
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Modeling Approaches for Describing Microbial Population Heterogeneity

Lencastre Fernandes, Rita; Gernaey, Krist V.; Jensen, Anker Degn; Nopens, Ingmar

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Lencastre Fernandes, R., Gernaey, K., Jensen, A. D., & Nopens, I. (2013). Modeling Approaches for Describing
Microbial Population Heterogeneity. Kgs. Lyngby: Technical University of Denmark, Department of Chemical and
Biochemical Engineering.

http://orbit.dtu.dk/en/publications/modeling-approaches-for-describing-microbial-population-heterogeneity(ff775564-787d-431d-9ce9-79577da3f20e).html


Modeling Approaches for Describing
Microbial Population Heterogeneity

Rita Lencastre Fernandes

PhD Thesis

Kongens Lyngby, 2012



THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER THE THESIS NOR EXTENSIVE EX-
TRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S WRITTEN PER-
MISSION. THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR THE USE OF ANY COPY-

RIGHTED MATERIAL APPEARING IN THIS THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED.

c© Copyright by Rita Lencastre Fernandes (2012)

Technical University of Denmark
Department of Chemical and Biochemical Engineering
Center for Process Engineering and Technology
Søltofts Plads b. 229
DK-2800 Kongens Lyngby, Denmark
www.kt.dtu.dk



Abstract

Although microbial populations are typically described by averaged properties,

individual cells present a certain degree of variability. Indeed, initially clonal mi-

crobial populations develop into heterogeneous populations, even when growing

in a homogeneous environment.

A heterogeneous microbial population consists of cells in different states, and

it implies a heterogeneous distribution of activities (e.g. respiration, product yield),

including different responses to extracellular stimuli. The existence of a hetero-

geneous cell population may explain the lower productivities obtained for cultiva-

tions in large-scale reactors, where substrate and oxygen gradients are observed,

in comparison to cultivations in well-mixed bench scale reactors.

Population balance models (PBM) have been used in a broad range of applica-

tions (e.g. crystallization, granulation, flocculation, polymerization processes) to

predict distributions of certain population properties including particle size, mass

or volume, and molecular weight. Similarly, PBM allow for a mathematical descrip-

tion of distributed cell properties within microbial populations. Cell total protein

content distributions (a measure of cell mass) have been observed to provide a

dynamic picture of the interplay between the cells and their surrounding extracel-

lular environment.

The work here presented aimed at developing a model framework based on

PBM as a tool to further understand the development of heterogeneous micro-

bial populations subjected to varying environmental conditions. Three cases are

presented and discussed in this thesis. Common to all is the use of S. cerevisiae

as model organism, and the use of cell size and cell cycle position as single-cell

descriptors.

The first case focuses on the experimental and mathematical description of a

yeast population dynamics, in response to the substrate consumption observed
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during batch cultivation. Cell size and cell cycle position distributions were used

to describe the cell population. A two-stage PBM was developed and coupled to

an unstructured model describing the extracellular environment. The good agree-

ment between the proposed multi-scale model and experimental data (both the

overall physiology and cell size and cell cycle distributions) indicates that a mech-

anistic model framework is a suitable tool for describing the microbial population

dynamics in a bioreactor.

The second case provides an extension of the proposed model framework (PBM

coupled to an unstructured model) to a continuous cultivation. A compartment

model approach was applied for addressing situations where two zones (compart-

ments) are formed due to non-ideal mixing in the bioreactor. In particular, this

approach was used in order to assess the impact of the degree of compartmental-

ization (i.e. deviation from the ideal mixing case) on the population dynamics and

overall system performance under various operation conditions (substrate feed

concentration and dilution rate). It was possible to conclude that the deviation

from ideal mixing may have a significant effect on the observed system dynam-

ics. Moreover, oscillatory pseudo-steady states may be observed for particular

combinations of operating conditions and degree of compartmentalization.

In the third study attention was paid to the integration of the proposed model

framework in a computational (CFD) fluid dynamic model. The anaerobic growth

of a budding yeast population in a continuously run microbioreactor was used as

example. The proposed integrated model describes the fluid flow, the local cell

size and cell cycle position distributions, as well as the local concentrations of

glucose, ethanol and biomass throughout the reactor. This work has proven that

the integration of CFD and population balance models, for describing the growth of

a microbial population in a spatially heterogeneous reactor, is feasible, and that

valuable insight on the interplay between flow and the dynamics of a budding

yeast population (e.g. formation of substrate gradients and non-growth zones) is

gained. In silico simulation tools, as the one proposed, may be used for hypothesis

generation and testing, and when coupled to an experimental set-up may be used

for process and reactor design optimization.



Resumé

Mikrobielle populationer typisk er beskrevet af gennemsnitlige egenskaber, men

individuelle celler viser en vis grad af variation. Mikrobielle populationer, der

starter som klonale udvikler sig til heterogene populationer, selv når de gror i

et homogent miljø.

En heterogen mikrobiel population består af celler i forskellige tilstande og

det indebærer en heterogen distribution af aktiviteter (bl.a. respiration, produkt

udbytte), inklusiv forskellige responser af ekstracellulære stimuli. Eksistensen af

heterogene celle populationer kan forklare de lave produktiviteter konstateret i

stor skala kulturer, hvor substrat- og iltgradienter er observeret, sammenlignet

med kulturer i velblandede laboratorieskala reaktorer. Population balance mod-

eller (PBM) bruges i en bred række af anvendelser (f.eks. krystallisering, granu-

lering, flokkulering og polymerisation) til at forudse distributioner af visse egensk-

aber, blandt andet partikelstørrelse, masse, volumen og molekylær vægt. Ligeledes

tillader PBM en matematisk beskrivelse af distribuerede celle egenskaber af mikro-

bielle populationer. Distributioner af cellers totale proteinindhold (en måling af

celle masse) bruges for at danne et dynamisk billede af samspillet mellem cellerne

og deres omgivende ekstracellulært miljø.

Dette PhD projekt stiler efter at udvikle et model skelet baseret på PBM som et

værktøj til nærmere at forstå udviklingen af heterogene mikrobielle populationer

under variable miljøtilstande. Tre cases præsenteres og diskuteres i denne afhan-

dling, hvor S. cerevisiae bruges som modelorganisme, og hvor de enkelte celler

beskrives ud fra cellestørrelsen og cellecyklus positionen.

I den første case fokuseres på den eksperimentelle og matematiske beskriv-

else af gær populations dynamik, i forhold til substratforbruget i løbet af en batch

kultur. Cellestørrelsens og cellecyklus positionens distributioner bruges til at be-

skrive celle populationen. En to-stadie PBM udvikles og kobles sammen med
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en ustruktureret model som beskriver det ekstracellulære miljø. Den gode ov-

erensstemmelse mellem den foreslåde multi-skala model og de eksperimentelle

data (både den overordnede fysiologi samt distributionerne af cellestørrelsen og

cellecyklus positionen) er tegn på, at den mekanistiske model er et passende

værktøj til at beskrive dynamikken af mikrobielle populationer i en bioreaktor.

Den anden case leverer en videreudvikling af det foreslået model skelet (PBM

koblet sammen med en ustruktureret model) til en kontinuert kultur. I casen

benyttes compartment model approach i det tilfælde hvor to zoner (rum) dannes

pga. ikke-ideel opblanding i bioreaktoren. Denne fremgangsmåde bruges til

at evaluere hvordan graden af rumopdeling påvirker populationsdynamikkerne

og den overordnede systempræstation, under forskellige operations vilkår (sub-

strat foderkoncentration og fortyndingshastighed). Det var muligt at konklud-

ere at afvigelser fra ideel opblanding kan have en betydelig effekt på systemdy-

namikkerne. Derudover kunne det ligeledes konkluderes at særlige kombinationer

af operations vilkår og graden af rumopdeling resulterer i oscillatoriske pseudo-

stationære tilstande.

Den tredje case fokuserer på integrationen af det foreslået model skelet i en

Computational Fluid Dynamics (CFD) model. Anaerobisk vækst af en gær popula-

tion i en kontinuert mikrobioreaktor bruges som eksempel. Den foreslået integr-

eret model beskriver væskestrømsfeltet, lokale distributioner af cellestørrelse og

cellecyklus position samt lokale koncentrationer af glukose, ethanol, og biomasse

over hele reaktoren. Denne case viste at integrationen af PBM i CFD er i stand

til at beskrive væksten af mikrobielle populationer, og giver et værdifuldt indblik

i samspillet mellem væskestrøm og dynamikkerne af gær populationer (f. eks.

dannelse af substrat gradienter og vækstfri zoner). Udviklingen af in silico simu-

lationsværktøjer kan bruges til at generere og teste hypoteser, og koblet sammen

med en eksperimentel opstilling kan disse bruges til optimering af proces og reak-

tor design.
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This thesis was prepared at the Department of Chemical and Biochemical Engi-

neering (KT), at the Technical University of Denmark (DTU) in partial fulfillment of

the requirements for acquiring the Ph.D. degree in engineering.

The work here presented was developed in the period from November 2009

until early December 2012, and it was partly funded by DTU and partly funded

by the Danish Council for Strategic Research, as part of a larger research project

entitled Towards robust fermentation processes by targeting population hetero-

geneity at microscale (project no. 09-065160). Furthermore, collaborations with

the BIOMATH group at Ghent University and the Center for Microbial Biotechnol-

ogy (CMB) at DTU System Biology were established under the frame of the ERA-IB

project Targeting population heterogeneity at microscale for robust fermentation

processes (project no. EIB.08.031).

Associated Professor Krist V. Gernaey (DTU Chemical Engineering) was the

principal supervisor for the project, with Professor Anker D. Jensen (DTU Chemical

Engineering) and Associated Professor Ingmar Nopens (Ghent University) as co-

supervisors. The data analysis and modeling research work was performed at the

Center for Process Engineering and Technology (Process, DTU Chemical Engineer-

ing), while the experimental work was performed at CMB (DTU System Biology).

The preparation of a review article and familiarization with the formulation and

solution methods for population balance models was initiated during a two month

external stay at Ghent University in 2010.

At the beginning of the project a main idea was on the table: it had been sug-

gested that non-ideal mixing was the probable cause for deviating behaviors of

large-scale cultivations relatively to bench-scale, as the existence of different mi-

croenvironments found within a large-scale bioreactors resulted in broader distri-

butions of cell behaviors (rather than identical), i.e. in the existence of heteroge-

neous cell populations. Starting from the question - how could population balance
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models, which are able to describe distributed properties, and computational fluid

dynamics, be used to simulate the dynamics of heterogeneous microbial popula-

tions in response to variation in the extracellular environment? - the project slowly

developed into the work summarized in this thesis.

In this thesis different modeling approaches are discussed in order to address

the challenge of describing the dynamics of a microbial population as a result

of the interplay of cells and the extracellular environment. Although a microbial

population may be described by a multiplicity of distributed cell phenotypes, in

this thesis, focus was set on describing cell size and cell cycle position distributions

(due to link between these atributes and cell growth). The coupling between the

population and extracellular environment (in terms of substrate availability and

consumption) was particularly addressed, in order to attain a model framework

that could be used for exploring the interplay between the microbial cells and

their surrounding environment.

During the time of the project, in a collaboration with CMB (DTU System Bi-

ology), additional efforts were made in order to describe the dynamics of green

fluorescent protein distributions for a reporter strain cultivation. In this case, a

S. cerevisiae strain where the expression of green fluorescent protein (GFP) is

controlled by a promoter for a ribosomal protein had been constructed, and ex-

perimental studies were being conducted at CMB. Although the experimental ef-

forts and data analysis yielded interesting qualitative results (see [1]), the gained

insight was not sufficient for establishing a model that captured, even if only qual-

itatively, the experimentally observed behaviors. Therefore, this subproject was

not included in this thesis.

Parallel, at Ghent University, a computational fluid dynamics model of a stirred

tank reactor was implemented with the aim of studying the non-ideal mixing at

different scales, in particular the occurence of zoning and compartmentalization

within the bioreactor. The objective was to incorporate a kinetic model based

on average variables (unstructed model) in a first stage, and a distributed model

(PBM) at a later stage, so the impact of non-ideal mixing on the biological sys-

tem was assessed. In collaboration with Ghent University, experimental mixing

tests for a coarse validation of the CFD model were performed, at DTU, as part

of this PhD project. Unfortunately, the integration of CFD and kinectic (unstruc-

tured or distributed) models has not been achieved at this point, and it is, thus,
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not included in this thesis.

Despite these less successful points (which are part of nearly all research

projects, but are seldom reported), at the end of this PhD project, I believe that

the work summarized in this thesis consists of small (but relevant) step towards an

understanding of the interplay between cell populations and the extracellular en-

vironment, not only from a qualitative but also quantitative perspective. Indeed, I

believe the modeling approaches presented in this thesis not only prove that pop-

ulation balance models can be used for describing realistically the dynamics of a

microbial population, but also demonstrate that the PBM framework can be useful

for identifying the knowledge gaps and for generating hypotheses and designing

elucidative experiments.

Kgs. Lyngby, December 7th, 2012

Rita Lencastre Fernandes
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Chapter 1

Introduction

1.1 Heterogeneity in microbial cultivations

Microbial fermentations or cultivations can be generally described as the growth

of a microorganism strain in a controlled reactor. The main product may be the

biomass itself (e.g. production of Saccharomyces cerevisiae for the baking indus-

try) or a molecule resulting from the cell metabolism (e.g. production of enzymes

or other proteins). In most industrial fermentation processes a single strain is

used, although few examples of mixtures of more than one microorganism can be

found (e.g. cultures of Lactobacillus and Streptococcus used for yoghurt produc-

tion). In this thesis, only single strain cultivations will be addressed.

As the microbial cultures used in the bioprocess are, most commonly, iso-

genic, cell heterogeneity would not be expected if the environment were well

controlled at adequate conditions. Nonetheless, population heterogeneity has

been observed, particularly at large scale. In fact, the scale up of bioprocesses
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from bench-scale to large scale may lead to lower yields and productivities and an

increased by-product formation [2, 3].

Indeed, whilst the assumption of a perfectly mixed reactor might be realistic

for bench-scale reactors, it certainly is not for large scale bioreactors. Due to lim-

ited mixing and mass transfer, gradients of, for example, substrate, oxygen and

pH are observed in larger reactors [4]. In fact, substrate concentrations may range

from high concentrations close to the feed port to residual concentrations in zones

more distant to this port, the latter caused by different rates of mixing and bio-

logical reaction [5]. Cells circulating in the reactor are subjected to successively

changing conditions, which, by inducing genetic, metabolic and physiological re-

sponses, are held responsible for the development of heterogeneous populations.

Due to the observed decrease in performance at large scale, heterogeneity in

bioprocesses was felt to be undesirable. Nonetheless, it might be the key to cell

population robustness as observed in tumors [6] or in cases of bacterial persis-

tence [7]. Similar to mechanical stress, which can be exploited to control fungal

morphologies to increase overall productivity [8], it might also be possible to take

advantage of heterogeneity in a microbial population for process optimization.

In fact, to understand and harness cell heterogeneity may show us a new path

for achieving improved robustness in bioprocesses. This, in fact, is also the cen-

tral hypothesis in the project ’Towards robust fermentation processes by targeting

population heterogeneity at microscale’, which this PhD project is part of (see Pref-

ace). Indeed, it is believed that modeling can play a central role in identifying and

describing the main phenomena influencing population heterogeneity.

The monitoring and control of bioprocesses, found in industry today, does not

account for the heterogeneity in microbial populations. The cell properties, de-

termined using on-line, at-line or off-line monitoring methods, correspond to aver-

aged values and, thus, camouflage valuable information on the dynamics of the

population (Figure 1.1).
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Figure 1.1: Schematic description of distributed cell properties. The structure of a popula-
tion is masked by the use of average cell properties. Different population distributions can
correspond to the same mean value α of an experimentally quantifiable cell parameter (e.g.
DNA content, NAD(H) concentration, cell mass) (Based on [9]).

Different types of models have been proposed for fermentation processes [10].

Most often mechanistic unstructured models based on stoichiometry and Monod-

type expressions are used. In this type of models, cell metabolites and pathways

are not described in detail. With the advent of metabolic flux analysis, struc-

tured models describing various metabolic pathways and in some cases regu-

latory loops, in the form of kinetic equations and stoichiometric balances, have

been proposed. Whether unstructured or structured, these models describe the

behavior of an average cell, considering implicitly that all cells in a cultivation are

alike and behave in a similar fashion.

In an effort to understand the occurrence and development of heterogeneous

microbial populations, several experimental studies have been reported in recent

years, as the number of experimental methods available for single-cell analysis

has boomed [11]. However, this knowledge has not yet been integrated into a

generally accepted modeling framework that is able to account for distributed

properties within a cell population, and thus can be used in the design and control
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of bioprocesses [12].

In the last decade, a great development of experimental methods for single

cell analysis has taken place and various experimental studies have shown that

phenotypic heterogeneity is ubiquitous. In the case where the cell population is

subjected to variations in growth conditions, for example when circulating in a

large fermentor where mixing is not ideal, a higher degree of cell heterogeneity

is observed. The consequent existence of a broader distribution of cell behaviors

has been pointed out as the a potential explanation to the difficult scalability that

is sometimes observed when using kinetic information obtained from lab-scale

experiments, as well as models validated using lab-scale data, to predict fermen-

tation profiles and overall performance in larger scales [3].

Since the 1970’s population balance models (PBM) have been proposed for

describing microbial populations [13]. Population balance models are partial-

differential equations, and their formulation and solution is not straightforward

as the cases where unstructured or even structured models are used. This is

reflected in the scarce number of studies discussing PBM formulation and pre-

dictions in the light of experimental evidences. In fact, even in areas in which

the use of PBM is more established, such as crystallization and flocculation, a re-

search trend towards linking experimental data to the theoretical modeling work

has been observed recently [14].

PBM may thus form an interesting modeling tool to account for cell hetero-

geneity and serve as investigation tool to understand the dynamics of a cell pop-

ulation. Moreover, computational fluid dynamic models may be used to describe

the spatial gradients of substrate, pH etc observed in non-ideal mixed reactors.

By integrating the PBM with a CFD, the interplay between varying extracellular

cellular conditions and the dynamic cell population may be further explored.



1.2 Research hypothesis 5

1.2 Research hypothesis

The work presented in this thesis relies on two key hypotheses:

• PBM provides an adequate mathematical framework for describing dynamic

distributions of cell properties as functions of the varying extracellular envi-

ronment.

• The dynamics of a microbial population under a varying extracellular envi-

ronment observed for lab-scale cultivations is similar to the dynamics ob-

served in larger scale, for the same environment variations. Therefore, es-

tablishing models based on behaviors observed in lab-scale can be used to

gain an understanding of the development of heterogeneous cell popula-

tions, which can in the future be translated to larger scales.

1.3 Scope of the work and specific research goals

Generally, this PhD project aimed at developing a modeling framework able to pre-

dict the dynamics of heterogeneous microbial populations in response to varying

extracellular conditions. The work presented focuses on population heterogeneity

in single-strain cultivations of Saccharomyces cerevisiae. The following specific

research goals were addressed:

• To formulate and solve a PBM model for a lab-scale batch cultivation us-

ing cell properties that are deeply linked to growth conditions (such as cell

size and cell cycle position) as the PBM variables. The formulation of the

model kernels as functions of the substrate availability is based a thorough

analysis of experimental cell physiology data and single cell measurements
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(obtained by using flow cytometry), as well as available literature on yeast

omics and physiology.

• To extend the PBM model framework to continuous cultivations where spa-

tial heterogeneities are observed in the bioreactor.

• To develop a simulation tool, as proof-of-concept of the integration of PBM

and CFD for describing local distributions of cell properties, as well as local

extracellular environments, in a non-ideally mixed bioreactor.

1.4 Thesis outline

This thesis consists of 7 main chapters:

• Chapter 2 provides an introduction to S. cerevisiae as an important work

horse organism in both research and industrial contexts. A first part con-

sists of a brief description of budding yeast physiology and the cultivation

modes traditionally used in research and industrial contexts. A second part

provides a short review on mathematical models proposed in the scientific

literature for describing aerobic budding yeast cultivations, based on aver-

age behaviors and measurements.

• Chapter 3 consists of an overview on experimental methods for single cell

analysis and provides more details on the use of flow cytometry for single-

cell analysis of microbial samples, including a section on analysis of the col-

lected flow cytometric data.

• Chapter 4 consists of an overview of modeling techniques for description

of microbial populations, i.e. that account for distributed cell properties. A

first part provides a description of population balance models and a litera-

ture review on the use of PBM for describing microbial cultivations. A second
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part provides an overview on the use of computational fluid dynamics (CFD)

for describing non-ideally mixed reactors, and the potential of coupling CFD

and PBM for simulating the behavior of cell populations in spatially hetero-

geneous bioreactors.

• Chapter 5 presents the development of a PBM for describing the dynamics

of cell size and cell cycle position of a budding yeast population, in response

to the substrate consumption during batch cultivation. The PBM is further

coupled to an unstructured model describing the substrate and metabolite

concentrations in the cultivation media. Experimental physiology and single

cell data are reported and used in the formulation of the models.

• Chapter 6 focuses on the development of microbial populations for continu-

ous cultivations in a spatially heterogeneous stirred tank bioreactor. A com-

partment model approach is used in order to assess the effect of reactor

compartmentalization on the population structure and system behavior in

comparison to the case of an ideally mixed bioreactor (a single compart-

ment model).

• Chapter 7 provides a proof-of-concept for the integration of PBM and CFD

for describing population dynamics (cell size and cell cycle distributions)

in spatially heterogeneous bioreactor. The anaerobic growth of a budding

yeast population in a continuously run microbioreactor was modeled. Local

substrate concentration and local cell size and cell cycle distributions were

determined and compared in order to evaluate the effect of the feed flow

rate on the population structure.

• Chapter 8 concludes the thesis and provides a discussion on the future chal-

lenges and perspectives.

1.5 Publications included in the thesis

The following three accepted publications have resulted from the work presented

in this thesis, and published manuscripts are provided in Appendix A:
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• Lencastre Fernandes R, Nierychlo M, Lundin L, Pedersen AE, Puentes Tellez

PE, Dutta A, Carlquist M, Bolic A, Schäpper D, Brunetti AC, Helmark S, Heins

A-L, Jensen AD, Nopens I, Rottwitt K, Szita N, van Elsas JD, Nielsen PH, Mar-

tinussen J, Sørensen SJ, Lantz AE, Gernaey KV. Experimental methods and

modeling techniques for description of cell population heterogeneity. Biotech-

nology Advances (2011) 29:575-599.

Parts of this review article are reproduced in Section 1.1 of this Chapter, as

well as included in Chapter 3 and Chapter 4. References to more recent studies

have been added where suitable.

• Lencastre Fernandes R, Carlquist M, Lundin L, Heins A.-L., Dutta A , Sørensen

SJ, Jensen AD, Nopens I, Eliasson Lantz A, Gernaey KV. Cell mass and cell

cycle dynamics of an asynchronous budding yeast population: experimen-

tal observations, flow cytometry data analysis and multi-scale modeling.

Biotechnology and Bioengineering. (2012) (DOI: 10.1002/bit.24749)

Most of this paper is reproduced in Chapter 5. Small adaptations were made in

order to avoid repetitions and improve the readibility of this thesis. A section pro-

viding details on the discretization and implementation of the population balance

model was included.

• Lencastre Fernandes R, Krühne U, Nopens I, Jensen AD, Gernaey KV. Multi-

scale modeling for prediction of distributed cellular properties in response to

substrate spatial gradients in a continuously run microreactor, In: Iftekhar

A. Karimi and Rajagopalan Srinivasan, Editor(s), Computer Aided Chemical

Engineering, Elsevier (2012) 31:545-549

Chapter 7 provides an extended version of this short conference contribution.

Details on model implementation and integration of the population balance model
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into the computational fluid dynamics model were included, as well as further

results and discussion.

1.6 Other publications

During the 3 years PhD project, and a prior 3 month pre-PhD project, other collab-

orations were pursued and resulted in the following publications, which have not

been included in this thesis:

• Lencastre Fernandes R, Bodla V, Carlquist M, Heins AL, Eliasson Lantz A, Sin

G, Gernaey KV. Applying mechanistic models in bioprocess development.

In: Carl-Fredrik Mandenius and Nigel Titchener-Hooker, Editors, Advances in

Biochemical Engineering/Biotechnology, Springer (2012) (accepted for pub-

lication)

• Carlquist M, Lencastre Fernandes R, Helmark K, Heins AL, Gernaey KV, Elias-

son Lantz A. Physiological heterogeneities in microbial populations and im-

plications for physical stress tolerance. Microbial Cell Factories (2012) 11:94

• Schäpper D, Fernandes RL, Lantz AE, Okkels F, Bruus H, Gernaey KV. Topol-

ogy Optimized Microbioreactors. Biotechnology and Bioengineering. (2011)

108:786-796
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Chapter 2

Saccharomyces cerevisiae as microorganism

of interest

The work presented in this thesis focuses on describing the growth of microbial

populations during controlled cultivations in bioreactors. Saccharomyces cere-

visiae has been selected as the microorganism to be studied, due to the vast

amount of prior knowledge of S. cerevisiae physiology, as well as experimental

know-how, of collaboration partners involved in the larger research project, this

PhD was part of (see Preface).

This chapter provides a brief overview of S. cerevisiae as model organism in

research and as an industrial relevant strain. Furthermore, a short description

of key aspects of submerged (or liquid) cultivations and monitoring tools is pre-

sented, followed by a succinct description of general features of yeast physiology

and cell cycle. Finally, a short overview of modeling approaches often used for de-

scribing microbial fermentations, based on averaged cell behaviors, is provided.
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2.1 S. cerevisiae as research model organism

S. cerevisiae is one of the most studied microorganisms and it is considered to be

a model organism, i.e. it is regarded as representative of a larger class of living be-

ings when studying a particular process or phenomenon (e.g. [15, 16, 17]). In the

specific case of S. cerevisiae, its use as model system, in particular for molecular

genetics research, relies on the fact that basic cellular mechanics of replication,

recombination, cell division and metabolism are generally conserved between

yeast and larger eukaryotes, including mammals. Consequently, it is not sur-

prising that the complete genome of S. cerevisiae was already published in 1996

[18] - the sequence of the human genome was reported in 2001 [19]. This led

to extensive work on the linking of genes to function, by proposing metabolic and

functional maps. A comprehensive community resource (Saccharomyces Genome

Database) gathering among others gene annotations, genetic and physical analy-

ses and genome-wide analysis tools has been available since 1998 [20].

2.2 S. cerevisiae as an industrially relevant organism

Saccharomyces cerevisae has been used for thousands of years in traditional pro-

cesses as bread baking, wine making and beer brewing, and it is thus also desig-

nated as baker’s or brewer’s yeast. From an industrial point of view many other

industrial processes have been established using S. cerevisiae as microorganism,

besides the traditional baking, brewing and winemaking.

The production of yeast for the baking industry or in the form yeast extract

(e.g. used as food additive), as well as industrial fermentation processes for bio-

fuel production (e.g. bioethanol from sugar and starch feedstocks) have been

established for decades [21]. Other established industrial processes for produc-

tion of glycerol, pyruvate, and organic acids (which can be used as building blocks

in the production of active pharmaceutical ingredients) also use S. cerevisiae as



2.3 Fermentation process and cultivation modes 13

fermenting organism.

Moreover, S. cerevisiae is used for the production of several heterologous

(pharmaceutical) proteins (e.g. insulin and vaccines). Indeed, most of the pharma-

ceutical proteins produced by microbial eukaryotic cells that have been approved

by the EMEA or FDA are produced almost exclusively in S. cerevisiae [22]. In com-

parison to other microbial eukaryotes, S. cerevisiae presents some advantages

with regard to its application in new processes: (i) a large knowledge base has

been accumulated, and the authorities (e.g. FDA) approval process is often easier

(and thus cheaper) than when using a new unknown organism; (ii) S. cerevisiae

has the status of Generally Regarded as Safe (GRAS) organism.

Reviews of therapeutical proteins produced in yeast has been made by Gern-

gross [23] and Walsh [24]. Although mammalian cell lines, due to their the ability

to perform post- translational modifications, are used for production of the largest

share of new biopharmaceuticals (in particular the ones approved in the last 2-

3 years) [25], it is not expected that S. cerevisiae will stop being used as work

horse both in industrial and research environments. Indeed, future applications

of metabolic engineered strains of S. cerevisiae for production of pharmaceuticals

(e.g. [26]), biofuels (e.g. [27]), and other bulk chemicals [28] are being discussed

and research work is frequently reported.

2.3 Fermentation process and cultivation modes

Generally, a microbial cultivation can be described as the growth of a microor-

ganism in a controlled environment. Cultivations may be submerged, where cells

are suspended in a liquid cultivation medium, or in solid-state where the solid

culture substrate (e.g. wheat) may, for example, be deposited in flat trays and

seeded with microorganisms. In this work, only submerged fermentations will be

addressed. A review on recent advances in solid-state fermentation may be found

elsewhere (e.g. [29, 30]).
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In a submerged cultivation, temperature, pH, agitation and aeration (gas flow)

are typically pre-defined operating conditions and kept at the set point values

using control loops. The cultivation medium typically contains the carbon and

nitrogen sources, as well as trace metals and ions (e.g. phosphate) necessary

for the microorganisms growth. A schematic representation of a fermentation

laboratory set-up is presented in Figure 2.1.

Figure 2.1: Schematic representation of a laboratory-scale bioreactor for aerobic fermen-
tations (based on [31]).

A submerged fermentation may be run in three different cultivation modes.

The choice of the method depends on the desired product and the organism be-

ing used, as well as other factors such as available equipment, desired product

titer and amount, and other aspects influencing process economics. The three

cultivation modes can be described as follows:

• Batch: in this mode, the reactor is a nearly closed system. All media compo-
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nents are present from the beginning and there is no liquid inflow or outflow.

The reactor is, however, constantly aerated and the exhaust gas flows out of

the reactor. Cells experience a high glucose concentration in the beginning

of the cultivation, and, in the case of S. cerevisiae, this results in the pro-

duction of ethanol. Cells grow, thus, at their maximum specific growth rate

until one of the nutrients becomes limiting. The initial high concentration of

nutrients may cause osmotic stress to the cells.

• Continuous: after an initial batch phase for biomass production, the culti-

vation mode may be switched to continuous (also known as chemostat). In

this mode, fresh medium is added at the reactor inlet and cultivation broth

is collected at the outlet, at the same flow rate. This results in a constant

volume, as well as constant concentrations (of e.g. substrate, metabolites)

in the reactor once steady state is reached. One nutrient will be the limiting

one and the rate of addition of this nutrient determines the specific growth

rate of the cells.

• Fed-batch: this cultivation mode is started after an initial batch phase

where biomass is produced. In the fed-batch cultivation, fresh medium is

added to the reactor, but no liquid outflow is collected. The cultivation vol-

ume, thus, increases. Growth is limited by one nutrient, and the feed flow of

this nutrient determines the specific growth rate. The feed rate profiles may

be imposed (linear or exponential) or result from a control loop based on, for

example, oxygen limitation or heat transfer limits.

All three cultivation modes are used at industrial scale, although fed-batch cul-

tivations are often preferred, particularly in the case of protein production [32], as

higher volumetric productivity can be achieved. In a research context, batch and

continuous cultivations may be preferred, as the time and volume variation ob-

served for fed-batch poses poses additional challenges regarding the interpreta-

tion of culture performance and metabolic responses. Knowledge extracted from

continuous cultures at different growth rates (while other conditions are kept con-
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stant) can, for example, be applied in the development and design of a corre-

sponding fed-batch process.

2.4 Monitoring of S. cerevisiae cultivations

Monitoring of cultivations can be defined as the measurement of various variables

in order to follow the process, and allow for control of the desired cultivation con-

ditions. Monitoring methods are typically classified as off-line, at-line and on-line

depending on the location where the measurement is performed, and time frame

for obtaining the analysis results:

• Off-line: a sample is collected from the bioreactor and the analysis is per-

formed in a different location (e.g. analytical laboratory). The time interval

between sampling and release of the analysis results may be of hours up to

several days.

• At-line: the collected sample is analyzed in the vicinity of the bioreactor

and the analysis results are obtained in a time range of minutes to hours.

• On-line: the analysis relies on a fully automatic procedure. This type of

measurements may be performed in situ (e.g. using a probe placed inside

the bioreactor) or ex situ (e.g. a sample is automatically collected from the

bioreactor and transported to a flow cell where the measurement is per-

formed). The time frame for this type of analysis is of seconds to minutes. If

the aim is to use the analysis for control of the process, time-delays should

be avoided as real-time measurement and control is desirable.

Several physical and chemical variables are typically measured on-line in in-

dustrial and research cultivations including feed flow rate, temperature, pH, aera-
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tion gas flow (rate and composition), electrical power consumption, stirrer speed,

pressure, dissolved oxygen concentration (for aerobic cultivations), pH and ex-

haust gas composition [33]. For example, the control of temperature is usually

based on the water flow in the cooling jacket, whereas pH control is achieved by

addition of base (e.g. NaOH or KOH solutions) or acid (e.g. H2SO4 orHCl).

2.5 Brief notes on S. cerevisiae physiology and cell cycle

S. cerevisiae is a Crabtree positive organism: in the presence of high gluocse con-

centrations, its respiratory capacity is exceeded and the glucose is additionally

fermented to ethanol (as schematically illustrated in Figure 2.2). When glucose is

depleted, ethanol is used as carbon source and consumed by oxidation. A typical

Figure 2.2: Schematic representtion of the Crabtree effect observed for S. cerevisiae.

batch cultivation consists of four phases. After an (1) initial lag-phase, a (2) first

growth phase on glucose (and corresponding ethanol accumulation) takes place.

Upon glucose depletion, cells undergo a metabolic rearragement during a short

period called (3) diauxic shift. A (4) second growth phase, where the accumulated

ethanol is used as carbon source, follows. When ethanol is depleted cells enter

a stationary phase. Also other metabolites like glycerol and acetate are accumu-

lated during the growth phase on glucose, and later used for growth (in the later
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ethanol growth phase), though in significantly lower concentrations than ethanol.

In the cases of continuous and fed-batch cultivation, the fresh medium feed

is often started when glucose is near depletion, or in the fed-batch case when,

for example, the dissolved oxygen concentration has reached a certain set-point

value and this variable will be used to control the substrate feed.

The yeast reproduction is based on the asexual process of budding (hence, S.

cerevisiae is also known as budding yeast) in which a new daughter cell forms of

an outgrowth of the original cell. The cell cycle normally consists of the phase G1,

S, G2 and M (Figure 2.3). When the regulation START point is passed, cells enter

the S-phase and the bud formation as well as the DNA replication are initiated.

When cells enter the G2 pahse, DNA replication has been completed.

Figure 2.3: Schematic representation of the cell cycle and budding process observed for
S. cerevisiae.
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2.6 Modeling yeast cultivations

Aiming at describing and predicting the behavior of cell cultivations, several mech-

nistic models of various degrees of complexity have been proposed during the last

decades. A very large share of the models proposed for microbial populations is

unsegregated [34], i.e. based on an average cell description.

Unsegregated unstructured models are the simplest ones as biomass is con-

sidered as a black box: intracellular kinetics are not described, and only the input

(e.g. substrate feeding) and output (e.g. substance of interest produced by the

microorganism) are accounted for.

Unsegregated structured models form an important class, and incorporate in-

formation on the internal mechanism and composition of the microbial mass with

the use of several variables, e.g. NADH, precursors, metabolites, ATP, biomass

[10]. The number of variables used in such a model should, however, be re-

stricted to a minimum: only variables necessary to obtain information about the

most relevant processes of interest should be included. Unsegregated structured

models have been used for modeling complex processes, such as yeast intracel-

lular metabolism (e.g. [34]), and morphology-specific growth of filamentous fungi

(e.g. [35]). Cybernetic models (e.g. [36, 37]) and different kinds of models based

on genomic data (e.g. [38]) belong to this category. These models are beyond the

scope of this contribution, and have been reviewed elsewhere [39, 40, 41, 42].

2.7 Describing cell populations: from average descriptions to dis-

tributions of cell properties

The work presented in this thesis aims at describing cell populations, rather than

considering the cultivation as a collection of cells with identical properties and be-
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haviors. In order to achieve this goal, experimental methods for measuring single-

cell properties and model frameworks capable of accounting for the observed dis-

tributed behaviors are necessary. An overview of the experimental methods and

modeling techniques for describing heterogeneous cell populations is provided in

the following Chapters 3 and 4, respectively.



Chapter 3

Experimental methods for single cell

analysis

Part of this chapter has been included in a review publication:

Lencastre Fernandes R, Nierychlo M, Lundin L, Pedersen AE, Puentes Tellez PE,
Dutta A, Carlquist M, Bolic A, Schäpper D, Brunetti AC, Helmark S, Heins A-L,
Jensen AD, Nopens I, Rottwitt K, Szita N, van Elsas JD, Nielsen PH, Martinussen J,
Sørensen SJ, Lantz AE, Gernaey KV. Experimental methods and modeling tech-
niques for description of cell population heterogeneity. Biotechnol Adv (2011)
29:575-599.

This chapter provides an overview of the motivation behind single cell analysis,

as well as an overview of the experimental techniques available for single-cell

analysis. Moreover, focus is set, on the one hand, on the use of flow cytometry for

studying single-strain microbial cultures, and on the other hand, on the analysis

of flow cytometric data.
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Microbial populations have traditionally been thought of as large clonal (i.e.

isogenic) groups, thus encompassing identical individuals. However, cell popu-

lations, particularly when growing in spatially structured environments (like in a

large industrial scale bioreactor), can display substantial heterogeneity: individual

cells behave differently according to the conditions experienced in their surround-

ings. This may reflect the different environmental triggers that individual cells

experience in a seemingly homogeneous bioreactor [43]. Consequently, the type

of environment becomes a key factor for the development of a population and can

be considered as a driver of its performance.

3.1 The environment as a driver of microbial population hetero-

geneity

Generally, environmental stress has been perceived to exert negative effects on

microbial populations. In nature, microorganisms are exposed to fluctuating envi-

ronmental factors, including changes and extremes in temperature, pH, osmolar-

ity, radiation and the concentration of nutrients and toxins. Many microorganisms

have developed strategies to cope with such adversities. Central to cell survival

are maintaining the integrity of the cell membrane, folding of proteins and the

integrity of the DNA [44]. To accomplish this, bacterial cells have, for example,

developed systems that sense local conditions, determine when these become

deleterious, and stimulate adaptation. Since response levels may be highest un-

der stress conditions, the control networks have been labeled stress response

systems [45, 46, 47].

The microbial response to stress is generally accomplished by changes in the

expression of those genes whose products are required to combat adversity [48].

Some of these stress-induced genes seem to be genuinely specific while others

are induced by a wide variety of stresses, and are thus thought to be general

stress response genes [45, 49, 50]. Bacteria may use other mechanisms involving

physical strategies to survive local adversities, such a sporulation or the use of a

flagellum to move to more favorable locations [51]. Microbial responses to stress
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lead to cell differentiation and population fragmentation. In such populations,

microbial heterogeneity can be observed.

3.2 Experimental methods for characterizing and describing mi-

crobial population heterogeneity

As mentioned in the previous section, cell heterogeneity resulting from an envi-

ronmental pressure implies the co-existence of cells with different physiological

states. Being able to characterize and predict the physiological state of individ-

ual cells in a microbial population is of great importance in a biotechnological

fermentation as 1) the physiological state of the individual cell is the only factor

that determines the yield of any product, provided that the required nutrients are

present in non-limiting amounts, and 2) consequently, the knowledge of the phys-

iological state is a prerequisite for tuning the fermentation process for optimal

performance.

This knowledge has traditionally been acquired indirectly, by measuring a

number of parameters like pH, cell density, sugar utilization and product forma-

tion. However, as the techniques in the field of molecular biology have improved

considerably, the physiological state of cells during the fermentation process has

been addressed in much greater detail, primarily by addressing the expression

of individual genes, either at the global level by analyzing the transcriptome, or

by measuring the expression of genes of particular relevance. Furthermore, the

number of studies, based on methods able to quantify properties of single cells,

has increased exponentially in the last years [11, 52].

These single-cell level studies generally aim at understanding the mechanisms

lying behind the origin of cell heterogeneity, the cause-effect between observed

changes in cells and the micro-environmental conditions in the vicinity of these

individual cells, as well as the variations in the environment at a macro-scale.

Such methodologies may be of physical, chemical and/or molecular nature and
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involve a broad range of characteristics, which together give information about

the response of populations to environmental cues.

Both microscopy and flow cytometry underwent substantial advances in the

last decades, and are nowadays essential tools for monitoring physiological het-

erogeneity of microbial populations at single cell level. Indeed, a great number of

the applications, of both methods, relies on fluorescence monitoring for measur-

ing cellular parameters, such as the case of reporter systems where the cellular

component of interest is fluorescent (e.g. reporter proteins such as green fluores-

cent protein (GFP)). In addition, these methods allow for monitoring other intrinsic

cell properties (e.g. cell size), or structural/functional parameters (e.g membrane

integrity, DNA content), by applying different staining procedures.

In the frame of this PhD project, only flow cytometry was used for collecting

data at single-cell level. Therefore, this chapter will focus on the principles behind

flow cytometry, and on analysis of the data collected using his method. For further

discussion on the use of microscopy in single-cell studies the reader is referred

to the original review publication provided in Appendix Appendix A. Moreover, a

recent publication [52] provides a comprehensive review of microfluidics devices

and microreactors available for invasive and noninvasive single cell analysis.

3.2.1 Flow Cytometry

Flow cytometry (FCM) is a tool that counts, sorts and examines objects in suspen-

sion such as bacteria cells or yeast cells. It is a robust technique that relies on

the properties of light scattering, excitation and emission to measure a variety of

properties of single cells. The ability of FCM to measure the properties of single

cells allows the study of phenotypic diversity of individual microorganisms [53].

When cells pass through a light source, unique electronic and optical param-
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eters are measured based on groupings, succession and/or ratios of selected pa-

rameters. The information obtained through measurement of the selected param-

eters can then be linked with different cell properties and components [54].The

extensive variety of cellular parameters, that can be studied simultaneously, and

the facility to acquire information on how such parameters are distributed in a cell

population are the major advantages of flow cytometry as a method for single-cell

analysis.

Different methods have been developed in order to study diverse cell proper-

ties such as size, intracellular pH and membrane potential that can indicate di-

verse cellular characteristics such as the levels of cellular components (e.g. DNA,

calcium, protein and surface receptors).

Measuring properties of single cells within an entire population can provide

a more accurate and descriptive representation of the population than average

values attained from traditional techniques [55]. Indeed, due to the possibility

of measuring distributed properties in cell cultivations, flow cytometry is a useful

tool in the study of heterogeneity in microbial populations [56], and may provide

valuable understanding for bioprocess design and control [57]. It has for example

been used for monitoring dynamic changes in yeast gene expression [58], for con-

trol of biomass concentration [59], for quantification of horizontal gene transfer in

bacterial populations [60], as well as for studying heterogeneity of stress gene ex-

pression [61]. The role of flow cytometry in molecular biology, with regard to gene

reporter systems, has been reviewed by Davey and Winson [62]. Also several dif-

ferent industrial applications of flow cytometry have been reviewed by Díaz et al.

[57].

Flow cytometer: principles

As illustrated in Figure 3.1, in a flow cytometer, single cells are hydrodynamically

focused in a fluid stream within a carrier fluid known as the sheath fluid. The con-
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trol of the pressure in the system and the orifice size allows the establishment

of a cellular laminar flow regime. This hydrodynamic focusing of the slower mov-

ing sample at the center of a rushed flow stream creates a high speed single cell

flow that is intercepted by a light source (usually a laser beam) for the interro-

gation of particles’ properties. The light scattered or emitted by the cells or by

cell-associated fluorophores can be isolated and optically separated by collection

optics, mirrors and filters. If the angle of deviation of light traveling through the

cell is small, it will be detected as forward scatter (FSC). Conversely if the angle of

light deviation is big it will be detected as side scatter (SSC). After collection with

appropriate wavelength filters, fluorescence is identified on a big angle detector.

This light will ultimately trigger a photomultiplier tube (PMT) that augments the

signal and finally converts it into a digital signal. In fact, FCM does not usually

present real images of the bacteria as fluorescence microscopy, but digital data is

produced instead [56, 63, 64, 65].

Figure 3.1: Schematic representation of a flow cytometer.
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Measurable cell properties

The cell properties measured by FCM can be classified into intrinsic and extrinsic

depending on the method of measurement. Intrinsic properties such as size or

membrane composition can be studied without the need to label the cells, in the

FSC and SSC channels. Moreover, the electronic volume measurement is com-

monly used for cell size determination [66]. Extrinsic parameters, on the other

hand, normally use fluorescent stains or fluorescence labeled probes to study mi-

croorganism characteristics and components such as membrane integrity or po-

tential [54]. Given that discrimination of dissimilar cell types and background is at-

tained using fluorescent labels, various fluorescent dyes and labels, also used for

microscopy studies, are available for targeting specific biological materials (e.g.

nucleic acids) or to signal biological activities (e.g. enzyme activities or membrane

potential), leading to a deeper understanding of physiological and metabolic func-

tions in bacteria [67]. Today there is a wide variety of probes and labels available,

and the most adequate should be chosen considering the specific strain and culti-

vation conditions which will be studied [66].

Physiological state of microorganisms

The study of the physiological state of a cell has been redefined by the application

of FCM as a tool. The term microbial viability gained another dimension upon the

disclosure that microorganisms are not just alive or dead, but also have a range

of transitional states [68].

Existing fluorescent nucleic acid stains are either able to permeate the mem-

brane or not and the combination of both types of stains, for example SYTO dyes

(green fluorescence) and PI (red fluorescence), is used in membrane integrity as-

says [69, 70, 71]. Furthermore, the cellular membrane potential is used as a test

of viability. Depending on the membrane potential and whether the dye used is

cationic or anionic, the cell emits (or not) fluorescent signals with different inten-
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sities [72, 73].

Measuring the changes in membrane composition directly related with changes

in the cellular physiological state is also possible by using the stain 1,6-Dephenyl-

1,3,5-hexatriene (DPH) [74]. Testing for enzyme activity is generally done by al-

lowing a membrane permeable nonfluorescent substrate to be taken up by the

cell and be metabolized into a preferably impermeable fluorescent substrate (i.e.

it cannot cross the cell wall). Based on this principle, respiring and non-respiring

cells can be distinguished by the measurement of dehydrogenase activity with, for

example, CTC [75, 76] although this method does not always present consistent

results [77]. Another example of enzyme activity that can be studied with similar

practices is esterase activity by staining with, for example, CFDA [78]. Membrane

pump activity can also be assessed by loading different dyes such as PI or ethid-

ium bromide, into the cell and measuring fluorescence reduction [72, 79]. Another

test of viability is the measurement of internal pH and its variation with culture

change, using a probe whose fluorescent characteristics correlate with changes in

pH [80, 81].

Visualization and analysis of flow cytometric data

FCM methods are highly versatile and applicable, and the speed of analysis and

the multivariate data sets produced are attractive for developing models for dis-

tributed properties. The raw data generated by a flow cytometer when analyzing

a sample is a list-mode data file (with the extension .fcs), where all the measured

properties (FSC, SSC, various fluorescence intensities read by different detectors)

are registered for each event (i.e. cell). Commonly used commercial software

programs (e.g. DIVA, FlowJo) import .fcs files and provide a user-friendly environ-

ment for plotting the data, performing gating analysis as well as making statistical

queries.

Histograms, dot-plots (i.e. scatter plots) and contour plots are most often used
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to visualize flow cytometric data. In the particular case of dot-plots and contour

plots variations can be found. In Figure 3.2, the data for forward scatter and red

fluorescence for one single sample (20000 cells were measured) is displayed in

different ways. The DNA content in a single cell is quantified based on a red flu-

orescence intensity, as cells were stained with propidium iodide, after RNA diges-

tion. Specially for two dimensional representations, significant visual differences

are observed when comparing dot and contour plots. Contour plots provide a

more correct representation of the data [82], as the features of one dimensional

distributions (e.g. biomodality) are withheld, and are not always are visible in dot-

plots (as in Figure 3.2). These differences may lead to different interpretations

[82].
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Figure 3.2: Various plots for visualization of flow cytometric data collected for a single sample (20000 events): a) histograms
presenting the distribution of FSC and the distribution of red fluorescence intensity, a measure of DNA content; b) bivariate
distribution of FSC and DNA content presented as contour plots in color and grey tones; c) bivariate distribution of FSC and DNA
content presented as dot plots in color (coding for the density of cells in a given area) and with black markers for each measured
event.
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Most of the FCM software allows the operator to define areas of specific inter-

est in a procedure called gating. Gating works by digitally filtering the FSC, SSC or

fluorescence signals, targeting a subset of results. In the case of single-organism

samples, gating can discriminate cells of similar properties from a population. Al-

ternatively, gating can be used for identification and counting of different bacterial

subpopulations within a complex sample [54, 83, 84].

Practically, gating can be generally defined as a selection of a sub-population

by selection of an area (gate) in the one-dimensional histograms or 2-D contour

(or dot) plots. Gating strategies consist of sequential steps of sub-population se-

lection and analysis, which allow for the analysis of multivariate data based on

visualization in 1 and 2D plots. Traditionally such gates are manually defined (e.g.

click and drag on the plot), although other options as the selection of cells within a

given contour line (e.g. 95%) are also available in most of the current commercial

software.

A simple example of a gating strategy and analysis is presented in Figure 3.3.

The aim was to select and analyze the subpopulation presenting lower DNA con-

tent. In the first step, the bivariate distribution of FSC and SSC is used to define

a gate around the population in order to filter events that may correspond to ag-

gregates of more than one cell (Figure 3.3 a)). Using the bivariate distribution of

FSC and DNA content considering only the cells falling within the squared gate

imposed in the first step, a second gate is defined (Figure 3.3 b)): in this case a

linear gate, defining the subpopulation with low DNA content as the events found

to the left of this gate. The FSC histogram for this subpopulation is then compared

to the one for the overall population before any gating was performed.
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Figure 3.3: Example of gating analysis: a) a squared gate was drawn based on the bivariate distribution of FSC and SSC; b)
the bivariate distribution of DNA content and FSC for the cells within the gate in a) is presented and a vertical gate is defined in
order to isolate the subpopulation with low DNA content; c) the FSC distribution for the isolated subpopulation is compared to
the distribution for the overall population.
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More advanced options such as cell cycle analysis or clustering analysis are

also available in the commonly used commercial software. All features are, how-

ever, designed as black boxes and the user is not offered the possibility of under-

standing the analysis procedure or make any changes to the algorithms. Further-

more, to my knowledge, these software products do not offer features for tailored

data analysis based on user-defined algorithms.

Having in mind that flow cytometry is traditionally used in mammalian cell

applications [66], and considering that it is in the field of medical/clinical research

that flow cytometry is mostly accepted as an established method [85], caution

should be taken when applying black-box advanced analysis methods developed

for such larger cells to other systems (e.g. analyzing much smaller microbial cells).

The diversity of research areas where flow cytometry is used as exploded in

the last decade (e.g [63, 86, 87, 88]). However, the commercial software pro-

grams (designed for traditional clinical applications) do not offer the flexibility

necessary to perform more complex analysis for non-standard applications [89].

It is thus not surprising that there is still frequent need for manual analysis of

individual samples. This need is, however, indicated as a limiting aspect of the

flow cytometry technology [90]. Indeed, due to the subjectivity of manual analy-

sis, independent evaluation of the experimental data and conclusions of a given

published study was not always straightforward as it could be desired accord-

ing to fundamental principles for scientific publication. Moreover, such subjective

interpretation makes it generally difficult to apply mathematical models to flow

cytometry data.

In order to establish a consensus in the flow cytometry community and broader

acceptance of microbial cytometry, a standard defining the minimum information

that should be included on scientific publications with regard to procedures, instru-

ments, as well as data analysis and presentation (MIFlowCyt) has been presented

by the International Society for Advancements of Cytometry [91, 92]. Concern-

ing data analysis, in particular, MIFlowCyt emphasizes the need for clear gating

descriptions.
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In the last years, efforts in developing automated gating algorithms have been

published (e.g. [90, 93]). Also multivariate and artificial intelligence approaches

to flow cytometric data analysis, including cluster analysis and artificial neural

networks, have been proposed (as reviewed by [94, 95]). In order to circumvent

the limitations of the commercial software in terms of tailor-made analysis, many

of these analysis tools have been developed based on the open source statistical

language R [96, 97] or the mathematical programming software MatLab [98, 99,

100, 101].



Chapter 4

Modeling Heterogeneous Microbial

Populations

This chapter is a modified version of a section in a review article:

Lencastre Fernandes R, Nierychlo M, Lundin L, Pedersen AE, Puentes Tellez PE,
Dutta A, Carlquist M, Bolic A, Schäpper D, Brunetti AC, Helmark S, Heins A-L,
Jensen AD, Nopens I, Rottwitt K, Szita N, van Elsas JD, Nielsen PH, Martinussen J,
Sørensen SJ, Lantz AE, Gernaey KV. Experimental methods and modeling tech-
niques for description of cell population heterogeneity. Biotechnol. Adv. (2011)
29:575-599.

In this chapter, models suitable for describing populations of individual micro-

bial cells are presented and discussed, both in the case of perfectly mixed biore-

actors and in the case of large scale reactors where gradients are formed due to

mixing limitations.

Similar to chemical systems, the design, control and optimization of bioreac-
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tors in many academic and industrial applications have been based on macro-

scopic first principles models built on balances of extensive properties. However,

modeling of bioreactors presents additional challenges as a result of the intrinsic

metabolic regulation of the microorganism [102]. Cell variability results in, for

example, non-linearities associated with cell growth and division processes even

when operated at constant temperature [103]. Further challenges to the formula-

tion of models with an appropriate level of detail and predictive ability arise, thus,

when dealing with biological systems.

With the continuous development of the capabilities of techniques available

for monitoring of cell properties at single-cell level (see Chapter 3) it is nowadays

possible to monitor the distribution of cell properties during a microbial cultivation.

In order to take advantage of this knowledge and improve the design and control

of bioprocesses, mathematical models able to describe the behavior of a dynamic

microbial population are necessary. Such models can support and facilitate the

interpretation of the obtained data sets.

4.1 Segregated models: accounting for cell-to-cell variability

Segregated models account for cell-to-cell variation by considering distributed

rather than uniform cell properties [13, 104]. They are, thus, necessarily sta-

tistical and the degree of structure is at least a scalar such as cell size (mass or

volume) or cell age [105].

A more restrictive classification for segregated structured models has been

used [106], where structured refers exclusively to a description of a single cell

using multiple biochemical substances (i.e. chemically-structured models). In this

work, the broader definition (as per [105]) is followed: age and cell mass are

descriptors of the cell state, even though they may only indirectly be indicators

of the cell metabolism. Therefore, segregated structured models (see Figure 4.1)

refer to both single variable (e.g. age, mass) models, as well as multivariate,
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chemically structured models.

Consequently, segregated unstructured models correspond to the cases where

the model describes the behavior and size (i.e. total number of cells) of co-existing

subpopulations by considering cells by their existence without any further descrip-

tion of the details of cellular metabolism. This would be, for example, the case

of activated sludge models that describe the dynamics of heterotrophic and au-

totrophic biomass subpopulations (e.g. [107, 108]).

In single organism cultivations, subpopulations would, for example, reflect dif-

ferent cell cycle phases. In this case, transitions of cells from one subpopulation

to another are possible, and the use of a cell descriptor variable is, therefore,

necessary to account for them. This makes it virtually impossible to predict the

dynamics of a single organism cultivation using a segregated unstructured model,

and further discussion will, thus, focus on segregated structured models.

Segregated structured models can be further classified as single or multi-

staged models. The latter account for different cell stages where significant dif-

ferences in the metabolism are observed, such as budding and non-budding cells

[109], daughter and parent cells of different generations [110], different cell cycle

phases [104], productive or non-productive phases [111].

Different formulations are possible for segregated structured models. Popu-

lation Balance Models (PBM) provide the most generic approach to modeling dis-

tributed properties, and we focus on this type of models in this chapter. Other

simpler models based on ordinary differential equations (ODE) and delay differen-

tial equations (DDE) have been reviewed elsewhere [112].
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Figure 4.1: Schematic classification of mechanistic models for cell cultivations. Segregated
means cell heterogeneity is taken into account, and structured means different cell states
are described.

4.2 Population Balance Models for microbial populations

In general, a PBM predicts the temporal change of the cell number distribution,

which is characterized by a descriptor variable (e.g. cell age, mass, intracellu-

lar metabolites), as result of single cell growth and division into newborn cells.

Different formulations are used depending on the cell descriptor variable used.

In Tables 4.1 to 4.4, models for microbial populations that have been pub-

lished in the last four decades are briefly described. PBM typically consist of a

Population Balance Equation (PBE), along with boundary and initial conditions, as

well as other coupled equations describing cell division probability and intensity,

partitioning of cell content upon division, stage transitions and, in the case of

chemically-structured models, cellular kinetics. PBE can be defined as equations

of change, i.e. balance equations that account for the various processes that
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change the number of cells in a population [104], and take the form of first-order

partial integro-differential equations, while the supplementary equations, coupled

in a non-linear way, are typically ordinary integro-differential equations [113].

In order to avoid the challenges in solving complex chemically-structured PBM,

Mantzaris et al. [113] proposed using a large, but finite number of single cells to

represent an entire microbial population. In this Monte Carlo approach, a popula-

tion of single cells, or cell ensemble, is generated by randomizing kinetic param-

eters or initial conditions for a single cell model, and it is assumed that the conti-

nuity of solutions implicit in the PBM solutions, can be simulated if a large enough

number of cells is used. Cell ensemble models have been used to describe res-

piratory and glycolytic oscillations in yeast populations [114, 115, 116, 117], and

further discussions on this approach can be found elsewhere [114, 118].
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Table 4.1: One-dimensional Population Balance Models: age as model variable

1-D PBM

Variable: Age

Stage Reactor Mode Description Experimental Data Reference

Single Continuous PBM where the environmental conditions are

the key cell cycle parameter. Periodic oscilla-

tions are sustained by periodic change in the

environment, without using specific kinetic

expressions. Two models are proposed for bi-

nary fission organisms and budding yeast.

Predicted oscillation periods were

compared with experimentally ob-

served values, for a range of dilution

rates.

[119]

Single Continuous PBM was used for predicting periodic behav-

ior of a S. cerevisiae cell population and its

relation to cell-cycle synchrony.

Experimental observations are

taken into account in the formula-

tion of the model.

[120]

Single Continuous PBM for synchronous growth of S. cerevisiae

with asymmetric budding cycle. The model

describes sustained oscillations with constant

cell number distributions.

Model validation by comparison with

experimental data is presented in a

subsequent publication.

[121,

122]

Single Continuous PBM was used in the design of a controller.

Nonlinear feedback control laws are derived

in order to attenuate undesired oscillations,

or induce synchrony in the S. cerevisiae cul-

ture.

- [123]

Active

Inactive

Dead

Continuous Model for bioprocess catalyzed by S. cere-

visiae in a stirred-tank, which is able to re-

produce periodic behavior.

Parameter estimation was done us-

ing 6 data sets from batch aerated

cultivation. Data had been pub-

lished previously.

[124]

Cell cycle phases

Labeled /

Unlabeled

Continuous PBM for human leukemia cells (Jurkat) which

models the two subpopulations generated by

addition of bromo deoxyuridine.

Age-dependent model parameters

were extracted from portioned pop-

ulation data.

[125]

7 development

stages from

sporangium to

mature cel

Batch

Fed-Batch

PBM was applied to describe the maturity of

sporangium of Bacillus subtilis toward the for-

mation of spores. It describes the differen-

tiation phenomenon with associated product

formation.

Parameters in the model were deter-

mined by fitting the model to exper-

imental data.

[126]
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Table 4.2: One-dimensional Population Balance Models: mass as model variable

1-D PBM

Variable: Mass

Stage Reactor Mode Description Experimental Data Reference

Single Fed-Batch Comparison of three simple population mod-

els for dynamic simulation of step responses

in fed-batch cultures - a simple timer model, a

discrete age distribution model which results

in a set of ordinary differential equations, and

a similar one with discrete mass distribution.

- [127]

Single Sequential

Batches

In this work, a segregated, structured micro-

bial population balance model is formulated

and used to numerically simulate the self-

cycling fermentation (SCF) process.

Experimental observations taken

into account in the formulation of

the model. The model outputs were

compared and validated with previ-

ously published experimental data.

[128]

Single Batch A numerical solution of the mass structured

cell PBM in an environment of changing sub-

strate concentration is presented. It can be

applied for any type of single-cell growth rate

expression, equal or unequal cell partitioning

at cell division, and constant or changing sub-

strate concentration.

Experimental observations are

taken into account in the formula-

tion of the model.

[129]

Single Batch startup

Continuous

PBM consists of a simple structured descrip-

tion of the extracellular environment, as well

it accounts for the three most important

metabolic pathways involved in cell growth

with glucose substrate of S. cerevisiae.

The parameter values were ad-

justed to achieve qualitative agree-

ment with experimental observa-

tions.

[130]

Single Batch

Continuous

The model predicts several situations of

batch and continuous growth in which the

population density and biomass concentra-

tion show opposing trends due to significant

variation in the cell mass distribution with

time.

- [131]

Continued on next page
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Stage Reactor Mode Description Experimental Data Reference

Single Continuous A controller is designed to stabilize steady-

state and periodic solutions by regulating the

discretized cell number distribution and the

substrate concentration. It is based on a dy-

namic model for the continuous S. cerevisiae

cultivation.

- [132]

Daugher

Parent

Daughter

Parent

budding

Continuous Model aims at simulating the effect of dilu-

tion rate on the mode of oscillation in contin-

uous cultures of asymmetric budding yeast S.

cerevisiae.

The growth properties of the yeast

were analyzed for continuous culti-

vations. The distribution of parent

and daughter cells in the population

was determined microscopically af-

ter staining the bud scars and DNA.

[133]

Daugher

Parent

Non-budding

Budding

Continuous PBM describes the growth of S. cerevisiae in

spontaneously synchronized continuous cul-

tures.

The structure of the population was

identified using oscillating continu-

ous cultures where the division of

the cells is synchronized and de-

tectable by large variation of the on-

line measurements (gas exchange

rate or heat production rate).

[134]

Daugher

Parent

Non-budding

Budding

Batch The model framework couples a

morphologically-structured representation of

the population with population balance the-

ory to formulate a dynamic model for the size

distribution of growing yeast populations.

Model validation by comparison with

experimental data is presented in a

subsequent publication.[135]

[110]

Daugher

(Small, Large)

Budding

Continuous The model established a dynamic PBM for

asymmetrically dividing yeast. Three special

cases are described: step change in growth

rate, two transient behaviors following per-

turbations in the age-distribution.

It is shown how experimental data

on transient behavior of a cell pop-

ulation can yield information on

single-cell mass-synthesis kinetics

and on the manner in which individ-

ual cells control certain critical pa-

rameters in the cell cycle.

[136]

Continued on next page
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Continued from previous page

Stage Reactor Mode Description Experimental Data Reference

Non-budding

Budding

Continuous The model describes the structural hetero-

geneity of yeast cell populations (S. cere-

visiae) and considers the interaction of the

population with its environment. Two dif-

ferent situations were investigated: pulse

changes of the dilution rate in a continuous

process and of the substrate concentration.

- [109]

Non-budding

Budding

Continuous The model aims at understanding the prop-

erties of the microbial biomass in terms of

its composition and of the regulation of cell

growth and division.

The size at bud emergence and the

percentage of budding cells was ex-

perimentally determined for a range

of dilution rates.

[137]

Cell cycle phases Batch A multi-stage population balance model for

the growth of ciliated protozoa through its

three cell-cycle phases.

Experimental observations are

taken into account in the formula-

tion of the model.

[138]

Non-Producing

Producing

Continuous PBM describes the dynamics of cell growth of

S. cerevisiae during each of the two stages of

the cell cycle, including cultivations at limit-

ing substrate and product concentrations.

Experimental observations are

taken into account in the formula-

tion of the model.

[111]

Single Fed-batch See description above - [127]

Table 4.3: Two-dimensional Population Balance Models using mass and age as model vari-
able

2-D PBM

Variable: Age and Mass

Stage Reactor Mode Description Experimental Data Reference

Single Batch The model describes the production of

ethanol in glucose fermentation of Zi-

momonas mobilis.

Model validation was presented in a

second publication [139].

[140]

Continued on next page
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Stage Reactor Mode Description Experimental Data Reference

Single Batch

Continuous

The growth-controlled mathematical model

of budding yeast predicts theoretical protein

and volume distributions.

Compare with protein and volume

distributions measured by flow cy-

tometry, for populations growing

both in batch and in glucose-limited

chemostat cultures.

[141]

Single Batch A age and mass structured PBM based on

the assumption that only cells from a kth

generation originate the (k + 1)th genera-

tion. This successive generation approach is

applied first to one-dimensional model, and

then to 2-D one.

Experimental observations are

taken into account in the formula-

tion of the model.

[142]

Table 4.4: Multidimensional Population Balance Models

Multi-dimensional PBM

Variable: Physiological state vector

Stage Reactor Mode Description Experimental Data Reference

Single Batch

Continuous

First formulation of a multidimensional PBM:

introduction of the concept of physiological

state vector.

- [143]

Single Continuous The model aimed at studying the existence of

self-similar forms (e.g. time invariant) when

each physiological state is scaled with re-

spect to its population average. In this arti-

cle, each physiological entity was scaled with

the respective population average of that en-

tity.

Experimental observations are

taken into account in the formula-

tion of the model.

[144]

Continued on next page



4
.2

P
o
p

u
la

tio
n

B
a
la

n
c
e

M
o
d

e
ls

fo
r

m
ic

ro
b

ia
l
p

o
p

u
la

tio
n

s
4
5

Continued from previous page

Stage Reactor Mode Description Experimental Data Reference

Single Continuous A controller is formulated having the PBM as

base model. It aims at controlling different

moments of the cell mass distribution in a

continuous bioreactor by manipulating the di-

lution rate.

The use of flow cytometry combined

with available staining techniques,

which allow the on-line measure-

ment of cell property distributions

can make the practical implementa-

tion of such a control approach pos-

sible.

[145]

Multi-staged Batch A new and different approach involving ran-

domization of growth rates and compart-

mentalization is proposed. It aims at cir-

cumventing the necessity of having intensity

functions for transitions between cell cycle

phases, and for which the fission intensity

function is state-independent.

- [146]

Cell cycle phases Batch The model is a generalization of the first mul-

tidimensional PBM [143], which accounts for

passages of cells through a series of recog-

nizable cell cycle phases.

- [104]
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4.2.1 Single variable PBM: mass- and age-structured models

Two different formulations are typically used for a single variable PBM (i.e. one-

dimensional or 1-D PBM): age- or mass-structured formulation. The first forms

the most simple PBM for microbial cultures as the variation of age with time is

unity, and it is, therefore, possible to avoid modeling individual cell growth kinetics

[131]. Considering a continuous cultivation in a homogeneous environment, and

regarding age as the time elapsed since the birth of the cell, the age-structured

PBM expresses the temporal change of the number of cells having a given age.

Although the model is mathematically solvable (e.g. [142, 147]), the ade-

quacy of using age as indicator of the organism state has been questioned [104].

Indeed, a fundamental question arises: is it feasible to monitor the distribution

of cell ages, when investigating the development of heterogeneous populations

during a dynamic cultivation? In fact, the problem around monitoring of cell age

revolves also around the concept of cell age itself. On the one hand, in the case of

budding microorganisms, the co-existence of a generation zero of newborn cells,

and several generations of mother cells (i.e. of cells which have created one or

more daughter cells by budding) could be monitored based on the existence of

bud scars and the fact that the cell wall of the newborn cell is synthesized upon

budding (e.g. [148]). On the other hand, in the case of microorganisms dividing

by fission, it is not possible to distinguish mother and daughter cells. The defini-

tion of age is thus intimately connected to the progression through the cell cycle.

Extensive work on monitoring cell cycle progression using both microscopy and

flow cytometry has been published and reviewed elsewhere [149].

The use of mass as descriptor variable circumvents, at least partly, these prob-

lems as distributions of masses can be easily obtained experimentally by using

e.g. flow cytometry (see Chapters 3 and 5). Moreover, it has been observed that

the size distribution of a cell population responds to changes in the extracellular

environment [150]. In this case mass can represent the total cell mass or volume,

as well as any conserved property of the cell such as the mass of intracellular

components (e.g. total protein, DNA or RNA content).
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Although mass distributions are more easily measurable, mass-structured PBM

are not able to predict common cellular behaviors such as time lags in the re-

sponse of cells to an extracellular stimulus [104], and this may explain the sparse

use of these models for control, design and optimization of bioprocesses [113].

One solution to this is the use of more than one descriptor variable to better ac-

count for cellular metabolism. Multi-stage models can be regarded as an attempt

to take more cell descriptors into consideration without increasing the numerical

difficulties associated with a two dimensional PBM. Mantzaris et al. [113] pro-

posed a model where different generations (age stages) are considered, as well

as (non-)budding sub-stages, and a mass-structured PBM is used to obtain the

number distribution for each of the subpopulations. This allowed taking into ac-

count the effect of ageing on the growth, budding and division while avoiding the

complexity inherent to a two-dimensional (2D) PBM. The definition of transition

functions for cell division / birth and budding presents nonetheless an increased

effort relatively to single-staged models. Experimental validation of this model

is provided in Cipollina et al. [135]. A 2D PBM where a continuum approach is

used for both age and mass, has been formulated and numerically solved by Liou

et al. [142]. Experimental validation was however not performed. The collection

of experimental data for a continuous span of age and mass is, in fact, virtually

impossible.

4.2.2 Multivariable PBM: formulation of chemically structured models

Fredrickson et al. [143] proposed the use of a vectorial description of the cell

physiological state, which they designated as a physiological state vector. The im-

plementation of such a highly structured PBM has, however, never been achieved,

due to the complexity of defining the kernel function for growth, division and parti-

tioning upon cell birth, as well as computational tractability issues that arise when

attempting to numerically solve such a model.
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4.2.3 Modeling spatial heterogeneity in non-ideally mixed bioreactors

The physiological state of cellular systems and its impact on growth and prod-

uct formation is the result of a complex interplay between the extracellular en-

vironment and the intracellular machinery [113, 151, 152]. As discussed earlier,

cells are subjected to spatio-temporal variations in large scale reactors, unlike in

laboratory-scale studies under controlled conditions. Indeed, when an individual

microorganism circulates through a large scale reactor, it is sequentially exposed

to these different local conditions [153]. This may significantly influence the be-

havior of cellular processes and make conventional (i.e. which assume homoge-

neous environments) models inapplicable [5].

Coupling fluid models for the extracellular environment with models for the cell

population allows for reflecting the interaction between the environment and the

physiological state of the cell [5]. A framework suited for capturing the local and

global variations in both intra- and extracellular concentrations relies on the link

between metabolic network modeling and Computational Fluid Dynamics (CFD)

[154]. The use of CFD in modeling bioprocesses is, thus, gaining importance, both

in academia and industry [155, 156, 157, 158].

Integration of Computational Fluid Dynamics (CFD)

Computational fluid dynamics has proven to be an efficient and powerful tool for

the design and optimization of several flow applications. Typically, a CFD model

consists of the three fundamental equations of fluid flow under a given set of

conditions to be solved: continuity, momentum and energy equations. Due to

the complexity of these equations they are solved numerically to describe the

behavior of the system. It is possible to obtain precise predictions of flow and

reaction variables using CFD that can be used in scale-up and design applica-

tions. Recently, there has been an increased interest in applications of CFD in

the (bio)pharmaceutical and biotechnology industries [155, 156, 157, 158]. This
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includes analysis of turbulent flow patterns, energy dissipation rates, as well as

heat and mass transfer in bioreactors [159], chemical reactions and phase tran-

sitions [154] involving several unit operations such as fermentation, mixing and

filtration.

Currently, there are two widely used computational approaches for modeling

the interaction between phases [160]: the Euler-Euler approach in which different

phases are treated mathematically as interpenetrating continua [161, 162], and

the Euler-Lagrange approach in which the fluid phase is treated as a continuum

whereas the dispersed phase is solved by tracking a large number of particles

through the calculated flow field [163, 164, 165].

Bezzo et al. [166] studied xanthan gum production in stirred tanks, and com-

bined the Eulerian approach for the fluid phases with a multizonal model in which

the reactor was divided into a limited number of spatial regions. Elqotbi et al.

[167] implemented an Euler-Euler multi-fluid model to study the interaction of

fluid flow, mass transfer and reaction in the fermentation of gluconic acid by As-

pergillus niger in a gas-liquid stirred fermenter. A constant bubble size was as-

sumed, thus, limiting the possibility of predicting local mass transfer across the

phases.

Using the Eulerian-Lagrangian approach, the interaction between the intracel-

lular state of the individual cells of the population and the turbulent flow fields has

been studied in a 68 liter [154] and a 900 liter bioreactor [168]. Both structured

segregated and unstructured unsegregated approaches were used for modeling

the biophase, integrated in a 3D CFD simulation for the reactor. Although Lapin

et al. [154, 168] were successful in accounting for the interaction between the

individual cells and the spatial concentration gradient caused mainly due to the

turbulent flow field, using the stochastic Lagrangian approach - a large number

of cells (ca. 105) was required to achieve a realistic description of the population,

which is computationally intensive.

A dynamic simulation of a heterogeneous cell population in a non-homogeneous
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environment can be achieved by coupling CFD and PBM into an integrated frame-

work. The PBM describes the development of the microbial population in a given

extracellular environment, while the CFD component allows for the determination

of local environmental conditions by calculating flow streams and cell trajectories

within the reactor. The integrated CFD-PBM framework should be able to predict

local distributed cell properties (e.g. size, composition, age, growth rates, product

formation rates) of microorganism populations, while accounting for the changes

in the cell physiological state due to different physical (e.g. local gas bubble size,

shear stress) and chemical (e.g. local substrate concentration, pH) environments.

As discussed previously, the solution of multivariate PBM requires the use of

complex numerical methods. These computational issues are further aggravated

with the integration with a CFD model, which would lead to higher calculation

times. Nevertheless, it is foreseen that the insight gained by implementing such

detailed models will, in the long term, translate into more efficient bioreactor op-

eration [10].



Chapter 5

Populaton dynamics during batch cultivation

in an ideally mixed stirred tank reactor

This chapter consists of a slightly extended version of a published research article:

Lencastre Fernandes R, Carlquist M, Heins A-L, Dutta A, Sørensen SJ, Jensen AD,
Nopens I, Eliasson Lantz A, Gernaey KV. 2012. Cell mass and cell cycle dynamics
of an asynchronous budding yeast population: experimental observations, flow
cytometry data analysis and multi-scale modeling. Biotechnol Bioeng (2012)
(DOI: 10.1002/bit.24749)

Abstract

Cells in a microbial cultivation present a distribution of phenotypic traits, forming

a heterogeneous cell population. A major development in experimental single-cell
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studies has taken place in the last decades. It has, however, not been fully accom-

panied by similar contributions within data analysis and mathematical modeling.

Indeed, literature reporting e.g. quantitative analyses of experimental single-cell

observations and validation of model predictions for cell property distributions

against experimental data is scarce.

This study focuses on the experimental and mathematical description of the

dynamics of cell size and cell cycle position distributions, of a population of S.

cerevisiae, in response to the substrate consumption observed during batch cul-

tivation. The good agreement between the proposed multi-scale model (a PBM

coupled to an unstructured model) and experimental data (both the overall physi-

ology and cell size and cell cycle distributions) indicates that a mechanistic model

is a suitable tool for describing the microbial population dynamics in a bioreactor.

This study therefore contributes towards the understanding of the development of

heterogeneous populations during microbial cultivations. More generally, it con-

sists of a step towards a paradigm change in the study and description of cell

cultivations, where average cell behaviors observed experimentally now are in-

terpreted as a potential joint result of various co-existing single-cell behaviors,

rather than a unique response common to all cells in the cultivation.

5.1 Introduction

As mentioned in Chapter 1, despite traditionally regarded as identical, cells in

a microbial cultivation present a distribution of phenotypic traits, forming a het-

erogeneous cell population. Moreover, the degree of heterogeneity is notably

enhanced by changes in micro-environmental conditions. The occurrence of dis-

tributions of phenotypic traits such as cell size, enzymatic activities, and growth

rate [12], which are often essential for fitness and development of the cells [169],

have been observed by using single-cell analysis methods such as flow cytome-

try or microscopy (see Chapter 3). This type of heterogeneity may originate from

stochastic gene transcription, translation and regulation, differences in progres-

sion through cell cycle phases, and age distributions due to unequal partitioning
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upon division [12, 56].

Frequently, the contribution of different aspects to the development of a het-

erogeneous population is difficult to distinguish. For example, in the case of S.

cerevisiae, cell viability after environmental stress (e.g. heat, copper) has shown

to be dependent on the cell cycle phase [170, 171], but also to be related to cell

age [172]. Robustness to freeze-thaw stress has also been observed to be depen-

dent on the growth conditions prior to the stress [1]. Furthermore, the existence

of different microenvironments within a reactor (i.e. spatial heterogeneity) may

imply differential responses of cells as they experience a changing extracellular

environment in their various trajectories throughout the reactor. Indeed, this fact

has been pointed out as the underlying cause explaining differences between cul-

tivations performed in well-mixed lab scale bioreactors and in more poorly mixed

large-scale reactors [3].

It is, therefore, in the understanding and description of the interplay between

single cell response and the changing environment that the key to build improved

predictive models lies. As mentioned in Chapters 3 and 4, the increase in the

number of experimental studies at single-cell level was not fully accompanied by

similar contributions within data analysis and mathematical modeling. Indeed,

literature reporting e.g. quantitative analyses of experimental single-cell obser-

vations and validation of model predictions for cell property distributions against

experimental data is scarce. This development of predictive models requires de-

tailed experimental observations. Therefore, in order to describe the dynamics

of a microbial population in a standardized and quantitative fashion, an adequate

set of cell properties has to be selected, and experimental observations have to

be conducted and analyzed in a systematic way.

With regard to cell properties, cell size has often been used to describe bud-

ding yeast populations under various growth conditions [149]. The choice of cell

size relies on its tight coupling to cell growth and division. Indeed, cell size is

a key feature affecting cellular design, fitness and function [173], and this is a

reflection of the cellular capability of adjusting its growth rate to nutritional avail-

ability [174, 175]. The regulation of growth ensures that cells attain a critical size
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before initiating the division process [176, 177]. In the particular case of S. cere-

visiae, two critical sizes corresponding to the regulation points START (committing

to budding, or budding transition, see Figure 5.1) and division have been identi-

fied (as reviewed in [177]). Hence, using cell size as population physiological state

descriptor allows for describing the distribution of cellular states. Experimentally,

the distribution of cell size of a population is easily measured by using flow cytom-

etry. In particular, the total protein content has been used as reliable measure of

cell size [148].

Cell size distributions of S. cerevisiae populations during balanced growth on

various limiting substrates, as well as for various dilution rates (i.e. growth rates)

have been reported and compared in different studies (e.g. [148, 149, 178, 179]).

Larger critical cell sizes (at budding and, consequently, division) have previously

been reported for higher growth rates e.g. during exponential growth on glucose

relatively to ethanol [135, 148], or with increasing dilution rates in glucose-limited

continuous cultivations [176].

Complementary information on the distribution of cells in cell cycle phases can

be collected by measuring DNA distributions, yielding a better description of the

cellular state [176]. Also age dependency of the critical size upon the budding

transition has been evaluated, as time spent in the G1 phase decreases with the

number of cell cycles a mother cell has undertaken [179].

As reviewed in Chapter 4, PBM allow for a mathematical description of dis-

tributed cell properties within microbial populations [13, 104]. In previously pub-

lished literature on PBM for microbial populations [104, 129, 138], cell size was

used as model variable. Hatzis and Porro [110] proposed a multi-stage PBM ac-

counting for non-budding and budding stages and continuous distributions of cell

mass. Additionally, the model distinguished different generations, acknowledging

the fact that the critical division size of an individual cell will increase for every cell

cycle the cell undergoes. Although the formulation of this model [110] offers the

possibility of including the dependence of the critical budding and division sizes on

the substrate, this dependence has not been explicitly described neither have sim-

ulations under varying substrate conditions been reported. In previous work by
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Mantzaris et al. [129], different substrate dependent growth kernels were tested

and compared for a cell mass structured PBM. Validation of the assumptions taken

or confrontation of model predictions with experimental data was, however, not

reported.

The work presented in this chapter aims at understanding and describing the

interplay between single cell response, population dynamics and the changing

environment, in a systematic way, so experimental observations can be translated

into a mathematical model: a PBM describing the cell size distributions for the non-

budding and budding populations, during the growth of a S. cerevisiaepopulation,

in a glucose-limited batch cultivation.

Experimentally, the development of an asynchronous population of S. cere-

visiae was monitored during the different growth phases, with particular focus

on the diauxic shift transition. General trends for cell size (total protein content)

and cell cycle phase (DNA) distributions along the cultivation are reported and

discussed. Furthermore, a standardized procedure for treatment of the gathered

flow cytometric data was established for isolating subpopulations with high con-

tent of cells initiating the budding process and preparing for division. The trends

identified based on these procedures were used in the definition of the critical

budding and division sizes as function of the glucose and ethanol uptake rates: an

essential part in the development of a PBM. Additionally, a simple unstructured

model was coupled to the PBM in order to evaluate predictions of key changes

in the composition of the extracellular environment (i.e. cultivation medium): the

consumption of glucose, production and consumption of ethanol, as well as supply

and consumption of dissolved oxygen.

5.2 Materials and Methods

The S. cerevisiae strain used in this study was the haploid CEN.PK 113-5D (Mat

a) with the uracil auxotrophy reversed by transforming a functional URA3 gene.
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Figure 5.1: Schematic representation of the cell cycle during exponential growth on glu-
cose (to the left) and ethanol (to the right). The dark arrow corresponds to the duration
of the non-budding stage (G1 and eventually G0 phases). The START point represents the
regulation point that defines the inititation of the DNA replication and budding process, i.e.
transition to the S phase. Upon entry to the G2 phase, two copies of the cell DNA are
present. Due to their bigger size, the G1 phase is shorter for mother cells than for daugh-
ter cells. Generally, the mean cell size is bigger when growing on glucose than on ethanol.
The size ratio of bud/daughter cell to mother cell (the two cells originating upon division) is
smaller in the case of growth on ethanol.

It was stored in 15% glycerol stocks (liquid medium, -80◦C) and plated on YNB-

agar plates (6.7 gl−1 yeast nitrogen base (Difco, BD Diagnostic Systems, Sparks,

MD, USA), 20 gl−1 glucose and 20 gl−1 agar) and incubated for 2 days at 30◦C

before use. Inocula were prepared by transferring colonies from plates to Erlen-

meyer flasks containing 100 ml defined mineral medium [180] supplemented with

10 gl−1 glucose and incubating in a shaking incubator at 150 rpm and 30◦C, until

mid exponential phase (approx. 10 h). These flasks were used directly for inoc-

ulation of the bioreactor (starting OD600 = 0.001). Braun Biostat 2 liter bioreac-

tors (B. Braun Biotech International, GmbH, Melsungen, Germany) with a working

volume of 1.5 l were used for the batch cultivations. The same defined mineral

medium supplemented with 5 gl−1 glucose was used. The pH and dissolved oxy-

gen tension (DOT) electrode (Mettler Toledo, OH, USA) were calibrated according

to standard procedures. Cultivation conditions were set to the following: aeration

1 vvm; temperature 30◦C; stirring 600 rpm and pH 5.0 (automatically controlled

by addition of 3.0 M KOH). Samples for OD600, high performance liquid chro-

matography (HPLC) and flow cytometry analysis were taken approximately every
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1 hour, or every 30 minutes during the diauxic shift and early growth on ethanol.

Samples for OD600 were analyzed immediately while samples for HPLC were kept

at -20◦C and samples for flow cytometry were kept in 15% glycerol at -80◦C prior

to analysis.

5.2.1 Growth, substrate and products analysis

Growth was monitored by measuring OD600 with a UV mini 1240 spectrophotome-

ter (Shimidzu, Kyoto, Japan). The concentrations of glucose, acetate, ethanol,

glycerol, pyruvate and succinate were determined by HPLC (Agilent 1100, Agilent

Technologies, CA, USA) with a 300mm x7.8mm Aminex HPX-87H ion exchange

column (Bio-Rad, Hercules, CA, USA), refractive index detector (RID Agilent 1200,

Agilent Technologies, CA, USA) and UV detector set to 210 nm for pyruvate detec-

tion (Agilent 1100, Agilent Technologies, CA, USA). The mobile phase was 5 mM

H2SO4 (aq.), temperature 60◦ and flow rate of 0.6 ml min−1. The composition

of the outgoing gas was monitored by a 1311 Fast response Triple-gas monitor

(Innova Air Technologies, Ballerup, Denmark).

5.2.2 Single-cell analysis

A BD FACSAria III (Becton-Dickinson, Franklin Lakes, NJ, USA) flow cytometer was

used for single-cell analysis. For the simultaneous determination of total protein

and DNA content, cells were stained with fluorescein isothiocyanate (FITC) and

propidium iodide (PI) (SigmaAldrich, Brøndby, Denmark) as described previously

[176]. The excitation wavelength for the laser used was 488 nm. Fluorescence

emission levels were measured using a band pass filter at 530/30 nm (FITC) and

616/23 nm (PI) . Light scattering and fluorescence levels were standardized using

2.5 µm fluorescent polystyrene beads. 10000 events were recorded, for each

sample, with a rate of approximately 1000 events per second.
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5.2.3 Computational data treatment

In this work, a systematic approach was applied to the flow cytometry data analy-

sis: standardized procedures were developed for estimation of the critical budding

and division sizes based on the experimental total protein and DNA content distri-

butions.

Firstly, a procedure was implemented in order to isolate a subpopulation with a

high fraction of cells transitioning from G1 to S-phase, enabling estimation of the

critical budding size. It is based on a manual gating strategy described in the liter-

ature [176], and relies on isolating the subpopulation presenting an intermediate

DNA content (i.e. between 1 copy (1C) and 2 copies (2C) of the chromosome) and

thus contained in the interpeak region in the DNA histogram.

A second standardized procedure was developed in order to estimate the crit-

ical division size, based on the standard deviation of the 2C peak in the DNA his-

togram. The critical budding and division DNA bands were defined around the

channel number at one standard deviation distance from the peak mode (Fig-

ure 5.2). A band width of 10 channel numbers was defined in order to ensure a

number of cells in the subpopulation of approximately 500. The critical budding

and division cell sizes are defined as the mean total protein content of the cells

belonging to the corresponding DNA critical bands. The budding index, i.e. the

fraction of cells that have a bud, was estimated using the critical budding DNA

band as threshold (Figure 5.3). The robustness of the procedures was assessed by

varying the band widths (data not shown). Such variation did not yield a signifi-

cant effect on the results reported in this work, and the same correlations between

critical sizes and substrate availability were observed.

Processing and analysis of flow cytometry raw data was performed by using

MatLab R© R2009b (The MathWorks, Inc., Natick, MA, USA). The measurement files,

exported by the flow cytomer FACSAria II, were imported into MatLab R©, using a

fcs data reader routine (by L.Balkay, University of Debrecen, Hungary), available
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on the MatLab R© File Exchange website.

Figure 5.2: Schematic representation of the standardized procedures for definition of the
critical budding and division sizes.

Figure 5.3: Schematic representation of threshold definition used for estimating the bud-
ding index (BI, the fraction of the budding cells in the overall population).
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5.3 Modeling Aspects

5.3.1 Population Balance Model

A 2-stage PBM using cell total protein content (a measure of cell size) as model

variable was developed. Channel number (ch. no.) is used as arbitrary unit for the

cell total protein content. Further details on the correlation of channel number to

cell size are provided in Appendix B.

The PBM consists of two integro-partial differential equations - the population

balance equations (PBE) for the non-budding and budding stages (Equations (5.1)

and (5.2)) and the corresponding boundary and initial conditions (Equations (5.3)

to (5.5)). NNB(m, t)dm and NB(m, t)dm define the number of cells at time t with

mass within the interval [m,m+ dm], for the non-budding and budding stages

respectively. Z describes the extracellular environment (i.e. the concentration

of glucose, ethanol and oxygen) at a given time point. A nomenclature list with

descriptions and units for the model variables and parameters are provided in

Table 5.1.

The left hand side of the PBEs (Equations (5.1) and (5.2)) describes the accu-

mulation of the number of cells in each stage and the growth of cells (i.e. con-

tinuous increase of the total cell protein content). In the case of the non-budding

stage (Equation (5.1)), the right hand side is composed by a negative budding

term, representing cells leaving the non-budding stage by initiating the budding

process, and a positive birth term, describing the cells entering this stage as a

result of the division of a budding cell into two non-budding cells. In the case of

the budding stage (Equation (5.2)), the right hand side is composed of the nega-

tive division term (cells leaving the stage as result of division into two new cells)

and the positive budding term (upon initiation of the budding process, cells transit
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from the non-budding to the budding stage).

∂NNB(m,t)
∂t

+ ∂
∂m

[
rm(m,Z)NNB(m, t)

]
=

−ΓB(m |Z) NNB(m, t) + 2
mf∫
m

ΓD(m′ |Z )P (m,m′ |Z )NB(m′, t)dm′
(5.1)

∂NB(m,t)
∂t

+ ∂
∂m

[
rm(m,Z)NB(m, t)

]
=

−ΓD(m |Z) NB(m, t) + ΓB(m |Z) NNB(m, t)

(5.2)

NNB(m0, t) = NNB(mf , t) = NB(m0, t) = NB(mf , t) = 0,m ∈ [m0,mf ] (5.3)

NNB(m, t = 0) =

1
σ
NNB(m,t=0)

φ

(
m−µ

NNB(m,t=0)

σ
NNB(m,t=0)

)
Φ

(
mf−µ

NNB(m,t=0)

σ
NNB(m,t=0)

)
− Φ

(
m0−µ

NNB(m,t=0)

σ
NNB(m,t=0)

) (5.4)

NB(m, t = 0) =

1
σ
NB(m,t=0)

φ

(
m−µ

NB(m,t=0)

σ
NB(m,t=0)

)
Φ

(
mf−µ

NB(m,t=0)

σ
NB(m,t=0)

)
− Φ

(
m0−µ

NB(m,t=0)

σ
NB(m,t=0)

) (5.5)
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The boundary condition (Equation (5.3)) assumes that the minimum and max-

imum cell size (m0 andmf ) are sufficiently small and big, respectively, so that the

number of cells presenting these sizes is zero. In this work, m0 is defined as 0 ch

no. and mf as 2000 ch. no. Although the experimental data were collected for ch.

no. up to 104 (see Appendix B), the number of cells observed for channel numbers

higher than 2000 was found insignificant, and the discretization upper boundary

was set to 2000 ch. no..

The initial distribution for each of the stages is a necessary condition for the

PBEs to be solved (Equations (5.4) and (5.5)). To minimize the influence of the in-

oculum preparation method on the measured distributions, the cell concentration

was very low at the beginning of the batch (OD≈0.001). Such low concentra-

tions make the determination of the initial distribution based on a small sample

volume prone to error. The distributions measured for the inocula were not con-

sidered, as the growth conditions are substantially different from the ones in the

bioreactor, upon inoculation. The initial distribution was, thus, not measured, but

rather assumed to follow a truncated Gaussian distribution with means equal to

µNNB(m,t=0) = 500 and µNB(m,t=0) = 650 ch. no. for the non-budding and bud-

ding stages, respectively, and a standard deviation (σNNB(m,t=0) and σNB(m,t=0))

of 100 ch. no. for both stages. Different mean values were tested without yield-

ing significant impact on the model predictions (data not shown). An increase in

the standard deviation has an effect on the model predictions for the initial time

points (see Section 5.4).

Growth kernel

The growth rate function, rm(m,Z) was defined as the product of a mass depen-

dent factor, kmm, and a substrate dependent factor λ(Z) (Equation (5.6)). First

order kinetics were assumed for the mass dependent factor [110, 129], while the

substrate dependent factor λ(Z) , which can be regarded as a specific growth

rate, was derived from the unstructured model for the extracellular environment.

The constant km operates as a switch that allows for modulating the growth rate
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Table 5.1: Description of variables and parameters in the PBM.

Variable
Parameter

Parameter
Value

Unit Description

m - ch. no. Cell size
m0 0 ch. no. Minimum cell size
mf 2000 ch. no. Maximum cell size
m′ - ch. no. Cell size of a mother budding cell
Z - - General designation for the extracel-

lular environment
NNB - no. cells/ch. no. Number density for the non-budding

stage
NB - no. cell/ch. no. Number density for the budding

stage
µNNB(m,t=0) 500 ch. no. Mean of the initial number density

for the non-budding stage
µNB(m,t=0) 650 ch. no. Mean of the initial number density

for the budding stage
σNNB(m,t=0) 100 ch. no. Standard deviation of the initial num-

ber density for the non-budding
stage

σNB(m,t=0) 100 ch. no. Standard deviation of the initial num-
ber density for the budding stage

rm - ch. no. /h Growth rate

km
1; Except for
stationary phase:
0.4

- Growth rate constant

λ(Z) - 1/h Specific growth rate (substrate de-
pendent term in the growth rate)

ΓB - ch. no./h Budding rate
hB - - Budding probability density function
µB See Table 5.2 ch. no. Critical budding size (mean of hB)
σB See Table 5.2 ch. no. Standard deviation of hB

kB See Table 5.2 ch. no./h Rate of adjustment of the critical
budding size (µB)

ΓD - ch. no./h Division rate
hD - - Division probability density function
µD See Table 5.2 ch. no. Critical division size (mean of hD)
σD See Table 5.2 ch. no. Standard deviation of hD

kD See Table 5.2 ch. no./h Rate of adjustment of the critical di-
vision size (µD)

P (m,m′ |Z ) - - Partitioning probability density
function

in order to reflect the residual growth observed in the stationary phase. For the
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other cultivation phases, km is equal to unity.

rm(m,Z) = kmm · λ(Z) (5.6)

Budding and division kernels

The budding and division rates, ΓB and ΓD (Equation (5.7)), were defined as the

product of the growth rate and a hazard function [110, 129]. The latter is based

on a density function (hB or hD) that describes the probability of a cell of sizem to

initiate the budding process or to undergo division. Truncated Gaussian probabil-

ity density functions with mean µB or µD, respectively, were used. Equation (5.8)

shows the budding or division probability density function hi, where φ is a Gaus-

sian probability density function and Φ is a Gaussian cumulative density function.

The two mean parameters (µB and µD) are function of the substrate availability,

while the standard deviations (σB and σD) were assumed to be constant. The

numerical values for these parameters are provided in Table 5.2.

Table 5.2: Values for the budding and division parameters.

µB σB kB µD σD kD
Unit ch. no. ch. no. ch.

no./h
ch. no. ch. no. ch.

no./h

Initial (t = 0) µt=0
B = 550 0.15µt=0

B - µt=0
D = 1100 0.15µt=0

D -

Late growth on glu-
cose
dG
dt < −0.6 g/lh

dµB
dt = kB 0.15µt=0

B -100
dµD
dt = kD 0.15µt=0

D -60

Late growth on
ethanol
dE
dt < −0.15 g/lh

dµB
dt = kB 0.15µt=0

B -90
dµD
dt = kD 0.15µt=0

D -50
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Γi(m | Z) = rm(m,Z) hi(m|Z)

1−
m∫
m0

hi(mk|Z)dmk

i= B,D
(5.7)

hi(m |Z) =
1
σi
φ
(
m−µi(Z)

σi

)
Φ

(
mf−µi(Z)

σi

)
−Φ

(
m0−µi(Z)

σi

) i= B,D (5.8)

Experimental observations (see Section 5.4) indicated that during late growth

on glucose the mean cell size decreased monotonously without a significant vari-

ation of the fraction of budding cells in the population (i.e. budding index, BI). The

smooth shift of the distribution towards smaller sizes was triggered when a given

glucose consumption rate is achieved (see Section 5.4), and modeled by a linear

decrease of µB and µD. The decrease in the critical sizes during the late glucose

growth phase is described by Equation (5.9), where I is a switch equal to 1 when

the glucose uptake rate is larger than 0.6 g g−1l−1, and 0 otherwise. A similar

behavior was observed during late growth on ethanol (see Section 5.4), but in this

case the threshold for ethanol uptake rate is 0.15 g g−1l−1. The values of rates

kB and kD (negative values) of both growth phases are provided in Table 5.2.

∂µi
∂t

= ki · I
(
dG
dt
< −0.6

)
i= B,D (5.9)

At the end of exponential growth on glucose, the transition from the non-

budding to the budding stage is arrested when glucose is depleted, and the di-

auxic shift is initiated. This budding transition arrest was modeled by imposing a

budding rate equal to zero. The duration of this arrest is however not dependent

on the model variables, and as such to be defined according to the experimental

observations: an arrest of 3 hours was defined (reflecting the experimental optical
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density curve) in the work here presented.

Birth kernel

The birth term describes the formation of two cells of mass m and m′ − m as a

result of the division of a budding cell of size m′ The birth rate is defined based

on the division rate of the mother cell, ΓD(m′ |Z ), and the partitioning function

P (m,m′ |Z ). The latter function describes the ratio of sizes of the daughter cells

(originated from the bud) to the mother budding cell, and is defined as a beta

probability density function [138] (Equation (5.10)). In this work, the distribution

was set as symmetrical (α = β = 50) during exponential growth on glucose,

while during exponential growth on ethanol it was defined as left-skewed (α =

30, β = 60). The change in the shape parameters reflects the decrease in the ratio

of daughter to mother cell size that has been observed experimentally after the

diauxic shift [181]. The sensitivity of the model output to the beta distribution

shape parameters (α and β) defining the partitioning function is discussed further

in this work (see Section 5.4).

P
(
m,m′ |Z)

)
=

1

B(α, β)

( m
m′

)α−1 (
1− m

m′

)β−1

(5.10)

5.3.2 Unstructured kinetic model for the extracellular environment

An unstructured kinetic model was used to describe how, during a batch culti-

vation, glucose (carbon source) is consumed, and how ethanol is first produced,

and subsequently consumed after glucose is depleted. Also the consumption of

dissolved oxygen was modeled as budding yeast oxidizes or reduces glucose de-
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pending on the available dissolved oxygen concentration, and its respiratory ca-

pacity.

In order to be able to capture the interplay between the cells and composition

of the extracellular cultivation environment, a simple kinetic (unstructured) model

proposed by Sonnleitner and Käpelli [182] was used for describing the respiratory

and fermentative growth of budding yeast.

The unstructured model here used is based on the formulation and assump-

tions proposed in the original publication [182]. It relies on the stoichiometric

equations describing the growth of yeast on glucose and/or ethanol: the purely

oxidative growth on glucose (1) or on ethanol (3), or purely reductive growth on

glucose (2).

C6H12O6 + aO2 + b0.15 [NH3] → bC1H1.79O0.57N0.15 + cCO2 + dH2O (1)

C6H12O6 + g0.15 [NH3] → gC1H1.79O0.57N0.15 + hCO2 + iH2O + jC2H6O (2)

C2H6O + kO2 + l0.15 [NH3] → lC1H1.79O0.57N0.15 +mCO2 + nH2O (3)

For each pathway, a set of linear algebraic equations can be formulated when

describing the balances for carbon, hydrogen and oxygen. In order for the equa-

tion systems to be solvable, one coefficient for each set of equations is to be

assumed (based on experimental observations). The yield coefficients (on mass

basis) are proportional to the stoichiometric molar coefficients b, g and l, and these

yields can be reliabily estimated based on experimental measurements.

Y OxidXG = b
MW (X)

MW (G)
(5.11)
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Y RedXG = g
MW (X)

MW (G)
(5.12)

YXE = g
MW (X)

MW (G)
(5.13)

For a batch operation mode, the time variation of glucose, ethanol and oxygen

is described by Equations (5.14) to (5.16). where G, E, O and X are the concen-

trations of glucose, ethanol, oxygen, and biomass (in cell dry weight), respectively.

kLa is the mass transfer coefficient, and O∗ is the concentration of oxygen in the

liquid phase at saturation.

dG

dt
= −rG,max

G

G+KG
X (5.14)



5
.3

M
o
d

e
lin

g
A

s
p

e
c
ts

6
9

dE
dt

=

qRedG =qTotalG −qOxidG︷ ︸︸ ︷
rG,max

G

G+KG
− 1

a

(
min

(
rO,max

O

O +KO
, a · rG,max

G

G+KG

))
·jX

− 1
k

(
min

(
rO,max

O
O+KO

−min
(
rO,max

O
O+KO

, a · rG,max
G

G+KG

)
, k · rE,max

E
E+KE

Ki
G+Ki

))
X

(5.15)

dO
dt

= kLa(O∗ −O)−min
(
rO,max

O
O+KO

, a · rG,max
G

G+KG

)
X

−min
(
rO,max

O
O+KO

−min
(
rO,max

O
O+KO

, a · rG,max
G

G+KG

)
, k · rE,max

E
E+KE

Ki
G+Ki

)
X

(5.16)

λ(Z) = b
a

(
min

(
rO,max

O
O+KO

, a · rG,max
G

G+KG

))

+g


qRedG =qTotalG −qOxidG︷ ︸︸ ︷

rG,max
G

G+KG
− 1

a

(
min

(
rO,max

O

O +KO
, a · rG,max

G

G+KG

))
+ l
k

(
min

(
rO,max

O
O+KO

−min
(
rO,max

O
O+KO

, a · rG,max
G

G+KG

)
, k · rE,max

E
E+KE

Ki
G+Ki

))
(5.17)
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In the original model, the biomass accumulation is defined as an autocatalytic

reaction. In this work, the corresponding specific growth rate is defined as λ(Z)

(Equation (5.17)), the extracellular environment factor included in the single cell

growth rate (Equation (5.6)) in the PBE. Additionally, the biomass concentration

is here predicted using the PBM, and provided as input for the prediction of the

extracellular environment variables: glucose, ethanol and oxygen. The overall

biomass concentration at any given time point was calculated based on the sum

of the zeroth moment (total number of cells) of the cell size distribution for the

two stages.

Although it would be expected that cells of small size present a lower dry

weight than bigger cells, the error typically associated with the experimental dry

weight determination may be quite significant and it would shade differences be-

tween smaller and bigger cells. Therefore, the total number of cells was converted

into dry weight concentration using a linear regression of cell number to cell

dry weight determined experimentally (data not shown), as described by Equa-

tion (5.18)

X = 4e− 10 · No. Cells (5.18)

The average yield coefficients were estimated by fitting of the model to the

experimental data, and are provided in Table 5.3. Although ideally desirable, the

parameter estimation was not performed by an optimization routine due to the

high collinearity of the parameters in the unstructured model and the complexity

of the overall multi-scale model. The design of a parameter estimation routine us-

ing a multivariate objective function would be a valuable contribution (e.g. [183]),

it however falls out of the scope of this work.
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Table 5.3: Description of the variables and parameters in the unstructured model.

Variable
Parameter

Parameter
Value

Unit Description

G - gl−1 Glucose concentration
E 0 gl−1 Oxygen concentration
O 2000 gl−1 Ethanol concentration
X - gl−1 Total biomass (cell dry weight) con-

centration
DWcell 4e-10 gcell−1 Conversion factor between biomass

weight and number of cells
Y OxidXG 0.4 gXgG−1 Yield of biomass on glucose (oxida-

tive metabolism)
Y RedXG 0.06 gXgG−1 Yield of biomass on glucose (reduc-

tive metabolism)
YXE 0.4 gXgE−1 Yield of biomass on ethanol
µE,max 0.25 h−1 Maximum specific growth rate for

growth on ethanol
rG,max 6 gGgX−1h−1 Maximum specific uptake rate for

growth on glucose
rO,max 12e-3 gOgX−1h−1 Maximum specific uptake rate for

growth on glucose
KG 0.5 gl−1 Saturation constant for glucose
KE 0.5 gl−1 Saturation constant for ethanol
KO 1e-4 gl−1 Saturation constant for oxygen
Ki 0.1 gl−1 Inhibition constant for glucose
kLa 150 h−1 Mass transfer coefficient

5.3.3 Model implementation and solution

The fixed-pivot technique [184, 185] was applied to a discretization grid in the

range [m0,mf ] = [0, 2000]. In this work, an evenly spaced grid of 166 pivots

was used. Nonetheless, the same technique could be applied to uneven grids

(e.g. geometric) and it has been adapted for a moving grid (the moving pivot

technique, [186]).

According to the fixed-pivot technique, the cells generated by division whose

mass does not coincide with a pivot are assigned to the neighboring pivots (Fig-

ure 5.4). In this case, this reallocation is based on the distance of the new born cell
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mass to the neighboring pivots. Similarly to the work of Kumar and Ramkrishna

[184] and Nopens [185], the zeroth and first moments (i.e. total number of cells

and mean cell size) of the cell size distributions were conserved. The discretized

population balance equations for a pivot (in an evenly distributed grid) are given

by Equations (5.19) and (5.20), where z corresponds to the boundary of a class

where the pivot m is the center point (as illustrated in Figure 5.4).

Figure 5.4: Schematic representation of the reallocation of new born cells to the neighbor-
ing cell size pivots: black circles mark the grid pivots, the red trapeze marks a new born cell
with size between mi−1 and mi (based on [185]).

For notation simplicity, the growth term is designated as θ, the negative di-

vision and budding term is represented by γ, and the positive budding and birth

terms are noted as ρ. The partial differential PBM equations have been trans-

formed in a system of ODEs for the range of pivots. This ODE system can be sum-

marized in a model matrix (ODE system matrix) as presented in Equation (5.21).

By numerical integration of the differential equation system along time the PBM

can be solved.
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∂NNBmi
∂t

=

θ(mi)︷ ︸︸ ︷
kmmiλ(Z)

2(zi − zi−1)
NNB
mi−1

−

 γNB(mi)︷ ︸︸ ︷
ΓB(mi) + kmλ(Z)

NNB
mi −

kmmiλ(Z)
2(zi−zi−1)

NNB
mi+1

+2
imax∑
j=i


(∫ mj+1

mj

mj+1 −m
mj+1 −mj

P (m,mj)dm+

∫ mj

mj−1

m−mj−1

mj −mj−1
P (m,mj)dm

)
ΓD(mj)︸ ︷︷ ︸

ρNB(mi,mj)

NB
mj


(5.19)

∂NBmi
∂t

=

θ(mi)︷ ︸︸ ︷
kmmiλ(Z)

2(zi − zi−1)
NB
mi−1

−

γB(mi)︷ ︸︸ ︷
(Γ2(mi) + kmλ(Z))− kmmiλ(Z)

2(zi−zi−1)
NB
mi+1

+ Γ1(mi)N
NB
mi

(5.20)
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Coupling of the PBM to the unstructured model

As previously described, the unstructured model consists of three ODEs describing

the variation over time of concentrations of glucose, ethanol and oxygen. An

iterative scheme was used to solve the PBM and the unstructured kinetic model.

A schematic representation of the model solution steps is presented in Figure 5.5.

Time steps of 0.1 h were defined, ensuring that the variation in the concen-

trations of glucose and ethanol per time step was smaller than 0.1 gl−1 - the

approximate experimental error in the determination of these concentrations (see

Section 5.2). Smaller time steps did not yield significant differences in the model

predictions (data not shown), confirming solution convergence. All model simula-

tions were performed using MatLab R© R2009b (The MathWorks, Inc., Natick, MA,

USA). The ODE solver ode15s was used for solving the PBM ode system, whereas

the unstructured model ODE system was solved using solver ode23 (absolute and

relative tolerance were set to 1e− 3 , while default values were taken for all other

solver options). The total number of cells was converted into dry weight con-

centration using a linear relation, as previously discussed and defined by Equa-

tion (5.18).

For each iteration , a biomass concentration vector corresponding to 10 time

instants in the time span of the iteration is provided as input to the ODE solver

for integration of the unstructured model equations (Equations (5.14) to (5.16))

for the same time span of the iteration. The updated concentrations of glucose,

ethanol and oxygen are used to re-calculate the substrate dependent factor λ(Z)

in the growth rate, and eventually update the budding and division parameters,

µB and µD, that depend on the substrate consumption rates.



76 Populaton dynamics during batch cultivation

Discretization of the size 
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 If   dE/dt < - 0.15 g/Lh 
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dµB/dt=kB  
dµD/dt=kD!

Budding 
transition arrest 
ΓB = 0; 
Update of α and β 

Budding 
transition arrest: 
ΓB = 0; Update km 

Biomass Concentration X(t)!

Figure 5.5: Iterative procedure used for solving the two-stage PBM and unstructured model
for a batch cultivation.
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5.4 Results and Discussion

Triplicate glucose limited aerobic batch cultivations of S. cerevisiae were per-

formed. The three cultivations presented similar growth and production profiles

(see Appendix B). The respective biomass (optical density), glucose and ethanol

concentration curves followed the typical patterns for aerobic yeast cultivations.

The population proliferated exponentially first on glucose with a specific growth

rate of 0.41±0.001 h−1, and of 0.10±0.02 h−1 during the exponential growth on

ethanol. The distributions of cell total protein content (a measure of cell size) and

DNA were monitored, by flow cytometry, during the four cultivation phases. Gen-

erally, there was a good agreement between the three replicate cultivations with

regards to the flow cytometry measurements (see Appendix B).

The predictions of the integrated model describe both the variation of macro-

scopic variables - glucose, ethanol and dissolved oxygen, as well as the overall

biomass concentration - and the distributions of single-cell total protein content

for the non-budding and budding populations during glucose-limited batch culti-

vation. With regard to the macroscopic variables, the comparison of the model

predictions and experimental results (Figure 5.6) shows a good agreement: the

model is able to describe the growth phases (on glucose and ethanol) as well as

the intermediate diauxic shift phase. Based on the increase of number of cells

predicted by the model, the model predicted specific growth rate was 0.44 h−1.

This corresponds to a deviation of approx. 7% between the estimation and exper-

imental data.

5.4.1 Mean Total Protein Content

The mean total protein content of the population decreased throughout the culti-

vation (Figure 5.7). During exponential growth on glucose, the population showed

a higher mean total protein content relative to the other cultivation phases (i.e.

larger cell size), corresponding to a channel number of approximately 700. In late
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Figure 5.6: Variation of glucose, overall biomass, and ethanol concentrations and dissolved
oxygen tension along the cultivation: model predictions (full line) and experimental obser-
vations (full circles).

exponential phase during glucose assimilation, the mean cell size decreased to

a ch. no. of approximately 450. An additional decrease of the mean cell size to

a ch. no. of 350 was observed upon the depletion of glucose. Similarly to what

was observed during growth on glucose, the mean cell size decreased during late

exponential growth on ethanol, from a mean ch. no. of approximately 300 to 200.

The mean cell size remained approximately constant during stationary phase un-

til t =60 h, when the cultivations were terminated. Also the predicted mean total

protein content for the overall population was in good agreement with the experi-

mental observations.
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Figure 5.7: Comparison of model predictions for the mean cell size or total protein content
(full line) and budding index (dashed line) to experimental observations (cell size as dots
and budding index as open circles).

5.4.2 Budding index

The variation in the distribution of cells through the cell cycle phases can be seen

even clearer when observing the variation of the budding index (BI), along the cul-

tivation (Figure 5.7). Despite deviations between the estimations based on flow

cytometry DNA distributions (as here reported) and microscopic counting have

been observed (see Appendix B), the BIs estimated from flow cytometric data for

time points during exponential growth on glucose and ethanol, presented in this

work, are in good agreement with values reported in the literature. A BI of approx-

imately 80% was observed during growth on glucose, which is in agreement with

reported BI values for cultivations with similar specific growth rates [187, 188].
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The initial oscillations of the budding index and subsequent damping can be

interpreted as a desynchronization of the population resulting from the fact that

the critical sizes are described by a probability distribution function rather than a

unique discrete value [129, 142]. An increase in the standard deviation assumed

for the initial distribution results in a quicker damping of these oscillations.

The abrupt decrease of the BI to approximately 48% from about t =18 h on-

wards coincides with the depletion of glucose. A similar BI has been observed

during exponential growth in an ethanol-limited batch cultivation [188]. During

stationary phase, an accumulation of G1 cells took place analogously to the ob-

servations during the diauxic shift, resulting in a BI of approximately 42% after 60

hours of cultivation.

Generally, the model predictions are in good agreement with the estimations

based on the experimental DNA distributions here reported. Indeed, the accu-

mulation of smaller non-budding cells observed in the diauxic shift is successfully

described by the model, and reflected in the continued decrease of the mean

cell size and accentuated the decrease of the budding index during this phase of

metabolic rearrangement (Figure 5.7).

When ethanol is depleted and cells enter the stationary phase, the typically

observed accumulation of non-budding cells takes place at slower pace than the

one observed for the diauxic shift. Therefore, an arrest of the budding transition is

imposed as well as decreasing the constant km from unity to an assumed value of

0.4. Notwithstanding the capability of the model of describing the decrease in the

mean cell size and budding index, the transition into stationary phase is rather

complex, and not yet fully understood [189]. Therefore, the simplistic model

description presented (by decreasing km and arresting the budding transition)

should not be expected to describe such complexity. More research is required to

fully unravel this mechanism.



5.4 Results and Discussion 81

5.4.3 Cell size and cell cycle position distributions

In Figure 5.8, the bivariate distributions of total protein and DNA content mea-

sured along the cultivation are presented as contour plots. The distributions of

each cell property (in the shape of histograms), for all sample times, are provided

in Appendix B. From the bivariate distribution, the significant changes in the struc-

ture of the population can be easily visualized. During the growth on glucose, a

large part of the population consisted of bigger cells presenting 2 copies of the

DNA (i.e. cell in the G2+M cell cycle phases). As reflected in the BI profile (Fig-

ure 5.7), during the diauxic shift, an accumulation of cells with lower DNA content

(corresponding to cells in the G1 cell cycle phase) and smaller size was observed,

resulting in a clearer cloud on the bottom left corner of the bivariate distribution

(Figure 5.8, t =20.4 h). During growth on ethanol, a more even distribution of the

cells containing 1 or 2 copies of DNA, in comparison to growth on glucose, was

observed. This is illustrated in Figure 5.8: while for exponential growth on glucose

(t =16.8 h) only one high density cloud (red colored) is observed, two clouds with

approximately the same densities (blue colored) are observed during the growth

on ethanol (t =23.9 h).



8
2

P
o
p

u
la

to
n

d
y
n

a
m

ic
s

d
u

rin
g

b
a
tc

h
c
u

ltiv
a
tio

n

Figure 5.8: Bivariate distribution of total protein content and DNA during a batch cultivation of S. cerevisiae: exponential
growth on glucose (t =12.9, 16.8 h), diauxic shift (t =18.9, 20.4 h), exponential growth on ethanol (t =21.9, 23.9, 27.4 h), and
stationary state (t =31.9, 38.7 h). The color code corresponds to the number density of the cells. The vertical lines correspond
to the critical budding (to the left) and division (to the right) threshold identified based on the DNA distribution.
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In Figure 5.9, the total protein content distributions predicted by the model

are compared to the experimental ones. The model predictions successfully de-

scribe the general shift of the distributions towards smaller sizes. The biggest

difference between model predictions and experimental distributions is observed

during the diauxic shift. While the model shows clear bimodal distributions around

t =21 h, the experimental distributions are unimodal. The experimental distribu-

tions for each of the non-budding and budding subpopulations may present larger

variances than described in the model, and this may explain the loss in separa-

tion of the peaks corresponding to non-budding and budding cells (unimodality)

observed experimentally. Additionally, the model does not acknowledge the ex-

istence of different generations whose critical sizes increase with the generation

age [110], leading to intermediate subpopulations.

Figure 5.9: Total protein content distributions for the overall population: a) model predic-
tions b) experimental observations. The color code reflects the different cultivation phases:
exponential growth on glucose (green), diauxic shift (orange-red), exponential growth on
glucose (blue), stationary phase (violet).
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5.4.4 Critical budding and division sizes: dependence on substrate avail-

ability and uptake

The model presented in this work relies on the fact that the cell size regulation

has been identified as a key aspect in the growth regulation in response to chang-

ing environmental conditions [177, 190]. Understanding the dependence of the

critical budding and division sizes on the extracellular environment is essential for

understanding the population dynamics and for future modeling of the dynamics

of size and cell cycle position distributions. Indeed, to define the critical budding

and division sizes as a function of the substrate availability is essential for the

definition of a dynamic population model (see Section 5.3).

In order to assess how the mean cell size of a subpopulation with a high con-

tent of cells initiating the budding process, i.e. cells in the critical budding size

range, changed during the batch cultivation a standardized procedure was devel-

oped and applied to all samples (see Section 5.2). Not surprisingly the critical bud-

ding size followed a similar evolution as the overall mean cell size (Figure 5.10),

and it was constant during early growth phases and decreased in the later growth

phases and diauxic shift. Similarly, a standardized procedure was applied to esti-

mate the critical division size at each sample time point. Also the critical division

size accompanied the general shift of the overall population towards smaller sizes

along the cultivation (Figure 5.10).

In this work, particular attention was paid to understand the population dy-

namics observed during the transition between growth on glucose and ethanol.

From the variation of the estimated critical budding and division sizes along the

cultivation during the late growth phases on glucose or ethanol (Figure 5.9), cells

seem to adjust to the decreasing substrate availability by a smooth shift of the

cell size distributions towards smaller sizes, and a slight decrease in the BI (Fig-

ure 5.7). Contrarily, an abrupt change in the cell cycle position (sudden sharp

decrease of the BI) was observed upon glucose depletion and beginning of the

diauxic shift. These observations are in agreement with the two different mecha-

nisms proposed by Brauer et al. [187] when explaining the changes in the gene
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expression patterns observed during (i) the late growth phases - continuous home-

ostatic metabolic adjustment - and (ii) diauxic shift - discontinuous metabolic re-

modeling.

Figure 5.10: Variation of the mean total protein content (i.e. cell size) for the overall pop-
ulation (circles), the critical budding size (squares) and critical division size (diamonds). The
vertical lines define the four phases of the cultivation: (1) exponential growth on glucose (2)
diauxic shift (3) exponential growth on ethanol (4) stationary phase. The distances between
cell size and the critical budding and division sizes reflect the cell cycle distribution (fractions
of non-budding and budding cells within the population).

Cell adjustment during late growth phases

As mentioned above, during the late growth phases, the cell size distribution

smoothly shifted towards smaller sizes, while the BI generally remained constant

(Figure 5.7). In this work, the initial glucose concentration was 5 gl−1, and the

decrease in cell size was observed approximately 2 hours before the diauxic shift

occurred, corresponding to a glucose concentration above 3 gl−1. Brauer et al.

[187] performed cultivations with an initial glucose concentration of 2.5 gl−1, and
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significant changes in gene expression were observed when the glucose concen-

tration was approximately 0.5 gl−1. It thus seems unlikely that the onset of the

metabolic adjustment is triggered by a certain concentration of glucose in the

medium. Interestingly, when comparing the glucose consumption and biomass

growth curves of Brauer et al. [187] with those presented in Figure 5.6, the start

of the adjustment in gene expression and decrease in the mean cell size coin-

cided with a steeper increase in biomass concentration (OD) and consumption of

glucose. The glucose consumption rate estimated for this time point was approxi-

mately 0.6 gl−1h−1. A similar rate was estimated from the publication of Brauer et

al. [187]. With regard to the growth phase on ethanol, the trend of cell size distri-

bution and the critical budding size was similar to the behavior during growth on

glucose. A similar adjustment behavior triggered by threshold ethanol consump-

tion rate was thus assumed. This threshold was estimated to be approximately

0.15 gl−1h−1.

The dependence of the critical budding size on the specific growth rate has

been reported elsewhere [176], and is implicitly related with the uptake rates

[191]. The link between the critical division size and the uptake rate is thus not

unexpected. In fact, Youk and Oudenaarden [191] discuss the interaction between

glucose perception and import (uptake) on the growth: for wild-type S. cerevisiae,

when glucose is not too low, the effect of glucose perception disappears and the

uptake perception is dominant. A more in depth validation of these assumptions

and numerical values for the threshold uptake rates here proposed could for exam-

ple be achieved by comparison to the behavior of strains with improved glucose

or ethanol affinities. Such validation lies, however, outside the scope of this work.

Cell rearrangement upon diauxic shift

During the diauxic shift, an abrupt decrease of BI was observed (Figure 5.7) to-

gether with the appearance of a subpopulation of smaller cells (Figure 5.8). The

cell rearrangement is likely to have more underlying reasons than merely a mod-

ulation of the critical budding and division sizes. In fact, it has been reported that
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the difference in cell size between the two cells originating upon division - the big-

ger mother cell and the smaller new born cell - is more accentuated for growth on

ethanol than for growth on glucose [192, 193].

Furthermore, the diauxic shift is typically characterized by arrest in the in-

crease of biomass. As reviewed by Alberghina et al. [181], the budding transition

is likely to be resumed before the division, leading to a small increase of the BI

after a sharp downward shift. This can be described by an abrupt change in the

partition shape parameters. A small downward peak and consequent recovery

were observed in Figure 5.7 (t =22.9 h); however it should not be considered

as conclusive given the nature of the BI estimation procedure. Such an abrupt

change of the partition shape parameters allowing smaller cells to eventually ini-

tiate DNA replication and the budding process were however not captured when

considering the mean critical budding size (Figure 5.10). Indeed, the standardized

procedure developed in this work based on analyzing the DNA histograms is not

able to capture abrupt dynamics: it is necessary that a sufficient fraction of cells

with a smaller size initiating DNA replication is present in the population, for its

effect on the mean size of the subpopulation isolated as the critical budding band

to be observed. The sensitivity of the method may be improved by increasing

the number of analyzed cells for the cases when faster dynamics are expected.

Furthermore, cells of different ages could be distinguished experimentally by ad-

ditional staining [171], allowing specifically for isolating and comparison of the

newborn cells originated in the different growth phases.

5.4.5 Sensitivity of the model output to the partition function parame-

ters

The description of the partition function as a beta distribution (Equation (5.10))

implies that the two shape parameters, α and β, are defined. In a previous the-

oretical study by Mantzaris et al. [111], a symmetrical distribution with shape

parameters α and β equal to 40 was assumed without experimental evidences.

Other studies [110, 194, 195, 196] assumed the same symmetrical distribution
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and shape parameter values.

In this work, the numerical values of each of the shape parameters have also

not been directly estimated from the experimental data, but the effect of these pa-

rameters on the model outputs has been assessed. An experimental estimation of

the partition distribution (and corresponding shape parameters) implies determin-

ing the cell size distribution of a subpopulation of newly born cells: not only the

smaller cells originating from the bud but also the bigger cells that produced the

bud. This could be done taking a similar approach to Porro and Srienc [178]: at a

given time point all cells in a sample were stained with ConA-FITC (labeling the cell

surface) and resuspended in growth media. Assuming that the first partly stained

cells to appear correspond to cells that have just divided, the total protein content

of this subpopulation can be determined: a symmetric distribution will indicate a

symmetric partitioning (more equally sized cells) while an asymmetric (eventually

bimodal) distribution would indicate an unequal partitioning. It is, however, not

clear if this experimental procedure would allow for a quantitative estimation of

the shape parameters.

The numerical values chosen - a symmetrical distribution initially (α = β = 50)

and a left-skewed distribution from the diauxic shift onwards (α = 30 and β = 60)

- correspond to the best fit of the model predictions to the experimental data. The

change in the parameters from one growth phase to the next, reflects the fact

that the two cells originated upon division are more similar in size during growth

on glucose than during growth on ethanol.

Model simulations for different parameter combinations were compared in or-

der to assess the sensitivity of the model to the two shape parameters. Firstly,

simulations with different combinations of values for α and β during growth of

glucose were carried out, while maintaining those after the diauxic shift at α = 30

and β = 60 (Case I). The resulting model predictions are compared in Figure 5.11.

Secondly, simulations with different combinations of values for α and β after the

diauxic shift were made, while maintaining the initial values α = β = 50 for growth

on glucose constant (Case II). The resulting model predictions are compared in

Figure 5.12. The beta distributions corresponding to the various parameter com-
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binations are illustrated in Appendix B.

Concerning the sensitivity of the model to the partitioning function parameters

provided initially (Case I, Figure 5.11), the more asymmetrical the beta distribution

(i.e. bigger difference in the size of the two cells resulting from division) the slower

the growth is. The slower growth leads to a slower consumption of glucose and a

consequent time delay in the ethanol and dissolved oxygen profiles (Figure 5.11

a)). This can be explained by the existence of smaller cells (lower overall mean

cell size - Figure 5.11 b)) which require a longer time to go through the cell cycle,

i.e. spend more time in the non-budding stage (lower budding index - Figure 5.11

c)). Furthermore, the existence of smaller non-budding cells results in greater

oscillations of the budding index (Figure 5.11 c)).

As expected, a similar effect is observed when different parameter combina-

tions are used for redefining the partitioning function upon the diauxic shift (Case

II). The sensitivity of the ethanol and dissolved oxygen (model outputs) is how-

ever lower in this case (Figure 5.12 a)). After the abrupt decrease caused by the

arrest in the budding transition, the budding index increases upon resuming the

transition: the more symmetrical the partition function, the higher the predicted

budding index is upon resuming the budding transition. This is not surprising when

considering that, for a more symmetrical distribution, the cells accumulating in the

non-budding stage (during the arrest of the budding transition) have more simi-

lar sizes and, upon resuming the budding transition, will become budding cells at

approximately the same time causing a larger increase in the budding index.

5.5 Conclusions

This study focuses on understanding and modeling the dynamics of a yeast pop-

ulation in terms of development of the cell size and cell cycle distributions along

a batch cultivation. It consists of an example of a quantitative integrated analy-

sis of general physiology data (i.e. substrate and metabolite concentrations, OD)
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Figure 5.11: Comparison of the model outputs for different combinations of the shape
parameters in the partitioning function: α = β = 50 (black), α = β = 40 (blue), α = β = 60
(red), α = 40 and β = 50 (green), α = 50 and β = 60 (pink), and α = 40 and β = 60
(orange). a) variation of the macroscopic variables: glucose, ethanol, biomass and oxygen;
b) variation of the mean total protein content; c) variation of the budding index (BI).The
black and the blue lines coincide with the red one.

and single-cell flow cytometry data. The experimental single-cell measurements

for DNA and total protein contents, as well as the concentrations of substrate and

metabolites were interpreted also in the light of the gene expression studies pre-

viously reported in the literature.

The standardized procedures developed allow for identifying trends in the sin-

gle cell properties (critical sizes) along the cultivation. Although, these procedures

require the definition of a threshold (e.g. distance from the peak mode) and this

decision may introduce a bias, the same threshold decision is made for all the

samples, implying that the bias is systematic. On the contrary, manual gating for

each sample would introduce a random bias, while the use of the same fixed gates

for all samples would neglect the fact that the overall distribution shifts along time

thereby also introducing a varying bias.

Population balance models offer a framework to describe the dynamics of dis-

tributed properties in a wide range of applications. Although the first discussion on
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Figure 5.12: Comparison of the model outputs for different combinations of the shape
parameters in the partitioning function: α = 30 and β = 60 (black), α = 20 and β =
50 (blue), α = 30 β = 50 (gold), α = 40 and β = 50 (magenta), α = 50 and β = 60
(purple), and α = 40 and β = 60 (green). a) variation of the macroscopic variables: glucose,
ethanol, biomass and oxygen; b) variation of the mean total protein content; c) variation of
the budding index (BI).The black and the blue lines coincide with the red one.

the use of such models for describing microbial populations was published more

than forty years ago [143], reports on the application of the models to specific

examples and comparison to experimental results are scarce. One of the causes

for such a limited use of these segregated models, in a time where experimental

methods for measuring single-cell properties (e.g. flow cytometry, fluorescence

microscopy) are easily available, is the difficulty in translating observed behaviors

into the PBM growth, budding, division and birth terms.

The overall data analysis allowed for formulating two key kernel functions -

budding and division rates - based on dependence of the critical budding and di-

vision sizes on the glucose and ethanol uptake rates. Furthermore, the coupling

of the PBM to an unstructured kinetic model, proposed in this work, results in

a more comprehensive description of the phenomena taking place at different

scales (macroscale and microscale) during the cultivation. Such coupling is es-

sential for integrating the typical physiological data (averaged measurements for

the overall population), with distributed data collected at single-cell level, thus

achieving a model with improved prediction capacities at two levels of detail.
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The work here presented contributes towards linking experimental data and

PBM theoretical work: a new trend in the PBM community [14]. The proposed

model can be regarded as a tool for investigating these dynamics under differ-

ent scenarios e.g. pulse experiments, and comparing the different assumptions

against the experimental observations.

In the case of continuous or fed-batch fermentations where the glucose con-

centration in the feed is high, the integration of the proposed model and a compu-

tational fluid dynamics (CFD) model describing the distribution of substrate within

the reactor provides a valuable tool to study in silico the effect of non-ideal mix-

ing, and resulting substrate gradients, on the development of heterogeneous cell

populations.

Recently, the occurrence of distribution of protein levels (concentrations) for

a cell population was studied in silico using a PBM that incorporated a stochastic

description for gene expression [197, 198]. It was concluded that, although it is

often believed that the occurrence of bimodal distributions results from a bista-

bility of the gene regulatory network (e.g. [199, 200]), this bimodality may arise

even if the stochastic bistability does not occur [197]. This interesting observation

indicates that bimodality may be a consequence of the dynamics of a population.

A PBM including a deterministic, rather than a stochastic description of the pro-

tein production kinetics, may eventually be sufficient to describe the distribution

of protein levels in a microbial population. Moreover, as the interplay with the ex-

tracellular environment (e.g. available substrate) could be included, such a model

would be a valuable contribution towards understanding the impact of the devel-

opment of heterogeneous populations on the overall productivity, and would be

a better predictive tool for modeling large-scale fermentors where heterogeneity

has been observed [3] and still is a pending problem in practice.



Chapter 6

Population dynamics in a compartmentalized

continuously stirred tank reactor

Abstract

In Chapter 5, it was demonstrated that a model consisting of a PBM coupled to

an unstructured model was able to capture the development of a budding yeast

population, during batch cultivation, in an ideally mixed stirred tank reactor. In

this chapter attention is paid to continuous mode cultivations in non-ideally mixed

stirred tank reactors. A compartment model approach based on a two compart-

ment continuously stirred reactor is presented and compared to the predicted

behavior for a single compartment (ideally mixed) stirred tank reactor. The model

framework presented for the batch system Chapter 5 was adapted to a continu-

ously run system, and the critical transition sizes were defined as a function of

the available substrate concentration. The effect of reactor compartmentalization

on the dynamics of a population of S. cerevisiae is assessed, by comparison of

cell size and cell cycle position distributions, as well as profiles for macroscopic

variables such as glucose, ethanol and oxygen.
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6.1 Introduction

As referred in Chapter 2, large scale fed-batch and continuous cultivations are

commonly used in industry for the production of biomass and proteins (e.g. in-

sulin). Due to the variation of volume with time and frequent use of varying feed

profiles, the interpretation of results from fed-batch cultivations poses additional

challenges (in comparison to continuous cultivations). Therefore, continuous culti-

vations (chemostat) are frequently used in research studies, as well as in industrial

scale production.

With regard to continuous cultivations, oscillatory behaviors have been re-

ported for certain combinations of the dilution rate and the dissolved oxygen

concentration [201]. Such oscillations are observed for several variables such as

substrate (e.g. glucose), metabolites (e.g. ethanol) and budding index (a measure

of the distribution of cells over the different cell cycle phases). This type of oscil-

lations is partly related to the cell cycle [201, 202] and the alternation between

respiro-fermentative and respiratory metabolisms. Therefore, this phenomenon

is commonly designated as respiratory oscillations [202].

In the late 1980s and 90s, many research studies focused on this type of oscil-

lations and different models were proposed (a brief review was made by Bellgardt

[122] as well as by Beuse and coworkers [133]). Theoretical work on the induction

and mechanisms for sustaining such oscillations were discussed by, for example,

Hjortsø and Jensen [119] based on an age-structured PBM and the dependence of

the duration of a cell cycle (time to division) on the available substrate.

In particular, a segregated model considering two subpopulations (non-budding

and budding cells) was proposed by Cazzador and Mariani [109] (see also [137]).

A discretization according to cell mass was applied for each of the subpopulations.

The growth (increase in mass) for all cells for a given time interval is assumed to

be equal a constant factor, and distinct biomass yields on substrate were assumed

for the two subpopulations. Moreover, the extracellular environment is described



6.1 Introduction 95

by the substrate concentration, and the division of cells (when a critical size is

attained) is controlled by a substrate dependent parameter. An empirical math-

ematical expression is assumed for this dependence. Oscillatory behaviors were

successfully reproduced by this model.

In the work presented in this chapter, a PBM coupled to an unstructured model

has been used to describe aerobic growth of a population of S. cerevisiae in a

continuous cultivation. The model proposed in the Chapter 5 is extended in order

to describe the supply of substrate and the outflow. In comparison to the model

proposed by Cazzador and Mariani [109], the model proposed here includes the

following features:

(i) growth of an individual cell depends on cell mass and the extracellular envi-

ronment;

(ii) ethanol and oxygen are included as model variables, thus extending the

description of the extracellular environment;

(iii) two growth modes (on glucose or on ethanol) are considered, and the par-

titioning of cells (i.e. size ratio between mother and bud) upon division de-

pends on the particular growth mode;

(iv) the critical budding and division sizes are defined as continuous functions of

the substrate concentration (glucose or ethanol).

The effect of the operating conditions (dilution rate and glucose feed concen-

tration) on the structure of the population was investigated using the proposed

model. In agreement with experimental observations reported in the literature,

certain operating conditions lead to oscillating pseudo steady states, while steady

state is achieved for other conditions [201]. The oscillations arise from an alter-

nation between growth modes and adjustment of the population in response to

decreasing, and then increasing, substrate concentrations. Additionally, the im-

pact of compartmentalization in the bioreactor on the population structure and

the occurrence of oscillations is assessed.
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Mixing in large scale bioreactors is not ideal, and thus the development of

zones, representing different extracellular environments, can occur. For example,

the use of Rushton turbines in industrial fermentors (one of the most common im-

pellers used in industrial bioreactors due to the effective gas dispersion) has been

observed to generate compartments within the reactor due to the high axial flow

barriers created by the turbine [203, 204]. A compartment model approach allows

for a crude and simple way of taking spatial heterogeneity in a bioreactor into ac-

count, and assessing its impact on the biological phenomena [203]. Additionally,

the translation of a compartment model to a laboratory experimental set-up can

be easily achieved by using scale-down reactors [4].

In this work, a continuous cultivation of S. cerevisiae is described, first for a

single compartment model corresponding to the case of an ideally mixed stirred

tank reactor. Secondly, a two compartment model was used to describe a contin-

uous cultivation in a spatially heterogeneous stirred tank reactor where a highly

concentrated glucose feed is used: one compartment corresponding to the feed-

ing zone and a second one corresponding to the remaining reactor volume. The

population dynamics predicted for the homogeneous and for the compartmental-

ized reactor are compared, and the impact of considering reactor compartmen-

talization as well as population dynamics (rather than considering an average

description of cell behavior, the standard approach in most modeling studies of

fermentation processes) to describe the cultivation is discussed.

6.2 Modeling Aspects

6.2.1 Continuously stirred tank reactor (CSTR)

A schematic representation of a continuously stirred tank reactor (CSTR) with a

volume V is presented in Figure 6.1 a). The volume is assumed constant, and

thus the feed flow rate is equal to the flow rate at the outlet. The dilution rate
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(D = F/V ) defines the volume exchange rate. The PBM that was developed for a

batch system (Chapter 5) was adapted for the CSTR case (addressed in this chap-

ter) by adding a dilution term in the differential equations corresponding to each

cell size pivot and to each of the macroscopic variables described by the unstruc-

tured model. For conciseness, the formulation and implementation of the PBM

and the unstructured model will be only described for the case of the (more com-

plex) two compartment model. The same principles were used in the case of the

single compartment model. In comparison to Chapter 5, a different approach was

used for expressing critical budding and division sizes as function of the substrate

availability, as further explained in Section 6.2.3.

Figure 6.1: Schematic representation of a continuous stirred tank reactor: a) single com-
partment reactor; b) two compartment reactor.

6.2.2 Two compartment CSTR

In order to represent, in a simplistic fashion, the case of a non-ideally mixed stirred

tank reactor, a two compartment reactor was considered. In Figure 6.1 b), a



98 Population dynamics in a compartmentalized CSTR

schematic representation of the compartmentalized bioreactor is provided. A pre-

vious study reporting a CFD model for a 22 m−3 bioreactor [5], showed clearly

that a zone with high substrate concentration was formed in the top of the reactor

where the substrate feed was added (between the overhead space and first im-

peller). Analogously, a smaller compartment, with a volume V1, corresponding to

the feeding zone is considered in this study. A larger compartment, with a volume

V2, corresponds to the remaining volume of the reactor.

The substrate feed (F), an inflow to compartment V1, consists of a glucose

(substrate) rich medium. The internal flows F1 and F2 describe the transport from

the compartment V1 to V2, and from compartment V2 to V1, respectively. The

outlet of the reactor is located in V2. The oxygen supply is assumed to take place

exclusively in compartment V2. Continuous mode operation is assumed, implying

that the flow F into V1 is equal to the outlet flow from V2. Assuming constant

volumes V1 and V2, the following condition applies: F1= F2+F. For all simulations

presented in this chapter, V1 was assumed as 1/6 of the total working volume. As

example, a total volume (V) of 30 m3 was defined (V1 = 5 m3 and V2 = 25 m3).

6.2.3 Population Balance Model: compartment model

The population balance equation and boundary conditions for the two stage PBM

have been previously discussed in Chapter 5. In this case, four (2 stages x 2 com-

partments) population balance equations are necessary, and the dilution terms

taking into account the transport between compartments and outlet are included

in Equations (6.1) to (6.4). The same PBM boundary conditions apply to the two
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compartments (Equation (6.5)).

∂NNBV 1 (m,t)

∂t
+ ∂
∂m

[
rm(m,Z)NNB

V 1 (m, t)
]

=

−ΓB(m |Z) NNB
V 1 (m, t)

+2
mf∫
m

ΓD(m′ |Z)P (m,m′
∣∣Z)NB

V 1(m′, t)dm′

+F2
V 1
NNB
V 2 (m, t)− F1

V 1
NNB
V 1 (m, t)

(6.1)

∂NBV 1(m,t)

∂t
+ ∂
∂m

[
rm(m,Z)NB

V 1(m, t)
]

=

−ΓD(m |Z) NB
V 1(m, t) + ΓB(m |Z) NNB

V 1 (m, t)

+F2
V 1
NB
V 2(m, t)− F1

V 1
NB
V 1(m, t)

(6.2)

∂NNBV 1 (m,t)

∂t
+ ∂
∂m

[
rm(m,Z)NNB

V 1 (m, t)
]

=

−ΓB(m |Z) NNB
V 1 (m, t)

+2
mf∫
m

ΓD(m′ |Z)P (m,m′
∣∣Z)NB

V 1(m′, t)dm′

+F1
V 2
NNB
V 1 (m, t)− F2+F

V 2
NNB
V 2 (m, t)

(6.3)
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∂NBV 2(m,t)

∂t
+ ∂
∂m

[
rm(m,Z)NB

V 2(m, t)
]

=

−ΓD(m |Z) NB
V 2(m, t) + ΓB(m |Z) NNB

V 2 (m, t)

+F1
V 2
NB
V 1(m, t)− F2+F

V 2
NB
V 2(m, t)

(6.4)

NNB
V i (m0, t) = NNB

V i (mf , t) = NB
V i(m0, t) =B

V i (mf , t) = 0

m ∈ [m0,mf ]; i = 1, 2
(6.5)

Critical transition sizes

The critical budding and division sizes (µB and µD, defining the budding and divi-

sion rates, ΓB and ΓD, respectively) have not been modeled as functions of the

substrate uptake rate as previously proposed in the case of the batch cultivation

(see Chapter 5). Instead, the critical budding and division sizes were, in this case,

considered as continuous functions of the concentrations of glucose or ethanol in

the compartment, according to the following assumptions:

(i) If the concentration of glucose, in a given compartment, is equal to or above

0.1 gl−1, glucose growth is assumed for that compartment, and the critical

budding (µB) and division sizes (µD) are calculated based on the glucose

concentration, using Equations (6.6) and (6.7). The critical budding and di-

vision size maxima are 500 and 950 ch no. and minima of 300 and 550 ch.

no., respectively;

µB = 200
G

G+KµS
+ 300 (6.6)
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µD = 400
G

G+KµS
+ 550 (6.7)

(ii) If the concentration of glucose, in a given compartment, is below 0.1 gl−1,

ethanol growth is assumed for that compartment, and the critical budding

(µB) and division sizes (µD) follow Equations (6.8) and (6.9), corresponding

to maxima of 300 and 550 ch no. and minima of 180 and 300 ch. no.,

respectively;

µB = 120
E

E +KµS
+ 180 (6.8)

µD = 250
E

E +KµS
+ 300 (6.9)

(iii) If the concentrations of glucose and ethanol, in a given compartment, are

under 1e-6 gl−1, growth in that compartment is assumed to be equal to zero.

An estimated value for the saturation constant of the overall growth process

(corresponding to a specific growth rate of half of the maximum value) is

0.15 gl−1 [205].

The constants in Equations (6.6) to (6.9) were defined based on the trajectory

of the estimated critical sizes along a batch cultivation (see Figure 5.10). The

same saturation constant KµS was used for all equations and a value of 0.5 gl−1

was assumed. The partition shape parameters change according to the glucose

and ethanol growth modes as described in Table 6.1.

Table 6.1: PBM partitioning shape parameters for the two growth modes

Partition Parameter Glucose Growth Ethanol Growth
Shape parameter α 50 30
Shape parameter β 50 60
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Implementation of the PBM

A similar implementation approach as the one described in Chapter 5 was taken.

Using the fixed-pivot technique the population balance equations were discretized

for each of the 166 pivots. Equations (6.10) and (6.11) are the discretized equa-

tions corresponding to Equations (6.1) and (6.2), respectively.

For simplification the terms corresponding to the growth contribution from the

neighboring pivots are designated by θ, the negative division and budding term

is represented by γ, and the positive budding as birth term by ρ, as marked in

Equations (6.10) and (6.11).

In this case, as two compartments and two population states (non-budding and

budding) are considered, the ODE system matrix size is 664x644 (166 pivots x 2

compartments x 2 stages = 644 ODEs), as presented in Equation (6.12). The sub-

matrices on the top-left and bottom-right corners correspond to the PBM applied

to the compartments V1 and V2, respectively, in addition to the outflows for each

compartment (see Figure 6.1). The top-right and the bottom-left sub-matrices

describe the entrance of the cells due to the recirculation flow from V2 into V1,

and from V1 into V2, respectively.
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Coupling to the unstructured model

The unstructured model described in Chapter 5 has been extended to describe the

concentrations of glucose, ethanol and oxygen in each of the two compartments

(Equations (6.13) to (6.18)). As previously mentioned, the glucose feed is added to

compartment V1, and the oxygen transfer is considered to take place exclusively

in the compartment V2. As a consequence, the oxygen in V1 is only supplied

by the flow F2 and oxygen mass transfer from the gas to the liquid phase not is

considered in V1.

In a similar fashion to what was described and discussed for the batch system

in Chapter 5, the substrate dependent term in the growth kernel, λ(Z), is eval-

uated, in this case, for each of the compartments according to Equation (6.19).

Additionally, the biomass concentrations (in grams of dry weight per liter) in each

compartment, XV 1 and XV 2, is proportional to the number of cells estimated by

the PBM for the respective compartment (see Equation (5.18)).
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dGV 1
dt

= −rG,max
GV 1

GV 1+KG
XV 1 + F

V 1
Gfeed − F1

V 1
GV 1 + F2

V 1
GV 2 (6.13)

dGV 2
dt

= −rG,max
GV 2

GV 2+KG
XV 2 − F+F2

V 2
GV 2 + F1

V 2
GV 1 (6.14)

dEV 1
dt

=

qRedG =qTotalG −qOxidG︷ ︸︸ ︷
rG,max

GV 1

GV 1 +KG
− 1

a

(
min

(
rO,max

OV 1

OV 1 +KO
, a · rG,max

GV 1

GV 1 +KG

))
·jXV 1

− 1
k

(
min

(
rO,max

OV 1
OV 1+KO

−min
(
rO,max

OV 1
OV 1+KO

, a · rG,max
GV 1

GV 1+KG

)
, k · rE,max

EV 1
EV 1+KE

Ki
GV 1+Ki

))
XV 1

−F1
V 1
EV 1 + F2

V 1
EV 2

(6.15)
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(6.18)
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(
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(6.19)
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6.2.4 Solution procedure

A solution procedure similar to the one described in Chapter 5 was used. In this

case, as two compartments are considered, the growth factor λ(Z) is calculated

for each compartment (Equation (6.19)) as well as the critical size parameters and

partition shape parameters. A schematic representation of the solution procedure

used in the work presented in this chapter is provided in Figure 6.2. The MatLab

solver ode15s was used for integration of the ODE system (absolute and relative

tolerance were set to 1e − 3, while default values were taken for all other solver

options).

Due to the dependence of the critical budding and division sizes on the con-

centration of glucose or ethanol observed at a given time point, the ODE system

matrix (Equation (6.12)) has to be evaluated for each iteration of the solution

procedure, implying a significant computational effort. For the two compartment

model, a simulation for a cultivation of 80h took 5-7 hours computing time using

MatLab 2009b release on a 64-bit Windows PC with a 3.30 GHz quad-core pro-

cessor and 8GB RAM. When the ODE matrix is pre-calculated before entering the

iterative loop, the computational time is less than 1 hour (for the same machine).
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Figure 6.2: Iterative procedured used for solving the two-stage PBM and unstructured
model for a two compartment reactor
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6.3 Results

The impact of the overall dilution rate (D = F/V ) and the substrate concentration

in the feed flow on the cell size and cell cycle distributions of the budding yeast

population was investigated considering both a single compartment reactor and

a two compartment reactor. In the latter case, the effect of the recirculation flow

(F2) was also investigated. The simulated scenarios correspond to a full 2-level

factorial design and the center point. A schematic representation of the 2-factor

and 3-factor factorial designs corresponding to the single and two compartment

reactor, respectively, is presented in Figure 6.3.
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Figure 6.3: Two level factorial design used for evaluating the effect of the overall dilution
rate (D) and glucose concentration in the feed flow (Gfeed), as well as recirculation flow
(F2), on yeast population dynamics: (i) 2-factor design for the single compartment reactor),
(ii) 3 factor design for the two compartment reactor

6.3.1 Single compartment model

The variation of glucose, ethanol, total biomass (in cell dry weight) along time

for the single compartment reactor is presented in Figure 6.4. The cell size dis-
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tributions at the simulation end point, for each stage and compartment, are also

presented in the same figure.

Figure 6.4: Simulation results for scenarios A)-C), B)-D) and E)-G) for the single compart-
ment model: the variation of the concentrations of glucose (blue), ethanol (black), total
biomass (red) in gl−1, as well as DO (green) and BI (yellow) in percentage, is presented on
the plots on the left-hand side; the normalized cell size distributions for non-budding (full
blue line) and budding (dashed blue line) cells, as well as for total cell population (full black
line), for the final simulation time, are presented on the plots on the plots right-hand side.
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Figure 6.4: (Continued) Simulation results for scenarios F)-H) and I) for the single com-
partment model: the variation of the concentrations of glucose (blue), ethanol (black), total
biomass (red) in gl−1, as well as DO (green) and BI (yellow) in percentage, is presented on
the plots on the left-hand side; the normalized cell size distributions for non-budding (full
blue line) and budding (dashed blue line) cells, as well as for total cell population (full black
line), for the final simulation time, are presented on the plots on the plots right-hand side.

Considering an ideally mixed CSTR (i.e. single compartment), steady state is

achieved for all scenarios, except for scenario F)-H) where sustained oscillations

are observed. These oscillations are particularly visible in the budding index pro-

files and oxygen profiles (Figure 6.4). Following an oscillation period, the oxygen is

consumed following the consumption of glucose. When the glucose concentration

decreases below 0.1 gl−1, the partition coefficients change (switch from glucose

growth to ethanol growth) leading to an abrupt increase of the number of newly

originated non-budding cells (reflected by the steep fall of the budding index).

These small new cells grow slower than larger cells, and thus an accumulation of

the glucose and oxygen is observed. When the glucose concentration increases

to values above 0.1 gl−1, the partitioning parameters are re-set to the glucose

growth mode values, yielding an increase of the budding index.
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When comparing various operation conditions, Porro et al [201] suggested that

the occurrence of oscillations is observed in a defined range of dilution rates (and

thus glucose residual concentrations) and dissolved oxygen concentrations. Such

observations are in good agreement with the simulation results here reported.

The ethanol concentration at steady state is only residual for the scenario E)-

G). The increased ethanol production observed when the glucose feed concen-

tration increases, and the lower biomass yield when glucose is fermented rather

than oxidized, explains the small increase in biomass concentrations observed

when comparing scenarios I) and A)-C).

As a result of the residual concentrations of both glucose and ethanol observed

at steady state for scenario E)-G), the steady-state cell size distributions are sub-

stantially shifted towards smaller cell sizes. Oppositely, the steady state cell size

distribution predicted for scenarios B)-D) includes larger cells than observed for

other scenarios. This reflects the higher glucose concentration observed at steady

state for this scenario.

6.3.2 Two compartment model

When considering a compartmentalized reactor, significant differences, in com-

parison to the single compartment model, have been observed. The variation of

glucose, ethanol, oxygen, total biomass and budding index along time, as well as

cell size distributions observed at the simulation end time, are presented in Fig-

ure 6.5. Additionally, the concentrations of glucose, ethanol, oxygen and biomass,

as well as budding index predicted for all scenarios (at the end simulation time),

are compared in Figure 6.6.

Generally, scenarios where a low recirculation flow rate (F2) is imposed (A),

B), E) and F)) show the largest differences between compartments in terms of
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Figure 6.5: Simulation results for scenarios A) to E) for two compartment model: on the
left-hand side, the variation of the concentrations of glucose (blue), ethanol (black), total
biomass (red) in gl−1, as well as DO (green) and BI (yellow) in percentage; on the right-hand
side, the normalized cell size distributions for non-budding (full line) and budding (dashed
line) cells, as well as for total cell population (full black line) is presented for the final simu-
lation time.
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Figure 6.5: (Continued) Simulation results for scenarios F) to I) for two compartment
model: on the left-hand side, the variation of the concentrations of glucose (blue), ethanol
(black), total biomass (red) in gl−1, as well as DO (green) and BI (yellow) in percentage;
on the right-hand side, the normalized cell size distributions for non-budding (full line) and
budding (dashed line) cells, as well as for total cell population (full black line) is presented
for the final simulation time.

concentrations, but also with regard to predicted budding index and cell size dis-

tributions. This is not surprising, as a low recirculation flow rate implies that the

liquid exchange between compartments is limited, and, thus, the two compart-

ments show a more independent behavior. Indeed, in the extreme case that F2

would be zero, the two compartment system would, in fact, correspond to two

CSTRs operated in series.
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Figure 6.6: Concentrations of glucose, ethanol , dissolved oxygen and biomass, as well as
budding index corresponding to scenarios a) to i) for the compartments V1 (blue bars) and
V2 (red bars), for the simulation end time.

Residual levels of oxygen in V1, at steady-state, were predicted for all scenar-

ios. Contrarily, the highest dissolved oxygen concentration in compartment V2 is

observed for scenario G) (55 % saturation), whereas a residual oxygen concen-

tration was observed for scenario B). The glucose concentration in V1, at steady-

state, was higher than threshold value 0.1 gl−1 for all scenarios. The lowest con-

centration was ca. 1 gl−1 for scenario G), while the highest concentration was

of 245 gl−1 for scenario B). The lowest glucose concentration in V2 was also ob-

served in scenario G), and the concentration value (approx. 0.02 gl−1) is under

the threshold value of 0.1 gl−1, and thus ethanol growth has been assumed. Glu-

cose concentrations below 0.1 gl−1 at steady state are also observed for scenarios

C), E). For scenarios A), H) and I), concentrations of glucose, in compartment V2,

lower than 0.1 gl−1 are instantaneously observed during the oscillation period.

Indeed, oscillatory pseudo-states are observed for scenarios A), H) and I), char-

acterized by simultaneous oscillations of the extracellular environment variables:

glucose, ethanol and oxygen. The concentration of ethanol in V2 is an excep-

tion in the cases of scenarios A) and I): due perhaps to the high concentrations of
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ethanol and very low oxygen availability in compartment V2, it is likely that very

small variation in the ethanol concentration takes place and it thus not visible in

Figure 6.5.

In case of scenarios A) and I), oscillations were not predicted by the corre-

sponding single compartment model. Oppositely, for scenarios F) and H), oscilla-

tions are predicted by both single and two compartment models. This suggests

that the existence of sustained oscillations may be scale dependent: oscillatory

behaviors observed in laboratory scale experiments may not be transferred to

large scale and vice-versa. It seems that the degree of compartmentalization is

also a key operational parameter affecting the occurrence of sustained oscilla-

tions.While in the case of low dilution rate and high glucose feed concentration

(scenario A), a high degree of compartmentalization (low recirculation flow F2) re-

sults in oscillatory pseudo-steady state, a lower degree of compartmentalization

(high recirculation flow) is necessary for the occurrence of oscillations in the case

of higher dilution rate and lower glucose feed concentration (scenario H).

Oscillatory behaviors have been reported in the literature for low dilution rates

and/or limited oxygen availability similar to the simulated scenarios A), H) and I)

where oscillatory pseudo-steady states have been predicted, not only with regard

to oscillation of the glucose concentration but also of the BI and protein content

distributions [201].

The variation of the cell size distribution during an oscillation period is illus-

trated in Figure 6.7. As a result of the continuous dependence of the critical sizes

on either the glucose or the ethanol concentration, the adjustment of the cell size

distributions is smooth. Similar behavior was observed for scenarios H) and I).

When the concentration of glucose in compartment V2 decreases to values under

0.1 gl−1, the ethanol growth mode is considered for this compartment, and the

partition shape parameters are set to the values for ethanol growth. In addition,

a decrease in the budding and division sizes, that had taken place as a result of

the decrease in the glucose concentration (following Equations (6.6) and (6.7)), re-

sults in an accumulation of non-budding cells in compartment V2. This is reflected

by the increase in the low channel number peak in the non-budding subpopula-
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tions (see Figure 6.7, t=50.5 h) and an upwards peak which is visible in the total

biomass profile (Figure 6.5).

Due to the transport between compartments, the increase in the number of

smaller non-budding cells is also observed for compartment V1. A shift of the cell

size distribution of the budding population towards smaller channel no. is then

observed, as cells in the non-budding state initiate the budding process (the tran-

sition is controlled by a lower critical budding size). Due to the decrease in the

growth rate during this period (smaller cells grow slower), and a constant dilu-

tion rate, a decrease in the overall biomass concentration, and a corresponding

accumulation of glucose, are observed. This accumulation of glucose drives the

glucose concentration in V2 above the 0.1 gl−1 threshold, and thus the PBM parti-

tion parameters are reset to the glucose growth mode value. Parallely, the critical

budding and division sizes increase as glucose concentration increases (see Equa-

tions (6.6) and (6.7)). Consequently, the population shifts towards large cell sizes,

attaining the same distribution observed in the beginning of the oscillation pe-

riod. The predicted change in the population structure is qualitative agreement

with experimental work reported by [201] where the authors observed that the

population structure (in terms of protein content distribution) changed during an

oscillation period of the dissolved oxygen concentration.

In the case of scenarios D) and F), an adjustment of the budding and division

cell sizes in response to the decrease of glucose in both compartments results in

a small decrease of the budding index at the time point when the glucose concen-

tration in V2 steeply decreases. Also in the case of scenario G), an adjustment of

the budding index as a result of low glucose concentration is observed. However,

in this case, the glucose concentration in compartment V2 decreases to values

below 0.1 gl−1, implying that partitioning coefficients are set to ethanol growth

values, and leading to temporary oscillations that are damped with time.

When comparing scenarios A) and C) (corresponding to the same dilution rate

and glucose feed concentration, but different levels for the recirculation flow), a

higher biomass concentration is observed at the outlet (i.e. in V2) for the low re-

circulation scenario: an average biomass concentration of approximately 27 gl−1
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(along an oscillation period) is predicted for scenario A), whereas ca. 21 gl−1 is

predicted for scenario C). A biomass concentration of ca. 17 gl−1 is estimated by

the corresponding single compartment model. This is rather surprising as it could

be expected that higher titers are to be achieved in an ideally mixed reactor (i.e.

not compartmentalized). In this case, however, a higher biomass concentration

is predicted for the highly compartmentalized scenario A). The oscillatory behav-

ior predicted for this scenario implies that for each oscillation period a number of

non-budding cells are generated (as discussed above). As the mass concentration

is assumed to be proportional to the number of cells, the predicted biomass con-

centration increases with the described increase in the number of cells, although

these cells belong to smaller size classes. Indeed, when comparing, for scenario

A), the distribution of cells predicted for V2 for the two compartment reactor (see

Figures 6.5 and 6.7) to the one for the corresponding single compartment model

(Figure 6.4), the population is formed by smaller cells in the first case. Moreover,

a budding index of approx. 40% is estimated for compartment V2 for scenario A)

(as well as C)) whereas, a budding index of 50% is predicted by the single com-

partment model.
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Figure 6.7: Cell size distributions for the non-budding (full lines) and budding (dashed lines) cells populations during an
oscillation period, observed in compartments V1 (blue) and V2 (red), for scenario A).
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6.3.3 The effect of compartmentalization on overall biomass productiv-

ity and yields on substrate

The presented simulation results suggest that the degree of compartmentaliza-

tion, i.e. spatial heterogeneity, in a bioreactor may have a strong impact on the

distribution of cell properties (physiological states) of the cells collected at the

outlet of a CSTR. Also significant differences are observed when comparing over-

all biomass productivity (defined as the product of the biomass concentration at

the outlet by the overall dilution rate) and yields of biomass and ethanol (in g per

g of consumed glucose) for the one compartment and two compartment models

Figure 6.8.

Figure 6.8: Biomass productivity and yield on glucose, as well as the yield of ethanol on
consumed glucose for the one compartment (green bars) and two compartment (red bars)
models.

For both models, the highest productivity is achieved in scenario D), but due to

high ethanol production (and oxygen limitation in the entire reactor) the yield of

biomass is relatively low for this scenario. The highest biomass yield is observed

for scenario E) where the ethanol concentration (and thus yield of ethanol on glu-

cose) is residual. For the scenarios with lower glucose feed concentration (E), F),

G) and H)), the two compartment model predicts lower biomass yields on glucose

than the single compartment model, but a higher ethanol yield. In the cases with

higher glucose feed concentration (A), B), C) and D)), the two compartment model

predicts a slightly higher biomass yield and also a higher ethanol yield. The lat-
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ter is particularly visible for scenarios A) and C), characterized by a lower dilution

rate. This suggests that the compartment model approach, as oppositely to the

single compartment model, takes into account, to larger extent, the occurrence of

respiro-fermentative metabolism in certain zones of the reactor yielding a better

description of the cultivation.

6.4 Discussion and conclusions

The work presented in this chapter extends the description of a continuous culti-

vation by predicting the development of cell size distributions for two subpopula-

tions (non-budding and budding), as well as by considering the existence of two

compartments within the bioreactor. Cell size and cell cycle position have been

used in this work as cell descriptors following the model framework that had been

developed for a batch system. These cell properties are easily measured and are

deeply connected to growth (as discussed in chapter 5).

The integration of the population balance model and an unstructured model

allows for describing the dependence of both the budding and division critical

sizes on two different substrates, as well as incorporating the dependence of the

partition parameters on the growth conditions. Moreover, the Crabtree effect and

the availability of oxygen are accounted for when determining the growth rate.

The proposed extension of the population model framework to a continuous

cultivation allowed for reproducing respiratory oscillations that have been reported

in the literature for both laboratory and industrial set-ups. Such oscillatory pseudo-

steady states could not be reproduced using exclusively a simpler ODE based un-

structured model as for example the model proposed by Sonnleitner and Käppeli

[182].

A key difference between the formulation for a batch cultivation presented in
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Chapter 5 and the formulation for a continuous system presented in this Chapter 6

relies on the mathematical description of the dependence of the critical sizes on

the extracellular environment. In the previous chapter, it had been suggested that

the adjustment of the critical sizes is triggered based on the overall uptake rate

rather than based on a given concentration. The latter was suggested by compar-

ing the data collected experimentally within this thesis work and other results re-

ported in the literature. It is however important to notice that, at this point in time,

the complex cell mechanisms underlying the sensing of the substrate availability

and consequent adjustment of the regulation of growth (size increase) cell cycle

progression (summarized in the adjustment of critical transition sizes) have not

been clearly described in a qualitative fashion. Therefore, a quantitative (mathe-

matical) description can only be assumed. In order to explore alternative model

formulations, in this chapter the adjustment of the critical sizes was described as

a function of the available substrate concentration.

A compartment model approach as the one proposed in this chapter has been

proven to be useful for assessing the consequences of reactor compartmental-

ization due to non-homogeneous mixing patterns. From the study presented in

this chapter, it can be concluded that the existence of zones (due to substrate

gradients) where cells experience different environments may significantly affect

the system behavior in terms of achieving a steady state operation or an oscil-

latory pseudo steady state, as well as in terms of the predicted overall biomass

productivity and yields on glucose. The predicted variations in distributions in the

cell size and cell cycle position for various operating conditions, and degrees of

compartmentalization, may be perceived as an indicator for other cell properties

including the existence of distributions of mRNA levels of specific genes. A pre-

vious study [206] on large scale fed-batch cultivation (30 m3) has shown that,

indeed, significant differences in mRNA level of stress genes were observed in dif-

ferent zones in the bioreactor, specially for higher OD levels (i.e. longer cultivation

times).

The increase in computational effort resulting from the compartmentalization,

although noticeable, is rather acceptable for using the proposed model for testing

various scenarios in silico. One of the advantages of this type of analysis is that it
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is relatively easy to translate the results to a laboratory set-up. In the case of the

work presented in this chapter, the two compartment system can be implemented

in lab-scale by connecting two stirred tank reactors, as schematically drawn in Fig-

ure 6.9. Such a set-up is typically used for scale-down studies in order to simulate

large scale conditions in a laboratory set-up (as reviewed by [207]).

Other set-ups, such as a stirred tank reactor connected to a plug-flow reactor,

have also been used for scale-down studies (e.g. [4, 206]). However, a major chal-

lenge with regard to reproducing large scale conditions is related to the recircula-

tion flows that are imposed between the two bioreactors (compartments). In most

reported scale-down studies these flows are assumed without an experimental or

theoretical justification. It is, thus, difficult to assess if the flow conditions (and

consequently the rate at which cells are being transported between different en-

vironments, i.e. compartments) being tested on a scale-down set-up correspond

to realistic situations observed in larger scales. Specifically in this regard, the use

of computational fluid dynamics (CFD) simulations of flow patterns in large scale

reactors may provide a valuable contribution on determining (i) if compartmen-

talization occurs and for example the relative size of the formed compartments,

and (ii) the recirculation flows between existing compartments (e.g. [208]). A

review on the use of CFD for characterization and improvement of bioreactor per-

formance can be found elsewhere [160].

In this work, a higher biomass yield was predicted for a highly compartmental-

ized scenario in comparison to an ideally mixed single reactor. This could suggest

that by agitation patterns defining the recirculation flow (and not only agitation

speed, as often the description of agitation is reduced to) has a direct impact over

the biomass yield. At this point, this suggestion cannot however be regarded as

an accurate prediction. In order to be able to develop a model with good pre-

dictive power further information on the reactor system would be required. For

example, experimental characterization of the scale-down set up in terms of the

oxygen transfer coefficient observed in each of the compartment reactors would

highly relevant for obtaining a realistic model description of the system.

In conclusion, in this chapter a compartment model approach has been used
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to understand the effect of the spatial heterogeneity (i.e. the presence of defined

spatial zones corresponding to different extracellular environments) in a bioreac-

tor on the dynamics of a microbial population as well as on the overall system

behavior. It is, to my knowledge, the first time such analysis is made based on

a population balance model for describing the growth of a microbial population.

Analyses as the one here presented and the understanding that can be generated

by testing various scenarios in silico can be of great value as complementary tool

to the experimental scale-down studies.

Figure 6.9: Schematic representation of a scale-down reactor set-up consisting of two
connected continuously stirred tank reactors.



Chapter 7

Population dynamics in a spatially

structured microbioreactor

This chapter consists of an extended version of a peer-reviewed conference con-

tribution:

Lencastre Fernandes R, Krühne U, Nopens I, Jensen AD, Gernaey KV. Multi-scale
modeling for prediction of distributed cellular properties in response to substrate
spatial gradients in a continuously run microreactor, In: Iftekhar A. Karimi and
Rajagopalan Srinivasan, Editor(s), Computer Aided Chemical Engineering, Else-
vier, 2012, 31:545-549

Abstract

In large-scale fermentors, non-ideal mixing leads to the development of heteroge-

neous cell populations [3]. This cell-to-cell variability may explain the differences
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in e.g. yields when comparing large- and lab-scale cultivations. In this work, a

microscale bioreactor, where substrate gradients occur, is proposed as an in sil-

ico tool for exploring the complex interplay between flow conditions and popula-

tion dynamics. This tool provides a proof-of-concept of the integration of compu-

tational fluid dynamics (CFD) and population balance models (PBM) for describ-

ing microbial cultivations, in spatially heterogeneous bioreactors. The anaerobic

growth of Saccharomyces cerevisiae in a designed continuously run microbiore-

actor was modeled. A multi-scale model was developed consisting of a two stage

population balance model on the one hand, and a kinetic model integrated into a

flow model, on the other hand. The purpose of the model is to predict simultane-

ously local concentrations of substrate (glucose), product (ethanol) and biomass,

as well as the local cell size distributions.

7.1 Introduction

As discussed in Chapter 4, computational fluid dynamics (CFD) is a valuable tool

for describing fluid flows in, for example, bioreactors. Such a CFD model allows

for a description of the micro-environment that the cells experience at each loca-

tion in the reactor, and when coupled to kinetic models, the behaviour of cells at

each location can be predicted. Moreover, the integration of a PBM into the CFD

model would allow for predicting cell property distributions at each location in the

reactor. Indeed, by coupling the CFD with the PBM and an unstructured model

describing the bulk, a detailed description of the growth conditions and popula-

tion is obtained for each location in the reactor, as schematically summarized in

Figure 7.1.

An Euler-Lagrange approach (see Chapter 4) was applied by Lapin and co-

workers [154, 168] for describing lifelines of cells according to their trajectories in

a bioreactor. In such an approach, cells are considered as discrete particles (La-

grangian description) that are transported in the continuous phase flow (Eulerian

description). A structured model was used to describe the cell metabolism as a

function of the extracellular environment, implying that the any cell in the same
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Figure 7.1: Schematic representation of the integration of PBM and CFD models for simul-
taneous description of the transport throughout the reactor as well as local concentrations
and distributions of cell properties.

extracellular environment will behave in a similar fashion.

More recently, taking an Euler-Euler approach, Morchain and co-workers [209,

210] proposed an integration of a PBM, based on the growth rate as cell descriptor

variable, and a CFD model. The PBM described the dynamics of a cell population

where the overall specific growth rate corresponds to the average growth rate

over a distribution of growth rates for individual cells. An increase or decrease

of the growth rate of a single cell takes place in response to the specific rate

which the extracellular environment allows for: for example, a cell growing at a

slower rate than the maximum rate, that could be achieved given the glucose and

oxygen concentration in the surrounding medium, will increase its growth rate.

In the most recent publication [210], the PBM was integrated into a CFD model

for an ideal plug-flow reactor with a residence time of 1.6 h. A good agreement

between the profiles predicted by the integrated model and by a corresponding

batch model (where only the PBM was considered) was reported.

The main goal of the work presented in this chapter was to develop a simu-
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lation tool for in silico investigation of the interplay between flow conditions and

population dynamics: the result of the transport of substrate and biomass through

the reactor, and the dependence of population kinetics on local substrate concen-

tration. Such a tool provides a proof-of-concept of the integration of CFD and PBM

that could be used for simulating various flow conditions and kinetic models for

the cell population, including cases where spatial heterogeneity (i.e. gradients) is

observed.

Despite the significant increase in computational power observed in the last

decades, three dimensional (3D) CFD simulations including turbulence models still

require simulation times (from weeks to months) that are too long for using such

a models as flexible in silico simulation tools, where several scenarios and imple-

mentations are to be compared in a reasonable time frame. The computational

burden is further increased if internal components (monitoring probes, baffles,

sparger, etc.) of the bioreactor are included in the CFD geometry and require a

refinement of the mesh. Also the integration of kinetic models into the CFD code

consists of an additional computation layer that further aggravates the computa-

tional time.

In a first effort to address this research problem, it did not seem feasible to

start with a complex CFD model for a stirred tank reactor which due to complexity

of e.g. rotating parts (the stirrer) would require high computational power and

a significant simulation time. Indeed, another aspect that increases significantly

the complexity of a CFD model for a bioreactor is the aeration: on the one hand,

the presence of a sparger requires the use of a finer mesh (i.e. more detailed

and thus having more elements and nodes); on the other hand, describing the

presence of a gas phase as bubbles distributed in the liquid phase (i.e. two-phase

model) poses considerable challenges and implies a large additional effort from a

computational point of view.

Therefore, the focus in this chapter was shifted towards the microscale. Due to

the small dimensions, flows in the microscale are laminar and this decreases the

complexity of the CFD model, as a turbulence model can be omiited. Moreover,

the smaller dimensions imply a smaller number of elements and nodes in the CFD
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mesh, thus reducing the computational requirements significantly.

In this work, a continuously run flow-through microbioreactor was designed

and the anaerobic growth budding yeast was modeled. By only considering anaer-

obic growth, the supply of oxygen required for a typically aerobic cultivation is

disregarded, further reducing the complexity of the model and , thus, the compu-

tational effort. Also the formation and transport of carbon dioxide, as well poten-

tial growth inhibition due to its accumulation, were disregarded for simplification

purposes.

7.2 Modelling aspects

7.2.1 Flow-through microbioreactor

A microbioreactor was designed for this study. Just as a stirred tank or plug flow re-

actors, the proposed microreactor is, conceptually, a chamber or reservoir where

biomass initially existing in the reactor (by inoculation) grows as a result of the

consumption of the substrate provided in the inlet stream. A mixture of biomass,

substrate that has not been consumed, and formed metabolites is collected at the

outlet. In more detail, the designed microbioreactor consists of a channel (similar

to a plug flow reactor) and 5 spherical compartments placed in series around the

central channel, as depicted in Figure 7.2. Due to the existence of two symmetry

planes (xy and xz planes), only a quarter of the reactor was simulated to further

reduce calculation times, and it is represented in the illustrations provided in this

chapter.

The spherical compartments were added in order to (i) increase the total vol-

ume of the reactor, and (ii) increase the wall surface area implying a decrease of

the fluid velocity (as the fluid spreads when entering the spherical compartment).
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By increasing the residence time, it is possible to apply higher inlet flow rates (fea-

sible in an experimental set-up) without observing biomass wash out, compared

to what would be feasible for a simpler plug-flow reactor without such spherical

compartments.

Figure 7.2: Illustration of a section of the designed microbioreactor: the inlet is central
channel opening on the left, and the outlet corresponds to the central channel opening on
the right. The mesh used for numerical solution of the CFD model is illustrated by the black
lines for the reactor wall.

7.2.2 CFD model: Navier-Stokes equation for incompressible fluids

The Navier-Stokes equations describe the velocity or a flow field corresponding to

the transport of a fluid in a given volume. Assuming an incompressible fluid, and

constant density (ρ) and kinematic viscosity (ν), the Cartesian tensor form of the

Navier-Stokes equations is expressed by Equations (7.1) and (7.2), where p stands

for pressure and ui for a component of the velocity vector u = (u1, u2, u3). For

the first component, the vector equation is written as Equation (7.3).

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(7.1)
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∂ui
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= 0 (7.2)
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∂p
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(
∂2u1
∂2x1
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∂2x2

+ ∂2u1
∂2x3

)
i = 1

(7.3)

At steady state, the transport of a given species A (e.g. glucose or ethanol,

cells of a given size) in the flow is described by Equation (7.4), where the left-hand

side describes the convective transport, and the right hand side describes the

production (sources) or consumption (sinks) of the given species, by for example

a (bio)chemical reaction, and the diffusive transport. In this work the diffusive

transport has been disregarded for simplification purposes. Numerical solutions of

these equations, for the three Cartesian coordinates, using discretization methods

as finite-differences, finite-volume or finite elements are normally implemented in

the commercial CFD softwares, as the one used in this work.

u1
∂A
∂x1

+ u2
∂A
∂x2

+ u3
∂A
∂x3

= Sources− Sinks
+DA

(
∂2A
∂2x1

+ ∂2A
∂2x2

+ ∂2A
∂2x3

) (7.4)

7.2.3 PBM: budding and division critical sizes as functions of the local

substrate concentration

The population balance model used in this study consists of the population bal-

ance equations and boundary conditions presented in Chapter 5. The partition

shape parameters were assumed constant and correspond to the values used in

the previous chapters for the growth on glucose: α = β = 50. In this case, the

CFD model accounts for the species transport, and therefore it is not necessary to
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include a dilution (transport) term (as it was done in Chapter 6 for a continuously

stirred reactor).

The fixed-pivot discretization technique was applied (see Chapter 5) in order

to transform the population balance equations into a system of ODEs. In this

case, the number of pivots was reduced to 20, in order to decrease the computa-

tional effort necessary for the integration with the CFD model (see Section 7.2.5).

Hence, the discretized PBM consists of a system of 40 ODEs. Similarly to the work

presented in the Chapter 6, the critical budding and division sizes were defined

as a function of the local glucose concentrations, following Monod-type kinetics

(see Section 6.2). Maximum critical sizes will be considered in glucose abundant

locations, whereas the lower critical sizes will be observed for lower glucose con-

centrations. In locations where glucose is nearly depleted, minimum critical sizes

will be used by the PBM.

7.2.4 Unstructured model for the local consumption of glucose and pro-

duction of ethanol

As described in Chapters 5 and 6 for batch and continuous systems, the PBM was

coupled to an unstructured model describing e.g. the consumption of substrate. In

this work, the anaerobic growth of the budding yeast (instead of aerobic growth)

is considered. The unstructured model, consisting of Equations (7.5) and (7.6),

describes the local consumption of glucose, and the local production of ethanol,

as a function of the local biomass concentration (estimated based on the total cell

number, in a similar fashion to what was described in Chapter 5), and an estima-

tion for the local overall specific growth rate (dependent on the local glucose and

ethanol concentrations). The glucose feed at the inlet is accounted for by the fluid
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dynamics model, and therefore is not included in the kinetic expressions.

dG

dt
= − 1

YXG
λ(Z)X (7.5)

dE

dt
= −YEG

YXG
λ(Z)X (7.6)

7.2.5 Implementation of the integrated model in CFX 12.1

The commercial software CFX (v. 12.1, ANSYS Inc., Canonsburg PA, USA) was used

in this work. The reactor geometry and a mesh consisting of 32159 hexahedral

elements and 36535 nodes (see Figure 7.2), were created using ICEM CFD 12.1,

which is part of the CFX software suite.

The ODE system resulting from the discretization of the population balance

model, as well as differential equations for the unstructured model were imple-

mented in CFX as user defined expressions using the command expression lan-

guage (CEL) available in the software.

The CEL language does not offer any advanced mathematical manipulation

functions such as numerical integration. Therefore, the elements forming the ODE

system (see, for example, Equation (5.1)) for the PBM cannot be evaluated within

CFX 12.1. Consequently, the ODE system matrix (e.g. Equation (5.21)) was cal-

culated in MatLab for an array of glucose concentrations ranging from 0 to 100

gl−1 (with intervals as small as 1e− 3 for steep regions). For each element in the

matrix, a lookup table (saved as a .tex file) consisting of the calculated values of
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matrix term for the array of glucose concentrations was loaded into CFX. In this

way, the CFX model is able to evaluate, for each mesh node, the elements forming

the ODEs, according to the concentration of glucose present that given node, by

linear interpolation of the look up tables. A schematic description of these steps

is provided in Figure 7.3. As mentioned previously in this section, a small num-

ber of discretization pivots (20) was used. The reason for selecting such a coarse

discretization was the troublesome manual insertion of the equations and time-

consuming uploading of the look-up tables into the CFX for each of the elements

in the ODE system matrix.

Due to the small dimensions of the designed reactor, a laminar flow regime is

expected and, thus, a turbulence model was not used. Transport by diffusion was

not considered, and thus all diffusivity coefficients were assumed to be zero.

In order to prevent any fatal errors during the first iterations of the numeri-

cal solver, that may occur when solving a complex stiff problem, a steady state

solution for the flow problem was obtained before simultaneously solving (numer-

ically) the flow model and the PBM and unstructured models, until convergence

of the solution was reached (residuals for the flow model smaller than 10−5, and

constant cell size distributions at five different locations in the reactor).

Figure 7.3: Schematic representation of the incorporation of the ODE system matrix terms
for various glucose concentrations into CFX Pre 12.1: The matrix terms are calculated for
an array of glucose concentrations using MatLab; the resulting array for each matrix term
is saved into a text file; for each matrix term a CEL interpolation user function is created in
CFX Pre and the corresponding text file is uploaded as a look-up table for interpolation.
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Initial conditions

The same initial concentrations of glucose, ethanol and cells of various sizes were

assumed for all the locations in the reactor. The initial distributions of non-budding

and budding cells correspond to Gaussian distributions with means that approxi-

mately correspond to pivots 12 and 14, respectively. The values for cell concen-

trations with sizes assigned for pivots 1 to 20 are provided in Table 7.1. A budding

index of 1% was assumed.

Table 7.1: Initial values for glucose and ethanol concentrations, as well as cell number
corresponding to each cell size pivot.

Species Concentration Species Concentration
Glucose 1e-3 gl−1 Ethanol 5e-1 gl−1

Non-budding cells (no. cells l−1) Budding cells (no. cells l−1)
Pivot 1 4.7e5 Pivot 1 7.4
Pivot 2 7.2e6 Pivot 2 3.4e2
Pivot 3 8.1e7 Pivot 3 1.1e4
Pivot 4 6.7e8 Pivot 4 2.8e5
Pivot 5 4.1e9 Pivot 5 5.2e6
Pivot 6 1.9e10 Pivot 6 7.2e7
Pivot 7 6.3e10 Pivot 7 7.2e8
Pivot 8 1.5e11 Pivot 8 5.4e9
Pivot 9 2.8e11 Pivot 9 3.0e10
Pivot 10 8.0e12 Pivot 10 1.2e11
Pivot 11 3.8e13 Pivot 11 3.6e11
Pivot 12 2.9e14 Pivot 12 8.0e11
Pivot 13 1.6e14 Pivot 13 1.3e12
Pivot 14 6.3e13 Pivot 14 1.6e12
Pivot 15 1.9e13 Pivot 15 1.4e12
Pivot 16 4.1e12 Pivot 16 9.4e11
Pivot 17 6.7e11 Pivot 17 4.6e11
Pivot 18 8.0e10 Pivot 18 1.7e11
Pivot 19 7.2e10 Pivot 19 4.5e10
Pivot 20 4.7e9 Pivot 20 8.8e9
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Boundary conditions

The outlet was described as an opening, and the software option of opening pres-

sure and dirn was selected for boundary details (with a relative pressure of 0 Pa),

and the flow direction was set as normal to the boundary condition. The reactor

wall was defined as a no slip wall.

The inlet flow was defined based on a mass flow rate (see Section 7.3) and the

physical properties of water were assumed. A glucose concentration of 20 gl−1

was defined. The inlet flow does not contain any cells or ethanol.

7.3 Results

In this work, two different flow conditions were simulated in order to investigate

the effect of the flow rate on the cell size and cell cycle distributions at various

locations in the microbioreactor. Two inlet flow rates of 1 ng s−1 and 0.1 ng s−1

(i.e. approximately 3.6 µl h−1 and 0.36 µl h−1) were selected. Such flow rates

are within the operation range of a microfluidic syringe pump (as for example the

model NE-1002X commercialized by New Era, Inc. (Farmingdale NY, USA)).

7.3.1 Velocity profiles and streamlines

By solving the Navier-Stokes equations, the three dimensional velocity and pres-

sure profiles can be drawn from the CFD model solution. In Figure 7.4, the flow

velocity streamlines1 are presented for the two flow rate simulations.

1Streamlines are a family of curves that are tangent to the velocity vector of the flow. These show the
direction a fluid element will travel in at any point in time.
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Figure 7.4: Velocity streamlines for the two flow rate conditions: predicted streamlines for
the highest flow rate (3.6 µl h−1, top figure) and for lowest flow rate (0.36 µl h−1, bottom
figure).

As it could be expected, a difference of an order of magnitude in the flow

rates is reflected on an equal difference between the velocities for the two simu-

lation cases. The velocity decreases significantly when the flow enters a spherical

compartment and increases in the sections between compartments as pressures

increases when the flow is restricted to this central channel. The velocity in the

zones close to the compartment walls is nearly zero, and this will promote an ac-

cumulation of biomass in these areas, and prevent to some degree a wash out of

the biomass.

7.3.2 Glucose, ethanol and total biomass concentration profiles

The glucose concentration profiles for the two simulation cases are presented in

Figure 7.5. Glucose is supplied at the inlet of the reactor and is consumed along

the reactor as cells use it for growth, resulting in the production of ethanol. Due

to the higher residence time for the slowest flow rate (0.36 µl h−1) simulation, the

consumption of glucose is higher in this case and the glucose concentration found

in the last spherical compartments (closest) to the outlet is residual. Oppositely,
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in the case of the higher flow rate, a significant part of the supplied glucose is not

consumed, and a high glucose concentration is found at the reactor outlet. In both

cases, the glucose concentration at the walls of the spherical compartments is

nearly zero, indicating that cells, present in these zones of the reactor, experience

glucose depletion.

Figure 7.5: Glucose concentration profiles for the two flow rate simulation scenarios. The
contour shows the concentrations observed on the reactor wall (spherical compartments
and connecting channels walls) and symmetry xz plan.The reactor outlet corresponds to the
extremity closest to the bottom right corner.

The predicted profiles for the total biomass concentration are presented in

Figure 7.6. Due to the lower flow rate, and thus higher residence time, more

biomass is observed for this simulation (0.36 µl h−1) than for the higher flow rate

case (3.6 µl h−1). In the latter case, it is clearly visible that biomass does not

accumulate evenly on the spherical wall: higher concentrations are found in a

wall region closer to the exit of each compartment as illustrated in Figure 7.6. This

may be explained by the low flow velocities (nearly zero) observed in these zones,

preventing cells from being transported to other parts of the reactor. Cell death

is not considered in the model. Therefore, cells in these zones are not growing,

and most will remain in these zones unless an alteration in the flow pattern is

imposed and they are transported out of these regions. The glucose and ethanol

concentrations (Figure 7.7) in these zones are very low, supporting the conclusion

that growth does not take place or is residual in these areas.
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Figure 7.6: Total biomass concentration profiles for the two flow rate simulation scenarios.
The contour shows the concentrations observed on the reactor wall (spherical compartments
and connecting channels walls) and symmetry xz plan.The reactor outlet corresponds to the
extremity closest to the bottom right corner.

Figure 7.7: Ethanol concentration profiles for the two flow rate simulation scenarios. The
contour shows the concentrations observed on the reactor wall (spherical compartments
and connecting channels walls) and symmetry xz plan.The reactor outlet corresponds to the
extremity closest to the bottom right corner.

Ethanol is formed as glucose is consumed when growth takes place. Not sur-

prisingly, ethanol concentration is highest at the locations where both biomass

and glucose are present. When comparing Figures 7.5 to 7.7, it is possible to
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observe that generally the highest ethanol concentrations are found in the inter-

face between the central stream supplying glucose and the biomass accumulated

closer to the spherical compartment walls. However, in the case of the slower

flow rate simulation (0.36 µl h−1), a high concentration is observed in the central

part of the last spherical compartment, despite the fact that very low growth is

expected for this reactor location (low biomass and glucose concentrations). An

possible explanation for such high concentration of ethanol in the central stream-

lines is hydrodynamic focusing: as ethanol formed in other compartments is trans-

ported through the reactor, at each pass through a channel connection between

spheres, ethanol is concentrated in the central streamlines. Such hydrodynamic

focusing may be damped if diffusion had been taken into account in the CFD prob-

lem formulation.

7.3.3 Local cell size and cell cycle distributions vs. local glucose concen-

tration

In order to investigate locally the interplay of the flow conditions and population

dynamics, five locations in the reactor were selected and the cell size distributions

for the non-budding and budding cells predicted for each location were compared.

The selected locations correspond to five points probes at the same relative posi-

tion in each of the five spherical compartments as illustrated in Figure 7.8. Due to

their similar location relatively to the center of the spherical compartments, the

flow velocity, at the five probe points, is the same (1.65 µms−1). The average cell

size distributions for the two (cell cycle) subpopulations were, in addition, deter-

mined for the reactor outlet plane, and compared to the ones for the probe point

locations (Figure 7.9). Further, two additional point probes located on the central

channel were defined for the second and the last spherical compartments (B and

E, respectively, see Figure 7.8).

For both simulated flow rates, a greater share of smaller cells is found in the

compartment closest to the inlet (point A), where the highest glucose concen-

tration is observed. The smaller non-budding cells forming a peak with a mode
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Figure 7.8: Illustration of the selected planes and probe locations: a) five yz planes per-
pendicular to the central channel were defined at the center of the spherical compartments;
b) for each plane a point probe (green) was defined at the same location on the given yz
plane. Two additional point probes were defined on planes B and E at a location in the
central channel (yellow). The reactor inlet is located at the extremity closest to plane A.

around the pivot 6 (see Figure 7.9 a) and b)), are smaller than the non-budding

population given as initial conditions. These cells have most likely resulted from

the division of budding cells into non-budding cells with approximately half the

size. The bigger cell size peak may correspond to non-budding cells transported

from neighboring zones, where, due to lack of glucose, growth is residual and

thus cells preserve the characteristics of the initial cell size distribution. The per-

centage of cells in this bigger cell size peak for the non-budding subpopulation

increases for the probe locations closer to the outlet (Figure 7.9 a)), suggesting

that a fraction of these non-budding cells in the latter compartments may con-

sist of cells that are transported from previous compartments. In the case of the

lower flow rate simulation, the transport contribution to the overall behavior is

considerably smaller, and consequently the bigger size peak of non-budding cells

(Figure 7.9 b)) is very similar for all locations.

Slightly bigger cells are observed for the budding population (Figure 7.9 c) and

d)) in comparison to the non-budding one, as it would be expected based on the

model formulation. Similarly to the non-budding cells, two distinct subpopulations

(peaks) are also visible for the budding cells population, in both simulation cases,

corresponding to a peak with mode around pivot 12, and another peak with mode

in pivot 14 (the same mode as the initial distribution of budding cells). In the case
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Figure 7.9: Local distributions predicted for the point probe locations closer to the reac-
tor wall on plane A (orange), plane B (red), plane C (green), plane D (purple), and plane
E (blue), as well as average distribution predicted for the reactor outlet plane (grey): a)
Non-budding subpopulation for the high flow (3.6 µl h−1) simulation; b) Non-budding sub-
population for the low flow (0.36 µl h−1) simulation; c) Budding subpopulation for the high
flow (3.6 µl h−1) simulation; d) Budding subpopulation for the low flow (0.36 µl h−1) simu-
lation;

of the slower flow rate (0.36 µl h−1), the fraction of budding cells with a bigger

size seems to vary with the location (Figure 7.9 d)). As previously mentioned for

the non-budding population, these cells are most likely not growing, or growing

at a very low rate. A significant decrease in the glucose concentration to near

depletion levels is observed, for this slower flow rate, when comparing the first

(A) and second (B) compartments. It is, thus, not surprising that the fraction

of bigger non-growing budding cells is substantially higher for the second and

following compartments.

Considering the two probe locations in plane B (as marked in Figure 7.8), fewer

cells are found in the central channel (Table 7.2), and the smaller cell size peak for

non-budding cells is not as clearly visible (Figure 7.10 a)) at this location. A similar

behavior is observed for the two equivalent locations in plane E (see Figure 7.10
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Table 7.2: Concentrations of glucose, ethanol and total biomass (g/l) at the point probe
locations, and average concentration predicted for the reactor outlet plane. Points A to E
are located closer to the reactor wall on planes A to E. Points B2 and E2 correspond to the
point probes located in the central channel on planes B and E, respectively.

Flow rate: 3.6 µl h−1 Flow rate: 0.36 µl h−1

Biomass Glucose Ethanol BI Biomass Glucose Ethanol BI
(gl−1) (gl−1) (gl−1) (%) (gl−1) (gl−1) (gl−1) (%)

Point A 6.7e-4 2.0e1 1.0e-3 70 6.5 1.46 9.0 52
Point B 2.7 1.5e1 2.3 79 1.4 2.9e-25 5.3 19
Point C 6.5 6.7 6.3 78 2.1e2 0 1.6 5
Point D 1.7e1 2.7e-3 9.2 64 2.3e2 0 7.2e-1 2
Point E 1.2e1 1.6e-1 9.2 69 2.3e2 0 8.4e-1 2

Outlet 8.6 9.7 4.8 59 1.52e2 2.8e-8 3.76 6

Point B2 2.6e-2 2.0e1 5.9e-3 33 2.39e-1 1.98e1 1.1e-1 63
Point E2 6.6e1 2.0e-6 2.1e-1 43 1.7e1 1.1e-6 9.1 63

b)). In the case of the lower flow rate simulation (see Figure 7.11), a lower cell size

non-budding subpopulation (peak) is however only observed at the probe location

closer to the central channel in plane E (closer to the outlet). This implies that,

while for the higher flow rate (Figure 7.10 a) and b)) more growing non-budding

cells are abundant closer to the wall (smaller size peak), for the slower flow rate

these cells can be found in greater share closer to the central channel (Figure 7.11

a) and b)). This can be explained by the larger accumulation of biomass when

applying the lower flow rate, implying that the interface where cells are present

and in contact with glucose rich medium (where ethanol is produced) is located

closer to the central channel in the case of the lower flow rate and closer to the

wall in the case of the higher flow rate simulation.

Additionally, a larger fraction of smaller budding cells is observed in locations

closer to the central channel for both probes in plane B and E in the case of the

faster flow rate (Figure 7.10 c) and d)). This indicates that most non-growing (or

growing at a very low rate) budding cells are found closer to the wall in both

compartments.

In the case of the slower flow rate, there are clearer differences between com-

partment B and E (Figure 7.10 c) and d)). While in compartment B a smaller

fraction of bigger non-growing cells is observed in the central channel in com-
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Figure 7.10: Cell size distributions for the higher flow rate simulation (3.6 µl h−1) for: a)
the non-budding population at probe location closer to the wall (blue) and in the central
channel (red) on plane B; b) the non-budding population at probe location closer to the
wall (blue) and in the central channel (red) on plane E; c) the budding population at probe
location closer to the wall (blue) and in the central channel (red) on plane B; d) the budding
population at probe location closer to the wall (blue) and in the central channel (red) on
plane E.

parison to closer to the wall, this difference fades for compartment E. In the lat-

ter compartment, a large fraction of non-growing budding cells is observed both

closer to central channel and reactor wall. However, a significant fraction of these

non-growing cells (in plane E) are bigger cells for the probe location closer to the

wall, whereas a significant fraction of smaller budding cells is instead found closer

to the central channel (Figure 7.11 d)). This may be explained by the fact that

these smaller budding cells are probably originated in upstream compartments,

whereas the larger budding cells correspond to the inoculum cells (following the

initial distribution) which did not grow.
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Figure 7.11: Cell size distributions for the lower flow rate simulation (0.36 µl h−1) for:
a) the non-budding population at probe location closer to the wall (blue) and in the central
channel (red) on plane B; b) the non-budding population at probe location closer to the
wall (blue) and in the central channel (red) on plane E; c) the budding population at probe
location closer to the wall (blue) and in the central channel (red) on plane B; d) the budding
population at probe location closer to the wall (blue) and in the central channel (red) on
plane E.

Significant differences in the budding index at the various locations are ob-

served for the two flow rate simulations. A much lower BI is observed for the

lower flow rate, especially for locations closer to the wall in the spherical com-

partments C, D and E (2%, see Table 7.2). Taking into consideration that the BI is

only 1% for initial distribution (innoculum), the low BI at steady state, reflects the

fact that most cells at these locations where glucose is depleted, do not grow nor

undertake the budding and division transitions. Oppositely, in locations close to

the central channel, higher budding indexes are observed.

The great difference between the BI values for the central channel probe loca-
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tion in Plane E and the outlet can be further understood by analyzing Figure 7.12.

As above mentioned, high budding indexes are found in the central fluid stream

and decrease steeply when moving towards to reactor wall. At the outlet (similarly

to what happens in the channel connections between spherical compartments),

due to hydrodynamic focusing, the similar BI contour is observed.

Figure 7.12: Budding Index profiles ( in % of budding cells in the total cell population) for
a) Plane E and b) the reactor outlet (square section on the top right corner).

In summary, in regions where cell growth takes place (and thus cell cycle tran-

sitions occur) relatively high budding indexes are observed and a smaller size

subpopulation of non-budding cells is observed. For the lower flow rate, although

a significant higher hold-up of biomass within the reactor is achieved. A large

fraction of this biomass is not metabolically active (i.e. growing at very low rates,

or not growing), due to the existence of spatial glucose gradients. This explains

the fact that ethanol concentration at the reactor outlet is in the same order of

magnitude for the two flow rate simulations, although the biomass concentration

is approximately two orders of magnitude higher for the case of the lower flow

rate (0.36 µl h−1, see Table 7.2).

The initial population assumed for the simulation, which would correspond to

the inoculum in an experimental cultivation, has a strong impact on the steady

state cell size and cell cycle distributions, due to the existence of a non-growing

fraction of the overall biomass. In fact, when a BI of approximately 55% is as-

sumed for the innoculum and the same normalized Gaussian initial distribution

(similar to the distribution provided in Table 7.1) is used, the budding index ob-

served for the probe locations closer to the wall on planes C, D and E equals



7.4 Discussion and Conclusions 149

approximately 56%, while in the central channel probe locations on planes B and

E, the budding index equals about 50% (data not shown).

7.4 Discussion and Conclusions

The work presented in this chapter provides a proof-of-concept on integration of

CFD and a population balance model for describing microbial growth on a non-

ideally mixed bioreactor.

Without the coupling of the kinetic models to the CFD model, a comprehensive

description of the growth in the reactor, and limitations in the supply of glucose

to the accumulated biomass, would not be feasible. A simplified description of the

reactor as, for example, a series of plug flow reactors would not be able to account

for the fraction of the biomass that is not in contact with media containing glucose

and consequently does not grow.

Furthermore, the use of a population balance model provides a detailed in-

sight in the biomass and, as this work demonstrates, subpopulations with various

sizes and in different cell cycle phases contribute differently to the total biomass

depending on the location in the bioreactor. Consequently, cell growth rate (and

metabolic activity) is spatially heterogeneous, and what is observed when collect-

ing samples at the outlet is far from giving a comprehensive understanding of the

phenomena taking place inside the bioreactor.

Experimental studies are necessary in order to validate the results here pre-

sented and to confirm the usefulness and validity of the results and understand-

ing generated by in silico simulations such as the one presented. The construc-

tion of the bioreactor proposed in this work by microfabrication methods such as

micromilling should not pose substantial problems [211]. Also the collection of

samples at the outlet of the reactor for off-line analysis in a flow cytometer should



150 Population dynamics in a spatially structured microbioreactor

be straightforward. As described in Chapter 5, there are established methods for

measuring cell size and cell cycle distributions for a budding yeast population by

flow cytometry. However, the experimental determination of cell size and cell

cycle distributions at specific locations in the reactor may be difficult.

Alternatively, a microscope could be used for monitoring. Indeed, due to the

small dimensions, the microbioreactor could be used as a typical flow chamber

(e.g. [212, 213]) and cultivations could be performed under, for example, a fluo-

rescent microscope where a photography or video camera would be used for mon-

itoring the cultivation. The distribution of glucose within the reactor could perhaps

be visualized by using a fluorescent glucose analogue ([214, 215]) as substrate,

while the accumulation of biomass (as overall variable and not discriminating sub-

populations) could be monitored by use of a reporter system based on a consti-

tutive promoter2. More complex reporter systems could be developed in order to

monitor specific subpopulations of cells: for example, by targeting promoters of

genes specific to the G1 phase of the cell cycle, a fluorescent subpopulation of

non-budding cells could be monitored by microscopic analysis.

From a numerical point of view, the use of a discretized grid with only 20 pivots

may lead to numerical errors which are difficult to quantify in this work. However,

the increase in the number of pivots implies an additional computational effort for

a simulation and a cumbersome implementation of the model (pre-processing).

When using the CEL language in CFX, equations and user defined functions for pa-

rameter interpolation have to be defined manually. Indeed, this is a major draw-

back. CFX offers a feature for function definition using Fortran routines, but the

interface for this feature is far from being straightforward to use. For future explo-

ration of model frameworks as the one proposed, it might be more adequate to

find a more flexible programming environment. The use of, for example, COMSOL

(COMSOL Inc., Burlington MA, USA), another commercial CFD software, may be

more suitable as it provides a link to a advanced mathematical programming soft-

ware MatLab (MathWorks, Nattick MA, USA). This coupling to MatLab would avoid

the use of interpolation tables for each of the system matrix terms. It is often

heard in the CFD community that COMSOL still lags behind the ANSYS products,

2An unregulated promoter that allows for continual transcription of its associated gene.



7.4 Discussion and Conclusions 151

CFX or Fluent, for solving complex flow problems. However, in the case of the

work here presented, the bottleneck is not the flow problem but the simultaneous

solution of a population balance model. Therefore, the integrated use of COMSOL

and MatLab may consist of a more adequate alternative to the use of CFX. Another

flexible programming environment is offered by Open Foam, an open-source CFD

software. In this case however (as it is often for open source software) the degree

of user friendliness and the available technical support lag behind the commer-

cial softwares (either COMSOL or ANSYS CFX and Fluent). Further, it should be

noted that commercial softwares lag behind on incorporating the newest scien-

tific achievements, and in this regard the use of open source software may be

more advantageous.

Despite neglecting diffusive transport of species, which may perhaps have a

contribution to the system’s behavior that cannot be disregarded, it should be

noted that any numerical solution for a fluid dynamics model using an Eulerian

formulation (as used in this work) implies a numerical error, due to the truncation

error of infinite series used in the discretization of the differential equations. This

numerical error is frequently designated as numerical diffusion, as its contribution

is similar to the one of diffusive transport [216].

This work has proven that the integration of CFD and population balance mod-

els for describing the growth of a microbial population in a spatially heterogeneous

reactor is feasible, and that valuable insight on the understanding of the interplay

between flow and the dynamics of a budding yeast population (e.g. formation of

substrate gradients and non-growth zones) is gained. The development of in sil-

ico simulation tools may be used for hypothesis generation and testing, and when

coupled to an experimental set-up it may be used for process and reactor design

optimization.
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Chapter 8

Concluding remarks and future perspectives

The work presented in this thesis aimed at proposing modeling approaches in or-

der to describe the dynamics of a heterogeneous microbial population, in response

to a varying extracellular environment. More specifically, the project focused on

the use of population balance models for describing dynamic distributions of cell

properties during cultivation in ideally and non-ideally mixed bioreactors. A com-

partment model approach and computational fluid dynamics were used for de-

scribing non-ideally mixed bioreactors.

Saccharomyces cerevisiae was selected as model organism due to the prior

knowledge and know-how from project partners, as well as the vast available lit-

erature on S. cerevisiae physiology, metabolism and genomics. Cell size and cell

cycle were used as descriptors of the yeast population, and thus cell size dis-

tributions for non-budding and budding subpopulations were mathematically de-

scribed by the developed PBM. As discussed in Chapter 4, other cell properties

such as age have been used as cell descriptors. The main reasons for select-

ing cell size and cell cycle were (i) the close link between cell size and cell cycle

regulation, in response to variations in the growth conditions, (ii) the existence
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of previous literature (although mostly theoretical studies) proposing the use of

population balance models based on cell mass (size) as model variable, and (iii)

the existence of established methods for measuring these properties in yeast. A

strong focus was set, during this project, on mathematically describing the inter-

play been the regulation single-cell growth and cell cycle progression in response

to a changing substrate availability.

Using PBM for describing distributions of cellular properties

The work presented in Chapter 5, takes as starting point a multi-stage PBM using

cell size that had been proposed by Hatzis et al [110] for describing the desynchro-

nization of a S. cerevisiae population (initially formed exclusively by newly born

non-budding cells) under constant growth conditions. In order to establish the

critical budding and division sizes as functions of the substrate availability, stan-

dardized procedures were here proposed for analysis of the experimentally mea-

sured total protein content and DNA content distributions. The observed trends of

the critical sizes, along the cultivation, were incorporated in the PBM formulation,

and an unstructured model was used to link the dynamics of the distributed prop-

erties to the dynamics of extracellular environment variables (glucose, ethanol

and oxygen concentrations). The good agreement between the experimental re-

sults and the model framework predictions demonstrates that the dynamics of a

microbial population in response to decreasing substrate availability can be suc-

cessfully described in non-stochastic fashion.

Nonetheless, as discussed in Chapter 4, the use of a univariate PBM restricts

the description of the metabolic state of individual cells. A multivariate approach

using a vector descriptor of the physiological state of the cell could, in theory, pro-

vide the most comprehensive description of the population, as well as allow for the

identification of sub-populations characterized by co-existing properties (e.g. low

concentration of two metabolites and high concentration of a third one). Experi-

mentally, studies using simultaneous monitoring of various mammalian cell prop-

erties based on multi-wavelength fluorescent probes have been reported. How-
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ever, it must be emphasized that developing methods involving multi-wavelength

probes requires among other issues: the accommodation of various lasers in the

same equipment, and compensation strategies for dealing to light spill [217].

From a modeling perspective, further challenges arise as the formulation, im-

plementation and solution of a two-dimensional PBM implies a significant addi-

tional effort, particularly in the case where the shape of distributions is not known

beforehand. In such cases, e.g. of microbial populations, the discretization meth-

ods of moments or classes cannot be used without a significant loss of the desired

predictive model power. Therefore, a two-stage (non-budding vs. budding) de-

scription, instead of considering a second continuous variable, was preferred in

the work presented in this thesis. Shu and co-workers [197, 198] have solved a

PBM describing the regulated transcription and translation of a protein using a six

variable single kinetic model, by transforming the PBM into a stochastic Fokker-

Planck equation. Solution of a multivariate deterministic PBM, without projecting

the distribution into its moments or requiring other averaging of the distributed

cell properties, has not been reported, to the best of my knowledge.

Also the formulation of the multi-dimensional models is not straightforward:

it requires a mathematical description of how the various single cell properties

depend on each other, as well as of how cell propagation depends on these vari-

ous properties. Indeed, the formulation of a PBM (one, two or multiple continuous

variables) requires an assumption of single-cell kinetics for each variable, and a

description of the cell propagation. In the case of the cell size (mass), first-order

kinetics on mass, and a multiplicative specific rate dependent on the extracellu-

lar environment (λ(Z)), were assumed for describing the increase of single-cell

mass. Cell propagation (division and birth) were defined based on the mass of an

individual cell, reflecting the mechanisms of cell size regulation in response to the

growth conditions (substrate availability) in the cultivation medium (i.e. existence

of critical division sizes) that had been already proposed in the literature.

Assuming single-cell kinetics, for an intracellular cell descriptor (i.e. content

of a specific protein, the corresponding mRNA, or the intracellular concentration

of a metabolite), and defining mathematically how cells propagate may, however,
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not be straightforward. The most obvious choice would be to define single cell

kinetics using a structured model describing the average single-cell behavior: for

example, using Michaelis-Menten type of kinetics to describe the increase of the

single-cell content of a given protein P as a function of the intracellular concentra-

tion of substrate and decrease due to protein degradation (Equation (8.1), where

YPS is the product yield on substrate, rmax is the maximum production rate and kd
is the product degradation rate). The intracellular substrate concentration would

depend on the concentration of substrate outside the cell, and the cell mecha-

nisms for transporting it across the cell membrane.

dP

dt
= YPS · rmax

S

S +KS
− kd (8.1)

However, caution should be taken, as the average rates observed for a pop-

ulation may be different from the ones of a single-cell. For example, the same

decrease in the average protein content may be explained by a decrease in con-

tent in all cells, or the formation of a sub-population with much lower protein con-

tent while the remaining cells still present the initial protein content levels (see

Figure 1.1). While in the first case a certain average rate might be assumed for

all the cells, in the later case a much faster rate for decrease in protein content

might be observed for only a fraction of the cells. Indeed, the regulation of certain

genes results in switch-like behaviors [218].

Although flow cytometry is a very useful tool for measuring the distribution of

cell properties, this technique does not allow for determining kinetics of an indi-

vidual cell. Indeed, individual cells are not tracked along time when using flow cy-

tometry, but this technique provides time-instant descriptions (snap-shots) of the

cell populations. Much progress has been reported with regard to techniques for

single-cell measurements; however, the emergence of quantitative measurement

methods of single cell dynamics [219] has been very slow. Indeed, the number of

quantitative studies yielding single-cell reaction rates is extremely low.
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In an interesting study by Zensklusen et al. [220], an in situ hybridization

approach that detects single mRNA molecules was used for measuring distribu-

tions of mRNA copies and transcriptional activity for specific genes in single S.

cerevisiae cells. Distributions of mRNA copies and description of the expression

mode for different genes were evaluated using this technique (the corresponding

experimental protocol is provided in another publication [221]). Also many inter-

esting developments in the use of lab-on-chip devices have been reported in the

last years (as reviewed in [52]) including time-resolved (which allow to follow a

given cell along time) and non-time resolved approaches. Several valuable proof-

of-concept studies on applying genomic, proteomic and metabolomic analysis to

single cells have been reported. However, as noted by Fritzsch and co-workers

[52], such tools remain to be applied to central questions in systems biology. An

interesting question to be answered is how the expression of genes is regulated

in a single-cell in response to a varying substrate availability. For example, to the

best knowledge of the author, there are not any reports on single-cell kinetics for

protein production in S. cerevisiae under varying growth conditions.

With regard to the mathematical description of the cell propagation, in the

cases discussed in this thesis the birth of new cells, by division of a previously ex-

isting budding cell, is defined as a function of the PBM variable: the cell size. For

other potential cell descriptors (PBM variables), for example the content of a spe-

cific protein, cell propagation may not depend on the model variable (i.e. budding

cells with any content of the protein of interest undertake division). In this case,

a constant propagation rate may be assumed (e.g. [197]). The equal partitioning

of protein between the two newborn cells has been assumed in modeling studies

for simplicity (e.g. [197]), but any statistical distribution can be assumed (e.g.

Gaussian, uniform) to best reproduce experimental observations.

In the Preface of this thesis, it was mentioned that efforts had been made in

order to establish a PBM that described the dynamics of the distribution of green

fluorescent protein during batch cultivation of a S. cerevisiae reporter strain. In

this strain, the expression of GFP is controlled by a promoter for the ribosomal pro-

tein RPL22a [1]. From the experimental studies, it was possible to conclude that

the single expression of GFP decreased significantly during the diauxic shift, and
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the content of GFP was proportional to cell size (although the proportionality con-

stant depended on the growth phase). However, it was not possible to evaluate

the rate of GFP expression, translation, maturation and degradation, that would

be important for describing the single-cell kinetics. Furthermore, frequent sam-

pling and measurement was not feasible, due to logistic problems and the fact

that sample freezing resulted in damaged cell membranes and partial leakage

of the GFP (and thus the fluorescent signal was altered [1]). Although different

theoretical scenarios were simulated, a satisfactory agreement between model

predictions and experimentally measured GFP distributions was not achieved.

Similar modeling approaches may be applied for cultivations of other microor-

ganisms or cell lines (e.g. mammalian). A very similar PBM formulation as the one

used in this thesis (Chapter 5), based on cell size as model variable, has been used

for describing mammalian cell cultivations, and it could, in principle, be applied

for any unicellular organism. In the case of, for example Escherichia coli, cell cycle

progression is also dependent on cells attaining a certain critical size before DNA

replication is initiated [222]. Although cells propagate by cell fision (not budding),

a two-stage formulation similar to the one used in this thesis (corresponding to

different cell cycle phases) could be applied.

For other industrially relevant microorganism such as filamentous fungi, growth

and entanglement of the hyphae in pellets, and the number of active hyphae tips,

have a significant impact on the performance observed during cultivation. In this

case, a PBM where the model variables are the length of the hyphae and the num-

ber of actively growing tips may be formulated, as discussed by Nielsen [223].

Liu and co-workers [224] further developed the proposed PBM (based on hyphae

length as model variable [223]) by coupling it to a morphological model where

different metabolisms (e.g. consumption of glucose, production of streptomycin

- a secondary metabolite) are assumed. Parallel to the challenges found during

this PhD project, Nielsen [223] identified a need for more fundamental research

into the growth kinetics of the individual hyphae and how they interact with each

other when forming agglomerates.



159

Accounting for spatial heterogeneity within a bioreactor

The work described in Chapters 6 and 7 provides an extension of the model frame-

work presented in Chapter 5, for a batch system, to the cases of continuous cul-

tivations in well-mixed and non-ideally mixed bioreactors. Generally, the theoret-

ical studies provided in these two chapters demonstrate that in silico simulations

may allow for exploring and challenging the understanding of the interplay be-

tween flow dynamics, mixing, and population dynamics. Indeed, the interpreta-

tion of distributions observed at different locations and assigning causes for the

observed phenomena challenges the common understanding which results from

analyses performed by scientists trained to analyze and interpret results based on

classic average-behavior descriptions of the biological phenomena.

When applying the PBM within a compartment model approach for describing

a budding yeast continuous cultivation in a non-ideally mixed stirred tank reac-

tor (Chapter 6), it was possible to observe that the dynamics of the population

vary for different operating conditions. Moreover, the interplay between cell size

regulation and the substrate availability results in an attractor-repeller system

(decrease in substrate availability leads to decrease in size, which then leads to

an accumulation of substrate and consequent increase in size) yielding an oscil-

latory pseudo-steady state for certain operational conditions and degree of com-

partmentalization. An ODE based model describing the same variables (glucose,

ethanol, oxygen and biomass) does not predict oscillatory behaviors for these

conditions, for the case of a single or two-compartment model.

Oscillatory behaviors were indeed only predicted for specific combinations of

dilution rate, glucose concentration and recirculation flows.This suggests that an

optimization of the mixing, often aimed at improving oxygen mass transfer (by

exchanging e.g. the type of impellers) may have unexpected consequences on

the biological behavior of the system: a variation in the degree of compartmen-

talization may affect the population structure (and potentially the system perfor-

mance), despite other controlled operational conditions (dilution rate and feed

concentration) being kept constant.
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Summarizing, the compartment model has proven to be a simple, but valu-

able, approach for describing population dynamics in non-ideally mixed stirred

tank bioreactors, that does not imply an extraordinary increase in computational

effort, as a coupling of PBM to a CFD model would.

In Chapter 7, a proof-of-concept of the integration of a PBM into a CFD model

was achieved for describing anaerobic growth of S. cerevisiae in a continuously

run microbioreactor. Despite the simplifications that were made (a reduced num-

ber of cell mass pivots was used for discretization of the PBM, diffusion was disre-

garded, gas transfer was also neglected), the work presented provides an example

of the valuable (although, complex) insight that can be gained when coupling fluid

dynamics and biological descriptions of a system. The use of a CFD model for de-

termining flow patterns (velocity fields) enables taking into account phenomena

that were disregarded in simpler model approaches. For example, fractions of

biomass that are not metabolically active (because the fed substrate does not

reach the locations where these cells are found) may be identified, and it may,

thus, be possible to explain why the real product yield is lower than the value

predicted by other models.

The implementation of CFD models, and further coupling to kinetic descrip-

tions, in larger scales implies an enormous increase in the computational re-

quirements. Typically parallel and cluster computing are used to solve three-

dimensional models corresponding to pilot scale and large-scale models. Alter-

natively graphical processing units (GPU) have been used as replacement for the

traditional central processing units (CPU), or in hybrid approaches (e.g. [225]). A

decrease of the computational time up to two orders of magnitude has been re-

ported when comparing GPU to CPU processing (e.g. [225, 226, 227]). Nonethe-

less, such a large increase in performance has not been observed for all cases

(e.g. [228]).

The use of such resource- and time-demanding approaches seems only ad-

equate in the cases where the model framework is well defined and has been

proven suitable for describing the system. In this regard, various questions con-

cerning the description of the interplay between cell metabolism and extracellular
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environment remain to be answered (by experimental hypothesis testing) before

the efforts on solving a pilot- or large-scale CFD-PBM model describing microbial

growth in a stirred tank reactor seem justifiable. Indeed, such computationally

demanding studies will decrease to a minimum the possibility of using the model

framework as in silico flexible evaluation tool (as the one proposed in Chapter 7).

In the future, it might thus be more suitable, in a first stage, to study sepa-

rately the flow patterns in large-scale, and use the obtained knowledge to design

a realistic scale-down set-up. In a second stage, the experimental studies using a

smaller scale set-up can be used to generate new understanding of the biological

system, that can be translated into modeling tools for scenario evaluation and op-

timization. For example, a large-scale CFD model for a given stirred tank reactor

may be used to extract information on the degree of compartmentalization and re-

circulation flows between reactors, which can be translated in to laboratory scale

by coupling reactors and imposing comparable recirculation flows as determined

at larger scales.

Is data analysis and modeling lagging behind experimental de-

velopments in single-cell analysis?

It is a reality that, in the last decade, the areas of research and number of stud-

ies, where single-cell techniques has been used, have increased significantly. The

resulting collection of multivariate data does pose challenges with regard to data

visualization and interpretation, and not many new developments have been pre-

sented with regard to innovative model approaches. It is, however, my opinion

that important biological questions with regard to single-cell behavior during cul-

tivations remain unanswered, and a significant part of the literature focuses solely

on reporting single-cell observations and does not go deeper into proposing mech-

anisms that explain the observed features.

The theoretical modeling basis that exists today for describing distributed cell
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properties (with PBM) has been mostly proposed in the 1970s. The link to experi-

mental data and application to realistic problems is, however, still lagging behind.

Although the solution of a high-dimensional PBM, providing a more comprehensive

description of the population, may still be out of reach in the near future, I believe,

based on the work presented, that univariate PBM coupled multivariate descrip-

tions of the extracellular cellular environment, can be successfully be applied for

describing microbial population dynamics in response to a varying extracellular

environment. The biggest hurdle is still the formulation of single-cell kinetics. This

knowledge limitation may only be overcome if quantitative experimental studies

are specifically designed to this end, requiring a joint effort between specialists in

modeling and experimental work.

Taking cell heterogeneity into account within bioprocess opti-

mization

Despite the renewed interest in the study of cell heterogeneity and increasing

number of available experimental techniques for single-cell and population analy-

sis, the knowledge about the key mechanisms in the development of populations

(including single-cell kinetics) and the relation between operating conditions and

population kinetics, as well as the understanding of the real impact of the degree

of cell heterogeneity on the process performance and robustness, are, at this mo-

ment, still insufficient in order to be used for process optimization.

From an industrial point of view, although there are several reports on the

use of single cell methods such as flow cytometry for monitoring of industrial pro-

cesses [57], the complexity associated with the analysis of the collected data, and

the formulation and solution of segregated models (e.g. PBM), are still, at this mo-

ment, large obstacles to the integration of these techniques in industrial common

practice. It should be realized as well here that many industrial fermentation pro-

duction facilities are used for the production of a series of different products, each

with a different strain. In such a production plant, efficient use of flow cytometry is

even more challenging since data interpretation methods most probably will need
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to be adapted to each strain individually.

The overall research projects this PhD was part of (see Preface) have as as-

sumption the existence of an optimal degree of heterogeneity yielding improved

process robustness. There is, however, still a significant way ahead until it is

possible to define an optimal degree of heterogeneity and corresponding con-

trol strategies (in order to run the process at these optimal performance and/or

robustness conditions) are proposed. It is, to my opinion, up to the academic re-

search community to continue efforts in order to prove the benefits in applying

more sophisticated experimental and modeling population based methods, when

addressing industrially relevant challenges. Until then, it is not foreseeable that

a real paradigm change in the design and optimization of industrial bioprocesses,

by monitoring and modeling distributed cell behaviors rather than only averaged

ones, will take place.
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With the continuous development, in the last decades, of analytical techniques providing complex
information at single cell level, the study of cell heterogeneity has been the focus of several research projects
within analytical biotechnology. Nonetheless, the complex interplay between environmental changes and
cellular responses is yet not fully understood, and the integration of this new knowledge into the strategies for
design, operation and control of bioprocesses is far from being an established reality. Indeed, the impact of cell
heterogeneity on productivity of large scale cultivations is acknowledged but seldom accounted for. In order
to include population heterogeneity mechanisms in the development of novel bioprocess control strategies, a
reliable mathematical description of such phenomena has to be developed. With this review, we search to
summarize the potential of currently available methods for monitoring cell population heterogeneity as well
as model frameworks suitable for describing dynamic heterogeneous cell populations. We will furthermore
underline the highly important coordination between experimental andmodeling efforts necessary to attain a
reliable quantitative description of cell heterogeneity, which is a necessity if such models are to contribute to
the development of improved control of bioprocesses.

© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Bioprocessing operations use the activity of living cells for the
production of biomass or other products resulting from the cellular
metabolism such as proteins, antibiotics or antibodies. In a typical
bioreactor operation, cells are kept viable and at a desired state of
metabolic activity by adjusting the nutrient levels and reactor
variables (e.g. pH and temperature).

As the microbial cultures used in the bioprocess are, most
commonly, isogenic, cell heterogeneity would not be expected if the
environment was well controlled at adequate conditions. Nonethe-
less, population heterogeneity has been observed at large scale. In
fact, the scale up of bioprocesses from bench-scale to large scale may
lead to lower yields and productivities and an increased by-product
formation (Bylund et al., 1998; Enfors et al., 2001). This is caused by a
decreased capability to maintain a homogeneous environment in
large scale bioreactors as compared to well-mixed bench-scale
bioreactors used for process development.

Therefore, while the assumption of a perfectly mixed reactor
might be realistic for bench-scale reactors, it certainly is not for large
scale bioreactors. Due to limited mixing and mass transfer, gradients
of, for example, substrate, oxygen and pH are observed in larger
reactors (George et al., 1998). In fact, substrate concentrations may
range from high concentrations close to the feed port to residual
concentrations in zones more distant to this port, the latter caused by
different rates of mixing and biological reaction (Larsson et al., 1996).
Cells circulating in the reactor are subjected to successively changing
conditions, which, by inducing genetic, metabolic and physiological
responses, are held responsible for the development of heteroge-
neous populations. In the past, such populations were shown to
present lower productivity than homogeneous ones (Enfors et al.,
2001).

The monitoring and control of bioprocesses, found in industry
today, does not account for the heterogeneity in microbial popula-
tions. The cell properties, determined using on-line, at-line or off-line
monitoring methods, correspond to averaged values and, thus,
camouflage valuable information on the dynamics of the population
(cf. Fig. 1).

Due to the observed decrease in performance at large scale,
heterogeneity in bioprocesses was felt to be undesirable. Nonetheless,
it might be the key to cell population robustness as observed in tumors
(Kitano, 2004) or in cases of bacterial persistence (Balaban et al.,
2004). Similar to mechanical stress, which can be exploited to control
fungal morphologies to increase overall productivity (Papagianni,
2004), it might also be possible to take advantage of heterogeneity in a
microbial population for process optimization. In fact, to understand
and harness cell heterogeneity may show us a new path for achieving
improved robustness in bioprocesses.

The study of cell heterogeneity in its many aspects has been the
focus of the experimental work of many researchers in the recent
years, as the number of experimental methods available for single-cell
analysis has boomed (Schmid et al., 2010). However, this knowledge
has not yet been integrated into a generally accepted modeling
framework that is able to account for distributed properties within a
cell population, and thus can be used in the design and control of
bioprocesses (Müller et al., 2010).

In this contribution, we aim at a) presenting the concept of
heterogeneous microbial populations as well as briefly discussing the
main factors causing this heterogeneity; b) presenting experimental
methods used for studying of cell heterogeneity, in addition to
discussing the information within the data sets that these methods
yield; c) discussing the design of experiments on microbial cultivations
that can deliver information on the development of heterogeneous
populations as a result of variations in the extracellular environment;
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d) presenting and discussing model formulations that can be used for
modeling microbial populations, e) and finally, summarizing the
potential and future trends in modeling cell heterogeneity as means
to increase process knowledge, and, consequently, achieve better
bioprocess optimization and control.

2. Cell heterogeneity

Microbial populations have traditionally been thought of as large
clonal (i.e. isogenic) groups, thus encompassing identical individuals.
However, cell populations in spatially structured environments (like
in a large industrial scale bioreactor) can display substantial
heterogeneity, where individuals behave differently according to the
conditions experienced in their surroundings. This may reflect the
different environmental triggers that individual cells experience in a
seemingly homogeneous bioreactor (Aertsen and Michiels, 2004).
Consequently, the type of environment becomes a key factor for the
development of a population and can be considered as a driver of its
performance.

2.1. The environment as a driver of microbial population heterogeneity

Generally, environmental stress has been perceived to exert
negative effects on microbial populations. In nature, microorganisms
are exposed to fluctuating environmental factors, including changes
and extremes in temperature, pH, osmolarity, radiation and the
concentration of nutrients and toxins. Many microorganisms have
developed strategies to cope with such adversities. Central to cell
survival are maintaining the integrity of the cell membrane, folding of
proteins and the integrity of the DNA (Booth, 2002). To accomplish
this, bacterial cells have, for example, developed systems that sense
local conditions and determine when these become deleterious and
stimulate adaptation. Since response levels may be highest under
stress conditions, the control networks have been labeled “stress
response” systems (Lengeler et al., 1999; Norman et al., 2005; Ron,
2006). The microbial response to stress is generally accomplished by
changes in the expression of those genes whose products are required
to combat adversity (Marles-Wright and Lewis, 2007). Some of these
stress-induced genes seem to be genuinely specific while others are
induced by a wide variety of stresses, and are thus thought to be
general stress response genes (De Angelis et al., 2001; Lengeler et al.,
1999; Sørensen et al., 2006). Bacteria may use other mechanisms
involving physical strategies to survive local adversities, such a

sporulation or the use of a flagellum to move to more favorable
locations (Serrazanetti et al., 2009). Microbial responses to stress lead
to cell differentiation and population fragmentation. In such popula-
tions, microbial heterogeneity can be observed.

2.1.1. Biofilms
Biofilms are a clear example of bacterial population differentiation,

which, as a result of bacterial specialization yields sub-populations. As
the cells adapt to growth in these surface-associated communities,
they express phenotypic traits that are distinct from those expressed
during planktonic growth (Stewart and Franklin, 2008). Thus, biofilms
are spatially structured communities of single or multiple species that
show stratified behavior and physiology (Burmølle et al., 2007;
Stewart and Franklin, 2008). Within a biofilm, different layered
bacterial assemblages form physically and chemically heterogeneous
structures with complex architecture. Due to cellular metabolism, this
results in the formation of gradients of nutrients, oxygen, waste
products, pH, redox potential and electron acceptors. Such factors are
spatially influential, resulting in diverse niches on a microscale. This
may, at each microsite, select for bacterial variants that are best
adapted to the local conditions (Ponciano et al., 2009).

The variability in environmental conditions across space and time
(commonly observed in spatially non-homogeneous environments) is
called habitat heterogeneity. Thus, environmental conditions and
stress are main forces that drive microbial heterogeneity — much like
what occurs inside a bioreactor. Biofilm reactors are of extreme
relevancy to the understanding of cell heterogeneity, and quite
popular in wastewater treatment.Wewill, however, limit the scope of
this review to cultivations of single organisms in suspension.
Heterogeneity in biofilms has been reviewed elsewhere (Stewart
and Franklin, 2008;Wimpenny et al., 2000) and a general overview on
biofilms in wastewater treatment and correspondingmodels has been
edited by Wuertz et al. (2003).

2.2. Responses to environmental stress

The ability of a microorganism to survive stress conditions
depends on its genetic content, in which the capability to show
adaptive responses is stored. The adaptive responses that occur in a
population are classified in three ways: (i) responses at the
physiological level, in which cells change behavior (e.g. changes in
metabolism due to feedback regulation), (ii) responses at the gene

Fig. 1.Description of distributed cell properties. The structure of a population is masked by the use of average cell properties. Different population distributions can correspond to the
same mean value α of an experimentally quantifiable cell parameter (e.g. DNA content, NAD(H) concentration, cell mass). (Based on Dhar and McKinney, 2007).
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expression level (global regulation and specific operons (gene
regulation)), and (iii) those at the genetic level (genetic changes).

Physiological changes under stress conditions may include
byproduct accumulation, changes in substrate uptake capacity,
reduction of growth and increased requirements for maintenance
energy. For example, under carbon starvation Escherichia coli cells
become smaller and rounded and accumulate glycogen and polypho-
sphate (Chung et al., 2006). The DNA is condensed and rapid
adjustments in metabolism are made. Moreover, the transport of
many macromolecular precursors into the cell is shut down, and
ribosome synthesis is blocked. All responses are directed towards
keeping energy inside the cell (Chung et al., 2006).

Also, under these conditions, signal transduction systems transmit
instructions to the cellular transcription/translation machinery to
increase the expression of specific proteins that protect the cell from
stress (Moat et al., 2002). A complex network of global regulatory
systems with a multitude of molecular components ensures a
coordinated and effective response. Such regulatory components
include DNA, mRNAs, proteins (e.g. DNA- and RNA-binding proteins)
and alternative sigma factors (Wick and Egli, 2004). Under stress
conditions, different sigma factors with different promoter specific-
ities are induced, resulting in the expression of specific regulons
in response to different stresses. σS (RpoS) has been identified as a
general stress-responsive sigma factor in Gram-negative bacteria. It
helps bacteria to respond to stress like that experienced with the
entry into stationary phase. RpoS is the master regulator of general
stress responses like that seen upon acid exposure, starvation, high
osmolarity and high or low temperature (Delvigne et al., 2009).

Diversification of cell types may also result from DNA sequence
changes or rearrangements (Stewart and Franklin, 2008). Genetic
rearrangements are movements inside the genome, and encompass
several different classes of events: deletions, duplications, inversions
and translocations. Also, transposable genetic elements (transposons,
insertion/IS elements) can mediate rearrangements (Whoriskey et al.,
1987). Genetic rearrangements are thought to occur in a stochastic
manner; a single cell in a population that underwent a change may
create a mutated population with fitter cells more adapted to the
environmental conditions.

Studies on E. coli reveal a major contribution of transposons and IS
elements to mutagenesis (Arber et al., 1994). In studies of microbial
evolution, population takeovers due to stationary-phase mutational
events have also been observed in bioreactors by using serial transfer
of batch cultures (Lenski and Travisano, 1994). These model systems
create culture environments that are spatially structured but
essentially constant, leading to a selection of specific phenotypes
(Finkel and Kolter, 1999).

3. Experimental methods for characterizing and describing
microbial population heterogeneity

As discussed in the previous section, cell heterogeneity resulting
from an environmental pressure implies the co-existence of cells at
different physiological states. Being able to characterize and predict
the physiological state of individual cells in a microbial population
is of great importance in a biotechnological fermentation as 1) the
physiological state of the individual cell is the only factor that
determines the yield of any product, provided that the required
nutrients are present in non-limiting amounts, and 2) consequently,
the knowledge of the physiological state is a prerequisite for tuning
fermentation for optimal performance.

This knowledge has traditionally been acquired indirectly, by
measuring a number of parameters like pH, cell density, sugar
utilization and product formation. However, as the techniques in the
field of molecular biology have improved considerably, the physio-
logical state of cells during the fermentation process has been
addressed in much greater detail, primarily by addressing the

expression of individual genes, either at the global level by analyzing
the transcriptome, or by measuring the expression of genes of
particular relevance. Furthermore, the number of studies based on
methods able to quantify properties of single cells has increased
exponentially in the last years (Schmid et al., 2010).

These single-cell level studies generally aim at understanding the
mechanisms lying behind the origin of cell heterogeneity, the cause-
effect betweenobserved changes in cells and themicro-environmental
conditions in the vicinity of these individual cells, as well as the
variations in the environment at a macro-scale. Such methodologies
may be of physical, chemical and/or molecular nature and involve a
broad range of characteristics, which together give information about
the response of populations to environmental cues.

In Section 3, we aim at presenting the experimental methods,
which can be used for monitoring the physiological state of individual
cells during microbial cultivation. A schematic overview of the scope
of this section is presented in Fig. 2.

We start by briefly presenting global methods used to assess
genetic heterogeneity in microbial populations (cf. Section 3.1).
Global genetic methods allow for an analysis of the development
of a genetically heterogeneous cell population. However, these
methods are time-consuming and, thus, not suitable for on- or at-
line monitoring of bioprocesses.

Reporter systems are typically used in order to achieve an
alternative and simpler method for monitoring the cell physiological
state. In these systems, a reporter gene is used to monitor the
expression state of a certain gene, or the location of the corresponding
protein within a cell. In Section 3.2, we provide an introduction and
discussion on the use of these systems. In cultivations of strains
possessing such reporter systems, the heterogeneity of a population
(i.e. distribution of the fluorescent compound) is typically monitored
by either microscopy (image analysis) or flow cytometry.

In Sections 3.3 and 3.4, we proceed by presenting these two
analytical methods. Both microscopy and flow cytometry underwent
substantial advances in the last decades, and are nowadays essential
tools for monitoring physiological heterogeneity of microbial popula-
tions at single cell level. Indeed, a great number of the applications,
of both methods, relies on fluorescence monitoring for measuring
cellular parameters, such as the case of reporter systems where the
cellular component of interest is fluorescent (e.g. reporter proteins
such as green fluorescent protein (GFP)). In addition, these methods
allow for monitoring other intrinsic cell properties (e.g. cell size), or
structural/functional parameters (e.g. membrane integrity, DNA
content), by applying different staining procedures.

Various types of spectroscopic methods have also been applied in
monitoring of microbial populations. In fact, in order to achieve a
shorter development time, and a higher process understanding, the
bioprocess industry has been paying increasing attention to a variety
of on- and at-line monitoring methods (Dabros et al., 2008). With
regard to single-cell analysis, Raman spectroscopy holds promise as it
allows for gathering information about the intracellular composition
at single-cell level. We briefly address new developments in the use of
Raman spectroscopy in bioprocess monitoring in Section 3.5.

3.1. Global methods for identifying genetic and physiological
heterogeneity

Different technologies have been applied to study the genetic and
physiological variability found as a result of environmental stresses.

Amplified fragment length polymorphism (AFLP) analysis, pulsed-
field gel electrophoresis (PFGE) and repetitive DNA element (rep)-
PCR are, among others, frequently used methods for analysis of
heterogeneity across microbial genomes. Among these, the rep
fingerprinting methods are important; they are based on the use of
primers that anneal to repetitive elements in bacterial genomes,
which occur inmultiple copies. It has been demonstrated that rep-PCR
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fingerprinting is highly reproducible, being able to distinguish closely
related strains, to deduce phylogenetic relationships between strains
and to study their diversity in a variety of ecosystems (Rademaker and
de Bruijn, 1997). Other techniques, such as suppressive subtractive
hybridization (SSH) (which identifies sequences present in one
bacterial genome but absent in others) or DNA sequencing are very
useful to assess genomic differences between organisms (Beaumont
et al., 2009).

Other techniques as DNA microarrays offer a very promising
technology to identify microbial heterogeneity. In contrast to
conventional studies, which are constrained by a limited number of
target genes, microarray-based analysis allows high-throughput
analysis and quantification of multiple genes of interest (Wu et al.,
2008). Genomic hybridization to a whole-genome microarray detects
the presence or absence of similar DNA regions in bacteria, allowing a
genome-wide comparison of their genetic contents (Ye et al., 2001).
Information about diversity of communities at the level of sub-
populations can be obtained when techniques as the ones mentioned
above are combined with others such as flow cytometry (e.g. FACS, cf.
Section 3.4) which enables subpopulations to be distinguished and
physically sorted for further molecular characterization (Lacroix and
Yildirim, 2007).

3.2. Reporter systems

The global methods mentioned in the previous section provide the
foundation for the selection of specific genes whose expression level
confers the relevant information. They are however time-consuming
and expensive. As the vast majority of gene products are not easily
analyzed, reporter genes are used to confer the required information.
Reporter genes typically encode an enzyme whose activity can be
assayed easily, either directly (for some reporter systems this can be
done on-line) or after cell lysis. The use of reporter genes is one of the
oldest tools in molecular biology, initiated with the rIIB gene from the
E. coli T4 bacteriophage (Champe and Benzer, 1962).

The use of reporter genes is not restricted to confer information of
gene transcription frequency (RNA formation), but can also be utilized
to provide information about translation, and gene dose (amount
of DNA). Moreover, as discussed below, they may also provide
information about formation of protein complexes (protein–protein
interaction), polypeptide folding, and protein stability. Depending on

which parameters are to be addressed, the choice of reporter system
should be taken with caution. Reporters are species dependent, as the
reporter may act differently in various organisms according to codon
usage, translational start signals, protein maturation, and enzymatic
parameters.

Several successful applications of reporter systems based for
example on the expression of GFP and its variations have been
published in the literature. Although traditionally single-cell studies
based on reporter systems have been based on microscopic
observations, various studies where flow cytometry is used instead
have been reported, as reviewed by Davey and Kell (1996), Davey and
Winson (2003), as well as Diáz et al. (2010).

3.2.1. Genes encoding β-galactosidase
Since the early 1970s genes encoding β-galactosidases have been

extensively used as reporters (Miller et al., 1970; Silhavy and
Beckwith, 1985). The first gene was lacZ from E. coli and this gene is
still abundantly used, not only in E. coli but also in all cell types like
bacteria, yeasts, molds and even higher eukaryotes including human
cell lines. Fusions to lacZ are typically used to monitor gene
expression, either at the level of transcription or translation (Fig. 3).
In translational fusions, the promoter and translational initiation
signals (start codon and prokaryotic ribosome binding site) of the
gene that are going to be monitored are controlling the expression of
the reporter, whereas in transcriptional fusions, the translational
initiation is controlled by elements that are part of the reporter. These
elements need to be optimized for the particular organism. Another
issue that needs to be addressed is codon usage. If several rare codons
are present in the reporter, they have to be changed according to
codon distribution in the host. Neither of the fusions is a measure of
the absolute amount of RNA or protein but only relative values as any
manipulation of a gene affects its expressions by changing translation
efficiency, mRNA half-life, and mRNA maturation and translocation.

Reporters in high-copy-number are not suitable for monitoring
gene expression, as they most likely will titrate regulatory proteins
resulting in over- or underestimation of the expression level
dependent on whether the regulators are activators or repressors.
To avoid this, reporters are typically introduced at the chromosome
either by homologous recombination at the natural position of the
gene of interest or by insertion based on phage or transposon delivery.

Fig. 2. Monitoring cell physiological states at single-cell level. Methods that can be used for bioprocess control and optimization.
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3.2.2. Green fluorescent protein
Originating from the Pacific Northwest jellyfish Aequorea victoria,

GFP is a widely used reporter possessing a wealth of applications. It
can be used as a reporter protein in all cell types (see Fig. 4), including
bacteria (Chalfie et al., 1994; Christensen et al., 1996) and yeast
(Kahana et al., 1995; Niedenthal et al., 1996). Besides the usage as a
reporter of promoter activity, GFP is used as fusion tags to observe
protein localization within living cells.

GFP is a small bioluminescent protein of 238 amino acid residues.
Its chromophore is spontaneously generated by cyclization of Ser65-
Tyr66-Gly67 and 1,2-dehydrogenation of the tyrosine. With the
exception of oxygen needed for the activation of the chromophore
formation, GFP does not require substrates or other cofactors to
generate green light (Chalfie et al., 1994; Heim et al., 1994; Tsien,
1998).

The emission and absorption spectra of wild type GFP have been
optimized forfluorescence-activated cell sorting (FACS; cf. Section3.3)
and fluorescentmicroscopes (Cormack et al., 1996; cf. Section 3.4) and
alternative proteins with emission peaks ranging from blue to yellow
have been developed (Heim et al., 1994; Heim and Tsien, 1996; Tsien,
1989). Similarly, the folding efficiency and thermostability of the
relatively unstable wild type GFP have been optimized (Crameri et al.,
1996; Patterson et al., 1997; Yang et al., 1996). Besides taking into
consideration which GFP mutant will be optimal for the experimental
setup, the codon usage of the heterological reporter gene is also an
important factor to include. Fusion to a highly expressed protein could
be a solution to defeat slow translation initiation (Veening et al., 2004).

GFP has the ability to serve as a pH probe in aqueous solutions and
intracellular compartments in living cells, as different pH induces
changes in the fluorescence intensity (Kneen et al., 1998). While
many GFP mutants display good pH responsiveness, the excitation
spectrum of wild type GFP is essentially unaltered between pH 5.5 and
10 (Tsien, 1989; Ward, 1981; Ward and Bokman, 1982). GFP mutants
have been constructed with the ability to display changes in the
emission pattern dependent on the pH, thereby making the analysis
independent of the protein concentration (Hanson et al., 2002;
Miesenböck et al., 1998).

Similarly, whole-cell biosensors based on GFP fusion with stress-
regulated promoters can be used for sensing toxicity (Norman et al.,
2006; Sørensen et al., 2006), and fusions with growth dependent and
stress dependent genes (Brauer et al., 2008) may yield a more
sophisticated understanding of single-cell behavior.

3.2.3. Protein–Protein interactions
Several reporter systems for protein–protein interactions exist and

these may be based on colorimetric reporters (lacZ), auxotrophic
markers or fluorescent bioluminescent molecules. The yeast two-
hybrid system, which is still intensively used for protein–protein
investigations, takes advantage of the modular nature of many
eukaryote gene regulators that consist of a DNA binding domain
(DBD) and a DNA activating domain (AD). A protein of interest, the
bait, is translationally fused to the DNA binding domain (DBD) of a
gene regulator, typically the DBD of GAL4. Another protein of interest,
the prey, is fused to the DNA activating domain typically that of GAL4.

The DNA binding domain (DBD) binds to upstream activating
sequences (UAS) of GAL4 on the chromosome. If the two proteins, bait
and prey, interact, this interaction will bring the AD into proximity of
the promoter, thereby recruiting DNA polymerase II and exert
transcription of the reporter gene downstream of the promoter
(Chien et al., 1991; Fields and Song, 1989). The two-hybrid system
was originally developed for the yeast S. cerevisiae, but this type of
system is also available for prokaryote and mammalian cell lines
(Fearon et al., 1992; Joung et al., 2000). This two-hybrid system
screens for interactions between cytosolic proteins, but modifications
of the system have been developed that allow for screening for
interactions between various biomolecules. Protein–DNA interactions
can be analyzed in the one-hybrid screen (Li and Herskowitz, 1993),
protein–RNA interactions in the three-hybrid screen (Zhang et al.,
1999) and a system similar to the yeast two-hybrid, the split ubiquitin
system, which allows for analysis of interactions between membrane
molecules has also been developed (Stagljar et al., 1998). Also split
lacZ (Wigley et al., 2001) and split-GFP-based bimolecular screens
exist (Hu et al., 2002).

Fig. 3. Genetic maps of transcriptional (A) and translational (B) fusions of the promoter region of the gene of interest (goi) to lacZ. The DNA from the vector is shown in black, and the
genetic elements are in light grey. The DNA and the genetic elements from the inserted DNA are in dark grey. Transcriptional terminators are symbolized by hair-pins and the other
genetic elements (Shine-Delgarno: Ribosome binding sites, fMet: Initiator codon) are shown as boxes.

Fig. 4. Epi-fluorescence image of a Lactococcus lactis strain emitting green fluorescence.
The gene encoding GFP is expressed from a L. lactis promoter and the construct is
present in a single-copy on the chromosome.
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3.2.4. Protein solubility and stability
Translational fusions to GFP can be used for measuring protein

solubility. The fluorescence signal of E. coli strains expressing proteins
fused GFP have proved to be related to protein folding (Waldo et al.,
1999). The proteinsmay be fused to theN-terminal of GFP or as internal
fusions within the GFP reading frame (Cabantous et al., 2005). Fusion to
GFPmay affect solubility of target proteins. However, a modified fusion
method where a 15 amino acid GFP fragment (GFP-11) is fused to the
target protein allows, due to the small size of the GFP fragment, for
minimal effects on target protein solubility (Cabantous et al., 2005). The
remaining major part of GFP (GFP1-10) is expressed separately. The
two GFP fragments associate spontaneously and form fluorescent GFP.
However, if the target protein fails to fold correctly, this prevents
accessibility to GFP-11 and thus prevents a fluorescent signal. Protein
stability can also be quantified using reporter constructs. By transcrip-
tional fusions of Discosoma sp. Red (DsRed, a red fluorescence marker)
and GFP tagged to a protein of interest, the GFP/DsRed signal ratio has
been shown to report on protein turn over in the cell (Yen et al., 2008).

3.2.5. Förster Resonance Energy Transfer or Fluorescence Resonance
Energy Transfer

Förster Resonance Energy Transfer or Fluorescence Resonance
Energy Transfer (FRET) relies on nonradiative energy transfer
between two chromophores and is another popular means for
measuring protein–protein interactions and protein conformational
changes. Two proteins are tagged with a donor- and an acceptor
chromophore, respectively. The most popular donor–acceptor pair is
cyan fluorescent protein, CFP (donor) and GFP (acceptor) each of
them translationally fused to one of the proteins of interest. If the two
proteins of interest are dissociated, donor emission is observed upon
donor excitation, while in case the proteins associate (i.e. are in the
proximity of 1–10 nm), acceptor (and donor) emission is observed
upon donor excitation (Jares-Erijman and Jovin, 2003, 2006). When
protein conformational changes are investigated, one protein is
labeled with a donor at one end and an acceptor at the other end.
Conformational changes in the protein are then observed as changes
in the FRET signal. Like for the two-hybrid system, versions of FRET
have been developed for interactions of non-cytosolic proteins such as
receptor–ligand interactions as well as for protein function (Prinz et
al., 2008).

A similar technique, Bioluminescence Resonance Energy Transfer
(BRET), utilizes the bioluminescent luciferase instead of a fluorescent
donor molecule (Pfleger and Eidne, 2006). BRET, unlike FRET, does
not require a source of external illumination, but the ATP hydrolytic
activity of luciferase increases the risk of secondary effects on cell
physiology when using BRET.

3.3. Microscopy

Microscopic methods provide powerful tools to investigate
microbial heterogeneity with single-cell resolution. Both fluorescence
and light microscopy coupled to image analysis are very useful for
studies of individual cells in fermenting populations and can greatly
contribute to the knowledge about microbial population heterogene-
ity. Several stains originally developed and applied in microscopy are
now primarily used in flow cytometry (cf. Section 3.4). Despite the
advantages of using a high-throughput method as flow cytometry,
several stains and uptake of radiolabeled substrates are only or best
analyzed by fluorescence or light microscopy such as microautor-
adiography (MAR).

3.3.1. Fluorescence microscopy
Fluorescence-based microscopy methods are useful for a wide

diversity of applications ranging from industrial to environmental
microbiology (Joux and Lebaron, 2000). Stains that allow demonstra-
tion and quantification of nucleic acids, proteins, lipids or that stain

polyester or polyphosphate inclusion bodies, as well as assessing
membrane integrity are commercially available (Brehm-Stecher and
Johnson, 2004; Shapiro, 2000). Multiple fluorescent stains may be
used simultaneously, allowing collection of multiple parameters per
cell and thus giving more accurate evaluation of cell physiology
(Brehm-Stecher and Johnson, 2004; Joux and Lebaron, 2000). A
demonstrative multicolor fluorescence test with seven fluorochromes
applied on a single biological specimen has been presented by Adav
et al. (2010). The main attributes of fluorescence as a tool in micros-
copy are its specificity, sensitivity, temporal and spatial resolution
(Maukonen et al., 2003), and problems that might be encountered
include fading, photo-bleaching of the fluorochrome, and fluores-
cence-quenching (Maukonen et al., 2003).

Epifluorescence microscopy and confocal scanning laser micros-
copy (CSLM) are used for studying specimens that fluoresce. The
CSLM technique provides detailed, non-destructive examination of
thick microbial samples by controlling the depth of the scanning field
and the collection of serial optical sections. The latter allows for the
generation of three-dimensional images and thus the spatial analysis
of a microbial population. It also provides fluorescent scanning of
substances bound with different fluorochromes that are excited
using light at different wavelengths (Adav et al., 2010; Joux and
Lebaron, 2000; Maukonen et al., 2003).

Image analysis has become a valuable accessory for rapid
quantification purposes and handling of collected data in a wide
diversity of applications. It reduces subjectivity caused by manual
operation and allows automation. In some fields such as fermentation
technology, image analysis is essential for characterizing the physi-
ological state of the culture (Carneiro et al., 2009).

Several programs for quantification purposes are readily available.
IMAGEJ is a general program that is useful in many research fields,
though several other specific programs (e.g. DAIME developed by
Daims et al., 2006) were developed according to specific needs (Neu
et al., 2010). Staining techniques allow determination of individual
cell viability, activity, surface properties and internal storage com-
pounds and can contribute to knowledge about population heteroge-
neity. Examples of dye and probe based techniques are presented
below and summarized in Table 1.

3.3.1.1. Detection of cell viability. Cellular viability is one of the most
relevant physiological parameters to be assessed. Membrane integrity
is the most commonly used indicator of viability and is based on the
capacity of cells with intact membranes to exclude fluorescent dye.
Because of the fact that nucleic acid stains exhibit a large enhance-
ment of fluorescence upon binding, and since those molecules are
present in the cells at high concentrations, nucleic acid stains have
been widely used for membrane integrity assays (Carneiro et al.,
2009). Live/Dead staining is a method commonly used for the
assessment of membrane integrity (Boulos et al., 1999). It is based
on two fluorescent stains: SYTO 9, which penetrates all bacterial as
well as yeast cells, and propidium iodide stain (PI), which penetrates
only cells with compromised membranes, causing a reduction in the
SYTO 9 fluorescence when both dyes are present due to higher affinity
for nucleic acids. When both dyes are used in combination, viable cells
fluorescence in green whereas dead or damaged cells fluoresce in red.
Live/Dead staining kits are commercially available (BacLightTM) and
have already been successfully applied to a variety of fermentation
studies (Carneiro et al., 2009; Corich et al., 2004; Zotta et al., 2009)
where pure cultures were examined, as well as for investigation of
more complex, environmental samples (Freese et al., 2006; Hao et al.,
2009; Larsen et al., 2008).

Although PI seems be the most stringent indicator for membrane
integrity, its utility as universal indicator for microbial cell death
should not be overestimated. It was observed by Shi et al. (2007), that
for some species, viable cells from the early exponential phase can
incorporate PI and give a false positive signal. Another problem
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reported by several authors (Lisle et al., 1999; Stewart and Franklin,
2008) concerned the formation of a sub-population of cells containing
simultaneously both SYTO9 and PI inside the cells. These artifacts
appear to be live and dead simultaneously. As an explanation, it was
proposed that in cells withminimal membrane damage, PI has limited
access to the cytoplasm, allowing it to accumulate to concentrations
high enough to be visualized, but too low to totally quench SYTO 9
(Millard and Roth, 1997).

Another fluorescent stain used to assess cell viability on the basis
of membrane integrity is ethidium monoazide (EMA). This dye
penetrates only cells with compromised membranes (Riedy et al.,
1991). The technique was successfully applied by Regan et al. (2003)
on a pure culture of nitrite oxidizers to quantify the fraction of dead
cells in a population. However, Nocker et al. (2006) compared EMA to
propidium monoazide (PMA), which is another membrane imper-
meant dye used for viability assessment, and proved that PMA
exhibits better selectivity towards dead cells staining than EMA.

Poor staining of dead cells whose DNA is degraded can be a
common limitation for all DNA stains used to assess membrane
integrity (Joux and Lebaron, 2000). To overcome this problem another
approach utilizing Alexa Fluor hydrazide fluorescent dyes for the
detection of dead cells was developed. The membranes of living cells
are impermeable for this chemical, which can be used for the detection
of carbonylated proteins (Ahn et al., 1987). The quantity of these
proteins inside the cells increases after cells are exposed to stresses
or when they are in a stationary phase of growth (Saint-Ruf et al.,
2010). Using this method Saint-Ruf et al. (2010) performed precise
quantification of the fraction of dead cells in stressed and non-stressed
E. coli populations. Additionally, carboxyfluorescein diacetate (CFDA)
can be used as an indicator of microbial viability as cell-membrane
integrity is required for retention offluorescent stainingproduct inside
the cell (Joux and Lebaron, 2000; Miyanaga et al., 2007).

3.3.1.2. Detection of cell activity. The compound 5-cyano-2,3-ditolyl
tetrazolium chloride (CTC) is colorless andmembrane-permeable and
is capable of producing insoluble, red-fluorescing formazan crystals in
the cell when it is reduced by the electron transport system of
bacterial cells. This method is commonly applied to determine
respiratory activity and viability of single bacteria in cultures as well
as in many different complex microbial systems (Rodriguez et al.,
1992). It was used by many research groups for determination of
active bacteria both in pure cultures (Créach et al., 2003; Lisle et al.,
1999) as well as in environmental samples (Freese et al., 2006;
Nielsen et al., 2003a; Pyle et al., 1995). Unfortunately, as reported by
several researchers, CTC results are not always consistent with results
obtained with other methods used to determine the fraction of active
cells in a population (Créach et al., 2003; Nielsen et al., 2003a) and

sometimes tend to underestimate the real number of active cells. It
has been suggested that CTC is toxic to the cells and targets only the
most active cells (Joux and Lebaron, 2000; Sherr et al., 1999; Stewart
and Franklin, 2008). Additionally, problems associated with this
method concern the lack of a standardized protocol for using CTC and
the fact that results can be biased by CTC-media composition (Pyle
et al., 1995; Smith and McFeters, 1997).

Some authors point out the potential applicability of Fluorescence
In Situ Hybridization (FISH) for assessment of bacterial metabolic
activity. This approach is driven by the assumption that high ribosome
content in the cell would indicate physiological activity of this cell, as
the FISH signal intensity is a reflection of the ribosome concentration
within the cell (Poulsen et al., 1993). Thus changes of FISH signal
intensity could be quantified and would reflect fluctuations of the cell
metabolic activity (Daims and Wagner, 2007; Wagner et al., 2003).
However, the authors point out that this assumption is not true for all
bacterial species as it was proven that the ribosome content in some
bacteria is not correlated to their metabolic activity. To improve the
method the use of oligonucleotide probes that bind to the spacer
regions between the rRNA genes is recommended (Oerther et al.,
2000; Schmid et al., 2001; Wagner et al., 2003). Indeed, the synthesis
of pre-rRNA inside the cell stops as bacterial growth ceases.
Consequently, the pre-rRNA pool in non-growing cells is depleted
due to the continuous ribosome assembly process, being though
restored when growth resumes (Cangelosi and Brabant, 1997). This
type of FISH would then more precisely reflect bacterial activity.

3.3.1.3. Characterization of microbial surface properties. Cell surface
hydrophobicity (CSH) of bacteria could potentially be used for the
characterization of heterogeneous microbial populations as the
metabolic state may determine bacterial surface properties. Micro-
sphere Adhesion to Cells (MAC) was developed by Zita and
Hermansson (1997) to study CSH. It includes the use of fluorescent
polystyrene microspheres with a diameter of 0.1 μm (or smaller) and
defined hydrophobicity, which attach to the cell surface. The method
was applied by Nielsen et al. (2001) to determine CSH of specific
bacteria in activated sludge and it might also be applicable to bacterial
cultures. However, Heard et al. (2009) point out that interactions
between microspheres and cell surfaces are not simple as they are
controlled not only by hydrophobic effects but also by other types of
forces, e.g. electrostatic interactions. The authors point out that
surface chemistry of microspheres should be carefully considered
before the experiment.

3.3.1.4. Detection of internal storage compounds.Many bacteria are able
to accumulate storage compounds, which can serve as a reserve of
carbon and energy sources during periods of starvation and growth

Table 1
Examples of dye and probe based techniques for measurement of cell properties.

Properties Indicator Techniques

Cell viability Membrane integrity SYTO 9
Propidium iodide (PI)
Ethidium monoazide (EMA)
Propidium monoazide (PMA)
DNA stains
Carboxyfluorescein diacetate (CFDA)

+ Detection of membrane carbonylated proteins Alexa Fluor hydrazide fluorescent dyes
Cell activity

Respiratory activity Reduction of formazan crystals by the cell electron transport system 5-cyano-2,3-ditolyl tetrazolium chloride (CTC)
Reductase activity in cell electron transport system Redox Sensor Green (RSG)

Metabolic activity Ribosome concentration Fluorescent probes used in Fluorescence In Situ Hybridization (FISH)
Microbial surface properties Cell surface hydrophobicity (CSH) Fluorescent polystyrene microspheres designed for Microsphere

Adhesion to Cells (MAC)
Cell surface polysccharides Fluorescent lectin
Amyloidic fibrils Fluorescent antibodies
Various exoenzymes Fluorescent dye-labeled substrates

Internal storage compounds Polyhydroalkanoates (PHA) Nile blue
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e.g. polyhydroxyalkanoates (PHA) (Waltermann and Steinbuchel,
2005). PHA content in single cells can be visualized with a Nile blue
stain using the method developed by Ostle and Holt (Ostle and Holt,
1982). As the fluorescence intensity is proportional to the PHA
content of the cells (Page and Tenove, 1996), the PHA amount can be
quantified and the results can be used for investigation of bacterial
population activity. Kragelund et al. (2005) determined the distribu-
tion of PHA content among a Meganema perideroedes population in
activated sludge and used it as activity measure. Although the
application of this method was reported only for the activated sludge
sample, it presents the potential to be applied to industrial fermenting
populations.

3.3.1.5. Other fluorescent stains. A range of other stains is available
for studies of single cell characteristics by microscopy and in some
cases flow cytometry. These have, however, not yet been used to
study heterogeneity in fermentations but many may have a great
potential. These include the novel fluorogenic dye Redox Sensor
Green, which can be used for in situ detection of actively respiring
cells (Kalyuzhnaya et al., 2008) as well as staining of different surface
components such as polysaccharides (Neu et al., 2010), amyloidic
fibrils (Larsen et al., 2007) and various exoenzymes (e.g. Kloeke and
Geesey, 1999; Kragelund et al., 2005).

3.3.1.6. Quantum dots. Although not yet employed for examination of
fermenting population heterogeneity, Quantum Dots (QDs) present a
great potential as alternative to fluorophores to be utilized by
fluorescent microscopy in this type of studies. QDs are nanocrystalline
objects with diameter from 2 to 10 nm having broad absorption
and narrow emission spectra, which are dependent on composition
and size of the QD. They are available in a very broad range of well
separated colors. Their unique features are broadly described in
literature. QDs are up to 20 times brighter than organic dyes and are
resistant to bleaching. Long fluorescence lifetime of QD enables
separation of their signal from background fluorescence and unique
spectral features allow detection and tracking of multiple QDs signals
(Alivisatos, 1996; Michalet et al., 2005; Mazumder et al., 2009;
Walling et al., 2009; Bae et al., 2010; Fu et al., 2009). In prokaryotic
systems QDs have been applied mainly for external (cell surface)
labeling (e.g. Kloepfer et al., 2003; Zhao et al., 2004; Chalmers et al.,
2006; Bae et al., 2010; Mazumder et al., 2010). Metabolism-specific
labeling of bacteria was performed with the use of QD-adenine
conjugates (Kloepfer et al., 2005) as well as QDs functionalized with
citrate, isocitrate, succinate, or malate (Hirschey et al., 2006). Lately,
Wu et al. (2010) applied FISH with QD-based Molecular Beacon to
specifically detect β-lactamase genes located in a recombinant E. coli
plasmid. Although very promising, QDs possess several limitations,
which have to be considered prior to application. They have a larger
size than the conventional fluorophores, they sometimes exhibit an
on/off behavior resulting in “blinking” of the signal (Walling et al.,
2009; Mazumder et al., 2010) and, most importantly, QDs can be toxic
towards bacteria due to leakage of heavy metals as well as formation
of toxic compounds caused by QDs surface oxidation (Kloepfer et al.,
2005; Schneider et al., 2009).

3.3.2. Conventional light microscopy
Light microscopy alone or in combination with epifluorescence

microscopy can be applied to determine the substrate uptake by
individual bacteria by microautoradiography (MAR). The method is
based on the observation that the radiolabeled substrate taken up by
individual cells can be visualized with a radiation-sensitive silver halide
emulsion, which is placed over the radiolabeled bacteria and subse-
quently processed by standard photographic procedures (Carman,
1993; Nielsen and Nielsen, 2005). It is a powerful tool used first in
microbial ecology in the 1960s (Brock and Brock, 1966, 1968) and can
be used to detect cell viability, enumeration of bacteria capable of

consuming specific organic substrates, studies of autotrophic activity,
uptake of orthophosphate and potential use of various electron
acceptors. The method is usually applied in a semi-quantitative way
so bacteria in a population are determined to being active or non-active.
However, it is possible to perform quantitative MAR (q-MAR) so the
distribution of activities of individual cells in a certain population can be
analyzed (Nielsen et al., 2003b). MAR can be combined with different
fluorescent stains simultaneously giving a more accurate evaluation
of cell physiology. Examples are MAR combined with CTC and FISH
(Nielsen et al., 2003a).

In mixed microbial systems with several species, MAR can also be
combined with FISH (MAR-FISH) for identification of the different
bacteria so aspects of the ecophysiology of the specific species can be
investigated (Lee et al., 1999; Nielsen and Nielsen, 2005).

The radiotracers used are typically the soft beta-emitters like 3H,
14C and 33P. Common for all is that the silver grains on top and near
the labeled bacteria can be visualized by bright field or phase contrast
microscopy. Low energy emitters give the highest resolution. Tritium,
for example, has a resolution of approximately 0.5 μm while that for
14C and 33P is 2–3 μm. A detailed description of general procedures for
MAR can be found in several publications (e.g. Carman, 1993; Nielsen
and Nielsen, 2005).

3.4. Flow cytometry

Flow cytometry (FCM) is a tool that counts, sorts and examines
objects in suspension such as bacteria or yeast. It is a robust technique
that relies on the properties of light scattering, excitation and
emission to measure a variety of properties of single cells. The ability
of FCM to measure the properties of single cells allows the study of
phenotypic diversity of individual microorganisms (Brehm-Stecher
and Johnson, 2004).

The extensive variety of cellular parameters, that can be studied
simultaneously, and the facility to acquire information on how such
parameters spread in a cell population is of core importance to the
method.When cells pass through a light source, unique electronic and
optical parameters are measured based on groupings, succession and/
or ratios of selected parameters. The information obtained through
measurement of the selected parameters can then be linked with
different cell properties and components (Mandy et al. 1995).

Different methods have been developed in order to study diverse
cell properties such as size, intracellular pH and membrane potential
that can indicate diverse cellular characteristics such as the levels of
cellular components as including DNA, calcium, protein and surface
receptors.

Measuring properties of single cells within an entire population
can provide a more accurate and descriptive representation of the
population than average values attained from traditional techniques
(Rieseberg et al., 2001). Indeed, due to the possibility of measuring
distributed properties in cell cultivations, flow cytometry is a useful
tool in the study of heterogeneity inmicrobial populations (Davey and
Winson, 2003), and may provide valuable understanding for
bioprocess design and control (Diáz et al., 2010). It has for example
been used for monitoring dynamic changes in yeast gene expression
(Mateus and Avery, 2000), for control of biomass concentration
(Kacmar et al., 2006), for quantification of horizontal gene transfer in
bacterial populations (Sørensen et al., 2003), as well as for studying
heterogeneity of stress gene expression (Atfield et al., 2001). The role
of flow cytometry in molecular biology, with reference to gene
reporter systems, has been reviewed by Davey and Winson (2003).
Also several different industrial applications of flow cytometry have
been reviewed by Diáz et al. (2010).

3.4.1. Flow cytometer: principles
Within a flow cytometer, single cells are hydrodynamically

focused in a fluid stream within a carrier fluid known as the sheath
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fluid. The control of the system's pressure and the orifice size allows
the establishment of a cellular laminar flow regime. This hydrody-
namic focusing of the slower moving sample at the center of a rushed
flow stream creates a high speed single cell flow that is intercepted by
a light source (usually a laser beam) for the interrogation of particles'
properties. The light scattered or emitted by the cells or by cell-
associated fluorophores can be isolated and optically separated by
collection optics, mirrors and filters. If the angle of deviation of light
traveling through the cell flow is small, it will be detected as forward
scatter (FSC). Conversely if the angle of light deviation is big it will be
detected as side scatter (SSC). After collection with appropriate
wavelength filters, fluorescence is identified on a big angle detector.
This light will ultimately trigger a photomultiplier tube (PMT) that
augments the signal and finally converts it into a digital signal. Thus
FCM does not usually present real images of the bacteria as fluo-
rescence microscopy (cf. Section 3.3). Instead digital data is produced
and presented as dual-parameter plots or a single-parameter his-
togram (Bergquist et al., 2009; Czechowska et al., 2008; Davey and
Kell, 1996; Link et al., 2007) (see Fig. 5).

3.4.2. Measurable cell properties
The cell propertiesmeasured by FCM can be classified into intrinsic

and extrinsic depending on the method of measurement. Intrinsic
properties such as size or membrane composition can be studied
without the need to label the cells, in the FSC and SSC channels.
Moreover, the electronic volume measurement is commonly used for
cell size determination (Shapiro, 2004). Extrinsic parameters, on the
other hand, normally use fluorescent stains or fluorescence labeled
probes to studymicroorganisms' characteristics and components such
as membrane integrity or potential (Mandy et al., 1995). Given that
discrimination of dissimilar cell types and background is attained
using fluorescent labels, various fluorescent dyes and labels, also used
for microscopy studies (cf. Section 3.3.1), are available for targeting
specific biological materials (e.g. nucleic acids) or to signal biological
activities (e.g. enzyme activities or membrane potential), leading to a
deeper understanding of physiological and metabolic functions in
bacteria (Ishii et al., 2010). Today there is a wide availability of probes
and labels available, and the most adequate should be chosen
considering the specific strain and cultivation conditions which will
be studied (Shapiro, 2004).

The measurement of the three parameters (FSC, SSC and
fluorescence) is processed in real-time with help of specific software
packages supplied with the commercial instrument. Most of the FCM
software allows the operator to define areas of specific interest in a
procedure called “gating”. Gating works by digitally filtering the FSC
and SSC and fluorescence signals, targeting a subset of results. For
single-organisms gating can discriminate cells of similar properties
from a population or identify bacteria within a complex sample (Bahl
et al., 2004; Mandy et al., 1995; Hammes and Egli, 2010).

Due to different cell properties as size and shape, it is possible to
discriminate cells based solely on size and light scatter characteristics
and consequently, for example, differentiate bacteria from yeast (Veal
et al., 2000).

3.4.3. Fluorescence-activated cell sorting
An important extension of FCM is the ability of some flow

cytometers to physically sort cells according to their light scattering
and fluorescent properties, this feature is commonly known as
fluorescence-activated cell sorting (FACS) — this term, coined by the
Becton-Dickinson company, is now generically used by the scientific
community (Tracy et al., 2010). Depending on the instrument used,
there are different methods to capture a cell of interest. Nevertheless,
the sorting is always based on one or multiple combinations of user
defined cell characteristics. Practically speaking, FACS allows the user
to separate interesting sub populations of cells from complex
mixtures for further analysis on the basis of user defined limits to
FSC, SSC and fluorescence obtained in a given experiment (Ishii et al.,
2010).

In sum, this automated flow analysis of cells has the combined
advantages of allowing multi-parameter data acquisition and multi-
variate data analysis, high throughput and high-speed analysis and, as
mentioned, the ability to sort cells according to any combination of
parameters processed. Thus, FCM and FACS have inestimable benefits
for microbiology studies.

Detailed description of FCM and FACS principles are reviewed
elsewhere (Brehm-Stecher and Johnson 2004, Link et al. 2007,
Bergquist et al., 2009; Davey and Kell, 1996; Shapiro, 2004).

Combinations of FCM and FACS techniques with fluorescent
staining or labeling are readily used to shed light onto pertinent
areas of microbiological interest, namely by allowing the study of
three crucial aspects of the microorganism: the physiological state of
the microorganism, the transcription and protein biosynthesis, and
the measurements of structural or physical parameters of a cell (Tracy
et al., 2008, 2010). Thus, the techniques can be applied to study the
types of input that individual cell differences have and how these
contribute to heterogeneity within a microbial population.

Fig. 5. Distributed measurements of cell properties obtained by flow cytometry
analysis. (A) Bivariate distribution (Side scatter vs. Forward scatter) of GFP expressing
E. coli (in green) within a mixed bacterial population; (B) Bivariate distribution (GFP
Fluorescence vs. Forward scatter) of a S. cerevisiae growth rate reporter strain
expressing GFP during exponential growth on glucose.
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3.4.4. Physiological state of microorganisms
The study of the physiological state of a cell has been redefined

by the application of FCM as a tool. The term microbial “viability”
gained another dimension upon the disclosure that microorganisms
are not just alive or dead, but also have a range of transitional
states (Nebe-von-Caron et al., 2000). Existing fluorescent nucleic
acid stains are either able to permeate the membrane or not and
the combination of both types of stains, for example SYTO dyes
(green fluorescence) and PI (red fluorescence), is used in membrane
integrity assays (Allegra et al., 2008; Ben-Amor et al., 2005; Berney
et al., 2007). Furthermore, the cellular membrane potential is used
as a test of viability. Depending on the membrane potential and
whether the dye used is cationic or anionic, the cell emits (or not)
fluorescent signals with different intensities (Nielsen and Sjøholm,
2009; Novo et al., 1999). Measuring the changes in membrane
composition directly related with changes in the cellular physio-
logical state is also possible by using the stain 1,6-Dephenyl-1,3,
5-hexatriene (DPH) (Müller et al., 2000). Testing for enzyme activity is
generally done by allowing a membrane permeable nonfluorescent
substrate to be taken up by the cell and bemetabolized into a preferably
impermeable fluorescent substrate. Based on this principle, respiring
and non-respiring cells can be distinguished by the measurement of
dehydrogenase activity with, for example, CTC (Falcioni et al., 2008;
Gasol and Arstegui, 2007) although this method does not always
present consistent results (Caro et al., 2007). Another example of
enzyme activity that can be studied with similar practices is esterase
activity by staining with, for example, CFDA (Hoefel et al., 2003).
Membrane pump activity can also be assessed by loading different dyes
suchasPI or ethidiumbromide, into the cell andmeasuringfluorescence
reduction (Bunthof et al., 1999;Nielsen andNielsen, 2005). Another test
of viability is the measurement of internal pH and its variation with
culture change, using a probe whose fluorescent characteristics cor-
relate with changes in pH (Cronin and Wilkinson, 2008; Rault et al.,
2009).

3.4.5. Transcription and protein biosynthesis
As mentioned before, in transcription and protein biosynthesis

studies twomain strategies are commonly employed: one approach is
to use genetic constructs with reporter genes expressing GFP and
another is the development of FISH techniques that successfully have
been adapted to FCM. Both strategies enable researchers to study
specific functions inmicroorganisms at a single-cell level, in real-time.
Induction of GFP in reporter bacteria was used as a viability test in
a study of the effect of pasteurization (Gunasekera et al., 2002).
Reporter genes expressing GFP in bacterial biosensors can be designed
specifically as micro-analytical devices that are detected and
quantified by FCM. Examples of this approach are the detection of
quorum sensing (Burmølle et al., 2003, 2005), the genotoxic complex
mitocin C metabolized by Streptomyces (Norman et al., 2006) and
horizontal gene transfer (Sørensen et al., 2003).

The combination of FISH and FCM is commonly referred as FLOW-
FISH. Here, fluorescence labeled oligonucleotides based upon rRNA
sequences are inserted in cells and annealed to complementary RNA
sequences. This method is primarily used to quantify and screen
mixed populations targeting distinct species (Fornasari et al., 2008;
Jen et al., 2007; Kalyuzhnaya et al., 2006). Different strategies are
being constantly developed to boost the fluorescent signal. In theory
this approach can be used to target cells expressing specific mRNAs
within a given microbial community, however the few reports
available document that FLOW-FISH has so far only been successful
in laboratory cultures (Jen et al., 2007; Kalyuzhnaya et al., 2006).

3.4.6. Structural or physical parameters of a cell
Themeasurements of structural or physical parameters of a cell are

mostly based on FSC and SSC readings, as well as electronic volume
measurements, and are used for analysis of the shape and size of the

cell, Gram staining characteristics, cell surface and antibiotic-binding
sites (Forster et al., 2002; Papadimitriou et al., 2007; Tracy et al.,
2008).

In conclusion, it should be stated that some bias can be induced in
FCM analysis, especially related to difficulties associated with the
establishment of accurate and validated reading gates for each sample
and with the danger of signal quenching when using multiple probes
simultaneously. Although efforts in developing automated gating
algorithms have been published (e.g. Lo et al., 2008; Pyne et al., 2009),
the development of data analysis tools (software) has not followed
the technological progress of the flow cytometer (hardware), as
consequently, the still frequent need for manual analysis of individual
samples is indicated as a limiting aspect of the flow cytometry
technology (Lo et al., 2008). Multivariate and artificial intelligence
approaches to flow cytometric data analysis, including cluster analysis
and artificial neural networks, have been reviewed elsewhere
(Bashashati and Brinkmand, 2009; Davey and Davey, 2010). FCM
methods are highly versatile and applicable, and the speed of analysis
and the multivariate data sets produced are attractive for developing
models for distributed properties. Efforts to get consensus and
broader acceptance of microbial cytometry method standardization
efforts for procedures, instruments, as well as data analysis and
presentation, are currently under development (Nebe-von-Caron,
2009; Lee et al., 2008).

3.5. Raman spectroscopy

The use of spectroscopy for the on-line monitoring of bioprocesses
is becoming more common, due to its non-destructive nature, and the
ability of providing information at molecular level without the use of
stains or radioactive labels (Krafft et al., 2009). In particular Raman
spectroscopy has been successfully applied to bioprocess analysis (Lee
et al., 2004; Ulber et al., 2003). This technique is based on shifted
wavelength scattering of light resulting from inelastic collisions of
photons with the molecules, upon excitation of the sample with
monochromatic light (Ulber et al., 2003). By single-cell analysis of
bacteria, it has been proven that cells from one culture sample,
however morphologically similar, show different Raman spectra
(Schuster et al., 2000a,b) due to differences in the intracellular
content.

Confocal Raman microspectroscopy has been used to investigate
the spatial intra- and inter-cellular heterogeneity in genetically
homogeneous microbial cultures in a rapid and non-destructive way
(Hermelink et al., 2009). The spectra obtained for microbial cells
reflect their biochemical and structural composition. Indeed, Raman
imaging can be used to visualize the distribution of cellular
components, such as proteins, DNA, RNA, intracellular lipid vesicles,
mitochondria, and chromosomes, within a single cell (Krafft et al.,
2009). The spatial heterogeneity of eukaryotic cells such as yeasts
resulting from inner compartmentalization was for example studied,
by means of Raman microspectroscopy, by recording several spectra
at different locations inside the same yeast cell (Hermelink et al.,
2009).

In conjugationwith infrared absorption spectroscopy, which yields
information at microbial colonies level rather than at single-cell level,
Raman spectroscopy has been used to identify and characterize
heterogeneity in both microbial micropopulations cultured for short
periods of time (6–10 h) and single cells, with minimal sample
handling and no need for dyes or contrasting agents (Choo-Smith
et al., 2001; Schuster et al., 2000a).

Intracellular heterogeneity reflecting the predominance of certain
components (e.g. proteins, lipids) and cell compartmentalization has
been reported based on Raman spectra collected at different spatial
positions within a single-cell (Rösch et al., 2005a,b). This allows for
monitoring of microbial growth in cases where different components
show significant changes in quantity and localization within the cell,

585R. Lencastre Fernandes et al. / Biotechnology Advances 29 (2011) 575–599



at a certain growth phase (e.g. the formation of poly-β-hydroxybutyric
acid in Bacillus cereus when a carbon supply is accessible (Hermelink
et al., 2009)).

Raman spectroscopy offers, therefore, the possibility of monitoring
cell heterogeneity in microbial populations by chemical and structural
imaging. It can, consequently, contribute to a deeper understanding
of the role of for example cell aging and cell cycle in generating a
phenotypically heterogeneous cell population (Rösch et al., 2005b).

4. Designing dynamic experiments at different scales

As previously referred (cf. Section 1), heterogeneous microbial
populations have been observed to develop in large scale bioreactors
as a result of experiencing a different extracellular microenvironment
as they circulate in the bioreactor. In order to experimentally study
the cell-environment interplay and, consequently, better understand
the origins of cell heterogeneity, it is necessary to be able to experi-
mentally simulate such environmental gradients observed in large-
scale reactors. In this section, we present strategies to perform such
studies including the use of scale down reactors (cf. Section 4.2), pulse
experiments (Section 4.3), and microbioreactors (cf. Section 4.4), as
well as discuss the importance of sampling strategies and bioprocess
control (cf. Section 4.5).

4.1. Heterogeneities in large scale reactors

It may not be practically possible to sustain homogeneity at a large
scale, since this may demand an unrealistic amount of energy input
(Hermelink et al., 2009). Therefore, significant gradients of dissolved
oxygen, substrates, pH and dissolved carbon dioxide are often
encountered. For example, oxygen gradients are frequently found in
large scale bioreactors due to transport limitations when the oxygen
consumption rate exceeds the oxygen transport rate, which is a
situation commonly seen for high cell density cultures.

Furthermore, in some process modes, for example in fed-batch
cultivations, it is inherently impossible to avoid substrate gradients,
since a highly concentrated substrate is fed in a narrow zone. For
example, a fed-batch cultivation of Saccharomyces cerevisiae may
involve addition of glucose at concentrations as high as 600 g/L to
avoid a significant increase in volume (Larsson et al., 1996).
Consequently, the microbial cells experience rapid changes in
environmental conditions as they circulate throughout the reactor,
which might pose stress on the cells and affect their metabolism.

A heterogeneous environment has previously been shown to
generate cell population heterogeneity in E. coli fed-batch cultivation
in a large scale bioreactor (22 m3) (Larsson et al., 1996). Enfors and
coworkers demonstrated that the transcription level of four genes
related to low-oxygen or high-glucose concentration varied in cells
that were sampled from different zones of the reactor with short or
long distance to the glucose feed zone (top) and the oxygen inlet point
(bottom), thus illustrating the development of sub-populations
within the bioreactor as a response to gradients (Enfors et al., 2001).

Interestingly, E. coli cell viability was higher at large scale than in
bench-scale; in fact, a close to 100% viability was reported after 40 h of
cultivation compared to only 85% in bench-scale, in contrast to the
biomass yield, which was higher at bench-scale (Enfors et al., 2001).
This demonstrates that population heterogeneity may have both
positive and negative consequences, and hence that a certain level
of heterogeneity may be beneficial in order to better cope with the
changing conditions in large reactors.

4.2. Scale down reactors

To better predict the results that can be achieved in large scale,
several types of scale down reactors (SDRs) have been developed and
reported to better represent large scale conditions than conventional

bench-scale reactors (Amanullah et al., 2001; Enfors et al., 2001; Lara
et al., 2009; Onyeaka et al., 2003). Often, SDRs consist of a stirred tank
reactor (STR) connected to a plug flow reactor (PFR), in which the
cultivation medium is circulated between the two different compart-
ments. Different scenarios of oxygen, pH, and substrate gradients
often encountered in large scale fermentation have been simulated in
SDRs by selecting appropriate points for oxygen inlet, nitrogen
sparging and/or substrate feed. For example, by having the oxygen
inlet in the STR and the glucose feed zone in the beginning of the PFR,
a glucose rich zone in combination with an oxygen limited zone in the
PFR was accomplished. This experimental setup corresponded well
to the situation cells experienced in large scale fed-batch E. coli
cultivation (Enfors et al., 2001). Thus, SDRs become a useful tool to
study the response of bacterial cultivations to spatially structured
environments.

4.3. Pulse experiments

Another way to study physiological responses to concentration
heterogeneities is to perform continuous cultivations and perturb the
system with pulses of substrates (Kacmar et al., 2006; Sweere et al.,
1988a; Theobald et al., 1997) or with sudden changes in oxygen
concentration (Abel et al., 1994; Sweere et al., 1988b). The metabolic
and physiological responses to the perturbations together with gene
expression analysis can give valuable information for the improve-
ment of the production process through new strain design. Further-
more, implementation of single-cell analysis techniques, such as flow
cytometry or molecular techniques (cf. Section 3), can provide insight
into how different environmental factors influence cell population
heterogeneity and whether there exists such a thing as an optimal
level of heterogeneity.

4.4. Microbioreactors

A new experimental tool has become available through the
development of microbioreactors (MBR), which typically operate at
volumes b1 mL (Betts and Baganz, 2006; Schäpper et al., 2009). The
small size gives MBRs some inherent characteristics that are favorable
for investigative studies: The gradients encountered in MBRs can be
kept quite small as the whole volume can be mixed rather efficiently,
which facilitates control of the culture parameters. Mixing can for
example be achieved using scale-down versions of conventional
impellers, or by novel approaches, such as peristaltic mixing tubes in
the ceiling of the reactor chamber of the MBR. Additionally, the small
thermal mass of MBRs allows for quick temperature changes of the
entire broth. Typically, MBRs are aerated through a membrane, so
that no bubbles are present in the system. This greatly increases the
signal quality of optical on-line measurement systems, which in turn
increases the amount of information that can be gained per
experiment. The signal qualities obtained in MBRs are sensitive
enough to allow the monitoring of fluorescence/luminescence from
reporter strains. In addition to monitoring physicochemical variables
like dissolved oxygen and pH, it is therefore possible tomonitor in real
time the “stress response” systems of a cell. These characteristics
together make it possible to simulate the varying conditions a cell
might encounter during its journey through a large scale reactor with
a high degree of control. This could for example be achieved by using
an array of individually controlled MBRs in batch operation mode,
or by serially moving through different culture conditions in a
continuous culture MBR (micro-chemostat). Due to the availability of
on-line measurement tools, the influence of the changing conditions
on the cells can then easily be quantified. Finally, the operation
volumes of MBRs are still large enough to combine the described non-
invasive optical methods with conventional endpoint analyses.
Boccazzi et al. (2006), for example, demonstrated that such MBR
can be combined with DNA microarrays to obtain differential gene
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expression profiles. With the rapid development in microfluidic
approaches for cell analysis at the genome, transcriptome, proteome,
and metabolome level (Szita et al., 2010), it seems feasible in the
future that MBRs can be linked with such analytical methods in an
automated fashion. This will enable the rapid investigations of
environmental factors responsible for heterogeneity in microbial
populations and provide automated and information-rich experi-
ments that underpin novel modeling frameworks (cf. Section 5).

In order to use MBRs as a tool to study phenomena taking place in
large-scale reactors, it is essential to assess their scalability. Indeed,
the degree of similarity that can be achieved when mimicking varying
process conditions from large-scale reactors in microbioreactors
depends on which parameters are identified as critical (e.g. gassed
power per unit volume, agitator tip speed, constant DOT, oxygenmass
transfer capacity-kLa, mixing time), and how well they are controlled
in MBRs and how scale-sensitive the process is to begin with
(DePalma, 2010). The type of microbioreactor and scale-down
parameter to be used for a particular bioprocess should be chosen
based on examining cell characteristics and process conditions (Betts
and Baganz, 2006; Islam et al., 2008). With regard to, for example,
mixing, it is important to obtain in-depth knowledge on basic fluid
mechanic for each MBR design. Experimental studies based on
microparticle image velocimetry (μPIV) measurements, in combina-
tion with different simulation tools (e.g. computational fluid dynam-
ics, cf. Section 5.3.1) can be used to characterize mixing in terms of
power input and shear stress in the MBR (Micheletti and Lye, 2006).

4.5. Sampling strategies and bioprocess control

A prerequisite for this kind of scale down experiments is the
knowledge of how conditions vary in large scale reactors. To be able to
have a better understanding of the interaction between biological
systems and bioprocess operation conditions, it is essential to have
good monitoring of key process variables and consequently a proper
sampling procedure. Therefore it is essential to devise a sampling
system which can obtain representative samples from the bulk
material in large scale, by choosing the proper sampling locations, the
number of samples and their size (Holm-Nielsen et al., 2006;
Mortensen and Bro, 2006). The ideal sampling procedure should be
rapid, on-line, non-destructive, and stable over time, provide easy
handling, have a low contamination risk and should not disturb the
system (Ritzka et al., 1997). Usually, real-time monitoring in
commercial bioreactors is possible for dissolved oxygen, pH, temper-
ature and pressure, but for measuring cell mass, viability, substrate
and product concentrations, off-line measurements are still dominat-
ing. However, with development of analytical methods and new
sensor technology there are possibilities for on-line measurement of
different bioprocess variables like substrate and product concentra-
tionwithoutwithdrawal of samples (in-situ). Optical sensors together
with spectroscopic methods offer the advantages of noninvasive,
nondestructive, continuous, and simultaneous multi-analyte moni-
toring (Ulber et al., 2003). Nonetheless, the use of on-line near
infrared spectroscopy for monitoring of fermentations is not straight-
forward, as reviewed by Cervera et al. (2009).

With the development of wireless network technology and the
application of inexpensive wireless devices-sensors (motes), which
may float along in the cultivation broth, there is a great potential for
deeper understanding of the different conditions encountered by the
cells. The sampling strategy here is concerned with the number and
location of motes (Farré et al., 2009; Nasipuri et al., 2006).

Still, it is important to bear in mind that with application of new
biosensors and analytical methods some practical implementation
problems could occur (Cervera et al., 2009; Schäpper et al., 2009). In
general, the sampling strategy should be adjusted to the monitoring
strategy and should be carried out according to the theory of sampling

in order to obtain reliable and reproducible experimental data (Gy,
1998; Mattiasson and Håkanson, 1993).

5. Modeling heterogeneous microbial populations

Similar to chemical systems, the design, control and optimization
of bioreactors inmany academic and industrial applications have been
based on macroscopic first principle models built on balances of
extensive properties. However, modeling of bioreactors presents
additional challenges as a result of the microorganism intrinsic
metabolic regulation (Ramkrishna, 2003). Cell variability results in for
example non-linearities associated with cell growth and division
processes even when operated at constant temperature (Daoutidis
and Henson, 2002). Further challenges to the formulation of models
with an appropriate level of detail and predictive ability arise thus
when dealing with biological systems.

With the continuous development of the capabilities of techniques
available for monitoring of cell properties at single-cell level (cf.
Section 3) it is nowadays possible to monitor the distribution of cell
properties during amicrobial cultivation. In order to take advantage of
this knowledge and improve the design and control of bioprocesses,
mathematical models able to describe the behavior of a dynamic
microbial population are necessary in order to support and facilitate
the interpretation of the resulting data sets. Furthermore, the
validation of such models is made possible by experimentally
simulating large scale conditions in smaller set ups as discussed in
Section 4.

In this section we discuss models suitable for describing popula-
tions of individual microbial cells both in the case of perfectly mixed
bioreactors as well as in the case of large scale reactors where
gradients are formed due to mixing limitations (cf. Section 4).

5.1. Structured and segregated models

Aiming at describing and predicting the behavior of cell popula-
tions, several mechanistic models of various degrees of complexity
have been proposed during the last decades. In this section, we start
by presenting a classification of suchmodels of cell populations, under
the assumption of a homogeneous (i.e. perfectly mixed) reactor
environment. A schematic summary is presented in Fig. 6. If the
assumption of a homogeneous reactor environment does not hold,
then a distributed model, where spatial coordinates form an
independent variable in addition to time, is required (Gernaey et al.,
2010). The case of spatial heterogeneity will be discussed in
Section 5.3.

A very large share of the models proposed for microbial popu-
lations is unsegregated (Nielsen and Villadsen, 1992), i.e. based on an
average cell description. Unsegregated unstructured models are the
simplest ones as biomass is considered as a black box: Intracellular
kinetics are not described, and only the input (e.g. substrate feeding)
and output (e.g. substance of interest produced by the microorgan-
ism) are accounted for.

Unsegregated structured models form an important class, and
incorporate information on the internal mechanism and composition
of the microbial mass with the use of several variables, e.g. NADH,
precursors, metabolites, ATP, biomass (Gernaey et al., 2010). The
number of variables used in such a model should, however, be
restricted to a minimum: only variables necessary to obtain infor-
mation about the most relevant processes of interest should be
included. Unsegregated structured models have been used for
modeling complex processes, such as yeast intracellular metabolism
(e.g. Nielsen and Villadsen, 1992), andmorphology-specific growth of
filamentous fungi (e.g. Agger et al., 1998). Cybernetic models (e.g.
Jones and Kompala, 1999; Young et al., 2004) and different kinds of
models based on genomic data (e.g. Becker et al., 2007) belong to this
category. These models are beyond the scope of this contribution, and
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have been reviewed elsewhere (Gombert and Nielsen, 2000; de Jong,
2002; Stelling, 2004; Teusink and Smid, 2006).

Segregatedmodels account for cell-to-cell variation by considering
distributed rather than uniform cell properties (Fredrickson et al.,
1970; Fredrickson, 2003). They are, thus, necessarily statistical and
the degree of structure is at least a scalar such as cell size (mass or
volume) or cell age (Ramkrishna, 2000). A more restrictive classifi-
cation for segregated structured models has been used (Bailey, 1998),
where structured refers exclusively to a description of a single cell
using multiple biochemical substances (i.e. chemically structured
models). In this contribution, we will follow the broader definition
proposed by Ramkrishna (2000), who considers that age and cell
mass are descriptors of the cell state, even though they may only
indirectly be indicators of the cell metabolism. Therefore, by
segregated structured models (see Fig. 6) we refer to both single
variable (e.g. age, mass) models, as well as multivariate, chemically
structured models. Consequently, we classify as segregated unstruc-
tured models the cases where the model describes the behavior and
size (i.e. total number of cells) of co-existing subpopulations by
considering cells by their existence without any further description of
the details of cellularmetabolism. This would be, for example, the case
of activated sludge models that describe the dynamics of heterotro-
phic and autotrophic biomass subpopulations (e.g. Gernaey et al.,
2004; Henze et al., 2000). In single organism cultivations, sub-
populations would, for example, reflect different cell cycle phases. In
this case, transitions of cells from one subpopulation to another are
possible, and the use of a cell descriptor variable is, therefore,
necessary to account for them. This makes it virtually impossible to
predict the dynamics of a single organism cultivation using a
segregated unstructured model, and further discussion will, thus,
focus on segregated structured models.

Segregated structured models can be further classified as single or
multi-stagedmodels. The latter account for different cell stages where
significant differences in the metabolism are observed, such as
budding and non-budding cells (e.g. Cazzador and Mariani, 1988),
daughter and parent cells of different generations (e.g. Hatzis and
Porro, 2006), different cell cycle phases (e.g. Fredrickson, 2003),
productive or non-productive phases (e.g. Mantzaris et al., 2002).

Different formulations are possible for segregated structured
models. Population Balance Models (PBMs) provide the most generic
approach to modeling distributed properties, and we focus on this

type of models in this review. Other simplermodels based on ordinary
differential equations (ODE) and delay differential equations (DDE)
have been reviewed elsewhere (Bley, 2010).

5.2. Population Balance Models for microbial populations

In general, a PBM predicts the temporal change of the cell number
distribution, which is characterized by a descriptor variable x (e.g. cell
age, mass, intracellular metabolites). This change can result from cell
growth and division into newborn cells. Different formulations are
used depending on the cell descriptor variable used.

In Tables 2–4 we have briefly described models for microbial
populations that have been published in the last four decades. PBMs
typically consist of a Population Balance Equation (PBE), along with
boundary and initial conditions as well as other coupled equations
describing cell division probability and intensity, partitioning of cell
content upon division, stage transitions and, in the case of chemically
structured models, cellular kinetics. PBEs can be defined as equations
of change, i.e. balance equations that account for the various processes
that change the number of cells in a population (Fredrickson, 2003),
and take the form of first-order partial integro-differential equations,
while the supplementary equations, coupled in a non-linear way, are
typically ordinary integro-differential equations (Mantzaris et al.,
2001a).

To avoid the challenges in solving complex chemically structured
PBMs, Mantzaris et al. (2001a) proposed using a large, but finite
number of single cells to represent an entire microbial population. In
this Monte Carlo approach, a population of single cells, or cell
ensemble, is generated by randomizing kinetic parameters or initial
conditions for a single cell model, and it is assumed that the continuity
of solutions implicit in the PBM solutions, can be simulated if a large
enough number of cells are used. Cell ensemble models have been
used to describe respiratory and glycolytic oscillations in yeast
populations (Henson, 2003, 2004, 2005; Henson et al., 2002), and
further discussions on this approach can be found elsewhere (Henson,
2003; Stamatakis, 2010).

5.2.1. Single variable PBMs: formulation of mass- and age-structured
models

Two different formulations are typically used for a single variable
PBM (i.e. one-dimensional or 1-D PBM): Age- or mass-structured

Fig. 6. Schematic classification of mechanistic models for cell cultivations. Segregated means cell heterogeneity is taken into account, and structured means different cellular
components are described.
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formulation. The first forms the most simple PBM for microbial
cultures as the variation of age with time is unity, and it is, therefore,
possible to avoid modeling individual cell growth kinetics (Subrama-
nian et al., 1970). Considering a continuous cultivation in a homo-
geneous environment, and regarding age as the time elapsed since the
birth of the cell, the age-structured PBM expresses the temporal
change of the number of cells having a given age. It can be math-
ematically described by Eqs. (1)–(3), where N(a,t)da is the number of
cells with age a at time t, Γ(a) is the division rate function and D is the
dilution rate of the bioreactor (D will be zero for batch cultivations
and positive for continuous and fed-batch operations). The boundary
condition (Eq. 2) defines the number of cells with age zero (i.e.
newborn cells). Assuming two newborn cells are originated upon
division, the boundary condition thus equals twice the total number
of cells dividing at a given time instant. Moreover, the total number of
cells dividing is given by the integral of the division term in Eq. (1)
over the age span. Finally, the initial distribution N0 is considered to be
known (Eq. 3).

∂N a; tð Þ
∂t +

∂N a; tð Þ
∂a|fflfflfflffl{zfflfflfflffl}

Cells becoming
older than a

= − Γ að ÞN a; tð Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Cells dividing into
daughter cells

− DN a; tð Þ|fflfflfflfflffl{zfflfflfflfflffl}

Cells flowing out of
the reactor

ð1Þ

N 0; tð Þ = 2∫
∞

0

Γ að ÞN a; tð Þda ð2Þ

N a;0ð Þ = N0 að Þ ð3Þ

Although themodel is mathematically solvable (e.g. Hjortsø, 1995;
Liou et al., 1997), the adequacy of using age as indicator of the
organism state has been questioned (Fredrickson, 2003). Indeed, a
fundamental question arises: is it feasible to monitor the distribution
of cell ages, when investigating the development of heterogeneous
populations during a dynamic cultivation?

Cell proliferation studies, commonly used in immunology (Lyons,
2000), have been performed in order to assess cell growth, including
lag times, cell division and injury, after treatments with heat and anti-
microbial agents (Ueckert et al., 1997). In this type of studies, samples
taken from the primary cultivation are stained using fluorescent dye
(carboxyfluorescein succinimidyl ester, CFSE), and re-suspended in
growth media (secondary cultivations). Based on the fact that the
fluorescence intensity decreases by approximately a factor of 2, upon
cell division, cell division rates can be estimated based on analysis of
fluorescence histograms (obtained by flow cytometry) at different
times of the secondary cultivation (Luzyanina et al., 2007). In the
context of this review, experimental validation of an age-structured
model requires the experimental determination of distributions of cell
ages at different time instants of a dynamic cultivation. To our
knowledge, it is not obvious that the information obtained by cell
proliferation studies, where information is collected during secondary
cultivations, can be correlated to age distributions of microbial
populations in the primary cultivation.

In fact, the problematic aroundmonitoring of cell age revolves also
around the concept of cell age itself. On the one hand, in the case of
budding microorganisms, the co-existence of a generation zero of
newborn cells, and several generations of mother cells (i.e. of cells
which have created one or more daughter cells by budding) could be
monitored based on the existence of bud scars and the fact that the
cell wall of the newborn cell is synthesized upon budding (e.g.
Alberghina et al., 1998). On the other hand, in the case of
microorganisms dividing by fission, it is not possible to clearly
distinguish mother and daughter cells. The definition of age is thus
intimately connected to the progression through the cell cycle.
Extensive work on monitoring cell cycle progression using both

microscopy and flow cytometry has been published and reviewed
elsewhere (Porro et al., 2009).

The use of mass as descriptor variable circumvents, at least partly,
these problems as distributions of masses can be easily obtained
experimentally by using e.g. flow cytometry (see Section 3.4).
Moreover, it has been observed that the size distribution of a cell
population does respond to changes in the extracellular environment
(Wheals, 1982). In this case mass can represent the total cell mass or
volume, as well as any conserved property of the cell such as the mass
of intracellular components (e.g. total protein, DNA or RNA content).
For mass-structured PBMs, the boundary condition (Eq. 5) reflects
that there are no cells with mass zero, and, consequently, a birth term
is included in the PBE. Additionally, the variation of cell mass with
time (i.e. growth rate, rm) is included in the PBE, and its dependence
on the extracellular environment (e.g. available substrate) can be
incorporated here (Mantzaris et al., 1999). A mathematical formula-
tion for a mass-structured PBE for a microbial population in a well
mixed reactor, along with initial and boundary conditions is provided
in Eqs. (4)–(6), where N(m,t)dm is the number of cells with mass m,
Γ(m,S) is the division rate function, P(m,m′,S) is the partitioning
probability density function, describing the probability of a mother
cell of mass m′ to form a daughter cell with a lower mass m upon
division, and the initial distribution, N0(m) is known (Eq. 6).

∂N m; tð Þ
∂t +

∂
∂m rm m; Sð ÞN m; tð Þ½ �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cells that have
increased mass

= −Γ m; Sð ÞN m; tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cells dividing into
daughter cells

+ 2∫
∞

m
Γ m0

; S
� �

P m;m0
; S

� �
N m0

; t
� �

dm0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Cells being bornwith

massm

−DN a; tð Þ|fflfflfflfflffl{zfflfflfflfflffl}
Cells flowing out
of the reactor ð4Þ

N 0; tð Þ = 0 ð5Þ

N m;0ð Þ = N0 mð Þ ð6Þ

Although mass distributions are more easily measurable, mass-
structured PBMs are not able to predict common cellular behaviors
such as time lags in the response of cells to an extracellular stimulus
(Fredrickson, 2003), and this may explain the sparse use of these
models for control, design and optimization of bioprocesses (Mantzaris
et al., 2001a). One solution to this is the use of more than one descriptor
variable to better account for cellular metabolism. Multi-stage models
can be regarded as an attempt to take more cell descriptors into
consideration without increasing the numerical difficulties associated
with a two dimensional PBM. Hatzis et al. (2006) proposed a model
where different generations (age stages) are considered, as well
as (un)budded sub-stages, and a mass-structured PBM is used to
obtain the number distribution for each of the subpopulations. This
allowed taking into account the effect of aging on the growth, budding
and division while avoiding the complexity inherent to a two-
dimensional (2D) PBM. The definition of transition functions for cell
division/birth and budding presents nonetheless an increased effort
relatively to single-staged models. Experimental validation of this
model is provided in Cipollina et al. (2007). A 2D PBM where a
continuum approach is used for both age and mass, has been
formulated and numerically solved by Liou et al. (1997). Experi-
mental validation was however not performed. The collection of
experimental data for a continuous span of age and mass is, in fact,
virtually impossible.

5.2.2. Multivariable PBMs: formulation of chemically structured models
Fredrickson et al. (1967) proposed the use of a vectorial

description of the cell physiological state, which they designated as
a physiological state vector. This descriptor vector consisted of several
masses of biochemical substances found in a cell. The mathematical
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Table 2
One-dimension Population Balance Models (PBMs).

1-D PBM

Variable: Age

Stages Reactor Mode Description Experimental data Reference

Single Continuous PBM where the environmental conditions
are the key cell cycle parameter. Periodic
oscillations are sustained by periodic
change in the environment, without using
specific kinetic expressions. Two models
are proposed for binary fission organisms
and budding yeast.

Predicted oscillation periods were
compared with experimentally
observed values, for a range of
dilution rates.

(Hjortsø and Nielsen, 1995)

Single Continuous PBM was used for predicting periodic
behavior of a S. cerevisiae cell population
and its relation to cell-cycle synchrony.

Experimental observations are taken
into account in the formulation of
the model.

(Zamamiri et al., 2002)

Single Continuous PBM for synchronous growth of S. cerevisiae
with asymmetric budding cycle. The model
describes sustained oscillations with
constant cell number distributions.

Model validation by comparison
with experimental data is presented
in a subsequent publication.
(Bellgardt, 1994b)

(Bellgardt, 1994a)

Single Continuous PBMwas used in the design of a controller.
Nonlinear feedback control laws are derived
in order to attenuate undesired oscillations,
or induce synchrony in the S. cerevisae culture.

– (Kurtz et al., 1998)

Active Continuous Model for bioprocess catalyzed by
S. cerevisiae in a stirred-tank, which is able
to reproduce periodic behavior.

Parameter estimation was done using
6 data sets from batch aerated
cultivation. Data had been published
previously (Duarte et al., 2003).

(Duarte et al., 2003)
Inactive
Dead

Cell cycle phases Continuous PBM for human leukemia cells (Jurkat)
which models the two subpopulations
generated by addition of bromo
deoxyuridine.

Age-dependent model parameters
were extracted from portioned
population data.

(Sherer et al., 2008)
Labeled/unlabeled

7 development stages
from sporangium to
mature cell

Batch PBM was applied to describe the maturity
of sporangium of Bacillus subtilis toward
the formation of spores. It describes the
differentiation phenomenon with
associated product formation.

Parameters in the model were
determined by fitting the model to
experimental data.

(Huang et al., 2003)
Fed-batch

1D PBM

Variable: Mass

Stages Reactor mode Description Experimental data Reference

Single Fed-batch Compare three simple population models for dynamic
simulation of step responses in fed-batch cultures — a
simple timer model, a discrete age distribution model
which results in a set of ordinary differential equations,
and a similar one with discrete mass distribution.

(Takamatsu et al., 1985)

Single Sequential batches In this work, a segregated, structured microbial
population balance model is formulated and used to
numerically simulate the self-cycling fermentation
(SCF) process.

Experimental observations taken
into account in the formulation of the
model. The model outputs were
compared and validated with previously
published experimental data.

(Godin et al., 1999)

Single Batch A numerical solution of the mass structured cell PBM
in an environment of changing substrate concentration
is presented. It can be applied for any type of single-cell
growth rate expression, equal or unequal cell partitioning
at cell division, and constant or changing substrate
concentration.

Experimental observations are taken
into account in the formulation of
the model.

(Mantzaris et al., 1999)

Single Batch startup
+continuous

PBM consists of a simple structured description of the
extracellular environment, as well it accounts for the
three most important metabolic pathways involved in
cell growth with glucose substrate of S. cerevisiae.

The parameter values were adjusted
to achieve qualitative agreement
with experimental observations.

(Mhaskar et al., 2002)

Single Batch The model predicts several situations of
batch and continuous growth in which the population
density and biomass concentration show opposing
trends due to significant variation in the cell mass
distribution with time.

– (Subramanian et al., 1970)
Continuous

Single Continuous A controller is designed to stabilize steady-state and
periodic solutions by regulating the discretized cell
number distribution and the substrate concentration.
It is based on a dynamic model for the continuous
S. cerevisiae cultivation.

– (Zhu et al., 2000)

Daughter Continuous Model aims at simulating the effect of dilution
rate on the mode of oscillation in continuous cultures
of asymmetric budding yeast S. cerevisiae.

The growth properties of the yeast
were analyzed for continuous
cultivations. The distribution of
parent and daughter cells in the
population was determined
microscopically after staining the

(Beuse et al., 1998)
Parent

Daughter

Parent

590 R. Lencastre Fernandes et al. / Biotechnology Advances 29 (2011) 575–599



formulation of such a model is in essence similar to the formulation of
a mass-balance (Eqs. 4–6), where m, and m′ are now vectors rather
than scalars. The implementation of such a highly structured PBM has
however never been achieved, due to the complexity of defining the
kernel function for growth, division and partitioning upon cell birth,
as well as computational tractability issues that arise when attempt-
ing to numerically solve such a model.

5.2.3. Growth, division and partitioning functions: The core of the PBM
The difficulties in formulating and solving a PBM lie foremost in

the definition of the single cell growth and division (or any stage-to-
stage transition) rates, and the corresponding partitioning function.
The experimental determination of these intrinsic physiological state
functions poses many challenges, mainly as it requires single-cell
measurements (Mantzaris et al., 2001a). The experimental observa-
tions then have to be translated into mathematical descriptions, very
often as statistical distributions.

In the case of mass-structured models without substrate depen-
dency, the mass growth rate for a single cell is typically considered
having zero orfirst order kinetics (Mantzaris et al., 2001a), i.e. rm(m)=
k1 or rm(m)=k2 m.

The division rate function is generally described mathematically
with the help of a hazard function, γ(m) (see Eq. 7) based on the

probability density function, f(m), and describing the probability of a
cell of mass m to divide in the next time step, given that it has not
divided before.

Γ m; Sð Þ = γ mð Þrm m; Sð Þ = f mð Þ

1−∫
m

0

f m0ð Þdm0
rm m; Sð Þ ð7Þ

Although significant progress has been made in the area of single-
cell analysis, as discussed in Section 3, it is very often necessary to
introduce several assumptions in a theoretical model formulation,
which ideally should be validated with experimental data. f(m) is
commonly assumed to be a normal distribution with mean corre-
sponding to the critical mass for division (e.g. Mantzaris et al., 1999),
while others have used a Weibull distribution (Hatzis and Porro,
2006; Hatzis et al., 1995).

As mentioned in Section 5.2.1, P(m, m′,S), describes the probability
of a mother cell of massm′ to form a daughter cell with a lower mass,
m upon division. For the sake of simplicity, this conditioned prob-
ability density function is, typically, assumed to be independent of
the available substrate, and has been described as a statistical beta
function (e.g. Mantzaris et al., 1999; Hatzis et al., 1995) or a normal
distribution (Hatzis and Porro, 2006).

Table 2 (continued)

1-D PBM

Variable: Age

Stages Reactor Mode Description Experimental data Reference

bud scars and DNA.Budded
Daughter Continuous PBM describes the growth of S. cerevisiae

in spontaneously synchronized continuous
cultures.

The structure of the population was
identified using oscillating
continuous cultures where the
division of the cells is synchronized
and detectable by large variation of
the on-line measurements (gas
exchange rate or heat production
rate).

(Duboc and von Stockar, 2000)
Parent

Budded
Unbudded

Daughter Batch The model framework couples a
morphologically-structured representation
of the population with population balance
theory to formulate a dynamic model for
the size distribution of growing yeast
populations.

Model validation by comparison
with experimental data is presented
in a subsequent publication.
(Cippolina et al., 2007)

(Hatzis and Porro, 2006)
Parents

Budded
Unbudded

Daughter Continuous The model established a dynamic PBM for
asymmetrically dividing yeast. Three
special cases are described: step change in
growth rate, two transient behaviors
following perturbations in the
age-distribution.

It is shown how experimental data
on transient behavior of a cell
population can yield information on
single-cell mass-synthesis kinetics
and on the manner in which
individual cells control certain
critical parameters in the cell cycle.

(Hjortsø and Bailey, 1983)
(Small, large)
Budded

Budded Continuous The model describes the structural
heterogeneity of yeast cell populations
(S. cerevisiae) and considers the interaction
of the population with its environment. Two
different situations were investigated: pulse
changes of the dilution rate in a continuous
process and of the substrate concentration.

– (Cazzador and Mariani, 1988)
Unbudded

Budded Continuous The model aims at understanding the
properties of the microbial biomass in
terms of its composition and of the
regulation of cell growth and division.

The size at bud emergence and the
percentage of budded cells was
experimentally determined for a
range of dilution rates.

(Cazzador et al., 1990)
Unbudded

Cell cycle phases Batch A multi-stage population balance model
for the growth of ciliated protozoa through
its three cell-cycle phases.

Experimental observations are
taken into account in the
formulation of the model.

(Hatzis et al., 1995)

Non-producing Continuous PBM describes the dynamics of cell growth
of S. cerevisiae during each of the two stages
of the cell cycle, including cultivations at
limiting substrate and product concentrations.

Experimental observations are
taken into account in the
formulation of the model.

(Mantzaris et al., 2002)
Producing

Single Fed-batch See description above. (Takamatsu et al., 1985)

1D PBM
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5.2.4. Numerical schemes for solving PBMs
The complexity of the numerical schemes necessary to solve a PBM

forms a second explanation for the sparse use of PBMs in optimization
or design of bioprocesses (Hatzis and Porro, 2006).

Analytical solutions have been derived for balanced growth
cultivations in very specific operational conditions (Bellgardt,
1994a; Hjortsø, 1995; Subramanian et al., 1970). Numerical schemes
are, however, necessary to obtain dynamical solutions. Case-specific
numerical schemes have been developed such as the three-step
procedure (Cazzador and Mariani, 1988) and the successive gener-
ation approach (Liou et al., 1997). Other numerical methods generally
used for partial differential equations have also been applied, such as
finite differences (e.g. Kurtz et al., 1998; Mantzaris et al., 1999, see
Fig. 7), finite elements (e.g. Godin et al., 1999; Kavousanakis et al.,
2009), orthogonal collocation (Mhaskar et al., 2002; Zhu et al., 2000)
and spectral methods (e.g. Mantzaris and Daoutidis, 2004). Further-

more, Hatzis et al. (1995) proposed a Monte Carlo procedure for
solving a multi-staged mass-structured PBM, and Huang et al. (2003)
solved a multi-staged age-structured model using the method of
characteristics. A detailed discussion of the mentioned numerical
methods is beyond the scope of this contribution. Mantzaris et al.
(2001a,b,c) provide a comprehensive review and analysis of finite
differences schemes, spectral methods, and finite element schemes
for solving multivariate PBMs.

5.3. Modeling spatial heterogeneity

The physiological state of cellular systems and its impact on
growth and product formation is the result of a complex interplay
between the extracellular environment and the intracellular machin-
ery (Mantzaris et al., 2001a,b,c). As discussed earlier, cells are sub-
jected to spatio-temporal variations in large scale reactors, unlike in

Table 3
Two-dimension Population Balance Models (PBMs).

2-D PBM

Variable: Age and mass

Stages Reactor mode Description Experimental data Reference

Single Batch The model describes the production of ethanol
in glucose fermentation of Zimomonas mobilis.

Model validation was presented in a second
publication (Fiolitakis, 1987b).

(Fiolitakis, 1987)

Single Batch
Continuous

The growth-controlled mathematical model of
budding yeast predicts theoretical protein and
volume distributions.

Compare with protein and volume distributions
measured by flow cytometry, for populations
growing both in batch and in glucose-limited
chemostat cultures.

(Mariani et al., 1986)

Single Batch A age and mass structured PBM based on the
assumption that only cells from a kth
generation originate the (k+1)th generation.
This successive generation approach is applied
first to one-dimensional model, and then to
2-D one.

Experimental observations are taken into
account in the formulation of the model.

(Liou et al., 1997)

Table 4
Multi-dimensional Population Balance Models (PBMs).

Multi-dimensional PBM

Variable: Physiological state vector

Stages Reactor mode Description Experimental data Reference

Single Batch
Continuous

First formulation of a multidimensional PBM:
introduction of the concept of physiological
state vector.

– (Fredrickson et al., 1967)

Single Continuous The model aimed at studying the existence of
self-similar forms (e.g. time invariant) when
each physiological state is scaled with respect
to its population average. In this article, each
physiological entity was scaled with the
respective population average of that entity.

Experimental observations are taken into
account in the formulation of the model

(Ramkrishna, 1994)

Single Continuous A controller is formulated having the PBM as
base model. It aims at controlling different
moments of the cell mass distribution in a
continuous bioreactor by manipulating the
dilution rate.

The use of flow cytometry combined with
available staining techniques, which allow
the on-line measurement of cell property
distributions can make the practical
implementation of such a control approach
possible.

(Mantzaris and Daoutidis, 2004)

Multi-staged Batch A new and different approach involving
randomization of growth rates and
compartmentalization is proposed. It aims
at circumventing the necessity of having
intensity functions for transitions between
cell cycle phases, and for which the fission
intensity function is state-independent.

– (Fredrickson and Mantzaris, 2002)

Cell cycle phases Batch The model is a generalization of the first
multidimensional PBM (Fredrickson et al.,
1967), which accounts for passages of cells
through a series of recognizable cell cycle
phases.

– (Fredrickson, 2003)
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laboratory-scale studies under controlled conditions. Indeed, when an
individual microorganism circulates through a large scale reactor, it is
sequentially exposed to these different local conditions (Pollard et al.,
1998). This may significantly influence the behavior of cellular pro-
cesses and make conventional (i.e. which assume homogeneous
environments) models inapplicable (Larsson et al., 1996).

Coupling fluid models for the extracellular environment with
models for the cell population allows for reflecting the interaction
between the environment and the physiological state of the cell
(Larsson et al., 1996). A framework suited for capturing the local and
global variations in both intra- and extracellular concentrations relies on
the link betweenmetabolic network modeling and computational fluid
dynamics (CFD) (Lapin et al., 2004). The use of CFD in modeling
bioprocesses is thus gaining importance, both in academia and industry
(Bezzo et al., 2005; Fang, 2010a,b; Generalis and Glover, 2005).

5.3.1. Integration of computational fluid dynamics (CFD)
Computational fluid dynamics has proven to be an efficient and

powerful tool for the design and optimization of several flow
applications. Typically, a CFD model consists of the three fundamental
equations of fluid flow under a given set of conditions to be solved:
continuity, momentum and energy equations. Due to the complexity
of these equations they are solved numerically to describe the
behavior of the system. It is possible to obtain precise predictions of

flow and reaction variables using CFD that can be used in scale-up and
design applications. Recently, there has been an increased interest in
applications of CFD in the (bio)pharmaceutical and biotechnology
industries (Bezzo et al., 2005; Fang, 2010a,b; Generalis and Glover,
2005). This includes analysis of turbulent flow patterns, energy
dissipation rates, as well as heat and mass transfer in bioreactors
(Zhang et al., 2009), chemical reactions and phase transitions (Lapin
et al., 2004) involving several unit operations such as fermentation,
mixing and filtration.

Currently, there are two widely used computational approaches
for modeling the interaction between phases (Kelly, 2008): the Euler–
Euler approach in which different phases are treated mathematically
as interpenetrating continua (Barrue et al., 2001; Micale et al., 2000),
and the Euler–Lagrange approach in which the fluid phase is treated
as a continuum whereas the dispersed phase is solved by tracking a
large number of particles through the calculated flow field (Decker
and Sommerfeld, 1996; Derksen, 2003). Bezzo et al. (2003) studied
xanthan gum production in stirred tanks, and combined the Eulerian
approach for the fluid phases with a multizonal model in which the
reactor was divided into a limited number of spatial regions. Elqotbi
et al. (2006) implemented an Euler–Euler multi-fluid model to study
the interaction of fluid flow, mass transfer and reaction in the
fermentation of gluconic acid by A. niger in a gas–liquid stirred
fermenter. They assumed a constant bubble size thus limiting the
possibility of predicting local mass transfer across the phases. Using
the Eulerian–Lagrangian approach, the interaction between the
intracellular state of the individual cells of the population and the
turbulent flow fields has been studied in a 68 L (Lapin et al., 2004; see
Fig. 8) and a 900 L bioreactor (Lapin et al., 2006). They used both
structured segregated and unstructured unsegregated approaches for
modeling the biophase, with a 3-D CFD simulation for the reactor.
Although Lapin et al. (2004, 2006) were successful in accounting for
the interaction between the individual cells and the spatial concen-
tration gradient caused mainly due to the turbulent flow field, using
the stochastic Lagrangian approach — a large number of cells (~105)
was required to achieve a realistic description of the population,
which is computationally intensive.

As the flow in an agitated bioreactor is usually turbulent, the
Reynolds-Averaged Navier–Stokes (RANS) model (Jenne and Reuss,
1999; Lapin et al., 2004) and the Large Eddy Simulation (LES) model
(Revstedt et al., 1998) are often used to model the turbulence. The
RANS equations govern the transport of the averaged flow quantities,
with the whole range of the scales of turbulence being modeled. In
LES, large eddies are explicitly resolved in a time-dependent
simulation using the ‘filtered’ Navier–Stokes equations.

A dynamic simulation of a heterogeneous cell population in a non-
homogeneous environment can be achieved by coupling CFD and PBM

Fig. 7. Normalized cell mass distribution as a function of time obtained for a 1-D mass
structured PBM. A hybrid numerical scheme was used to solve the PBM (based on
Mantzaris et al., 1999). The mass units do not have a physical meaning.

Fig. 8.Movement of a population of 100 000 oscillating yeast cells traveling through the three-dimensional turbulent flow field of a 68-L stirred-tank bioreactor. The prismatic colors
of the particles indicate the intracellular NADH concentrations, which ascend from magenta (0.1 mM) via cyan, green, and yellow to red (0.22 mM). (Lapin et al., 2004).
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into an integrated framework. The PBM describes the development of
the microbial population in a given extracellular environment, while
the CFD component allows for the determination of local environ-
mental conditions by calculating flow streams and cell trajectories
within the reactor. The integrated CFD–PBM framework should be
able to predict local distributed cell properties (e.g. size, composition,
age, growth rates, product formation rates) of microorganism
populations, while accounting for the changes in the cell physiological
state due to different physical (e.g. local gas bubble size, shear stress)
and chemical (e.g. local substrate concentration, pH) environments.
As discussed previously, the solution of multivariate PBMs requires
the use of complex numerical methods. These computational issues
are further aggravated with the integration with a CFD model, which
would lead to higher calculation times. Nevertheless, it is foreseen
that the insight gained by implementing such detailed models will, in
the long term, translate into more efficient bioreactor operation
(Gernaey et al., 2010).

6. Conclusion and outlook

Althoughbiomass has been typically considered as an abstract entity
characterized by average properties in the design, optimization and
control of bioprocesses, it is a given fact that even isogenetic (i.e. with
the same genetic content) microbial populations have a certain degree
of heterogeneity. Indeed, individual microorganisms, even if part of a
‘clonal’ or isogenetic population, may differ greatly in terms of genetic
composition, physiology, biochemistry, or behavior (Brehm-Stecher
and Johnson, 2004). This heterogeneity results from differences in the
microenvironment surrounding each individual cell, as well as the
physiological stage of an individual cell when subjected to a given
change in the extracellular medium. Moreover, heterogeneity has been
considered to boost the fitness of populations (Avery, 2006), as well as
being the cause for the varying degrees of resistance to antimicrobial
treatments (Dhar and McKinney, 2007; Sumner and Avery, 2002) and
other stresses such as sudden changes in substrate concentration or pH,
as well as for the decrease in productivity observed in the scale-up of
fermentation processes (Enfors et al., 2001).

To understand the development of heterogeneity, as well as to be
able to establish monitoring strategies that can quantitatively reflect
the heterogeneity of a microbial population, and, in the future, may
yield an increased process knowledge within the bioprocess industry,
three essential issues must be addressed: 1) the development of
suitable reporter systems and analytical methods that allow for
monitoring the changes of the physiological state of an individual cell
in a systematic and, ideally, automatic fashion; 2) the study of the
cause-effect of changes in the extracellular environment on the single
cell physiological state starting at small scale, where it can be assumed
that all cells are subjected to the same environmental conditions, and
progressively scaling up to large reactors, where single cell trajecto-
ries through the reactor should ideally be considered individually due
to the existence of gradients; and 3) the formulation and solution of
computationally tractable models which are able to account for and
predict distributions of cell properties for a heterogeneous cell
population rather than being based on average measurements that
mask the dynamic structure of the population (cf. Fig. 1).

In this contribution, we attempted to cover the three key topics by
presenting and discussing experimental approaches which deliver
quantitative information on the distribution of single cell properties in
a heterogeneous microbial population, cultivation strategies that
allow for understanding of the dynamic environment–cell interaction
at different reactor scales, and model frameworks which are able to
account for distributed cell properties, and may, in the future, be used
to achieve a better control of bioprocesses.

Due to cell individuality, monitoring of a microbial population
implies the use of analytical methods that can provide information at
single-cell level. In fact, single-cell analytical methods are essential to

the understanding of connections between cellular biochemistry and
behavior, as well as population-level phenomena (Brehm-Stecher and
Johnson, 2004). If a comprehensive study of the sources and
mechanisms of cell heterogeneity requires the use of global analytical
methods, which for example allow for the evaluation of genetic
variability and for understanding the genetic mechanisms cells use to
respond to their environment (cf. Section 3.1), these methods are not
suitable to monitor a bioprocess. In this case, less time-consuming and
more automatic analytical methods are necessary.

Reporter systems (cf. Section 3.2), where only information on
relevant selected genes is gathered, consist of a simpler method that
can convey information on gene transcription frequency, translation
or gene dose, as well as on formation of protein complexes,
polypeptide folding, and protein stability. One widely used reporter
system relies on the bioluminescence of a GFP which can be used as
fusion tags to localize protein and organelles within cells, besides its
use as reporter of promoter activity. Furthermore, GFP reporters could
be used for monitoring of cell growth in a microbial cultivation at
single-cell level by fusing GFP to growth dependent genes, acting as
cell stress indicators, as well as pH probes.

Both, fluorescence based microscopy, where the use of fluores-
cent dyes allows for measuring properties of individual cells such as
viability, activity, surface components characterization and internal
storage compounds detection, as well as light microscopy, where the
use of radiolabeled substrates provides quantitative data on
substrate uptake at single cell level, together with the use of image
analysis present attractive alternatives for monitoring the physio-
logical state of microorganisms during cultivation (cf. Section 3.3).
The same fluorescence stains can be used for flow cytometric analysis
(cf. Section 3.4), where data on cell size and granularity distributions
can be obtained from light scattering patterns. In addition to
automatic data handling providing number distributions of cell
properties for a population (cf. Fig. 5), some flow cytometers also
offer the possibility of cell sorting (FACS), making flow cytometry
a very attractive method for at-line monitoring of microbial
populations.

The increasing interest in on-line monitoring of bioprocesses has
fostered the development of spectroscopic methods for monitoring of
microbial cultivations (Dabros et al., 2008). Raman spectroscopy (cf.
Section 3.5) relies on the information provided by molecular
vibrations, and is able to deliver a highly specific fingerprint of the
molecular structure and biochemical composition of individual cells
(Krafft et al., 2009). Therefore, this method may hold promise as an
alternative method for single-cell analysis without requiring the use
of external markers such as stains or radioactive labels.

As cell heterogeneity is mostly driven by changes in the
extracellular environment, it becomes important to understand this
interaction, especially in the case of large-scale cultivations. At large
scale, concentration gradients are formed due to mixing limitations,
and cells are subjected to a series of different microenvironments
along their trajectories within the reactor (cf. Section 4). Spatially
homogeneous conditions can be studied at micro or lab scale, where
the use of microbioreactors (Schäpper et al., 2009) or scale-down
reactors has to be considered in order to simulate conditions
encountered at large scale.

Metabolic engineering has been used to minimize the effect of
environmental gradients on microbial populations, as reviewed by
Lara et al. (2006a). For example, the production of fluorescent protein
(GFP) by E. coli has been improved, by designing metabolically
engineered strains which have reduced sensitivity to dissolved
oxygen gradients (Lara et al., 2006b). Higher cell viability, also for
E. coli cultivations, has however been observed in cultivations where
glucose, DOT and pH gradients have been simulated (Hewitt et al.,
2000; Onyeaka et al., 2003). It is thus our hypothesis that theremay be
an optimal degree of heterogeneity which corresponds to the ideal
trade-off between productivity and viability.
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The development of new control strategies, which ensure the
cultivation conditions that lead to an optimal degree of cell hetero-
geneity, requires the existence of models which account for
distributed cell properties (cf. Section 5). This type of models is
divided into structured and segregated models, and most of the
proposed models are population balance models (PBMs). Only very
few cell properties can, however, be considered in this type ofmodels
without facing numerical challenges and computational tractability
issues. In the cases where spatial gradients are to be considered,
PBMs can be integrated with computational fluid dynamics (CFD) in
order to obtain a model, which simulates the distribution of
extracellular medium components as well as the cell trajectories in
the reactor. The formulation and validation of such models is not
obvious, and requires a comprehensive understanding not only of
the mathematics of the models but also of cellular phenomena, and
analytical methods used for monitoring microbial populations at
single-cell level. However, in our opinion the effort in developing
such advancedmodels is justified. Indeed, suchmodels can be seen as
a structured representation of the knowledge available on the
interactions between the extracellular environment, the heteroge-
neity and the productivity of a cultivation. The construction of such
advanced models, the confrontation of those models with the
available data, and the subsequent use of advanced model analysis
tools and optimal experimental design techniques to develop new
experiments will, according to us, be important in order to unravel
the detailed mechanisms steering heterogeneity.

The amount and quality of the data we are nowadays able to
collect at single-cell level is considerable (cf. Section 3), butmodels for
microbial populations, suitable to be used for the optimization and
control of bioprocesses, are still virtually inexistent. In fact, there
seems to be a gap between the advances of the experimental
techniques and the development of models that reflect the observa-
tions gathered through these experimental efforts. This gap is most
likely resulting from the difficulties in fully understanding the
complex cellular mechanisms behind the development of different
types of cell heterogeneity.

Moreover, the number of publications resulting from collabora-
tions between experimentalists and modelers is limited. It is, though,
in this cooperation, that we believe the key for achieving a higher level
of process understanding within the bioprocess industry lies in.
Experimental studies are the basis to the understanding of the
development of heterogeneous cell populations, but also models,
validated using experimental data sets, are necessary to be able to
actively use the gathered knowledge in the optimization and control
of the bioprocesses.
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ABSTRACT: Despite traditionally regarded as identical, cells
in a microbial cultivation present a distribution of pheno-
typic traits, forming a heterogeneous cell population. More-
over, the degree of heterogeneity is notably enhanced by
changes in micro-environmental conditions. A major devel-
opment in experimental single-cell studies has taken place in
the last decades. It has however not been fully accompanied
by similar contributions within data analysis and mathe-
matical modeling. Indeed, literature reporting, for example,
quantitative analyses of experimental single-cell observa-
tions and validation of model predictions for cell property
distributions against experimental data is scarce. This study
focuses on the experimental and mathematical description
of the dynamics of cell size and cell cycle position distribu-
tions, of a population of Saccharomyces cerevisiae, in re-
sponse to the substrate consumption observed during batch

cultivation. The good agreement between the proposed
multi-scale model (a population balance model [PBM]
coupled to an unstructured model) and experimental data
(both the overall physiology and cell size and cell cycle
distributions) indicates that a mechanistic model is a suit-
able tool for describing the microbial population dynamics
in a bioreactor. This study therefore contributes towards the
understanding of the development of heterogeneous popu-
lations during microbial cultivations. More generally, it
consists of a step towards a paradigm change in the study
and description of cell cultivations, where average cell
behaviors observed experimentally now are interpreted as
a potential joint result of various co-existing single-cell
behaviors, rather than a unique response common to all
cells in the cultivation.
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Introduction

Cells in a cultivation are traditionally regarded as identical,
though microbial populations are most often heteroge-
neous. As such, distributions of phenotypic traits such as cell
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size, enzymatic activities, and growth rate (Müller et al.,
2010), which are often essential for fitness and development
of the cells (Avery, 2006), are observed. This type of
heterogeneity may originate from stochastic gene transcrip-
tion, translation and regulation, differences in progression
through cell cycle phases, and age distributions due to
unequal partitioning upon division (Davey and Kell, 1996;
Müller et al., 2010).

Frequently, the contribution of different aspects to the
development of a heterogeneous population is difficult to
distinguish. For example, in the case of Saccharomyces
cerevisiae, cell viability after environmental stress (e.g., heat,
copper, freeze–thaw) has shown to be dependent on the cell
cycle phase (Carlquist et al., 2012; Howlett and Avery, 1999;
Sumner et al., 2003), but also to be related to cell age (Kale
and Jazwinski, 1996). Furthermore, the existence of different
microenvironments within a reactor (i.e., spatial heteroge-
neity) may imply differential responses of cells as they
experience a changing extracellular environment in their
various trajectories throughout the reactor. Indeed, this fact
has been pointed out as the main underlying cause for
differences between cultivations performed in well-mixed
lab scale bioreactors and more poorly mixed large-scale
reactors (Enfors et al., 2001).

It is, therefore, in the understanding and description of
the interplay between single cell response and the changing
environment that the key to build improved predictive
models lies (Lencastre Fernandes et al., 2011). In order to
describe the dynamics of a microbial population in a
standardized and quantitative fashion, an adequate set of cell
properties has to be selected, and experimental observations
have to be conducted and analyzed in a systematic way.

With regard to cell properties, cell size has often been used
to describe budding yeast populations under various growth
conditions (Porro et al., 2009). The choice of cell size relies
on its tight coupling to cell growth and division. Indeed, cell
size is a key feature affecting cellular design, fitness and
function (Jorgensen and Tyers, 2004), and this is a reflection
of the cellular capability of adjusting its growth rate to
nutritional availability (Jorgensen et al., 2002; Saldanha
et al., 2004). The regulation of growth ensures that cells
attain a critical size before initiating the division process
(Porro et al., 2003; Rupeš, 2002). In the particular case
of S. cerevisiae, two critical sizes corresponding to the
regulation points START (committing to budding, or
budding transition) and division have been identified
(as reviewed by Rupeš, 2002). Hence, using cell size as
population physiological state descriptor allows for describ-
ing the distribution of cellular states. Experimentally, the
distribution of cell size of a population is easily measured by
using flow cytometry. In particular, the total protein content
has been used as a reliable measure of cell size (Alberghina
et al., 1998).

Cell size distributions of S. cerevisiae populations during
balanced growth on various limiting substrates, as well as for
various dilution rates (i.e., growth rates) have been reported
and compared in different studies (e.g., Alberghina et al.,

1998; Porro and Srienc, 1995; Porro et al., 2009; Vanoni
et al., 1983). Larger critical cell sizes (at budding and,
consequently, division) have previously been reported for
higher growth rates, for example, during exponential growth
on glucose relatively to ethanol (Alberghina et al., 1998;
Cipollina et al., 2007), or with increasing dilution rates in
glucose-limited continuous cultivations (Porro et al., 2003).
Complementary information on the distribution of cells in
cell cycle phases can be collected by measuring DNA
distributions, yielding a better description of the cellular
state (Porro et al., 2003). Also age dependency of the critical
size upon the budding transition has been evaluated, as time
spent in the G1 phase decreases with the number of cell
cycles a mother cell has undertaken (Vanoni et al., 1983).

Population balance models (PBM) allow for a mathe-
matical description of distributed cell properties within
microbial populations (Fredrickson, 2003; Fredrickson
et al., 1970). In previously published literature on PBM
for microbial populations (Fredrickson, 2003; Hatzis et al.,
1995; Mantzaris et al., 1999), cell size was used as model
variable.

Hatzis and Porro (2006) proposed a multi-stage PBM
accounting for non-budding and budding stages and
continuous distributions of cell mass. Additionally, the
model distinguished different generations, acknowledging
the fact that the critical division size of an individual cell will
increase for every cell cycle the cell undergoes. Although the
formulation of this model (Hatzis and Porro, 2006) offers
the possibility of including the dependence of the critical
budding and division sizes on the substrate, this dependence
has not been explicitly described neither have simulations
under varying substrate conditions been reported. In
previous work by Mantzaris et al. (1999), different substrate
dependent growth kernels were tested and compared for a
cell mass structured PBM. Validation of the assumptions
taken or confrontation of model predictions with experi-
mental data was however not reported.

PBM have also been used for describing mammalian cell
systems (Fadda et al., 2012a,b; Karra et al., 2010; Liu et al.,
2007; Sidoli et al., 2006). In these examples, model were
based on kernel functions, and in some cases parameter
values, that were similar to the ones initially proposed in
theoretical studies on microbial populations (Mantzaris
et al., 1999, 2001, 2002). Parameter estimation from
experimental data have been reported by Mancuso et al.
(2009) where two parameters corresponding to the
maximum rate of cell growth and a power law order for
a geometrical factor were tuned in order to minimize the
differences between the experimental and predicted cell size
distributions. Fadda et al. (2012b) qualitatively compared
model predictions to experimental observations previously
reported in the literature. Common to all these cases is the
use of parameters and/or assumptions previously reported
on theoretical work on PBM for microbial populations,
for example, the partition distribution shape parameter. A
comparison between models for microbial and mammalian
cell populations and a discussion of the common features
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and eventual assumptions specific to each type of cells
has to our knowledge never been undertaken. Although of
significant interest, such comparison falls out of the scope of
this article.

This work aims at understanding and describing the
interplay between single cell response, population dynamics
and the changing environment in a systematic way
so experimental observations can be translated into a
mathematical model. Indeed, for the first time, to our
knowledge, experimental evidences are used for defining
the PBM model kernels as functions of the extracellular
environment.

A PBM describing the cell size distributions for the non-
budding and budding populations, during the growth of
a population of S. cerevisiae along a glucose-limited batch
cultivation. Experimentally, the development of an asyn-
chronous population of S. cerevisiae was monitored during
the different growth phases, with particular focus on the
diauxic shift transition. General trends for cell size (total
protein content) and cell cycle phase (DNA) distributions
along the cultivation are reported and discussed.
Furthermore, a standardized procedure for treatment of
the gathered flow cytometric data was established for
isolating subpopulations with high content of cells initiating
the budding process and preparing for division. The trends
identified based on these procedures were used in the
definition of the critical budding and division sizes as
function of the glucose and ethanol uptake rates, which are
essential to the development of a PBM. Additionally, a
simple unstructured model was coupled to the PBM in order
to evaluate predictions of key changes in the composition
of the extracellular environment (i.e., cultivation medium):
the consumption of glucose, production and consumption
of ethanol, as well as supply and consumption of dissolved
oxygen.

Materials and Methods

Strain, Preculture and Batch Cultivations

For this study, batch cultivations of a haploid S. cerevisiae
strain (prototrophic CEN.PK 113-5D) were performed
in Braun Biostat 2 l bioreactors (B. Braun Biotech
International, GmbH, Melsungen, Germany) with a
working volume of 1.5 l. A defined mineral medium
supplemented with 5 g L�1 glucose was used (Verduyn et al.,
1992). Cultivation conditions were set to the following;
aeration 1 vvm; temperature 308C; stirring 600 rpm and pH
5.0 (automatically controlled by addition of 3.0M KOH).
Samples for OD600, high performance liquid chromato-
graphy (HPLC) and flow cytometry analysis were taken
approximately every 1 h, or every 30min during the diauxic
shift and early growth on ethanol. Further details on
the strain, inocula preparation and sample treatment are
provided as Supplementary Information (S1).

Single-Cell Analysis

A BD FACSAria III (Becton–Dickinson, Franklin Lakes, NJ)
flow cytometer was used for single-cell analysis. For the
simultaneous determination of total protein and DNA
content, cells were stained with fluorescein isothiocyanate
(FITC) and propidium iodide (PI; Sigma–Aldrich, Brøndby,
Denmark) as described previously (Porro et al., 2003).
Further details on the flow cytometer settings are provided
as Supplementary Information (S1).

Computational Data Treatment

In this work, a systematic approach was applied to the flow
cytometry data analysis: standardized procedures were
developed for estimation of the critical budding and
division sizes based on the experimental total protein
and DNA content distributions. Firstly, a procedure was
implemented in order to isolate a subpopulation with a high
fraction of cells transitioning from G1 to S-phase, enabling
estimation of the critical budding size. It relies on isolating
the subpopulation presenting an intermediate DNA con-
tent (i.e., between 1 copy (1C) and 2 copies (2C) of the
chromosome) and thus contained in the interpeak region
in the DNA histogram, applying—but then in a more
standardized fashion—the same principle used by Porro
et al. (2003) for a manual gating approach. A second
standardized procedure was developed in order to estimate
the critical division size, based on the standard deviation of
the 2C peak in the DNA histogram. The critical budding and
division DNA bands were defined around the channel
number at one standard deviation distance from the peak
mode (Fig. 1). A band width of 10 channel numbers was
defined in order to ensure a number of cells in the
subpopulation of approximately 500. The critical budding
and division cell sizes were defined as the mean total protein
content of the cells belonging to the corresponding DNA
critical bands. The budding index (BI), that is, the fraction of
cells that have a bud, was estimated using the critical
budding DNA band as threshold. Schematic representations
of these procedures are provided as Supplementary
Information (S2). Moreover, a comparison between the
proposed BI estimation procedure based on flow cytometric
data and the traditional microscopic counting is addition-
ally provided as Supplementary Information (S2).

The robustness of the procedures was assessed by varying
the band widths (data not shown). Such variation did
not yield a significant effect on the results reported in this
work, and the same correlations between critical sizes
and substrate availability were observed. Although, simple
threshold based methods as the ones proposed imply a
certain degree of subjectivity, the aim was to develop simple
decision algorithms that allow for treating all samples in the
same fashion rather than relying on visual inspection and
manual gating (often used in flow cytometric studies).

Processing and analysis of flow cytometry raw data was
performed by using MatLab1 R2009b (The MathWorks,
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Inc., Natick, MA). The measurement files, exported by the
flow cytomer FACSAria II, were imported into MatLab1,
using a ‘‘fcs data reader’’ routine (by L. Balkay, University of
Debrecen, Hungary), freely available on the MatLab1 File
Exchange website.

Modeling Aspects

Population Balance Model

A two-stage PBM using cell total protein content (a measure
of cell size) as model variable was developed. Channel
number (ch. no.) was used as arbitrary unit for the cell total
protein content. Further details on the correlation of
channel number to cell size are provided as Supplementary
Information (S3).

The PBM consists of two integro-partial differential
equations—the population balance equations (PBE) for
the non-budding and budding stages (Equations 1 and 2)—
and the corresponding boundary and initial conditions
(Equations 3–5). NNB(m, t)dm and NB(m, t)dm define
the number of cells at time t with mass within the
interval [m, mþ dm], for the non-budding and budding
stages respectively. Z describes the extracellular environ-
ment (i.e., the concentration of glucose, ethanol, and
oxygen) at a given time point. A nomenclature list with a
description and units for the model variables as well as a
parameter list are provided as Supplementary Information
(S4).

The left hand side of the PBEs (Equations 1 and 2)
describes the accumulation of the number of cells in each
stage and the growth of cells (i.e., continuous increase of the
total cell protein content). In the case of the non-budding
stage (Equation 1), the right hand side is composed by a
negative budding term, representing cells leaving the non-
budding stage by initiating the budding process, and a
positive birth term, describing the cells entering this stage as
a result of the division of a budding cell into two non-
budding cells. In the case of the budding stage (Equation 2),
the right hand side is composed of the negative division term
(cells leaving the stage as result of division into two new
cells) and the positive budding term (upon initiation of the
budding process, cells transit from the non-budding to the
budding stage).

@NNBðm; tÞ
@t

þ @

@m
½rmðm;ZÞNNBðm; tÞ�

¼ �GBðmjZÞNNBðm; tÞ

þ 2

Zmf

m

GDðm0jZÞPðm;m0jZÞNBðm0; tÞdm0

(1)

@NBðm; tÞ
@t

þ @

@m
½rmðm;ZÞNBðm; tÞ�

¼ �GDðmjZÞNBðm; tÞ þ GBðmjZÞNNBðm; tÞ (2)

NNBðm0; tÞ ¼ NNBðmf ; tÞ ¼ NBðm0; tÞ
¼ NBðmf ; tÞ ¼ 0; m2½m0;mf �

(3)

Figure 1. Estimation of the critical budding and division sizes based on the DNA

histograms (linear scale) and the critical budding and division bands. Two peaks can

be observed in the DNA histogram corresponding to the population with 1 copy of the

chromosome (1C)—non-budding—to the left and the population with 2 copies (2C) to

the right. Assuming the two peaks are normally distributed, the standard deviation s1 is

estimated based on the 1C peak height (y(m1)¼ hmax,1C), corresponding to the mean of

the 1C peak distribution (m1). The critical budding band (gray vertical bar to the left)

corresponds to the �5 ch. no. interval around nB¼m1þ s1. Similarly, the critical

division band (gray vertical bar to the right) is defined by an interval of �5 ch. no.

around nD¼m2þ s2, where m2 and s2 are the mean and standard deviation for the 2C

peak. The critical budding and division sizes are defined as the mean total protein

content of the cells pertaining to the respective critical bands.
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The boundary condition (Equation 3) assumes that the
minimum and maximum cell size considered (m0 and mf)
are sufficiently small and big, respectively, so that the
number of cells presenting these sizes is zero. In this work,
m0 is defined as 0 ch. nr. and mf as 2,000 ch. no. Although
the experimental data were collected for ch. no. up to 104

(see Supplementary Information S3), the number of cells
observed for channel numbers higher than 2,000 was found
insignificant, and the discretization upper boundary was
therefore set to 2,000 ch. no.

The initial distribution for each of the stages is a necessary
condition for the PBEs to be solved (Equation 4). To
minimize the influence of how the inoculum was prepared
on the measured distributions, and allow for as many
generations as possible in the well-controlled environment
in the bioreactor, the cell concentration was very low at the
beginning of the batch (OD� 0.001). Such low concentra-
tions make the determination of the initial distribution
prone to error, due to small sample volumes. The
distributions measured for the inocula were not considered,
as the growth conditions are substantially different from
the ones in the bioreactor, upon inoculation. The initial
distribution was thus not measured, but rather assumed
to follow a truncated Gaussian distribution with means
equal to mNNBðm;t¼0Þ ¼ 500 and mNBðm;t¼0Þ ¼ 650 ch. no. for
the non-budding and budding stages, respectively, and a
standard deviation ðsNNBðm;t¼0Þ; sNBðm;t¼0ÞÞ of 100 ch. no. for
both stages. Different mean values were tested without
yielding significant impact on the model predictions (data
not shown). An increase in the standard deviation has an
effect on the model predictions for the initial time points
(see the Results and Discussion Section).

Growth kernel

The growth rate function, rm(m, Z) was defined as the
product of a mass dependent factor m and a substrate
dependent factor l(Z) (Equation 6). First order kinetics
were assumed for the mass dependent factor (Hatzis and
Porro, 2006; Mantzaris et al., 1999), while the substrate
dependent factor l(Z), which can be regarded as a specific
growth rate, was derived from the unstructured model for
the extracellular environment. The constant km operates as a
switch that allows for modulating the growth rate in order to
reflect the residual growth observed in the stationary phase.
For the other cultivation phases, km is equal to unity.

rmðm;ZÞ ¼ kmm � lðZÞ (6)

Budding and division kernels

The budding and division rates, GB and GD (Equations 7
and 8), were defined as the product of the growth rate and a
hazard function (Hatzis and Porro, 2006; Mantzaris et al.,
1999). The latter is based on a density function (hB or hD)

that describes the probability of a cell of size m to initiate
the budding process or to undergo division. Truncated
Gaussian probability density functions with mean mB or mD

(the critical transition sizes), respectively, were used.
Equation (8) shows the budding probability density
function hi, where w is a Gaussian probability density
function and F is a Gaussian cumulative density function.
The two mean parameters (mB and mD) are function of
the substrate availability, while the standard deviations
(sB and sD) were assumed to be constant. The numerical
values for these parameters are provided as Supplementary
Information (Table S4-2).

Gi ¼ rmðm;ZÞ hiðmjZÞ
1� Rm

m0

hiðmkjZÞdmk

i ¼ B;D (7)

hiðmjZÞ ¼ ð1=siÞfððm� miðZÞÞ=siÞ
Fððmf � miðZÞÞ=siÞ �Fððm0 � miðZÞÞ=siÞ

i ¼ B;D

(8)

Experimental observations (see the Results and Discussion
Section) indicated that during late growth on glucose the
mean cell size decreased monotonously without a significant
variation of the fraction of budding cells in the population
(i.e., BI). The smooth shift of the distribution towards
smaller sizes was triggered when a given glucose consump-
tion rate is achieved (see the Results and Discussion
Section), and modeled by a linear decrease of the critical
transition sizes mB and mD. The decrease in the critical
sizes during the late glucose growth phase is described by
Equation (9), where I is a switch equal to 1 when the glucose
uptake rate is higher than 0.6 g g�1 L�1, and 0 otherwise. A
similar behavior was observed during late growth on ethanol
(see the Results and Discussion Section), but in this case,
the threshold for ethanol uptake rate is 0.15 g g�1 L�1. The
values of rates kB and kD (negative values) of both late
growth phases are provided as Supplementary Information
(Table S4-2).

@mi

@t
¼ kiI

dG

dt
< �0:6

� �
i ¼ B;D (9)

At the end of exponential growth on glucose, the
transition from the non-budding to the budding stage is
arrested when glucose is depleted, and the diauxic shift is
initiated. This budding transition arrest was modeled by
imposing a budding rate equal to zero. The duration of this
arrest is however not dependent on the model variables,
and as such to be defined according to the experimental
observations: an arrest of 3 h was defined (reflecting the
experimental optical density curve) in the work here
presented.
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Birth kernel

The birth term describes the formation of two cells of mass
m and m0�m as a result of the division of a budding cell of
sizem0. The birth rate is defined based on the division rate of
the mother cell, GD(m

0jZ), and the partitioning function
P(m,m0jZ). The latter function describes the ratio of sizes of
the daughter cells (originated from the bud) to the mother
budding cell, and is defined as a beta probability density
function (Hatzis et al., 1995). In this work, the distribution
was set as symmetrical (a¼ b¼ 50) during exponential
growth on glucose, while during exponential growth on
ethanol it was defined as left-skewed (a¼ 30; b¼ 60). The
change in the shape parameters reflects the decrease in the
ratio of daughter to mother cell size that has been observed
experimentally after the diauxic shift (Alberghina and
Westerhoff, 2005). The sensitivity of the model output to
the beta distribution shape parameters (a and b) defining
the partitioning function is discussed further in this work
(cf. the Results and Discussion Section).

Unstructured Kinetic Model for the Extracellular
Environment

An unstructured kinetic model was used to describe how,
during a batch cultivation, glucose (carbon source) is
consumed, and how ethanol is first produced, and
subsequently consumed after glucose is depleted. Also the
consumption of dissolved oxygen was modeled as budding
yeast oxidizes or reduces glucose depending on the available
dissolved oxygen concentration, and its respiratory capacity.
In order to be able to capture the interplay between the cells
and composition of the extracellular cultivation environ-
ment, a simple kinetic (unstructured) model reported in
the literature (Sonnleitner and Käppeli, 1986) was used
for describing the respiratory and fermentative growth
of budding yeast. In the original model, the biomass
accumulation is defined as an autocatalytic reaction. In this
work, the corresponding specific growth rate is defined as
l(Z), the extracellular environment factor included in the
single cell growth rate (Equation 6) in the PBE. Additionally,
the biomass concentration is here predicted using the PBM,
and provided as input for the prediction of the extra-
cellular environment variables: glucose, ethanol, and oxygen
(Fig. 2). The overall biomass concentration at any given time
point was calculated based on the sum of the zeroth moment
(total number of cells) of the cell size distribution for the
two stages. The total number of cells is converted into cell
dry weight concentration using a linear regression of cell
number to dry weight determined experimentally (data not
shown). Although it would be expected that cells of small
size present a lower dry weight than bigger cells, the error
typically associated with the experimental dry weight
determination may be quite significant and it would shade
differences between smaller and bigger cells. Therefore,
the total number of cells was converted into dry weight
concentration using a linear regression of cell number to cell
dry weight determined experimentally (data not shown).

The average yield coefficients were estimated by fitting of
the model to the experimental data, and are provided as
Supplementary Information (Table S4-1) together with a
description and the equations for this unstructured model
(Supplementary Information S5). Although ideally desir-
able, the parameter estimation was not performed by an
optimization routine due to the high collinearity of the
parameters in the unstructured model and the complexity of
the overall multi-scale model. The design of a parameter
estimation routine using a multivariate objective function
would be a valuable contribution, it however falls out of the
scope of this work.

Model Solution Methods

The fixed-pivot technique (Kumar and Ramkrishna, 1996;
Nopens et al., 2005) was applied to an evenly distributed
discretization grid with 166 pivots (in the range [m0,
mf]¼ [0, 2000]). The PBM and the unstructured kinetic
model are solved iteratively for time steps of 0.1 h, where the
biomass concentration estimated by the PBM is supplied to
the unstructured model, and the updated concentrations of

Figure 2. Schematic representation of the numerical procedure for solution of

the PBM and the coupled unstructured kinetic model.
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glucose, ethanol and oxygen are used to re-calculate the
substrate dependent factor l(Z) in the growth rate, and
eventually update the budding and division parameters mB

and mD, which are depending on the substrate consumption
rates. A schematic representation of the model solution steps
is presented in Figure 2.

The time step size was defined in order to ensure a
variation in the concentrations of glucose and ethanol per
time step smaller than 0.1 g L�1—the approximate experi-
mental error in the determination of these concentrations
(see the Materials and Methods Section). Smaller time steps
did not yield significant differences in the model predictions
(data not shown), confirming solution convergence. All
model simulations were performed using MatLab1 R2009b
(The MathWorks, Inc.).

Results and Discussion

Triplicate glucose-limited aerobic batch cultivations of S.
cerevisiae were performed. The three cultivations presented
similar growth and production profiles (Fig. S6-1 in
Supplementary Information). The respective biomass
(optical density), glucose and ethanol concentration curves
followed the typical patterns for aerobic yeast cultivations.
The population proliferated exponentially first on glucose
with a specific growth rate of 0.41� 0.001 h�1, and then
on ethanol with a growth rate of 0.10� 0.02 h�1. The
distributions of cell total protein content (a measure of cell
size) and DNA were monitored during the four cultivation
phases by flow cytometry. Generally, there was a good
agreement between the three replicate cultivations with
regards to the flow cytometry measurements (Fig. S6-2 in
Supplementary Information).

A model consisting of both a population balance model
(PMB) part and an unstructured kinetic model part was
constructed (for details see the section on Model Aspects
above). The predictions of this integrated model describe
both the variation of macroscopic variables—glucose,
ethanol, and dissolved oxygen, as well as the total biomass
concentration—and the distributions of single-cell total
protein content for the non-budding and budding popula-
tions during glucose-limited batch cultivation. With regard
to the macroscopic variables, the comparison of the model
predictions and experimental results (Fig. 3) shows a good
agreement: the model is able to describe the growth phases
(on glucose and ethanol) as well as the intermediate diauxic
shift phase. Based on the increase of number of cells
predicted by the model, the model predicted specific growth
rate was 0.44 h�1. This corresponds to a deviation of
approximately 7% between the estimation and experimental
data.

Mean Total Protein Content

The mean total protein content of the population decreased
throughout the cultivation (Fig. 4). During exponential

growth on glucose, the population showed a higher mean
total protein content relative to the other cultivation phases
(i.e., larger cell size), corresponding to a channel number of
approximately 700. In late exponential phase during glucose
assimilation, the mean cell size decreased to a ch. no. of
approximately 450. An additional decrease of the mean cell
size to a ch. no. of 350 was observed upon the depletion of
glucose. Similarly to what was observed during growth on

Figure 3. Variation of glucose, total biomass, and ethanol concentrations and

dissolved oxygen tension along the cultivation: model predictions (full line) and

experimental observations (full circles).

Figure 4. Comparison of model predictions for the mean cell size or total protein

content (full line) and budding index (dashed line) to experimental observations (cell

size as dots and budding index as open circles).
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glucose, the mean cell size decreased during late exponential
growth on ethanol, from a mean ch. no. of approximately
300–200. The mean cell size remained approximately
constant during stationary phase until t¼ 60 h, when the
cultivations were terminated.

Furthermore, also the predicted mean total protein
content for the overall population was in good agreement
with the experimental observations.

Budding Index

The variation in the distribution of cells through the cell
cycle phases can be seen even clearer when observing the
variation of the BI or the fraction of budding cells in the
population, along the cultivation (Fig. 4).

Estimation of BI frommicroscopic images was performed
to verify the estimated BI from flow cytometry DNA
distributions. Even if there were deviations in the exact
numbers, a similar trend was observed (see Supplementary
Information S2). Moreover, the BIs estimated from flow
cytometric data for time points during exponential growth
on glucose and ethanol, presented in this work, are in good
agreement with values reported in the literature. A BI of
approximately 80% was observed during growth on glucose,
which is in agreement with reported BI values for culti-
vations with similar specific growth rates (Brauer et al., 2005;
Cipollina et al., 2005).

The initial oscillations of the BI and subsequent damping
can be interpreted as a desynchronization of the population
resulting from the fact that the critical sizes are described
by a probability distribution function rather than a unique
discrete value (Liou et al., 1997; Mantzaris et al., 1999). An
increase in the standard deviation assumed for the initial
distribution results in a quicker damping of these
oscillations.

The abrupt decrease of the BI to approximately 48% from
about t¼ 18 h onwards coincides with the depletion of
glucose. A similar BI has been observed during exponential
growth in an ethanol-limited batch cultivation (Cipollina
et al., 2005). During stationary phase, an accumulation of
G1 cells took place analogously to the observations during
the diauxic shift, resulting in a BI of approximately 42%
after 60 h of cultivation.

Generally, the model predictions are in good agreement
with the estimations based on the experimental DNA
distributions here reported. Indeed, the accumulation of
smaller non-budding cells observed in the diauxic shift is
successfully described by the model, and reflected in the
continued decrease of the mean cell size and accentuated
the decrease of the BI during this phase of metabolic
rearrangement (Fig. 4).

When ethanol is depleted and cells enter the stationary
phase, the typically observed accumulation of non-budding
cells takes place at slower pace than the one observed for the
diauxic shift. Therefore, an arrest of the budding transition
is imposed as well as decreasing the constant km from unity
to an assumed value of 0.4. Notwithstanding the capability

of the model of describing the decrease in the mean cell
size and BI, the transition into stationary phase is rather
complex, and not yet fully understood (Werner-Washburne
et al., 2011). Therefore, the simplistic model description
presented (by decreasing the km and arresting the budding
transition) should not be expected to describe such
complexity. More research is required to fully unravel
this mechanism.

Cell Size and Cell Cycle Position Distributions

In Figure 5, the bivariate distributions of total protein and
DNA content measured along the cultivation are presented
as contour plots. The distributions of each cell property (in
the shape of histograms), for all sample times, are provided
as Supplementary Information (S7).

From the bivariate distribution, the significant changes in
the structure of the population can be easily visualized.
During the growth on glucose, a large part of the population
consisted of bigger cells presenting two copies of the
DNA (G2þM). As reflected in the BI profile (Fig. 4),
during the diauxic shift, an accumulation of cells with
lower DNA content (G1) and smaller size was observed,
resulting in a clearer cloud on the bottom left corner
of the bivariate distribution (Fig. 5, t¼ 20.4 h). During
growth on ethanol, a more even distribution of the cells
containing one or two copies of DNA, in comparison to
growth on glucose, was observed. This is illustrated in
Figure 5: while for exponential growth on glucose
(t¼ 16.8 h) only one high density cloud (red colored) is
observed, two clouds with approximately the same densities
(blue colored) are observed during the growth on ethanol
(t¼ 23.9 h).

In Figure 6, the total protein content distributions
predicted by the model are compared to the experimental
ones. The model predictions successfully describe the
general shift of the distributions towards smaller sizes.
The largest difference between model predictions and
experimental distributions is observed during the diauxic
shift. While the model shows clear bimodal distributions
around t¼ 21 h, the experimental distributions are unim-
odal. The experimental distributions for each of the non-
budding and budding subpopulations may present larger
variances than described in the model, and this may explain
the loss in separation of the peaks corresponding to non-
budding and budding cells (unimodality) observed experi-
mentally. Additionally, the model does not acknowledge
the existence of different generations whose critical sizes
increase with the generation age (Hatzis and Porro, 2006),
leading to intermediate subpopulations.

Critical Budding and Division Sizes: Dependence on
Substrate Availability and Uptake

The model presented in this work relies on the fact that
the cell size regulation has been identified as a key aspect in
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the growth regulation in response to changing environ-
mental conditions (Rupeš, 2002; Vanoni et al., 2005).
Understanding the dependence of the critical budding and
division sizes on the extracellular environment is essential
for understanding the population dynamics and for future
modeling of the dynamics of size and cell cycle position
distributions. Indeed, to define the critical budding and
division sizes as a function of the substrate availability is
essential for the definition of a dynamic population model
(cf. Modeling Aspects Section).

In order to assess how the mean cell size of a
subpopulation with a high content of cells initiating the
budding process, that is, cells in the critical budding size
range, changed during the batch cultivation a standardized
procedure was developed and applied to all samples (see
Computational Data Treatment Section). Not surprisingly
the critical budding size followed a similar evolution as the
overall mean cell size (Fig. 7), and was constant during early
growth phases and decreased in the later growth phases
and diauxic shift. Similarly, a standardized procedure was
applied to estimate the critical division size at each sample
time point. Also the critical division size accompanied the
general shift of the overall population towards smaller sizes
along the cultivation (Fig. 7).

In this work, particular attention was paid to understand
the population dynamics observed during the transition
between growth on glucose and ethanol. From the variation
of the estimated critical budding and division sizes along the
cultivation during the late growth phases on glucose or
ethanol (Fig. 7), cells seem to adjust to the decreasing
substrate availability by a smooth shift of the cell size
distributions towards smaller sizes, and a very slight decrease
in the BI (Fig. 4). Contrarily, an abrupt change in the cell
cycle position (sudden sharp decrease of the BI) was
observed upon glucose depletion and beginning of the
diauxic shift. These observations are in agreement with the
two different mechanisms proposed by Brauer et al. (2005)
when explaining the changes in the gene expression patterns
observed during (i) the late growth phases—‘‘continuous
homeostatic metabolic adjustment’’—and (ii) diauxic
shift—‘‘discontinuous metabolic remodeling.’’

Cell Adjustment During Late Growth Phases

As mentioned above, during the late growth phases, the cell
size distribution smoothly shifted towards smaller sizes,
while the BI decreased very slightly (Fig. 4). In this work, the
initial glucose concentration was 5 g L�1, and the decrease in

Figure 5. Bivariate distribution of total protein content and DNA during a batch cultivation of S. cerevisiae: exponential growth on glucose (t¼ 12.9, 16.8 h), diauxic shift

(t¼ 18.9, 20.4 h), exponential growth on ethanol (t¼ 21.9, 23.9, 27.4 h), and stationary state (t¼ 31.9, 38.7 h). The color code corresponds to the number density of the cells. The

vertical lines correspond to the critical budding (to the left) and division (to the right) threshold identified based on the DNA distribution.
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cell size was observed approximately 2 h before the diauxic
shift occurred, corresponding to a glucose concentration
above 3 g L�1. Brauer et al. (2005) performed cultivations
with an initial glucose concentration of 2.5 g L�1, and
significant changes in gene expression were observed when
the glucose concentration was approximately 0.5 g L�1.
It thus seems unlikely that the onset of the metabolic
adjustment is triggered by a certain concentration of glucose
in the medium.

Interestingly, when comparing the glucose consumption
and biomass growth curves of Brauer et al. (2005) with those
presented in Figure 3, the start of the adjustment in gene
expression and decrease in the mean cell size coincided
with a steeper increase in biomass concentration (OD)
and consumption of glucose. The glucose consumption
rate estimated for this time point was approximately
0.6 g L�1 h�1. A similar rate was estimated from the
publication of Brauer et al. (2005). With regard to the
growth phase on ethanol, the trend of cell size distribution
and the critical budding size was similar to the behavior
during growth on glucose. A similar adjustment behavior
triggered by threshold ethanol consumption rate was thus
assumed. This threshold was estimated to be approximately
0.15 g L�1 h�1. These thresholds were used in the model for

Figure 6. Total protein content distributions for the overall population: (a) model predictions (b) experimental observations. The color code reflects the different cultivation

phases: exponential growth on glucose (green), diauxic shift (orange-red), exponential growth on glucose (blue), stationary phase (violet).

Figure 7. Variation of the mean total protein content (i.e., cell size) for the overall

population (circles), the critical budding size (squares), and critical division size

(diamonds). The vertical lines define the four phases of the cultivation: (1) exponential

growth on glucose; (2) diauxic shift; (3) exponential growth on ethanol; (4) stationary

phase. The distances between cell size and the critical budding and division sizes

reflect the cell cycle distribution (fractions of non-budding and budding cells within the

population).
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defining dependence of the critical budding and division
sizes as functions of the substrate uptake (see section on the
Modeling Aspects and Fig. 2).

The dependence of the critical budding size on the specific
growth rate has been reported elsewhere (Porro et al., 2003),
and is implicitly related with the uptake rates (Youk and van
Oudenaarden, 2009). The link between the critical division
size and the uptake rate is thus not unexpected. In fact, Youk
and van Oudenaarden (2009) discuss the interaction
between glucose perception and import (uptake) on the
growth: for wild-type S. cerevisiae, when glucose is not too
low, the effect of glucose perception disappears and the
uptake perception is dominant. A more in depth validation
of these assumptions and numerical values for the threshold
uptake rates here proposed could, for example, be achieved
by comparison to the behavior of strains with improved
glucose or ethanol affinities. Such validation lies, however,
outside the scope of this work.

Cell Rearrangement Upon Diauxic Shift

During the diauxic shift, an abrupt decrease of BI was
observed (Fig. 4) together with the appearance of a
subpopulation of smaller cells (Fig. 5). The cell rearrange-
ment is likely to have more underlying reasons than merely a
modulation of the critical budding and division sizes. In fact,
it has been reported that the difference in cell size between
the two cells originating upon division—the bigger mother
cell and the smaller new born cell—is more accentuated for
growth on ethanol than for growth on glucose (Di Talia
et al., 2007, 2009). Furthermore, the diauxic shift is typically
characterized by arrest in the increase of biomass. As
reviewed by Alberghina and Westerhoff (2005), the budding
transition is likely to be resumed before the division, leading
to a small increase of the BI after a sharp downward shift.
This can be described by an abrupt reset of the partition
parameters, and an arrest of the budding transition. A small
downward peak and consequent recovery were observed in
Figure 4 (t¼ 22.9 h); however it should not be considered as
conclusive given the nature of the BI estimation procedure.
Such an abrupt change in the partition shape parameters
allowing smaller cells to eventually initiate DNA replication
and the budding process were however not captured when
considering the mean critical budding size (Fig. 7). Indeed,
the standardized procedure developed in this work based on
analyzing the DNA histograms is not able to capture abrupt
dynamics: it is necessary that a sufficient fraction of cells
with a smaller size initiating DNA replication is present in
the population, for its effect on the mean size of the
subpopulation isolated as the critical budding band to be
observed. The sensitivity of the method may be improved by
increasing the number of analyzed cells for the cases when
faster dynamics are expected. Furthermore, cells of different
ages could be distinguished experimentally by additional
staining (Sumner et al., 2003), allowing specifically for
isolation and comparison of the newborn cells originated in
the different growth phases.

Sensitivity of the Model Output to the Partition Function
Parameters

The description of the partition function as a beta
distribution implies that the two shape parameters, a and
b, are defined. In a previous theoretical study by Mantzaris
et al. (2002), a symmetrical distribution with shape
parameters, a and b, equal to 40 was assumed without
experimental evidences. Other studies (Fadda et al., 2012b;
Hatzis and Porro, 2006; Mancuso et al., 2009; Sidoli et al.,
2006) assumed the same symmetrical distribution and shape
parameter.

In this study, the numerical values of each of the shape
parameters have also not been directly estimated from the
experimental data, but the effect of these parameters on the
model outputs has been assessed. An experimental estima-
tion of the partition distribution (and corresponding shape
parameters) implies determining the cell size distribution of
a subpopulation of newly born cells: not only the smaller
cells originating from the bud but also the bigger cells that
produced the bud. This could be done taking a similar
approach to Porro and Srienc (1995): at a given time point
all cells in a sample were stained with ConA-FITC (labeling
the cell surface) and resuspended in growth media.
Assuming that the first partly stained cells to appear
correspond to cells that have just divided, the total protein
content of this subpopulation can be determined: a
symmetric distribution will indicate a symmetric partition-
ing (more equally sized cells) while an asymmetric
(eventually bimodal) distribution would indicate a unequal
partitioning. It is however not clear if this experimental
procedure would allow for a quantitative estimation of the
shape parameters.

The numerical values chosen—a symmetrical distribu-
tion initially (a¼ b¼ 50) and a left-skewed distribution
from the diauxic shift onwards (a¼ 30 and b¼ 60)—
correspond to the best fit of the model predictions to the
experimental data. The change in the parameters from one
growth phase to the next, reflects the fact that the two cells
originated upon division are more similar in size during
growth on glucose than during growth on ethanol.

Model simulations for different parameter combinations
were compared in order to assess the sensitivity of the model
to the two shape parameters. Firstly, simulations with
different combinations of values for a and b during growth
of glucose were carried out, while maintaining those after
the diauxic shift at a¼ 30 and b¼ 60 (Case I). The resulting
model predictions are compared in Figure 8. Secondly,
simulations with different combinations of values for a and
b after the diauxic shift were made, while maintaining the
initial values a¼ b¼ 50 for growth on glucose constant
(Case II). The resulting model predictions are compared
in Figure 9. The beta distributions corresponding to
the various parameter combinations are illustrated as
Supplementary Information (Figs. S8-1 and S8-2).

Concerning the sensitivity of the model to the partition-
ing function parameters provided initially (Case I, Fig. 8),

Fernandes et al.: Modeling S. Cerevisiae Population Dynamics 11

Biotechnology and Bioengineering



Figure 9. Comparison of the model outputs for different combinations of the shape parameters of the partitioning function as of the diauxic shift: a¼ 30 and b¼ 60 (black),

a¼ 20 and b¼ 50 (blue), a¼ 30 and b¼ 50 (gold), a¼ 40 and b¼ 50 (magenta), a¼ 50 and b¼ 60 (purple), a¼ 40 and b¼ 60 (green). a: Variation of the macroscopic

variables: glucose, ethanol, biomass, and oxygen; (b) variation of the mean total protein content; (c) variation of the budding index (BI). The lines in magenta and purple nearly

coincide.

Figure 8. Comparison of the model outputs for different combinations of the shape parameters in the partitioning function: a¼ b¼ 50 (black), a¼ b¼ 40 (blue), a¼ b¼ 60

(red), a¼ 40 and b¼ 50 (green), a¼ 50 and b¼ 60 (pink), and a¼ 40 and b¼ 60 (orange). a: Variation of the macroscopic variables: glucose, ethanol, biomass, and oxygen; (b)

variation of the mean total protein content; (c) variation of the budding index (BI). The black and the blue lines coincide with the red one.
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the more asymmetrical the beta distribution (i.e., bigger
difference in the size of the two cells resulting from division)
the slower the growth is. The slower growth leads to a slower
consumption of glucose and a consequent time delay in the
ethanol and dissolved oxygen profiles (Fig. 8a). This can be
explained by the existence of smaller cells (lower overall
mean cell size—Fig. 8b) which require a longer time to go
through the cell cycle, that is, spend more time in the non-
budding stage (lower BI—Fig. 8c). Furthermore, the
existence of smaller non-budding cells results in greater
oscillations of the BI (Fig. 8c). As expected, a similar effect is
observed when different parameter combinations are used
for redefining the partitioning function upon the diauxic
shift (Case II). The sensitivity of the ethanol and dissolved
oxygen concentrations (model outputs), respectively, are
however lower in this case (Fig. 9a). After the abrupt
decrease caused by the arrest in the budding transition,
the BI increases upon resuming the transition: the more
symmetrical the partition function, the higher the predicted
BI is upon resuming the budding transition. This is not
surprising when considering that, for a more symmetrical
distribution, the cells accumulating in the non-budding
stage (during the arrest of the budding transition) havemore
similar sizes and, upon resuming the budding transition, will
become budding cells at approximately the same time
causing a larger increase in the BI.

Conclusions

This study focuses on understanding and modeling the
dynamics of a yeast population in terms of development
of the cell size and cell cycle distributions along a batch
cultivation. It presents of an example of a quantitative
integrated analysis of general physiology data (i.e., substrate,
metabolite and biomass concentrations) and single-cell flow
cytometry data. The experimental single-cell measurements
for DNA and total protein, as well as the concentrations
of substrate and metabolites were interpreted also in the
light of gene expression studies previously reported in the
literature.

The standardized procedures developed allow for
identifying trends in the single-cell properties (critical sizes)
along the cultivation. Although, these procedures require
the definition of a threshold (e.g., distance from the peak
mode) and this decision may introduce a bias, the same
threshold decision is made for all the samples, implying that
the bias is systematic. Oppositely, manual gating for each
sample would introduce a random bias, while the use of the
same fixed gates for all samples would neglect the fact that
the overall distribution shifts along time also introducing a
varying bias. Hence, standardized procedures such as those
developed in this work are important for quantitative,
systematic interpretation of data from single-cell analysis
and for use of this type of data in mathematical models.

Population balance models offer a framework to describe
the dynamics of distributed properties in a wide range of

applications. Although the first discussion on the use of such
models for describing microbial populations was published
more than 40 years ago (Fredrickson et al., 1967), reports
on the application of the models to specific examples and
comparison to experimental results are scarce (Lencastre
Fernandes et al., 2011). One of the causes for such a limited
use of these segregated models, in a time where experimental
methods for measuring single-cell properties (e.g., flow
cytometry, fluorescence microscopy) are easily available,
is the difficulty in translating observed behaviors into the
PBM growth, budding, division and birth terms.

The overall data analysis allowed for formulating two key
kernel functions—budding and division rates—based on
dependence of the critical budding and division sizes on the
glucose and ethanol uptake rates.

Furthermore, the coupling of the PBM to an unstructured
kinetic model, proposed in this work, results in a more
comprehensive description of the phenomena taking place
at different scales (macroscale and microscale) during
the cultivation. Such coupling is essential for integrating
the typical physiological data (averaged measurements
for the overall population), with distributed data collected
at single-cell level, thus achieving a model with improved
prediction capacities at two levels of detail.

The presented work contributes towards linking experi-
mental data and PBM theoretical work: a new trend in the
PBM community (Nopens et al., 2009). The proposed
model can be regarded as a tool for investigating these
dynamics under different scenarios, for example, pulse
experiments, and comparing the different assumptions
against the experimental observations. In the case of
continuous or fed-batch fermentations where the glucose
concentration in the feed is high, the integration of the
proposed model and a computational fluid dynamics (CFD)
model describing the distribution of substrate within the
reactor provides a valuable tool to study in silico the effect of
non-ideal mixing, and resulting substrate gradients, on the
development of heterogeneous cell populations. Recently,
the occurrence of distribution of protein levels (concentra-
tions) for a cell population was studied in silico using a PBM
that incorporated a stochastic description for gene expres-
sion (Shu et al., 2011, 2012). It was concluded that, although
it is often believed that the occurrence of bimodal
distributions results from a bistability of the gene regulatory
network (e.g., Hasty et al., 2002; Thattai and van
Oudenaarden, 2001), this bimodality may arise even if
the stochastic bistability does not occur (Shu et al., 2011).
This interesting observation indicates that bimodality may
be a consequence of the dynamics of a population. A PBM
including a deterministic, rather than a stochastic descrip-
tion of the protein production kinetics may thus eventually
be sufficient to describe the distribution of protein levels in a
microbial population. Moreover, as the interplay with the
extracellular environment (e.g., available substrate) could be
included, such a model would be a valuable contribution
towards understanding the impact of the development of
heterogeneous populations on the overall productivity, and
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obtain a better predictive tool for modeling large-scale
fermentors where heterogeneity has been observed (Enfors
et al., 2001) and still is a pending problem in practice.
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Abstract 

In large-scale fermentors, non-ideal mixing leads to the development of heterogeneous 

cell populations. This cell-to-cell variability may explain the differences in e.g. yields 

for large- and lab-scale cultivations. In this work the anaerobic growth of 

Saccharomyces cerevisiae in a continuously run microbioreactor is simulated. A multi-

scale model consisting of the coupling of a population balance model, a kinetic model 

and a flow model was developed in order to predict simultaneously local concentrations 

of substrate (glucose), product (ethanol) and biomass, as well as the local cell size 

distributions.  

 

Keywords: Population Balance Model, Computational Fluid Dynamics, yeast, 

microreactor, fermentation 

1. Introduction 

A heterogeneous microbial population consists of cells in different states, which implies 

a distribution of activities (e.g. respiration, product efficiency), as well as different 

responses to extracellular stimuli. The existence of a heterogeneous cell population may 

explain the lower productivities obtained for cultivations in large-scale reactors, where 

substrate and oxygen gradients are observed, in comparison to cultivations in well-

mixed bench scale reactors (Enfors et al, 2001).  

Population balance models (PBM) have been used in various applications (e.g. 

crystallization, granulation, flocculation, polymerization processes, etc.) to predict 

distributions of certain population properties including particle size, mass or volume, 

molecular weight,... Similarly, PBM allow for a mathematical description of distributed 

cell properties within microbial populations (Lencastre Fernandes et al, 2011).  

Phenotypic heterogeneity arises as a result of the variability inherent to the metabolic 

mechanisms of single cells. Cell size is a key feature affecting cellular design, fitness 

and function (Jorgensen and Tyers, 2004). In fact, cell growth and division are tightly 

coupled, and this is reflected in the cell’s capability of adjusting its growth rate to 

nutrients’ availability (Enfors et al, 2001; Jorgensen and Tyers, 2004). Cell total protein 

content distributions (a measure of cell size) have been observed to provide a dynamic 
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picture of the interplay between the cells and surrounding extracellular environment 

(Alberghina et al, 1998).  

The work hereby presented focuses on modeling the development of a microbial 

population growing in a continuous microbioreactor. The dynamics of single cell total 

protein content are described by a PBM, the consumption of substrate and production of 

ethanol are described by simple kinetics (unstructured model), and the transport of the 

species throughout the reactor is described by a computational fluid dynamics (CFD) 

model.  

2. Case Study 

The anaerobic fermentation of Saccharomyces cerevisiae in a continuous microreactor 

is used as case study. As above mentioned, cell growth and division are tightly coupled, 

and are modulated according to the substrate availability. The regulation of growth 

ensures that cells attain a critical size before initiating the division process (Rupeš, 

2002; Porro et al, 1995). In the particular case of S. cerevisiae, two critical sizes 

corresponding to the regulation points START (committing to budding, or budding 

transition) and division have been identified. A schematic representation of the cells 

transition through the cell cycle and the associated cell growth (i.e. size increase) is 

presented in Fig. 1. 

Using cell size as population descriptor allows, thus, for describing the distribution of 

cellular states. Moreover, a better description of the cellular state is obtained by 

determining the distribution of cells in cell cycle phases, i.e. by measuring DNA 

distributions (Alberghina et al, 1998). It was thus found desirable to use a PBM based 

on cell size as model variable, which is applied to different stages (i.e. subpopulations) 

corresponding to the non-budding and budding (cell cycle) phases. 

 

Figure 1 - Schematic representation of the cell 

cycle during exponential growth. The dark arrow 

(inside the circle) corresponds to the duration of the 

non-budding stage (G1phase). Due to their bigger 

size, G1 phase is shorter for mother cells than for 

daughter cells (dashed arrow). The START point 

represents the regulation point that defines the 

inititation of the DNA replication and budding 

process, i.e. transition to the S phase. The division 

point corresponds to the completion of the mitotic 

process and separation of a budding cell into two 

non-budding ones. 

The microreactor consists of a sequence of spherical chambers connected in the center 

by a channel (Fig. 2). An inlet mass flow rate of 1x10
-9

 kg/s, containing glucose (20 g/l), 

was applied. The ethanol and biomass concentrations at the inlet are 0 g/l. The hydraulic 

retention time is 783 s.  

3. Model Description 

Aiming at both describing the distributions of single-cell sizes for the two cell size 

stages (non-budding and budding), a population balance model was coupled to an 

unstructured model describing the extracellular environment. 

3.1. Population Balance Model 

The PBM developed for this study is based on a multi-stage model reported in the 

literature (Hatzis and Porro, 2006). In this work, the segregated model consists of two 
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population balance equations (PBE), which describe cell growth, initiation of the 

budding process, cell division and birth, for both the non-budding and budding stages 

(Eq. 1 and 2), as well as the corresponding initial and boundary conditions.  

                 

(Eq. 1) 

 

 (Eq. 2) 

Here N
NB

dm and N
B
dm represent the number of cells in the cell size interval [m, m+dm] 

for the non-budding and budding stages, respectively, m is the cell total protein content 

or cell size (in arbitrary units), and Y designates the extracellular environment. The 

budding and division transitions, ΓNB and ΓB, are mathematically described as hazard 

functions (Eq. 3 and 4, for the budding transition) where the probability that a cell of 

mass m initiates the budding process, i.e. transitions to the budding stage, or divides into 

two new cells is described by a Gaussian probability density function with mean µB and 

µD, respectively. The standard deviation was assumed to be the same for the two 

transition functions and constant along the cultivation. 

 

(Eq. 3) 

 

(Eq. 4) 

(Eq. 5) 

Generally, the link to the extracellular environment is accounted for by including 

substrate dependency in the growth function as well as transition functions (budding 

and division) for each of the stages: (i) the growth rate of single cells (rm, Eq. 5) 

depends on the mass of each cell (first-order kinetics) and on the available concentration 

of glucose. The substrate factor, λ(Y), can be regarded as a single cell specific growth 

rate and it is derived from the unstructured model describing the consumption of 

glucose and formation of ethanol; (ii) concerning the budding and division transitions, 

the critical transition cell sizes (µB and µD) are function of the locally available substrate 

concentration, and mathematically described by Monod type expressions. A mother and 

a daughter cell are generated upon division, where the ratio of the mother cell size to the 

daughter cell size is defined by the partitioning function, P(m,m’│Y). This function 

consists of a symmetrical beta probability density function. The dependence of the 

partitioning function on the substrate was neglected for this case study. 

3.2. Unstructured Model: Description of the extracellular environment 

The unstructured model describes the fermentation of glucose (substrate) to ethanol. 

The local consumption rate is estimated based on an averaged yield of biomass on 

substrate and the concentration of biomass present at a given location in the 

microreactor and a given time point. The rate of formation of ethanol is estimated in a 

similar fashion. This concentration of biomass is calculated as the zeroth moment of the 

total cell size distribution. The updated concentrations of glucose and ethanol are used 

for recalculating the substrate factor λ(Y), which serves as input to the PBM. 

3.3. Solution methods 

The fixed-pivot technique (Kumar and Ramkrishna, 1996) was used to discretize the 

PBE, using an evenly distributed grid with 20 pivots. The commercial software by 

ANSYS® CFX (v. 12.1) was used, and PBM was implemented using the expression 

language (CEL). The geometry was defined with ICEM CFD 12.1, and a hexahedral 

( , )
( , ) ( , ) ( ) ( , ) 2 ( ' ) ( , ' ) ( ', ) '

NB
NB NB B

m B D

m

N m t
r m Y N m t m Y N m t m Y P m m Y N m t dm

t m

∞
∂ ∂

 + = −Γ + Γ ∂ ∂ ∫
( , )

( , ) ( , ) ( ) ( , ) ( ) ( , )
B

B B NB

m D B

N m t
r m Y N m t m Y N m t m Y N m t

t m

∂ ∂
 + = −Γ + Γ ∂ ∂

  

Γ
NB

(mY) = r
m
(m,Y)

h
NB

(mY)

1− h
NB

(m')dm'
m

0

m

∫

( ) ( ( ), )
NB NB NB

h m Y N Yµ σ=

rm(m,Y ) = kGm ⋅λ(Y )



4  R. Lencastre Fernandes et al. 

mesh with 32159 elements and 36535 nodes was generated. Diffusion was not 

considered in the simulations. 

4. Results and Discussion 

The glucose supplied at the inlet is transported through the reactor, allowing for the 

biomass to grow. The biomass is suspended, and thus is also transported throughout the 

reactor until it exits the system. The spherical structures allow for a higher retention of 

the biomass within the reactor in comparison to a plug-flow configuration, preventing a 

complete wash out of the biomass. The steady-state profiles for glucose, total biomass 

and ethanol profiles are presented in Figure 2. 

Figure 2 – Glucose, total biomass and ethanol profiles obtained at steady-state. As the reactor is 

symmetrical along the x- and y-axis, only a quarter of the reactor was simulated and illustrated. 

The total length of the reactor is 8 mm. The inlet of the reactor is located at the nearest to Plane 1. 

The glucose concentration is highest at the inlet and decreases along the reactor. 

Therefore, the biomass growth rate is highest close to the inlet. The biomass formed in 

the first compartments is transported along the flow streamlines towards the outlet (Fig. 

2). This results in a higher biomass concentration in the compartments closest to the 

outlet, although the growth rate here is virtually zero. Ethanol cannot be consumed by 

the cells due to the lack of oxygen. Its concentration is highest at the interface of 

glucose and the biomass is accumulated in each compartment.  

 
Figure 3 – Comparison of average concentrations and cell size probability density distributions 

for different location planes in the reactor: a) average concentrations of total biomass, glucose and 

ethanol  b) distribution  for the non-budding stage c) distribution for the budding stage. Arbitrary 

units are used for cell size.  

Four different location planes were selected corresponding to the outlets of the spherical 

compartments (Fig.2) . The average glucose, ethanol and total biomass concentrations 

corresponding to each location plane are presented in the Figure 3. Additionally, the cell 

size distributions for the two stages for each of the locations are compared (Fig. 3). 

While the difference in the distributions is not significant for the non-budding stage, this 

difference is rather noticeable for the budding stage. If cells were imobilized in the 
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different compartments, it would be expected that the population in the compartment 

closest to the inlet (experiencing higher glucose concentration) would contain a higher 

fraction of bigger cells.  Experimentally, the cell size distributions shifts towards 

smaller sizes when entering stationary phase (Werner-Washburne et al., 1993). This is 

however not observed in the simulation results, where cells are transported through the 

reactor. The coupling of a segregated biological model with the fluid dynamic model, 

increases the complexity of the problem and challenges the interpretation of the results. 

Different control tests, e.g. continuity check and mass balance closure, have been 

performed. Further investigation, both in silico  and experimentally, is required in order 

to assess the validity of these results.  

5. Conclusions 

In this case study, a PBM describing the distribution of cell size for cell cycle stages, 

and its dependence on the available substrate concentration, was coupled to a fluid 

dynamic model that describes the transport of the supplied substrate and the biomass 

throughout the reactor. The interpretation of the results is challenging as the transport of 

the cells along the fluid streams has to be considered together with biological 

phenomena (growth, budding and division) taking place locally. The study is, 

nonetheless, a contribution to the development of modeling tools for successful 

prediction of the dynamic behavior of total protein content distributions of a yeast 

population under non-ideal mixing conditions, as found in large-scale fermentors as 

well. In the future a comparison of this more detailed model with simpler ones (e.g. 

lumped models) should be performed in order to identify the situations where the use of 

more complex models such as the proposed one is adequate and justifiable. 
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Appendix B

Population dynamics during batch
cultivation

B.1 Budding Index Estimation: flow cytometry vs. microscopy

The estimations of the BI obtained by microscopic observation have been com-
pared to the estimation based on DNA distribution used in this work. In a parallel
experiment, triplicate cultivations in 500 ml shake flasks with a working volume of
100 ml were performed. The same strain was grown in the same medium as the
cultivations reported in the manuscript. Two samples from the exponential growth
phase on glucose (t = 13 h and 15 h) and two others from the growth phase on
ethanol (t = 23 h and 24 h) were taken. The samples were taken in duplicates.

One duplicate was analyzed on the microscope (optical microscope, 40x ob-
jective). For each sample, two slides were prepared and 15 photo frames corre-
sponding to different locations in the slide were recorded. The total number of
cells and the number of budding cells was counted for each photo frame, and the
aggregated fraction of budding cells in all the counted cells then yields the BI. In
average, a total of 446 cells were counted per sample, and a minimum of 187 cells
(total number of cells) was registered for sample t = 13 h for one of the replicates
(SF3). The second sample duplicate was centrifuged, and cells were resuspended
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in 70% ethanol. After a period of at least 48 h, the samples were split into two
aliquots and the DNA staining procedure (Porro et al, 2003) was performed for
the two aliquots. The DNA content was measured in the same flow cytometer
mentioned in the manuscript. The BI was estimated following the procedure de-
scribed in the manuscript. The estimated BI for each duplicate of the 4 samples is
presented in Figure B.1.

Figure B.1: Budding Index estimations based on analysis of the flow cytometric DNA his-
tograms and microscopic cell counting: SFx identifies the triplicate shake flask cultivations,
SFx 1 and 2 correspond to the two aliquots stained and analyzed in the flow cytometer, SFx
M corresponds to the aggregated result for the microscopic cell count. The figure to the left
(Aggregates) corresponds to a first analysis without excluding cell aggregates. In the figure
to the right (Without Aggregates) events that presented a considerably high DNA content
and FSC were disregarded for the flow cytometry based estimation of the BI.

Although the two methods (flow cytometry and microscopic) do not yield the
same results, both methods show similar trends. Indeed, the decrease of the BI
for the growth stage on ethanol in comparison to the initial growth on glucose
is visible for both methods. In the case of the microscopic counting, when the
bud is small cells may be incorrectly classified as non-budding, leading to an un-
derestimation of the BI. On the contrary, in the case of the estimation based on
flow cytometric data, in the presence of cell aggregates these will be classified as
budding cells, despite the fact that the aggregates might consist of non-budding
cells. In the case of microscopic counting, the samples were kept in an ultrasound
bath in order to prevent aggregates. Aggregates observed were not taking into
account in the counting procedure. Therefore, the estimation procedure based
on flow cytometric DNA distributions may thus lead to an overestimation of the BI.
We believe these are the reasons for the observed differences between the results
obtained with the two methods.
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When excluding aggregates (with a DNA > critical division band and high FSC),
a bias in the flow cytometry based BI estimation was removed, as it can be ob-
served in Figure B.2: the y-intercept is close to zero when the aggregates are
removed before the BI estimation.

Figure B.2: Comparison of the BI estimation methods (microscopic cell counting vs. flow
cytometry DNA histogram analysis): blue markers and line correspond to the analysis were
aggregates are disregarded, while aggregates were considered in the results corresponding
to red markers and line.

B.2 Cell total protein content: measurements and channel num-
ber as arbitrary unit

Experimentally the total protein content and the DNA content of a single cell can
be determined by staining cells with fluorescein isothiocyanate and measure the
fluorescence of each cell in a flow cytometer . However, the flow cytometer does
not register an emission spectrum, or an absolute value for intensity, as in the
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case of a fluorescent spectroscope. Instead, the fluorescence signal for an indi-
vidual cell is recorded as a value on an arbitrary scale of channel numbers, cor-
responding to the bins for a histogram. Typically, flow cytometry histograms are
presented in this arbitrary scale in a range of channel numbers from 0 to 1024 in
the case of a linear scale, or from 100 to 104 in the case of a logarithmic scale.
The first is generally used for forward and side scatter signals, whereas the lat-
ter is used for fluorescence signals. A calibration curve using fluorescence beads
allows for translating the arbitrary scale of channel numbers into e.g. a scale of
molecular equivalents of fluorochrome. In the case of both the total protein and
DNA, the number of fluorochromes attaching to the cell is linearly proportional
to the protein content or DNA content of an individual cell (calibration data not
shown). For example, for a cell with two copies of the chromosome it can be as-
sumed that the double amount of fluorochromes will attach to the DNA compared
to a cell with only one copy of the chromosome. Similarly, as a high percentage of
the cell content is made of protein, a higher number of fluorochromes will attach
to the cell corresponding to a higher channel number in the arbitrary scale, than
for a smaller cell. In this work, the channel number (ch. no.) arbitrary unit is used
to describe the cell total protein content (i.e. cell size). Further details on the
materials and methods used for collecting flow cytometric data within this study
are provided in Part I of this work. A comprehensive description and discussion on
flow cytometry can be found elsewhere [66].

B.3 Comparison of three replicate bioreactors
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Figure B.3: Variation of glucose (open circles), ethanol (stars) and biomass (open squares)
along the cultivation. The error bars correspond to the standard deviation of the three repli-
cate cultivations. The numbers correspond to the different cultivation phases: 1) growth on
glucose; 2) diauxic shift; 3) growth on ethanol; 4) stationary phase.
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Figure B.4: Variation of the mean forward scatter (open squares), side scatter (open di-
amonds), total protein conten (stars) and DNA (dots). The error bars correspond to the
standard deviation of the three replicate cultivations (marked as BR1, BR2 and BR3). In the
case of the total protein content one of the reactors showed a deviant behavior during the
diauxic shift and early growth on ethanol (star points, no line). This cultivation was disre-
garded when determining the mean values and standard deviations (stars and full line). The
numbers correspond to the different cultivation phases: 1) growth on glucose; 2) diauxic
shift; 3) growth on ethanol; 4) stationary phase..
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B.4 Total Protein Content and DNA Content Histograms for all
sample times and triplicate bioreactors

See next pages
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Figure B.5: Total protein content distribution for Bioreactor 1
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Figure B.6: Total protein content distribution for Bioreactor 2
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Figure B.7: Total protein content distribution for Bioreactor 3
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Figure B.8: DNA content distribution for Bioreactor 1
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Figure B.9: DNA content distribution for Bioreactor 2
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Figure B.10: DNA content distribution for Bioreactor 3
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B.5 Comparison of beta distributions for various shape parameter
combinations

The partitioning function is described by a beta distribution. The corresponding
probability density function is defined by the following equation:

f
( m
m′

;α, β
)

=
1

B(α, β)

m

m′
α−1 (

1− m

m′

)β−1

(B.1)

whereB(α, β) is a beta function, α and β are designated as shape parameters,
and m/m′ is the ratio of the size of the daughter cell originated as the bud to the
size of original budded cell. In order to compare and interpret the model outputs
obtained using for various combinations for the shape parameters, it is important
to have in mind how the parameters modify the shape of the beta distribution (i.e.
partitioning function).

The beta distributions for the parameter combinations used for the sensitivity
analysis included in this work are illustrated in Figures B.11 and B.12.
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Figure B.11: Beta probability density functions for the shape parameter combinations used
for Case I of the sensitivity analysis.

Figure B.12: Beta probability density functions for the shape parameter combinations used
for Case II of the sensitivity analysis.
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