQR control.
The cumulative energy of the state variables at the time of open-loop diachronic

transient energy bound, for discretisation N = 100, are displayed in figure 4.34.
Highly spectral behaviour can be seen, the energy converging after less than 10
state variables.

4.4.4 Linear Simulations

The results of linear simulations on the open- and closed-loop systems are investi-
gated in detail in this section. Plots of transient energy against time are presented
with linear rather than logarithmic energy axes, as these axes show the peak en-
ergy growth in more detail, for convergence and comparison purposes. Later, in
section 4.4.7, plots with logarithmic axes are used for the presentation of non-linear
simulation results from large initial perturbations.

Case 1 Open-Loop Linear Simulation

Figure 4.35 shows case 1 open-loop transient energy against time. Five different
discretisations N = 10, 20, 30, 40, 50 are shown and the results are converged at
N = 30, showing that a relatively low discretisation of N = 30 is adequate to
simulate case 1 open-loop. The transient energy starts on a minimum, as would be
expected since the initial conditions are those which generate maximum transient
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Figure 4.33: Case 2 LQR Upper Bound on Mode Pair Energy Growth Epair,bound,
N = 100
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Figure 4.34: Case 2 Open-Loop Cumulative Transient Energy E vs Number of
States, for Diachronic Transient Energy Bound θ, N = 100
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Figure 4.35: Case 1 Open-Loop Transient Energy E vs Time t, for Various Dis-
cretisations N , from Initial Conditions Xworst Scaled to E = 1

energy at time t = 700. The transient energy rises quickly, at a rate much faster
than the unstable mode would produce alone, due to non-normal growth. Finally
the transient energy grows at the rate dictated by the unstable mode.
The magnitudes of the case 1 open-loop initial modes ranked against pole

magnitude are shown in figure 4.36, for eigenvectors normalised to unit magnitude.
A large spectrum of modes are present, with very large (but opposing) magnitudes,
to enable the largest diachronic transient energy bound to occur. It can be seen
that no mode present to any degree has a magnitude much faster than 1 radian per
second. For case 2 (not shown), magnitudes are lower, and no modes are present
to any degree with a magnitude much faster than 0.1 radian per second.

Case 2 Open-Loop Linear Simulation

Figure 4.37 displays case 2 open-loop wall-normal velocity Fourier coefficient ṽ
against time. The coefficient is zero at the walls, due to the Dirichlet boundary
condition. In the interior of the channel the coefficient decays smoothly with time,
as, in conjunction with spanwise velocity w, it represents decaying streamwise
vortices.
The case 2 open-loop streamwise velocity Fourier coefficient ũ versus time is

shown in figure 4.38. The coefficient is zero at the walls, due to the Dirichlet
boundary condition, and is initially very small throughout the domain, being less
than 1% of the ṽ magnitude at t = 0. It grows quickly however, as the wall-
normal velocity field moves fluid around in the base flow profile. The base flow
is streamwise and varies parabolically in the wall-normal direction. Thus any
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Figure 4.36: Case 1 Open-Loop Initial Mode Amplitudes, from Initial Conditions
Xworst Scaled to E = 1, N = 100
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Figure 4.37: Case 2 Open-Loop ṽ(y) (imaginary) vs Time t, from Initial Conditions
Xworst Scaled to E = 1, N = 100
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Figure 4.38: Case 2 Open-Loop ũ(y) (imaginary) vs Time t, from Initial Conditions
Xworst Scaled to E = 1, N = 100

movement of packets of fluid in the wall-normal direction causes them to have a
large additional u perturbation velocity generated by the difference in base flow at
the old and new locations, resulting in u perturbation velocities much larger than
the v values. This so-called lift up effect causes high energy streaks as described
by Schmid and Henningson (2001, p120).

Five different plant discretisations, N = 10, 20, 30, 40, 50, are simulated and the
results are presented in figure 4.39, of case 2 open-loop transient energy against
time. The results are converged at N = 20 and above, showing that a low dis-
cretisation of N = 20 is adequate to simulate case 2 open-loop. As for case 1,
the transient energy starts at a minimum. Here the transient energy reaches the
diachronic transient energy bound value of 4896.94 at time 379.5, close to the pre-
dicted value of 4896.94 at time 379.16 from section 4.4.3, before decaying to zero.
The small discrepancy is caused by the linear simulation results being provided at
discrete timesteps.

Figure 4.40 displays the time histories of those modes which provide more than
10% of the diachronic transient energy bound, calculated using (4.54). Modes 4
and 5 (numbered including the integrators) individually provide substantial decay
of transient energy, but mode pair (4, 5) provides substantial growth of transient
energy in the form of decay of negative energy, as predicted in figure 4.32. The
aggregate transient energy, marked ‘All’ in figure 4.40, is much less than any of
the components, and barely discernible on the same scale. The symbol × marks
the time of the peak aggregate transient energy.
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Figure 4.39: Case 2 Open-Loop Transient Energy E vs Time t, for Various Dis-
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Case 1 LQR State Feedback Linear Simulation

Case 1 LQR transient energy against time, from the closed-loop worst initial con-
ditions, appears in figure 4.41. The controller is able to stabilise the flow, and
limit the transient energy to 12.64, which is consistent with figure 4.9. The LQR
controller limits the growth of the worst case 1 disturbances. Several different
discretisations N are shown, and convergence has occurred for even the lowest,
N = 30.

Figure 4.42 shows case 1 LQR initial modes. For case 1 the open-loop and
LQR initial conditions differ significantly. However, as in the open-loop system,
a large spectrum of modes are present, with very large magnitudes, and no mode
present to any degree has a magnitude much faster than 1 radian per second.

As the ṽ initial conditions are symmetrical about the centreline (see figure
4.24), the control signal at the lower wall ˙̃v(y = −1) is identical to that at the
upper wall. However, as the sense of the upper and lower wall boundaries are
reversed, transpiration suction at the upper wall, ṽ(y = 1) > 0, corresponds to
blowing at the lower wall. Figure 4.43 shows the case 1 LQR control signal at the
upper wall ˙̃v(y = 1) against time.

Figure 4.44 displays the time integral of the case 1 LQR control signal at
the upper wall, namely the Fourier coefficient of the upper wall velocity. The
coefficient magnitude peaks at approximately 2.8, i.e. 2.8 times the base flow
centreline velocity. However, this figure is for a unit initial transient energy. The
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Figure 4.42: Case 1 LQR Initial Mode Amplitudes, from Initial Conditions Xworst
Scaled to E = 1, N = 100
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Figure 4.43: Case 1 LQR Upper Wall Control U(1) vs Time t, from Initial Condi-
tions Xworst Scaled to E = 1, N = 100
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Figure 4.44: Case 1 LQR Wall Velocity Coefficient, ṽ(y = 1) vs Time t, from
Initial Conditions Xworst Scaled to E = 1, N = 100

kinetic energy density of the base flow is

1

V olume

∫ V olume 1

2
ρU2b (y) dvol =

1

4

∫ y=1

y=−1

(

1− y2
)2
dy (4.97)

where V olume corresponds to that of a unit streamwise length of channel, which
expression evaluates to 4/15 ≈ 0.2667. For an initial perturbation energy
of 10% of the base flow energy, the upper wall velocity would peak at around
2.8×

√
0.02667, approximately 0.45, and for a perturbation energy of 1% of base

flow, the velocity would peak at approximately 0.14 times the base flow centreline
velocity. This represents the transpiration at comparatively high velocity.
The double time integral of the case 1 LQR control signal at the upper wall,

namely the Fourier coefficient of the upper wall fluid quantity transpired, versus
time is displayed in figure 4.45. Although the net amount of fluid transpired is
zero since the distribution is sinusoidal, this coefficient represents the magnitude
of the sinusoidal distribution. The coefficient magnitude peaks at around 5.8,
i.e. 5.8 times the channel half-height, for a unit energy initial perturbation. For
an initial perturbation energy 1% of that of the base flow, the quantity would
peak at approximately 0.30 times the channel half-height. This represents the
transpiration of a comparatively large amount of fluid, requiring a large associated
reservoir or distribution system. These significant transpiration fluid velocities
and quantities indicate the need for further investigations of actuation. The final
coefficient is close to zero, representing the absence of any permanent transport
of transpiration fluid within each spatial period, and thus any reservoirs return to
their initial level.
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Figure 4.45: Case 1 LQR Fluid Depth Transpired on Upper Wall vs Time t, from
Initial Conditions Xworst Scaled to E = 1, N = 100

Case 2 LQR State Feedback Linear Simulation

Figure 4.46 shows case 2 LQR wall-normal velocity Fourier coefficient ṽ against
time. The coefficient is not zero at the walls, due to the control boundary condition.
Figure 4.47 shows case 2 LQR streamwise velocity Fourier coefficient ũ against
time. As compared to the open-loop behaviour in figure 4.38, the u velocity is
much reduced.

Figure 4.48 displays the time integral of the LQR control signal at the upper
wall, namely the Fourier coefficient of the upper wall transpiration velocity. The
coefficient magnitude peaks at approximately 1.75, i.e. 1.75 times the base flow
centreline velocity. However, this figure is for a unit initial transient energy. As for
case 1, the non-dimensionalised kinetic energy density of the base flow for case 2 is
4/15 ≈ 0.2667. For an initial perturbation energy of 1% of base flow, the velocity
would peak at approximately 0.090 times the base flow centreline velocity. This
represents transpiration at reasonable velocity.

The double time integral of the LQR control signal at the upper wall versus
time is displayed in figure 4.49. This coefficient represents the magnitude of the
sinusoidal transpiration fluid quantity spanwise distribution. The coefficient mag-
nitude finally peaks at around 515, i.e. 515 times the channel half-height, for a
unit energy initial perturbation. For an initial perturbation energy 1% of that of
the base flow, the quantity would peak at approximately 26.6 times the channel
half-height. As found for case 1, this represents the transpiration of a compara-
tively large amount of fluid, requiring a large associated reservoir or distribution
system, and again indicates the need for further investigations of actuation. Fur-
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Figure 4.46: Case 2 LQR ṽ(y) (imaginary) vs Time t, from Initial Conditions
Xworst Scaled to E = 1, N = 100
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Figure 4.47: Case 2 LQR ũ(y) (imaginary) vs Time t, from Initial Conditions
Xworst Scaled to E = 1, N = 100
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Figure 4.48: Case 2 LQR Wall Velocity Coefficient, ṽ(y = 1) vs Time t, from
Initial Conditions Xworst Scaled to E = 1, N = 100

thermore, here the final coefficient is not zero, representing a permanent transport
of transpiration fluid within each spatial period, and thus any reservoirs do not
return to their initial level.

Figure 4.50 presents case 2 LQR transient energy against time. The controller
is able to limit the transient energy to 848.80, which is consistent with the value
of 848.81 from figure 4.11, as compared to the open-loop value of 4896.94. Thus
the controller effectively limits the growth of the worst case 2 disturbance. Three
different discretisations N are shown, and convergence has occurred for even the
lowest N = 30.

The LQR controller minimises the time integral of the transient energy plus
weighted control effort, from all initial conditions, rather than the diachronic tran-
sient energy bound itself, although the diachronic transient energy bound has been
reduced from 4896.94 to 848.80 as a consequence.

The time histories of those modes which provide more than 10% of the di-
achronic transient energy bound are presented in figure 4.51. Modes 1 and 4
individually provide substantial decay of transient energy, but mode pairs (1, 4)
and (1, 5) provide substantial growth of transient energy in the form of decay of
negative energy, as predicted in figure 4.33, although all terms are an order of
magnitude less than for the open-loop system (figure 4.40). The aggregate tran-
sient energy, marked ‘All’ in figure 4.51, is much less than any of the components,
and less than the open loop aggregate. The symbol × marks the time of the peak
aggregate transient energy.
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Figure 4.49: Case 2 LQR Fluid Depth Transpired on Upper Wall vs Time t, from
Initial Conditions Xworst Scaled to E = 1, N = 100
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Figure 4.50: Case 2 LQR Transient Energy E vs Time t, for Various Discretisations
N , from Initial Conditions Xworst Scaled to E = 1
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Figure 4.51: Case 2 LQR Mode Transient Energy E Components vs Time t, from
Initial Conditions Xworst Scaled to E = 1, N = 100. × denotes time of peak overall
E.

Case 1 Open-Loop LQE State Estimation Linear Simulation

Figure 4.52 shows case 1 LQE transient energy against time, showing both the
plant energy from the open-loop worst initial conditions, and the estimated tran-
sient energy EEst from zero initial estimates. For good performance the estimated
energy must converge with the plant energy quickly, which is itself growing quickly
due to non-normal growth. It can be seen that the tuned estimator converges on
the plant energy much faster than the uniform estimator does. The uniform esti-
mator appears less able to follow the non-normal growth that the plant displays,
and its energy grows at the relatively slow rate of the plant final unstable eigen-
vector.

Figure 4.53 displays case 1 LQE estimated transient energy against time, for
the tuned estimator, for several discretisations N . It can be seen than behaviour
of the estimator is not fully converged below approximately N = 50.

Case 2 Open-Loop LQE State Estimation Linear Simulation

Case 2 LQE estimated transient energy against time is presented in figure 4.54.
As for case 1, the tuned estimator converges on the plant energy much faster than
the uniform estimator. Figure 4.55 shows case 2 LQE transient energy against
time, for the tuned estimator, for several discretisations N . It is evident that the
behaviour of the estimator is not fully converged below approximately N = 50.
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Figure 4.52: Case 1 Uniform vs Tuned LQE Transient Energy E vs Time t, from
Initial Conditions Xworst Scaled to E = 1, N = 100
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Figure 4.53: Case 1 LQE Transient Energy E vs Time t, for Several Discretisations
N , from Initial Conditions Xworst Scaled to E = 1
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Figure 4.54: Case 2 Uniform vs Tuned LQE Transient Energy E vs Time t, from
Initial Conditions Xworst Scaled to E = 1, N = 100
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Figure 4.55: Case 2 LQE Transient Energy E vs Time t, for Several Discretisations
N , from Initial Conditions Xworst Scaled to E = 1
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Figure 4.56: Case 1 LQG Transient Energy E vs Time t, from Initial Conditions
Xworst Scaled to E = 1, N = 100

Case 1 LQG Output Feedback Linear Simulation

Results from simulations combining the state feedback LQR controller with the
tuned LQE state estimator, and starting from the LQR worst initial state variables
and zero initial estimates are displayed in figure 4.56 which shows case 1 LQG
transient energy against time. The estimated energy amounts to only a small
fraction of the energy of the plant state variables themselves, but nonetheless the
controller is able to stabilise the flow, albeit with an diachronic transient energy
bound of 29.42, significantly larger than the LQR state feedback value of 12.64.

Figure 4.57 presents the case 1 LQG control signal at the upper wall against
time. Even though the estimated energy is very small, actuation levels are higher
for the LQG controller than the LQR controller shown in figure 4.43. This im-
plies even higher transpiration velocities and fluid quantities than for the LQR
controller.

Case 2 LQG Output Feedback Linear Simulation

Figure 4.58 shows case 2 LQG transient energy and estimated transient energy
against time. The case 2 estimator performs significantly better than the case
1 estimator, in their respective LQG systems. The controller is able to stabilise
the flow, with a diachronic transient energy bound of approximately 934.00, only
slightly larger than the LQR state feedback value of 848.80.
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Figure 4.57: Case 1 LQG Upper Wall Control U(1) vs Time t, from Initial Condi-
tions Xworst Scaled to E = 1, N = 100
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Figure 4.58: Case 2 LQG Transient Energy E vs Time t, from Initial Conditions
Xworst Scaled to E = 1, N = 100
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Table 4.2: Open-Loop and LQR Diachronic Transient Energy Bound θ by Eigen-
system Calculation (4.41) and Linear Simulation

Eigensystem Calculation (4.41) Linear Simulation
Case OL Time LQR Time OL Time LQR Time
1 unstable - 12.65 18.43 unstable - 12.64 18.3
2 4896.94 379.16 848.81 187.03 4896.94 379.5 848.80 187.5

Table 4.3: Diachronic Transient Energy Bound θ for All Open- and Closed-Loop
Systems, by Linear Simulation (The bracketed values are on unstable systems, and
require a time in order to define a nominal value.)
Case OL θ LQR θ OL LQE θEst LQG θ LQE θEst in LQG
1 (87.67@t=150) 12.64 (88.12@t=150) 29.42 0.20
2 4896.94 848.80 4235.73 937.00 729.30

4.4.5 Summary of Diachronic Transient Energy Bound θ

Results

As a check, table 4.2 exhibits a summary of the diachronic transient energy bound
values of the open-loop and LQR state feedback systems, from both the diachronic
transient energy bound eigensystem (4.41), and the linear simulation from the
worst initial conditions. The small discrepancies are thought to be due to nu-
merical inaccuracies, amongst which are the discrete time steps used in the linear
simulations.

Table 4.3 shows a summary of the diachronic transient energy bound values
from the open-loop and feedback systems, and also includes the estimated energy
bound achieved by the LQE estimator on the open-loop and LQG systems, from
zero initial estimates.

4.4.6 Choice of Controller Discretisation in Non-Linear Sim-

ulations

The non-linear simulations require significantly more computing time than the lin-
ear ones, in the order of days rather than minutes, on a Pentium 4TM personal
computer. It is appropriate to consider the choice of discretisation for the con-
trollers to be applied to the non-linear models. Since no controller reduction is
employed, this equates to the discretisation of the spectral model used for the
controller synthesis. The issue of discretisation of the non-linear model itself is
considered in section 4.4.7.

Many results regarding the convergence of the discretisation N have been pre-
sented thus far. For the controller synthesis model to achieve the high level of
accuracy of eigenvalues published by the fluid dynamics community, N = 100 is re-
quired (section 2.8.1), although there may be no need for it replicate this high level
of eigenvalue accuracy for the purposes of controller synthesis. For convergence
of the plant model singular values beyond the estimated closed-loop bandwidth
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a discretisation of N = 100 is required (section 2.8.1). For the observability and
wall gradients of case 1 to have converged for the first 20 modes, approximately
N = 100 is required (section 2.8.2).
For the LQR controller synthesis to converge N = 30 is sufficient (section

4.4.1), and for the LQE estimator synthesis N = 70 is sufficient (section 4.4.2).
The linear simulations require N = 30 for the LQR system and N = 50 for the
LQE system (section 4.4.4). The more exacting requirement of LQE is thought to
be related to the convergence of the wall gradients and observability.
The major factor in determining the discretisation to be used appears to be the

accuracy of the wall gradients in the estimator model of the plant. The need for
fine discretisation at the wall is well known within the fluid dynamics community.
Accordingly, controllers synthesized using a spectral model with N = 100 are used
within the non-linear simulations.

4.4.7 Non Linear Simulations

A linear controller synthesized using a linearisation of a non-linear model will be
able to stabilise the full model given initial conditions near the linearisation equi-
librium point, and provided the trajectories do not stray far from the equilibrium
point. However, if large transients take trajectories far away from the equilibrium
point, non-linear effects may predominate and the system may not be stable.
This section explores the performance of the controllers on a non-linear model

of the plant, from small and large initial perturbations. The non-linear simulations
presented here cannot become fully turbulent as they are not three-dimensional,
but they are capable of accurately modelling the initial evolution of instabilities.

Magnitude of Linear Perturbations

To estimate the size of initial perturbations that can be expected to behave linearly,
the magnitude of the non-linear terms (~u · ∇) ~u omitted during linearisation (2.13)
are calculated for the worst initial conditions.
The non-linearity in the y momentum equation, in a worst initial perturbation

of maximum v amplitude 10−4 of Ucl, for open-loop case 1 is presented in figure
4.59. The regions with non-linearity greater than 10−2 are confined to small areas
totalling less than 10%, near the walls. The plot contours scale directly with
perturbation, so for a 10−2Ucl perturbation, the regions with the same degree of
non-linearity would cover around 45% of the area. The results for x momentum
are similar.
Thus it would appear that a 10−4Ucl initial perturbation would produce signif-

icantly more linear behaviour than a 10−2Ucl one. A case 1 10
−4Ucl perturbation

has initial transient energy of 8.23 × 10−8, hereafter denoted by EC1, and the
value for case 2 is 2.26 × 10−9, denoted by EC2. EC2 is approximately one hun-
dredth of the open-loop streamwise vortices transition threshold for the test case,
2.56 − 2.65 × 10−7, as determined by Reddy et al. (1998, p292), further confirm-
ing that transition and its associated non-linear behaviour should not occur from
this initial energy level of the case 2 initial conditions. The transition threshold
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Figure 4.59: Contours of the Non-linearity in the y-momentum Equation,
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∣

∣
, in Case 1 Worst Initial Perturbation of Amplitude

vmax = 10
−4Ucl

for oblique waves is slightly lower at 1.14 − 1.19 × 10−7, and is the lowest of the
scenarios investigated by Reddy et al. (1998, p292).

Steady Transpiration Results

Figure 4.60 displays the steady u and v perturbation contours for 10−4Ucl ampli-
tude sinusoidal transpiration from the upper wall, at a base flow corresponding to
a stable Reynolds number of 500, from both linear and non-linear simulations. The
linear results are the eigenvector of the zero eigenvalue which represents control
actuation at the upper wall, transformed from Fourier space to physical space,
as in figure 2.15 but scaled to 10−4Ucl amplitude sinusoidal transpiration. The
linear and non-linear results are identical for both u and v flow-fields. Thus it can
be concluded that the boundary conditions have been implemented correctly into
the CFD code, and that the code and mesh are capable of accurately modelling
perturbations small enough to be linear.

Small Perturbation Results

Results from worst but small magnitude initial perturbations in non-linear sim-
ulations are now presented. The open-loop initial maximum ṽ is 10−4Ucl, corre-
sponding to an initial transient energy of EC1 (8.23 × 10−8) for case 1 and EC2

(2.26 × 10−9) for case 2. Closed-loop worst initial conditions of equal transient
energy to the corresponding open-loop case are used. Simulation of linear sized
perturbations is less exacting than for larger perturbations, so details of the mesh
and timestep sensitivity study are given later in section 4.4.7. The base flow
energy density is 4/15 ≈ 0.2667. Thus EC1 has approximately 3.1×10−7, and EC2

has 8.5× 10−9, of the base flow energy density.
The case 1 open-loop transient energy from this small initial perturbation, for

both linear (dotted) and non-linear (solid) simulations, is exhibited in figure 4.61.
The results from the linear and non-linear simulations agree well, as might be
expected from the initial small degree of non-linearity, and the same is true for
case 2, shown in figure 4.62. Thus it may be assumed that the non-linear finite
volume and linear spectral simulations are both modelling the linear terms of the
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Figure 4.60: u and v Perturbation Contours from Sinusoidal Upper Wall Tran-
spiration of Amplitude vmax = 10−4Ucl, R = 500, Showing Linear (dashed) and
Non-linear (solid) Simulation Results. (The linear and non-linear results appear
identical.)

uncontrolled flow correctly. The final case 1 flow field (not shown) corresponds to
the unstable eigenvector shown in figure 2.14, and is a Tollmien-Schlichting wave
(Schmid and Henningson, 2001, p64).

Figure 4.61 also shows the behaviour of the tuned estimator on the worst initial
open-loop conditions of energy EC1, for case 1. The non-linear simulation energy
estimate agrees well with the linear simulation. For the case 2 tuned estimator on
worst initial conditions of energy EC2, the agreement is not as good, as shown in
figure 4.62. A discrepancy between the linear and non-linear results grows with
time, until the disturbance begins to decay. This discrepancy may be due to the
use of implicit code to integrate the estimates in the non-linear simulation, to
avoid problems with stiffness. The scheme is stable but possibly inaccurate at the
timestep used.

Figures 4.63 and 4.64 present the closed-loop LQR state feedback transient
energy, from worst initial perturbations of equal energy to their respective open-
loop cases, for both linear (solid) and non-linear (dotted) simulations, for cases 1
and 2 respectively. The results from both the linear and non-linear simulations
again agree well, and both show the stabilization of the flow by the LQR controller.
Thus it may be assumed that the non-linear finite volume and linear spectral
simulations are both modelling the linear terms of the flow controlled by state
feedback correctly, and that the controllers have been correctly implemented in
the CFD code. By integration, the magnitude of the harmonic transpiration fluid
quantity required for case 2 was found to be 0.0243, as compared to 0.0245 by
scaling of the linear simulation results to energy EC2.

These small perturbation non-linear simulations show agreement between peak
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Figure 4.61: Case 1 Open-Loop Transient Energy E vs Time t from Initial Con-
ditions XWorst Scaled to Energy EC1
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Figure 4.62: Case 2 Open-Loop Transient Energy E vs Time t from Initial Con-
ditions XWorst Scaled to Energy EC2
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Figure 4.63: Case 1 LQR Transient Energy E vs Time t from Initial Conditions
XWorst Scaled to Energy EC1
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Figure 4.64: Case 2 LQR Transient Energy E vs Time t from Initial Conditions
XWorst Scaled to Energy EC2
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Figure 4.65: Case 1 LQG Transient Energy E vs Time t from Initial Conditions
XWorst Scaled to Energy EC1

transient energy as computed from the state variables by E = X TQX from (4.23)
and as calculated by direct integration over the mesh using (4.5), repeated here

E =
1

V

∫

vol=V

ρ
~uT~u

2
dvol (4.98)

to within 0.3% for both case 1 and case 2 LQR systems. This result shows that the
calculation of the state variables is substantially correct, and also that the energy
matrix Q is correctly formulated. As a further check, integration of case 2 fluid
quantity transpired in the non-linear simulation is found to closely agree with that
from linear simulation, to within 1%.

The behaviour of the combined tuned LQE estimator and state feedback LQR
controller on the plant from worst initial conditions of energy EC1, for case 1,
appears in figure 4.65. The non-linear simulation energy estimates agree well with
the linear simulation, for both the plant and estimator transient energy. The
agreement is not good for the case 2 estimator from plant initial energy EC2,
as shown in figure 4.62, where again a discrepancy between the linear and non-
linear results grows with time, until the disturbance begins to decay. Although
the behaviour of the estimator in the non-linear simulation differs from that in
the linear simulation, the plant energies agree well. This indicates that the exact
behaviour of the estimator is not critical.
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Figure 4.66: Case 2 LQG Transient Energy E vs Time t from Initial Conditions
XWorst Scaled to Energy EC2

Large Perturbation Mesh Sensitivity Results

Large perturbations which produce significant non-linear terms are much harder
to simulate accurately, and the linear spectral results are of no use for comparison
purposes. Accordingly, mesh and timestep sensitivity studies are performed to
demonstrate that the discretisation is appropriate for the flow under simulation
(Drikakis, 2001). Only open-loop sensitivity studies are performed, which are more
demanding, since closed-loop simulations will be stable and of lower peak energy
levels than the open-loop ones. The initial conditions used are worst perturbations
with energies of 104EC1 and 10

4EC2, for cases one and two respectively.
A second order central differencing scheme is used to discretise the spatial

terms, and a first order implicit Euler scheme is used for time marching in case
2. Ferziger and Peric (2002, p148) note that this scheme is unconditionally stable,
but its accuracy is only first order in time, and it is found useful to employ a
second order implicit Euler scheme for case 1, where time variations are faster.
The schemes may produce oscillatory solutions in space, but nonetheless stable
solutions, where large solution gradients exist and the cell Peclet number (also
known as the cell Reynolds number) is high, for example Pe > 2 on a three-level
fully implicit scheme for the transport equation, as noted by Fletcher (1991, p303).
The cell Peclet number (Versteeg and Malalasekera, 1995, p112)

Pe =
ρu

µ/δx
(4.99)

is a measure of the relative strengths of convection and diffusion at work in a mesh
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cell. The cell Courant number (Ferziger and Peric, 2002, p144)

C =
uδt

δx
(4.100)

is another key parameter in CFD. It compares the timestep δt with the character-
istic convection time δx/u. δx/u is the time required for the convection of a fluid
particle a distance of mesh cell width δx by fluid of velocity u. The maximum
values of these parameters over all cells and co-ordinate directions is of interest.
Although the non-linear simulation code is modified to work in terms of per-

turbations, the Peclet and Courant numbers are influenced by the base flow, and
consequently here these numbers are therefore based on the total flow, i.e. base
flow plus perturbation. The distinction between total flow and perturbation flow
only occurs for the streamwise (x) direction. These numbers are calculated using
quantities ρ, u, µ, δx, δt from the CFD analysis which are dimensionalised, as in
section 4.3.3.
Figure 4.67 presents case 1 open-loop transient energy against time, starting

from the worst initial conditions, for a variety of mesh and timestep combinations.
It can be seen that for approximately the first 60 non-dimensional time units, the
N = 100 mesh results are very close for timesteps δt 0.001 and 0.0001 seconds, and
thereafter the results remain relatively close. It can therefore be assumed that the
timestep independence has been achieved for this mesh at timestep δt = 0.001s.
A finer mesh of N = 150, (with timestep δt = 0.0005s, to maintain approximately
the same peak Courant number as N = 100 at timestep δt = 0.001s, as shown
in figure 4.68), produces results close to those of the N = 100 mesh at timestep
δ = 0.001s for approximately the first 27 time units. The agreement is better in
terms of velocity, since this is proportional to the square root of the energy, as
shown in figure 4.69 for the u velocity component at monitoring points at 25%
channel height intervals. The channel centre-line is at y = 0, and the walls are at
y = ±1, where, in the open-loop case, all velocities are zero. In terms of velocity,
results from the two meshes agree very well for approximately 20 time units, and
fairly well until around 60 time units. The results for velocity component v are
similar. It may be concluded that reasonable mesh independence has been achieved
between the N = 100 and N = 150 results, i.e. for N = 100 and above.
The N = 150, timestep δt = 0.0005 results are themselves timestep indepen-

dent, as can be seen by the close agreement with N = 150 timestep δt = 0.0001
energy results, shown in figure 4.67. This might be expected by the maintenance
of the Courant number for the N = 150, δt = 0.0005s results. It may be con-
cluded that the N = 100, δt = 0.001s discretisation is both mesh and timestep
independent for case 1.
Results from a variety of mesh and timestep combinations for case 2 open-

loop transient energy against time, starting from the worst initial conditions, are
shown in figure 4.70. It can be seen that the N = 100 mesh results are very close
for timesteps 0.01s and 0.003s. It can therefore be assumed that the timestep
independence has been achieved for this mesh at timestep δt = 0.01s. A finer
mesh of N = 150, (with timestep δt = 0.005s, to maintain approximately the
same peak Courant number as N = 100 at δt = 0.01s, as shown in figure 4.71),
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produces results very close to those of the N = 100 mesh. The agreement is better
than for case 1, and in terms of velocity better still (not shown), and reflects case
2 being more amenable to simulation in general. It may be concluded that mesh
independence has been achieved between the N = 100 and N = 150 results, i.e.
for N = 100 and above. It may be concluded that the N = 100, δt = 0.01s
discretisation is both mesh and timestep independent for case 2.
The Peclet numbers of the simulations of both test cases are very high, as

shown in figures 4.72 and 4.73, and may lead to spatial oscillations, which are
investigated in section 4.4.7.

Large Perturbation Results

Results are now presented for transient simulations, from initial conditions which
are the worst for the particular eigensystem, with energy corresponding to that
of a vmax = 10

−2Ucl open-loop worst initial perturbation. For case 1 this energy
is 104EC1 = 0.00082, and for case 2 it is 104EC2 = 0.000023. Contour plots of
velocity after the first timestep from these increased energy initial conditions are
close to scaled versions of the linear results, and thus no substantial non-linear
effects are initially present and these scaled solutions to the linearised Navier-
Stokes equations remain good solutions to the full Navier-Stokes equations, and
are valid initial conditions. 104EC2 is approximately a hundred times the open-
loop streamwise vortices transition threshold for the test case, 2.56− 2.65× 10−7,
as determined by Reddy et al. (1998, p292), confirming that transition and its
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associated non-linear behaviour may occur from this initial energy level of the
case 2 initial conditions. The base flow energy density is 4/15 ≈ 0.2667. Thus
104EC1 has approximately 3.1× 10−3, and 104EC1 has 8.5× 10−5, of the base flow
energy density.
Plots of transient energy against time these for larger initial perturbations

are presented with logarithmic energy axes, as these axes show the initial energy
growth and final decay in more detail. Logarithmic axes tend to compress results of
similar magnitude, however, the non-linear results remain distinct from the scaled
linear ones. Plots with linear axes are provided in appendix B.

Case 1 Open-Loop Non-Linear Simulation Figure 4.74 shows case 1 open-
loop transient energy against time, from this larger initial perturbation, for both
linear and non-linear simulations. The linear and non-linear simulations agree ini-
tially for a period of non-normal growth up to time approximately 10 units. There-
after the linear simulation increases swiftly to complete the non-normal growth,
and thence continues with modal growth, but the non-linear simulation under-
goes an oscillatory transient, and reaches a saturated state, in which the transient
energy grows relatively slowly, the value at time 150 being 0.0084 and later at
300 being just 0.0122 (not shown). Although the non-linear simulation deviates
from the linear results during the initial non-modal phase, the earliest growth
appears to be at a rate identical to that of the linear system non-modal phase.
The non-linear analysis deviates as the extra terms in the non-linear simulation
(discarded from the linear model in section 2.2.4) couple the equations for differ-
ent modes, so that energy can be transferred between modes, which is not the
case even for the non-normal behaviour of a linear system. Also, the non-linear
analysis allows the presence of harmonics of the wavenumbers α and β, since, for
example, wavenumber 2α (wavelength π/α) will also fit between the wavenum-
ber α periodic boundary conditions imposed at a streamwise separation of 2π/α,
whereas the Fourier assumption in the spectral analysis allows only the presence
of disturbances at spatial frequencies α and β. In the non-linear simulations, the
non-linear coupling terms may therefore excite disturbances at harmonics of the
wavenumbers α and β.
As for LQE state estimation, figure 4.74 also presents the case 1 open-loop

estimated transient energy against time. The performance of the linear estimator
on the non-linear plant model is poor, achieving a peak energy of only 0.0014 as
compared to the plant which reaches 0.017. The estimator is unable to match the
final slow energy growth of the plant, and is effectively diverging.

Case 2 Open-Loop Non-Linear Simulation The case 2 open-loop transient
energy time history, from this larger initial perturbation, for both linear and non-
linear simulations, is displayed in figure 4.75. The linear and non-linear simulations
agree initially for a period of non-normal growth up to time approximately 50 units.
Thereafter the linear simulation increases to complete the non-normal growth to
transient energy of 0.111, corresponding to an diachronic transient energy bound
of 4896.94, and thence continue with decay, but the non-linear simulation reaches
a saturated state with peak transient energy of 0.0240 at time approximately 124.5

178



0 50 100 150
10

−10

10
−8

10
−6

10
−4

10
−2

t

E

Non−linear E
 
  

Non−linear E
Est

Linear E
 
      

Linear E
Est

    

Figure 4.74: Case 1 Open-Loop Transient Energy E vs Time t, from Initial Con-
ditions XWorst Scaled to Energy 10

4EC1

units, and thereafter decays. The decay continues beyond t = 1500 (not shown), at
approximately the same rate as at t = 1000. As for case 1, although the non-linear
simulation soon deviates from the linear results, the earliest growth appears to be
at a rate identical to that of the linear system.

Regarding estimation, figure 4.75 also shows the open-loop estimated transient
energy against time. In this case, the performance of the linear estimator on the
non-linear plant model overshoots, and it reaches almost twice the peak plant
energy level, and thereafter slowly converges with the plant’s gradual decay. The
overshoot of the linear estimator is consistent with the non-linear plant saturating.

Case 1 LQR State Feedback Non-Linear Simulation Case 1 closed-loop
LQR transient energy versus time, for both linear and non-linear simulations, is
presented in figure 4.76, and also in linear form as B.2. The controller reduces
the transient energy, and thus the difference between the linear and non-linear
simulation is much reduced, as compared to the open-loop case. The controller is
able to stabilise the non-linear simulation, but it takes significantly longer than in
the linear simulation.

Figure 4.77 displays the upper wall transpiration velocities at location x = π,
the mid point of the domain in x, for the same perturbation. The wall transpiration
velocities required in the non-linear simulation are lower than in the linear one,
but are required for longer, which is consistent with the transient energy.
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Case 2 LQR State Feedback Non-Linear Simulation Regarding case 2,
figure 4.78 presents the closed-loop LQR transient energy versus time, from this
larger initial perturbation, for both linear and non-linear simulations. The con-
troller reduces the transient energy, and the difference between the linear and
non-linear simulation is somewhat reduced, as compared to the open-loop case.
The controller has reduced the open-loop non-linear peak transient energy from
0.024 to 0.0095, a reduction of approximately 60% which is not nearly such a great
reduction as that in the linear simulation where the diachronic transient energy
bound falls from 4896.94 to 848.80, a reduction of approximately 83%. The peak
non-linear LQR transient energy of 0.0095 is approximately half the linear value.
The controller is acheiving a lower energy density on the non-linear simulation, as
energy levels are in general lower in the non-linear simulation.

Figure 4.79 shows the wall transpiration velocities at location z = 0.768 for the
same perturbation. This z value is the quarter point of the domain in z, and is
chosen since the linear model velocity variation in z for case 2 is imaginary, and
thus a sine wave and zero at the mid point of the domain. The wall transpiration
velocities required in the non-linear simulation are slightly lower than those in
the linear one. By integration, the magnitude of the harmonic transpiration fluid
quantity required was found to be 2.07, as compared to 2.45 by scaling of the linear
simulation results to 104EC2.

The large perturbation CFD simulations for both case 1 and case 2 LQR sys-
tems showed poor agreement between peak transient energy as computed from the
state variables by E = X TQX from (4.23) and as calculated by direct integration
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Figure 4.78: Case 2 LQR Transient Energy E vs Time t, from Initial Conditions
XWorst Scaled to Energy 10

4EC2

0 200 400 600 800 1000
−2

0

2

4

6

8

10
x 10

−3

t

v(
y=

1,
z=

0.
76

8)

Non−linear v
Linear v    

Figure 4.79: Case 2 LQR Wall Transpiration Velocity at z = 0.768 vs Time t, from
Initial Conditions XWorst Scaled to Energy 10

4EC2

182



0 50 100 150
10

−10

10
−8

10
−6

10
−4

10
−2

t

E

Non−linear E
 
  

Non−linear E
Est

Linear E
 
      

Linear E
Est
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over the mesh using (4.5), repeated here

E =
1

V

∫

vol=V

ρ
~uT~u

2
dvol (4.101)

For case 1, X TQX under estimates E from direct integration by 77% and for case
2 it under estimates E by 44% . This is thought to be due to disturbances at wave
numbers other than α, β being present at peak E in the non-linear magnitude CFD
simulation, since the non-linear term in the Navier-Stokes equations (see section
2.2.4) couples wavenumbers and is capable of transferring energy between them.

Case 1 LQG Output Feedback Non-Linear Simulation Figure 4.80 presents
case 1 LQG transient energy versus time. As might be expected, the estimator
performs poorly. Surprisingly the estimates it provides are sufficient for the LQR
state feedback to stabilise the plant, and at a lower peak transient energy than on
the linear plant (0.014), and only a slightly higher value than the LQR controller
achieves on the non-linear plant (0.011). The wall transpiration velocities re-
quired in the non-linear simulation are comparable to those required in the linear
one, as shown in figure 4.81 of the wall transpiration velocities at location x = π
for the same perturbation.

Case 2 LQG Output Feedback Non-Linear Simulation Figure 4.82 shows
case 2 LQG transient energy versus time. The linear controller is unable to stabilize
the non-linear plant model at this level of initial disturbance, even though the
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initial energy of 0.000023 is much less than the energy of case 1 (0.00082), which
is stabilised by its controller. Since the LQR controller is able to stabilise case
2 at this energy level, the deficiency appears to be in the estimator, and indeed
its behaviour is poor, as its estimated energy overshoots the plant energy, and
diverges erratically from time 720 onwards. Since an implicit method is employed,
to circumvent stiffness problems, the estimator integration scheme is guaranteed to
be stable, and thus integration instability is not the cause of this erratic behaviour.
It is more likely that once the linear estimator overshoots the saturated non-linear
plant, the control signals generated destabilise the plant.
Results from a smaller initial disturbance corresponding to an open-loop worst

initial condition with vmax = 7.5×10−3Ucl, i.e. energy of 5625EC2 are presented in
figure 4.83. This energy is still approximately 50 times the transition threshold for
streamwise vortices as determined by Reddy et al. (1998, p292). The linear con-
troller is able to stabilize the non-linear plant model at this smaller level of initial
disturbance, approximately half that of the level which could not be stabilised.
This time the estimated energy overshoots but not sufficiently to destabilise the
system. The transient energy is limited to 0.0075, as compared to the open-loop
plant which reaches approximately 0.012 (not shown).

Flow-Field Results

The CFD flow-field results are scrutinised to determine the existence of oscilla-
tions in the contours, which may occur due to the use of a second order central
differencing scheme for spatial terms and implicit Euler scheme for time marching
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Figure 4.82: Case 2 LQG Transient Energy E vs Time t, from Initial Conditions
XWorst Scaled to Energy 10
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Figure 4.83: Case 2 LQG Transient Energy E vs Time t, from Initial Conditions
XWorst Scaled to Energy 5625EC2
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Figure 4.84: Case 1 Open-Loop Peak u and v Velocity Contours, from Initial
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4EC1, at t = 21, Circled in E vs Time t

(Ferziger and Peric, 2002, p148).
Figure 4.84 displays the flow-field velocity contours near the peak transient

energy of the non-linear simulation of initial energy 104EC1 for case 1, open loop,
on the mesh of figure 4.4. Spatial oscillations are apparent but only in the zero v
velocity contour to any degree (e.g. near x = 2.6, y = 0.8). These are not thought
to affect the accuracy of the simulation significantly. Figure 4.85 shows the same
results with the mesh refined in the streamwise direction by a factor of 4, reducing
the streamwise Peclet number by a factor of 4, making the oscillations much less
apparent.
Figure 4.86 shows the final (t = 150) spanwise vorticity, ∂v/∂x − ∂u/∂y. Pe-

riodic ejections from alternate walls are seen, similar to those found by Jimenez
(1990, p275) from random initial perturbations allowed to grow.
The flow-field velocity contours near the peak transient energy of the non-

linear simulation of initial energy 104EC1 for case 1, with the LQG controller, are
presented in figure 4.87, which shows that no spatial oscillations are apparent. The
peak transient energy is lower than for the open-loop case, and the LQR case is
lower still.
Figure 4.88 shows the flow-field velocity contours near the peak transient energy

of the non-linear simulation of initial energy 104EC2 for case 2, open loop, on the
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Figure 4.88: Case 2 Open-Loop Peak u, v, w Velocity Contours, from Initial Con-
ditions XWorst Scaled to Energy 10

4EC2, at t = 120, Circled in E vs Time t

mesh of figure 4.5. No spatial oscillations are apparent.

The flow-field velocity contours near the peak transient energy of the non-
linear simulation of initial energy 5625EC2 for case 2 with the LQG controller, are
presented in figure 4.89. This magnitude of initial conditions was the largest able
to be stabilised by the LQG controller. Again, no spatial oscillations are apparent.
Sinusoidal transpiration at the walls can be clearly seen in the v flow-field.

Thus no successfully controlled non-linear simulation results exhibit spatial
oscillations. The energy results from the case 1 open-loop simulations which do
show spatial oscillations are not thought to be adversely affected.

4.4.8 Summary of Simulation Results

Tables 4.4 and 4.5 show a summary of the linear and non-linear simulation results.
At the perturbation sizes used here, non-linear effects reduce the energy of large
perturbation simulations below the level of scaled small perturbation results, with
the exception of case 1 LQR state-feedback, where the levels are comparable, and
the case 2 LQG unstable large perturbation simulation.
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Table 4.4: Case 1 Transient Energy E from Non-linear Simulations from Small
and Large Initial Disturbances. (∗ indicates unstable.)
System maxy E(t = 0) maxt<150E maxt<150Eest

ṽ(t = 0)
OL/ 10−4 EC1 7.16× 10−6@t = 150∗ 7.08× 10−6@t = 150
LQE 10−2 104EC1 1.70× 10−2@t = 21.2 1.44× 10−3@t = 17.6
LQR EC1 9.99× 10−7@t = 18.3 -

104EC1 1.10× 10−2@t = 17.5 -
LQG EC1 2.45× 10−6@t = 19.2 1.68× 10−8@t = 21.0

104EC1 1.36× 10−2@t = 16.1 4.58× 10−4@t = 18.4
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Table 4.5: Case 2 Transient Energy E from Non-linear Simulations from Small
and Large Initial Disturbances (∗ indicates unstable.)
System maxy E(t = 0) maxt<600E maxt<600Eest

ṽ(t = 0)
OL/ 10−4 EC2 1.10× 10−5@t = 378.6 9.16× 10−6@t = 383.2
LQE 7.5× 10−3 5625EC2 1.20× 10−2@t = 161.2 3.15× 10−2@t = 204.9

10−2 104EC2 2.40× 10−2@t = 124.5 4.77× 10−2@t = 170.4
LQR EC2 1.90× 10−6@t = 187.0 -

104EC2 9.51× 10−3@t = 89.7 -
LQG EC2 2.12× 10−6@t = 196.3 1.79× 10−6@t = 227.7

5625EC2 7.49× 10−3@t = 173.8 9.96× 10−3@t = 238.2
104EC2 3.12× 10−2@t = 600∗ 2.30× 10−2@t = 481.3

4.4.9 Engineering Practicalities

It is appropriate to consider the practicalities of an engineering application of
the controllers synthesized and simulated in this chapter, noting that the control
of single wavenumbers of periodic disturbances is in itself a severe limitation in
controller performance.

The peaks of closed-loop LQG disturbances, as shown in figures 4.80 and 4.83,
are at non-dimensional times of approximately 20 and 200 units for test cases 1 and
2 respectively. With air as a working fluid, in a channel of half-height h equal to
0.01m, moving at the low speed of 15m/s as described in section 2.7, the peak times
become 0.013s and 0.13s for cases 1 and 2 respectively, and for water as a working
fluid moving at the low speed of 1m/s, they become 0.2s and 2s respectively.
These time intervals need to be discretised into sufficiently small timesteps for the
controller to act reliably (which may require a controller synthesized in discrete
rather than continuous time, for example see Zhou et al. (1996, chapter 21)), and
yet also enable sufficient computation time in each timestep for the measurement
fast Fourier transform (2.47) and calculation of the actuation signal (see section
4.2), where the controllers described in this chapter are based on a discretisation
of N = 100, and are of order approximately 2N . The actuation signal must also be
converted to its physical sinusoidal form (4.92) and distributed to the independent
actuators by the beginning of the next timestep.

In a channel of half-height 0.01m, the wavelengths would be approximately
0.06m in the streamwise direction for test case 1, and approximately 0.03m in
the spanwise direction for test case 2. These distances would need to contain
both discrete sensors and actuators in sufficient quantities to accurately detect
disturbances and control them, in two-dimensions to cover the general case, and
hence the need for MEMs type devices. Significant progress has occurred in the
development of MEMs wall shear sensors (Ho and Tai, 1998, p597-600), but the
requirements placed on actuators by the controllers synthesised in this chapter are
formidable. Their diaphragms or pistons must provide not only the velocities and
quantities of transpiration fluid calculated in section 4.4.4 by means of sufficient
power and capacity, but significantly more, since their orifices may only cover a
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limited proportion of the channel walls, to leave room for measurement sensors and
the material of the wall. For case 2, the controller synthesis model has assumed
a particular phase for the disturbances in section 2.7, in order to halve the model
dimensions, and this is unlikely to occur in practice. Use of a full model will require
longer computation times for both controller synthesis and operation.

Thus physical implementation presents significant difficulties, even for low fluid
centreline velocities as compared to typical engineering fluid velocities. It is more
viable to consider an experimental research laboratory implementation, where the
use of a larger channel half-height reduces velocities still further. For a channel
half-height ten times as large i.e. h = 0.1m, for the same Reynolds numbers, time
scales and length scales would increase tenfold, providing more time to discretise
and compute control signals, and providing more room for sensors and actuators,
which could thus be larger and easier to manufacture, although with larger inertia.
Regarding the base flow, any channel would require careful design, and in the first
instance operation below the critical Reynolds number (with controllers designed
for such operation), so that the performance of the controllers on introduced dis-
turbances, rather than spontaneous ones, could be investigated. An extra initial
channel length of several half-heights and wavelengths would be necessary in order
to fully develop channel flow and periodicity respectively. The appropriate degree
of discretisation of measurement and actuation would also need to be determined
and implemented, since too coarse a discretisation is likely to lead to interactions
with other unmodelled wavenumbers and a deterioration in performance, and too
fine increases complexity and difficulty of manufacture. It is unlikely that the
worst initial conditions could be accurately set up, but these being the worst,
others would suffice, although they would need to be at the correct periodicity.
For research purposes, the actuators themselves could be used to introduce initial
disturbances, which would then be of the appropriate periodicity, and of the phase
expected in section 2.7 for test case 2.

4.5 Conclusions

Section 4.2 described the synthesis of optimal feedback controllers (LQR) and
optimal estimators (LQE) for the state-space model derived in chapter 2. Curtis-
Clenshaw quadrature for integration of the perturbation energy was introduced, as
a method of generating LQR state variable weights. Tuned process noise weights
for the optimal estimator synthesis were chosen to reflect the possible size varia-
tions in disturbances across the channel, as an alternative to uniform weights.

Section 4.3 described the linear and non-linear simulations undertaken on the
open- and closed-loop systems. Following a restatement of the method for deter-
mining the ‘worst’ initial conditions which lead to the highest transient energy in
linear systems, the modal and non-modal components of the transient energy were
identified, the condition for its monotonic decay in the current system correctly
identified, and an upper bound dependent on the initial conditions found.

For the non-linear simulations, the boundary conditions required to simulate
the chosen test cases as two dimensional models were introduced, and the modifi-
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cations to the CFD code required to accurately simulate small perturbations were
derived. The implementation of the controller and estimator into the CFD code
was also described.

Section 4.4 presented and discussed the results obtained during the synthesis
of controllers and estimators, and during the linear simulations. An ARE solver
based on the Hamiltonian matrix produced the lowest relative residuals for con-
troller and estimator synthesis, except for case 2 estimator where a solver based
on the eigenstructure approach proved the best in this respect. Convergence of the
LQR controlled system diachronic transient energy bound with discretisation N
proved fast, by N = 30, but for the LQE estimator, convergence required N = 70,
implying that convergence of the combined closed-loop LQG estimator and con-
troller system would also require N = 70. Although there exist procedures for
reducing the order of controllers, the results are no longer optimal, as noted by
Anderson and Liu (1989, p803), and the effect on non-normal transient energy
growth is unclear.

The tuned estimator provided the faster estimator poles, and proved better at
following the plant worst case initial conditions from zero initial estimates, than
the uniform estimator. The uniform estimator provided a lower diachronic error
energy bound, but even this appears unrealistically high. Consequently, further
simulations were primarily based on the tuned estimator provided with zero initial
estimates. The determination of the plant diachronic transient energy bound lay
within bounds provided by the Frobenius norm, and for the open-loop case 2,
agreed closely with published data. Careful scrutiny showed that the plant worst
initial conditions suffered from non-physical oscillations at the wall, which were
easily cured by filtering by the 2/3 rule. Such oscillations cause no problem for
the linear (spectral) simulations, but were detrimental to the low-order wall shear
stress calculations in the non-linear (finite volume) simulations. The filtering had
a very small effect on the energy content, and on the velocity profiles, other than
at the wall.

The plant worst initial conditions for case 2, open loop, were investigated re-
garding their potential for generating non-modal growth. Consecutive mode pairs
were found to be highly non-normal, but only mode pair 4, 5 was found to have any
great potential for non-modal growth, as measured by the upper bound developed
earlier. The closed-loop (LQR) mode pairs were not found to be significantly less
non-normal, although the potential for non-modal growth was reduced, and more
mode pairs were involved.

The linear simulations from the worst plant initial conditions were able to accu-
rately reproduce the diachronic transient energy bound predicted. A discretisation
of N = 30 was adequate, except where an estimator was involved, when N = 50
was required. For case 2 open loop, mode pair 4, 5 indeed provided most of the
transient energy growth. The tuned estimator was able to follow the open-loop
non-normal growth better than the uniform one in both test cases 1 and 2. Closed
loop, the case 2 estimator performed better than the case 1, which provided poor
estimates in the output feedback controller, but this was able to stabilise the flow
nonetheless.

Although the sinusoidal transpiration was guaranteed to have a zero net flux

193



over whole streamwise or spanwise periods, and thus also over any time interval, its
magnitude was such that at any particular point the transpiration of comparatively
large quantities of fluid were required. For an initial perturbation energy of 1%
of base flow in linearised case 1 under LQR state feedback control, the velocity
of fluid transpired would peak at 0.15 times the base flow centreline velocity, and
the quantity of fluid transpired locally would peak at approximately 0.30 times
the channel half-height, albeit on a temporary basis. For case 2 the velocity of
fluid transpired would peak at 0.090 times the base flow centreline velocity, and
the quantity of fluid transpired locally would peak at approximately 26.6 times the
channel half-height. Furthermore, for case 2, this quantity of fluid is transpired
permanently, i.e. any reservoirs would not return to their initial levels.

This volume of fluid would require a large associated reservoir or redistribution
system within each spatial period. Controller implementation schemes mooted,
for example as described by Ho and Tai (1998), envisage the use of microelectrical
machines (MEMs) based on small reservoirs, but these schemes would appear
unable to provide the quantities of fluid required for optimal control of the test
cases based on early transition considered here.

The modelling (chapter 2) and linear results were scrutinised prior to the non-
linear simulations, in order to determine the appropriate level of discretisation for
the controller and estimator. The overriding requirement appeared to be the need
for accurate modelling of the wall gradients in the estimator plant model, and thus
N = 100 was selected for all configurations. LQR state feedback required less, but
was given the same value for overall consistency.

The magnitude of linear sized perturbations was determined from case 1 open-
loop spectral results at vmax = 10−4Ucl, by estimating the size of the non-linear
terms omitted. The transpiration flow-field was also determined from the integra-
tor modes of the linear results. The modified non-linear code was able to accurately
reproduce the transpiration flow-field for linear sized levels of transpiration, thus
proving that the transpiration boundary conditions were correctly implemented.

Non-linear simulations on linear sized perturbations faithfully reproduced the
linear simulation results, with the exception of small discrepancies in the open-loop
estimation for case 2, caused by the use of implicit estimator integration to avoid
problems with stiffness. The overall agreement between the linear spectral results
and the independent finite volume results at low levels of disturbance provides
good evidence that both are correct under these conditions.

A mesh and time step sensitivity study was performed before proceeding to full
non-linear simulations. The open-loop results for cases 1 and 2 from non-linear
sized perturbations (vmax = 10

−2Ucl) were shown to be both mesh and time step
independent, although case 1 proved more difficult, requiring a 2nd order implicit
scheme in time. Flow-field plots showed the presence of spatial oscillations in the
velocity contours for case 1 open-loop, as might be expected at such high Peclet
numbers. These were merely in the zero contour and were not regarded as a source
significant error, especially since the closed-loop behaviour is of more interest in
this thesis. The closed-loop simulations reached lower energy levels and did not
show oscillations, nor did any case 2 simulations.

Non-linear simulations of the open-loop plant from large (non-linear sized,
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vmax = 10−2Ucl) worst initial perturbations showed that the flow saturates in
case 1, but is nonetheless unstable, albeit on a long timescale. Case 2 also satu-
rates, but appears stable. Although both simulations soon deviate from the linear
results, initially they both grow at the non-normal rate of the linear simulations.
On the open-loop plant, the case 1 estimator effectively diverges, but the case 2
estimator behaves well.

Non-linear simulations of the plant with LQR state feedback from large worst
initial perturbations again saturate but remain stable. The state feedback reduces
the peak transient energy below open-loop values. Thus the linear and non-linear
results are closer than the open-loop results. The transient energy as calculated
from the state variables is well below that of the non-linear flow-field for both test
cases, and the discrepancy is believed to be due to non-linear terms transferring
energy to other wavenumbers, which the linear controller has no knowledge of. By
integration, the magnitude of the harmonic transpiration fluid quantity required
for case 2 from large initial perturbations was found to be 2.07, as compared to 2.45
by extrapolation of the linear simulation results to the energy level used, which is
consistent with saturation and diversion of energy to other wavenumbers leading
to lower control actuation.

In non-linear simulations of the output feedback LQG system, from large worst
initial perturbations, the case 1 estimator barely registers any energy, but its esti-
mates are sufficient for the controller to stabilise the non-linear plant. For case 2,
the LQG controller is unable to stabilise the non-linear plant at this level of initial
perturbation. The estimator initially behaves well, but overshoots and diverges,
leading the controller to destabilise the plant. This result is surprising, since the
initial energy of case 2 is significantly less than that of case 1. A possible explana-
tion is that the poor estimation in case 1 LQG simulations at linear perturbation
levels leads to no overshoot at larger levels despite saturation occurring, but the
good estimation in case 2 at linear perturbation levels leads to an overshoot at
larger levels. From an initial perturbation of half this energy level, the estima-
tor energy again overshoots the plant energy, but it does not diverge, and the
controlled plant keeps the transient energy well below the open-loop value.

This study has not investigated the effects of uncertainty such as modelling
errors, plant disturbances and measurement noise, on closed-loop performance.
Although LQG control contains a specific model for disturbances and noise, this
model does not adequately address their uncertainty, for example see Zhou et al.
(1996, p214). Further study would require investigation of controller robustness
to modelling uncertainty as performed by Bewley and Liu (1998) and Baramov et
al. (2004).

To summarise, this chapter has described the synthesis and simulation of op-
timal controllers and estimators for the spectral state-space model of linearised
plane Poiseuille flow developed in chapter 2, which uses the bases investigated
in chapter 3 to impose the boundary conditions. The optimal controllers were
synthesized using a correct formulation of the energy matrix for state variable
weights, and the estimators were synthesized using novel process noise weights
which resulted in better estimation of non-modal growth than estimation using
uniform weights. Significantly higher levels of discretisation were required for con-
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vergence of the estimator synthesis in terms of transient energy growth than for
convergence of the controller, a confirmation of results found in chapter 2 for the
convergence of the model dynamical properties. Linear simulations from the worst
initial conditions confirmed the synthesis results of stabilisation and reduced tran-
sient energy growth, and also showed that significant velocities and local volumes
of transpiration fluid were required for both test cases, indicating the need for
further investigations into actuation. Thus chapter 5 investigates tangential tran-
spiration, and chapter 6 describes the synthesis and simulation of controllers with
limited control effort.
An independently derived finite-volume Navier-Stokes solver was employed for

open- and close-loop non-linear simulations of the controllers and estimators. The
magnitude of linear-sized initial worst perturbations was determined by examining
the size of the non-linear terms in the Navier-Stokes equations. Once the non-linear
solver was modified to compute just the flow perturbation, it was able to accu-
rately reproduce the steady-state transpiration flow field for small transpiration, as
determined in chapter 2, and when supplied with small initial conditions, it accu-
rately reproduced the results of the linear simulations of the open and closed-loop
systems, and thus validated the results independently. Careful mesh and timestep
sensitivity studies were performed to ensure that the non-linear solver produced
accurate results from larger initial worst perturbations which would generate sig-
nificant non-linearity. Non-linear simulations from these larger initial conditions
showed initial growth at the non-normal rate from linear simulations, and thus
the relevance of linear control, but the flow soon saturated. The state feedback
controllers were able to maintain stability and reduced transient energy growth,
thus providing loci in the basin of attraction of the full closed loop system. The
state estimators sometimes over-estimated the saturated flow, which could lead
to destabilisation of the flow when controlled by output feedback. The non-linear
flow energy density was greater than that indicated by the state feedback con-
troller state variables, indicating the probable diversion of energy to harmonics of
the wavenumbers considered, and motivating further work to control the harmon-
ics.
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Chapter 5

Tangential Actuation

5.1 Introduction

This chapter shows how the existing controller synthesis model, described in chap-
ter 2, can be modified to include independent tangential actuation in addition to
wall-normal actuation, thus providing extra control degrees of freedom. Simulta-
neous tangential and wall-normal actuation may be interpreted as directable or
vectored transpiration. Few results exist regarding the application of LQR state
feedback via tangential or vectored actuation to plane Poiseuille flow. Balogh et
al. (1999, 2000, 2001) prove global Lyapunov stabilisation with tangential actua-
tion for very low Reynolds number flow (R <1/8). Jovanovic and Bamieh (2005)
indicate that wall-normal and spanwise body forces have a stronger influence on
velocity than do streamwise body forces. For the test cases considered in this the-
sis, the Reynolds number is much higher (5000-10000), and linear stabilisation via
wall boundary conditions is investigated. Tangential actuation may be achieved
by wall mounted jets or rollers (Balogh et al., 2001). Although rollers, like jets,
have constraints on acceleration and velocity due to inertia and friction, they have
no constraint on cumulative displacement, unlike jets which must draw fluid from
a source.

Section 5.2 describes the additional basis functions and control inputs re-
quired for simultaneous wall-normal and tangential actuation. Section 5.3 presents
changes to the model dynamics arising from tangential actuation, and the results
of controller synthesis. Subsequently, the worst initial conditions which generate
the diachronic transient energy bound with tangential actuation are computed,
and the results of linear simulations are described. Section 5.4 shows the results
of non-linear simulations on small and large worst initial conditions under LQR
control via tangential actuation. Finally section 5.5 draws conclusions about tan-
gential actuation as compared to wall-normal actuation.
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5.2 Modifications to the State-Space Model

5.2.1 The Velocity and Vorticity Representation

The state-space model developed in chapter 2 represents wall-normal velocity and
wall-normal vorticity as (2.87,2.88), repeated here

ṽ(y, t) =
N
∑

0

ΓDNn (y)av,n(t) + fu(y)q̃u(t) + fl(y)q̃l(t)

η̃(y, t) =
N
∑

0

ΓDn (y)aη,n(t) (5.1)

where ΓD are homogeneous combinations of Chebyshev polynomials, and ΓDN are
homogeneous combinations of Chebyshev polynomials with zero wall derivative, as
described in section 2.5. fu(y) is a function which is unit at the upper wall and zero
at the lower wall respectively, and with zero derivatives at both walls, and similarly
but reversed for fl(y). Thus the velocity-vorticity formulation boundary conditions
for wall transpiration with no-slip, i.e. zero tangential velocity (2.76,2.28)

ṽ(y = 1, t) = q̃u(t)

ṽ(y = −1, t) = q̃l(t)

ṽ′(y = 1, t) = 0

ṽ′(y = −1, t) = 0

η̃(y = 1, t) = 0

η̃(y = −1, t) = 0 (5.2)

are fulfilled. q̃u(t) and q̃l(t) are the time integrals of the control inputs at the upper
and lower walls respectively, on the wall-normal velocity ṽ, as described in section
2.6.1.

5.2.2 Simultaneous Wall-Normal and Tangential Wall Ve-

locity Boundary Conditions

Non-zero tangential wall velocity boundary conditions, ũ 6= 0, w̃ 6= 0, lead to mod-
ified velocity-vorticity boundary conditions, as a result of the continuity equation
and Fourier assumptions.

Boundary Conditions on Velocity Components ũ, ṽ, w̃

If the normal (ṽ) and tangential (ũ, w̃) fluid velocities at the wall are each in-
dependently set by the controller, the boundary conditions in terms of velocity
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components become

ũ(y = 1, t) = p̃u(t)

ũ(y = −1, t) = p̃l(t)

ṽ(y = 1, t) = q̃u(t)

ṽ(y = −1, t) = q̃l(t)

w̃(y = 1, t) = r̃u(t)

w̃(y = −1, t) = r̃l(t) (5.3)

where p̃u to r̃l are the Fourier coefficients of the velocities at the walls, at wavenum-
ber pair α, β. Physically u(y = 1, t) = <(p̃ue(αx+βz)) by analogy with (2.32), i.e.
the distribution of the u velocity is sinusoidal, and similarly for the other wall and
other velocity components. These boundary conditions must be recast in terms of
the wall-normal velocity and vorticity.

Relationships between Velocity Components and Vorticity

From section 2.4.2, equations (2.42), (2.44) and (2.45) state

αũ+
∂ṽ

∂y
+ βw̃ = 0 (5.4)

η̃(y, t) = βũ− αw̃ (5.5)

ũ =


α2 + β2

(

α
∂ṽ

∂y
− βη̃

)

w̃ =


α2 + β2

(

β
∂ṽ

∂y
+ αη̃

)

(5.6)

5.2.3 Case 1

For case 1 only velocity components u and v exist, and only the equations in ṽ are
modelled. Furthermore β = 0, so (5.4) becomes

∂ṽ

∂y
= −αũ (5.7)

and the boundary conditions (5.3) become

ũ(y = 1, t) = p̃u(t)

ũ(y = −1, t) = p̃l(t)

ṽ(y = 1, t) = q̃u(t)

ṽ(y = −1, t) = q̃l(t) (5.8)

Substituting ũ from (5.7) in these boundary conditions gives

ṽ′(y = 1, t) = −αp̃u(t)
ṽ′(y = −1, t) = −αp̃l(t)
ṽ(y = 1, t) = q̃u(t)

ṽ(y = −1, t) = q̃l(t) (5.9)
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in the velocity-vorticity formulation. Thus the boundary conditions on ũ are re-
placed by boundary conditions on the gradient of ṽ. Thus in the code ṽ can be
represented by

ṽ(y, t) =
N
∑

0

ΓDNn (y)av,n(t) + fu(y)qu(t) + fl(y)ql(t)

+gu(y)q
u
u(t) + gl(y)q

u
l (t) (5.10)

where gu is a function which is homogeneous at both walls, but has unit derivative
at the upper wall, and zero derivative at the lower wall, and vice versa for gl, and

quu(t) = −αp̃u(t)
qul (t) = −αp̃l(t) (5.11)

so in (5.8)

ũ(y = 1, t) = quu(t)/α

ũ(y = −1, t) = qul (t)/α (5.12)

Control inputs qu and ql on v are joined by q
u
u and q

u
l on u. To implement the

extra control inputs, functions fu and fl are joined by gu and gl in (2.91), which
ultimately form the input matrix B.

5.2.4 Case 2

For case 2, velocity components u, v and w exist, and both equations in ṽ and η̃
are modelled. Furthermore α = 0, β 6= 0, so (5.5) and (5.4) become

η̃(y, t) = βũ (5.13)

∂ṽ

∂y
= −βw̃ (5.14)

and the boundary conditions remain as in (5.3)

ũ(y = 1, t) = p̃u(t)

ũ(y = −1, t) = p̃l(t)

ṽ(y = 1, t) = q̃u(t)

ṽ(y = −1, t) = q̃l(t)

w̃(y = 1, t) = r̃u(t)

w̃(y = −1, t) = r̃l(t) (5.15)

Substituting ũ and w̃ from (5.13,5.14,) in these boundary conditions gives

η̃(y = 1, t) = βp̃u(t)

η̃(y = −1, t) = βp̃l(t)

ṽ(y = 1, t) = q̃u(t)

ṽ(y = −1, t) = q̃l(t)

ṽ′(y = 1, t) = −βr̃u(t)
ṽ′(y = −1, t) = −βr̃l(t) (5.16)

200



in the velocity-vorticity formulation. Thus in the code ṽ and η̃ can be represented
by

ṽ(y, t) =
N
∑

0

ΓDNn (y)av,n(t) + fu(y)qu(t) + fl(y)ql(t) + gu(y)q
w
u (t) + gl(y)q

w
l

(5.17)

η̃(y, t) =
N
∑

0

ΓDn aη,n + fu(y)q
u
u(t) + fl(y)q

u
l (t) (5.18)

where gu and gl are as previously in section 5.2.3 and

quu(t) = βp̃u(t)

qul (t) = βp̃l(t)

qwu (t) = −βr̃u(t)
qwl (t) = −βr̃l(t) (5.19)

so in (5.15)

ũ(y = 1, t) = −quu(t)/β
ũ(y = −1, t) = −qul (t)/β
ṽ(y = 1, t) = q̃u(t)

ṽ(y = −1, t) = q̃l(t)

w̃(y = 1, t) = qwu (t)/β

w̃(y = −1, t) = qwl (t)/β (5.20)

Control inputs qu and ql on v are joined by q
u
u and q

u
l on u and q

w
u and q

w
l on w.

Although the modifications to the representations of v and η appear straight-
forward, the practical problems of enforcing 3 velocity boundary conditions at the
walls would be formidable. Also, control on the vorticity equations requires sub-
stantial changes to the spectral model. Accordingly actuation on u for case 2 is
no longer considered, leaving just actuation by v and w

ṽ(y, t) =
N
∑

0

ΓDNn (y)av,n(t) + fu(y)qu(t) + fl(y)ql(t) + gu(y)q
w
u (t) + gl(y)q

w
l

(5.21)

η̃(y, t) =
N
∑

0

ΓDn (y)aη,n(t) (5.22)

5.2.5 The Functions gu and gl

As gu is a function which is homogeneous at both walls, but has unit derivative
at the upper wall, and zero derivative at the lower wall, and vice versa for gl, the
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Case v-actuation u-actuation w-actuation
1 fu (−y3 + 3y + 2)/4 0

fl −fu(−y) 0
gu 0 (y3 + y2 − y − 1)/4
gl 0 −gu(−y)

2 fu (−y3 + 3y + 2)/4 0
fl −fu(−y) 0
gu 0 (y3 + y2 − y − 1)/4
gl 0 −gu(−y)

Table 5.1: Comparison of v- and u/w-Actuation Basis Functions

function gu must satisfy

gu(y = 1) = 0

gu(y = −1) = 0

g′u(y = 1) = 1

g′u(y = −1) = 0 (5.23)

and gl must satisfy

gl(y = 1) = 0

gl(y = −1) = 0

g′l(y = 1) = 0

g′l(y = −1) = 1 (5.24)

Suitable functions for gu and gl are

gu(y) =
y3 + y2 − y − 1

4
gl(y) = −gu(−y) (5.25)

5.2.6 Comparison of v and u,w Actuation

Henceforth v-actuation will be compared with u-actuation for case 1 and w-
actuation for case 2, as this simplification allows a direct comparison with earlier
v-actuation results. Table 5.1 shows a summary of the actuation basis functions
used. For v-actuation, function fu provides a unit ṽ value with zero derivative at
the upper wall, whereas for u,w actuation function gu provides zero value but unit
derivative at the upper wall. Functions fl and gl are mirror images of fu and gu
about the centreline and thus provide unit value and derivative at the lower wall,
respectively.
Figure 5.1 shows the basis functions associated with the state variables for case

1 with u-actuation. As compared to figure 2.2 of the basis function for v-actuation,
those ṽ basis functions associated with actuation, gu and gl, have Dirichlet bound-
ary conditions, with unit gradient at the upper and lower walls respectively, as
compared to fu and fl in figure 2.2 which have Neumann boundary conditions and
unit magnitude at the upper and lower walls respectively.
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Figure 5.1: The u-Actuation Control Basis Functions Associated with the State
Variables (Peak magnitudes over system for N = 100 in parenthesis)

5.3 Results from Linear Simulations and Discus-

sion

This section investigates the model dynamics, and the synthesis of controllers,
when tangential actuation is employed. Subsequently results from the calculation
of the worst initial conditions and from linear simulations are presented. Tangential
actuation is by u velocity for case 1 and w velocity for case 2, drawing comparisons
with previous results for v-actuation from sections 2.8.2 and 4.4.

5.3.1 u- and w-Actuation Model Dynamics

Figure 5.2 shows the controllability of case 1 by u- and v-actuation. It can be seen
that u-actuation has lower controllability than actuation by v, initially by more
than an order of magnitude, but less so with increasing mode number. Lower
controllability is consistent with basis functions gu and gl being less ‘full’ than fu
and fl, in the sense that they have a lower peak value (0.3 cf. 1) and both have
little effect close to both walls, whereas fu and fl each have a large effect at one
wall or other. The controllability of case 2 by w- and v-actuation is shown in figure
5.3. It can be seen that w-actuation has lower controllability than actuation by v
for modes that have a velocity component (1,2,4,6,8,. . . ), which is again consistent
with gu and gl being less ‘full’ than fu and fl.
The convergence of u- and w-actuation singular values with discretisation N

is very similar to that for v-actuation, shown in figures 2.4 and 2.6, and similar
conservative logic to that applied in section 2.8.1 would dictate the use of N = 100
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Figure 5.2: Case 1 u- and v-Actuation Controllability, N = 100
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Figure 5.3: Case 2 w- and v-Actuation Controllability, N = 100
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Figure 5.4: Case 1 u- and v-Actuation Open-Loop Singular Values vs Frequency,
N = 100

for model accuracy above the closed-loop bandwidth.

Figure 5.4 shows a plot of the singular values of the case 1 system with u- and
v-actuation. u-actuation results in a system with closer maximum and minimum
singular values, i.e. the system is less sensitive to input direction. This is consistent
with gu and gl being more symmetric about the centreline y = 0 than fu and fl.
The singular values of the case 2 system with w- and v-actuation are presented in
figure 5.5. Both w- and v-actuation are insensitive to direction, probably because
the vorticity dominates the eigenvectors, and neither actuation acts directly upon
it. w-actuation results in lower singular values, which is again consistent with gu
and gl being less ‘full’ than fu and fl.

5.3.2 u- and w-Actuation Controller Synthesis

Figure 5.6 shows the relative residuals from the solution of the LQR algebraic
Riccati equation (4.3) for a case 1 controller with u- and v-actuation. A larger
range of weights r is shown than previously for v-actuation in figure 4.8. The u-
actuation residuals are comparable with that for v-actuation for all but the largest
control weights r and are acceptable. The relative residuals from the solution of
the equation (4.3) for a case 2 controller with w- and v-actuation is given in figure
5.7. Again, a larger range of weights r is shown than previously for v-actuation in
figure 4.10. The w residual is generally better than that for v-actuation at high
r, and is acceptable. At the low r values shown here (corresponding to a large
control effort) both w and v residuals show cause for concern.
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Figure 5.6: Case 1 u- and v-Actuation LQR ARE Relative Residual vs Control
Weight r, N = 100
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Figure 5.7: Case 2 w- and v-Actuation LQR ARE Relative Residual vs Control
Weight r, N = 100

5.3.3 u- and w-Actuation Diachronic Transient Energy Bound

θ and Initial Conditions

The variation of closed-loop diachronic transient energy bound with control weight
is calculated for u- and w-actuation, as in section 4.3.1. Gross spatial oscillations
are found to occur in the initial conditions associated with diachronic transient
energy bound, as shown in figure 5.8 for case 1, and figure 5.9 for case 2, and both
marked ‘All Evecs’. The oscillations do not appear on the low frequency system
eigenvectors as shown in figure 5.10 and no spurious eigenmodes are evident in
plots of ordinal differences as formulated by Boyd (2001, p138) (not shown). The
oscillations are peculiar to the solution of the eigensystem (4.41) repeated here

eΛ
T tΨTQΨeΛtχ0,i = ζiΨ

TQΨχ0,i (5.26)

The anti-aliasing technique employed on the v-actuation initial conditions which
generate the diachronic transient energy bound (see section 4.4.3) fails to remove
these gross spatial oscillations. That technique discards the highest 1/3 Chebyshev
coefficients, and thus removes noise with high spatial frequencies.

It is also possible to remove noise with high temporal frequencies by discarding
the high frequency eigenvectors during the diachronic transient energy bound cal-
culation (4.41), and it is reasonable to assume that high temporal frequency noise
is associated with high frequency spatial noise. The procedure truncates the set
of system eigenvectors Ψ and eigenvalues Λ in (5.26) by replacing them with just
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Figure 5.8: Case 1 u-Actuation LQR Worst <(ṽ(t = 0)) vs y, with and without
Eigenvector Truncation, N = 100
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Figure 5.9: Case 2 w-Actuation LQR Worst =(ṽ(t = 0)) vs y, with and without
Eigenvector Truncation, N = 100
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Figure 5.10: Case 1 u-Actuation LQR Eigenvectors, N = 100

the lowest frequency 2/3 i.e.

Ψ = (ψ1 . . . ψN)

Λ = diag (λ1 . . . λN) (5.27)

becomes

ΨR =
(

ψ1 . . . ψ2/3N
)

ΛR = diag
(

λ1 . . . λ2/3N
)

(5.28)

The resulting system is smaller

eΛ
T
RtΨT

RQΨRe
ΛRtχ0,i,R = ζiΨ

T
RQΨRχ0,i,R (5.29)

and the initial modal amplitudes χ0,i,R, which result from the solution of the
smaller eigensystem, must be augmented with zeros representing the discarded
modes

χ0,i =
(

χT0,i,R0
)T

(5.30)

The effect of this procedure on the initial conditions for case 1 is shown in figure
5.8 and on case 2 in figure 5.9, both marked ‘2/3 Evecs’. It can be seen that the
oscillations for both case 1 and case 2 have been removed.
To check the effect of the procedure, it is also applied to case 1 v-actuation

LQR diachronic transient energy bound calculation, and the results are shown in
figure 5.11. It can be seen that the procedure has little effect on the diachronic
transient energy bound variation with control weight r. However, figure 5.12 shows
the initial conditions for control weight r = 2−2, as used for the case 1 LQR linear
simulations, and it can be seen that the procedure has a marked effect. The initial
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conditions are changed, and thus the control actuation is also changed, as shown in
figure 5.13. As the diachronic transient energy bound is the same with and without
the eigenvector truncation procedure, it is evident that different initial conditions
may generate very similar diachronic transient energy bounds, and simulations
will show different control effort required. It would seem possible that the initial
magnitude of modes that do not contribute significantly to the maximum transient
energy could vary, but why the eigensystem (5.26) excites these modes at all is not
as clear. This result casts some doubt on the uniqueness of the actuation results
presented in section 4.4.4, although the degree of doubt can be quantified in that
discarding 33% of the eigenvectors here only changes the actuation in figure 5.13 by
approximately 25%. For consistency with previous results shown in section 4.4.4,
all v-actuation results presented hereafter are without the eigenvector truncation
procedure.

Figure 5.14 shows case 1 u-actuation diachronic transient energy bound θ
against control weight r, with and without eigenvector truncation. Several re-
sults without eigenvector truncation are not shown, since those initial conditions
do not produce the calculated diachronic transient energy bound in a linear sim-
ulation. The results without eigenvector truncation produce unrealistically large
diachronic transient energy bound with initial conditions containing gross oscilla-
tions, hence the need for the truncation. Bearing in mind that the system singular
values converge nicely, and that the LQR algebraic Riccati equation has acceptable
residuals, it would appear that the eigensystem (5.26) is the cause of this poor nu-
merical behaviour. Eigenvector truncation reduces the diachronic transient energy
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Figure 5.14: Case 1 u-Actuation LQR Diachronic Transient Energy Bound θ vs
Control Weight r, with and without Eigenvector Truncation, N = 100

bound values significantly and removes the gross oscillations.
Case 2 w-actuation diachronic transient energy bound θ against control weight

r, with and without eigenvector truncation, is presented in figure 5.15. Without
eigenvector truncation most values of r produce transient energy in a linear simu-
lation in agreement with the diachronic transient energy bound, but the diachronic
transient energy bound values appear unrealistically large at high r values, and the
associated worst initial conditions have the aforementioned gross oscillations. As
for case 1, eigenvector truncation reduces the diachronic transient energy bound
values significantly and removes the gross oscillations.
A further problem, encountered in Matlab, is that the initial state variables

X0 = Ψχ0,i, which are ideally real, since they have been decomposed into real and
imaginary parts X T

0 =
(

X T
real,0X T

imag,0

)T
in section 2.7, are found to be complex. An

equivalent real form is given by
(

<(Xreal,0 + Ximag,0)T ,=(Xreal,0 + Ximag,0)T
)T
,

which produces the same velocity and vorticity (ṽT , η̃T )T = TX (2.106). This
problem, although solved, highlights the possibility of the states representing a
particular velocity and vorticity distribution not being unique unless strict type
checking is imposed, i.e. variables expected to be real must be checked that they
are indeed real.
Figure 5.16 shows the convergence of case 1 u-actuation diachronic transient

energy bound θ against control weight r with discretisation N . It can be seen
that full convergence only occurs at the very beginning of the range for N = 100
with respect to N = 150. This result is surprising given the fast and uniform
convergence of v-actuation at N = 30 as shown in figure 4.9. The convergence of
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Figure 5.17: Case 2 w-Actuation LQR Diachronic Transient Energy Bound θ vs
Control Weight r, for Different Discretisations N

case 2 w-actuation diachronic transient energy bound θ against control weight r
with discretisation N is shown in figure 5.17. Convergence only occurs for limited
values of r. Again this is at variance with the v-actuation convergence results
shown in figure 4.11.

Figure 5.16 presents case 1 u- and v-actuation diachronic transient energy
bound θ against control weight r, for discretisation N = 100. It can be seen that
u-actuation produces a diachronic transient energy bound approximately twice
as great as that produced by v-actuation. This is consistent with u-actuation
resulting in a less controllable plant, as seen in figure 5.2.

Case 2 v and w-actuation diachronic transient energy bound θ against con-
trol weight r appears in figure 5.17. It can be seen that w-actuation produces
a diachronic transient energy bound much greater than that from u-actuation at
high r (low control effort). At moderate r, the w-actuation produces a 40% lower
diachronic transient energy bound, and at low r w-actuation would appear to
generate significantly lower diachronic transient energy bound, approximately one
tenth, although these results are tempered by w-actuation requiring eigenvector
truncation, and the LQR ARE residuals being poor at the lowest r values.

Figure 5.20 shows case 1 diachronic transient energy bound θ against maximum
control magnitude (from linear simulations from the worst initial conditions), for
both u- and v-actuation. It can be seen that v-actuation is better in a Pareto op-
timal sense, it achieves lower diachronic transient energy bound and lower control
effort than u-actuation. Case 2 diachronic transient energy bound θ against maxi-
mum control magnitude (from linear simulations from the worst initial conditions),
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Figure 5.18: Case 1 u- and v-Actuation LQR Diachronic Transient Energy Bound
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Figure 5.19: Case 2 w- and v-Actuation LQR Diachronic Transient Energy Bound
θ vs Control Weight r, N = 100

215



10
−1

10
0

10
1

10
2

10
1

10
2

max U

θ

v
u

Figure 5.20: Case 1 u- and v-Actuation LQR Diachronic Transient Energy Bound
θ vs Maximum Control U , N = 100

for both w- and v-actuation, is given in figure 5.21. Again it can be seen that v-
actuation is better in a Pareto optimal sense, at high diachronic transient energy
bound, but w-actuation may reach a lower diachronic transient energy bound.

For case 1 simulations of control by u-actuation, a value of r = 2−7 ≈ 7.8e− 3
is selected, since it results in the lowest diachronic transient energy bound, and
convergence with N has occurred at this value, as shown in figure 5.16. For case
2 simulations of control by w-actuation, a value of r = 20 is selected, since figure
5.7 shows an acceptable ARE residual and figure 5.17 shows convergence has oc-
curred at this value, although it does not result in the lowest calculated diachronic
transient energy bound. Figure 5.22 shows that the corresponding initial vorticity
is far from smooth. Although the magnitude of the initial vorticity is much lower
than that of the initial velocity, simulations from these initial conditions may be
of doubtful value, and only the results from linear simulations are presented.

5.3.4 u- and w-Actuation Transient Simulations

Transient simulations are performed from the worst initial conditions for both u-
and w-actuation, using the weights r selected in section 5.3.3. Figure 5.23 shows
case 1 u-actuation transient energy E against time for various discretisations N .
It can be seen that convergence has indeed occurred for N ≥ 70 at the value of
r = 2−7 selected from figure 5.16. Case 2 w-actuation transient energy E against
time is shown in figure 5.24, for various discretisations N . Again it can be seen
that convergence has indeed occurred for N ≥ 100 at the value of r = 20 selected.

216



10
−2

10
0

10
2

10
4

10
1

10
2

10
3

10
4

10
5

10
6

max U

θ
v
w

Figure 5.21: Case 2 w- and v-Actuation LQR Diachronic Transient Energy Bound
θ vs Maximum Control U , N = 100

−0.05 0 0.05
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ℜ(η
0
)

y

Figure 5.22: Case 2 w-Actuation LQR Worst <(η̃(t = 0)) vs y, after Eigenvector
Truncation, N = 100

217



0 20 40 60 80 100
0

5

10

15

20

25

t

E

N=50 
N=70 
N=100
N=150
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Figure 5.24: Case 2 w-Actuation LQR Transient Energy E vs Time t, for Various
Discretisations N , from Initial Conditions Xworst Scaled to E = 1
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Figure 5.25: Case 1 u- and v-Actuation LQR Transient Energy E vs Time t, from
Initial Conditions Xworst Scaled to E = 1, N = 100

Figure 5.25 shows case 1 transient energy E against time for both u- and v-
actuation. It is evident that wall-normal v-actuation achieves approximately 40%
lower peak transient energy than tangential u-actuation, as predicted by figure
5.18. Case 2 transient energy E against time for both w- and v-actuation appears
in figure 5.26, which shows that tangential w-actuation achieves 40% lower peak
transient energy than wall-normal v-actuation, which is consistent with figure 5.19
at r = 20. Figure 5.27 shows the magnitude of the case 1 u- and v-actuation LQR
control signals at the upper wall, ˙̃u(y = 1) and ˙̃v(y = 1) respectively, against time.
The peak u-actuation magnitude is approximately 7 times as large as that from
v-actuation. The time integral of the case 1 LQR control signal at the upper wall,
namely the Fourier coefficient of the upper wall velocities ũ(y = 1) and ṽ(y = 1)
respectively, appears in figure 5.28. The peak u-actuation velocity is more than
8 times as large as that from v-actuation. The double time integral of the case 1
LQR control signal at the upper wall for u- and v-actuation, namely the Fourier
coefficient of the upper wall fluid quantity displaced, versus time is displayed in
figure 5.29. The peak u-actuation displacement is approximately 9 times larger
than that from v-actuation.

Figure 5.30 shows the magnitude of the case 2 w- and v-actuation LQR control
signals at the upper wall i.e. ˙̃w(y = 1) and ˙̃v(y = 1) respectively, against time. The
peak w-actuation magnitude is approximately 70 times as large as that from v-
actuation. Figure 5.31 shows the time integral of the case 2 LQR control signal at
the upper wall, namely the Fourier coefficient of the upper wall velocities w̃(y = 1)
and ṽ(y = 1) respectively. The peak u-actuation velocity is around 24 times as
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Figure 5.26: Case 2 w- and v-Actuation LQR Transient Energy E vs Time t, from
Initial Conditions Xworst Scaled to E = 1, N = 100
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Figure 5.27: Case 1 u- and v-Actuation LQR Upper Wall Control U(1) vs Time
t, from Initial Conditions Xworst Scaled to E = 1, N = 100
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Figure 5.28: Case 1 u- and v-Actuation LQR Wall Velocity Coefficient, ũ(y =
1), ṽ(y = 1) vs Time t, from Initial Conditions Xworst Scaled to E = 1, N = 100
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Figure 5.29: Case 1 u- and v-Actuation LQR Fluid Depth Transpired on Upper
Wall vs Time t, from Initial Conditions Xworst Scaled to E = 1, N = 100
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Figure 5.30: Case 2 w- and v-Actuation LQR Upper Wall Control U(1) vs Time
t, from Initial Conditions Xworst Scaled to E = 1, N = 100

large as that from v-actuation.

The double time integral of the case 2 LQR control signal at the upper wall for
w- and v-actuation, namely the Fourier coefficient of the upper wall fluid quantity
displaced, versus time is displayed in figure 5.32. The final and peak w-actuation
displacement is approximately 5 times larger than that from v-actuation, and thus
the final accumulated displacement is even further from zero than the v-actuation.

5.4 Results from Non-linear Simulations and Dis-

cussion

This section describes results from non-linear simulations of LQR control by u-
actuation on case 1. The CFD code is modified to enforce u tangential velocity
boundary conditions rather than wall-normal v ones. The state variables quu and q

u
l ,

which are the upper and lower wall ∂ṽ/∂y, are computed by three point unequal
interval forward and backward finite difference methods respectively. Otherwise,
the code and discretisation are as used in chapter 4.

5.4.1 u-Actuation on Small Initial Perturbations

Figure 5.33 presents the u-actuation case 1 LQR state feedback transient energy
E, from worst initial perturbations of energy EC1, for both linear (solid) and
non-linear (dotted) simulations, for case 1. The results from both the linear and

222



0 500 1000 1500
0

5

10

15

20

25

30

35

40

45

50

t

 |f(
y=

1)
|

 ∼
f ≡ v
f ≡ w

Figure 5.31: Case 2 w- and v-Actuation LQR Wall Velocity Coefficient, ṽ(y =
1), w̃(y = 1) vs Time t, from Initial Conditions Xworst Scaled to E = 1, N = 100
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Figure 5.32: Case 2 w- and v-Actuation LQR Fluid Depth Transpired on Upper
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Figure 5.33: Case 1 u-Actuation LQR Transient Energy E vs Time t, from Initial
Conditions XWorst Scaled to Energy EC1

non-linear simulations agree reasonably well, and show the stabilization of the flow
by the LQR controller. Thus it may be assumed that the non-linear finite volume
and linear spectral simulations are both modelling the linear problem correctly.

Figure 5.33 shows the case 1 u-actuation wall tangential velocity as a fraction
of Ucl for both linear (solid) and non-linear (dotted) simulations. Again linear and
non-linear simulations agree reasonably well.

5.4.2 u-Actuation on Large Initial Perturbations

Figure 5.35 presents the u-actuation case 1 LQR state feedback transient energy
E, from worst initial perturbations of energy 104EC1, for both linear (solid) and
non-linear (dotted) simulations, for case 1. The non-linear simulation saturates
at approximately 46% of the linear peak linear transient energy, and then decays
relatively slowly. The peak non-linear transient energy is approximately 0.0081 and
is slightly better than the value for v-actuation from table 4.4 of 0.011, despite
v-actuation having better performance on linearly sized perturbations, as shown
in figure 5.25.

Figure 5.35 shows the case 1 u-actuation wall tangential velocity as a fraction
of Ucl for both linear (solid) and non-linear (dotted) simulations, from this larger
initial perturbation. Non-linear actuation has a lower peak and persists longer
than linear actuation, which is consistent with the transient energy in figure 5.35,
since the state variables contribute to the transient energy and drive the LQR
state-feedback actuation.
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Figure 5.34: Case 1 u-Actuation LQR Wall Velocity at x = π vs Time t, from
Initial Conditions XWorst Scaled to Energy EC1
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Figure 5.36: Case 1 u-Actuation LQR Wall Velocity at x = π vs Time t, from
Initial Conditions XWorst Scaled to Energy 10
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5.5 Conclusions

Section 5.2 described the implementation of simultaneous wall-normal and tan-
gential actuation in the state-space model of linearised plane Poiseuille flow, by
the addition of velocity and vorticity basis functions with non-zero derivatives at
the walls.
Section 5.3 presented results from investigations of the model dynamics and

synthesis of LQR controllers for case 1 with u-actuation and case 2 with w-
actuation. u-actuation results in a less controllable plant than v-actuation, since
the basis functions are less ‘full’, and similarly w-actuation results in less con-
trollable modes when the velocity is non-zero. The singular values for u- and
w-actuation converged with discretisation N as for v-actuation, and the residuals
from the LQR ARE calculation were acceptable, other than for very high control
w-actuation.
Difficulties were encountered in the calculation of the diachronic transient en-

ergy bound θ and associated worst initial conditions. If the full set of system
eigenvectors was used, gross oscillations were seen in the initial conditions for both
case 1 with u-actuation and case 2 with w-actuation, for which the anti-aliasing
procedure described in section 4.4.3 provided no remedy. However, reducing the
set of eigenvectors to the slowest two-thirds in a procedure termed eigenvector
truncation removed the oscillations. As a check the procedure was applied to the
earlier v-actuation results, and little effect was seen on the diachronic transient
energy bound. However, the initial conditions did change as a result of the pro-
cedure, and thus the control applied. It would therefore appear that although the
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diachronic transient energy bound of a controlled system is effectively unique, the
initial conditions which generate it and control magnitudes applied are not unique
(i.e. the initial conditions vary outside of the range allowed by consistent normali-
sation). In support of this, Criminale et al. (1997, p66) show that any symmetric
ṽ initial condition yields close to the three-dimensional open-loop diachronic tran-
sient energy bound. It is of interest that for case 2, the vorticity eigenvectors
are larger than the velocity ones, but the initial conditions, which are composed
of eigenvectors, has larger velocity than vorticity, indicating the possibility of ill-
conditioning. Ill-conditioning may be inherent in non-modal growth, as the worst
initial conditions combine modes which almost cancel one another.

The convergence of the u- and w-actuation diachronic transient energy bound
calculation with discretisation N was found to be erratic, and only occurred for
certain ranges of control weight r, in contrast to v-actuation which converges uni-
formly over r and quickly with N . u-actuation produces approximately double
the diachronic transient energy bound that v-actuation does, although, if the re-
sults are valid, moderate control weight w-actuation leads to a smaller diachronic
transient energy bound than v-actuation (40% less), and very low control weight w-
actuation leads to a significantly smaller diachronic transient energy bound (one
tenth). The provisos are that w-actuation requires eigenvector truncation, and
even after truncation w-actuation initial vorticity, although small compared to
velocity, is not smooth, and furthermore very low control weight w-actuation has
poor ARE residuals. The poor behaviour of the diachronic transient energy bound
eigensystem (5.26) for u- and w-actuation is worthy of further investigation.

Control weight values which did lead to reasonable diachronic transient energy
bound convergence were selected, and the associated u- and w-actuation controllers
were subject to closed-loop linear simulations. The linear simulations confirmed
the convergence with discretisation N , and the transient energy as compared to
v-actuation. Regarding the diachronic transient energy bound itself, linear sim-
ulations cannot substantiate the peak value, but rather can merely show if the
supplied initial conditions will generate the expected value, and the simulations
did so. The simulations showed that the u- and w-actuation controllers produced
substantially higher control effort, fluid velocity and fluid displacement than the
v-actuation controllers did. However, tangential u-actuation and w-actuation may
be realised via different actuation technologies to wall-normal v-actuation, e.g. by
mechanical rollers, which have no constraint on cumulative displacement, as com-
pared to fluid transpiration by jets which require a source of fluid. This advantage
may outweigh the higher case 1 diachronic transient energy bound, and generally
higher control effort, that results from tangential actuation.

Section 5.4 described non-linear simulations of u-actuation on case 1. Small
perturbations showed that the linear simulation results were validated, and large
perturbations showed that the flow field saturated but was stabilized, as it was for
v-actuation.

In summary, this chapter has described the novel addition of tangential ac-
tuation to the wall-normal actuation of the state-space model of linearised plane
Poiseuille flow developed in chapter 2. Tangential actuation was seen to result in
lower controllability than wall-normal actuation, and suffer from numerical difficul-
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ties. The calculation of initial conditions which yield the largest transient energy
growth suffered from poor convergence with wall-normal discretisation, and the
initial conditions themselves were prone to oscillations, which were ameliorated by
eigenvector truncation. These difficulties indicate the need for further work in this
area. The first test case yielded larger transient energy growth with tangential
actuation than with wall-normal actuation, but the second yielded significantly
lower worst transient energy growth with tangential actuation, and thus better
performance in terms of avoiding transition to turbulence, although this is subject
to caveats arising from the numerical difficulties which merit further investigation.
Linear simulations showed that larger velocities and displacements of transpira-
tion fluid were required for tangential actuation than for wall-normal actuation,
although tangential actuation may be implemented with rollers, which have no
constraint on fluid displacement, unlike the reservoirs mooted for wall-normal ac-
tuation. Closed-loop simulations using a non-linear finite-volume model of plane
Poiseuille flow validated the linear results from small initial conditions, and showed
saturation with continued stabilization from larger initial conditions.
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Chapter 6

LMI Controller Synthesis and

Simulations

6.1 Introduction

The diachronic transient energy bound θ (4.36) of a stable linear system is the
largest transient energy it attains from unit initial energy. Even though the system
is stable, θ may be large, and if the system is the result of linearisation the energy
growth may take the non-linear system outside its domain of attraction, as noted
by Hinrichsen and Pritchard (2005, p648). Bewley and Liu (1998) use θ as a
performance index on systems for fluid flow control such as that described in
chapter 2. An upper bound for θ has been derived by Whidborne et al. (2004),
who also provide linear matrix inequality (LMI) methods for synthesizing state
feedback controllers which minimise the upper bound, but without any constraint
on control effort. Whidborne et al. (2005) and Whidborne and McKernan (2006)
have derived output feedback controllers which minimise θ itself, using advanced
optimisation techniques. Hinrichsen et al. (2002) and Boyd et al. (1994, p.89) have
derived a constraint on the rate of transient energy decay.

θ is related to the orthogonality of the system eigenvectors, for example a
normal system cannot have θ above unity as shown by Whidborne et al. (2004).
Trefethen and Embree (2005, p48) note that there are many possible measures of
non-normality. How θ depends upon system non-normality has been investigated
via pseudospectra, for example by Reddy et al. (1993) and Trefethen and Embree
(2005), although direct correlations between the degree of system eigenvector non-
normality and θ for controlled linearised plane Poiseuille flow are limited. In
Bewley and Liu (1998, figs 2(b) and 10), the control does not appear to have made
the modes significantly more orthogonal, and similarly in this thesis in figures 4.29
and 4.30.
The equations derived by Lorenz (1963) are a small coupled set of non-linear

differential equations representing a simplified model of fluid convection as ordi-
nary rather than partial differential equations, and they exhibit deterministic but
non-periodic chaotic behaviour. In the context of fluid flow control under inves-
tigation in this thesis, the transition of the Lorenz system from a steady linearly
unstable state to bounded chaotic behaviour may be seen as an analogue of the
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transition from laminar flow to turbulent flow, for example as used by Bewley
(1999). As for the linearised Poiseuille flow system, the eigenvectors of the lin-
earised Lorenz system are non-normal, so the system exhibits transient energy
growth. Since the Lorenz equations do not require discretisation, the size of the
Lorenz model is significantly smaller than that of the plane Poiseuille flow model,
and thus requires much smaller computational resources for controller synthesis
and simulation, bearing in mind that the solution of LMI systems requires large
quantities of memory.
The aims of this chapter are to investigate the synthesis of controllers which

minimize upper bounds on the diachronic transient energy bound θ and peak
control effort, and further, by comparison with the performance of these controllers,
to assess standard LQR controllers in reducing θ for fluid control systems. Since
LQR controllers include control effort in their cost functions, a constraint on peak
control effort will be incorporated into the LMI controller synthesis system. The
relationship between the non-normality of the system eigenvectors and θ will also
be examined. The plane Poiseuille model of chapter 2 is extremely complex and
of high order, and so the linearised Lorenz system is used to obtain initial results.
The organisation of this chapter is as follows: section 6.2 describes a method

of extending Whidborne et al. (2004) LMI based controllers, which minimise an
upper bound on θ, to use limited peak control effort. Section 6.3 introduces and
linearises the Lorenz equations and subsequently compares the performance of LMI
controllers with LQR ones when applied to the linearised Lorenz system. This
section also investigates aspects of the relationship between system normality and
θ as control effort varies, and subsequently describes the results of simulations
of the controllers applied to the full Lorenz equations. Section 6.4 compares the
transient performance of LMI controllers with LQR ones when applied to the
linearised plane Poiseuille flow system. This section also describes the results
of simulations of the LMI controllers applied to the full flow equations. Finally
section 6.5 draws conclusions regarding LMI controller synthesis, and LMI and
LQR controller performance on the full and linearised Lorenz and plane Poiseuille
flow systems, and the correlation between non-normality and diachronic transient
energy bound θ.

6.2 Synthesis of LMI Controllers

6.2.1 Transient Growth

From chapter 4 the transient energy (4.34, repeated here)

E(t) = X T (t)QX (t) (6.1)

is defined as measure of how far the system state is from the equilibrium point.
For the remainder of this chapter it is convenient to transform the state variables
such that

E(t) = X̂ T (t)X̂ (t) (6.2)
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where X̂ (t) = Q1/2X (t). Hereafter the subscriptˆwill also be dropped for conve-
nience. The synchronic transient energy bound is largest possible value at time
t, after starting from unit initial transient energy but otherwise unknown state
variables X (0) (4.35, repeated here)

ε(t) = max
E(0)=1

E(t) (6.3)

and the diachronic transient energy bound θ is defined as the largest synchronic
transient energy bound possible over all time (4.36, repeated here)

θ = max
t≥0

ε(t) (6.4)

Whidborne et al. (2004) demonstrate that there is a lower bound of unity on
θ, since ε(t = 0) = 1, and an upper bound is given by an ellipsoid through the
initial conditions which bounds the trajectory in phase space. As the energy is
represented by the squared distance from the origin (6.2), a bound on the largest
energy growth possible is the ratio of the squared shortest ellipsoid semi-axis length
to the squared longest semi-axis length.
If F = X TPX is a Lyapunov function i.e. P is positive definite (P = PT and

X TPX > 0∀X 6= 0 or more succinctly P > 0) and

PA+ATP < 0 (6.5)

then Ḟ < 0 on all trajectories (e.g. p210-214 Jacobs, 1974), and all trajectories X (t)
which begin inside or on the ellipsoidMTPM = F0,M ∈ Rn, i.e. X T

0 PX0 ≤ F0,
remain within it.
ThusMTPM = F0 = X T

0 PX0 is a trajectory bounding ellipsoid through the
initial conditions. The squared lengths of the semi-axes are the extremal values
ofMTM, subject toMTPM−F0 = 0. By the method of Lagrange multipliers,
the extremes are given by

∂
(

MTM+ l
(

MTPM−F0
))

∂M = 0 (6.6)

where l is a Lagrange multiplier. Hence the eigenproblem 2Mi + 2liPMi = 0
or PMi = λi(P)Mi. So F0 = λi(P)MT

iMi and the squared length of the ith
semi-axis of the ellipsoid is F0/λi(P). Therefore an upper bound on the maximum
transient growth is given by θu = λmax (P) /λmin (P).

6.2.2 Closed Loop Transient Growth

Whidborne et al. (2004) have established conditions for the existence of a monoton-
ically decreasing transient energy controller, and characterised all such controllers.
The work also proposes a linear matrix inequality (LMI) method to find controllers
which minimise an upper bound θu on the diachronic transient energy bound. The
linearised Lorenz equations and case 2 plane Poiseuille flow fail to meet the mono-
tonically decreasing transient energy conditions, and thus only controllers which
minimise θu are considered here.
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Expanding A as A + BK in (6.5), to represent closed loop feedback control
U = KX of A via input matrix B, gives

PA+ PBK +ATP +KTBTP < 0 (6.7)

Now if matrixM is positive definite,M > 0, a congruence transformation SMST
leaves SMST > 0 (Skogestad and Postlethwaite, 2005, p481). Thus, transforming
(6.7) by P−1, noting P = PT , yields

AP−1 + BKP−1 + P−1AT + P−1KTBT < 0 (6.8)

which is a bilinear matrix inequality in P−1 and K. Substituting S = P−1 and
Z = KS (Skogestad and Postlethwaite, 2005, p480) results in an equivalent linear
matrix inequality for S and Z

AS + SAT + BZ + ZTBT < 0 (6.9)

Since λ (P) = 1/λ (S), the upper bound becomes θu = λmax (S) /λmin (S). Now if
M ≥ N , then for their ordered eigenvalues λi(M) ≥ λi(N ) (Horn and Johnson,
1985, p471). Thus the LMI I ≤ S ≤ γI ensures that λmin(S) ≥ 1 and λmax(S) ≤
γ, so θu ≤ γ. Hence a controller that minimises the upper bound θu is given by a
solution to the LMI generalized eigenvalue problem

min γ

s.t. (6.10)

I ≤ S ≤ γI,AS + SAT + BZ + ZTBT < 0

where the resulting state feedback controller is given by K = ZS−1.

6.2.3 Limited Control Effort

In addition, a limit on the expenditure of control effort can be set by simultaneously
solving the LMI described by Boyd et al. (1994, p.103) and recommended by
Hinrichsen et al. (2002).
A norm on the control input U = KX is

max
t≥0
‖U‖2 = max

t≥0

∥

∥ZS−1X (t)
∥

∥

2
(6.11)

If S and Z satisfy (6.10) and X (0)TS−1X (0) ≤ 1, then X remains on or inside the
ellipsoidMTS−1M = 1 for all t ≥ 0, sinceMTPM = 1 is a trajectory bounding
ellipsoid for all trajectories which start on or within it. Thus X TS−1X ≤ 1 and
the maximum over t may be replaced by one over the ellipsoid in phase space

max
t≥0
‖U‖2 ≤ max

XTS−1X≤1

∥

∥ZS−1X
∥

∥

2
(6.12)

Splitting S−1 into its square roots gives

max
t≥0
‖U‖2 ≤ max

XTS−1/2S−1/2X≤1

∥

∥ZS−1/2S−1/2X
∥

∥

2
(6.13)
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which is the square of an induced 2-norm on matrix ZS−1/2. This norm is equal
to the largest singular value of ZS−1/2 (Skogestad and Postlethwaite, 2005, p533),
thus

max
t≥0
‖U‖2 ≤ λmax

(

S−1/2ZTZS−1/2
)

(6.14)

Thus λmax
(

S−1/2ZTZS−1/2
)

is an upper bound on the control effort ‖U‖2. A
constraint on the upper bound

λmax
(

S−1/2ZTZS−1/2
)

≤ ν2 (6.15)

implies

S−1/2ZTZS−1/2 ≤ ν2I (6.16)

i.e. by a congruence transformation

ZTI/ν2Z ≤ S (6.17)

which can be enforced by a solution of the LMI
[

S ZT

Z ν2I

]

≥ 0 (6.18)

as shown by Boyd et al. (1994, p28), noting I > 0 and I is invertible. The
constraint on the initial conditions X (0)TS−1X (0) ≤ 1 can similarly be enforced
by a solution of the LMI

[

1 X (0)T
X (0) S

]

≥ 0, (6.19)

as shown by Boyd et al. (1994, p28), noting S > 0 and S is invertible. The con-
straint on the initial conditions X (0)TS−1X (0) ≤ 1 can be replaced by the con-
straint X (0)TX (0) ≤ 1, providing it is more restrictive. The sphereMTM = 1 lies
within the ellipsoidMTS−1M = 1 if the shortest ellipsoid semi-axis 1/

√

λmax(S−1)
is larger than or equal to one, i.e. λmin(S) ≥ I or S ≥ I. Thus the system
of LMIs to be solved to restrict the control effort to ν2 from initial conditions
X (0)TX (0) ≤ 1 becomes

S ≥ I,
[

S ZT

Z ν2I

]

≥ 0 (6.20)

as per Boyd et al. (1994, p 103), and the complete LMI to stabilise the system,
minimise the upper bound on the transient growth and limit the control effort
becomes

min γ

s.t.

I ≤ S ≤ γI,AS + SAT + BZ + ZTBT < 0
[

S ZT

Z ν2I

]

≥ 0 (6.21)
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where the resulting state feedback controller is given by K = ZS−1. Hinrichsen
et al. (2002) and Boyd et al. (1994, p.89) have derived a constraint on the rate of
transient decay, which could be simultaneously incorporated into this expression.
Note that (6.21) cannot be solved using the Matlab LMI toolbox, to so do the
inequalities given by I ≤ S ≤ γI and

[

S ZT

Z ν2I

]

≥ 0 (6.22)

need to be modified to a strict inequality. The conservatism this introduces is very
slight.

6.3 Example Problem - The Lorenz Equations

Although initially developed as a simple model of atmospheric convection, the
Lorenz equations may be interpreted as the elementary one-dimensional behaviour
of fluid whose density varies with temperature, in a torus in a vertical plane heated
from below and cooled from above (Tritton, 1988, p246). Once steady fluid con-
vection has been established (either clockwise or anticlockwise around the torus),
for certain fluid parameters and a large enough or critical heating, perturbations
in the system about the steady convection are linearly unstable, and furthermore
the perturbations vary chaotically i.e. they are very sensitive to initial conditions
and never repeat their behaviour periodically. Both the Lorenz and Poiseuille flow
equations are derived from the Navier-Stokes equations, and both are non-linear
and deterministic.
The analogy of the onset of chaotic behaviour in the Lorenz system with transi-

tion in plane Poiseuille flow follows if the steady but unstable convection represents
steady laminar flow, and the critical heat flow represents the critical Reynolds num-
ber above which transition occurs, and if the chaotic convection is analogous to the
chaotic nature of turbulence, noting that the simplified convection is not itself ca-
pable of being turbulent, since turbulence is a three-dimensional phenomenon over
many length scales. This analogy justifies the investigation of control of the onset
of chaotic behaviour in the Lorenz equations as a preliminary to the investigation
of control of transition in Poiseuille flow. In particular, it justifies investigating the
control of the transient energy growth of the linearised Lorenz equations by LMI
controller synthesis, which requires far less computing resources than such control
of linearised Poiseuille flow, since no discretisation is involved.
The equations derived by Lorenz (1963) represent simplified convection and

may be cast as (Tritton, 1988, p394)

Ẋ1 = −pX1 + pX2

Ẋ2 = UX1 −X2 −X1X3

Ẋ3 = −bX3 +X1X2 (6.23)

where state variable X1 represents fluid velocity, and X2 and X3 represent hor-
izontal and vertical temperature gradients respectively. Parameter p is related
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to the fluid properties, b is related to the geometry and U is related to the heat
source. The equations have three steady-state solutions: X1s = X2s = X3s = 0
(no convection) and X1s = X2s = ± (Us − 1)1/2 , X3s = Us − 1 (steady clockwise
and anticlockwise convection respectively). After linearisation, the equations for
small perturbations X = (x1, x2, x3)T about a non-zero steady-state solution are

ẋ1 = −px1 + px2
ẋ2 = (Us −X3s) x1 − x2 −X1sx3 +X1sU
ẋ3 = X2sx1 +X1sx2 − bx3 (6.24)

where input U is a small perturbation in the steady heat source Us. The control
problem is to determine a state feedback controller U = KX , which will stabilise
the plant, and minimise its worst transient growth, subject to a limit on control
effort UTU .
LQR controllers as described in section 4.2 are also synthesized, to enable

comparison with the performance of the LMI controllers. For the purposes of con-
trolling the linearised Lorenz equations, the LQR state weights Q are an identity
matrix and the control weights R are the scalar r.

6.3.1 Simulations

The chaotic regime Lorenz parameters p = 4, Us = 48, b = 1 as used by Bewley
(1999) are employed, and yield the three eigenvalues −6.66, 0.33 ± 7.50, upon
linearisation of the system about steady clockwise convection.
LQR and LMI controllers are synthesized for a range of controller weights r and

control effort limits ν, using the Matlab Control and LMI toolboxes, respectively.
Although the LMI toolbox solves strict inequalities rather than the non-strict
control effort inequality in 6.21, the consequences are minimal. Linear and non-
linear simulations are performed, using the lsim and ode15s functions, from the
worst initial conditions as calculated using the eigensystem (4.41).

6.3.2 Results of Linear Simulations and Discussion

Figure 6.1 shows the transient behaviour of the linearised Lorenz equations con-
trolled by LQR controllers with varying control weight r. At low control weight,
i.e. high control effort, there is a large fast initial transient. At high control weight,
i.e. low control effort, there is a slower and moderately sized transient. In between
there is an optimum control weight which results in the smallest transient. This
is apparent in figure 6.2 which shows that the diachronic transient energy bound
θ plotted against LQR control weight r is not monotonic. The lowest diachronic
transient energy bound occurs at a control weight r ≈ 1. The upper bound on di-
achronic transient energy bound θu is also plotted, and is a reasonably close bound
at high control weights (low control effort), but poor at low control weights.
Figure 6.3 shows the transient behaviour of the linearised Lorenz equations

controlled by LMI controllers with varying control upper bound limit ν. At high
control limit there is a very fast but small magnitude initial transient. At low con-
trol limit there is a slow transient with a moderately sized maximum perturbation.
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Figure 6.1: Transient Behaviour of the Linearised Lorenz Equations with Varying
LQR Control Weight (dotted). Peak Transients are also shown (solid).
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Figure 6.3: Transient Behaviour of Linearised Lorenz Equations for a Range of
LMI Control Limits (dotted) with Peak Transients (solid).

The diachronic transient energy bound plotted against LMI control limit is shown
in figure 6.4. The lowest diachronic transient energy bound occurs at a control
limit ν2 ≈ 104. The upper bound on diachronic transient energy bound θu is also
plotted, and, as for the LQR case, is a close bound only at low control effort.

Figure 6.5 shows diachronic transient energy bound versus peak control effort
for both LMI and LQR controllers. At low control effort both controllers have a
similar value. The LQR controller reaches its minimum near maxt≥0(UTU) = 1,
and then has an increasing value with control effort, as the control is causing
the peak. However, the LMI controller continues to produce smaller diachronic
transient energy bound for increasing control effort, until a shallow minimum near
maxt≥0(UTU) = 102. The very similar transient behaviour of LQR and LMI
controllers, with maxt≥0(UTU) = 1 and from their worst initial conditions, is
apparent in figure 6.6. Figure 6.7 shows the transient behaviour of LQR and LMI
controllers with maxt≥0(UTU) = 102. The LMI controller produces a transient
perturbation around 3% above unity, much less that of the LQR controller (52%),
although the overall perturbation lasts at least twice as long. How the low LMI
transient is achieved is shown in figure 6.8, where for the same initial negative
peak control effort (U(0) = −10), the LMI controller is able to deliver a faster
positive control effort.
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6.3.3 Investigation of Diachronic Transient Energy Bound

θ, as Determined by Eigenvector Non-normality and
Eigenvalues

To investigate the relationship between the non-normality of the system eigenvec-
tors and the transient growth, the closed-loop system dissimilar eigenvector dot
products (ψi · ψj) and diachronic transient energy bound are plotted against LMI
control limit in figure 6.9. The similar eigenvector dot products (ψi ·ψi) are unity.
For the current system, two dissimilar dot products are identical. It is evident
that the diachronic transient energy bound does not correlate with the maximum
dissimilar eigenvector dot product, and the same is true of the LQR controller. In
particular, the minimum diachronic transient energy bound does not correspond
with the lowest maximum dot product. The reason can be inferred from the ex-
pression for transient energy in modal components (4.54), as derived in section
4.3.1, repeated here

E(t) =
N
∑

i=1

cTi cie
(λT

i +λi)t +
N
∑

i=1

N,j 6=i
∑

j=1

cTi cj(ψi · ψj)e(λ
T
i +λj)t (6.25)

As noted in section 4.3.1, the terms of the first summation of (6.25)

N
∑

i=1

cTi cie
(λT

i +λi)t (6.26)

are the modal terms. They are positive for all ci and decay monotonically, and
cannot lead to any energy increase. The terms of the second summation

N
∑

i=1

N,j 6=i
∑

j=1

cTi cj(ψi · ψj)e(λ
T
i +λj)t (6.27)

are non-modal. They decay in magnitude, at intermediate rates to the first sum-
mation, and can lead to energy increase when either they are negative, that is if
cTi cj(ψi · ψj) is negative or they oscillate, that is if =(λTi + λj) 6= 0.
As stated in section 4.3.1, if the system eigenvectors cannot be made accurately

orthogonal by the introduction of control, selecting instead a system with the
lowest dot products (ψi · ψj) will not necessarily lead to the lowest diachronic
transient energy bound due to the presence of the other factors cTi cj and e

(λT
i +λj)t

in (6.25), and since, for the bound, ci are selected to maximise the transient energy
growth, within the overall constraint E(0) = (c0, . . . , cN)

TΨTΨ(c0, . . . , cN) = 1.
A closed form solution for the diachronic transient energy bound θ from (6.25)

in terms of ψi and λi is elusive, even for a 2 × 2 system, the smallest stable
system capable of θ > 1, although Plischke (2005, p92) presents an expression
for the synchronic transient energy bound in terms of the entries of 2 × 2 upper
triangular system matrices. To investigate further, figure 6.10 shows the effect of
independently varying system normality and eigenvalue speed, on the synchronic
transient energy bound against time and its peak value (the diachronic transient
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Figure 6.9: Dissimilar Eigenvector Dot Product and θ vs LMI Control Limit ν2,
for the Linearised Lorenz Equations

energy bound), for a synthetic system. The synthetic system is A = ΨΛΨ−1 and
has stable baseline eigenvalues Λ = −1,−2,−3 and eigenvectors

Ψ =





a, b, b
b, a, b
b, b, a



 (6.28)

where a = δ + 1/
√

(3) and b =
√

(1− a2)/2, i.e. the eigenvectors are each per-
turbed in different directions about direction 1, 1, 1 by a small amount δ and nor-
malised. The synchronic transient energy bound is calculated using eigensystem
(4.41). For the baseline curve (shown solid) δ = sin(απ), α = 0.001. As α is
increased in steps of 0.001, the system becomes more normal, and the curve of
synchronic transient energy bound against time falls, and thus also the maxi-
mum value, the diachronic transient energy bound (circled) also falls. Alterna-
tively, as the baseline eigenvalues Λ are made slower by incrementing them to
Λ + k by k = 0.1, 0.2, 0.3, 0.4, the synchronic transient energy bound curve peaks
later and also increases in magnitude, and thus the diachronic transient energy
bound increases. If the eigenvalues Λ are made slower by scaling them to Λk by
k = 0.9, 0.8, 0.7, 0.6, the synchronic transient energy bound curve peaks later but
does not change appreciably in magnitude. This is to be expected as such scaling
merely scales the time axis.
The figure shows if non-normality can be reduced independently of altering the

system eigenvalues, then the diachronic transient energy bound may fall, but if the
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Figure 6.11: Lorenz System Eigenvalue Magnitude and θ vs LMI Control Limit

system eigenvalues become slower for any reason, the diachronic transient energy
bound may rise.

For the Lorenz system, the diachronic transient energy bound correlates reason-
ably well with the inverse of the speed of the slowest eigenvector, as shown in figure
6.11. Slow slowest eigenvectors occur in conjunction with large diachronic transient
energy bound, and fast slowest eigenvectors occur with small diachronic transient
energy bound. This correlation is better than that shown for non-normality in
figure 6.9, indicating that for the Lorenz system controlled with limited effort,
eigenvalue speed is possibly the critical factor in determining diachronic transient
energy bound, rather than non-normality, although some non-normality must be
present for the diachronic transient energy bound to be above one.

6.3.4 Results of Non-Linear Simulations and Discussion

Figure 6.12 shows the transient perturbation growth of the full Lorenz equations
from an arbitrary initial condition X = (10, 0, 0)T , with respect to the linearisation
point of stable clockwise convection, and figure 6.13 shows the trajectories in phase
space. For the first 3 seconds the state spirals in towards one attractor, and then
commences to orbit non-periodically about both. LMI and LQR controllers (both
synthesised such that maxt≥0,‖x(0)‖=1(UTU) = 102 in section 6.3.2) are switched on
at t = 3s and stabilise the system. In this instance, the LMI controller is able to
do this with a lower transient, and a more direct trajectory, albeit with a greater

244



0 1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

500

t

E
Open loop full Lorenz equations
LQR on full Lorenz equations
LMI on full Lorenz equations
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control effort.

Neither controller is able to stabilise the Lorenz system if switched on at t =
3.1s, rather they cause the trajectory to be expelled from the ball of attraction
(not shown) as described by Bewley (1999).

6.4 LMI Control of Plane Poiseuille Flow

6.4.1 LMI Controller Synthesis

Reduced Order Controller Synthesis

The Matlab LMI Control Toolbox version 1.0.8 is found only capable of synthesiz-
ing controllers for case 2 state-space plant model G(A,B, C) discretised at N = 20,
before memory problems occur, as compared to N = 100 as used for LQR state
feedback on grounds of convergence well beyond the anticipated closed-loop band-
width in section 2.8.1. A reduced order plant model GN=20 is converged with
respect to N , as shown in figure 4.39, unlike N = 10. Model reduction by coarser
discretisation still provides a measure of system energy, as the state variables re-
main physically meaningful, as discussed in section 2.8.2. Figure 6.14 shows case
2 LQR transient energy against time from the worst initial conditions, for vari-
ous plant discretisations and associated controllers. It is evident that the plant
and controller performance are identical for K(GN=100) on GN=100 (previous results
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from figure 4.50) and a controller K(GN=20), synthesized using a lower discreti-
sation plant model GN=20, on plant GN=20. This is to be expected from the fast
convergence results shown in figure 4.50.
Plane Poiseuille flow is very high order, and figure 6.14 also shows the perfor-

mance of a truncated and ‘padded’ high order controller K([GN=100(1 : 20),0]) on
the high order plant GN=100. Only the variables corresponding to spectral state
variables of the controller are truncated, and it performs as well as the full con-
troller. The figure also shows the performance of a padded low order controller
K([GN=20,0]) on a high order plant GN=100, and again it performs well, although
balancing of the plants GN=20 and GN=100 is not performed in order to maintain
consistency between them.
Thus it would appear feasible to synthesize a K(GN=20) LMI controller and

pad it with additional zero spectral state variables to become K([GN=20,0]) i.e.
the same dimensions as K(GN=100) controller, for comparison with the previous
results from LQR K(GN=100) controllers on plant GN=100.

Monotonically Decreasing Transient Energy Controller

There are two tests by Whidborne et al. (2004) for the existence of a monotonically
decreasing transient energy controller

B⊥
(

A+AT
) (

B⊥
)T

< 0 (6.29)

or

BBT > 0 (6.30)
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where B⊥ denotes the left null space of B i.e. B⊥ = UT2 in the singular value
decomposition

B =
[

U1 U2
]

[

Σ11 0

0 0

] [

V1
V2

]

(6.31)

The case 2 linearised plane Poiseuille flow system fails both of these tests, hence no
state feedback controller exists that ensures the transient energy is monotonically
decreasing. Therefore (6.10) and (6.21) are solved to synthesize controllers that
minimise the upper bound θu on the diachronic transient energy bound.

LMI Controller Symmetry

LMI controllers are found not to be symmetric with respect to the centreline
y = 0, unless forced to be so by new symmetric and anti-symmetric actuation
basis functions, as follows. The control signal U = KX expanded in complex form
(for clarity) is

[

uu
ul

]

=

[

ku,v,0 . . . ku,v,N ku,η,0 . . . ku,η,N ku,qu, ku,ql
kl,v,0 . . . kl,v,N kl,η,0 . . . kl,η,N kl,qu, kl,ql

]



























av,1
...

av,N
aη,1
...

aη,N
qu
ql



























(6.32)

where uu and ul are the upper and lower wall actuation signals. Now state vari-
able av,0 represents the magnitude of a velocity component Γ

DN
0 which is math-

ematically symmetric about the centreline y = 0, and av,1 represents that of an
anti-symmetric velocity component ΓDN1 , and so on alternating in symmetry, as
shown in figure 2.2. Note that the mathematical symmetry shown in this figure
is the opposite of physical symmetry, e.g. positive v above and below the centre-
line is mathematically symmetric, but physically it corresponds to fluid above the
centreline traveling towards the upper wall, but below the centreline fluid travels
away from the lower wall, which may be regarded as anti-symmetric in a velocity
vector plot. State variable aη,0 represents the magnitude of a vorticity component
ΓD0 which is symmetric about the centreline y = 0, and aη,1 represents that of
an anti-symmetric vorticity component ΓDN1 , and so on alternating in symmetry.
Symmetrical wall-normal vorticity corresponds to anti-symmetric wall-normal ve-
locity, and vice versa, as shown in figure 2.16. The wall transpiration velocity state
variables qu and ql represent the magnitude of inhomogeneous asymmetric velocity
components fu and fl which are reflections of one another about the centreline.
The control actuation is on wall-normal velocity, and it should respond symmet-

rically to a symmetric wall-normal velocity disturbance, and anti-symmetrically to
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an anti-symmetric wall-normal velocity disturbance, i.e.

ku,v,0 = kl,v,0

ku,v,1 = −kl,v,1
...

ku,η,0 = −kl,η,0
ku,η,1 = kl,η,1

...

ku,qu = kl,ql

ku,ql = kl,qu (6.33)

This symmetrical structure occurs in LQR controllers (actually U = −KX ) but
not LMI ones. The correct symmetry structure is enforced on the basis functions
fu and fl, associated with control by wall-normal transpiration velocity, by making
them symmetric and anti-symmetric respectively i.e.

f lmiu = 1

f lmil =
−y3 + 3y

2
(6.34)

This is found to generate LMI gain matrices K with a structure of the correct
symmetry. Figure 6.15 shows the new basis functions associated with the state
variables.

The effect of this procedure on the transient behaviour of the LQR controller
synthesised in section 4.4.1 is shown figures C.1 and C.2 in appendix C. There
is a change of 1% in the diachronic transient energy bound shown in figure C.1,
and of 30% in the maximum upper wall control signal shown in figure C.2, for
discretisation N = 100, and the results are similar for N = 20 (not shown). These
changes are unexpected, since the symmetric/anti-symmetric actuation basis func-
tions impose identical boundary conditions as the original asymmetric actuation
basis functions. The changes indicate sensitivity in the solution of the ARE (4.3)
or the diachronic transient energy bound eigensystem (4.41) to the exact formula-
tion of the problem, which is particularly manifest in the peak control magnitude.
Inspection of the new LQR controller K shows that its structure no longer has the
correct symmetry. As the peak control magnitude occurs at time t = 0, the sensi-
tivity is also apparent in the wall-normal velocity values of the initial conditions
at the walls (not shown). The changes should be borne in mind when comparing
LQR and LMI controller results. Subsequent LQR controller synthesis results use
the symmetric/anti-symmetric actuation basis functions for consistency with LMI
controller synthesis. The open loop worst initial conditions transient behaviour
is independent of the choice of actuation basis functions (not shown), although
it does not contain zero eigenvalue modes associated with actuation (see section
4.3.1).
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6.4.2 Results of Linear Simulations and Discussion

Unconstrained Control Effort

For synthesis of the LQR controller, zero control weight (r = 0) and thus un-
constrained control effort, is not possible as R must be invertible in (4.3). An
LMI controller with unconstrained control effort is synthesised using (6.10), and
the results of a transient simulation from the worst initial conditions are shown
in figure 6.16. The figure shows a diachronic transient energy bound of 893.4 and
the unconstrained LMI upper wall control magnitude is approximately 2430 (not
shown). Since the initial wall-normal velocity conditions are symmetric with re-
spect to the centreline, similar to those in figure 4.46, the LMI anti-symmetric
control signal is negligible throughout, and the upper and lower actuations are
equal to the symmetric control signal.

Large Control Effort

Low LQR control weights r = 2,R = rI, generating a large control effort, are
selected from earlier figure 4.11, and a linear simulation performed from the worst
initial conditions, as shown in figure 6.17. The peak magnitude of upper wall con-
trol U is 6.71 and occurs at time zero. By iterating on the LMI control magnitude
limit ν, an LMI controller is synthesized using (6.21) which achieves a peak mag-
nitude of upper wall control of 6.76 in a linear simulation, as also shown in figure
6.17. The control limit required is ν = 32.

Figure 6.18 shows case 2 LMI and LQR transient energy against time, for these
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Figure 6.16: Case 2 LMI Transient Energy E vs Time t, Unconstrained Control
Effort, from Initial Conditions Xworst Scaled to E = 1

LQR control weights and LMI control limit, from the worst initial conditions. The
LMI controller has a slightly higher diachronic transient energy bound (823.8)
than the LQR (815.9), whether on a lower order plant model, or padded spectrally
and on a high order plant model. Since the initial wall-normal velocity conditions
are symmetric with respect to the centreline, the LQR and LMI anti-symmetric
control signals are negligible throughout.

Small Control Effort

Larger LQR control weights r = 27,R = rI, are selected as in section 4.4.1 for
earlier simulations, and a linear simulation performed from the worst initial con-
ditions, as shown in figure 6.19. The peak magnitude of upper wall control U is
reduced to 0.169, as compared to 6.71 for r = 2. An LMI controller is synthesized
using (6.21) and a control limit of ν = 0.8 which achieves a peak magnitude of
upper wall control of 0.177, as also shown in figure 6.19.

Case 2 LMI and LQR transient energy against time, for these LQR control
weights and LMI control limit, from the worst initial conditions is shown in figure
6.20. The LMI controller achieves a slightly lower diachronic transient energy
bound (839.1) than the LQR (840.4), again whether on a lower order plant model,
or padded spectrally and on a high order plant model.
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Figure 6.19: Case 2 LMI and LQR Upper Wall Control U(1) vs Time t, Small
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Table 6.1: Diachronic Transient Energy Bound of LQR and LMI Control on Case
2

LQR LMI

Control Effort LQR r maxt ‖U‖2 θ ν2 maxt ‖U‖2 θ θu
Unlimited - - - - 1.18e7 893.4 1722.4
Large 2 90.0 815.9 1024 91.4 823.8 1722.4
Small 128 0.0571 840.4 0.64 0.0626 839.1 1722.4

Discussion

Table 6.1 shows a summary of the diachronic transient energy bound and control
effort from the linear simulations on the LQR and LMI controllers, together with
the upper bound on the diachronic transient energy bound, θu, which is minimised
by the LMI controllers. It is evident that the upper bound is loose for plane
Poiseuille flow, as it was for the Lorenz system. The LMI control limit ν is also seen
to be a loose bound on the peak control effort. The LMI diachronic transient energy
bound is smallest for large control effort, intermediate between unconstrained and
small effort. The Lorenz system also showed the lowest diachronic transient energy
bound for intermediate control effort, although the minimum in figure 6.5 is very
shallow.

The diachronic transient energy bound achieved by the LMI and LQR con-
trollers for similar control effort are similar, and within the changes to the LQR
results caused by the symmetric/anti-symmetric actuation basis functions. The
table shows that there is no penalty on LQR diachronic transient energy bound for
the larger control effort used here, unlike for the Lorenz system in figure 6.1 where
large control effort increases the diachronic transient energy bound significantly.
This may be due to control being by rate of change of wall transpiration velocity
in the plane Poiseuille flow system, rather than velocity itself.

6.4.3 Results of Non-Linear Simulations and Discussion

Results are presented from non-linear simulations of the small control effort LMI
controller on the full Navier-Stokes equations. Non-linear simulations of the un-
constrained control effort LMI controller are unsuccessful, due to the high control
magnitudes involved. No changes to the CFD code described in section 4.3.3 are
necessary, other than to read in the LMI controller state feedback gain matrix K
rather than the LQR one.

Small Initial Perturbations

Case 2 LMI controlled transient energy against time t, from initial conditions
XWorst scaled to energy EC2, is presented in figure 6.21. The linear and non-
linear simulation transient energy agree well, with peak values of 1.90× 10−6 and
1.89× 10−6 respectively, as do wall transpiration velocities (not shown).
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Figure 6.21: Case 2 LMI Transient Energy E vs Time t, from Initial Conditions
XWorst Scaled to Energy EC2

Large Initial Perturbations

Figure 6.22 shows case 2 LMI controlled transient energy against time, from initial
conditions XWorst scaled to energy 10

4EC2. The non-linear simulation saturates,
and reaches a peak transient energy of only 0.00751 as compared to the linear
value of 0.0194. The LMI peak transient energy is lower than the LQR value of
0.00951 in table 4.5, from worst conditions of identical initial energy.

6.5 Conclusions

Section 6.2 described an extension of an LMI based method to obtain controllers
with a minimised closed-loop upper bound on diachronic transient energy bound
θ, in order to limit the control effort. An upper bound on the control effort was
derived, and a further LMI was incorporated into the LMI controller synthesis
system to minimise it.
Subsequently section 6.3 introduced and linearised the Lorenz equations and

subsequently compared the performance of LMI and LQR controllers on the lin-
earised form. The LQR controllers minimised the time integral of the transient
energy plus weighted control effort, from any initial conditions, rather than θ it-
self, although θ was reduced as a consequence. Whereas the LQR controllers were
found to have a pronounced minimum achievable peak transient over control effort,
since high control effort contributes to the peak transient, the LMI controllers were
found to deliver ever smaller peak transients for a wide range of controller effort,
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Figure 6.22: Case 2 LMI Transient Energy E vs Time t, from Initial Conditions
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until a shallow minimum was reached. It was also seen that for high-effort LMI
controllers, the upper bound on the peak transient could be very conservative.
Whilst the presence of non-orthogonality of system eigenvectors has been shown

to be an important factor in transient growth by Trefethen et al. (1993), evidence
was presented that when perfect orthogonality cannot be achieved, simply selecting
controllers with the lowest non-orthogonality (in terms of eigenvector dot products)
will not necessarily lead to the lowest θ. For a simple example system with speci-
fied non-orthogonality, a correlation was seen between slow closed-loop eigenvalue
speed and high θ. This correlation also occurred for the Lorenz system, and it was
supposed that this effect was causing θ not to correlate with non-orthogonality.
The LMI controllers led to relatively large settling times when compared to the

LQR controllers. An exponential time weighting could be incorporated into the
LMI to improve the convergence rate, as proposed by Hinrichsen et al. (2002) and
Boyd et al. (1994, p.89). Both LMI and LQR controllers were able to stabilise a
simulation of the full non-linear Lorenz equations from limited initial conditions,
the LMI controller producing a more direct trajectory to the origin in phase space.
Section 6.4 compared the performance of LMI controllers with LQR ones when

applied to the linearised plane Poiseuille flow system. Memory problems necessi-
tated a maximum system size for LMI controller synthesis of N = 20. A case 2
model discretisation N = 20 was found to be capable of producing LQR controllers
capable of controlling an N = 100 plant model as well as a controller synthesized
from the full N = 100 model, and thus LMI controllers synthesized with N = 20
would also be suitable. Symmetric and anti-symmetric actuation basis functions
were found necessary to produce LMI controllers with the correct symmetry with
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respect to the physical problem, although the use of these basis functions caused
the LQR controller symmetry to be lost, and also caused some variation in the
LQR results, especially in the magnitude of the initial control effort.

An LMI controller with no control effort constraint was able to stabilise the
system, albeit with very large control effort. For large control effort the LQR and
LMI controllers achieved the best diachronic transient energy bound θ, and the
difference between them was less than the variation in the LQR system caused
by the symmetric and anti-symmetric actuation basis functions. No apparent
penalty on the LQR system θ at large control effort (caused by the control itself
contributing to the transient) was found on the linearised plane Poiseuille flow
system, unlike on the Lorenz system. At smaller control effort both LMI and LQR
controllers produced similar but larger θ. Thus LQR controllers which minimise
the time integral of the transient energy and weighted control effort and LMI
controllers which minimise upper bounds on the θ and control effort were found to
be equally effective at minimising linearised plane Poiseuille flow θ at both large
and small control effort. Neither the upper bound on the LMI θ nor the upper
bound on the LMI control effort was found to be tight.

The small control effort LMI controller was able to stabilise non-linear simu-
lations from both small and large worst initial conditions. For small initial per-
turbations the linear simulation results were closely reproduced. For the larger
initial perturbations the transient energy saturated, and the flow was stabilised
with a lower peak transient energy than the LQR controller achieved on worst
initial conditions of equal energy.

To summarise, this chapter has described the addition of a minimised bound
on control effort to a system of LMI’s for the synthesis of controllers with a min-
imised bound on transient energy growth, in order to limit both transient energy
growth and the control effort applied to achieve it. Novel controllers have then
been synthesised for the linearised Lorenz equations, a simple analogue of flow
transition, and the state-space system of linearised plane Poiseuille flow developed
in chapter 2. For the linearised Lorenz system, the LMI based controllers were
found to deliver lower transient energy growth as controller effort is increased over
a wide range, as compared to LQR controllers for which high controller effort con-
tributed to the transient energy growth and thus to the incidence of non-linearity.
No correlation was seen between lower (but non-zero) controlled eigenvector non-
orthogonality and lower transient energy growth, i.e. low controlled eigenvector
non-orthogonality is not beneficial in terms of reduced transient energy growth
per se, although there was a correlation between faster eigenvalues and lower tran-
sient energy growth. In simulations, LMI and LQR controllers were found to
stabilise the full Lorenz system from limited initial conditions.

For the linearised Poiseuille flow system, LMI and LQR controllers behaved
similarly in terms of transient energy growth, for similar control effort, i.e. con-
trollers which minimise a bound on transient energy behave similarly to those
which minimise the time integral of transient energy. Neither the LMI bound on
transient energy nor on control effort was seen to be tight, motivating further
work to minimise the transient energy and control effort themselves. The results
from linear closed-loop simulations of the LMI controller were validated by non-
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linear finite-volume simulations from small worst initial conditions. In non-linear
simulations from larger initial conditions, saturation occurred and stability was
maintained.
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Chapter 7

Conclusions and Future Work

This chapter describes the main findings from the work carried out in this thesis,
and suggests future work that might be performed.

7.1 Conclusions

This thesis has described work undertaken to spectrally model linearised plane
Poiseuille flow, with wall transpiration actuation and wall shear measurements,
and to synthesise controllers using modern control approaches. An account has
been given of the results from open- and closed-loop, linear and independently de-
rived non-linear simulations, with particular emphasis on transient energy growth.
The performance of alternative actuation has been investigated, and of alternative
controllers which minimise the transient energy growth. The major results from
this thesis are summarised chapter by chapter as follows.

7.1.1 Chapter 2

A spectral wall-normal polynomial-form state-space velocity-vorticity representa-
tion of linearised plane Poiseuille flow with control by rate of change of wall-normal
velocity has been derived. This representation combines beneficial features from
several previously published spectral state-space models. A wall-normal polyno-
mial form allows approximation of the wall-normal variation by truncation of the
series, unlike an interpolating form. Velocity-vorticity formulation allows three-
dimensional perturbations to be modeled, unlike the stream function formulation
which allows only two-dimensional perturbations. The transformation to an in-
homogeneous system with homogeneous boundary conditions allows the correct
boundary conditions to be imposed more easily, without the subsequent genera-
tion of spurious modes. The transformation leads to the formation of the state-
space system by partition then inversion of the Laplacian, and ultimately produces
control by rate of change of wall-normal velocity.

An interpolating state-space form derived by partition-then-inversion and lead-
ing to control by rate of change of wall transpiration velocity has been shown to be
consistent with a published interpolating form performing inversion-then-partition
and leading to control by wall transpiration velocity (Bewley and Liu, 1998). The
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two forms have been shown to be consistent by use of the Schur complement, at
the point before the integrators are introduced into the partition-then-inversion
form in order to regularise the inputs.

The linear flow field of steady harmonic transpiration has been determined.
The eigenvectors associated with the integrators, which control by rate of change
of wall-normal velocity introduces, have been shown to represent steady transpi-
ration.

Pressure measurements for the state-space model have been derived. Previous
authors suggest performing the inversion of a Laplacian in order to determine
pressure (Bewley and Liu, 1998, p309), but the assumption of periodicity allows the
derivation of a simple expression for wall pressures (2.51). The expression contains
higher wall-normal derivatives than wall shear stress measurements require, and
hence need finer model discretisation.

The size of a real system for controlling streamwise vorticities may be halved.
Two test cases, case 1 (Tollmien-Schlichting waves) and test case 2 (streamwise
vortices) were considered, representing the earliest stages of transition to turbu-
lence. For test case 2, examination of the governing equations shows that the real
velocity and imaginary vorticity may be discarded, leading to a system reduced in
dimension by approximately 50% when expanded into components for the solution
of the algebraic Riccati equations for LQR controller synthesis.

Good agreement was found with previously published observability results. Using
particular observability and controllability measures, observabilities were found to
be close to those of Bewley and Liu (1998). A discrepancy in the controllability
results was shown to be due to variations in the order of partitioning and inversion,
and the associated integrators.

Convergence of observability needs high discretisation. A direct correlation was
shown between modal observability and wall velocity gradient, which was seen
to require a high level of discretisation for convergence. For streamwise vortices,
spanwise wall shear, dw/dy, contributes little to observability, as compared to
streamwise wall shear, du/dy.

Integrators placed directly on the inputs of a state-space system cause the con-
trollability of existing modes λi to change by a factor 1/

√

λTi λi (2.154). The modal
observability is unchanged by the integrators. An algorithm for the computation
of individual left eigenvectors has also been proposed. It has also been demon-
strated that for consistently normalised right eigenvectors, non-normality leads to
left eigenvectors being larger, and thus greater modal controllability.

7.1.2 Chapter 3

Valid bases have been established for imposing Dirichlet and Neumann boundary
conditions. From a linear algebraic point of view, several published practices
for forming bases that impose the boundary conditions were shown to be not
strictly correct. Valid bases have been established in polynomial form. A novel
recombination is proposed for the simultaneous Neumann and Dirichlet boundary
conditions, that extends a published Dirichlet boundary condition method.

The condition number of bases is a complex interplay of maximum and min-
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imum singular values. The conditioning of four bases and their derivatives have
been compared. Of the matrices required for plane Poiseuille flow without wall
equations, Heinrichs’ method, which modulates the bases, has best conditioning
on 2 specific matrices where it reduces the maximum element magnitude, but in
general other bases which do not cause low minimum singular values are better,
in particular for the Laplacian which is inverted.

Preconditioning by postmultiplying by diag([1, 1/nderivative ordern=1:N ]) generally im-
proves conditioning markedly. This is because the system has the wall equations
removed, and this preconditioning matrix is inversely proportional to the channel
interior derivative magnitude. With this preconditioning, the novel extended basis
proposed for the simultaneous Neumann and Dirichlet boundary conditions has
the best conditioning for inversion of the Laplacian. Preconditioning by postmul-
tiplying by diag([1, 1/n2×derivative ordern=1:N ]), which is inversely proportional to the wall
derivative magnitude, improves conditioning but less so.

7.1.3 Chapter 4

LQR state feedback controllers and LQE state estimators have been synthesized for
the model of linearised plane Poiseuille flow. The controllers and estimators were
also combined into LQG output feedback controllers. The worst initial conditions,
generating the diachronic transient energy bound (the highest transient energy
possible from unit energy initial conditions), were also computed, and linear sim-
ulations performed. The controllers were seen to stabilise the flow for test case 1
(open-loop linearly unstable), and reduce the diachronic transient energy bound
of test case 2.

Convergence of the performance of LQE estimators was found to require higher
levels of wall-normal discretisation than did LQR controllers. The level of discreti-
sation for convergence of state feedback of linearised plane Poiseuille flow is lower
than that required for state estimation, which is consistent with the estimators
being dependent upon accurate modelling of velocity gradients close to the walls.

The boundary truncation of interpolating-form derivative matrices on a sys-
tem with inhomogeneous boundary conditions is inaccurate. Previously published
work performs this truncation on the energy matrix used for LQR state weighting
(Bewley and Liu, 1998, p311-313), and thus no comparison is possible with the
associated closed-loop (inhomogeneous boundary condition) results.

Tuned estimator weights were found to have lower estimated energy bound and
faster convergence than uniform weights. Tuned estimator weights, which assumed
that disturbances near the centreline are larger and more variable than those near
the walls, were found to have lower estimated energy bound (from the worst plant
initial conditions and zero initial estimates), and faster convergence than esti-
mators which made no assumptions regarding the physical distribution of distur-
bances. Uniform estimators had lower worst diachronic error energy bound, but
it was nonetheless unrealistically high and difficult to see how it could occur in
practice.

Small oscillations were found at the walls in the worst initial conditions. These
small oscillations were produced by the solution of the transient growth eigensys-
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tem, and although difficult to see, they had a marked effect on the initial wall ve-
locity gradient and thus state estimation, particularly in subsequent finite-volume
simulations. The oscillations were removed by 2/3 dealiasing, with negligible effect
on the flow energy density.

The system eigenvectors were found not to be made appreciably more normal by
the application of control. Although some non-normality is required for transient
energy growth, and the application of control reduces diachronic transient energy
bound, the application of control did not reduce eigenvector non-normality in terms
of eigenvector dot products. Inspection of the energy growth in modal and non-
modal terms shows a complex relationship between non-normality and diachronic
transient energy bound.

Linear simulations showed that significant amounts of transpiration fluid were
required locally. Although the transpiration considered is harmonic, and thus zero
net mass flow, the magnitude of the transpiration required for the test cases con-
sidered is such that locally large amounts of fluid are required, much greater than
the size of reservoirs provided by MEMs devices.

Simulations of the controller were performed on a full non-linear model of plane
Poiseuille flow. The magnitude of linear sized perturbations was determined by
inspection of the non-linear terms in the worst initial conditions. A finite-volume
Navier-Stokes solver was modified to work in terms of flow perturbations, in order
to accurately model the evolution of linear sized initial conditions. Close agree-
ment was found between linear and non-linear simulation results on linear sized
perturbations for both open and closed-loop systems.

State feedback controllers were generally able to stabilise the flow and reduce
the transient energy growth from large perturbation worst initial conditions. Mesh
insensitivity was harder to prove for test case 1 (Tollmien-Schlichting waves) than
test case 2 (streamwise vortices). Simulations were found to saturate but closed-
loop transient energy growth was lower than open-loop growth. On saturated
streamwise vortices (test case 2), the state estimators tended to overshoot, and
could destabilise the system when it was controlled by output feedback.

For large perturbations, the energy as computed from the state feedback con-
troller state variables was found to be significantly less than that of the non-linear
flow field. This is believed to occur because the state variables only represent
energy at one wavenumber pair, and the non-linear flow terms are able to transfer
energy to other wavenumber pairs.

7.1.4 Chapter 5

Simultaneous wall-normal and tangential actuation for a state-space model of lin-
earised plane Poiseuille flow has been derived. Simultaneous wall-normal and tan-
gential actuation represents generalised transpiration in any direction. The ap-
propriate control boundary conditions were derived in velocity-vorticity form, and
the additional basis functions required were selected, for use in the system input
matrix.

Tangential actuation was found to produce lower controlability than wall-normal
actuation. This is consistent with the tangential actuation basis functions being
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less ‘full’ than the wall-normal actuation basis functions.
LQR state feedback via tangential actuation, as compared to wall-normal actua-

tion, was found to produce a higher diachronic transient energy bound on test case
1, but a lower diachronic transient energy bound on test case 2. LQR State feed-
back controllers using tangential actuation were synthesized and the diachronic
transient energy bound calculated. Oscillations in the worst initial conditions had
to be removed by truncation of the eigenvalues in the transient energy eigensys-
tem, and convergence with discretisation was found to be erratic over the range
of control weights. With these caveats, tangential actuation was found to produce
lower diachronic transient energy bound for test case 2. Truncation on earlier wall-
normal actuation results showed that although the worst transient energy growth
appears to be unique, the associated initial conditions, and thus also the control
effort, are not.

Linear simulations showed that tangential actuation requires higher control ef-
fort. This is the case for control effort in terms of fluid acceleration, velocity
and displacement, although tangential actuation opens up the possibility of util-
ising different technologies for actuators, e.g. rollers, which have no constraint on
displacement.

Non-linear simulations of control via tangential actuation showed saturation but
also stabilisation of test case 1. LQR controlled non-linear simulations from small
initial perturbations produced results in agreement with linear simulations, for
test case 1, Tollmien-Schlichting waves. Non-linear simulations from large initial
perturbations led to saturation, but the controller stabilised the flow nonetheless.

7.1.5 Chapter 6

A method for synthesizing linear controllers with minimised upper bounds on di-
achronic transient energy bound and peak control effort has been developed. Ad-
ditional terms which minimise an upper bound on peak control effort have been
incorporated into a linear matrix inequality (LMI) system that already synthesizes
state feedback controllers which minimise an upper bound on diachronic transient
energy bound.

LMI controllers with minimised upper bounds on diachronic transient energy
bound and control effort have been synthesized for the linearised Lorenz equations.
The upper bound on diachronic transient energy bound was seen to be conservative
at high control effort. LQR controllers were also synthesized and found to have
similar performance in terms of diachronic transient energy bound at low levels of
control, but at high levels of control their performance was poorer as the control
tended to contribute to the transient energy. The LMI controllers were able to
stabilise the full Lorenz equations from limited initial conditions.

The worst transient energy was found not to correlate well with non-normality
for variable effort controllers acting on the linearised Lorenz system. Although
some non-normality is required for transient growth, reduced transient energy
growth was not seen to correlate with lower system least normal eigenvector dot
product. On an artificial system with constant non-normality, an inverse correla-
tion between the eigenvalue speed and the worst transient energy growth was seen.
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This correlation also occurred for the controlled Lorenz system.

LMI controllers with minimised upper bounds on worst transient energy and
control effort have been synthesized for the linearised plane Poiseuille flow system.
It was found necessary to recast the actuation into symmetric and anti-symmetric
components in order to produce a controller structure with the correct symmetry
with respect to the walls.

The performance of LQR and LMI controllers on linear simulations of plane
Poiseuille flow were seen to be similar. For similar control effort, LQR controllers
which minimise the time integral of the transient energy plus control effort, and
LMI controllers which minimise upper bounds on the diachronic transient energy
bound and peak control effort were seen to have similar diachronic transient energy
bound. As found for the LQR controllers, the LMI controllers were able to stabilise
non-linear simulations of plane Poiseuille flow.

7.1.6 Summary

The conclusions drawn in this thesis may be summarised as follows. An eclectic
state-space model of linearised plane Poiseuille flow has been shown to be consis-
tent with previous models, although improved techniques for wall-normal discreti-
sation have been suggested. Closed-loop non-linear simulations of linear optimal
controllers using a solver derived independently from the state-space model show
agreement with it for small initial perturbations, and generally saturation and sta-
bilisation from larger perturbations. Despite numerical difficulties and high control
effort, tangential actuation may produce lower transient energy growth than wall-
normal actuation. Linear optimal controllers which minimise the time integral of
transient energy perform similarly to controllers which minimise an upper bound
on the peak transient energy growth. No obvious positive correlation between
closed-loop system non-normality and highest transient energy growth was seen.

7.2 Further Work

The main findings from this thesis motivate the following possibilities for future
work in the field of practical control of early transition in Poiseuille flow, and
in flow about more relevant geometries. Items of future work in various areas
are divided into short, medium and long term categories, as an indication of the
relative effort required for each individual item.

7.2.1 Short Term Work

Flow Conditions

In practice, the exact base flow conditions would not be known precisely, and dis-
turbances would occur over all time, and not just in the initial conditions. It would
therefore be appropriate to consider the stability and performance robustness of
the controllers synthesized, with regard to uncertainty in the flow model and with
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regard to flow disturbance models. This may be addressed by the synthesis of H∞
controllers, for instance by using the Matlab Robust Control Toolbox.
Practical initial disturbances are likely to be larger than those considered in

this thesis, which contained 3.1 × 10−3, and 8.5 × 10−5, of the base flow energy
density, for test cases one and two respectively. The performance of the controllers
in non-linear simulations from larger initial perturbations would show the extent
to which linearisation at a single wavenumber is able to control more non-linear
flow.
Although the initial condition test cases considered in this thesis covered both

unstable perturbations and those which generate the highest subsequent transient
energy, neither was fully three-dimensional. It would be straightforward to synthe-
size controllers for α and β being non-zero, for example to represent oblique waves,
although non-linear finite-volume simulations would require fully 3-dimensional
meshes, and would require significantly longer computational times.

Assumption of Periodicity

The assumption of periodic behaviour in the unbounded directions has proved
useful, but is somewhat unrealistic in practice. Evidence has been found for the
presence of other wavenumbers during non-linear simulations, and these are likely
to be harmonics of the fundamental wavenumbers, due to the periodic boundary
conditions imposed. The synthesis of controllers to control harmonic wavenumbers
would be a straightforward minor relaxation of the assumption of purely periodic
behaviour, and lead to the possibility of controlling the non-linear flow simply by
controlling sufficient harmonics, since the non-linear terms just transfer energy
between modes.

Measurement and Actuation

The linearised and discretised expression for pressure derived in this thesis could
be employed to synthesize controllers based on wall pressure measurements, rather
than wall shear stress, which may be more suitable in practice.
Regarding actuation, the optimal controllers simulated in this thesis have are

those that result in the lowest diachronic transient energy bound, regardless of
actuation level. Since actuation is limited in practice, it would be worthwhile
to investigate the deterioration of performance, in terms of diachronic transient
energy bound, if actuation levels were reduced, for example by increasing the
control weighting.

7.2.2 Medium Term Work

Controller Synthesis

The LMI controller synthesized in chapter 6 minimised an upper bound on the
diachronic transient energy bound by state feedback. The upper bound was found
to be loose, and for practical implementation state estimators would be required.
This could be improved by the synthesis of controllers as described by Whidborne
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and McKernan (2006) which directly minimise the diachronic transient energy
bound itself by output feedback.

As large amounts of transpiration were found to be required to achieve control,
it would be appropriate to introduce constraints on the transpiration fluid velocity
and quantity, rather than on the control effort as in this thesis, which is the time
derivative of velocity.

The initial condition oscillations at the wall for wall-normal actuation, and
widespread oscillations and numerical difficulties encountered for tangential actu-
ation, during the calculation of the diachronic transient energy bound, are also
worthy of further investigation.

In order to synthesise controllers of a realistic order, it would be advantageous
to investigate the effects of standard model and controller reduction techniques on
the transient energy growth of non-normal systems, and to determine appropriate
reduction techniques with minimal effect on transient energy growth.

Assumption of Periodicity

In order to further relax the assumption of periodicity in the unbounded direc-
tions, the work described in this thesis could be applied to spatially developing
perturbations in channel flow. Calculating the spatial development of perturba-
tions varying periodically in time is a related problem which generates a non-linear
eigensystem, as shown by Danabasoglu and Biringen (1990). This eigensystem may
be linearised, and although it leads to a larger computational problem, flow control
may be introduced by similar procedures to those described in this thesis.

Alternatively, by replacing the use of periodic expressions in the streamwise and
spanwise directions with spectral collocation by Chebyshev series similar to that
performed in the wall-normal direction, it may be possible to use the methods
described in this thesis for the synthesis of controllers for spatially developing
channel flow perturbations as modelled by Liou and Fitzmaurice (1995), who do
not assume a periodic time variation, but do however impose Dirichlet boundary
conditions in the streamwise direction. Thus it would be advantageous to also
apply techniques that exist for the spectral collocation modelling of an infinite
domain in the streamwise direction, as presented by Boyd (2001, p338), in order to
model isolated disturbances in an infinite channel. The use of spectral collocation
in 2 or more dimensions leads to a large increase in system size and would require
techniques for model reduction.

Flow Conditions

The modification of the model described in this thesis to cover disturbances in a
more realistic slowly developing boundary layer base flow, rather than in Poiseuille
base flow, would require the imposition of free-stream boundary conditions at the
upper wall, and an appropriate boundary layer base-flow profile, and might be
achieved by using techniques for the spectral collocation modelling of a semi-
infinite domain in the wall-normal direction, as described by Boyd (2001, p326).
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7.2.3 Long Term Work

Flow Conditions

It may also be possible to apply the methods described in this thesis to flow in
more complex two-dimensional, and three-dimensional geometries, for example in
curved channels, to study the effects of curvature, and in cavities, which are rich
in flow phenomena. Modelling curved channels could be achieved by employing
a cylindrical co-ordinate system and additional acceleration terms. Controllers
as described here might be applied to cavities by using some of two-dimensional
techniques suggested for spatially developing Poiseuille flow, and would be more
feasible than the computationally intensive adjoint control investigated by Spasov
and Kunisch (2006).
Linear controllers for the flow around around cylinders and spheroids might

also be synthesised, for example on the flow as modelled by Mittal (1999), noting
that in cylindrical and spherical co-ordinate systems the geometry and flow shows
periodicity. The performance of such controllers on the initial stages of vortex
shedding could thus be established. Regarding controller verification, the finite-
volume non-linear simulation employed in this thesis is well-known to able to
simulate the flow associated with varied geometries such as these.
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Figure A.1: Conditioning of D0D Matrix
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Figure A.5: Conditioning of D4DN Matrix ((i) indicates interior preconditioned)
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Figure A.8: Conditioning of D4DN Matrix ((w) indicates wall preconditioned)
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Appendix B

Linear Transient Energy E Plots
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Figure B.1: Case 1 LQE Transient Energy E vs Time t, from Initial Conditions
XWorst Scaled to Energy 10
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Figure B.2: Case 1 LQR Transient Energy E vs Time t, from Initial Conditions
XWorst Scaled to Energy 10
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Figure B.3: Case 1 LQG Transient Energy E vs Time t, from Initial Conditions
XWorst Scaled to Energy 10
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Figure B.4: Case 2 LQE Transient Energy E vs Time t, from Initial Conditions
XWorst Scaled to Energy 10

4EC2
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Figure B.5: Case 2 LQR Transient Energy E vs Time t, from Initial Conditions
XWorst Scaled to Energy 10
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Figure B.6: Case 2 LQG Transient Energy E vs Time t, from Initial Conditions
XWorst Scaled to Energy 10

4EC2
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Figure B.7: Case 2 LQG Transient Energy E vs Time t, from Initial Conditions
XWorst Scaled to Energy 5625EC2
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Appendix C

Effect of Symmetric and

Anti-Symmetric Control Signals
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Figure C.1: Case 2 LQR Transient Energy E vs Time t, with Asymmetric and
Symmetric/Antisymmetric Control, from Initial Conditions Xworst Scaled to E =
1, N = 100
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Figure C.2: Case 2 LQR Upper Wall Control U(1) vs Time t, with Asymmetric
and Symmetric/Antisymmetric Control, from Initial Conditions Xworst Scaled to
E = 1, N = 100
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