
http://wrap.warwick.ac.uk

Original citation:
Hammond, Simon D. and Lacey, David (2006) Loop transformations in the ahead-of-
time optimization of Java bytecode. In: Mycroft, A. and Zeller, A., (eds.) Compiler
Construction. Lecture Notes in Computer Science, Volume 3923 . Springer Berlin
Heidelberg, pp. 109-123. ISBN 9783540330509

Permanent WRAP url:
http://wrap.warwick.ac.uk/33563

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
"The final publication is available at Springer via http://dx.doi.org/10.1007/11688839_11
"

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/1380888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/33563
http://dx.doi.org/10.1007/11688839_11
mailto:publications@warwick.ac.uk

Loop Transformations in the Ahead-of-Time
Optimization of Java Bytecode

Simon Hammond and David Lacey

University of Warwick

Abstract. Loop optimizations such as loop unrolling, unfolding and in-
variant code motion have long been used in a wide variety of compilers
to improve the running time of applications. In this paper we present a
series of experimental results detailing the effect these techniques have
on the running time of Java applications following ahead of time opti-
mization.
We also detail the optimization tools and transformations developed for
this paper which extend the SOOT framework discussed in a number of
previous papers on the subject.
Our experimentation, conducted on the SciMark 2.0 benchmarking suite,
demonstrates that when optimized using the techniques mentioned, Java
applications can benefit from performance improvements of up to 20%.
We finish with a discussion of the results obtained, including results on
how the optimizations affect JIT compilation and class size and proceed
to argue that ahead-of-time loop unrolling and unfolding optimization
may have a role to play in improving the performance of Java applica-
tions, particularly in scientific applications.

1 Introduction

Improving the running time of programs through the optimizing phase of a
compiler is a well established practice with a long history of well developed
techniques and tools.

The success of optimizing compilers depends heavily upon the architecture
that the final object code will be run on and architectures have changed since
initial work in the field. One aspect of this phenomenon is that hardware archi-
tecture has become more complex but another aspect, and the one of interest
here, is that in many cases the object code of a compiler is bytecode that is to
be run on virtual machines such as the Java Virtual Machine.

Optimizing compiler designers face a couple of new issues when the target
architecture is a virtual machine. Firstly, there is the question of whether the
interpretive layer will affect the effectiveness of the optimizations. Secondly, when
using a virtual machine we have the opportunity to compile and optimize at
run-time and indeed this is what modern just in time (JIT) compiling virtual
machines do.

The fact that compilation and optimization can happen at run time naturally
leads to new thinking in compiler design. Do we need to perform ahead of time

optimizations at all? One could argue that all optimizations can be deferred to
run time and this would make the initial compiler design much simpler. One
added advantage of this approach is that we have more information around at
run time (e.g. profiling information) which can help us. However, it can also be
argued that the static analysis required for some optimizations is too expensive
to perform at run-time and should be performed beforehand. Another argument
is that the interpretive layer slows down the program so much that optimizing the
code is not worth it and that if one really wants speed then one should compile
down to native code anyway - so called “way ahead of time” compilation.

All these possibilities have led to a lack of interest in traditional optimization
of bytecode and despite much discussion about what the optimization architec-
ture should be there is an underlying question to address. It is the authors’
opinion that the discussion would be better informed if the following question
was answered:

Do traditional ahead-of-time compiler optimizations applied to bytecode
cause significant performance increasing in running-time when executed
on current (optimizing) JVMs?

i.e. given the current state of the art in JITs, does optimizing the bytecode
still help? Is it still relevant? This is the question that this paper contributes
towards answering. It builds on earlier work (particularly that of the SOOT
optimization framework) and Section 4 details this earlier work that contribute
toward answering this question. This paper provides a fully detailed study into
a selection of traditional loop optimizations and the conclusion of the paper can
be summarized as:

– Traditional ahead of time loop optimizations (in particular, loop unfolding
and unrolling) applied to Java bytecode increase the run-time performance
of the tested benchmark programs by up to 20%, with an average increase
of approximately 4-5%

In the rest of this paper, Section 2 will give the methodology and decisions made
when performing our tests. The numerical results of the testing will be given in
Section 3 along with an analysis of these results. Finally, Sections 4 and 5 give
the background to and a summary of the paper respectively.

2 Optimizations, Methodology and Testing

The research presented here is an empirical study of optimization. It is essential
to such an endeavor that we identify the parameters of the experiments we carry
out. In this case we can identify four main factors that affect the results:

– The benchmark suite used for testing.
– The optimizations used.
– The underling hardware architecture.
– The Java Virtual Machine (JVM) that executes the bytecode.

Each of the following sub-sections will describe the approach we took when
considering each of these factors.

2.1 The Benchmarks

For the purposes of experimentation we used two benchmarking suites. The first
was the command line version of the SciMark 2.0 benchmarking suite [19]. The
second was the SPECjvm98 suite of benchmarks [3].

Benchmark Description

FFT Performs a one-dimensional forward transform of 4000
complex numbers.

SOR Performs Jacobi Successive Over-relaxation on a
100x100 grid

Monte Carlo Approximates the value of Pi through integration of a
quarter circle

Sparse Matrix Multiplication Performs a matrix multiplication of a 1000x1000
square matrix containing 5000 non-zero elements

LU Computes the LU Factorization of a dense 100x100
matrix using partial pivoting.

Compress Lempel-Ziv Compressor/Decompressor

Jess A Java Expert Shell

DB An in memory database

JavaC A JDK 1.0.2-complaint Java Compiler

MPEGAudio Performs MPEG-3 Audio Compression

MTRT A dual-threaded version ray tracing algorithm

Jack A Java Parser Generation which has since become the
JavaCC Project

Table 1. Benchmark Description

Table 1 lists the benchmark suites optimized for this paper. We decided to choose
a range of benchmarks across two benchmarking suites to ensure that the op-
timizations tested during our research provided benefits to a number of appli-
cations rather than a niche set of code. The SciMark 2.0 suite provides code
mainly from scientific applications, these were chosen since they suited the type
of optimization we were testing.

To obtain a average performance indicator for our benchmarks we averaged
the benchmarks over 50 successive runs of the benchmarking suites.

Both benchmarks provide pre-compiled class files which have been compiled
using the Sun Microsystems JDK 1.2 compiler.

2.2 Optimizations

We implemented three optimizations as intra-procedural transformation exten-
sions to the SOOT Framework [21], a framework for analyzing and optimizing
Java bytecode. This framework has an established and widely used set of tools
for experimentation and research and as such was a natural choice.

All of the optimizations developed as part of our experiments were imple-
mented as intra-procedural transformations in the Jimple intermediate represen-
tation [23] provided by the SOOT framework.
The three main optimizations implemented for this paper were:

– Loop Unrolling
– Loop Unfolding
– Loop Invariant Code Motion

The rest of this sub-section is dedicated to explaining each of these optimization
techniques. Although brief descriptions are given, the techniques used are quite
generic and more in depth explanations can be found in a number of books on
the subject of compilation and optimization [1, 13, 16].

We choose to apply the loop invariant code motion transformation first as
this removed redundant invariant statements prior to unfolding and unrolling.
If invariant statements did exist they were hoisted before the unfolding and
unrolling transformations to reduce the total size of the unfolded and unrolled
copies of the loop.

Unfolding and unrolling are not commutative in that unfolding an unrolled
loop leads to more copies of the loop being made. Although the unfolding fac-
tor can be altered to take this into account, we chose to apply the unfolding
transformation before the unrolling process.

Loop Unrolling Loop unrolling replaces the main body of a loop with several
copies, adjusting the loop control code such that new body executes the same
instructions as the original loop but with a smaller proportion of execution spent
on evaluating the control. Since, by completing the unrolling process, we have
changed the body of the loop to execute more than one original iteration on each
iteration of the new loop we introduce a epilogue to the loop to handle ’odd’
iterations which cannot be processed in the new unrolled loop [1]. The epilogue
is created by placing a copy of the original loop at the end of the unrolled loop
so that when execution is finished in the optimized code the epilogue can ’mop’
up the remaining iterations.

Unrolling has two main benefits, firstly the transformation usually results in
a smaller proportion of time being spent evaluating the control code of the loop
since each iteration in the ’new’ loop is executing the unrolling factor more itera-
tions of the original. Secondly, the unrolling transformation opens multiple iter-
ations to further optimization using techniques such as common sub-expression
elimination [17]. Although common sub-expression elimination is not conducted
by our optimization tool, the unrolled code may introduce opportunities for the
just-in-time compiler to further optimize the code at runtime.

The level of benefit that the unrolling transformation provides is determined
by the unrolling factor - i.e. the number of copies of the loop that replace the
original body. For very small loops with simple control code a high unrolling
factor can be used as the unrolled code is likely to fit into a cache line. For large

Original:

for (int i = 0 ; i < 10 ; i++) {
a = a ∗ 2 ;

}

Transformed:

for (int i = 0 ; i < 10 ; i = i + 2) {
a = a ∗ 2 ;
a = a ∗ 2 ;

}

Fig. 1. Unrolling applied to a simple loop

complex loops small unrolling factors, usually 2, should be used as the unrolled
loop can become too large to cache efficiently.

Due to the increase in the code size of a loop following unrolling the opti-
mization can have detrimental effects on performance by making the code too
large to fit into cache lines in the processor. When this occurs cache blocks may
need to be transfered resulting in slower execution.

For our transformation we used a generic unrolling algorithm [16] to process
single-basic block loops with simple control code. The unrolling factor used in
our tool was set to 2 to limit the effect that larger loops would have on the
caching of our benchmark programs.

The transformation was also developed to use a relatively conservative ap-
proach to unrolling in that it would only unroll loops without branching state-
ments in their main body. This restriction was imposed because branching
within loop bodies results in jump statements being fed through to the proces-
sor pipeline, as the unrolling process was meant to remove jump instructions by
reducing the number of times the loop needed to jump to the start, allowing
branches to be unrolled would be unlikely to result in a performance improve-
ment.

We also chose a relatively simple approach to finding induction variables for
the unrolling process. The tool was designed to only unroll loops with locally de-
fined induction variables that are not compared to the result of a method return
within the loop guard. These restrictions were created because the dynamic-class
loading feature in Java allowed classes loaded at runtime to interfere with non
local variables in a manner that could not be determined at optimization time.
Since our transformation was intra-procedural we could not determine whether
the return value of a method at runtime was constant therefore, induction vari-
ables compared against method returns could have behaved in a manner that
would have meant the transformation resulting in different behaviour to the
input.

Loop Unfolding Loop unfolding, or loop peeling, removes a number of the first
iterations of a loop and places them before the main body to form a prologue[18].

Original: Transformed:

for (i = 0 ; i < 10 ; i++) {
a = a ∗ 2 ;

}

a = a ∗ 2 ;
a = a ∗ 2 ;
for (i = 2 ; i < 10 ; i = i++) {

a = a ∗ 2 ;
}

Fig. 2. Unfolding applied to a simple loop

Extra control code is often introduced to ensure the overall number of iterations
executed does not differ from the original loop code.

Unfolding has two main benefits, firstly it allows the earlier iterations of the
loop to execute without requiring the processor to follow jump instructions back
to the beginning of the loop, improving the ability of the code to be pipelined and
secondly, opening the earlier iterations to further optimizations such as common
sub-expression elimination.

In a similar manner to unrolling, unfolding can increase the overall size of
the application code which can affect how the application will be cached. For
large loops unfolding will create a sizable epilogue which may make the method
difficult to cache. The impact of unfolding is usually determined by the unfolding
factor - i.e. the number of copies of the loop placed in the prologue. Large
unfolding factors can increase the size of the code considerably disrupting cache
behaviour and may, in the case of Java, prevent the JIT compilation process if
the JVM decides that the code is too large to compile on the fly.

We decided to use an unfolding factor of 8 to create a balance between un-
folding enough iterations for the optimization to be useful yet keeping the factor
small enough to prevent excessive increases in code size. Our unfolding transfor-
mation also used conservative approaches to deducing induction variables for the
same reasons outlined in the unrolling optimization description. We did however
allow the unfolding transformation to unfold loops with branches in the main
body. The purpose of this decision was to permit optimizations to be carried
out across the unfolded iterations with the possibility of reducing the number of
branches through optimization on the branch conditions.

Loop Invariant Code Motion Loop invariant code motion is applied to code
within loops that does not change on each iteration of the loop [2], this is code
whose execution is independent of the loop induction variable.

The transformation works by finding expressions using only constants or
variables that are defined from outside the loop. Given that these values will not
change on each iteration of the loop, any expression that uses only these values
will also be unchanged by each iteration or change in a pre-determined manner.
A generic algorithm is explained in [1].

Original: Transformed

int a = 0 ;
int b = 0 ;
int c = 10 ;

for (i = 0 ; i < 10 ; i++) {
a = a + 2 ;
b = c ∗ 2 ;

}

int a = 0 ;
int b = 0 ;
int c = 10 ;

for (i = 2 ; i < 10 ; i = i++) {
a = a + 2 ;

}
b = c ∗ 2 ;

Fig. 3. Loop invariant code motion applied to a simple loop

When loop invariant code has been found it can be removed from the loop
by hoisting. The hoisting process takes invariant statements and places them
outside of the loop making adjustments to ensure the value assigned to any
variables resulting from the invariant expression will be the same. For instance,
if a variable increases by a value of 2 on each iteration of the loop then hoisting
will set this variable to have a value of 2 multiplied by the number of iterations
added immediately following the execution of the loop.

Loop invariant code motion usually results in faster execution of loops be-
cause the redundant code is eliminated from being executed multiple times saving
processor resources.

Our transformation used a conservative approach to finding invariant code by
only searching for locally defined variables as potential candidates for invariance
since any method calls from inside the loop could have changed field level values
potentially resulting in an unsafe transformation.

2.3 The Hardware and Environment

We ran our benchmarks on two different architectures to check whether the
results obtained would show similar trends and whether the underlying archi-
tecture of the processor would change the benefit the optimizations could bring.

Our first machine was a Pentium 4 2.4Ghz machine configured with 1Gb of
RAM running Microsoft Windows XP Service Pack 2. The Pentium processor
used in this machine contains two 16kb L1 caches one allocated to data entries
and one to instruction entries.

Our second machine was an Apple G4 Powerbook equipped with a 1.5Ghz
G4 Processor and 512Mb of RAM running Apple OSX Tiger. The G4 processor
uses two 32kb L1 caches allocated to data and instruction.

2.4 The Java Virtual Machines

On the Windows XP Machine, we used the standard Sun Microsystems Java
Standard Edition (J2SE) Version 1.5.0 without any extra configuration. On the
Apple Powerbook machine we used the standard Apple 1.4.2 Virtual Machine.

Pentium 4 G4
SciMark 2.0 Benchmark Client JIT Server JIT Client JIT Server JIT

FFT 1.17x 1.12x 1.05x 1.04x

SOR 1.00x 1.03x 1.01x 1.01x

Monte Carlo 0.97x 0.99x 1.01x 1.02x

Sparse Matrix Multiplication 1.01x 1.09x 0.97x 0.97x

LU 1.14x 1.08x 1.20x 1.20x

Table 2. SciMark 2.0 Benchmark Result (Higher Result is Higher Performance)

SPECjvm98 Benchmark Pentium 4 Apple G4

Compress 0.99x 1.04x

Jess 1.10x 1.08x

DB 1.02x 1.03x

JavaC 1.06x 1.03x

MPEGAudio 1.00x 1.02x

MTRT 0.93x 0.95x

Jack 1.14x 1.11x

Table 3. SPECjvm98 Benchmark Result (Higher Result is Higher Performance)

Since we are interested in the relationship between the ahead of time op-
timizations and the optimizing compilation in the JVM, for the SciMark 2.0
Benchmarks we decided to experiment with both the Client and Server just in
time compiler included with the standard virtual machine. The Client compiler
is configured to carry out a smaller amount of class file analysis during startup
in an effort to reduce the loading time of Java applications. Since less analysis is
being carried out on the bytecode a smaller number of transformations can be
conducted during execution.

The Server compiler takes an alternative strategy seeking to spend longer
conducting analysis during startup with the assumption that the application is
likely to execute for a longer period of time. As more analysis is carried out a
larger number of transformations are available during execution.

The exact details of the compilers provided with the Sun and Apple Virtual
Machines go far beyond the remit of this paper, we refer the reader to the
respective vendor websites for up-to-date information and features.

3 Results

In this section we present our results and offer an analysis on the figures shown.
Tables 2 and 3 show the performance change following our optimizations. The
figures shown represent speedup which is computed as a factor of the time taken
to compute the unoptimized code. A speedup for less than 1 indicates a perfor-
mance degradation, a speedup of greater than 1 represents an improvement.

The aim of our experiments was to examine whether, through the use of
traditional loop optimizations, the performance of Java applications could be

improved. As the reader can see in the results tables, the effect of these optimiza-
tions is somewhat varied depending on the type of application being optimized.

The application that gained the most through optimization was the LU Fac-
torization application included in the SciMark 2.0 suite. The results showed a
14% improvement on the Intel system and 20% improvement on the Apple G4
System. If we examine the source code of the LU application we notice a rea-
sonably large number of loops which contain only a few instructions. Since the
unrolling and unfolding of these loops produced a larger speedup than other
benchmarks this indicates that the optimization of Java loops, like fully com-
piled languages, is best aimed at smaller, simple loops. Some of the benchmarks
suffered from a performance degradation due to the transformations. The most
notable of these was the MTRT ray-tracing benchmark from the SPECjvm98
benchmarks which suffered a 7% performance degradation on the Pentium 4
architecture.

Overall, the impact of the optimizations on many of the benchmarks was
mixed but generally beneficial. Some benchmarks responded to optimization very
well producing more efficient code that executed faster across a range of hardware
platforms and virtual machines and other applications responded poorly. At
the time of writing we have no firm conclusions about the nature of code that
benefits or suffers from these transformations. However, the tool that applied
the transformations did so indiscriminately on all loops that it could (given the
innate conservative nature of the tool). A more guided transformation phase
taking into account, for example, the size of the loop may lead to better results.

3.1 Architectural Considerations

The purpose of selecting an Intel Pentium 4 processor based machine and an
Apple G4 processor based machine was to examine whether alternative virtual
machines and architectures would alter the performance benefits of the opti-
mizations presented.

As the reader can see from Table 2 the benefits vary slightly between the two
machines. However, the overall average performance increase for the Pentium 4
and G4 architecture are roughly the same at 4.9% and 4.4% respectively.

Due to the fact that we are optimizing loops whose performance is largely
down to efficient caching mechanisms we can attribute some of the variations in
specific benchmarks to the different cache layouts offered by the two architec-
tures.

Of course, hardware factors may be reduced by the effect of the bytecode
running on an interpreter in the JVM. Nevertheless, there are two reasons why
hardware factors may “show through”: Firstly, in the case of caching, the fetching
of bytecode instructions in a small loop will only take up a relatively small part
of the data-cache leaving the rest for the program data and, secondly, we expect
most of the critical code in these loops to be JIT compiled and therefore be run
directly on the hardware anyway.

Another potential source for differences in the results comes from the varying
number of registers available on the processors used for testing. The RISC based

Benchmark Speedup

FFT 0.96x

SOR 0.98x

Monte Carlo 1.00x

Sparse Matrix 0.99x

LU 1.00x
Table 4. Effect on performance after being parsed by SOOT Framework but no opti-
mizations applied

G4 architecture contains more registers than the Pentium and therefore may be
able to hold more variables within the processor reducing the number of cache
transfers required. This facility may lessen the impact of the optimizations on
smaller loops as all the variables will be within registers thus reducing the speed
improvement offered by more efficient usage of cache following unrolling.

3.2 The Client versus Server Just-In-Time Compiler

For the SciMark 2.0 Benchmarks presented in Table 2 we decided to experiment
with both the Client and Server just in time compiler included with the standard
virtual machine. As one might expect, on both architectures the benchmarks
ran faster with the Server JIT than the Client JIT. Despite this there was little
difference in the percentage speedups caused by the optimizations. On the G4
architecture the speedups were identical and on the Pentium 4 architecture the
average were similar at 5.8% for the Client and 6.2% for the Server. These results
indicate that the difference in underlying optimization architecture for current
JITs do not affect the beneficial effects of the loop transformations.

3.3 Overhead of the SOOT Framework

The overhead of converting the Java bytecode input to the SOOT Jimple Inter-
mediate Representation and back out to bytecode introduces some penalties due
to the complexities of creating the representation and re-generating the input
from this. In the original paper introducing SOOT [21] Vallee-Rai et al. claimed
that this overhead was between 1% and 2% of program execution time.

Table 4 shows the potential impact on performance of the benchmarking
applications being input to the SOOT framework and emitted without any opti-
mizations being applied. The output of the framework is likely to be different to
the input bytecode due to the conversion of the input into an intermediate rep-
resentation that does not have an exact one-to-one mapping between a virtual
machine bytecode and an element of the representation.

Experiments conducted on our benchmarks by reading the bytecode into the
optimization tool and emitting it without completing any transformation are
shown in Table 4. We believe that our results are broadly representative of the
data provided by Vallee-Rai et al.

Benchmark Memory Required (Mb) Time Required (Seconds)

FFT 22.236 9.01

SOR 23.688 11.08

Monte Carlo 17.160 3.36

Sparse Matrix 19.904 5.14

LU 18.102 4.24
Table 5. Time and memory requirements for optimization

Benchmark No Optimizations Optimized Percent Increase

FFT 2718 bytes 3630 bytes 33.55%

SOR 580 bytes 1176 bytes 102.76%

Monte Carlo 547 bytes 622 bytes 13.71%

Sparse Matrix 510 bytes 668 bytes 30.98%

LU 2166 bytes 4482 bytes 106.92%
Table 6. Size of bytecode before and after optimization

3.4 Cost of performing the optimizations

The main aim of this paper is to evaluate the effectiveness of the optimizing
transformations under consideration. As such, the development of the analysis
and transformation tool was not undertaken with compilation performance in
mind. However, for the sake of completeness, Table 5 shows the time and memory
required for the optimization tool to process the benchmark classes on the same
Pentium 4 machines that was used in to execute the benchmarks.

The figures shown in Table 5 are unrepresentative of the resources that the
analysis and transformation would need in a industry standard developed com-
piler. As such, it is hard to judge whether the transformations could be per-
formed at runtime in a JIT compiler. However, given the analysis required for
the transformations this seem unlikely.

Instead, we would claim that in situations such as this, where the optimiza-
tion process may be lengthy, ahead of time optimization, or possibly ahead of
time analysis, could provide a mechanism for communicating information to the
just in time compiler as a guide to which optimizations could be used in each
section of code. A recent study on the use of inter-procedural side effect analysis
[14] demonstrated that when code was analyzed ahead of time and the informa-
tion communicated to the just in time compiler a performance improvement of
up to 20% could be achieved.

3.5 Effect of optimization on Bytecode Size

Due to the fact that unrolling and unfolding optimizations result in copies of the
loop body being replicated either before or into the loop the size of the code is
expected to increase. Table 6 shows the increase in code size of the SciMark 2.0
benchmarking suite when unrolling and unfolding optimizations are applied. Due

Bytes Compiled Percentage
Benchmark No optimization optimized Increase

FFT 614 bytes 963 bytes 56.84%

SOR 148 bytes 884 bytes 497%

Monte Carlo 66 bytes 76 bytes 15%

Sparse Matrix 96 bytes 362 bytes 277%

LU 542 bytes 982 bytes 81%
Table 7. Number of Bytes Compiled by the Client Just-In-Time Compiler at Runtime

Benchmark Program Size Increase Extra Bytes Compiled

FFT 912 bytes 349 bytes

SOR 596 bytes 736 bytes

Monte Carlo 75 bytes 10 bytes

Sparse Matrix 158 bytes 266 bytes

LU 2316 bytes 440 bytes
Table 8. Comparison between size increase and JIT compilation increase

to the use of the SOOT framework a small increase in code size is attributable
to using the Jimple intermediate representation which does not provide an exact
mapping between input bytecodes and the bytecodes emitted.

The transformation tool will unfold a loop first by a factor of 8 and then
unroll with a factor of 2. Furthermore, the tool only acts conservatively and will
not unroll loops nested within another. Given this, we can expect that every
loop transformed will have its size increased by a factor of 10.

3.6 The relationship between AOT optimization and JIT
compilation at runtime

In this section we aim to investigate how the ahead of time optimization process
changes the JIT compilation that occurs at runtime. Our work for this section
centres on the SciMark 2.0 benchmarks. Table 7 shows that following optimiza-
tion the number of bytes compiled by the Just-In-Time compiler at runtime for
the Client JVM on the Pentium P4 architecture. It can be seen from the table
that every benchmark has a rise in the amount of code compiled. However, this
is to be expected due to the increase in bytecode size described in the previous
section. It seems a reasonable assumption that given a bigger class file the JVM
will compile more bytes of code.

The optimizations in this paper target loops in the program and these are the
parts of the program one expects to be JIT compiled. If after the optimization
the same loops are compiled then it may be reasonable to expect all the bytes
added to the class file by unrolling and unfolding to be JIT compiled as well. In
this case, we would expect the program size increase to be roughly the same as
the increase in the number of extra bytes compiled at run-time. Table 8 shows

that this is not the case. In fact there seems to be no correlation between the
increase in code size and the increase in amount of JIT compilation.

The FFT, Monte Carlo and LU factorization benchmarks show behaviour
where the JIT compilation increase is less than the increase in bytecode size. This
is perhaps due to the fact that not all the code added by the transformations is
processed by the JIT. Despite this, both FFT and LU factorization show large
increases in running time performance.

The SOR and Sparse Matrix transformations show an even more unusual
phenomenon where the JIT compiles more code after the transformation than
the transformation added. Somehow, the re-arrangement of code has caused the
JIT to fire more often.

These results give us no clear correlation between the transformations and
the effect they have on the amount of work the JIT will do at run time. It is
possible that the results may be clearer if more fine grained information was
known about the JIT (in particular, if it were known exactly which pieces of
code were compiled or optimized). However, the tools available for the JVMs
used in this experiment could not provide this information.

4 Background and Related Work

The work in this paper builds on other work that perform optimizations on Java
bytecode. The main systems the authors are aware of are Briki [5] (although
this is mainly a JIT compilation framework), Cream [6], Jax [20] and SOOT
[21, 22]. The tool developed for this paper was built on top of SOOT. With the
exception of Jax (whose main purpose was code compression) all of these systems
report beneficial effects on performance when transforming Java bytecode ahead
of time. As far as we are aware none of these systems include loop unrolling
or unfolding in their transformation sets. However, forms of loop invariant code
motion are applied by some tools (including the SOOT framework).

Other related systems are optimizing compilers that compile Java to native
code [9, 12] and bytecode manipulation tools [7, 15].

Descriptions of all three optimizations can be found in standard compiler
texts [1, 13, 16]. Loop unrolling and unfolding has been investigated on several
architectures (for example [2, 8, 10, 11]) but as far as we are aware has not been
investigated on platforms where a bytecode machine is used.

5 Conclusions and Future Work

The main contribution of this paper is the creation of a tool to perform certain
optimizing transformations and a detailed investigation to determine whether
traditional loop optimizations (in particular loop unrolling and unfolding) pro-
vide performance benefits on current JVMs when applied to bytecode.

The results average out with the transformations causing a 4-5% perfomance
increase. Some benchmarks responded very well with up to a 20% increase and

the worst performance degradation was a 7% decrease in performance. Overall
the figures suggest that these AOT transformations are beneficial to the efficiency
of Java programs.

In addition to the main results about performance increases, we can observe
the following from the experiments:

– Although there are some variations in individual benchmarks, the trends of
performance increase are the same across the hardware architectures tested

– Although there are some variations in individual benchmarks, the trends of
performance increase are the same across the types of JIT tested

– The overhead of the SOOT framework is in line with earlier reported work.
– The effect of the transformations on the amount of code that is JIT compiled

is unpredictable though increased performance can occur even with less than
expected JIT compilation.

These results together lend support to the argument that, in some sense, the
AOT optimization process is independent of the underlying run-time architecture
including the JVM. However, individual cases can vary and the relationship
between the transformations and JIT compilation is still not understood and
could well still be an important factor in the effectiveness of the transformations.
Further investigation into this relationship seems warranted.

As mentioned earlier in the paper, it may be possible for these transforma-
tions to be integrated into JIT compilation though the program analysis required
may be too costly. A method of communicating ahead of time analysis to the
JIT such as suggested in [14] may work in this context.

The tool developed for the purposes of this paper is quite conservative in
its application of the transformations and also applies them uniformly without
taking into account any context such as the size of the loop being transformed. It
is possible that a more aggressive or more guided tool would produce more reli-
ably beneficial results and this should be investigated further. Furthermore, the
factors of unrolling and unfolding have been fixed for the reported experiments
here, taking values that have worked well on other platforms. The performance
effect of these parameters in Java is still to be fully investigated.

Often, the loop optimizations here are described as being successful due to
their exploitation of cache behavior. Given that these transformations can be
beneficial even when executed on a JVM, it may be the case that other loop
transformations that affect cache behavior (e.g. loop tiling, strip mining, loop
fusion etc.) would also benefit on Java code, particularly in scientific applications.
A survey of these types of transformation can be found in [2].

References

1. Andrew W. Appel. Modern Compiler Implementation in Java. Cambridge Press,
2002.

2. David F. Bacon, Graham Susan L., and Oliver J. Sharp. Compiler Transformations
for High-Performance Computing. ACM Computing Surveys, 26(4):345–420, 1994.

3. SPEC JVM98 Client Benchmarks. World Wide Web,
http://www.spec.org/osg/jvm98/.

4. J M Bull, L A Smith, L Pottage, and R Freeman. Benchmarking java against c and
fortran for scientific applications. In Proceedings of the 2001 joint ACM-ISCOPE
conference on Java Grande, pages 97–1005. ACM Press, 2001.

5. M Cierniak and W Li. Just in time optimizations for high performance java pro-
grams. Concurrency: Practice and Experience, 1997.

6. L. R. Clausen. A java bytecode optimizer using side effect analysis. Concurrency:
Practuce and Experience, 1997.

7. Geoff A. Cohen, Jeffrey S. Chase, and David L. Kaminsky. Automatic program
transformation with joie. In Proceedings of the USENIX 1998 Annual Technical
Conference, pages 167–178. USENIX Association, 1998.

8. Jack W Davidson and Sanjay Jinturkar. An agressive approach to loop unrolling.
Technical report, University of Virginia, 2001.

9. Jeffrey Dean, Greg De Fouw, David Grove, Vassily Litvino, and Craig Chambers.
Vortex: An optimizing compiler for object-oriented languages. In Proccedings OOP-
SLA ’96 Conference on Object-Oriented Programming Systems, Languages and
Applications, volume 31, pages 83–100. ACM Sigplan, 1996.

10. J. J. Dongarra and A. R. Hinds. Unrolling loops in fortran. Software Practice and
Experience, 9(3):219–226, 1979.

11. J.R. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press, 1987.
12. Robert Fitzgerald, Todd B Knoblock, Erik Ruf, Bjarne Steensgaard, and David

Tarditi. Marmot: an optimizing compiler for java. Technical report, Microsoft
Research, 1998.

13. D. Grune, H. Bal, C. Jacobs, and K. Langendoen. Modern Compiler Design. John
Wiley and Sons, 2000.

14. Anatole Le, Ondřej Lhoták, and Laurie Hendren. Using inter-procedural side-effect
information in JIT optimizations. In R. Bodik, editor, Compiler Construction, 14th
International Conference, volume 3443 of LNCS, pages 287–304, Edinburgh, April
2005. Springer.

15. Han Bok Lee and Benjamin G. Zorn. A tool for instrumenting java bytecodes.
In The USENIX Symposium on Internet Technologies and Systems, pages 73–82,
1997.

16. Steven S. Muchnick. Advanced Compiler Design and Implementation, pages 559–
563. Morgan Kaufmann, 1997.

17. B.V.Mohan Kirshna Reddy. A work bench for loop transformation. Master’s thesis,
Indian Institute of Technology, Kanpur, May 2001.

18. Litong Song and Krishna Kavi. What can we gain by Unfolding Loops? SIGPLAN
Not., 39(2):26–33, 2004.

19. SciMark 2.0 Benchmarking Suite. World Wide Web,
http://math.nist.gov/scimark2/.

20. Frank Tip, Chris Laffra, Peter F. Sweeney, and David Streeter. Practical experience
with an application extractor for java. Technical Report RC 21451, IBM Research,
1999.

21. R. Vallee-Rai, C. Phong, G. Etienne, H. Laurie, L. Patrick, and S. Vijay. Soot - a
Java bytecode optimization framework, 1999.

22. Raja Vallee-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice Pom-
inville, and Vijay Sundaresan. Optimizing Java Bytecode Using the Soot Frame-
work: Is It Feasible? In Computational Complexity, pages 18–34, 2000.

23. Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying Java Bytecode for
Analyses and Transformations.

