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Interference of light fields plays an important role in various high-precision measurement schemes.

It has been shown that superresolving phase measurements beyond the standard coherent state limit can be

obtained either by using maximally entangled multiparticle states of light or using complex detection

approaches. Here we show that superresolving phase measurements at the shot noise limit can be achieved

without resorting to nonclassical optical states or to low-efficiency detection processes. Using robust

coherent states of light, high-efficiency homodyne detection, and a deterministic binarization processing

technique, we show a narrowing of the interference fringes that scales with 1=
ffiffiffiffi
N

p
where N is the mean

number of photons of the coherent state. Experimentally we demonstrate a 12-fold narrowing at the shot

noise limit.

DOI: 10.1103/PhysRevLett.111.033603 PACS numbers: 42.50.St, 03.65.Ta

When two coherent electromagnetic waves interfere, as
in Young’s double slit experiment or in a standard Mach-
Zehnder interferometer, an oscillatory interference pattern
arises with a periodicity governed by the wavelength, �, of
the field. The period is given by �=2 and is often referred to
as the standard resolution limit of interferometers (and in
imaging it is the Rayleigh resolution criterion [1]).
Superresolution–that is resolution beyond the standard
�=2 limit—can be attained by the use of quantum entan-
glement. For example, using the maximally path-entangled

multiparticle NOON states, jNOONi¼ ðjN0iþ j0NiÞ= ffiffiffi
2

p
,

it is possible to achieve superresolution with resolvable
features down to �=ð2NÞwhere N is the number of photons
[2]. Superresolution with NOON states has been demon-
strated with ions [3], nuclear spins [4], atoms [5], and
photons [6–10]. In addition to superresolution, the
NOON states can in principle also beat the quantum shot
noise limit (SNL) in phase estimation ultimately reaching
the optimal estimation known as the Heisenberg limit [11].
However, since these states are extremely fragile and are
prepared and detected with very low efficiency [12], it is
experimentally very challenging to beat the SNL [13,14].
Another approach to obtain superresolution and super-
sensitivity is to use single photons in a multiple-pass
configuration [15,16].

Coherent states of light have also been used to obtain
superresolution. The idea is to detect a nonclassical state
(such as the NOON state) via state projection as opposed
to nonclassical state preparation [17]. Examples of pro-
jections of coherent states that lead to phase superresolu-
tion are photon counting, coincidence counting, and
parity detection [10,18–25]. Despite its superresolving
capability, this state projection method cannot beat the
SNL in phase estimation but it may approach it for an
optimized parity detector [21,25]. Although this method

largely reduces the complexity of the preparation stage,
the detection part remains complex (ideally requiring
photon number resolving detectors) and the efficiency
in projecting out the desired nonclassical state is often
very low [20].
In this Letter we propose and demonstrate a simple and

very efficient scheme to obtain superresolution at the SNL
without the need of complex states in preparation or com-
plex projectors in detection. We use coherent states of light
and a simple high-efficiency homodyne detector to achieve
phase superresolution beyond what has been achieved with
any non-Gaussian resources or detectors. The method is
deterministic and we show that it operates close to the shot
noise limit in contrast to all previous implementations of
coherent state based superresolution.
Our method follows the interferometric scheme illus-

trated in Fig. 1(a). A coherent state of light, j�i, with
amplitude � and mean photon number N ¼ j�j2 enters
the interferometer at the input symmetric beam splitter.

The resulting state, j�= ffiffiffi
2

p ij�= ffiffiffi
2

p i, acquires a phase shift,
�, in one arm of the interferometer, and the final state at the
output, j�ð�Þi ¼ j cosð�=2Þ�ij sinð�=2Þ�i, is produced
by interference at the second beam splitter. The observed
phase resolution and sensitivity crucially depend on how
this output state is detected. By describing the detection

process with a measurement operator �̂, the response
function of the setup is the mean value of that operator,

h�̂i. Using, for example, a standard intensity detector

described by the observable �̂ ¼ N̂, the detector response
is Ncos2ð�=2Þ which is an oscillating function with a
period given by �=2, thus coinciding with the standard
resolution limit. In the following we show that by substi-
tuting the intensity detector with a simple homodyne
detector combined with a postbinarization process, we
beat the standard resolution limit.
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The main idea of our approach is to divide the quad-
rature measurement outcomes into two bins: Assuming
that we measure the phase quadrature, p̂ (where p̂ ¼
ðâ� âyÞ=2i and â is the field operator), we classify two
different results associated with outcomes in the intervals
jpj � a and jpj> a. Such a measurement strategy is
described by the two projectors

�̂0 ¼
Z a

�a
dpjpihpj; �̂1 ¼ Î� �̂0; (1)

and the measurement observable can thus be written as

�̂ ¼ �0�̂0 þ �1�̂1 where �0 ¼ 1=erfð ffiffiffi
2

p
aÞ and �1 ¼ 0

are the eigenvalues associated with the two measurement
outcomes. These eigenvalues are found from the normal-

ization with a vacuum state for �̂0 and using ½x; p� ¼ i=2.
The detector response function of this dichotomic
strategy is

h�̂i ¼ 1

erfð ffiffiffi
2

p
aÞ

Z a

�a
dpjh ffiffiffiffi

N
p

sinð�=2Þjpij2: (2)

For a general value of a the response function cannot be
evaluated in closed form in terms of elementary functions
but for a ! 0 (corresponding to binning the results for
which p ¼ 0 and p � 0), it can be simply written as

h�̂i ¼ exp

�
� 1

2
Nsin2�

�
(3)

and is illustrated in Fig. 1(b). The full width at half maxi-

mum of this fringe is FWHM ¼ 2 arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2 ln2Þ=Np

, and
by comparing it to the FWHM of the fringe associated with
a standard resolution limited intensity detection system,
we see that superresolution is obtained for N > 2 ln2. For

N ! 1 we find a 1=
ffiffiffiffi
N

p
improvement of the resolution

with respect to the standard limit. We note that for a ! 0,
one of the measurements is associated with the projection
onto a state with an even photon number (infinitely
squeezed state) which is somewhat reminiscent of one of
the projectors of a parity measurement [21].

In addition to being superresolving, our approach
also exhibits a phase sensitivity at the SNL. The sensitivity

is defined as �� ¼ ��=jdh�̂i=d�j where �� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�̂2i � h�̂i2

q
, and for our measurement operator (with

a ! 0) it reaches the minimum value of

��min ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2

r
eð1=4Þð2þN�

ffiffiffiffiffiffiffiffiffi
4þN2

p
Þ � ffiffiffiffiffiffiffiffiffi

2=�
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ N2

p � 2

s
(4)

near the phase points �min ¼ � arccosð ffiffiffiffiffiffiffiffi
1=2

p � 1=N þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ N2

p
=2NÞ and for large N it converges to ��min ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð ffiffiffiffiffiffiffiffiffiffiffiffi
e�=2

p � 1Þ=N
q

� 1:03=
ffiffiffiffi
N

p
, thus being close to the

SNL.
In the limit of a ! 0 the measurement is not physically

sound as it requires infinitely high energy. However, both

the resolution and sensitivity properties are preserved even
for a finite value of a. Indeed, for a general value of a the
response function can be evaluated as

h�̂i ¼ 1

2erfð ffiffiffi
2

p
aÞ ferf½

ffiffiffi
2

p
gþ� þ erf½ ffiffiffi

2
p

g��g; (5)

where g� ¼ a� ð1=2Þ ffiffiffiffi
N

p
sin�. The response

function and its width is illustrated by the solid curves in

FIG. 1 (color online). Experimental setup and illustration of
the principles. (a) Schematic of the experimental setup.
A product of a coherent state, j�i, and a vacuum state, j0i, is
transformed through an interferometer and measured with a
homodyne detector described by the ideal projector hpj. The
evolutions in phase space of the two states are illustrated by the
insets. (b) The phase response function h�i for the standard
interferometer scheme (dashed curve) and for the superresolving
scheme (solid curve). (c) Experimental setup. Light from a
picosecond pulsed Ti:sapphire laser operating at 830 nm and
with a repetition rate of 800 kHz is controllably divided into two
beams using a half-wave plate (HWP) and a polarizing beam
splitter (PBS) thereby creating a signal and a local oscillator
(LO) beam for homodyne detection (HD). The power of the
signal beam is controlled by a neutral density filter (NDF), a
HWP and a PBS, and subsequently sent into a Michelson
interferometer (MI), the function of which is identical to the
one in (a). A piezocrystal (PZT) attached to one of the interfer-
ometer mirrors scans the phase, �, and the resulting output is
measured by means of HD.
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Figs. 2(a)–2(c). The scaling of the width is again found to

be 1=
ffiffiffiffi
N

p
. Finally, the sensitivity for a finite a reads

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2

eð2aþ
ffiffiffi
N

p
sin�Þ2ð2� kÞk

Ncos2�ðe4a
ffiffiffi
N

p
sin� � 1Þ2

s
(6)

where k ¼ erfc½ ffiffiffi
2

p
g�� þ erfc½ ffiffiffi

2
p

gþ� and erfcð� � �Þ ¼ 1�
erfð� � �Þ is the complementary error function. For a ¼ 1=2
and N � 1 the sensitivity follows the shot noise scaling;

��min � ð1:37= ffiffiffiffi
N

p Þ. The value of a ¼ 1=2 represents a
trade-off between sensitivity and resolution. For example,
for a higher value of a the sensitivity is closer to the SNL
but the resolution FWHM increases and vice versa.

We now implement the protocol using the setup dis-
played in Fig. 1(c). A coherent state with a controllable
mean photon number is sent through a Michelson interfer-
ometer (MI) in which the relative phase (�) is continuously
varied by a piezodriven mirror. The phase quadrature of the
interferometer output state is then measured with a high-
efficiency homodyne detector (HD) with an overall effi-
ciency of 90% (stemming from a diode efficiency of 95%
and interference contrast of 98%). We subject the resulting

detector outcomes to the binning procedure with the inter-
val set to a ¼ 1=2. The average photon number N is
estimated by directing the input signal (by-passing the
interferometer) to the homodyne detector and measuring
the amplitude, � of the state (N ¼ j�j2). The reading is
calibrated against the vacuum trace (shot noise). The
experiment is repeated 400 times for each realization of a
phase value, and the frequencies at which the measurement
outcomes fall within the two quadrature intervals
[described by the projectors (1)] are found. The resulting
response functions are plotted in Figs. 2(a) and 2(b) for two
different power levels (red dots). A clear narrowing of the
fringe with respect to the fringe for the standard approach
(dashed curve) is observed, thus proving the superresolu-
tion capabilities of our scheme. We also note that the
visibility of the new interference fringes is basically
unchanged and close to unity. We repeat the experiment
for several different mean photon numbers and the results
of the FWHM are summarized in Fig. 2(c).
We also estimate the sensitivity from the measurements

and the results for two different mean photon numbers are
presented by the insets of Fig. 2. These results demonstrate
that the measurements possess a phase sensitivity
very close to the SNL (dashed line) for certain phases.
In Fig. 2(d) we present a summary of the optimal phase
sensitivities for several different mean photon numbers and
compare it to the SNL (dashed curve).
As we have now seen, binary binning of quadrature

measurements leads to a narrowing of the interference
fringe. However, the number of fringes in a 2� period
remains unchanged as opposed to interferometry with
NOON states where the number of fringes increases
with the photon number. It is, however, also possible
with coherent states to increase the number of fringes in
a period by employing a multiple binning approach:
Instead of dividing the measurement results in two differ-
ent intervals, we divide them into multiple intervals con-
sisting of equidistant bins with length 2a. This is described
by the projectors

�̂k ¼
Z bkþa

bk�a
jp0ihp0jdp0 �̂nþ1 ¼ Î� Xn

k¼1

�̂k: (7)

By setting the eigenvalues �k ¼ 1=erfð ffiffiffi
2

p
aÞ for k 2

f1; . . . ; ng and �nþ1 ¼ 0, we find the resulting response
function

h�̂i ¼ 1

2 erfð ffiffiffi
2

p
aÞ

Xnþ1

k¼1

ferf½ ffiffiffi
2

p ðg� � bkÞ�

þ erf½ ffiffiffi
2

p ðgþ þ bkÞ�g (8)

where bk is the central position of the intervals on the
p-quadrature line. If the distance between the intervals is
b > 2a, the projectors are orthogonal and we can straight-
forwardly find the quantity

FIG. 2 (color online). Performance of the superresolving in-
terferometer. (a) and (b) show the experimental results (dots) and
the theory (solid curve) for the response function with a ¼ 0:5
for two different mean photon numbers N ¼ 19 and N ¼ 132,
respectively. The dashed curves represent the standard Rayleigh
limited strategy. The insets of (a) and (b) are the results of the
sensitivity as a function of � for the same values of N. The
dashed curves represent the SNL. (c) The resolution in terms of
FWHM of our scheme as a function of the mean photon number
(red dots) together with theory for our approach (solid curve) and
for Rayleigh limited strategy (dashed line). (d) Minimum value
of the sensitivity for our scheme for different mean photon
numbers (red dots). The solid curve represents the theoretical
curve, ��min � 1:37=

ffiffiffiffi
N

p
, and the dashed line stands for the

SNL. Error bars of (c), (d) and the insets are smaller than the
data points.
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h��̂2i ¼ h�̂i
�

1

erfð ffiffiffi
2

p
aÞ � h�̂i

�
(9)

and thus the sensitivity ��.
An example is shown in Fig. 3 for a ¼ 1=2 and 8 fringes.

The multiple fringe approach will, however, give rise to a
slightly lower visibility of the interference fringes, thus
rendering a trade-off between the number of fringes within
a period and the visibility of the resulting pattern for a given
average photon number. It is however possible to recover
the near unity visibility by increasing the number of pho-
tons as illustrated in Fig. 3(c). This means that the phase
sensitivity of the multifringe approach operates at the SNL
(like the two bin approach) as long as the number of fringes
is adjusted according to the mean number of photons.

For a fixed number of photons N, the number of fringes
M depends on the choice of the parameter b as well as on
the required visibility. For a given set of N,M, and a there
is an optimal value of b that maximizes the visibility.
Figure 3(c) reports two examples of the number of fringes
as a function of the number of photons for two different
visibilities. In this example, for each N, b has been chosen
such as to maximize M and to keep the visibility above
95% or above 90%. It is clear that at higher visibility the
number of fringes for a given N decrease. The points in
the figure are extracted by numerical calculation and the

curves are fits that scale as M / ffiffiffiffi
N

p
.

In the above investigations we have considered only the
measurement of the phase quadrature among all other
quadratures. For the binary binning approach, this is indeed
the optimal quadrature measurement [for the input state
considered in Fig. 1(a)] although superresolution with
reduced quality can be also obtained for any other quad-
rature measurement. This is clearly seen from the results of
the multiple-bining approach in Fig. 3 which shows that the
fringes are narrowest at � ¼ 0 and broadest at � ¼ �=2
effectively corresponding to a phase and an amplitude
quadrature measurement, respectively. The fact that super-
resolution can be obtained for any quadrature measurement
suggests that we may relax the stringent phase reference in
our homodyne detector thus measuring a random quadra-
ture and thereby attaining superresolution with a simplified
strategy.

In contrast to previous superresolution schemes based on
NOON states or photon counters, the measurement pre-
sented here is intrinsically deterministic. It means that we
keep every single measurement outcome and do not per-
form a postselection of the outcomes to extract the desired
superresolving feature as done in previous implementa-
tions [7–10,20,22]. Due to this common post selection
procedure (which significantly reduces the number of
available resource states), all these experiments exhibit a
phase sensitivity that is lower than the one obtained here if
the actual number of photons passing through the phase
sample is taken into account. A more promising approach
to deterministically beat the SNL (and eventually reaching

the Heisenberg Limit) is the one based on single photons in
a multiple-pass interferometer although its performance
will be ultimately limited by the extended time of flight
of the photons [15,16].
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FIG. 3 (color online). Results for the multiple binning ap-
proach. (a) Response function with 8 fringes per period obtained
by binning the measurement outcomes along 5 intervals for a
coherent state with N ¼ 139. The central points of these inter-
vals are located at p ¼ b � k where k 2 ½�2;�1; 0; 1; 2� and
b ¼ 3:17. The average fidelity of all fringes within a period is
95%. The data (red dots) fit well with theory (blue line) and the
uncertainty for each point lies inside the theoretically predicted
uncertainty, represented by the shaded area. The interference
fringe corresponding to the Rayleigh limited approach is shown
by the dashed curve. (b) Phase sensitivity for the multiple
binning approach associated with the experimental results
(dots) and the theory (solid curve). Near the SNL, performance
(represented by the dashed line) is obtained for several phases.
(c) Plot of the number of fringes M for which the visibility is
larger than 0.95 (red solid trace and dots) and 0.90 (blue dashed
trace and squares) as a function of the average photon number,
N, of the coherent state. The dots and squares correspond to
numerical estimates whereas the curves are theoretical fits.
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Using a very simple setup based on coherent states and
a high-efficiency homodyne detector, we have demon-
strated a narrowing of the interference fringes of an inter-
ferometer beyond what is possible with conventional
interferometers. In contrast to previous implementations
of superresolution with coherent states, the proposed
scheme is deterministic and it attains a phase sensitivity
at the shot noise limit. Both the phase resolution and the
phase sensitivity were found to scale inversely with the
coherent state amplitude.
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