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Abstract

The fibre/matrix interfacial debonding is found
to be the first microscale failure mechanism lead-
ing to subsequent macroscale transverse cracks in
composite materials under tensile load. In this
paper, the micromechanical interface failure in
fiber-reinforced composites is studied experimen-
tally and by numerical modeling by means of the
finite element analysis. Two fibers embedded in
the matrix are subjected to a remote transverse
tensile load (see Fig. 1a). The trapezoidal co-
hesive zone model proposed by Tvergaard and
Hutchinson [14] is used to model the fracture of
the fiber-matrix interfaces. This study is based
on the comparison between the results of numer-
ical modeling and those corresponding to the ex-
perimental tests by employing two parameters:
The angle from the load direction to the crack tip
and the crack normal opening. This comparison
aims to investigate the interfacial properties and
also assess the progressive fiber-matrix debond-
ing by focusing on the interaction of two fibers
with dissimilar interfacial strengths.

1 Introduction

Depending on the material properties and load-
ing conditions, interface debonding, matrix fail-
ure and/or fiber breakage are the main failure
mechanisms in composites. In many cases, inter-
facial debonding is the first mechanisms which
leads to crack initiation and propagation. There-
fore, it is important to investigate the interface
parameters accurately. The interface fracture en-
ergy, φ, and the maximum cohesive stress, σmax,
are the most critical parameters playing signifi-
cant roles in failure of interfaces. The experimen-
tal part of the present research aims at determin-
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Figure 1: a) Schematic drawing of specimen with a dog-
bone shaped epoxy resin including two glass fibers in the
middel of specimen. b) Example of debonding obseved in
SEM under tensile test.

ing the interface parameters. Furthermore, the
effects of fiber dimension and fiber spacing on
the damage evolution in glass-epoxy composites
are studied by means of the numerical simula-
tion. Therefore, as the first step it is necessary to
find out a proper experimental test method in or-
der to measure the interface fracture energy and
the maximum cohesive stress. The lack of a stan-
dard two-dimensional test and its correspond-
ing device is the first problem in selecting the
method of experimental test. Different methods
have been used to characterize the fiber/matrix
interface parameters such as the fragmentation
test, the pull-out test, the push-in test and the
push-out test. Each of these methods has some
advantages and disadvantages which should be
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considered for a specific purpose under investi-
gation. The fragmentation test was proposed by
Kelly and Tyson[5] to study the interface prop-
erties in metal matrix composites. This method
was appropriate for composites with ductile ma-
trices and brittle fibers. While, the pull-out test
is usually performed for the tough fibers sur-
rounded by brittle matrix. Although the frag-
mentation test as well as the pull-out test lead to
durable results but their testing conditions can
be difficult to fulfill. In the push-in technique a
single fiber is pushed by means of a nanoinden-
tor on a cross-section of a bulk specimen of the
laminate until interface decohesion occurs. On
the other hand, the push-in test does not require
any laborious sample preparation. However, the
interpretation of this method is somehow difficult
because the length of the debonded interface be-
low the surface is not known. Thus, the results
should be analyzed in terms of a shear lag model
or FE simulations of the test [8]. The push-out
test is very similar to the push-in test but is
carried out on a very thin specimen. Although
the push-out test requires more difficult speci-
men preparation, but leads to a more direct mea-
surement of the interface strength [2]. However,
both the push-in as well as push-out methods in-
volve frictional sliding while the friction law or
shear stress is unknown. Thus it is difficult to
separate debonding and frictional sliding which
happen simultaneously. Furthermore, all above
interface measuring techniques try to investigate
the tangential properties of the interface. While
for the cases subjected to a tensile load normal
to the fiber orientation, like the preset study, the
dominant debonding is due to normal opening
of the interfaces. Thus, in this research another
method has been used which approaches to a
more direct measurement of the normal proper-
ties of fiber/matrix interfaces in uni-directional
composites. In this method, a specimen including
a single or double fibers embedded in the matrix
is subjected to tensile load inside the chamber of
the Scanning Electron Microscope (SEM). The
cross-section normal to the fiber orientation will
be monitored while the load is being applied. By
this technique, more precise data with respect to
the normal properties of interface such as the co-

hesive maximum normal stress and cohesive frac-
ture energy can be determined.

This paper comprises five sections. After the in-
troduction the proposed experimental method is
presented in detail in the next section. Then,
the numerical methods used in the simulation is
given in section 3. In the fourth section, the re-
sults are shown and discussed. Finally, this study
is concluded in section 5.

2 Experimental Study

The fiber/matrix interface properties of fiber-
reinforced composites are determined according
to the transverse tensile test inside the SEM. The
glass-fibers used in this experimental study are
provided by Ahlstorm. The diameters of fibers
are ∼ 45-55 µm. The fibers with large diameter
are chosen to measure the interface debonding
since this is easier by the SEM. The experimen-
tal samples are manufactured by positioning two
glass-fibers in a rubber mold. Then, the mold is
filled up with a fast-curing epoxy resin named
RIMR 135 (from Momentive company) which
surrounds the fibers. The fibers Young’s modulus
and Poisson’s ratio are Ef = 72GPa and νf =
0.21, respectively and for the matrix the prop-
erties are Em = 3GPa and νm = 0.3. The yield
stress of the matrix material is σy = 16MPa. To
find the yield stress of the matrix, a parameter
study is carried out to fit the numerical debond-
ing angle-remote stress curve as well as the nu-
merical crack normal opening-remote stress cuve
with those corresponding to the experimental
data. Thermal compressive residual stresses in
the fiber along the longitudinal axis as well as
in the radial direction arise due to the thermal
expansion mismatch between constituent phases,
chemical shrinkage of the resin and non-uniform
curing [6]. Radial residual stresses in glass fibers
embedded in epoxy resin have rather signifi-
cant contribution to the general process-induced
stress state [16]. However, the residual stresses
in the longitudinal direction along the fibers are
significantly influencing the stresses in the fibers
surrounded by a large volume of resin. It has
been shown by single-fiber fragmentation tests
that fibers without any pre-loading while cur-
ing are under compressive residual stresses [16].

ICCM19 5854



Figure 2: Test set-up for tensile testing in SEM. A motor
drives a spindle that moves one of the loading blocks and
thus one grip, resulting in tension or compression of the
specimen.

Residual stresses could also influence interface
properties and cause debonding prior to loading
which would prevent studying of interface prop-
erties. Therefore, the fibers are pre-loaded before
curing. The amount of pre-load can be estimated
by calculating the expected compressive residual
thermal stress in the fiber. Residual compressive
stress of the fibers due to the thermal expansion
mismatch between constituent phases are given
by [3] and [4]

σth
f = (αm − αf )(T − Tref )

Ef

1 + (
Vf

Vm
)(

Ef

Em
)

(1)

where, αm and αf stands for the thermal ex-
pansion coefficient of the matrix and the fibers,
respectively. The room temperature is denoted
by T and Tref is the reference temperature at
which the material solidifies upon cooling. The
fiber volume fraction is Vf while the matrix vol-
ume fraction is Vm. Finally, Em and Ef de-
note the Young’s modulus of the matrix and the
fibers, respectively. The value of the aforemen-
tioned parameters are given in Table. 1. During
post-curing the samples including two fibers em-
bedded in a large volume of resin are heated at
60◦C. In this temperature the fibers are under a
thermal compressive stress of σth

f = −130MPa

which corresponds to a strain level of εth =
−0.18%. However, the above calculation of resid-
ual stresses does not include the chemical reac-

Material properties Value

αm [ 1
◦C ] 65× 10−6

αf [ 1
◦C ] 5.1× 10−6

T [◦C] 20

Tref [◦C] 50
Vf

Vm
[−] ≈ 0 (for two-fiber composite)

Table 1: The thermal parameters of the epoxy resin used
for the residual compressive stress calculation.

tions. Therefore, during manufacturing process
the fibers were pre-strained a little more, i.e.
+0.25%. This pre-straining fulfills by applying a
weight of 20g at each fibers ends. After position-
ing and pre-straining, the mold is filled up with
previously degassed resin. Specimen was cured at
23◦C for 24 hours and subsequently post-curing
at 60◦C for 10 hours. The surface of interest was
polished in order to remove any cracks from the
surfaces as well as fulfilling microscopy require-
ments. Once smooth surface is obtained, samples
are reshaped to the dog-bone shape in order to
facilitate mechanical testing. The final geometry
of the sample is shown in Fig. 1a. Then, the sur-
face faced to the microscope is electrically con-
ducted by a thin coating of a carbon layer.

As shown in Fig. 2, the specimen is subjected
to the tensile load using a special tensile load-
ing fixture [11] designed for testing in SEM. The
fixture was mounted on the x, y, z stage of the
vacuum chamber of SEM (Zeiss, EVO60). The
polished surface was oriented towards the micro-
scope electron gun and detectors. By this setting
in situ observation of crack initiation under the
tensile loading can be obtained. During the mi-
cro scale experiments, the load was applied to
the specimen in increments. The tensile test was
interrupted at various load steps until ultimate
failure. This enabled observing and capturing of
images of the crack propagation using SEM fa-
cilities. The fiber/matrix debonding as well as
matrix failure near the fibers is shown in Fig. 1b
where a crack is seen to initiate at the interfaces
between the fibers and the matrix. It propagates
along the fiber/matrix interface until a certain
angle is reached, at which the crack kinked into
the matrix. This study considers the failure be-
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Figure 3: a) Schematic drawing of specimen with a dog-
done shaped epoxy resin including two glass fibers in the
middle of specimen. b) The chosen 2D-cell from the mid-
dle of specimen including two circular fibers. The dimen-
sions, loads and the coordinate system are shown. c) A
deformed and partly debonded cell under an x1-direction
tensile load.

fore interfacial crack kinks to the matrix. In the
results section, it will be shown that the inter-
face at which debonding initiates depends on the
strength of the interfaces as well as the size of the
fibers.

3 Numerical Modeling

To simulate the observed fiber/matrix debond-
ing, two circular fibers are embedded in a large

zone of matrix (see Fig. 3b). A Cartesian ref-
erence coordinate system, xi, is placed at the
bottom-left corner of the cell and aligned with
the unit cell edges. The dimension of the cell is
determined by the length, b, the width, a, and
the radius of the fibers, R#1 and R#2. The cell is
subjected to a normal load in x1−direction. The
boundary conditions are implemented incremen-
tally as follows

Ṫ2 = 0 and u̇1 = 0, on x1 = 0

Ṫ1 = 0 and u̇2 = 0, on x2 = 0

Ṫ2 = 0 and u̇1 = ∆̇1, on x1 = a

Ṫ1 = 0, on x2 = b

(2)

where ∆̇1 and ∆̇2 describe incremental displace-
ment quantities on the two edges of the cell, and
Ti are surface tractions. The overall macroscopic
stress increment, Σ̇ij , are computed as

Σ̇11 =
1

tb

∫ b

0
Ṫ1tdx2, at x1 = a

Σ̇22 =
1

ta

∫ a

0
Ṫ2tdx1, at x2 = b

(3)

and the corresponding macroscopic incremental
strains are defined as

Ė11 =
∆̇1

a
, Ė22 =

∆̇2

b
(4)

Assuming Σ33 = 0, the composite is assumed to
deform by uniaxial normal loading under plane
stress condition. It means, the modeling simu-
lates the specimen surface at which the debond-
ing is monitored by the SEM. In Fig. 3c, the
schematic drawing of the specimen with the
debonded interfaces are shown after applying
tensile load. In each fiber two parameters are
measured; The crack opening distance of the in-
ner and outer interface of the fibers which are
denoted by ∆Inn and ∆Out, respectively and also
the debonding angle being called here as the
debonding angle. As shown in Fig. 3c, two angles
have been measured in each fiber with debonded
interfaces. The crack angle at the inner interface
of the fiber #1 is denoted with θ#1

Inn and the crack
angle at the outer interface of the fiber #1 is
shown with θ#1

Out. The same notation is used for
fiber #2.
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3.1 Isotropic Plasticity Model

The matrix is assumed to be an elasto-plastic
material governed by the standard J2-plasticity
theory, while the fibers are considered as purely
elastic. Both the matrix as well as the fibers are
modelled as isotropic materials. In the matrix,
the stress increment is calculated from the total
strain increment, ǫ̇ij , which consists of an elastic
part, ǫ̇eij , and a plastic part, ǫ̇pij

ǫ̇ij = ǫ̇eij + ǫ̇pij

σ̇ij = Lijklǫ̇kl
(5)

Here, Lijkl is the fourth order incremental stiff-
ness tensor defined as

Lijkl =
Em

1 + νm
[
1

2
(δikδjl + δilδjk) +

νm
1− 2νm

δijδkl − β
3

2

Em
Et
− 1

Em
Et
−

(1−2νm)
3

sijskl
σ2
e

] (6)

while,

β =

{

1 for σe = σf and σ̇e ≥ 0
0 for σe < σf or σ̇e < 0

(7)

where, Em is the Young’s modulus and νm is
the Poisson’s ratio of the matrix. The tangen-
tial modulus, Et, is the slope of the stress-strain

curve at the stress level σe =
√

3
2sijsij and δij

denotes the Kronecker delta. The stress devia-
tor is defined by sij = σij − δij

σkk
3 . In Eq. 7,

σ̇e = 3sklσ̇kl
2σe

and σf is the instantaneous flow
stress. During plastic yielding β is unity and the
magnitude of Lijkl depends on the stress state
and the deformation hardening law whereas in
the elastic regime (including elastic unloading)
it is governed by Hooke’s law where β is zero.
The yield surface, f, is taken as the von Mises
yield surface

f = σe − σf (ǫ
p
e) = 0 (8)

Here, σf = σf (ǫ
p
e), where and ǫpe is the equiv-

alent plastic strain, work conjugate to σe, and
it is defined incrementally by the relation ǫ̇pe =
√

2
3 ǫ̇

p
ij ǫ̇

p
ij . The hardening behavior determined by

σ(λ)

λ1λ2λ1

σmax
un

ut

Bulk elements
Cohesive elements

0

Figure 4: Traction-separation law used to characterize in-
terface separation.

the uniaxial stress-strain relation which is repre-
sented by the power hardening law

ǫ =

{

σ
E for σ ≤ σy
σy

E

(

σ
σy

)n
for σ > σy

(9)

where n is the strain-hardening exponent and σy
denotes the initial yield stress.

3.2 Cohesive Zone Model

When the cell is deformed, the interfaces be-
tween fibers and matrix tend to separate nor-
mally as well as tangentially. In order to capture
this fracture behavior, a trapezoidal cohesive
zone model proposed by Tvergaard and Hutchin-
son [14] is used (see Fig. 4). As illustrated in
Fig. 3c the failure by debonding is taken into ac-
count by considering two generally uneven cohe-
sive zones along the two reinforcement interfaces.
The cohesive zone model determines the failure
behavior imposing a relation between tractions
and separations. This traction-separation law is
regarded as a phenomenological characterization
of the separation zone along the interfaces and
not the description of atomic separation, see [14].
In this model, λ is defined as a non-dimensional
parameter describing the separation as

λ =

√

(

un
δcn

)2

+

(

ut
δct

)2

(10)

such that onset of degradation in the cohesive
zone starts at a specified value, λ = λ2, and fully
damage occurs when λ = 1. Here, δcn and δct are
the normal and tangential characteristic cohesive
lengths, respectively, and un and ut are the nor-
mal and tangential separation of the interface,
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respectively. A traction potential can be defined
as

Φ(un, ut) = δcn

∫ λ

0
σ(λ́)dλ́ (11)

from which the normal, Tn, and tangential, Tt,
tractions acting on the interfaces can be devided
according to

Tn =
∂Φ

∂un
=

σ(λ)

λ

un
δcn

, Tt =
∂Φ

∂ut
=

σ(λ)

λ

δcn
δct

ut
δct

(12)

The incremental traction vector is related to the
displacement increments across the interface as





Ṫt

Ṫn



 =





∂Tt
∂ut

∂Tt
∂un

∂Tn
∂ut

∂Tn
∂un









u̇t

u̇n



 (13)

where the matrix on the right hand side is the
cohesive tangent matrix. In pure normal separa-
tion (ut = 0) the maximum traction is Tn = σ(λ)
where λ = un

δcn
, while under pure tangential sep-

aration (un = 0) the maximum traction is Tt =
δcn
δct
σ(λ) where λ = ut

δct
. Thus, for both the inter-

faces considered here, five interface parameters
need to be specified, i.e. δcn, δ

c
t , λ1, λ2 and σmax.

In addition, a plateau in the maximum trac-
tion level in the trapezoidal cohesive zone model
simutaneously allows more Gauss points of cohe-
sive elements to be at the maximum stress. This
may lead to more stable numerical solutions in
comparison with bilinear and exponential models
[1]. However, Tvergaard and Hutchinson [14] dis-
cussed that under small scale yielding and small
scale fracture process zone the shape of the sep-
aration law has a secondary importance and the
most critical parameters are the maximum cohe-
sive stress and the characteristic cohesive length.
Finally, it should emphesized that this model
takes the same fracture energy for all mode mix-
ities although the tangential cohesive length, δct ,
is considered to be larger than the normal cohe-
sive length, δcn.

3.3 Numerical Methods

For the numerical implementation the incre-
mental form of the principle of virtual work is
adopted. Disregarding body forces, the principle

Figure 5: An example of mesh used for the computations.
The fiber are positioned in the matrix with the distance of
∆x = 60µm and ∆y = 20µm from each other. The fibers
radiuses are R#1 = 25µm and R#2 = 28µm.

reads
∫

V
σ̇ijδǫ̇ijdV +

∫

SI

(Ṫnδu̇n + Ṫtδu̇t)dS =

∫

S
Ṫiδu̇idS (14)

where V denotes the volume of the unit cell hav-
ing the surface S and SI is the surface of the
fiber-matrix interface. In Fig. 5 an example of
finite element mesh is shown. The mesh con-
sists of 4420 elements including 286 cohesive el-
ements. Eight-node quadrilateral elements with
nine Gauss points are used for the bulk mate-
rials while six-node quadrilateral elements with
three Gauss points are considered for the cohe-
sive zones. As shown in Fig. 5, the mesh is re-
fined near the interfaces. Tvergaard and Legarth
[15] characterized the length of the fracture pro-
cess region, ℓ, in the cohesive zone during crack
growth by the distance from the crack-tip, where
λ = 1, to the point ahead of the crack-tip where
λ = λ1. They found a good resolution and very
little mesh dependence when the value of ℓ is sev-
eral times the length, ∆0, of a square element
in the uniform mesh region (here, around the
interfaces in Fig. 5). This requirement is satis-
fied in the present computations as ℓ ≥ 10∆0

corresponding to 10 elements in the active co-
hesive zone. In each incremental step, ∆t, for

ICCM19 5858



the next increment is corrected according to

(ǫ̇p)max ·∆t ≤ c1 and
(

λ̇
)

max
·∆t ≤ c2, where the

labelmax refers to the maximum effective plastic
strain rate in any Gauss point, or the maximum
rate of debonding separation measure at the cur-
rent increment. Since a forward Euler integration
scheme is adopted, it has been investigated if the
results are affected by c1 and c2. Thus, the val-
ues of the constants c1 and c2 are in several com-
putations chosen as c1 = 0.01 and c2 = 0.004.
In addition, discontinuous increment analysis is
used, such that when the first Gauss point in
the bulk material reaches the plastic regime or
when the first Gauss point in the cohesive ele-
ments of each interface reaches λ = λ2 the solver
turns one step back and continue the solution
with reduced increment size. The amount of step
reduction as well as c1 and c2 parameters are
chosen such that a stable and converged solution
is achieved. Thus, for further reduced time steps
similar results are obtained.

4. Results and discussion

The in situ observations from the tensile tests
conducted inside SEM reveal that debonding at
the fiber/matrix interfaces is the first failure
mechanism occurring in the two-fiber compos-
ite tested here. The results show that the crack
initiates at 0◦ and 180◦ with respect to the ten-
sile load orientation at ∼ 7MPa. The applied

remote stress is defined by σexp =
F

A
where

F and A are the applied tensile load and the
area under the load, respectively. Subsequently,
the crack propagates at the fiber/matrix inter-
face until a point at which further load leads to
crack kinking into the matrix. The applied re-
mote stress at kinking has been measured to be
σexp ∼ 14MPa. In addition, as shown in Fig. 1
the orientation of crack propagating into the ma-
trix is perpendicular to the load orientation indi-
cating mode-I fracture in the matrix. In order to
characterize the cohesive parameters used in the
numerical modeling, a parameter study has been
carried out by fitting the numerical results with
the experimental findings. Beside the amount of
remote stress at which debonding initiates, the
angle of the propagating crack as well as the
amount of crack normal opening distance at the
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Figure 6: a) The normalized crack normal opening-remote
stress and b) the debonding angle-remote stress for the
reference case, R#1 = R#2 = 25µm, δcn = 0.006R#1, δct =
5δcn, σ

#1
max = σ#2

max = 0.5σy, λ1 = 10−4, λ#1
2 = 0.1 and

λ#2
2 = 0.2. The figure illustrates the onset of degradation

in the cohesive zone and fully damaged cohesive zone of
the two interfaces on the curve.

fiber/matrix interfaces have been measured. This
comparison indicates that the maximum cohe-
sive stress is σmax ≃ 8MPa and the character-
istic cohesive length is δcn . 0.15µm. Calculat-
ing the interface normal fracture energy, φ, by

φ =
σmax(1 + λ2 − λ1)δ

c
n

2
, the above characteri-

zation denotes that the interface normal fracture

energy is relative small (. 0.5
J

m2
) in comparison

with the epoxy fracture energy which is normally

above 100
J

m2
. Furthermore, the very small char-
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acteristic cohesive length indicates that failure of
glass-fiber/epoxy interfaces are very brittle.
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Figure 7: Effect of the fiber radius, R, on a) the normal-
ized crack normal opening, ∆n/δ

c
n, and b) the debonding

angle, θ. The interfaces parameters, the geometry (except
the radius of fibers) and loading conditions are identical
to the reference case, see Fig. 6.

Using the above characterized cohesive parame-
ters, a parameter study is carried out to assess
the effect of fiber positioning and the maximum
cohesive stress on the damage evolution of two-
fiber composite. In Fig. 6, the behavior of the
two-fiber cell for a reference case is shown. The
reference case denotes when R#1 = R#2 = 25µm
and the interfacial parameters for both interfaces
are δcn = 0.006R#1, δct = 5δcn, σ

#1
max = σ#2

max =
0.5σy and λ1 = 10−4, while interface #1 has

λ#1
2 = 0.1, and for interface #2, λ#2
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Figure 8: Effect of the maximum cohesive stress, σmax, on
a) the normalized crack normal opening distance, ∆n/δ

c
n,

and b) the debonding angle, θ. The interfaces parame-
ters (except the maximum cohesive stresses), the geome-
try and loading conditions are identical to the reference
case, see Fig. 6.

ferent λ2 values which also yield slightly different

fracture energies (i.e. φ#1 = 0.48
J

m2
and φ#2 =

0.54
J

m2
) lead to uneven interfacial strengths at

the two interfaces. Many experiments (e.g. [9]
[12]) have shown that the the interfacial fracture
energy increases with mode mixity. However, in
the current study a cohesive law with the same
fracture energy for all mode mixities is used.
Fig. 6a and Fig. 6b illustrates the normalized
crack normal opening, ∆n/δ

c
n, and the debonding

angle, θ, respectively. The inner interfaces denote
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the interfaces in the ligament between the two
fibers while the outer interfaces are those at the
outer side of the fiber far away from the other
fiber (see Fig. 2). As shown in Fig. 6a, the ini-
tial crack opening occurs at Σ11

σy
≃ 0.27 at the

inner interfaces and Σ11
σy
≃ 0.57 at the outer in-

terfaces which shows that debonding at the inter-
faces close to the ligaments initiates earlier than
those on the outer sides. This clearly shows that
the presence of the second fiber strongly affect
the debonding of the first fiber. These numerical
values of stress at the crack initiation match to
the experimental findings reported in the begin-
ning of the result section. At the inner interfaces,
by increasing the loading the normalized crack
normal opening, ∆n/δ

c
n, grows up slightly with

a linear slope until the point where debonding
leads to nonlinear behavior on the curve. This
nonlinearity is due to the degradation of traction-
separation in the cohesive low when λ = λ2 at
each cohesive Gauss points. The first Gauss point
which reaches λ = λ2 is depicted by (△). After-
wards, subsequent Gauss points at the same co-
hesive interface also pass λ = λ2 and therefore
the interface gets weaker which leads to nonlin-
earity on the curve until the first Gauss point at
Σ11 ≃ 0.28σy gets fully damaged, i.e. λ#1 = 1,
(#). By continuing loading the crack propagates
along interface #1. When interface #1 is being
debonded, the normalized crack normal opening
versus normalized remote stress shows again a
linear behavior until interface #2 starts debond-
ing at Σ11 ≃ 0.55σy. As for interface #1, the
same points are marked but with the filled sym-
bols (N and  ). The slope of the curves in Fig. 6b
represents the crack growth rates. For all cases
in the beginning of the crack growth the slope is
very sharp denoting that the crack propagates
very fast and unstable. But subsequently the
slope decreases and the crack propagates at al-
most a constant growth rate. Paŕıs et al. ([10]
and [9]) studied the mechanisms of failure in
a single fiber surrounded by the matrix under
transverse tension. Their observation shows that
a crack starts running at the interfaces and after
a certain angle (between 60◦ to 70◦) the crack
kinks into the matrix. The same interval of kink-
ing angle is confirmed in the present experimen-

tal obsevations. However, this research focuses
on the failure mechanisms before kinking occurs.
Therefore, in Fig. 6b, the curves are shown until
maximum θ = 80◦.

Fig. 7 shows the effect of fiber radius size on the
crack initiation at the interfaces. In this figure,
fiber #1 has R#1 = 25µm while the radius of
fiber #2 is R#2 = 30µm. As depicted in Fig. 7a
(see #-marks and  -marks) and in Fig. 7b earlier
debonding occurs at the both interfaces when the
radius of fiber #2 increases. This earlier debond-
ing can be due to the decrease of the ligament
between the two fibers. However, the behavior of
the curves remain almost unchanged.

The effect of the maximum cohesive stress is
shown in Fig. 8. As illustrated in Fig. 8b, in-
crease of the maximum cohesive stress postpones
debonding. But as shown in Fig. 8a, increasing
the maximum cohesive stress leads to larger nor-
mal crack opening. In addition, Fig. 8b depictes
that the cracks of the inner interfaces after ∼ 40◦

grow exactly on the same curve regardless of the
maximum cohesive changes.

Lastly, Fig. 9 illustrates the corresponding con-
tours of the accumulated equivalent plastic
strain, ǫpe, for the reference case when the remote
stress in x1-direction is Σ11

σy
= 0.6 (see Fig. 6).

Some plastic deformation can be seen in the lig-
ament between two fibers but most plastic de-
formations are in front of the crack tips in the
top and bottom of the fibers. This plasticity in
the vicinity of the crack tips is due to the tensile
stress in x1-direction which eventually leads to
shear debonding at the interfaces in the top and
bottom of the fibers. Fig. 9 also shows the same
crack normal opening in the inner interfaces as
well as at the outer interfaces. Although the
outer interfaces have smaller crack openings than
the inner interfaces. In addition, the debonding
at the inner interface in the ligament between
the fibers, θ#2

Inn = 51◦, shows smaller crack angle
than the inner interface away from the ligament,
θ#1
Inn = 79◦.

5. Conclusion

The interfacial parameters are characterized by
comparing the experimental results with those
from the finite element analysis using the cohe-
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Figure 9: Contours of the accumulated equivalent plastic
strain, ǫpe , at Σ11/σy = 0.6, see Fig. 6.

sive zone model. The experimental results are de-
termined by performing the in situ tensile tests
on a two-fiber composite inside the chamber of
SEM. The characterization showes that the max-
imum cohesive stress is σmax ≃ 8MPa while the
characteristic cohesive length is δcn . 0.15µm.
These two parameters result that the interface

normal fracture energy, φ, to be (. 0.5
J

m2
).

Then, knowing the actual interface properties,
different positioning of fibers is studied to investi-
gate the progressive interfacial damage evolution
by focusing on the interaction between two fibers
with uneven interfacial strengths. It was found
that the interfacial normal fracture energy is sig-
nificantly small compared to the epoxy fracture
energy. The results show that debonding initi-
ates at the inner interfaces followed by the outer
interfaces. In addition, debonding triggers ear-
lier if the radius of one of the fibers increases.
Finally, larger maximum cohesive stress leads to
stronger interfaces and subsequently postpones
debonding of the interfaces.
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