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Abstract

Control of the transition of laminar flow to turbulence would result in lower drag
and reduced energy consumption in many engineering applications. A spectral
state-space model of linearised plane Poiseuille flow with wall transpiration ac-
tuation and wall shear measurements is developed from the Navier-Stokes and
continuity equations, and optimal controllers are synthesized and assessed in sim-
ulations of the flow. The polynomial-form collocation model with control by rate
of change of wall-normal velocity is shown to be consistent with previous interpo-
lating models with control by wall-normal velocity. Previous methods of applying
the Dirichlet and Neumann boundary conditions to Chebyshev series are shown to
be not strictly valid. A partly novel method provides the best numerical behaviour
after preconditioning.

Two test cases representing the earliest stages of the transition are consid-
ered, and linear quadratic regulators (LQR) and estimators (LQE) are synthesized.
Finer discretisation is required for convergence of estimators. A novel estimator
covariance weighting improves estimator transient convergence. Initial conditions
which generate the highest subsequent transient energy are calculated. Non-linear
open- and closed-loop simulations, using an independently derived finite-volume
Navier-Stokes solver modified to work in terms of perturbations, agree with linear
simulations for small perturbations. Although the transpiration considered is zero
net mass flow, large amounts of fluid are required locally. At larger perturbations
the flow saturates. State feedback controllers continue to stabilise the flow, but
estimators may overshoot and occasionally output feedback destabilises the flow.

Actuation by simultaneous wall-normal and tangential transpiration is derived.
There are indications that control via tangential actuation produces lower highest
transient energy, although requiring larger control effort. State feedback controllers
are also synthesized which minimise upper bounds on the highest transient energy
and control effort. The performance of these controllers is similar to that of the
optimal controllers.

Keywords: Optimal Control, Channel Flow, Navier-Stokes Equations, Spectral
Methods, State-Space Model, Finite-Volume Discretisation Method, Linear Matrix
Inequality

11



v



Acknowledgments

This thesis communicates the results of research carried out under the supervi-
sion of Dr James Whidborne during the period October 2002 to December 2003
at King’s College London, and from January 2004 to March 2006 at Cranfield
University, the author having followed Dr Whidborne there. Funding from the
Department of Mechanical Engineering at King’s College, and from the School of
Engineering at Cranfield University, is gratefully acknowledged.

My grateful thanks to Dr Whidborne for his inspiring and enlightening super-
vision, and also to Dr George Papadakis of King’s College London, for his generous
advice on matters of fluid mechanics and the use of his finite volume Navier-Stokes
solver. The use of the linear spectral computer code written by Dr Satish Reddy
(Oregon State University), to be found in Schmid and Henningson (2001, appendix
A), is also acknowledged.

My gratitude is also due to Professor Thomas Bewley (University of Califor-
nia San Diego) and Dr Ole Morten Aamo (Norwegian University of Science and
Technology) for copies of their theses, and to Cranfield Students-off-site service
for the forwarding of material from the exceptional library. This thesis is typeset
in ITEX 2cusing MiKTeX and TeXnicCentre.

My deepest thanks to my wife Kate, for her love and support, and to Edward,
whose arrival on 14" July 2004, brought with it much joy.

Theydon Bois, March, 2006 John Mc¢Kernan



vi



Contents

1 Introduction 1
1.1 Introduction . . . . . . . . . . . 1
1.2 Previous Work . . . . . . .. 4
1.3 Objectives and Methods . . . . . . . ... ... ... ... ..... 8

1.3.1 Objectives . . . . . . . . .. 8
1.3.2 Methods . . . . . . . . .. 10
1.4 Outline of Thesis . . . . . . . . . . . . ... ... 11
1.5 Achievements . . . . . . . . 11

2 A Linear State-Space Representation of Plane Poiseuille Flow 15

2.1
2.2

2.3

24

2.5

2.6

Introduction . . . . . ... 15
Flow Equations . . . . . . . .. .. ..o 16
2.2.1 The Incompressible Navier-Stokes and Continuity Equations 16
2.2.2  Perturbations About a Base Flow . . . . .. ... ... ... 17
2.2.3 The Base Flow: Plane Poiseuille Flow . . . . . ... ... .. 17
2.2.4  Linearization About Plane Poiseuille Flow . . . . . ... .. 18
2.2.5 Non-Dimensionalisation . . . . . . ... ... ... ... .. 19
226 Measurement . . . .. ... 19
Formulation . . . . . . .. .. ... .. 20
2.3.1 System Formulations . . . .. ... ... ... ... ..... 20
2.3.2  Velocity-Vorticity Formulation . . . . . ... ... ... .. 20
2.3.3 Boundary Conditions in Velocity-Vorticity Formulation . . . 21
Discretisation . . . . . . . .. .o 22
2.4.1 Introduction . . . . . . . .. ... 22
2.4.2 Streamwise and Spanwise Discretisation . . . . ... .. .. 22
24.3 Measurement . . . ... ..o 25
2.4.4  Polynomial Discretization in the Wall-Normal Direction . . . 27
2.4.5 The Interpolating Basis . . . . . . ... ... ... ... .. 28
2.4.6 Resulting Equations . . . . ... ... ... ... 29
2.4.7 Schmid and Henningson Form . . . . . ... ... ... ... 30
2.4.8 Discretised Measurement . . . . . . .. .. ... ... 31
Boundary Conditions and the Introduction of Wall Transpiration . 31
2.5.1 Inhomogeneous Form . . . . . ... ... .. ... ... ... 33
2.5.2 Redundant Equations. . . . . .. ... . ... ... ... 34
State-Space Representation . . . . . . .. ... ... ... 35
2.6.1 State-Space Form . . . . . . ... ... ... ... 35

vii



3

2.6.2 State Variables . . . . . .. ... 36

2.6.3 Control Variables . . . . . .. .. ... ... .. ....... 37
2.6.4 Measurement Variables . . . . . . ... ... 38
2.6.5 Bewley’s Derivation . . . . . . ... ... 0L 38
2.6.6 State-Space Realization Matrices . . . . . .. ... ... .. 41
2.7 Implementation of Model . . . . . . .. ... 41
271 Test Cases . . . . . . . . . e 41
2.7.2 Software . . . . . . ... 43
273 Balancing . . . .. ... oo 44
2.8 Results and Discussion . . . . . . . .. ... 44
2.8.1 System Size . . . . . ... 44
2.8.2 Model Dynamics . . . . .. ... ... oo 49
2.9 Conclusions . . . . . . .. . .. 69
Wall-Normal Direction Discretisation 73
3.1 Introduction . . . . . . . . ... 73
3.2 Spectral Collocation . . . . .. .. ... ... ... .. ... ..., 74
3.2.1 Equations Discretised in Streamwise and Spanwise Directions 74
3.2.2  Subscript Convention . . . . . . ... ... ... ... ... 74
3.2.3 Cardinal or Interpolating Function Basis . . . . . . . . . .. 74
3.24 Polynomial Basis . . . ... .. ... .. ... 75
3.2.5 Chebyshev Functions . . . . . . ... ... ... ... ... 75
3.2.6 Evaluation at Collocation Points . . . . . . ... ... ... 7
3.2.7 Derivatives at Collocation Points . . . . . .. ... ... .. 77
3.2.8 Discretised Form of Equations . . . . . . . ... .. ... .. 7
3.3 Linear Algebraic Bases . . . . . . . .. ... ... ... .. ..... 78
3.3.1 The Requirements of a Basis . . . . . ... ... ... ... .. 78
3.3.2  The Unmodified Chebyshev Basis . . . . . ... .. ... .. 78
3.3.3 Boundary Conditions and Basis Modification . . . . . . . .. 79
3.4 The Tools of Basis Modification . . . . . ... ... ... ...... 80
3.4.1 Basis Modification via Elementary Matrix Operations . . . . 80
3.4.2 Partitioning of Bases . . . . . ... ..o 81
3.4.3 State-Space Form . . . . .. ... o000 82
3.5 Methods of Basis Modification Considered . . . . . . ... ... .. 82
3.5.1 Heinrichs’ Method . . . . . .. ... ... ... ... ... 82
3.5.2 Joshi’s Method . . . ... ... ... ... ... ... 85
3.5.3 Combined Method 1 . . . ... ... ... ... ....... 87
3.5.4 Combined Method 2 . . . ... ... ... ... ....... 92
3.5.5 Preconditioning . . . . . .. ..o 94
3.6 Conditioning Results and Discussion . . . .. ... ... ... ... 95
3.6.1 Conditioning of Spectral Coefficient Conversions . . . . . . 96
3.6.2 Conditioning of the Second Derivative . . . . . .. ... .. 98
3.6.3 Conditioning of the Discrete Laplacian . . . . . . . . .. .. 99
3.6.4 Conditioning of the Fourth Derivative Matrix . . . . . ... 100
3.6.5 Wall Preconditioning . . . . . . ... ... ... ... ... 101
3.6.6 Conditioning of the Eigensystem . . . . .. ... ... ... 101

Viil



3.7 Conclusions . . . . . . . .. 104

Linear Quadratic Controller Synthesis and Simulations 107
4.1 Introduction . . . . . . . . ... L 107
4.2 Controller Synthesis . . . . .. .. .. ... 0L 108
4.2.1 Optimal State Feedback . . . . . ... ... ... ... ... 108
4.2.2  Optimal Estimation . . . . . . . ... ... ... ... .. .. 112
4.2.3 Optimal Output Feedback . . . . . ... ... ... ... ... 114
4.3 Simulations . . . . ... 114
4.3.1 Imitial Conditions . . . . . . . . ... ... 114
4.3.2 Linear Simulations . . . . . ... ... ... .. .. ... .. 120
4.3.3 Non-Linear Simulations . . . . . .. .. ... .. ... ... 120
4.4 Results and Discussion . . . . .. . . ... ..o 128
4.4.1 Controller synthesis . . . . . . . .. ... ... ... ... .. 128
4.4.2 Estimator synthesis . . . . . . .. ... oo 130
4.4.3 Initial Conditions . . . . . . . .. ... oL 138
4.4.4 Linear Simulations . . . . . ... ... ... .. .. ... .. 147

4.4.5 Summary of Diachronic Transient Energy Bound 6 Results . 165
4.4.6 Choice of Controller Discretisation in Non-Linear Simulations165

4.4.7 Non Linear Simulations . . . . . ... ... ... ...... 166
4.4.8 Summary of Simulation Results . . . . . .. ... ... ... 189
4.4.9 Engineering Practicalities . . . . .. .. .. .. .. ... .. 191
4.5 Conclusions . . . . . . . ... 192
Tangential Actuation 197
5.1 Imtroduction . . . . . . .. .. 197
5.2  Modifications to the State-Space Model . . . . . . . . .. ... ... 198
5.2.1 The Velocity and Vorticity Representation . . . . . . . . .. 198
5.2.2  Simultaneous Wall-Normal and Tangential Wall Velocity Bound-
ary Conditions . . . . . .. ... 198
523 Casel . . . . . . 199
524 Case 2 . . . .. 200
5.2.5 The Functions g, and ¢, . . . . . . . ... ... ... .. 201
5.2.6 Comparison of v and u,w Actuation . ... ... ... ... 202
5.3 Results from Linear Simulations and Discussion . . . . . . . . ... 203
5.3.1 wu- and w-Actuation Model Dynamics . . . . .. ... .. .. 203
5.3.2  wu- and w-Actuation Controller Synthesis . . . . . . ... .. 205
5.3.3 wu- and w-Actuation Diachronic Transient Energy Bound 6
and Initial Conditions . . . . ... ... ... ... ..... 207
5.3.4 w- and w-Actuation Transient Simulations . . . . . . . . .. 216
5.4 Results from Non-linear Simulations and Discussion . . . . . . . .. 222
5.4.1 wu-Actuation on Small Initial Perturbations . . . . . . .. .. 222
5.4.2 wu-Actuation on Large Initial Perturbations . . . . . . . . .. 224
5.5 Conclusions . . . . .. .. 226

X



6 LMI Controller Synthesis and Simulations

6.1 Introduction . . . . . . . . . . ..o
6.2 Synthesis of LMI Controllers . . . . . . .. ... ... ... .....
6.2.1 Transient Growth . . . . . . . . . ... .. ... ... .. ..
6.2.2 Closed Loop Transient Growth . . . .. ... .. ... ...
6.2.3 Limited Control Effort . . . . . . ... ... ... ... ...
6.3 Example Problem - The Lorenz Equations . . . . . ... ... ...
6.3.1 Simulations . . . . . . ... ...
6.3.2 Results of Linear Simulations and Discussion . . . . . . . . .

6.3.3 Investigation of Diachronic Transient Energy Bound 6, as
Determined by Eigenvector Non-normality and Eigenvalues .
6.3.4 Results of Non-Linear Simulations and Discussion . . . . . .
6.4 LMI Control of Plane Poiseuille Flow . . . . . . . . ... ... ...
6.4.1 LMI Controller Synthesis . . . . . .. ... ... ... ....
6.4.2 Results of Linear Simulations and Discussion . . . . . . . ..
6.4.3 Results of Non-Linear Simulations and Discussion . . . . . .
6.5 Conclusions . . . . . . . . . . .

7 Conclusions and Future Work
7.1 Conclusions . . . . . . . . .
7.1.1 Chapter 2 . . . . . . ..
7.1.2 Chapter3 . . . . . . . . . .
7.1.3 Chapter4d . . . . . . . . ...
7.1.4 Chapterb . . . . . . . .
7.1.5 Chapter 6 . . . . . . . . . ...
7.1.6  Summary . . o.o. ..o
7.2 Further Work . . . . . . . . ...
7.2.1 Short Term Work . . . . . .. ... ... .. ... ......
7.2.2 Medium Term Work . . . . . . . . .. ... ... ......
7.2.3 Long Term Work . . . . . . ... ... ... ... ......

References
A Y-Discretisation Conditioning
B Linear Transient Energy E Plots

C Effect of Symmetric and Anti-Symmetric Control Signals

241

283

289



List of Figures

1.1

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30

3.1
3.2
3.3
3.4

The Flow Control Scheme . . . . . .. ... ... ... ....... 3
Co-ordinate System for Plane Poiseuille Flow . . . . . ... .. .. 18
The Basis Functions . . . . . . . . . ... ... ... ... ..., 38
Case 1 Open-Loop Singular Values vs Frequency . . . . ... ... 45
Case 1 Open-Loop Singular Values vs Frequency (detail) . . . . . . 46
Case 2 Open-Loop Singular Values vs Frequency . . . .. ... .. 47
Case 2 Open-Loop Singular Values vs Frequency (detail) . . . . . . 47
Case 1 Error in Open-Loop Eigenvalues . . . . . . . . . . ... ... 49
Case 1 Reciprocal of Boyd’s Ordinal Difference . . . . . . ... .. 50
Case 2 Reciprocal of Boyd’s Ordinal Difference . . . . . . .. . .. 50
Case 1 Pole-Zero Map (detail) . . . ... ... ... ... ... .. 51
Case 2 Pole-Zero Map (detail) . . . . . ... ... ... ... ... 51
Case 1, N =100, v Eigenvectors . . . . . . . . . . ... ... .... 52
Case 1, N =100, u Eigenvectors . . . . . . .. . ... ... ..... 53
Case 1, N = 100, Comparison of Unstable Mode with Thomas (1953) 53
Case 1, N = 100, Zero Eigenvalue Velocity Fields . . . .. ... .. 54
Case 2, N =100, v Eigenvectors (imaginary) . . . ... ... ... 55
Case 2, N = 100, 7 Eigenvectors (real) . . . ... .. ... .. ... 55
Case 1 Observability . . . . . . .. ... ... ... ... ... ... 57
Case 1 w Mode Wall Detail . . . . . . ... ... ... ... ..... 57
Case 2 Observability . . . . ... .. ... ... ... ... 58
Case 2 @ Mode Wall Detail (imaginary) . . . ... ... ... ... 59
Case 2 w Mode Wall Detail (real) . . . .. ... ... ... ... .. 59
Case 1 Controllability . . . . . . . .. ... ... ... ... ..... 61
Case 2 Controllability . . . . . ... ... ... ... ... ... .. 61
Case 1 Observability of Integrator and Non-Integrator Forms . . . . 63
Case 2 Observability of Integrator and Non-Integrator Forms . . . . 63
Case 1 Controllability of Integrator and Non-Integrator Forms . . . 64
Case 2 Controllability of Integrator and Non-Integrator Forms . . . 64
Case 1 Open-Loop |u| Mode Detail for Discretisation N . . . . . . . 67
Case 1 Open-Loop Observability for Discretization N . . . . . . . . 67
Chebyshev Basis Functions . . . . . . ... ... ... ... ..... 76
Heinrichs’ Basis Functions . . . . . . . .. .. . ... ... ..... 84
Joshi’s Basis Functions . . . . . .. . ... ... L. 87
Combination 1 Basis Functions . . . . . . ... ... ... ..... 91

X1



3.5
3.6
3.7

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42

Combination 2 Basis Functions . . . ... ... ... ... ..... 93
Eigenvalue Ordinal Differences Presentation . . . . .. .. ... .. 104
Eigenvalues Compared with Orszag and Dongarra . . . . . . . . .. 105
A Block Diagram of LQR State Feedback . . . . . .. ... ... .. 109
A Block Diagram of LQE State Estimation . . . . . . . .. ... .. 113
A Block Diagram of LQG Output Feedback . . . ... .. ... .. 115
External View of Case 1 CFD Mesh . . . . . . ... ... ... ... 125
External View of Case 2 CFD Mesh . . . . . . ... ... ... ... 126
External View of Case 1 CFD Boundary Conditions . . . . . . . .. 127
External View of Case 2 CFD Boundary Conditions . . . . . . . .. 127
Case 1 LQR ARE Relative Residual vs Control Weight . . . . . . . 129
Case 1 LQR Diachronic Transient Energy Bound vs Control Weight 130
Case 2 LQR ARE Relative Residual vs Control Weight . . . . . . . 131
Case 2 LQR Diachronic Transient Energy Bound vs Control Weight 131
Case 1 LQE ARE Relative Residual vs Noise Weight . . . . . . .. 132
Case 2 LQE ARE Relative Residual vs Noise Weight . . . . . . .. 133
Case 1 LQE max;(R(\i estimator)) vs Noise Weight . . . . . .. . .. 133
Case 2 LQE max;(R(\i estimator)) vs Noise Weight . . . . . .. . .. 134
Case 1 Tuned LQE Estimated Energy Bound vs Noise Weight . . . 135
Case 2 Tuned LQE Estimated Energy Bound vs Noise Weight . . . 135
Case 1 LQE Estimated Energy Bound vs Noise Weight . . . . . . . 136
Case 2 LQE Estimated Energy Bound vs Noise Weight . . . . . . . 136
Case 1 LQE Diachronic Error Energy Bound vs Noise Weight . . . 137
Case 2 LQE Diachronic Error Energy Bound vs Noise Weight . . . 138
Case 1 Open-Loop Synchronic Transient Energy Bound vs Time . . 139
Case 2 Open-Loop Synchronic Transient Energy Bound vs Time . . 140
Case 1 LQR Worst R(0(t=0)) vSy . . . . . . oo oo v v oot 141
Case 1 LQR Worst R(a(t =0)) vsy . . . . . . ... .. ... ... 142
Case 1 LQR u Eigenvectors at Upper Wall . . . . . .. ... .. .. 143
Case 1 LQR Worst Initial State Xwopst -« « « . o o 0 o o o o oL 144
Case 2 Open-Loop Bar Chart of Mode Pair Dot Products . . . . . . 144
Case 2 Open-Loop Eigenvectors and Dot Product . . . . . . .. .. 145
Case 2 LQR Eigenvectors and Dot Product . . . . . . .. ... ... 146
Case 2 LQR Bar Chart of Mode Pair Dot Products . . . . . .. .. 146
Case 2 Open-Loop Upper Bound on Mode Pair Energy Growth . . 147
Case 2 LQR Upper Bound on Mode Pair Energy Growth . . . . . . 148
Case 2 Open-Loop Cumulative Transient Energy vs States . . . . . 148
Case 1 Open-Loop Transient Energy vs Time . . . ... ... ... 149
Case 1 Open-Loop Initial Mode Amplitudes . . . . . . .. .. ... 150
Case 2 Open-Loop 9(y) vs Time . . . . . . .. ... ... ... ... 150
Case 2 Open-Loop u(y) vs Time . . . . . . ... ... ... .. ... 151
Case 2 Open-Loop Transient Energy vs Time . . . . ... .. ... 152
Case 2 Open-Loop Mode Transient Energy Components vs Time . . 152
Case 1 LQR Transient Energy vs Time . . . . .. ... ... .... 153
Case 1 LQR Initial Mode Amplitudes . . . . . . . ... ... .... 154

xii



4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.64
4.65
4.66
4.67
4.68
4.69
4.70
4.71
4.72
4.73
4.74
4.75
4.76
4.77
4.78
4.79
4.80
4.81
4.82
4.83
4.84
4.85
4.86
4.87
4.88

Case 1 LQR Upper Wall Control vs Time . . . . . . . ... .. ...
Case 1 LQR Wall Velocity Coefficient vs Time . . . . . . . . .. ..
Case 1 LQR Fluid Depth Transpired vs Time . . . . ... ... ..
Case 2 LQR 0(y) vs Time . . . . . . . ... ... ...
Case 2 LQR @(y) vs Time . . . . . . . ... ... ... ...,
Case 2 LQR Wall Velocity Coefficient vs Time . . . . . . . .. . ..
Case 2 LQR Fluid Depth Transpired vs Time . . . . . .. ... ..
Case 2 LQR Transient Energy vs Time . . . . .. ... ... ....
Case 2 LQR Mode Transient Energy Components vs Time . . . . .
Case 1 Uniform vs Tuned LQE Transient Energy vs Time . . . . . .
Case 1 LQE Transient Energy vs Time . . . . . . .. ... .. ...
Case 2 Uniform vs Tuned LQE Transient Energy vs Time . . . . . .
Case 2 LQE Transient Energy vs Time . . . . . . .. ... .. ...
Case 1 LQG Transient Energy vs Time . . . . . . . ... ... ...
Case 1 LQG Upper Wall Control vs Time . . . . . .. .. .. ...
Case 2 LQG Transient Energy vs Time . . . . . . . .. ... .. ..
Contours of the Non-linearity in the y-momentum Equation
Perturbation Contours from Sinusoidal Transpiration . . . . . . ..
Case 1 Open-Loop Transient Energy vs Time from Foy . . . . . ..
Case 2 Open-Loop Transient Energy vs Time from Feo . . . . . . .
Case 1 LQR Transient Energy vs Time from Feq . . . . . . . . ..
Case 2 LQR Transient Energy vs Time from Feo . . . . . . . . ..
Case 1 LQG Transient Energy vs Time from Eey . . . . . . . . ..
Case 2 LQG Transient Energy vs Time from Eey . . . . . . . . ..
Case 1 Open-Loop Transient Energy from 10*°Eqs, . . . . . . . . ..
Case 1 Open-Loop Courant Number from 10*Eqs; . . . . . . . . ..
Case 1 Open-Loop u at Heightwise Monitoring Points from 10*E¢,
Case 2 Open-Loop Transient Energy F from 10*Eqy . . . . . . . . .
Case 2 Open-Loop Courant Number from 10*Eqy . . . . . . . . ..
Case 1 Open-Loop Peclet Number from 10*E¢s; . . . . . ... . ..
Case 2 Open-Loop Peclet Number from 10*Eqy . . . . . . . . . ..
Case 1 Open-Loop Transient Energy vs Time, from 10Eq; . . . . .
Case 2 Open-Loop Transient Energy vs Time, from 10°Eqy . . . . .
Case 1 LQR Transient Energy vs Time, from 10*Es, . . . . . . . .
Case 1 LQR Wall Transpiration vs Time, from 10*Eqs; . . . . . . .
Case 2 LQR Transient Energy vs Time, from 10*Egzy . . . . . . . .
Case 2 LQR Wall Transpiration vs Time, from 10*Eqcy . . . . . . .
Case 1 LQG Transient Energy vs Time, from 10*Eq; . . . . . . . .
Case 1 LQG Wall Transpiration vs Time, from 10*Eq; . . . . . . .
Case 2 LQG Transient Energy vs Time, from 10*Eq, . . . . . . . .
Case 2 LQG Transient Energy vs Time, from 5625FE¢ . . . . . . .
Case 1 Open-Loop Peak v and v Velocity Contours from 104Eq; . .
Case 1 Open-Loop Peak u and v Velocity Contours from 10*E¢q; . .
Case 1 Open-Loop Final Spanwise Vorticity Contours from 10*E¢,
Case 1 LQG Peak u and v Velocity Contours from 10*Eq; . . . . .
Case 2 Open-Loop Peak u, v, w Velocity Contours from 10*Eqy . . .

xiil



4.89

5.1
5.2
5.3
5.4
9.5
5.6

5.7

5.8
5.9
5.10
5.11

5.12
5.13
5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33

Case 2 LQG Peak u, v, w Velocity Contours from 5625F¢s . . . . . 190

The u-Actuation Control Basis Functions . . . . . .. . .. ... .. 203
Case 1 u- and v-Actuation Controllability . . . . .. ... ... .. 204
Case 2 w- and v-Actuation Controllability . . . . . . ... ... .. 204

Case 1 u- and v-Actuation Open-Loop Singular Values vs Frequency205
Case 2 w- and v-Actuation Open-Loop Singular Values vs Frequency206
Case 1 u- and v-Actuation LQR ARE Relative Residual vs Control

Weight . . . . . . o 206
Case 2 w- and v-Actuation LQR ARE Relative Residual vs Control
Weight . . . . . . . 207
Case 1 u-Actuation LQR Worst R(0(t =0)) vsy . . . . ... ... 208
Case 2 w-Actuation LQR Worst (0(t =0)) vsy . . . . ... ... 208
Case 1 u-Actuation LQR FEigenvectors . . . . . .. ... ... ... 209
Case 1 v-Actuation LQR Diachronic Transient Energy Bound vs
control weight . . . . . . . .. .o 210
Case 1 v-Actuation LQR Worst R(0(t =0)) vsy . . . . . . .. . .. 210
Case 1 v-Actuation LQR Upper Wall Control vs Time . . . . . .. 211
Case 1 u-Actuation LQR Truncated Diachronic Transient Energy
Bound vs Control Weight . . . . . .. ... ... ... .. ... .. 212
Case 2 w-Actuation LQR Truncated Diachronic Transient Energy
Bound vs Control Weight . . . . . .. ... ... ... .. ..... 213
Case 1 u-Actuation LQR Diachronic Transient Energy Bound vs
Control Weight . . . . .. .. ... ... 213
Case 2 w-Actuation LQR Diachronic Transient Energy Bound vs
Control Weight . . . . .. . . . ... ... ... 214
Case 1 u- and v-Actuation LQR Diachronic Transient Energy Bound
vs Control Weight . . . . . . .. ... ... oo 215
Case 2 w- and v-Actuation LQR Diachronic Transient Energy Bound
vs Control Weight . . . . . . . . . . ... ... ... ... ... 215
Case 1 u- and v-Actuation LQR Diachronic Transient Energy Bound
vs Maximum Control . . . . . . .. . . ... 216
Case 2 w- and wv-Actuation LQR Diachronic Transient Energy
Bound vs Maximum Control . . . . . . . ... ... ... ... ... 217
Case 2 w-Actuation LQR Worst R((t =0)) vsy . . . . . ... .. 217
Case 1 u-Actuation LQR Transient Energy vs vs Time . . . . . . . 218
Case 2 w-Actuation LQR Transient Energy vs Time . . . .. . .. 218
Case 1 u- and v-Actuation LQR Transient Energy vs Time . . . . 219
Case 2 w- and v-Actuation LQR Transient Energy vs Time . . . . 220
Case 1 u- and v-Actuation LQR Upper Wall Control vs Time . . . 220

Case 1 u- and v-Actuation LQR Wall Velocity Coefficient vs Time 221
Case 1 u- and v-Actuation LQR Fluid Depth Transpired vs Time . 221
Case 2 w- and v-Actuation LQR Upper Wall Control vs Time . . . 222
Case 2 w- and v-Actuation LQR Wall Velocity Coefficient vs Time 223
Case 2 w- and v-Actuation LQR Fluid Depth Transpired vs Time . 223
Case 1 u-Actuation LQR Transient Energy vs Time, from Fgy . . . 224

X1v



5.34 Case 1 u-Actuation LQR Wall u Velocity vs Time, from E¢op . . . .
5.35 Case 1 u-Actuation LQR Transient Energy vs Time, from 10*E¢; .
5.36 Case 1 u-Actuation LQR Wall u Velocity vs Time, from 10*Eq; . .

6.1 Transient Behaviour of the Linearised Lorenz Equations with Vary-
ing LQR Control Weight . . . . . . ... ... .. ... ... ...
6.2 Diachronic Transient Energy Bound of the Linearised Lorenz Equa-
tions vs LQR Control Weight . . . . . ... ... ... .. ... ..
6.3 Transient Behaviour of Linearised Lorenz Equations for a Range of
LMI Control Limits . . . . . . . . .. ... ... ... ...
6.4 Diachronic Transient Energy Bound of Linearised Lorenz Equations
vs LMI Control Limit . . . . .. .. .. ... ... ...
6.5 Diachronic Transient Energy Bound vs Maximum Control Effort for
the Linearised Lorenz Equations . . . . . . . .. ... ... ... ..
6.6 Transient Behaviour of the Linearised Lorenz Equations with Low
Effort Controllers . . . . . . . . . . .. ...
6.7 Transient Behaviour of the Linearised Lorenz Equations with High
Effort Controllers . . . . . . . . . . .. ...
6.8 High Effort Control acting on the Linearised Lorenz Equations . . .
6.9 Eigenvector Dot Product and 6 vs LMI Control Limit, for the Lin-
earised Lorenz Equations . . . . . . . . ... .. ... ... ...
6.10 Variation Synchronic Transient Energy Bound vs Time, for a Syn-
thesized System . . . . . . . ... oL
6.11 Lorenz System Eigenvalue Magnitude and 6 vs LMI Control Limit .
6.12 Effect of Controllers on Non-linear Lorenz Equation Perturbation
6.13 Effect of Controllers on Non-linear Lorenz Equation Perturbation
in Phase Space . . . . . . .. ...
6.14 Case 2 LQR Transient Energy vs Time for Various Controller Dis-
cretisations . . . . . . ...
6.15 The LMI Basis Functions . . . . . . . .. ... ... ... ......

250

6.16 Case 2 LMI Transient Energy vs Time, Unconstrained Control Effort251

6.17 Case 2 Upper Wall Control vs Time, Large Control Effort . . . . . .
6.18 Case 2 Transient Energy vs Time, Large Control Effort . . . . . . .
6.19 Case 2 Upper Wall Control vs Time, Small Control Effort . . . . . .
6.20 Case 2 Transient Energy vs Time, Small Control Effort . . . . . . .
6.21 Case 2 LMI Transient Energy vs Time, from Ecy . . . . . . . . ..
6.22 Case 2 LMI Transient Energy vs Time, from 10*Eq . . . . . . . . .

A.1 Conditioning of DOp Matrix . . . . ... ... ... ... .....
A.2 Conditioning of DOpy Matrix . . . . ... . ... ... ... ...
A.3 Conditioning of D2, Matrix, with Interior Preconditioning . . . . .
A.4 Conditioning of L Matrix, with Interior Preconditioning . . . . . . .
A.5 Conditioning of D4y Matrix, with Interior Preconditioning . . . .
A.6 Conditioning of D2p Matrix, with Wall Preconditioning . . . . . .
A.7 Conditioning of L Matrix, with Wall Preconditioning . . . . . . ..
A.8 Conditioning of D4px Matrix, with Wall Preconditioning . . . . . .

XV

252



B.1
B.2
B.3
B4
B.5
B.6
B.7

C.1

C.2

Case 1 LQE Transient Energy vs Time, from 10*Eqs, . . . . . . . .
Case 1 LQR Transient Energy vs Time, from 10*Es, . . . . . . . .
Case 1 LQG Transient Energy vs Time, from 10*Eq; . . . . . . . .
Case 2 LQE Transient Energy vs Time, from 10°Eqy . . . . . . . .
Case 2 LQR Transient Energy vs Time, from 10*E¢qy . . . . . . . .
Case 2 LQG Transient Energy vs Time, from 10*E¢cy . . . . . . . .
Case 2 LQG Transient Energy vs Time, from 5625F¢c, . . . . . . .

Case 2 LQR Transient Energy vs Time, Asymmetric and Symmetric
Control . . . . . . .
Case 2 LQR Upper Wall Control vs Time, Asymmetric and Sym-
metric Control . . . . . . . ...

Xvi



List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2

4.3
4.4
4.5

5.1

6.1

Joshi’s Coefficients . . . . . . . .. . ... 85
Conditioning of DOp for the Various Basis Modification Methods . 97
Conditioning of DOpy for the Various Basis Modification Methods 97
Conditioning of D2 for the Various Basis Modification Methods . 98
Conditioning of L for the Various Basis Modification Methods . . . 99
Conditioning of D4 py for the Various Basis Modification Methods 100
Wall Pre-conditioning of D2 for the Various Modification Methods 101
Wall Pre-conditioning of L for the Various Modification Methods . 102
Wall Pre-conditioning of D4y for the Various Modification Methods103

Open-Loop and LQR Diachronic Transient Energy Bound . . . . . 141
Open-Loop and LQR Diachronic Transient Energy Bound from

Eigensystem and Simulation . . . . . . .. ... ... 165
Diachronic Transient Energy Bound for All Systems . . . . . . . .. 165
Case 1 Transient Energy E from Non-linear Simulations . . . . . . 190
Case 2 Transient Energy E from Non-linear Simulations . . . . . . 191
Comparison of v- and u/w-Actuation Basis Functions . . . . . . . . 202
Diachronic Transient Energy Bound of LQR and LMI Control . . . 254

XVvil



XVviil



Notation

Variables are real scalars unless stated otherwise. RM denotes a real column vector
of size M. CM*F denotes a complex array of size M x P. For clarity, large
dimensions are shown as approximate nominal values. Where the systems are
complex K = C, where they are real K = R.

For the system generated for test case 1, where complex, the number of state
variables M is approximately the discretisation parameter N, the number of inputs
P is 2, and the number of outputs () is 2. For test case 2 the corresponding values
are M ~ 2N ,P =2, and ) = 4. When the matrices of case 1 are made real, their
dimensions double in size, but those of case 2 do not (see section 2.7).

Variables h, U, p, pt retain their dimensions, and are used to non-dimensionalise
the remainder as described in section 2.2.5, and in so doing introduce the non-
dimensional Reynolds number R.

Variables dz and 0t retain their dimensions and are used together with p and
dimensionalised velocities to calculate the non-dimensional Courant C' and Peclet
Pe numbers in section 4.4.7.
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Chapter 1

Introduction

1.1 Introduction

In its widest sense ‘low control’” is the manipulation of fluid flow fields, by passive
or active means, in order to achieve beneficial results (Gad-el-Hak, 1998, p1), if we
exclude the sense associated with the metering of flows. Examples of flow control
in this sense are the design of cars to reduce drag, or of aerofoils to maximise lift.

More specifically, practical control of fluid flows involves boundary layer transi-
tion delay, separation control and drag reduction. Historically, it has been achieved
by experiment and intuition, and has mainly focused upon the introduction of fea-
tures to achieve steady-state manipulation of boundary layer base flows, i.e. control
in a spatial sense, with any temporal disturbances being manipulated in the pro-
cess. Amongst other successes, this control of flow fields has contributed to the
era of modern flight. Such flow control may be passive, for example, separation
control by careful shaping (Gad-el-Hak, 1998, p33) or predetermined active con-
trol, whereby energy is expended in order to obtain beneficial results, for instance
steady suction to remove boundary layers and maintain laminar skin-friction as
reviewed by Joslin (1998).

Developments in flow visualisation and simulation have revealed details of the
transient behaviour in fluid flow, in particular the structures which appear during
the separation of flow and the transition to turbulence, and the disturbances on
various length and time-scales in turbulent flow, as shown for example by Van
Dyke (1982). Micro-electrical machines (MEMs), as described by Ho and Tai
(1998), Gad-el-Hak (1999) and Lofdahl and Gad-el-Hak (1999), have also been
developed, and are able to sense and deflect fluid flow on boundaries at the small
length scales encountered in flows of engineering interest.

Fluid transient disturbances may be manipulated by passive means, for ex-
ample by riblets (Bushnell, 2003, p7) or large eddy breakup devices (LEBUs)
(Gad-el-Hak, 1998, p65) in turbulent flow, or by ad-hoc active means, for example
wave cancellation techniques as described by Gaster (2000) and Sturzebecher and
Nitsche (2003) in laminar flow. However, the disturbances may also be altered by
means that measure them and react to them. This introduces ‘control’ in the sense
of the usual application of modern systems control theory, i.e. the reactive control
of systems in a temporal setting, and this is the sense used in this thesis. Unlike



passive or ad-hoc active flow control, reactive flow control responds appropriately
to disturbances as they occur.

Abergel and Temam (1990) were amongst the first to suggest the application
of systems control theory to the Navier-Stokes equations. In conjunction with the
advent of MEMs devices, systems theory flow control attempts to improve flow
control performance over that of passive and ad-hoc active control, for which Collis
et al. (2004) note that, to date, progress has been erratic. Systems theory flow
control aims to synthesize controllers for flows which provide certain guarantees
regarding the stability, performance and robustness of the controlled system. The
controllers are synthesized by applying mathematical techniques to a model of the
system derived from its physical equations or measured dynamical properties.

The aim of this thesis is to investigate, using systems theory approaches, the
control of plane Poiseuille flow in the very earliest stages of transition from laminar
flow to turbulence, with an emphasis on modelling the flow, reducing its transient
energy growth, and comparing methods of actuation. The application of feedback
control to the problem of transition brings the prospect of the attenuation of
unknown and variable disturbances in imprecise flow conditions, and mathematical
modelling and optimal solution of the problem may lead the way to practical
configurations.

Flows which are linearly stable nonetheless undergo transition to turbulence,
and the explanation is believed to be the large transient growth of perturbation ki-
netic energy taking the system into a non-linear regime, for example as described
by Trefethen and Embree (2005, p210). In a state-space setting, the transient
energy is a weighted sum of the squares of the state variables. Many systems ex-
perience initial excursions of transient energy before settling down to stable states.
The control of the transient behaviour of systems has recently been investigated
by Hinrichsen and Pritchard (2000) and Hinrichsen et al. (2002).

The benefits of laminar fluid flow over turbulent flow include lower skin fric-
tion and less noise, and methods of preventing the transition of laminar flow to
turbulent flow would yield significantly lower energy costs and carbon emissions
in many kinds of transportation, as reviewed by Wood (2003). Gad-el-Hak (1998,
p79) estimates that skin friction accounts for 50,90, and 100% of drag on commer-
cial aircraft, underwater vehicles and pipelines respectively, and Joslin (1998, p3)
notes that laminar drag can be as low as 10% of turbulent drag.

However, the governing fluid flow equations are infinite dimensional, non-linear
and coupled, and exhibit complex behaviour during the transition from smoothly
shearing laminar flow to the chaotic limit-cycle type behaviour on various length
and timescales that is turbulence. Hogberg and Bewley (2000) note that descrip-
tions of the transition in terms of phenomena are incomplete. The earliest transi-
tion behaviour can be modelled by linearisation of the equations, also making the
equations amenable to rigorous modern controller synthesis techniques. Further-
more, any control of full turbulence would also need to control the early stages in
order to achieve laminar flow, but Hogberg et al. (2003a, p154) note that linear
control of the early stages may obviate the need for control of the later non-linear
ones. It would also seem reasonable to control the large slow moving disturbances
at the beginning of the turbulence cascade (Tritton, 1988, p314) rather than the
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fast small eddies which finally dissipate energy, and which require many more
degrees of freedom to model. Joslin (1998, p2) estimates that the energy require-
ments for relaminarization could be an order of magnitude greater than those for
laminar flow control.

In non-phenomenological terms, controlling the growth of the transient energy
of disturbances in laminar flow is crucial to the suppression of non-linear effects
and the transition to turbulence. In a linear setting, an upper bound on the growth
of the transient energy of disturbances of a system is given by the highest subse-
quent transient energy possible from initial conditions of unit energy. Transient
energy growth is associated with non-normal system eigenvectors, as investigated
by Trefethen et al. (1993).

The geometry of the boundary surfaces over which transition to turbulence
takes place are many and varied, generally with complex boundary conditions and
boundary layer profiles without closed form solutions. Plane Poiseuille (channel)
flow has simple flow geometry, boundary conditions and velocity profile, making it
a suitable choice for the investigation of flow control. The control of flow separation
is another subject, and such separation does not generally occur in channel flow.

The use of MEMs devices providing almost continuous detection of disturbances
and variation of the wall boundary conditions of plane Poiseuille flow under con-
trol, is depicted schematically in figure 1.1. The figure shows plane Poiseuille flow
between two horizontal boundary walls, which contain distributed sensors and ac-
tuators. A flow disturbance is sensed, and fed to the controller which computes an
appropriate transpiration actuation to render the disturbance stable, with further
dynamic properties, e.g. minimised transient energy growth.



1.2 Previous Work

What follows is an overview of recent research in the systems theory feedback
control of laminar plane Poiseuille flow. For other more general reviews of flow
control research, see the articles by Moin and Bewley (1994), Lumley and Blossey
(1998), Bewley (2001) and Collis et al. (2004), and the books by Gad-el-Hak (1998,
2000). Rempfer (2003) provides a review of modelling transition.

Hu and Bau (1994) and Pabiou et al. (2004) demonstrate how the linear stabil-
ity of plane Poiseuille flow may be modified by proportional feedback control from
wall shear stress measurements to wall temperature actuation. Joshi et al. (1995,
1997, 1999) were amongst the first to consider the problem of applying modern
control theory to linearised plane Poiseuille flow. Using a stream function formula-
tion, which restricts flow perturbations to the streamwise/wall-normal plane, the
authors model the flow spectrally assuming a periodic Fourier series variation in
the unbounded streamwise direction, and a Chebyshev series variation in the wall-
normal direction. They use a Galerkin method to form a system with Chebyshev
coefficients as state variables, and which assumes temporal but not spatial growth
of disturbances. As the authors transform their homogeneous system with inho-
mogeneous boundary conditions into a inhomogeneous system with homogeneous
boundary conditions, their control input is via rate of change of wall-normal ve-
locity. Their measurements are wall shear stress. The authors propose distributed
actuation and sensing in order to make unmodelled wavenumber dynamics un-
controllable and unobservable respectively, although they employ point sensing in
their linear simulations which show the effectiveness of integral and linear optimal
controllers with prescribed stability, in terms of shear settling time and the re-
quired control effort, from unit initial state variables. Controllers from low-order
models are seen to be as effective as those from high order models.

Cortelezzi and Speyer (1998) and Cortelezzi et al. (1998a,b) employ similar
methods to those of Joshi et al., and point out that distributed actuation and
sensing makes the linearised equations decouple by wavenumber. In their linear
quadratic regulator (LQR) controller synthesis the authors chose to minimise the
wall shear stress, and like Joshi use the power spectral densities of the estimator
in their linear quadratic estimator (LQE) synthesis as design parameters to intro-
duce robustness via the loop transfer matrix. A combined model covering several
wavenumbers is used for the synthesis of a controller, which is then reduced by se-
lection of controllable and observable rows and columns from the Jordan canonical
form. The authors compute initial conditions which lead to the worst wall shear
stress, and achieve a significant reduction in non-linear simulations, but being two-
dimensional it does not fully represent turbulence. Lee et al. (2001) extend the
controller into the spanwise direction in an ad-hoc manner.

In their seminal paper, Bewley and Liu (1998) adopt a wall-normal velocity-
vorticity formulation, capable of representing three-dimensional disturbances, dis-
cretised by spectral collocation in the wall-normal direction to yield the state
variables as values at collocation points. Unfortunately, although their implemen-
tation of the boundary conditions allows control directly by wall-normal velocity,
it also introduces spurious system modes. The authors synthesize linear quadratic



Gaussian (LQG) controllers using the transient energy plus control effort as an
LQR cost function, seeking to minimise transient energy growth and consequent
non-linearity, as a precursor to transition, rather than the immediate but short
term benefit of reduced wall shear as sought by Joshi et al. and Cortelezzi et al.
The authors also synthesize H,, robust controllers, which are insensitive to un-
certainties. They compute initial conditions which produce the worst subsequent
transient energy growth as derived by Butler and Farrell (1992), and perform lin-
ear simulations on two test cases, an unstable two-dimensional flow perturbation,
and the stable three-dimensional perturbation which produces the largest overall
transient energy growth. The authors emphasize the role of non-modal transient
energy growth associated with non-orthogonal system eigenvectors, and show the
superiority of modern control methods over more conventional ones. By reformu-
lating the boundary conditions, Aamo (2002) is able to avoid the spurious modes.

Balogh et al. (1999, 2000, 2001) derive controllers for global Lyapunov (non-
linear) stabilization of two-dimensional channel flow. The intractability of the
problem is shown by the results only being applicable to low Reynolds number,
R < 1/8, although the flow is known to be stable uncontrolled to R ~ 1000, for ex-
ample as shown by Carlson et al. (1982). The authors’ controllers achieve laminar
flow in non-linear simulations at much higher Reynolds numbers, R = 7500 and
15000. They use tangential actuation with local shear stress measurements and
perform non-linear simulations with both finite-volume and spectral Navier-Stokes
solvers, from initial random perturbations allowed to grow for some time. Sub-
sequently Aamo et al. (2003) formulate controllers for achieving global Lyapunov
stabilization using wall-normal actuation and pressure measurements, which are
similarly restricted to low Reynolds numbers but are seen to achieve laminar flow
at much higher ones. Reversal of the feedback sign leads to enhanced instability
and mixing as compared to open-loop flow. Bewley and Aamo (2004) observe
low drag transients in the controlled flow, but find that they are unsustainable,
and conjecture that the lowest possible sustainable drag in channel flow is that of
laminar flow.

Bamieh and Dahleh (1999, 2001) show that subcritical streamwise constant
disturbance energy amplification is O(R?) and is due to the coupling between ve-
locity and vorticity, as a consequence of the non-normality of the Orr-Sommerfeld
operator. Subsequently Bamieh et al. (2002) demonstrate that optimal controllers
inherit the spatial invariance of the plant under a variety of performance criteria,
and furthermore that convolution kernels, arising from many controllers at contin-
uous wavenumbers in Fourier space, decay exponentially with physical distance,
i.e. only local variables affect the control, thus resulting in localised control.

Hogberg and Bewley (2000), motivated to derive control ‘bypassing phenomeno-
logical descriptions of transition which are still incomplete’, generate convolution
kernels for the LQR control of linearised plane Poiseuille flow, and find that they
do generally decay exponentially and result in localised control. The authors’ flow
model is a development of Bewley and Liu (1998), using the differentiation matrix
suite of Weideman and Reddy (2000) and, akin to Joshi et al. (1995), forming
an inhomogeneous system with homogeneous boundary conditions (as also recom-
mended by Boyd (2001)), the authors use control by rate of change of wall-normal



velocity, and find no spurious modes. Direct numerical simulations on oblique
waves (which generate streamwise vortices and thus streaks) and random initial
conditions, both of initial energy well above the known transition energy thresh-
olds determined by Reddy et al. (1998), demonstrate that the resulting controllers
bring the flow back to the laminar state.

Hogberg et al. (2003a) show that although convolution kernels decay, and trun-
cation does not degrade state feedback control significantly, convolved output
feedback performance is degraded. The authors also quantify the improvement
in transition thresholds when feedback is applied, by non-linear simulations us-
ing the widely cited code of Bewley et al. (2001, p193), which is pseudospectral
streamwise and spanwise, and finite difference in the wall-normal direction, with
time advancement by hybrid Crank-Nicholson/Runge-Kutta methods. Oblique
waves are known to have a lower transition threshold than streamwise vortices or
random perturbations in uncontrolled flow as shown by Reddy et al. (1998), and
control significantly increases the transition thresholds. Streamwise vortices are
seen to have the lowest transition threshold in state feedback controlled flow. The
controllers are unable to relaminarize turbulent flow. Hogberg et al. (2003b) re-
port the successful non-linear simulation of relaminarization of turbulent channel
flow, using the gain scheduling of linear state feedback kernels derived for different
mean flow profiles as the flow field is made laminar.

The importance of the linear transient energy growth mechanism is stressed
by Reddy and Henningson (1993, p236). Hogberg and Bewley (2000) note that
non-linear terms only redistribute energy. Kim and Lim (2000) and Kim (2003)
emphasize the importance of the linear terms in maintaining turbulence.

Bewley et al. (2001) successfully control a turbulent channel flow simulation
using non-linear predictive optimal control to optimize actuation over a finite pre-
diction horizon. The method uses a cost function gradient computed from the
adjoint flow field, requiring an intensive online calculation. Thus the authors see
the result as a benchmark for more practical controllers. Hogberg et al. (2001)
compare optimal linear control and non-linear predictive optimal control on oblique
waves in channel flow. LQR controller performance is found to be very similar to
predictive controller performance, and LQG controller performance is not as good,
although it may be improved with better initial estimates. The authors identify
the need for estimators with faster convergence.

Bewley and Protas (2004) show that, in theory, measurements of wall shear
stresses and pressure over a short interval of time are sufficient to determine the
exact state of turbulent flow, and the stresses alone are sufficient for determining
the state of linearised flow, without any knowledge of the initial conditions of the
flow. However, poor estimator convergence is found in non-linear simulations, and
the authors present an adjoint based algorithm which utilises the Navier-Stokes
equations as a filter and is better behaved, especially with regard to measurement
noise, since it does not perform differentiation. Chevalier et al. (2004) gather sta-
tistical data from direct numerical simulations of turbulence in Poiseuille flow, in
order to compute the covariance of the process noise. For individual wavenumber
pairs and in terms of velocity components, the variance is found to be stronger
near the walls, and the covariance decreases as the wall-normal distance between



the points increases. The authors then compute optimal estimator gains for an
extended Kalman filter based on the linearised Navier-Stokes equations, and test
the resulting estimator on turbulent Poiseuille flow simulations. The estimators
show better correlation with simulated turbulent flow than do estimators from pre-
vious studies which use a spatially uncorrelated covariance, in terms of maximum
correlation and distribution in the channel. Hoepffner et al. (2005, 2006) assume
a parameterised covariance which decreases exponentially as the wall-normal dis-
tance between the points increases. The authors then compute optimal estimator
kernel gains for a Kalman filter for a number of simultaneous wavenumbers, which
converge upon grid refinement. The resulting estimators are tuned, in part by
physical arguments, and found to be effective in linear and non-linear simulations
of perturbed laminar flow. The authors show that extended filters incorporating
non-linearity perform better for large disturbances, and that time varying estima-
tor gains lead to faster convergence.

Baker and Christofides (1999), Baker et al. (2000a,b) and Baker and Christofides
(2002) synthesize non-linear finite-dimensional output feedback controllers for two-
dimensional channel flow. The controllers measure wall shear stresses and generate
Lorentz electromagnetic body force actuation, which requires a conducting fluid.
The non-linear channel equations are modelled using a stream function formula-
tion, and discretised by a Galerkin method utilising approximate inertial manifolds,
assuming periodicity of several wavenumbers in the streamwise direction, and using
linear combinations of Chebyshev polynomials in the wall-normal direction that
satisfy the homogeneous boundary condition. Controllers are synthesised using ge-
ometric methods. The authors also synthesize linear output feedback controllers,
and show the superiority of the non-linear control using a transient performance
index related to system energy.

Using a two-dimensional modified stream function formulation, Baramov et
al. (2000, 2002) model Poiseuille flow with discrete wall shear stress measure-
ments, and both harmonic and panel transpiration, with included actuator dy-
namics. Since the panel actuation boundary conditions are not harmonic, sev-
eral wavenumbers are modelled simultaneously. The high order model from a
Galerkin discretisation of the linearised Navier-Stokes equations is reduced in or-
der by Hankel-optimal reduction. The flow model consists of an interconnection
of the reduced order model and a perturbation, and H., controllers are synthe-
sized using appropriate frequency weightings. The controllers are tested on the
high order model with random initial conditions. The controllers satisfy the ro-
bust stability condition, and significantly attenuate wall shear stress. Panel ac-
tuation introduces an unstable zero and thus has a large H,, performance index,
but requires less control effort than harmonic actuation. The authors’ use of fre-
quency domain analysis provides an alternative insight into the system dynamics
to transient analysis, but the existence of non-modal transient energy growth is
not as apparent. Jovanovic and Bamieh (2005) find the existence of input-output
resonances in linearised plane Poiseuille flow spatial-temporal frequency responses
which correspond to the known growth mechanisms of Tollmien-Schlichting waves,
streamwise vortices and oblique waves.

Subsequently Baramov et al. (2001, 2003, 2004) model two-dimensional non-



periodic spatially evolving disturbances by coupling systems representing segments
of channel. Each segment is a finite difference discretisation of the channel in the
streamwise direction with a Chebyshev expansion in the wall-normal direction.
Additional segments are added to avoid end effects. Segments are combined using
the Redheffer star product on their frequency domain data. A low-order transfer
function matrix is fitted to the combined frequency domain data, and a distur-
bance model is designed and H,, controllers are synthesized, using appropriate
frequency weights which achieve robust stability. The resulting high order con-
troller is reduced in order by Hankel-optimal reduction. Closed-loop frequency
domain tests show that the controller significantly reduces incoming wall shear
stress. Further evaluations using a finite-difference non-linear Navier-Stokes solver
also show significant shear reduction downstream of the actuation panels, from
incoming disturbances.

Veres et al. (2003) iteratively synthesize low order controllers for a similar model
of Poiseuille flow by the technique of unfalsification. The forms of a parameterised
model and of robust controllers are assumed, and unsuitable parameter vectors
are discarded by using a priori knowledge of the physical plant and by assessing
the controller robust performance. Bewley et al. (2000) propose a mathematical
framework for the robust control of two-dimensional and three-dimensional infinite
dimensional linear and non-linear fluid flows, and suggest a numerical algorithm
based on repeated computations of an adjoint field.

Researchers have also used techniques developed on Poiseuille flow to model and
control spatially developing boundary layers, for example Hogberg and Henningson
(2002). This requires a different base flow and the introduction of a free-stream
boundary condition. Actuation is solely at the remaining wall and the authors
assume that non-parallel flow effects are small.

1.3 Objectives and Methods

1.3.1 Objectives

With the aims of investigating systems theory control of plane Poiseuille flow
in the very earliest stages of transition from laminar flow to turbulence, with
an emphasis on modelling the flow, reducing its transient energy growth, and
comparing methods of actuation, the objectives of this thesis are as follows.

e The first objective is to obtain models of the flow that are in a form suitable
for the synthesis and analysis of controllers using standard modern control
methods. The available literature shows that the spectral modelling of plane
Poiseuille flow for controller synthesis has used a number of different tech-
niques, for example stream function vs. velocity-vorticity formulations, and
polynomial vs. interpolating discretisation. Thus, this objective is to com-
bine several of the most beneficial techniques into a single state-space model.

e The next objective is to analyze the physical and numerical properties of
the developed models. The correctness of the model dynamics with respect



to previous results is to be established, and appropriate discretisation deter-
mined. Regarding wall-normal discretisation of the channel, several ways of
applying Dirichlet and Neumann boundary conditions to Chebyshev polyno-
mials have been published. More specifically, this objective is to examine in
detail some of these methods of wall-normal discretisation, with particular
emphasis on the numerical conditioning of the resulting matrices.

e A further objective is to design feedback controllers using standard control
techniques, and to test them using an independent model. Linear quadratic
regulators and estimators will be synthesized using the state-space model,
as these have been seen to be amongst the feasible controllers in previous
work. To date, spectral controllers for linearised plane Poiseuille flow have
generally been synthesized and then tested using similar spectral codes, albeit
with variations in the order of the synthesis and verification models, and
sometimes with non-linear terms included in the verification model. In more
detail, this objective is to synthesize linear optimal controllers for the state-
space model, and to test the performance of the controllers in non-linear
simulations that employ independent methodologies to the spectral synthesis
model.

e An additional objective is to investigate whether control can be improved
by consideration of alternative actuation. Although to date much work has
been performed on flow control via wall-normal transpiration, little has been
done on the use of tangential actuation. Although wall-normal actuation acts
by convection and might be considered to be more effective than tangential
actuation which acts by diffusion, laminar plane Poiseuille flow is dominated
by diffusion. To summarise, this objective is to assess the suitability of
tangential actuation for flow control of plane Poiseuille flow.

e The final objective is to analyze the transient energy growth of the controlled
systems and to consider recent control methods that explicitly reduce this
property. Several researchers have identified the highest transient energy
growth (over all unit energy initial conditions, and over all subsequent time)
as an appropriate index of controller performance, but have synthesized con-
trollers which minimise the time integral of transient energy. Hence this
objective is to synthesise controllers which attempt to minimise the highest
transient energy growth, and assess their performance in linear and non-
linear simulations.

The objectives of this thesis may be summarised as: to generate a state-space
model of linearised plane Poiseuille flow, and to investigate the wall-normal dis-
cretisation, furthermore to synthesize linear optimal estimators and controllers,
and to test their performance in open- and closed-loop independent non-linear
simulations, and in addition to investigate tangential actuation, and finally to
synthesize and test controllers which minimise the transient energy growth.



1.3.2 Methods

Regarding the methods employed is this thesis in order to reach the objectives,
linearised plane Poiseuille flow is modelled spectrally for control synthesis, since
spectral methods are known to be the most suitable for modelling flow in simple
domains (Ferziger and Peric, 2002, p62). With regard to the techniques employed
in the spectral model, a polynomial form of collocation will be employed that allows
approximation, on a velocity-vorticity formulation that models three-dimensional
disturbances, and the problem will be transformed into an inhomogeneous one
with homogeneous boundary conditions to allow the straightforward application of
boundary conditions and avoid the introduction of spurious modes. The resulting
equations will be transformed into conventional state-space form by inversion of
the Laplacian, and integrators will be introduced to regularise the inputs.

For the investigation of wall-normal discretisation, the methods for applying
boundary conditions to Chebyshev series by Joshi (1996) and Heinrichs (1989,
1991) are compared with recombinations of Chebyshev series, partly by Weideman
and Reddy (2000) and Boyd (2001), and in part novel. The validity of the methods
are compared from a linear algebraic viewpoint and subsequently their numerical
conditioning is examined by investigation of their maximum and minimum singular
values.

LQR controllers and LQE estimators will be synthesized using the state-space
model, for various design weightings and model discretisations, and for two test
cases. The first test case represents linearly unstable streamwise/wall-normal ve-
locity perturbations, commonly known as Tollmien-Schlichting waves. The second
test case represents streamwise vortices, which are linearly stable, but have been
shown by Butler and Farrell (1992) to generate the highest subsequent transient
energy growth over all initial perturbations and subsequent time.

Although spectral models have been used for controller synthesis then simu-
lation, and finite difference models have been used for synthesis then simulation,
little work has been done using finite-volume methods, which are in widespread
use in other fields, see for example the work by Yeoh et al. (2004). Thus the per-
formance of the controllers synthesised using a spectral model is determined via
non-linear simulations using a finite-volume computational fluid dynamics (CFD)
Navier-Stokes solver. The CFD solver is independently derived from the spectral
model, and is capable of modelling the flow in simple and complex geometries. Suc-
cessful implementation of the controllers into such a finite-volume code will provide
useful information when the controllers and code are applied to more complicated
geometries than the plane channel considered here.

Tangential actuation will be introduced into the state-space model of linearised
plane Poiseuille flow by the derivation of the boundary conditions in velocity-
vorticity form and the selection of appropriate actuation basis functions that en-
force them. Controllers will be synthesised and their performance compared to that
of wall-normal actuation controllers in terms of highest transient energy growth.
The controllers will also be tested in linear and non-linear simulations.

The largest transient energy growth possible at any particular time may be
cast as the square of the spectral norm of the state transition matrix. Hinrichsen
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and Pritchard (2000) derive estimates for the maximum over time of the spec-
tral norm of the state transition matrix of a stable system, and show how it can
be reduced by state feedback. Hinrichsen et al. (2002) introduce the concept of
(M, 3) stability, which describes both long term stability and transient behaviour,
and Plischke and Wirth (2004) present sufficient conditions for state feedback to
satisfy the exponential growth bound. An upper bound for the transient energy
growth has been derived by Whidborne et al. (2004), who also provide linear ma-
trix inequality (LMI) methods for synthesizing state feedback controllers which
minimise the upper bound. Whidborne et al. (2005) have derived output feedback
controllers which minimise the transient energy growth itself.

In order to synthesize controllers which minimise upper bounds on highest
transient energy growth and peak control effort, the published system of linear
matrix inequalities (LMIs) by Whidborne et al. (2004) will be modified to include
a constraint on peak control effort. The system of LMIs is subsequently solved in
order to synthesise controllers for the linearised Lorenz equations and the model of
plane Poiseuille flow. The controllers are subject to linear and non-linear simula-
tions, and the results for plane Poiseuille flow are compared to those of controllers
which minimise the time integral of transient energy.

1.4 Outline of Thesis

The outline of this thesis is as follows. Chapter 2 models plane Poiseuille flow
using spectral methods, and examines the resulting model in detail with regard
to discretisation, controllability and observability. Chapter 3 investigates wall-
normal discretisation in depth, comparing the numerical conditioning of several
methods of applying the boundary conditions. In chapter 4 linear optimal con-
trollers are synthesized using the flow model, and detailed linear and non-linear
closed-loop simulations performed. Chapter 5 derives generalised wall boundary
conditions and synthesizes controllers using tangential actuation, which are sub-
sequently assessed in closed-loop linear and non-linear simulations. In chapter 6
state feedback controllers which minimise upper bounds on the transient energy
growth and control effort are derived, and controllers for the Lorenz equations, as
an example problem, are synthesised and tested. Minimising controllers for the
plane Poiseuille flow model are also synthesized and assessed by further simula-
tions. Finally chapter 7 draws conclusions from the work described in this thesis
and suggests possible directions for future work.

1.5 Achievements

The following papers and report have been written to disseminate the results of
the research described in this thesis.

McKernan, J., Whidborne, J.F. and Papadakis, G. (2006). Linear
Quadratic Control of Plane Poiseuille Flow - the Transient Be-
haviour, International Journal of Control, submitted.
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McKernan, J., Whidborne, J.F. and Papadakis, G. (2006). A Linear
State-Space Representation of Plane Poiseuille Flow for Control De-
sign - A Tutorial, International Journal of Modelling, Identification
and Control, accepted.

McKernan, J., Papadakis, G. and Whidborne, J.F. (2006). Wall-
normal Discretisation of Linearised Plane Poiseuille Flow for Bound-
ary Control, Journal of Computational Physics, to be submitted.

McKernan, J., Whidborne, J.F. and Papadakis, G. (2004). Optimal
Control of Plane Poiseuille Flow, Proc. UKACC International Con-
ference Control 2004, September 2004, Bath, UK.

McKernan, J., Whidborne, J.F. and Papadakis, G. (2004). Optimal
Control of Plane Poiseuille Flow, Proc. First European Forum on
Flow Control, October 2004, Poitiers, France.

McKernan, J., Whidborne, J.F. and Papadakis, G. (2005). Minimisa~
tion of Transient Perturbation Growth in Linearised Lorenz Equa-
tions, Proc. 16th IFAC World Congress, July 2005, Prague.

McKernan, J., Papadakis, G. and Whidborne, J.F. (2003). Modelling
plane Poiseuille flow for feedback control design, Technical Report
EM/2003/01, Centre for Mechatronics and Manufacturing Systems,
Department of Mechanical Engineering, King’s College, London.

The major achievements arising from this thesis are:

1. The development of a polynomial-form state-space model of three-dimensional
linearised plane Poiseuille flow, with a detailed investigation of convergence
with the degree of discretisation, of controllability and observability, and of
consistency with a previously published interpolating-form model. The effect
of input integrators on state-space system observability and controllability
has been derived.

2. The investigation of the numerical conditioning of four methods of basis
recombination in order to fulfill Dirichlet and Neumann boundary condi-
tions. A novel recombination is proposed for the simultaneous Neumann and
Dirichlet boundary conditions, that extends a published Dirichlet boundary
condition method. In association with derived pre-conditioning, this recom-
bination yields the best numerical conditioning of the four methods for in-
version of the discrete Laplacian, which is required to form the state-space
model.

3. The synthesis of linear quadratic regulators and estimators for the state-
space model of plane Poiseuille flow, and the calculation of the worst initial
conditions, with investigations of the selection of weighting matrices, and of
the convergence with discretisation. A novel estimator weighting is proposed
which results in improved convergence over an identity matrix. Subsequent
linear simulations show the requirement for large local displacement of tran-
spiration fluid to stabilise the selected test cases. The simulations also show
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that the best controllers in terms of lowest transient growth do not change
the system eigenvector orthogonality appreciably.

. Non-linear simulations using an independently derived finite-volume Navier-
Stokes solver, modified to model small perturbations accurately, show agree-
ment with open- and closed-loop linear results at low initial perturbation
energy levels, and generally saturation and closed-loop stabilisation at larger
initial energy levels.

. The derivation of generalised boundary conditions, allowing simultaneous
tangential and wall-normal transpiration, and the synthesis and closed-loop
simulation of controllers which utilise tangential actuation. Despite numer-
ical difficulties with tangential actuation, and its equivocal performance as
compared to wall-normal actuation, it may be more feasible in practice,
since although mechanisms such as rollers have constraints on velocity and
acceleration, as do wall-normal jets, unlike jets they have no constraint on
displacement.

. The addition of limited control effort to a system of linear matrix inequalities
for synthesizing controllers with a minimised upper bound on transient en-
ergy growth, and the resulting generation and closed-loop simulation of such
controllers on both the linearised Lorenz equations and the plane Poiseuille
flow model. For the latter, the performance of the controllers is close to that
of linear optimal controllers. For the Lorenz system, it is again found that
transient energy growth does not correlate well with system orthogonality.
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Chapter 2

A Linear State-Space
Representation of Plane Poiseuille
Flow

2.1 Introduction

This chapter derives a linear state-space representation of linear perturbations in
plane Poiseuille flow. The representation takes the form

X = AX+BU
Y = CXx (2.1)

where U represents control inputs, ) represents measurement outputs, X are state
variables, and A, B and C are the system, input and output matrices respectively.

Section 2.2 presents the Navier-Stokes equations and their boundary condi-
tions, as well as the procedure for linearisation about plane Poiseuille (channel)
flow. Subsequently the section describes non-dimensionalisation of the linearised
equations and the derivation of wall shear stress measurement vector. In section 2.3
appropriate formulations of the linearised Navier-Stokes equations are discussed
and the velocity-vorticity formulation selected for the present work. The boundary
conditions are restated in this formulation. Section 2.4 describes the spectral dis-
cretisation of the linearised equations in the streamwise, spanwise and wall-normal
directions. Periodic behaviour is assumed in the spanwise and streamwise direc-
tions, and non-periodic behaviour in the wall-normal direction. The wall shear
stress measurements are also discretised in this section.

The introduction of wall-transpiration boundary conditions into the discretised
equations is described in section 2.5, with the subsequent transformation of the
equations into an inhomogeneous or forced form with homogeneous (zero-valued)
boundary conditions. The homogeneous boundary conditions are fulfilled by the
use of the recombined Chebyshev polynomials described in chapter 3. In section
2.6, the inhomogeneous terms are extracted as the control inputs during manipula-
tion of the equations into state-space form, and the system matrices and variables
are identified. Finally the section compares the derivation of the state-space form
with a previously published derivation.
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Section 2.7 describes two relevant test cases, and the implementations of the
state-space model appropriate for each of them such that the minimum number
of variables are required. Investigations into the accuracy and convergence of
the resulting state-space model are presented and discussed in section 2.8. Com-
parisons are made with published data, and discrepancies investigated. Finally
section 2.9 draws conclusions regarding the development and implementation of
the state-space model of linearised plane Poiseuille flow.

2.2 Flow Equations

This section derives the flow equations of linearised plane Poiseuille flow. The
Navier-Stokes and continuity equations are introduced, and the perturbation equa-
tions developed. The base plane Poiseuille flow is described, and substituted into
the perturbation equations. Finally the resulting linearised plane Poiseuille flow
equations are non-dimensionalised, and appropriate flow measurements defined.

2.2.1 The Incompressible Navier-Stokes and Continuity Equa-
tions

The flow of a Newtonian fluid is described by the Navier-Stokes and continuity
equations. The Navier-Stokes equations form a set of three coupled, non-linear,
partial differential equations representing conservation of momentum, and the con-
tinuity equation is an additional constraint representing the conservation of mass.
The equations are infinite dimensional in each spatial direction, in the sense that
the fluid is treated as a continuum.

For an incompressible fluid with uniform density p and viscosity u, in the ab-
sence of body forces, in cartesian co-ordinates (z,y, z), the Navier-Stokes equations
are

W) = tupi Ly (2.2)
ot p p
where U (x,y,2,t) and P(x,y,z,t) are the instantaneous velocity and pressure
respectively. The continuity equation for an incompressible fluid in the absence of
sources and sinks is

V-U=0 (2.3)

These equations are accurately representative of the behaviour of many real fluids,
such as air and water at normal pressures and temperatures, and low velocities.

The usual boundary conditions specify no slip, i.e. zero relative velocity, normal
and tangential, at solid boundaries. Ultimately, for control purposes, a time-
dependent velocity is specified on the boundaries, representing the injection or
suction of fluid through porous walls known as transpiration.

For a steady base flow (ﬁb,Pb>, 8[7b/3t = 0 and so the Navier-Stokes and

continuity equations (2.2,2.3) become

. . 1 .
(Ub-V> 0, = —;VPb+%V2Ub (2.4)
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and
V-U,=0 (2.5)

respectively.

2.2.2 Perturbations About a Base Flow

Upon substituting a steady base flow ((jb = (Uy, Vi, Wy) , Py) plus a transient flow
perturbation (¢ = (u,v,w),p) into the Navier-Stokes and continuity equations
(2.2,2.3), they become

W) (o) 9) (@rd) = Limen o (@4
2.6)
v (G+a) =0 (27)

Since the base flow is steady and its terms themselves satisfy the Navier-Stokes
and continuity equations (2.4,2.5), these equations may be simplified to

ou — 5 5 5 5 = 1 Mo
at+<Ub-V>u+(u~V)u+(u-V)Ub = Vv (2.8)
Vi = 0 (2.9)

The boundary condition on perturbation velocities is the no slip condition.

2.2.3 The Base Flow: Plane Poiseuille Flow

There are few exact solutions to the base flow system of equations (2.4,2.5), but
one that does exist is that for laminar plane Poiseuille flow, the fully developed
plane steady flow between infinite parallel planar stationary boundaries. Assuming
flow is in the z-direction, then V, = W, = 0 and the base flow equations reduce to

1 8Pb 2 62Ub 8Pb an
_——— —_— = —_— = _— = 2.].
7 T ( 3 ) 0, 5 =% Z =0 (2.10)
and
oU,
— = 2.11
e 0 (2.11)

Assuming the planar boundaries are located at y = +h, the boundary conditions
are Uy(x,th, z,t) = 0. The solution of (2.10) and (2.11) is a parabolic velocity
profile in y and a linear pressure gradient in x

2
7 Y dpb, 2Uqp
U, = 1-=1U4,0,0), —=——-— 2.12
= ((1- %) o), -2 (212)
where U, is the centre-line velocity. This flow may be physically realised at low

Reynolds numbers (R = pUyh/ i, based on centreline velocity and channel half-
height), when the flow is laminar. At higher Reynolds numbers the flow becomes
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Figure 2.1: Co-ordinate System for Plane Poiseuille Flow

turbulent, with associated large increases in skin friction and heat transfer. The
present work is applicable only to laminar flow.

Henceforth the x direction is referred to as the streamwise direction, the y
direction is referred to as the wall-normal direction, and the z direction is referred
to as the spanwise direction. The coordinate system is shown in figure 2.1.

2.2.4 Linearization About Plane Poiseuille Flow

The Navier-Stokes perturbation equations (2.8), are linearised by discarding the
second order quantity (u - V) @, which is small compared to ([71, : V) i+ (- V) U,
in (2.8) when @ < Uy, resulting in the linearised Navier-Stokes equations

ou
ot

The continuity perturbation equation, V - @ = 0 (2.9), is already linear. The
boundary condition on perturbation velocities remains the no slip condition. This
linearization is the first in a series of approximations. Although the behaviour of a
real fluid is non-linear, a linear model can still capture critical unstable behaviour,
as noted by Trefethen et al. (1993).

If the plane Poiseuille base flow (2.12) is substituted for Uy, the equations (2.13)
become the Navier-Stokes equations linearised about plane Poiseuille flow

. 1
<Ub V>ﬁ+(ﬁ-V)Ub — —;Vp—F%V?ﬁ (2.13)

ou ou oU, 10p 9
U —_— —
o T Ty T Toae Vi
ov dv _ 10p 9
a Ve T eyt V
ow ow  109p u 9
s + Up— Y p@z V (2.14)

18



where U, = (1 — Z—Z) U,.

2.2.5 Non-Dimensionalisation

Non-dimensionalising length scales by the channel half-height, A, velocities by the

centre-line velocity, Uy, pressure by pU?2, such that p* = p/pU3,t* = tU,/h,u* =

Ci
u/Uq,u* = u/Uy, x* = x/h etc, the Navier-Stokes equations linearised about plane

Poiseuille flow (2.14) become

ou* ou* oU; ap* 1
- Uk * b _ SN2, ¢
o o TV oy or- TRV Y
ov* LOur o Opt 1,
o "o T Top TRV
ow* ow* op* 1_,
LU = — — * 2.15
o o o TRV (2.15)
where R is the Reynolds number, pU,h/u. The base velocity profile (2.12) becomes
U =1—y* (2.16)

and the continuity equation (2.9) becomes

ou*  ov*  ow*

+ + =0 2.17
oxr*  Oy*  0z* ( )

The asterisk will be dropped for notational convenience for the remainder of this

work. In non-dimensional co-ordinates the upper and lower walls are at y = +1

respectively.

2.2.6 Measurement

In a real system, the dimensionalised measurements would be the shear stresses
Tyz, Ty~ in the z and z directions respectively, on the upper and lower walls, where

ou Ov ow v

Non-dimensionalising the stresses by pU2, velocities by U, and distances by h as
previously, the equations become

1 /O0u Ov 1 /0w Ov
=g (G o) =7 (%t 5) 219

Since the velocity v at the walls is set by the boundary conditions, it is known
and its derivatives can be subtracted out. Thus it is appropriate to define a
measurement vector y similar to that used by Bewley and Liu (1998)

du
W ly=11
1 Ou
Oy
- - y=-1 2.20
Oy y=+1
dw
dy y=—1
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Strictly speaking, the shear stress measurement on the upper wall should be
negated, as these values refer to the lower surface at any shear plane, but this
omission has no consequences, as it has been treated consistently.

2.3 Formulation

In this section a suitable formulation of the linearised plane Poiseuille flow equa-
tions is selected and developed, and the boundary conditions restated in the se-
lected formulation.

2.3.1 System Formulations

The equations (2.15,2.17) form a system of 4 linear partial differential equations,
in four flow variables (u,v,w,p), in which the continuity equation has no time
derivative, and acts as a spatial differential constraint. The constraint is enforced
by Vp acting as a Lagrange multiplier, keeping the velocity field divergence free.
If ordinary differential equations are formulated from the system by discretisation,
they are singular, as noted by Bewley (2001), since the continuity equation has
no time derivative and thus the matrix £ in the differential algebraic equation
(or DAE, as described by Campbell and Marszalek (1999, p25,p38)) or descriptor
form

LX = A*X +B*U (2.21)

where A% and B* are related forms of A and B, cannot be inverted to pro-
duce the conventional state-space form of equation (2.1). To proceed further
the system (2.15,2.17) can be reformulated in terms of only two flow variables,
a so-called divergence free basis in which continuity is implicitly enforced. The
variables (u, v, w, p) are transformed to eliminate the continuity equation and thus
the differential constraint. This eliminates the algebraic constraints in the dis-
cretised form (2.21), reduces the order of X and £ becomes non-singular. There
are several possible formulations: vorticity-stream function, velocity-vorticity, and
velocity-pressure (provided the continuity equation is used to derive pressure), as
described by Peyret (2002). The current work employs a velocity-vorticity formu-
lation as it is convenient for the application of boundary conditions in this simple
geometry, as noted by Bewley (2001).

2.3.2 Velocity-Vorticity Formulation

The pressure perturbation is eliminated from the Navier-Stokes perturbation equa-
tions by forming its gradient, (Op/0z, dp/dy, Op/0z), from the three perturbation
equations (2.15), taking the divergence of the result, and substituting the result-
ing Laplacian into the Laplacian of the second perturbation equation to yield a
‘wall-normal velocity’ equation, as described by Schmid and Henningson (2001,
p56)

I(V?v)

2 2
= OV7) IO Ov_ Lgnige, g (2.22)

U or Oy dx R
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having employed the continuity perturbation equation (2.17) in the process by
substitution. A second equation is required to completely describe a 3-d perturba-
tion. Vorticity is the curl of the velocity field, V x 4, and defining the wall-normal
vorticity, n, as

_Ou Ow

n=5- - o (2.23)

it represents twice the angular velocity of a fluid particle with respect to an axis in
the wall-normal direction. The z differential of the first perturbation equation of
(2.15) minus the z differential of the third equation yields a ‘wall-normal vorticity’
equation

on  0U, 0v on 1

9 o _loe 2.24
ot "oy o: Ve my 10 (2:24)

The velocity equation (2.22) contains the time derivative of the Laplacian of
velocity, which will need to be inverted to produce the form of (2.1). The equations
are one-way coupled, in the sense that (2.22) can be solved independently of (2.24),
and its solutions for v (including v = 0) then used to derive the solution of (2.24)
for 7.

2.3.3 Boundary Conditions in Velocity-Vorticity Formula-
tion
The no-slip boundary conditions in the velocity-vorticity formulation become
Dirichlet Boundary Conditions on v. The wall-normal velocity at the walls,
v(y = £1), is zero in plane Poiseuille flow, and thus the boundary condi-

tions are homogeneous. The introduction of wall transpiration will make the
velocities non-zero and thus the boundary conditions inhomogeneous

vy=1) = qu
vy=-1) = q (2.25)

where ¢, and ¢, are determined by the controller.

Homogeneous Neumann Boundary Conditions on v. The equation of con-
tinuity at the walls states

oul o
azcy:il dy

ow
_.I__

- 2.2
) 0 (2.26)

y==+1

y==+1

Thus, substituting the zero streamwise (z) and spanwise (z) velocity pertur-
bations, the y derivative of wall-normal velocity perturbations is zero at the
walls

ov
3 -0 (2.27)

y==+1
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Homogeneous Dirichlet Boundary Conditions on 7. The streamwise (z) and
spanwise (z) velocity perturbations (u,w) are zero at the wall, so the wall-
normal vorticity at the walls is also zero

ou

n(y =+1) = e

ow

- -0 (2.28)

y==%1

y==%1

There are four boundary conditions for the fourth order velocity equation, and
two boundary conditions for the second order vorticity equation, thus forming a
well-posed mathematical problem.

2.4 Discretisation

This section describes the discretisation of the linearised system of equations in
the streamwise, spanwise and wall-normal directions.

2.4.1 Introduction

Since the flow problem is infinite dimensional in spatial coordinates, in order to
work with a system with a finite number of state variables, the linearized system
must be discretised in space, which is the second approximation in the process of
generating the plant model, linearisation being the first. Several methods of spatial
discretisation of PDE’s exist, e.g. spectral, finite difference, finite element, and fi-
nite volume methods. The system of partial differential equations is approximated
and replaced by a system of ordinary differential equations.

Spectral collocation discretisation methods are used here. Spectral methods
belong to the class of weighted residual methods in which the weighted residual
from evaluating the PDE using an approximate solution is set to zero. Spectral
methods approximate the solution by a truncated series of orthogonal functions.
Using a Fourier series for the orthogonal functions assumes a periodic solution,
using a Chebyshev polynomial series assumes a non-periodic one. Collocation
involves setting the residual to zero at specific points, as compared to the Galerkin
method which sets the average residual to zero, as described by Peyret (2002).

2.4.2 Streamwise and Spanwise Discretisation

The variation of the solution in the streamwise and spanwise dimensions is ap-
proximated by terms from a truncated Fourier series. The use of a Fourier series
assumes a periodic solution for all variables in the dimensions to which it is ap-
plied, and Rempfer (2003, p237) notes thats its use in these dimensions assumes
a temporally rather than spatially growing perturbation. Truncation of the series
approximates infinite dimensional behaviour by finite dimensional behaviour.

For mathematical convenience, complex solutions v, and 7. are generated for
the wall-normal velocity and vorticity equations, bearing in mind that the real
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solutions
vo= R(v)
n = R (2.29)

are ultimately required. Thus solutions to (2.22) and (2.24) are approximated by
truncated complex Fourier series

Not Nsp

(T, 2, 1) Z Z o(y,t, nst,nsp)e%]”stx/LT62”7”5PZ/LZ (2.30)
nst=0nsp=0
Nst  Nsp

ne(z,y,2z,t) = Z Z (Y, t, Mgy, Mgy ) 2T L 2mamsp 2/ L (2.31)

Nst =0 TLSP =0

where ng is the streamwise harmonic number, ng, is the spanwise harmonic num-
ber, and L, and L. are fundamental wavelengths in the streamwise and spanwise
directions (see figure 2.1). N and Ny, are finite and represent the truncation of
the series.

The linearized equations decouple by harmonic number pair and thus it is
possible to treat each harmonic number pair separately, bearing in mind that
in so doing, all dependent variables will vary at the selected frequencies in the
streamwise and spanwise directions. For convenience, a streamwise wavenumber,
a = 2mng/L,, and spanwise wavenumber, § = 2mng,/L,, are defined in cycles per
27 distance, and then the solution at each wavenumber pair is assumed to be of
the form

ve(,y, 2,t) = Oy, t)e! e H52) (2.32)
Ne(,y, 2,t) = ii(y, t)e’ > 52 (2.33)

where 0(y, t) and 7(y, t) are wall-normal velocity and vorticity perturbation Fourier
coefficients, henceforth referred to simply as velocity and vorticity coefficients.
These are complex and convey the wall-normal (y) and temporal (¢) variation of
v, and 7. at real streamwise and spanwise wavenumber pair «, (3.

Substituting the assumed solutions (2.32,2.33) into the partial differential equa-
tions for wall-normal velocity (2.22), and wall-normal vorticity (2.24), results in
wall-normal velocity perturbation and vorticity perturbation Fourier-space equa-
tions in v and 7) respectively

e U B\ RN (1) 0%
b oy?>  jJR« b JRa ) Oy? JRa ) Oyt

g P B 2@
« (8y28t i (2.34)

k? 10%7 oU,  0n
N——5a, tibv—o— =
R R Oy oy ot

and

(gan + — (2.35)

where k? = o? + 3.
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These wall-normal velocity and vorticity perturbation Fourier-space equations
will henceforth be referred to as the velocity and vorticity equations. If an expo-
nential time variation is assumed, the classical Orr-Sommerfeld (Orr, 1907) and
Squire equations result. The fluid mechanics community assume a time variation
v = fo(y)e 0 = f,(y)e ™", implying a temporal frequency —# (w), and damp-
ing S (w) but the control community assume a variation © = f,(y)e™, 7 = f,(y)e™,
and the latter convention is adopted here for all time variations. With the lat-
ter time variation, solutions to the Orr-Sommerfeld and Squire equations exist at
particular eigenvalues \; (damping R ()\;) and temporal frequency w = 3 (\;)), for
the i*" eigenfunction pair denoted (f,(y), f,(y)):-

The velocity and vorticity equations become independent if (3 is zero. For
non-zero 3 the vorticity equation is driven by solutions of the velocity equation.
Solutions with zero velocity are known as Squire modes, those with non-zero veloc-
ity as Orr-Sommerfeld modes, as defined in Schmid and Henningson (2001, p58).
The Squire modes are all known to be stable, whereas the first Orr-Sommerfeld
mode for R > 5772 is unstable. Stability is not the only control criterion, as large
transient energy growth may invalidate assumptions about linearity and ultimately
cause transition to turbulence, as noted by Aamo and Fossen (2002, p42).

Returning to the solutions for v and 7, they are given by substituting (2.32,2.33)
into (2.29)

=

v(z,y,2,t) = Rv.) =
n(x,y,2,t) = Rn) =

(3(y, t)erwt02)) (2.36)
(ﬁ(y, t)e](o‘”fgz)) (2.37)

=

The appropriate boundary conditions on v and 7 (2.25,2.27,2.28) translate to

vy =1) = qu+0j
ve(y =—-1) = q+0
Vi(y=41) = 040y
n(y==+1) = 040y (2.38)

on v, and 7., since the imaginary solutions (v.), 3(7n.) are of no interest, and
these translate to

oy =1) Gu
iy=-1) = q
(y=+1) = 0+0y
iy =+1) = 0+0; (2.39)

on ¥ and 7, where ¢, = R(G,e’**%)) and ¢ = R(Ge**P?) by analogy with
(2.32) i.e. the actuation varies sinusoidally in the streamwise and spanwise direc-
tions. Although v, 7, g, and ¢; are real, v, 1, ¢, and ¢; are complex. For the present,
until transpiration is introduced in section 2.5, q,, ¢;, ¢, and ¢; are assumed to be
zZero.
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Useful Relationships

Several useful relationships by Aamo and Fossen (2002, p38) are rederived in the
present context. For mathematical convenience, the complex expressions

Ue(w,y, 2,t) =y, 1)’ @)
ve(,y,2,t) = By, 1)e @)
we(w,y,2,t) = w(y,t)e’ )
ne(w,y,2,t) = iy, t)e’ ) (2.40)

are assumed, where u = R(u.),v = R(v.), w = R(w.) and n = R(n.) by extensions
of (2.32) and (2.29).
The continuity equation (2.17) states

ou Ov Ow
— +—+=—=0 2.41
ox + oy + 0z ( )
Substituting (2.40) into the continuity equation yields

.
Jovii + % + 980 =0 (2.42)

The definition of vorticity (2.23) states

ou  Ow
= _ 2.43
=% o (243)
and substituting in (2.40) yields
1y, t) = 3Bt — joab (2.44)
Solving (2.40,2.44) for 4 and w yields
_ J 0v Bi
u = a— —
a4+ 32\ Oy g
- J 0v _
= ——— | f— 2.45
Y a? + (32 (ﬁay +Om> (2:45)
2.4.3 Measurement
In Fourier space the measurement vector (2.20) becomes
i
W ly=11
1 i}
Oy |, —
-1 y—1
V=% | o (2.46)
Oy y=+1
folr
dy y=—1
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Thus for physical measurement of y, a Fourier transform is necessary, since at a
particular wavenumber pair, 0u/0y for example, is given by

ou(y,t) 11 otk bl gu(a,y, 2, 1) o
= —— —— L LI dxd 2.4
9y L, L, /a /b oy -~ ° 0 (247)

which requires distributed sensing of shear stress component du/dy and subsequent
integration. In practice a number of discrete sensors would be used, and a fast
Fourier transform (FFT) performed on their signals. The FFT’s are in space rather
than the usual application of FFT’s in time.

Regarding the development of a measurement equation ) = CX, in (2.1) the
measurement vector can be expressed in terms of derivatives of v and 7, as per-
formed by Aamo and Fossen (2002). Taking derivatives of (2.45) and substituting
into (2.46) leads to

0% a7
agz — Ol
%y %y y=+1
024 foli|
a— E—
v = 1 oy? % ly——1 (2.48)
Ra?+ 7 | g5 4 o0
% Wly=t1
9% an
5&7 +ag, 1

which, after taking into account no negation of shear at the upper wall, is consistent
with the work of Aamo (2002, p59), but slightly different to that of Bewley and
Liu (1998, p311), in respect of the sign of 3 in the lower two terms.

The wall pressures are also useful measurements, and may be expressed avoid-
ing the inversion of the Laplacian suggested previously by Bewley and Liu (1998,
p309), as follows. When represented in Fourier space, such that p = pe’(®*+%2) and

similarly for @, v and w, the linearised = and z-momentum Navier-Stokes equations,
from (2.15), become

. 1 (0% 9. 9. . 0U, oOu
Jap = E(g—yQ—au—ﬁu)—Ubjau—va—y—E
. 1 [0*w - _ ow

Adding, and noting that at the wall « = w =0

1 (0% 0w oU,
7 Sl (T BN 2.
7 (« —i—ﬁ)p|y:ﬂEl 7 (8y2 + 8y2) 0] oy (2.50)
Substituting (2.45) yields
1 1 /20 a-p30% g OU,
" _ 1 (9% atl 5V 2.51
huess = ain o o oot) Tt 221

Thus the wall pressure contains one higher derivative of v and 7 than the shear
stress measurement (2.48).
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2.4.4 Polynomial Discretization in the Wall-Normal Direc-
tion

Discretisation in the wall-normal direction is based on Chebyshev polynomial series

as performed by Joshi et al. (1995) and Schmid and Henningson (2001). These

series do not make an assumption of periodicity. Chebyshev polynomials, I',(y),
of the first kind, are of the form (Rade and Westergren, 1999, p260)

[, (y) = cos (narccos (y)) (2.52)

where —1 < y < 1 (conveniently the same as the full non-dimensionalised channel
height). So, for instance

Lo(y) =1 i(y) =y Da(y) = 2?/2 —1

Chebyshev polynomials have many useful properties e.g. the minimax property
of minimising the maximum error when approximating continuous functions, as
noted by Fox and Parker (1968), and are recommended by Boyd (2001, p10) where
periodic boundary conditions are not applicable. © is approximated by a finite
Chebyshev series

0(y,t) = D aun(t)T0(y) (2.53)
as is 7
(Y, t) = D apn(H)ln(y) (2.54)

The derivatives of the approximations with respect to y are obtained by differen-
tiating the Chebyshev polynomials, for example

7 =3 4O ) (2.55)

Recursion formulae exist for calculating the derivatives of Chebyshev polynomials,
e.g. as provided by Schmid and Henningson (2001, p485). The derivatives are
known to become large at the ends of the range, for large N and high order
derivative, as noted by Boyd (2001, p142).

The partial differential equations are expressed on a grid of N + 1 Chebyshev-
Gauss-Lobatto points (Chebyshev collocation points), yx, where

yr = cos(mk/N), k=0,...,N (2.56)

in the technique known as collocation. This distribution of points is particularly
favourable for spectral accuracy, and appropriately for the present problem, in-
cludes the boundary points (Peyret, 2002, p46). On this distribution of points
equation (2.53) becomes

0(yo, t) Fo(1) ... Tn(1) Ay 0
S ; (2.57)
o(yn,t) To(=1) ... T'n(-1) Ay, N



and equation (2.55) becomes
(Yo, t) Iy .o Iy(1) A0
s = A : (2.58)
V' (yn, 1) [o(=1) .. (=1 @, N

2.4.5 The Interpolating Basis

An alternative use of Chebyshev series is via an interpolating or cardinal function
basis, where the series are used to interpolate values of velocity, and in so doing
can also provide derivatives, as used by Bewley and Liu (1998). In this basis

V' (yo, 1) (Yo, t)
: =D : (2.59)
6,<yN7 t) 6(yN7t)
where, conceptually
-1
Loy ... Iy(1) Fo(1) ... In(1)
D = AT S (2.60)
i ry(—=1) ... I'y(-1) To(=1) ... I'n(-1)
[ Doo ... Don
£ Lo (2.61)
i DN,O Ce DN,N

although this is not the preferred numerical form, for which see the form by Tre-
fethen (2000, p54).

There is an important distinction between the two forms regarding approxi-
mation. The polynomial basis is amenable to approximation. For instance, if two
state variables are to be discarded and the derivative of the wall velocities is not
to be calculated

V' (y1,t) Lo(y) 0 Thva(yn) y,0
: ~ : - : : (2.62)
' (yn—1,1t) Lolyn—1) - Ty_o(yn-1) Ay N—2

whether or not ¥ is homogeneous (9(yoy = 1) = 0)). In the present work, it so
happens that the bases used are homogeneous (see section 2.5). The approximation
holds because it is just a truncation of the high order terms of the Chebyshev series,
and the coefficients decay spectrally. A similar approximation does not hold for
the interpolating form

@/(yl,t) Dl,l RN D17N71 @(yl,t>
. # . . : :

: . : : (2.63)
V' (yn—1,t) Dyn_ii ... Dy-in—a 0(yn—1,t)
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if ¥ in inhomogeneous (0(yony = £1) # 0)). The reason is that this form performs
high order curve fitting on 9(y,), and then algebraic differentiation, as can be seen
from (2.60). If 9(yo) or 0(yn) are absent, they are taken to be zero (homogeneous).
If this is not correct, for instance in the controlled setting, the curve fitting oscil-
lates wildly, and the derivatives, although algebraic, have very large values. If the
missing variables have simply been partitioned to another term in an expression,
overall the expression still holds.

Bewley and Liu (1998, p311) partition the terms o(yo n) from the system matrix
into the control input matrix, but also discard the terms from the energy matrix.
Thus no attempt is made in this thesis to compare any closed loop results with
those from this source. See section 4.2.1 for further details.

2.4.6 Resulting Equations

Upon substitution of the Chebyshev polynomial series, the velocity and vorticity
equations (2.34,2.35) become those presented by Schmid and Henningson (2001,
p488)

0*U, k4
2
(—Ubk )2 ]@R) E Ay () ( (Ub+2—) E Ay (t

_ j%a ; @y ()T (y) = é <—k2 ; o ()T (y) + ; du,n(t)Fn”(y)>
(2.64)
and
(Jan + 2) i Faly) %ia""(ﬂr @)

N

ai > avn == apal(t (2.65)

n=0 =0

3

After multiplying the equations by a and —) respectively, and the evaluation of
both equations at each of the collocation points ¥, and noting that U, = 1 — y2,
the equations may be assembled as

A Ap Ly Lip .
a= a 2.66
(A21 AQQ) <L21 LQQ) (2.66)
where
Ay,0
Ay N
a= ' 2.67
0o (2.67)
an,N
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and where the following submatrices all have dimensions N + 1 by N + 1 and are

IK4 21k? D4
All = (—Cﬂ_lk2 — Oéﬁ” — —R) DO —+ (Cﬂ_l + —) D2 — —
0

J IR IR

Ap = [0]
A, = pBu'DO

2
Ay = <ozu+IjiR)DO—%
Ly, = j(—+’D0+ D2)
L, = 0]
Ly, = 0]
Ly, = jDO (2.68)

Matrix L is the discrete form of the Laplacian V? which operates on the wall-
normal velocity time derivative in (2.22). The elements of derivative matrices Dn
and diagonal base flow matrices u,u’, " are

DOy; = Tj(yx) D2y = Tj(yx)" Ddyj = Tj(yx)"™
Ubgr = (1 —y3) Ubly, = —2ys, Uby, = —2 (2.69)

2.4.7 Schmid and Henningson Form

Schmid and Henningson (2001, p489) discard equations at and next to the walls
and replace them with algebraic equations representing the homogeneous Dirichlet
and Neumann conditions, in a technique named ‘boundary bordering’ by (Boyd,
2001, p111). The technique introduces spurious eigenvalues, which may be moved
to highly damped locations in the complex plane by suitable choice of algebraic
coefficients. The technique of boundary bordering is not required when the form
of wall transpiration to be described shortly is applied.

As Schmid and Henningson solve the Orr-Sommerfeld /Squire equations, they
assume a time dependence e 7 for coefficients a and arrive at a final form

All A12 Lll L12
- _ 2.70
(A21 A22>a jw(Lm L22>a (2.70)

The solution of this system of equations provides highly accurate eigenvalues and
eigenfunctions for periodic linearised plane Poiseuille flow, in the absence of any
wall transpiration.
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2.4.8 Discretised Measurement

Upon substitution of the Chebyshev series the measurement equation (2.48) be-
comes

a SN a0y = +1) = BN ay (B (y = +1)
gL 0 | aXpaun®lily=-1) =5, oa(t)l(y = 1)
Ra?+ 3 | BN jau Ty =+1) +a X0 apa(t),(y = +1)
BN Ty = —1) + a0ty (T (y = —1)
(2.71)
or
~ 1 J Ci Cyp
Y~ Ra + 2 ( Ca1 Co ) (2.72)
where
Th(y=+1), ..., Th(y=+1) }
cnme [ iy = 1), ... Thly=-1) (279

and Similarly for Clg, Cgl and 022.

2.5 Boundary Conditions and the Introduction
of Wall Transpiration

Without transpiration the velocity equation (2.34) is homogeneous and thus may
be expressed in the form

F(#)=0 (2.74)
and has homogeneous boundary conditions

By=+1,t) = 0

y==+1t) = 0 (2.75)

Non-zero wall-normal velocity due to transpiration introduces inhomogeneous Dirich-
let boundary conditions:

oy =1,t) = qu(t)
{)(y:_Lt) = (.?l(t)
iy ==+1,t) = 0 (2.76)

where @, (t) is the upper wall transpiration fluid wall-normal velocity, and §(¢)
the lower. Since it is linear, the homogeneous equation (2.74) with inhomogeneous
boundary conditions (2.76) can be transformed to an inhomogeneous equation with
homogeneous boundary conditions, by a suitable change of variable, as noted by
Boyd (2001, p112). Defining

f}(yu t) - f)h(y7 t) + fu(y>6u(t) + fl(y)ql(t) (277>
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then providing

Gn(E£l,t) = (E1,¢)=0
fly=1) = fily=-1)=1
fuly=-1) = fily=1)=0
fuly==1) = fily=+1)=0 (2.78)

the boundary conditions (2.76) are satisfied. After the substitution the equation
(2.74) becomes inhomogeneous

F(on) = —=F(fu(¥)qu(t) + fily)a(t)) (2.79)

and its boundary conditions homogeneous

T(y=+1t) = 0
Ty=%1t) = 0 (2.80)

Joshi et al. (1995) employed this method on a stream function formulation, and
Hogberg et al. (2003a) on a velocity-vorticity formulation using on an interpolating
basis.

Polynomials that satisfy the conditions for f,(y) and fi(y) (2.78) are

3 3
—y” + 3y + 2 Yy’ — 3y + 2
fuly) = —————— fly) = =——F—— (2.81)
4 4
which are simpler than those used previously by Joshi
2yt +9° — 4y — 3y + 4
fily) = (2.82)

4

The vorticity equation (2.35) is homogeneous both without and with transpi-
ration

Fy(m) = 0 (2.83)
and has homogeneous boundary conditions
iy ==Lt = 0 (2.84)

and thus requires no change of variables.

The homogeneous Dirichlet boundary conditions on 7, (y = +1) = 0, are
implemented by the use of basis functions I'” which individually satisfy the ho-
mogeneous conditions, i.e.

N

m(y:t) =Y T3 (y)aya(t) (2.85)

0

where I'?(y = +1) = 0, as recommended by Boyd (2001, p114).
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The simultaneous homogeneous Dirichlet and Neumann boundary conditions
on v, Up(y = £1,t) = 0, (y = £1,t) = 0, are also implemented directly, by the use
of basis functions 'Y which individually satisfy the conditions, i.e.

N

On(y,t) = > TV (W)aun(t) (2-86)

0

where TPV (y = £1) = I'PN(y = £1)’ = 0. Thus the final expressions for velocity
and vorticity with wall transpiration present are

i(y,t) = > TEN@)awa(t) + fu)du(t) + fily)a(t) (2.87)

iyt) = Y Traga(t) (2.88)

In the present work, I'® and I'P" are the modified Chebyshev polynomials © and

=, and their derivation is described in chapter 3.

2.5.1 Inhomogeneous Form

After the change of variable (2.77) and substitution of the modified Chebyshev
series T2 TPV in (2.64,2.65), and evaluation of the equations at the collocation
points y, the equations may be assembled as

All A12 Bll B12 Lll L12 . Ell E12 -
( A21 A22 a B21 B22 q L21 L22 a E21 E22 q ( )

where q = (Gu, @;)”. Rearranging, an additional term, as compared to (2.1), due
to the rate of change of control q,, becomes apparent

Ly Lo . A A ), B B Ein Ep .
a= a-+ - 2.90
< Ly Lo > ( Az Ay By By )9 Ey Ej )9 (2.90)
The additional submatrices cf. (2.66) are N + 1 by 1 vectors and are

Ik* 2k21
B, = (—auk2 il — —R> £, + (au + ) il

J IR
By, = (—auk;2 —at” — Ij%) f, + (au + Qf;I) f/
By, = pu'f,
By, = pu'f;
E, = (—k2fu + fZ)
E, = (—/CQfl + f;/)
E,; = (0)
Ey, = (0) (2.91)
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The elements of derivative matrices Dnp which replace Dn previously used in A,
and Loy are

DOp,; =T7 (1) D2p,, =T ()" (2.92)

The elements of derivative matrices Dnpy which replace Dn previously used in
the remainder of A and L are

DOpny, =07 () D2pny, =T7%(we)”  Ddpwy, = T7V ()"

(2.93)

The elements of the dimension N + 1 vectors f,,f;, £, f},f., f/ are the values or
derivatives of f, and f;, for example

Ju = fu(yr)
fuw = Julyw) (2.94)
The measurement equation (2.72) becomes
- J Cu Cip J Dy,
=2 2.95
Y 042—1-52(021 022>a+042+ﬁ2(D21>q (2.95)
where
Jo B //(y — +1) fl”(y _ +1) -
Dy=—/—|")" 2.96
CEEE | A=) Rly=-1) (2:90)
and
18 [ fily=+1) flly=+1) ]
Dy, = b 2.97
21 042+62 I f{j(y — _1) l//(y: 1 ] ( )
Expressing (2.90) and (2.95) more succinctly we have
La = Aa+Bq-—Eq
y = Ca+Dq (2.98)

2.5.2 Redundant Equations

The homogeneous vorticity and velocity components are given in terms of the state
variable coefficients by (2.85) and (2.86). Chapter 3 shows that the modification
of the bases to impose the Dirichlet boundary conditions reduces their size from
0...Nto0... N—2. This need not lead to a significant approximation error, since
due to the spectral convergence of the Chebyshev series (Fox and Parker, 1968),
the values of a,, and a, , become ever smaller as n increases, and thus the use of
slightly fewer terms does not introduce significant error, providing N is large.
This leaves the prototype system matrix A non-square, and to rectify this,
some equations must also be discarded. The inhomogeneous Dirichlet boundary
conditions on velocity, and homogeneous Dirichlet boundary conditions on vortic-
ity mean that velocity and vorticity equations at the walls are redundant, since
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the vorticity at the walls is zero, and the wall-normal velocity is set by the control
input. Therefore it is appropriate to discard these equations.

Chapter 3 shows that the modification of the velocity basis to impose the
Neumann boundary conditions reduces its size by a further 2, in the limit of in-
finitesimal discretisation. Again, due to the spectral convergence of the Chebyshev
series, the use of slightly fewer terms does not introduce significant error, providing
N is large.

This again leaves the prototype system matrix A non-square. The homoge-
neous Neumann boundary conditions on velocity means that the velocity equa-
tions next to the walls are in some sense close to redundant if /N is large, since
the wall-normal velocity at the wall is set by the control input, and its gradient
there is zero. After careful examination of the issues in chapter 3, it is considered
appropriate to discard these equations also.

2.6 State-Space Representation

This section manipulates the system into conventional state-space from, identifies
the state, control and measurement variables, and derives the final form of the
system, input and output matrices.

2.6.1 State-Space Form

It is evident that some manipulation is required to achieve the state-space form
(2.1) from (2.98). The first step is to invert L

a = L 'Aa+L 'Bq—L 'Eq
y = Ca+Dq (2.99)

The system now has two input vectors, q and ¢, which are not independent. Hence
the system is recast so that q is no longer an input vector, but part of the state
variable vector, and that the control input is the rate of change of wall velocity q,
as found by Hogberg et al. (2003a)

() (3 52 (0
vy = (C D)(Z) (2.100)

Comparison of the unrecast system matrix L™'A and state variables a with
the recast system matrix

—1 -1
( EAEE ) (2.101)

and state variables

( Z ) (2.102)
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shows that the recast form has the same eigenvalues, plus two new zero values,
since q has dimension 2 x 1. The unrecast eigensystem is L™"AW = WA, where
A is a diagonal matrix of eigenvalues and ¥ is the matrix of right eigenvectors,
which, being composed solely of state variables a without q cannot represent a
non-zero wall-normal velocity. The eigensystem of the recast system is

(LolA L;B)(\(I]fi):(‘é’gq)(gg) (2.103)

The recast form eigenvectors are based on state variables (a, q)T, and comprise the
previous eigenvectors W augmented with zeros, plus new eigenvectors (\Dg, \IJqT)T.
The new eigenvectors represent transpiration at each wall, since AV, +BW¥, =0,
and thus \Iqu is non-zero, and are steady-state since the associated new eigenvalues
are zero. Thus the system dynamics now include steady-state transpiration modes.

The new form also has a zero direct transmission matrix, which is necessary for

the standard linear quadratic Gaussian optimal control problem, e.g. as presented
by Skogestad and Postlethwaite (1996, p353).

2.6.2 State Variables
Comparing (2.1) and (2.100) it can be seen that the state variables are given by

X = ( a ) (2.104)

q

These state variables are not unique, and may be transformed by any invertible
constant matrix, without changing the system input-output behaviour (Skogestad
and Postlethwaite, 1996, p114). A possible choice for the homogeneous part is
to use the values of velocity and vorticity at the collocation points, e.g. v, =
> T'n(yk)an, by means of an interpolating basis, as used by Weideman and Reddy
(2000). The state variables considered here for the homogeneous part are simply
the coefficients a,, which multiply the Chebyshev polynomial basis, as used by
Schmid and Henningson (2001). Although less intuitive than the collocation point
values, the coefficients multiplying Chebyshev polynomials may be reduced in
number when required. For example, when the bases are reduced in size due
to the modifications necessary for the boundary conditions, the use of slightly
fewer terms introduces negligible error, due to the fast convergence of Chebyshev
series, as noted by Fox and Parker (1968, p25).
The velocities and vorticities may be recovered from the state variables via

avml(t)
(17(,%1,?5)) _ (FﬂN(ykl) 0 fulym) fl(ykl)) ayn2(t)
7(Yra, t) 0 Ty O 0 ciu(@))
qi(t
Clvmlgt;
A amngt
2T o (2.105)

a(t)
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where k1=0...N,k2=0...N,nl=0...N—4,andn2=0... N—2. T is useful
for the plotting of eigenvectors and initial conditions, but being (2N +2) x (2N —2)
is not invertible. An invertible form may be made by discarding the next-to-wall
velocities and wall vorticities from the output. The wall vorticities are zero, due
to the Dirichlet boundary condition, and the next-to-wall velocities are close to
those at the wall on account of the Neumann boundary condition and the close
spacing of the collocation points at the wall. With this change

av7n1(t)
( 17(yk1,t) ) _ ( Fle(ym) 0 fu(ykl) fl(ykl) ) an,n2(t)
7(Yr2: t) 0 U0 (Yr2) 0 0 Qu((t;
q(t
av’nlét;
A Ay n2 t
= T, Gu (1) (2.106)
a(t)

where nl =0...N —4,n2=0...N — 2 as in (2.105) but k1 =0,2...N — 2, N,
and k2 =1...N — 1. Defining &, as the collocation point velocity and vorticity
form of the state variables

o (i)

(2.106) becomes
X, = T,X (2.108)

T,, is inverted as

DOV ya) (= fulyr)rs — filyen)r) 0
-1 _ 0 Fqg){l(ym)
T, = N 0 (2.109)
T2 0

where 71 = (1,0...0,0) and ro = (0,0...0,1), both being of size 1 x (N — 1).

Figure 2.2 shows the basis functions associated with the state variables. Those
functions associated with homogeneous velocity coefficients e.g. TP" have Neu-
mann and Dirichlet boundary conditions, those associated with vorticity coef-
ficients e.g. 'Y have Dirichlet boundary conditions, and those associated with
control by wall-normal velocit