

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

The Improved Relevance Voxel Machine

Ganz, Melanie; Sabuncu, Mert; Van Leemput, Koen

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Ganz, M., Sabuncu, M., & Van Leemput, K. (2013). The Improved Relevance Voxel Machine. Kgs. Lyngby:
Technical University of Denmark (DTU). (DTU Compute-Technical Report-2013; No. 10).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13805399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/the-improved-relevance-voxel-machine(1edb6be9-3132-4ccc-85ed-bde7950f2346).html

The Improved Relevance Voxel Machine

DTU Compute Technical Report-2013-10

Melanie Ganz1,2, Mert Sabuncu1, and Koen van Leemput1,3,4

1 Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard
Medical School, USA,

2 Department for Computer Science, University of Copenhagen, Denmark
3 Department of Applied Mathematics and Computer Science, Technical University of

Denmark, Denmark
4 Departments of Information and Computer Science and of Biomedical Engineering and

Computational Science, Aalto University, Finland

1 Introduction

The concept of sparse Bayesian learning has received much attention in the machine
learning literature as a means of achieving parsimonious representations of features
used in regression and classification. It is an important family of algorithms for sparse
signal recovery and compressed sensing and enables basis selection from overcomplete
dictionaries.
One of the trailblazers of Bayesian learning is MacKay who already worked on the
topic in his PhD thesis in 1992 [1]. Later on Tipping and Bishop developed the con-
cept of sparse Bayesian learning [2, 3] and Tipping published the Relevance Vector
Machine (RVM) [4] in 2001. While the concept of RVM was intriguing, problems with
the approach were the run time which is approximately cubic in the number of basis
functions as well as the greedy optimization. Hence, different approaches to overcome
these shortcomings were developed, e.g. [5] or [6] as well as Tipping himself in [7]
(FastRVM).
Recently, Sabuncu and Van Leemput [8, 9] extended the relevance vector machine by
incorporating an additional spatial regularization term in the Gaussian prior on the re-
gression weights or classification features (RVoxM). RVoxM encourages spatial clus-
tering of the relevance voxels and computes predictions as linear combinations of their
content. While the model of RVoxM produced nice results on age regression data [8, 9],
the algorithm used a simple fixed point optimization scheme, which is not guaranteed to
decrease the cost function at every step and is computationally expensive. In addition,
RVoxM prunes voxels from the regression model by applying an artificial numerical
threshold to the weight hyperparameters and hence has a free parameter that influences
model sparsity. Finally, RVoxM can only remove voxels from the model, but not re-
introduce them later on. Hence in its current form it is reminiscent of a greedy forward
feature selection algorithm.
In this report, we aim to solve the problems of the original RVoxM algorithm in the
spirit of [7] (FastRVM). We call the new algorithm Improved Relevance Voxel Machine
(IRVoxM). Our contributions are an improvement of the greedy optimization algorithm

employed in RVoxM by exploiting the form of the marginal likelihood function and
deriving an analytic expression for the optimal hyperparameter of each voxel, given the
current hyperparameter of all other voxels. This enables us to maximize the marginal
likelihood function in a principled and efficient manner. As a result IRVoxM optimizes
the objective function better during training and the resulting models predict better on
unseen cases. Finally, IRVoxM enables us to flexibly add and/or remove voxels during
the optimization procedure.

2 Regression with the Relevance Voxel Machine - RVoxM

We base IRVoxM on the same theoretical model as RVoxM [8, 9]. In the regression
problem, the target variable t, e.g. age or clinical test score, is assumed to be Gaussian
distributed:

p(t|x,w, β) = N (t|y(x,w), β−1), (1)

with variance β−1 and mean y(x,w) =
∑M−1
i=1 xiwi + wM = wTx, where x ∈ RM

is a vector that represents the input data, e.g. an image, plus a constant element of one
(xM = 1), and w ∈ RM are regression weights.
We further assume a Gaussian prior on w with hyperparamters α and λ of the form

p(w|α, λ) = N (w|0,P−1), (2)

where P = diag(α) + λK. K = ΓTΓ is the graph Laplacian matrix which is a sparse,
symmetric matrix and can be defined as the inner product of the incidence matrix Γ. Γ
is a sparse matrix of dimension NEdg ×M , where NEdg denotes the number of edges
in the graph spanned by K. Each row of Γ has only two entries that denote the outgoing
(+1) and incoming (−1) nodes of an edge in the graph. In our case, edges connect
physically neighboring locations, e.g. all voxels in the 6-neighborhood are connected
to a central voxel in a volumetric image, but the neighborhood could also be modified.
α = (α1, . . . , αM)T and λ are hyperparameters; the αi are inverse covariances of the
weight prior and hence control the sparsity of the weights. A large αi means the weight
wi of the associated voxel is tending to zero, while a small αi implies that the value wi
is largely determined by its neighbors. The parameter λ encourages spatial smoothness
and the larger it is the smoother the resulting weight maps are. A graphical model
describing the regression model can be found in [9] and is re-printed in figure 1 for
illustrative purposes.

2.1 Training

With the above prior, the hyperparameters can be estimated by maximizing the follow-
ing type-II likelihood given a collection of training target values t = (t1, . . . , tN)T and
a set of N training images X = [x1, . . . ,xN]T:

p(t|X,α, β, λ) =
∫

w

p(t|X,w, β)p(w|α, λ)dw (3)

=
∫

w

(
N∏
n=1

p(tn|xn,w, β)

)
p(w|α, λ)dw = N (t|0,C),

Fig. 1. A graphical model describing the RVoxM regression model taken from [9].

where we define C = β−1I+XP−1XT. We can estimate the hyperparametersα, β, λ,
which is equivalent to maximizing Eq. 4:

α̂, β̂, λ̂ = argmax
α,β,λ

L(α, β, λ) = argmax
α,β,λ

(
−1

2
(N ln(2π) + ln |C|+ tTC−1t)

)
.

(4)
Here, L(α, β, λ) denotes the logarithm of the marginal likelihood function, which is
obtained by integrating out the weight parameters as shown in Eq. 3. In RVoxM [8], this
optimization was solved by a coordinate ascent over β and λ, while optimizing over all
α simultaneously using a fixed point equation and a greedy approach, where single αi’s
exceeding a numerical threshold are pruned from the model. This optimization ofα has
no theoretical guarantees of convergence and is computationally expensive. Hence, we
focus on deriving a better optimization algorithm for α.

2.2 Prediction

After obtaining α̂, β̂, λ̂ from training data, we can make predictions for a new x? ac-
cording to

p(t?|x?,X, t, α̂, β̂, λ̂) =
∫
p(t?|x?,w, β̂)p(w|X, t, α̂, λ̂)dw = N (µ?, Σ?), (5)

where p(t?|x?,w, β̂) is given by the regression model in Eq. 1 and µ? = µTx and
Σ? = 1

β + xTΣx, in which Σ = (P + βXTX)−1 and µ = ΣXTt.

3 The Improved Relevance Voxel Machine - IRVoxM

To derive the improved Relevance Voxel Machine (IRVoxM) we start with the logarithm
of the marginal likelihood function L(α, β, λ) for fixed β and λ; thus L(α, β, λ) is only

dependent on α. We use L(α) from eq. 4 and rewrite it in the following way:

L(α) =− 1
2
(
N ln(2π) + ln |C|+ tTC−1t

)
=− 1

2

(
N ln(2π) + ln(β−N

|Σ|
|P|

) + tTC−1t
)

(6)

since |C| = |β−1I + XP−1XT| = |β−1I|·|βXXT+P|
|P| = |β−1I|·||Σ|

|P| = β−N ||Σ||P| . Next
we add additional terms that equal one and re-formulate the cost function further:

L(α)− 1
2

(
N ln(2π) + ln(β−N |Σ| · |diag(α)|

|diag(α)|
· λ

NEdg

λNEdg
)− ln |P|+ tTC−1t

)
=− 1

2

(
N ln(2π) + ln(β−Nλ−NEdg

|Σ|
|diag(α)|

) +NEdg lnλ+ ln |diag(α)| − ln |P|+ tTC−1t
)

=− 1
2

(
N ln(2π) + ln |C̃|+NEdg lnλ+ ln |diag(α)| − ln |P|+ t̃TC̃−1t̃

)
=− 1

2

(
N ln(2π) + ln |C̃|+ t̃TC̃−1t̃ +NEdg lnλ+ ln |diag(α)| − ln |P|

)
,

where we have used the substitutions |C̃| = β−Nλ−NEdg |Σ|
|diag(α)| and C̃−1 = B̃ −

B̃X̃Σ̃X̃TB̃ as well as tTC−1t = t̃TC̃−1t̃, in which

X→ X̃ =
(

X
Γ

)
t→ t̃ =

(
t
0

)
β → B̃ =

(
βIN 0
0 λIM

)
Note, that Σ = (P+βXTX)−1 = (diag(α)+λΓTΓ+βXTX)−1 =

(
diag(α) + X̃TB̃X̃

)−1

=

Σ̃ as well as µ = ΣXTt = Σ̃X̃Tt̃ = µ̃.

4 Speeding up RVoxM

In the next step, we examine the different terms in the logarithm of the marginal like-
lihood L(α). As derived above our new C̃−1 = B̃ − B̃X̃Σ̃X̃TB̃ and hence by the
Woodbury identity

C̃ = B̃−1 + X̃diag(α−1)X̃T (7)

As in [7] we derive the following three identitites:

C̃ = C̃−i + X̃iα
−1
i X̃T

i

|C̃| = |C̃−i| · |IM + α−1
i X̃iC̃−1

−i X̃
T
i |

C̃−1 = C̃−1
−i −

C̃−1
−i X̃iX̃T

i C̃
−1
−i

αi + X̃T
i C̃
−1
−i X̃i

in which X̃i denotes the i-th column of X̃. Furthermore, using the matrix determinant
lemma we can re-write |P| to be of the form

|P| =
∣∣diag(α) + λΓTΓ

∣∣
=

(∏
i

αi

)∣∣I + λΓdiag(α−1)ΓT
∣∣

=

(∏
i

αi

)∣∣∣∣∣I +
∑
i

λ

αi
ΓiΓT

i

∣∣∣∣∣ , (8)

where Γi denotes the ith column in the matrix Γ. In the same spirit we can rewrite
|diag(α)| to

|diag(α)| =
∏
i

αi (9)

With these definitions, we can re-structure the logarithm of the marginal likelihood
L(α) and divide the contribution made by the αm,m 6=i from the contribution made by

αi:

L(α)

=− 1
2

(
N ln(2π) + ln |C̃|+ t̃TC̃−1t̃

)
− 1

2
(NEdg ln(λ)− ln |P|+ ln |diag(α)|)

=− 1
2

(
N ln(2π) + ln

(
|C̃−i| · |IM + α−1

i X̃T
i C̃
−1
−i X̃i|

)
+ t̃T

(
C̃−1
−i −

C̃−1
−i X̃iX̃T

i C̃
−1
−i

αi + X̃T
i C̃
−1
−i X̃i

)
t̃

)

− 1
2

(
NEdg ln(λ)− ln

[(∏
i

αi

)∣∣∣∣∣I +
∑
i

λ

αi
ΓiΓT

i

∣∣∣∣∣
]

+ ln
∏
i

αi

)

=− 1
2

(
N ln(2π) + ln |C̃−i|+ t̃TC̃−1

−i t̃ +NEdg ln(λ) + ln
∏
i

αi

)

− 1
2

(
ln
(
|α−1
i (αi + X̃T

i C̃
−1
−i X̃i)|

)
− t̃T C̃−1

−i X̃iX̃T
i C̃
−1
−i

αi + X̃T
i C̃
−1
−i X̃i

t̃

)

− 1
2

−ln∏
i

αi − ln

∣∣∣∣∣∣∣∣∣
Ψ−i︷ ︸︸ ︷

I +
∑
j 6=i

λ

αj
ΓjΓT

j +
λ

αi
ΓiΓT

i

∣∣∣∣∣∣∣∣∣


=− 1

2

(
N ln(2π) + ln |C̃−i|+ t̃TC̃−1

−i t̃ +NEdg ln(λ)
)

− 1
2

(
ln
(
|α−1
i (αiIM + X̃T

i C̃
−1
−i X̃i)|

)
− t̃T C̃−1

−i X̃iX̃T
i C̃
−1
−i

αi + X̃T
i C̃
−1
−i X̃i

t̃

)

− 1
2

− ln

|Ψ−i|

1 +

ai︷ ︸︸ ︷
λΓiΨ−i

−1ΓT
i

αi





=− 1
2

(
N ln(2π) + ln |C̃−i|+ t̃TC̃−1

−i t̃ +NEdg ln(λ)
)

− 1
2

(
− lnαi + ln(αi + s̃i)−

q̃2

αi + s̃i

)
− 1

2

(
− ln(|Ψ−i|)− ln(1 +

ai
αi

)
)

=− 1
2

(
N ln(2π) + ln |C̃−i|+ t̃TC̃−1

−i t̃ +NEdg ln(λ)− ln(|Ψ−i|)
)

− 1
2

(
+ ln(αi + s̃i)−

q̃2

αi + s̃i
− ln(αi + ai)

)
=L(α−i) + l(αi) (10)

where we have defined

L(α−i) = −1
2

(
N ln(2π) + ln |C̃−i|+ t̃TC̃−1

−i t̃ +NEdg ln(λ)− ln(|Ψ−i|)
)

(11)

and

l(αi) =
1
2

(
− ln(αi + s̃i) +

q̃2i
αi + s̃i

+ ln (αi + ai)
)

(12)

as well as

s̃i = X̃T
i C̃
−1
−i X̃i, q̃i = X̃T

i C̃
−1
−i t̃, (13)

Ψ−i = I +
∑
j 6=i

λ

αj
ΓjΓT

j , ai =
λΓiΨ−i

−1ΓT
i

αi
. (14)

Now we are in the position to identify optimal solutions for each αi separately by
examining l(αi). If we calculate the derivatives of l(αi), we arrive at:

∂

∂αi
l(αi) =

1
2

(
− 1
αi + s̃i

− q̃2i
(αi + s̃i)2

+
1

αi + ai

)
(15)

The solutions of this, when we set it to zero and restrict us to αi ≥ 0, are:

– α1 =∞.
– α2 = ai(s̃i+q̃

2
i)−s̃2i

s̃i−ai−q̃2i

To ensure that our solutions are maxima, we derive the second derivative:

∂2

∂α2
i

l(αi) =
1
2

(
1

(αi + s̃i)2
+

2q̃2i
(αi + s̃i)3

− 1
(αi + ai)2

)
(16)

The second derivative evaluated at α1 is equal to zero, so α1 is neither a maximum nor
a minimum. Evaluating the second derivative at α2 yields:

∂2

∂α2
i

l(αi)|α2 =
1
2
AB
C

(17)

where

A = (ai − s̃i)2 + 2(s̃i − ai − q̃2i) · (ai − s̃i)− q̃4i
B = (s̃i − ai − q̃2i)2

C = q̃4i (αi − s̃i)4

B and C are always positive and A can be rewritten in the following way

A = (ai − s̃i)2 + 2(s̃i − ai − q̃2i) · (ai − s̃i)− q̃4i
= −((ai − s̃) + q̃2i)

2. (18)

Thus, because A < 0, B > 0 and C > 0, ∂2

∂α2
i
l(αi)|α2 = 1

2
AB
C is always negative and

α2 is always a maximum.

5 How does the function look like?

To figure out how the function looks like, let us examine the limits of it at zero and
infinity and the sign of the first derivative at infinity.

5.1 Case 1 - ai >= s̃i

If ai > s̃i then l(αi) is defined between−s̃i and +∞. This has a pole at−s̃i. The limits
at the poles, 0 and +∞, are

lim
αi→−s̃i

l(αi) =
1
2

(
ln(−s̃i + ai)− ln(0) +

q̃2i
0

)
= +∞

lim
αi→0

l(αi) =
1
2

(
ln(ai)− ln(s̃i) +

q̃2i
s̃i

)
= const.

lim
αi→∞

l(αi) = lim
αi→∞

1
2

(
ln
(
αi + ai
αi + s̃i

)
+

q̃2i
αi + s̃i

)
=

1
2

(
lim
αi→∞

ln
αi + ai
αi + s̃i

+ lim
αi→∞

q̃2i
αi + s̃i

)
=

1
2

(
ln(lim

αi→∞
(1 +

ai − s̃i
αi + s̃i

)) + lim
αi→∞

q̃2i
αi + s̃i

)
= 0

where limαi→0 l(αi), the y-intercept of the function, is always positive.
The first derivative of l(αi) can be re-written in the following way:

∂

∂αi
l(αi) =

1
2

(
− 1
αi + s̃i

− q̃2i
(αi + s̃i)2

+
1

αi + ai

)
=

1
2

(
αi(s̃i − ai − q̃2i)− ai(s̃i − q̃2i) + s̃2i

(αi + s̃i)2(αi + ai)

)
=

1
2

(
(s̃i − ai − q̃2i) + α−1

i)(s̃2i − ai(s̃i − q̃2i))
α−1(αi + s̃i)2(αi + ai)

)

If we now examine the sign of the above at α = ∞, we can see that the sign of the
denominator is positive, while the numerator’s sign is dependent on the term s̃i−ai−q̃2i .
In our current case where s̃i − ai < 0 we get that sgn(s̃i − ai − q̃2i) = −1 and hence
the curvature of l(αi) at α = ∞ is negative. If we evaluate the curvature at α = 0 we
get ∂

∂αi
l(αi)|0 = s̃i(s̃i−ai)−q̃2i ai

s̃2iai
which is also always negative.

Fig. 2. l(αi) for Case 1 - ai > s̃i

Furthermore, we can show that α2 is always less than −s̃i:

α2 =
ai(s̃i + q̃2i)− s̃2i
s̃i − ai − q̃2i

=
−s̃i(s̃i − ai) + aiq̃

2
i

s̃i − ai − q̃2i

=
−s̃i(s̃i − ai − q̃2i + q̃2i) + aiq̃

2
i

s̃i − ai − q̃2i

=
−s̃i(s̃i − ai − q̃2i) + aiq̃

2
i − s̃iq̃2i

s̃i − ai − q̃2i

= −s̃i +
(ai − s̃i)q̃2i
s̃i − ai − q̃2i

Since the condition ai > s̃i holds, the numerator of the second term is always positive,
while the denominator is always negative and hence α2 < −s̃i. This means our function
looks like figure 2. In the positive range we can get the case where l(0) is greater than
l(∞).

5.2 Case 2 - ai < s̃i

If ai < s̃i, then l(αi) is defined between −ai and +∞. This has a pole at −ai. The
limits at the pole, 0 and +∞ are

lim
αi→−ai

l(αi) =
1
2

(
ln(0)− ln(−ai + s̃i) +

q̃2i
−ai + s̃i

)
= −∞

lim
αi→0

l(αi) =
1
2

(
ln(ai)− ln(s̃i) +

q̃2i
s̃i

)
= const.

lim
αi→∞

l(αi) = lim
αi→∞

1
2

(
ln
(
αi + ai
αi + s̃i

)
+

q̃2i
αi + s̃i

)
=

1
2

(
lim
αi→∞

ln
αi + ai
αi + s̃i

+ lim
αi→∞

q̃2i
αi + s̃i

)
=

1
2

(
ln(lim

αi→∞
(1 +

ai − s̃i
αi + s̃i

)) + lim
αi→∞

q̃2i
αi + s̃i

)
= 0

If we now examine the sign of the first derivative of l(αi) at α =∞ like above we have
to make a distinction again:

Case 2.A - s̃i − ai < q̃2
i If s̃i − ai < q̃2i , then sgn(s̃i − ai)− q̃2i = −1 and hence

we have a single maximum at α2 and then the function decreases to zero towards in-
finity. But the curvature at 0 can though be positive or negative. Looking at the sign or
magnitude of α2 for the case A does not yield any insight. α2 can either be positive or
negative.
This means our function looks like figure 3. In case 2A and for negative α we can again
end up with l(0) being greater than l(∞).

Case 2.B - s̃i − ai >= q̃2
i If s̃i− ai > q̃2i then sgn((s̃i − ai)− q̃2i) = +1 and hence

the curvature at α = ∞ is positive. In addition, the curvature at α = 0 is also positive,
since ∂

∂αi
l(αi)|0 = s̃i(s̃i−ai)−q̃2i ai

s̃2iai
. The numerator determines the sign and can be lower

bounded by s̃i(s̃i − ai)− (s̃i − ai)ai = (s̃i − ai)2 > 0. Hence the curvature at α = 0
is always positive.

Fig. 3. l(αi) for Case 2A - ai < s̃i as well as s̃i − ai < q̃2i

Furthermore, we can show that α2 is always smaller than −ai:

α2 =
ai(s̃i + q̃2i)− s̃2i
s̃i − ai − q̃2i

=
ai(−s̃i + 2s̃i + ai − ai + q̃2i)− s̃2i

s̃i − ai − q̃2i

=
−ai(s̃i − ai − q̃2i) + 2ais̃i − a2

i − s̃2i
s̃i − ai − q̃2i

= −ai −
(ai − s̃i)2

s̃i − ai − q̃2i

Looking at the second term the numerator is always positive due to the square, while the
denominator is always positive since s̃i−ai > q̃2i . Therefore, α2 is always smaller than
ai. In addition, limαi→0 l(αi) < 0, since ln(ai) − ln(s̃i) + q̃2i

s̃i
can be upper bounded

by ln(ai

s̃i
) + s̃i−ai

s̃i
≤ ai

s̃i
− 1 + s̃i−ai

s̃i
= 0.

Hence our likelihood looks like figure 4. There’s a single maximum at α =∞.

5.3 Solution overview

In the following, we give a short overview over the different solutions that maximize
the marginal likelihood.

– If ai >= s̃i, the solution that maximizes the marginal likelihood is αi = 0, since
we have chosen αi ≥ 0.

Fig. 4. l(αi) for Case 2B - ai < s̃i as well as s̃i − ai > q̃2i

– If ai < s̃i and s̃i − ai < q̃2i , the solution that maximizes the marginal likelihood
is given by αi = ai(s̃i+q̃

2
i)−s̃2i

s̃i−ai−q̃2i
. If this solution is negative, the correct solution

becomes αi = 0.
– If ai < s̃i and s̃i − ai >= q̃2i , the solution that maximizes the marginal likelihood

is to remove αi from the model meaning αi =∞.

6 Algorithm

6.1 No speedup

The original algorithm without any shortcuts or computational speedups is of the fol-
lowing form:

1. Initialize λ and β as well as initialize a starting model with all α set to a value of 1
as was done in [9].

2. Randomly pick another voxel i.
3. Compute s̃i,q̃i and ai:

s̃i = X̃T
i C̃
−1
−i X̃i and q̃i = X̃T

i C̃
−1
−i t̃ (19)

where C̃−1
−i =

(
C̃− X̃iα

−1
i X̃T

)−1

with C̃ = B̃−1 + X̃diag(α−1)X̃T as well as

ai = λΓiΨ−i
−1ΓT

i (20)

where Ψ−i = I +
∑
j 6=i

λ
αj

ΓjΓT
j = I + λdiag(α−1

−i)Γ−iΓ
T
−i.

4. Case 1 - ai ≥ s̃i leads to αi = 0.
5. Case 2 - ai < s̃i leads to

(a) Case A - s̃i − ai < q̃2i leads to αi = ai(s̃i+q̃
2
i)−s̃2i

s̃i−ai−q̃2i
. If the aforementioned αi is

negative the solution is αi = 0.
(b) Case B - s̃i − ai ≥ q̃2i leads to αi =∞.

6. After one has visited all voxels once in random order, we update β and λ by using
the Matlab function fminbnd and out cost function to find the optimal value of β
and λ.

7. Repeat from randomly picking a voxel until convergence is achieved.

6.2 Speedup 1

Since αi can become zero, we need to re-formulate some of calculations to not in-
volve (αi)−1 in order to avoid numerical errors. Hence we substitute Ψ−i = I +
λdiag(α−1

−i)Γ−iΓ
T
−i with its Woodbury equivalent Ψ−i

−1 = I−Γ−i(1
λdiag(α−i)+

Γ T
−iΓ−i)

−1Γ T
−i. Furthermore, since 1

λdiag(α−i) + Γ T
−iΓ−i is very sparse, storing,

updating, and inverting it directly is the fastest way to compute it.

6.3 Speedup 2

The next thing we will do is to speed up the calculation of s̃i and q̃i. This can be done
by using the same relation as given in eq. (23) of [7]:

s̃m =
αmS̃m

αm − S̃m
and q̃m =

αmQ̃m

αm − S̃m
(21)

where
S̃m = X̃T

mC̃−1X̃m and Q̃m = X̃T
mC̃−1t̃ (22)

For αm = ∞ we have s̃m = S̃m as well as q̃m = Q̃m whereas for αm = 0 we have
s̃m = 0 and q̃m = 0. This way we do not need to keep track of different C̃−1

−i and
instead everything is based on C̃−1.

6.4 Speedup 3 - How we never need to compute C̃−1

Instead of making everything dependend on the direct computation of C̃−1, we can
get around ever having to compute C̃−1 by following what was done in the appendix
of [7] for all quantities. In addition we can then remove the ˜ notation and re-write
everything as much as we can in terms of the original variables. One calculates all the
necessary quantities once in the beginnning and then changes them as described below
when adding, changing or removing a basis function fom the model. Then the updates
look like the following:

– First we initialize all variables:
Σ̃ = Σ = (diag(α) + βXTX + λΓTΓ)−1

C̃−1 =

[
C̃−1

(1,1) C̃−1
(1,2)

C̃−1
(2,1) C̃−1

(2,2)

]
(23)

where

C̃−1
(1,1) = diag(βI)− β2XΣXT

C̃−1
(1,2) = −βXΣΓTλ

C̃−1
(2,1) = −λΓΣXTβ

C̃−1
(2,2) = diag(λI)− λ2ΓΣΓT

as well as µ̃ = µ = ΣXTβt and

S̃m = xT
mC̃−1

(1,1)xm + xT
mC̃−1

(1,2)γm + γT
mC̃−1

(2,1)xm + γT
mC̃−1

(2,2)γm

Q̃m = xT
mC̃−1

(1,1)t + xT
mC̃−1

(1,2)t

– Update the quantities when adding a new basis function like this:

Σ→ Σ+i =
[

Σ+i(1, 1) Σ+i(1, 2)
Σ+i(2, 1) Σ+i(2, 2)

]
(24)

where

τ = βxT
iX + λγT

iΓ

Σ+i(1, 1) = Σ + Στ TΣ̃iiτΣ

Σ+i(2, 1) = −Σ̃iiτΣ

Σ+i(1, 2) = −Στ TΣ̃ii

Σ+i(2, 2) = Σ̃ii

as well as Σ̃ii = (αi + xT
i C̃
−1
(1,1)xi + xT

i C̃
−1
(1,2)Γi + γ

T
i C̃
−1
(2,1)xi + γ

T
i C̃
−1
(2,2)Γi)

−1

(the reason for keeping the˜notation here, is that in this case Σ̃ii 6= Σii.)
Furthermore

z = Στ

µi = −zTΣ̃iiβXTt + Σ̃iiβxT
i t

µ→ µ+i =
[
µ− zµi
µi

]
as well as

ym,1 = βxT
mxi + λγT

mΓi − (βxT
mX + λγT

mΓ)z

S̃m → S̃m,+i = S̃m − Σ̃iiy
2
m,1

Q̃m → Q̃m,+i = Q̃m − µiym,1

– Update Σ̃ when αi changes

Σ→ Σnew = Σ−ΣiκiΣT
i (25)

where Σi = Σei (ei is the unit vector for the i-th dimension) and κi = (1
αi,new−αi,old

+
Σii)−1.
Update µ→ µnew = µ−Σiκiµi,2 in which µi,2 = ΣiXTβt and

ym,2 = (βxT
mX + λγT

mΓ)Σi

S̃m → S̃m,new = S̃m + κy2
m,2

Q̃m → Q̃m,new = Q̃m + κµi,2ym,2

– Update Σ̃ when αi becomes infinity

Σ→ Σ−i = Σ− ΣiΣT
i

Σii
(26)

after which the i-th row and column need to be deleted. In the same spirit µ →
µ−i = ΣXTβt after which again the i-th row needs to be deleted and

ym,3 = (βXT
mX + λΓT

mΓ)Σi

S̃m → S̃m,−i = S̃m +
y2
m,3

Σii

Q̃m → Q̃m,−i = Q̃m + µiym,3Σii

6.5 Initialization

In [7] the initialization can be done by starting out with a single voxel in the model and
then progressively adding voxels to the model. Another possibility is shown in [9] where
the initial model has all voxels present with all α set to a constant starting value of 1.
In order to compare the performance of IRVoxM and RVoxM, we will in the following
initialize as in [9].

7 Experiments

In order to demonstrate that our proposed optimizer outperforms RVoxM’s, we will
evaluate the performance of IRVoxM and RVoxM on a synthetic data. To make the
comparison fair, we initialize the two algorithms identically with α = 1, β = 1 and
λ = 1.

7.1 Experiments on synthetic data

We ran experiments on synthetic data. To model a single target value t, we generated a
random vectorized image x by drawing random samples from a Gaussian distribution

Algorithm 1 IRVoxM algorithm
1: Initialize λ, β and all α as in RVoxM [9].
2: loop
3: loop
4: Randomly pick a voxel i.
5: Compute s̃i,q̃i and ai according to Eqs. 13 and 14.
6: if ai ≥ s̃i then
7: αi = 0
8: else if ai < s̃i then
9: if s̃i − ai < q̃2i then

10: αi =
ai(s̃i+q̃2

i)−s̃2
i

s̃i−ai−q̃2
i

11: if αi < 0 then
12: αi = 0.
13: end if
14: else if s̃i − ai ≥ q̃2i then
15: αi =∞
16: end if
17: end if
18: Update all quantities in an efficient manner as derived in 6.4.
19: end loop
20: Update β and λ by a simple search of the one-dimensional cost function.
21: end loop

with mean 0 and standard deviation 1 of size M × 1. Using pre-determined constants
αtrue = (1012v, 0.5v, 1012v)T, where v is a vector of ones and of dimension M

3 × 1,
and λtrue = 10, we constructed Ptrue = diag(αtrue) + λtrueΓTΓ. Here, Γ is the
incidence matrix for a 4-neighborhood. From Ptrue we sampled weights wtrue and
computed targets as t = wT

truex + ε, where the noise ε was sampled from a normal
distribution with mean zero and inverse variance βtrue = 10. We constructed data this
way for a varying number of training images N , yielding collections of image vectors
X of size N ×M as well as vectors of target values t of size N × 1. We used an image
size M = 10× 10. Lastly, we varied N from 10 to 100 and generated 100 independent
pairs of X and t with the same weight vector wtrue for each value of N . For the test
data, we generated another 100 independent pairs of X and t using N = 100, and
applied the same weight vector wtrue as for the training data. Examples of two random
images and the weight vector we used can be seen in Fig. 5. Fig. 6 shows the sparsity
of the trained models, the training cost, which is the negative logarithm of the marginal
likelihood given in Eq. 4, and the root mean square error (RMSE) between the true and
the predicted target values computed on the test data sets. It also shows a comparison
of the predicted and true weights by showing the l2-norm of the difference between the
true and the predicted weights of the two algorithms.

Fig. 5. Examples of two random images (a) and (b) as well as the weight vector (c) we used in
our synthetic data experiment.

8 Discussion

The results reveal several weaknesses of the original RVoxM. First, while the true spar-
sity of our synthetic data is always 33% (since we set 1/3 of the 100 weights to be differ-
ent from zero), RVoxM grossly overestimates the number of weights that are included
in the model (see Figure 5 a). IRVoxM on the other hand produces sparser models,
while still achieving a better training cost on the training data (see Figure 5 b). Hence
IRVoxM is not over fitting to the training data, but finding sparse models that represent
the data well. Furthermore, RVoxM and IRVoxM yield comparable RMSE on the test
data with IRVoxM considerably outperforming RVoxM for larger N (see Figure 5 c).
Finally, IRVoxM produces weights that are much closer to the true weights for all val-
ues of N (see Figure 5d). These results agree with our theoretical expectations and the
experiments presented in [7].

9 Conclusion

We have re-visited the relevance voxel machine and introduced a better optimization
scheme. By exploiting the form of the marginal likelihood function, we improved the
way in which voxels are added and deleted from the sparse model during the optimiza-
tion. Our algorithm IRVoxM outperforms RVoxM on synthetic data; it yields sparser
models with good prediction performance and retains weight maps that are closer to
the true synthetic weights than RVoxM’s. Our aim was to show that our proposed al-
gorithm IRVoxM improves over RVoxM’s optimization scheme; thus we compared the
two algorithms side by side. Our new optimization strategy performs as anticipated,
and opens up a whole new avenue for speeding up computations, as was done previ-
ously for RVM [4] by FastRVM [7]. One key problem of RVoxM is the computational
burden, especially during the first few iterations, where computational time is cubic in
the number of voxels. IRVoxM does not need to be initialized with all voxels (as has
been done for comparison to RVoxM in all our experiments here). One can start with
only a few voxels in the model, which reduces the computational cost tremendously and
preliminary experiments show that this approach performs equally well. Furthermore,
our explicit functional formulation of the marginal likelihood function for a single αi
makes it possible to sample from the hyperparameters distributions, which had not been
possible with RVoxM.
In further versions of IRVoxM, we plan to implement a different initialization strategy

Fig. 6. Results for the synthetic data showing the resulting training sparsity (a), the training cost
(b) and the root mean square error (RMSE) on the test data (c) for 100 independent repetitions.
The box plots in (a), (b) and (c) show the ground truth (red), RVoxM (green) and IRVoxM (blue).
Filled black dots indicate the median, filled boxes extend to the most extreme values within 1.5
times the interquartile range of the box. Lines extend to the adjacent value. Samples beyond those
points are marked with colored circles. In (d) we show the l2-norm of the differences between
the true weights and the weights RVoxM produces (green) and the true weights and the weights
IRVoxM produces (blue).

that enables us to increase the speed of IRVoxM, as well as exploit the possibility of
sampling from the hyperparameter distribution.

10 Acknowledgments

This research was supported by the Alfred Benzon and the Lundbeck Foundation and
carried out in whole or in part at the Athinoula A. Martinos Center for Biomedical
Imaging at the Massachusetts General Hospital, using resources provided by the Cen-
ter for Functional Neuroimaging Technologies, P41EB015896, a P41 Biotechnology
Resource Grant supported by the National Institute of Biomedical Imaging and Bio-
engineering (NIBIB), National Institutes of Health. This work also involved the use
of instrumentation supported by the NIH Shared Instrumentation Grant Program and/or
High-End Instrumentation Grant Program; specifically, grant number(s) S10RR023401,
S10RR019307, S10RR019254 and S10RR023043.

References

1. Mackay, D.J.C.: Bayesian methods for adaptive models. PhD thesis, Pasadena, CA, USA
(1992)

2. Tipping, M.: The relevance vector machine. In: Advances in Neural Information Processing
Systems 12, MIT Press (2000) 652 – 658

3. Bishop, C.M., Tipping, M.E.: Variational relevance vector machines. In: Proceedings of the
16th Conference on Uncertainty in Artificial Intelligence. UAI ’00, San Francisco, CA, USA,
Morgan Kaufmann Publishers Inc. (2000) 46–53

4. Tipping, M.: Sparse bayesian learning and the relevance vector machine. The Journal of
Machine Learning Research 1 (2001) 211–244

5. Rasmussen, C.E.: Healing the relevance vector machine through augmentation. In: In Proc.
of the 22nd International Conference on Machine learning (ICML 2005), ACM Press (2005)
689–696

6. Schmolck, A., Everson, R.: Smooth relevance vector machine: a smoothness prior extension
of the rvm. Machine Learning 68(2) (2007) 107–135

7. Tipping, M.E., Faul, A.: Fast marginal likelihood maximisation for sparse bayesian models.
In: Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics.
(2003) 3–6

8. Sabuncu, M., Leemput, K.: The relevance voxel machine (rvoxm): A bayesian method for
image-based prediction. In Fichtinger, G., Martel, A., Peters, T., eds.: Medical Image Com-
puting and Computer-Assisted Intervention MICCAI 2011. Volume 6893 of Lecture Notes in
Computer Science., Springer Berlin Heidelberg (2011) 99–106

9. Sabuncu, M., Van Leemput, K.: The relevance voxel machine (rvoxm): A self-tuning bayesian
model for informative image-based prediction. Medical Imaging, IEEE Transactions on
31(12) (2012) 2290–2306

