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Abstract

Many alternatives are being investigated for the carbon capture, but none appears to have been proved as the choice
for full-scale applications. This work considers the Chilled Ammonia Process for coal-fired Ultra Super Criticalff
power plants. Three layouts are simulated with Aspen Plus and the Extended UNIQUAC thermodynamic model.
Compared to a traditional layout, stripping of the wash water of the absorber or, better, splitting the rich solution 
between the middle and the top of the column limits greatly the ammonia slip. Moreover, splitting the regeneration 
over two levels reduces substantially the electric loss due to stream extraction from the turbine. The simulations show 
that the net electric efficiency drops from 45.5% to 33.5-34.5%, the SPECCA index is 3.8-4.3 MJthJJ kgCO2

-1 and the 
heat duties are 2.7-2.9 MJthJJ kgCO2

-1. The performances may improve greatly upon optimization of the parameters.

© 2013 The Authors. Published by Elsevier Ltd.  
Selection and/or peer-review under responsibility of GHGT
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1. Introduction

Many alternatives are being investigated worldwide to capture, and then store, the carbon dioxide
generated by the combustion of fossil fuels. Apparently none has been proved to be the choice for full-
scale applications. This work considers the post-combustion chemical absorption via an aqueous solution 
of ammonia in chilled conditions, the Chilled Ammonia Process (CAP), applied to coal-fired Ultra Super
Critical (USC) power plants. The scope is comparing three layouts with the software Aspen Plus (ver.7.3) 
employing a thermodynamic model that is not built inside the code but defined by the user.
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The adopted thermodynamic model, namely the Extended UNIQUAC model, has been developed over 
the years at the Technical University of Denmark for diverse mixtures, including amines and ammonia 
solutions for the carbon capture. It has been tuned finely for reproducing phase equilibria and thermal 
properties of the CO2-NH3-H2O system [1-4]. On its side, Politecnico di Milano has been focusing mainly 
on plant schemes adopting a simplified thermodynamic model [5] or the Aspen Plus V7.2 built-in 
e-NRTL model [6,7]. The two universities have naturally joined in the study of post-combustion carbon 
capture via chemical absorption. At first, Darde et al. [8] have shown that the Extended UNIQUAC model 
is averagely more accurate than the e-NRTL model in reproducing equilibrium experimental data of the 
ternary system CO2-H2O-NH3 over a wide range of temperatures, pressures and concentrations. The joint 
analysis covers here the comparison of capture processes that, as in the past, involve salt precipitation and 
that, consequently, are simulated with an equilibrium-stage approach. 

2. Bibliographic review 

The first conceptual scheme of a carbon dioxide chemical absorption with aqueous ammonia is likely 
that by Bai et Yeh (1997) [9]. It is a conventional scheme which is envisioned to have a water wash at the 
top of both the absorber and the regenerator because ammonia slip is already recognized as a possible 
problem. Resnik et al. (2004) [10] are probably the first investigators to suggest the use of ammonia 
solution for the multi-pollutant (CO2, SO2, NOx, HCl and HF) from the flue gases of fossil fuel-fired 
plants, an idea that is being pursued by Powerspan Corp [11]. In 2005 Gal patents the concept of 
conducting the absorption in chilled conditions (0-20°C) to favor the carbon dioxide capture and to limit 
the ammonia slip [12]. The company Alstom has licensed the exclusive, world-wide rights to market and 
sell the process patented by Gal [13]. Until about 2009 Alstom designs and operates a pilot plant based on 
the conventional absorption-regeneration scheme in which, though, the regeneration pressure is fairly 
high (20-40 bar). Subsequently, Alstom redesigns the layout modifying the way ammonia is recovered 
from the flue gas and implements it in a few test sites [14-16]. Strube and Manfrida (2011) [17] study a 
capture layout similar to this second Alstom scheme and compare its integration with different power 
plant types. Also starting from the later scheme by Alstom, Linnenberg et al. (2012) [18] develop two 
alternative arrangements of the absorption stage and analyze in detail the integration with the power plant. 
Finally, there is quite a number of patents deposited by Alstom that cover many modifications to its 
layouts, but to the knowledge of the authors there are no scientific publications about them yet. 

Nomenclature 
Equipment abbreviations  ST Stripper 
AB Absorber  WK Water knockout 
AC Air-cooler  WT Wash tower 
CC Contact cooling tower  Acronyms  
CM Compressor  CAP Chilled Ammonia Process 
FGD Flue gas desulfurization  FGD Flue Gas Desulfurization 
FN Fan  USC Ultra Super Critical 
HC Hydrocyclone  Symbols  
HX Heat exchanger    Carbon capture efficiency [-]  
PM Pump    Net electrical efficiency [-]  
PR Purge    Specific CO2 emission [kgCO2 MWhe

-1]  
RB Reboiler    Specific Primary Energy Consumption  
RC Recuperator   for Carbon Avoided [MJth kgCO2

-1] 
RG Regenerator    Specific heat duty [MJth kgCO2

-1]  
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3. Thermodynamic model and process layouts 

The USC power plant equipped with the CAP is divided into two major blocks: (i) the power and 
(ii) the capture block. The power block is treated as a whole, whereas the capture block is subdivided into 
islands: (i) exhaust chilling, (ii) absorption-regeneration-gas wash, (iii) carbon dioxide compression, 
(iv) chilling plant, and (v) ammonia removal. Three layouts for the capture block are considered, differing 
primarily by the abs.-reg.-gas wash island. The ammonia removal island is not present in one layout 
because the ammonia slip is controlled at the absorption process. General parameters are given in Table 1.  

Extended UNIQUAC model 

The Extended UNIQUAC thermodynamic model for gas solubility in salt solutions was developed by 
Thomsen and Rasmussen (1999) [1]. It is derived from the original UNIQUAC expression by Abrams 
and Prausnitz (1975) [20] by adding a Debye-Hückel term to account additional excess Gibbs energy 
from the electrostatic interactions between ionic species. The model requires UNIQUAC volume and 
surface area parameters for each species, along with temperature-dependent binary interaction energy 
parameters for each pair of species. Phase equilibrium calculations are performed with the  
approach coupled with equilibrium speciation reactions with potential solid phase precipitation. The 
liquid phase activity coefficients are calculated from the Extended UNIQUAC model, while the gas phase 
fugacity coefficients from the Soave-Redlich-Kwong equation of state. Besides phase relations, the model 
reproduces also thermal properties, such as enthalpy and entropy, within the experimental accuracy. 

Power block 

The effect of the steam extraction on the power generation is computed starting from a typical 
expansion curve of a low pressure turbine. The curve is assumed to be a straight segment connecting inlet 
and outlet of the turbine on an entropy-enthalpy diagram (Figure 2). The extraction pressure along the 
curve is determined by the regeneration temperature allowing for a minimal temperature difference in the 
reboiler. Prior to entering the reboiler, the steam is attempered with part of the liquid water exiting the 
reboiler itself. The extracted mass flow rate is defined by the energy balance over the reboiler for a given 
heat duty. The electric loss due to the steam extraction is computed as the power that would be generated 
by the extracted steam from the extraction state to the outlet state assuming that the expansion curve does 
not change. The integration of the exiting condensate with the power block, such as in the deaerator or in 
the pre-heating line, is not considered now. The condensate is instead directed to the condenser. 

Capture block 

Layout 1 is derived from the first plant proposed by Altsom [13] and based on a conventional 
absorption-regeneration scheme (Figure 1). Such scheme applied to CAP has the major issue of the 
ammonia slip through the treated flue gas requiring: (i) refrigeration, (ii) water wash and (iii) removal of 
remaining ammonia with an acid solution. The ammonia slip issue may be addressed at  the design of 
both the absorber and the process. Regarding the absorber, Budzianowski [19] investigates numerically 
and, in part, experimentally three reactor configurations and shows that a number of parameter may be 
adjusted to control the vaporization of ammonia. Regarding the process, new schemes may be defined. 

Layout 2 is the evolution of Layout 1 derived from the second plant by Alstom [14] (Figure 1). It aims 
at recovering the ammonia slip from the treated gas through a high-pressure and high-temperature thermal 
stripping of a small portion of the wash water of the absorber. 
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Layout 3 is a modification of Layout 1 that aims at controlling the ammonia slip, as Layout 2 but with 
another strategy, and the electric loss due to stream extraction (Figure 1). The ammonia slip is limited 
splitting the recycle of the rich solution between the top and the middle of the absorber; the electric loss is 
limited splitting the regeneration into two stages, one at low pressure and low temperature and the other at 
high pressure and moderate temperature. Pressures and temperatures are set imposing that the two 
compressors have same compression ratio and same inlet volume flow rates so that they are identical. 

Performance indexes 

The carbon capture efficiency,  [%] defined as the ratio of the flow rates [kmol s-1 or kg s-1] of the 
carbon dioxide exiting the compression island and that entering the exhaust chilling island, is one 
performance index. The second one is the specific heat duty,  [MJth kgCO2

-1], defined as the ratio of 
the reboiler heat duty [MWth] and the mass flow rate [kg s-1] of the captured carbon dioxide. However, the 
specific heat duty does not include the information on the capture efficiency nor on the temperature at 
which the heat duty is required (or in equivalent terms the loss of electric power from the steam turbine). 
Thus, here is adopted a third index, the Specific Primary Energy Consumption for Carbon Avoided 
( ) [MJth kgCO2

-1], introduced by Campanari et al. [21] and in use by the authors [7,8]. As an 
indication, the  of a conventional MEA plant exceeds 4 MJ kgCO2

-1 [22]. 

Design parameters 

The design parameters are: (i) ammonia initial concentration of the aqueous solution, (ii) ammonia-to-
carbon dioxide ratio in the absorber, (iii) regeneration pressure, and (iv) regeneration temperature. The 
ammonia-to-carbon ratio in the absorber is the ratio of the ammonia moles entering the reactor through 
the lean solution and the carbon dioxide moles entering through the exhaust. For each layout the design 
parameters are varied to: (i) achieve the carbon capture efficiency  of 90%, (ii) reduce the ammonia 
slip in the treated gas and in the compressed carbon dioxide respectively below 100 mg m-3 at normal 
condition and at 6% of O2 and below 5 ppm, both on a dry basis, and (iii) limit the lean solution flow rate. 
The chosen values are in Table 2. With respect to a previous work [7], which minimizes the , the 
attention is here on the ammonia slip. In the future, an optimization will be conducted. 

4. Results and discussion 

The ratio of the electric power loss due to the stream extraction from the turbine and the heat duty as a 
function of  the regeneration temperature is depicted in Figure 2. At a temperature as low as 80°C a heat 
duty of 1 MWth corresponds to a power loss of 0.119 MWe. This loss grows rapidly to 0.166 at 100°C, 
0.212 at 120°C and 0.256 MWe at 140°C. At the stripping temperature of 200°C it is already 0.377 MWe. 

Table 3 reports the results in terms of the electric power loss due to direct use by air-coolers, fans, 
compressors and pumps, or indirect use by heat exchangers (via the chilling plant) and reboilers (via the 
extracted steam). The exhausts chilling island is identical for all layouts and consumes the least amount. 
Air-coolers and pumps of the absorption-regeneration-gas wash island sum to a relatively small portion of 
the consumptions, especially for Layout 2 that has small flow rates due to higher ammonia 
concentrations. Heat duties and chilling loads account for most of the losses. Layout 2 shows the lowest 
loss due to chilling thanks to a reduce load on the recycle of the rich solution. In addition, Layout 2 and, 
in particular, Layout 3 prove a greatly reduced loss due to the steam extraction. On top of this, Layout 3 
allows to control effectively the ammonia slip as demonstrated by the smallest consumption for the pump 
of the water wash of the absorber (PM23 in Figure 1) and the absence of the ammonia removal island. 
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Losses are between 180 and 200 MWe for a USC plant of 754 MWe (Table 4). The net electrical 
efficiency goes from 45.5% to about 33.5-34.5%.  values are higher than a previous work [7]: 
Darde et al. [8] show that performances simulated with the Extended UNIQUAC model, as here, are 
worse than with the e-NRTL model, as before. Furthermore, the design parameters must be optimized. 

Table 1. General parameters. 

Parameter Unit Value  Parameter Unit Value 

Air coolers    Heat exchangers   

Fluid end temperature °C 25  Minimum temperature difference °C 5 

Relative pressure drop % 1  Low pressure steam turbine   

Specific electric consumption MWe MWth
-1 0.0159  Inlet pressure bar 4.5 

Ambient air    Inlet temperature °C 306 

Temperature °C 15  Outlet pressure bar 0.05 

Chilling plant    Outlet vapor title % 93 

Coefficient of performance MWth MWe
-1 5  Outlet velocity m s-1 250 

Specific electric consumption MWe MWth
-1 0.20  Generator efficiency % 98 

Columns    Motors   

Contact cooler pressure drop bar 0.01  Electro-mechanical efficiency % 95 

Other column pressure drop bar 0.03  Pumps   

Compressors    Hydraulic efficiency % 85 

Isentropic efficiency % 85  Reboiler   

Last compressor end pressure bar 80  Steam superheated temperature °C 5 

Fans    Steam subcooled temperature °C 0 

Forced fan end pressure bar 1.08  Reference power plant [22 Sec. 3.2]  

Induced fan end pressure bar 1.04  Net electric power MWe 754 

Isentropic efficiency % 90  Net electrical efficiency,  % 45.5 

Exhausts [22 Sec. 3.2]    Specific CO2 emission,  kgCO2 MWhe
-1 763 

Mass flow rate kg s-1 782  Pipeline   

Pressure bar 1.04  Delivery pressure bar 110 

Temperature °C 50  Targets   

Composition: % (vol. wet)   Carbon capture efficiency,  % 90 

  CO2  13.73  Max ammonia slip (vol. dry)   

  Inert (Ar, N2,O2)  76.54    Treated gas mg Nm-3
6%O2 100 

  H2O  9.73    Compressed carbon dioxide mg Nm-3 10 

Table 2. Adopted design parameters. 

Parameter Unit Layout 1 Layout 2 Layout 3 

Ammonia initial concentration  %wt 0.1 0.2 0.1 

Ammonia-to-carbon dioxide ratio kmol kmol-1 3.1 3.2 3.1 

Regeneration pressure bar 20 20 10.7/29.3 

Regeneration temperature °C 110 102/204 69/120 
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Figure 1. The three layouts considered in this work. From top to bottom: Layout 1, Layout 2 and Layout 3. 

5. Conclusions 

Three layouts for the carbon capture with the Chilled Ammonia Process (CAP) are compared yielding 
the following conclusions. 
 The ammonia slip is a major issue, but it can be controlled at the process level by either stripping the 

water wash or, better, by splitting the rich solution between the top and the middle of the absorber. 
 Heat duty is the greatest source of electrical loss by way of steam extracted by the turbine, but it may 

be effectively mitigated by splitting the regeneration process into a low and a high pressure stage. 
 CAP is predicted to reduce the net electric efficiency of an USC plant from 45.5% to about 33.5-

34.5%, while the SPECCA is 3.8-4.3 MJth kgCO2
-1 and heat duties 2.7-2.9 MJth kgCO2

-1. 
 Indexes computed in this work are less promising than in previous studies because the Extended 

UNIQUAC model is expected to be more accurate but less optimistic than the e-NRTL model, built-in 
inside Aspen Plus, and because the design parameters must be optimized. 

 The design parameter optimization must be constrained to limit the ammonia slip. 
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The next stage will consider capturing the slipped ammonia to produce fertilizers and employing a 
Ljungström heat exchanger to recuperate heat. Moreover, the complete plants will be also optimized. 
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Figure 2. Left: expansion curve in the enthalpy-entropy diagram of the low pressure turbine from which the steam is extracted. 
Right: ratio of electrical loss-to-heat duty as a function of regeneration temperature (above 140°C the curve is extrapolated because 
the computed pressure is higher than the inlet pressure). The diamond shows an example of a regeneration temperature at 120°C. 
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Table 3. Electric power loss due to direct (air-coolers, compressors, fans, pumps) and indirect use (heat exchangers, reboilers). 

Electric power, MWe Layout 1 Layout 2 Layout 3  Electric power, MWe Layout 1 Layout 2 Layout 3 

Exhaust chilling     Carbon dioxide compression    

  AC11 1.63 1.63 1.63    AC31 0.16 0.16 0.11 

  FN11 3.79 3.79 3.79    AC32 0.53 0.53 0.62 

  PM11 0.21 0.21 0.21    CM31 6.85 6.82 5.51 

  PM12 0.14 0.14 0.14    CM32 6.16 6.14 9.91 

  PM13 0.03 0.03 0.03    PM31 0.77 0.77 0.77 

Subtotal 5.80 5.80 5.80  Subtotal 14.48 14.42 16.92 

Absorption-Regeneration-Wash     Chilling plant    

  AC21 0.10 0.11 0.03    HX11 7.88 7.88 7.88 

  AC22 0.06 0.02 0.00    HX12 0.81 0.81 0.81 

  AC23 0.00 0.00 0.19    HX21 53.46 49.36 54.39 

  AC24 0.00 0.00 0.01    HX22 26.08 26.99 29.50 

  PM21 1.12 0.57 1.12    HX23 3.29 1.94 1.08 

  PM22 4.72 2.70 2.29  Subtotal 91.52 86.98 93.65 

  PM23 3.81 0.97 2.26  Power block    

  PM24 0.40 0.07 0.06    RB21 77.60 62.16 28.61 

  PM25 0.00 0.20 5.18    RB22 0.00 10.97 26.17 

  PM26 0.00 0.00 0.08  Subtotal 77.60 73.13 54.78 

Subtotal 10.21 4.64 11.23  Total of electric power losses 199.61 184.98 182.38 

Table 4. Electric performance of the reference plant [22 Sec. 3.2] and the considered layouts. 

Parameter Unit Reference Layout 1 Layout 2 Layout 3 

Electric power loss MWe NA 200 185 182 

Net electrical power MWe 754 555 569 572 

Net electrical efficiency,  % 45.5 33.5 34.3 34.5 

Capture efficiency,  % NA 90.5 90.2 89.9 

Specific CO2 emission,  kgCO2 MWhe
-1 763 98.6 99.5 101.5 

Specific heat duty MJth kgCO2
-1 NA 2.80 2.48/0.19 2.09/0.85 

  MJth kgCO2
-1 NA 4.3 3.9 3.8 

 


