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Abstract 
The speech-based envelope power spectrum model (sEPSM; 
[1]) was proposed in order to overcome the limitations of the 
classical speech transmission index (STI) and speech 
intelligibility index (SII). The sEPSM applies the signal-to-
noise ratio in the envelope domain (SNRenv), which was 
demonstrated to successfully predict speech intelligibility in 
conditions with nonlinearly processed noisy speech, such as 
processing with spectral subtraction. Moreover, a multi-
resolution version (mr-sEPSM) was demonstrated to account 
for speech intelligibility in various conditions with stationary 
and fluctuating interferers [2]. However, the model fails in 
the case of phase jitter distortion, in which the spectral 
structure of speech is affected but the temporal envelope is 
maintained. This suggests that an across audio-frequency 
mechanism is required to account for this distortion. It is 
demonstrated that a measure of the across audio-frequency 
variance at the output of the modulation-frequency selective 
process in the model is sufficient to account for the phase 
jitter distortion. Thus, a joint spectro-temporal modulation 
analysis, as proposed in [3], does not seem to be required. 
The results are consistent with concepts from computational 
auditory scene analysis and further support the hypothesis 
that the SNRenv is a powerful metric for speech intelligibility 
prediction. 

Introduction 
The most commonly used metrics for predicting speech 
intelligibility in noise have traditionally been the signal-to-
noise ratio (SNR), as used in the Articulation Index (AI; [4]), 
or the modulation transfer function (MTF), as measured by 
the speech transmission index (STI; [5]). These metrics have 
been shown to account for intelligibility in a broad range of 
conditions with stationary noise, low-and high-pass filtering, 
and reverberation. However, the AI and the STI are limited 
to conditions with stationary interferers, due to long-term 
integration of the stimuli. Moreover, these metrics generally 
fail when noisy speech is subjected to nonlinear processing, 
such as noise reduction via spectral subtraction, or phase 
jitter distortions, arising due to variation in the supply 
voltages of telephone systems.  

In [3], an extension to the STI was presented, denoted as the 
spectro-temporal modulation index (STMI), which measures 
the integrity of the joint spectro-temporal modulations of the 
speech signal. In contrast to the one-dimensional (temporal) 
modulation processing assumed in the STI and sEPSM, the 
STMI includes a two-dimensional modulation filterbank. 
While this more complex modulation processing stage 
allows the STMI to successfully account for phase jitter 
distortion, the decision metric is based on the (two-
dimensional) MTF, similar to the STI and, therefore, it is 
unclear whether it can also account for spectral subtraction 
processing. 

In contrast to STI and STMI, [1] suggested an intelligibility 
metric based on the signal-to-noise ratio in the envelope 
domain (SNRenv). The SNRenv was highly correlated with 
intelligibility of noisy speech processed by spectral 
subtraction, and consistent with the STI in conditions with 
reverberation. The major difference with respect to the MTF 
is the explicit consideration of the (intrinsic) envelope 
fluctuations of the noise itself, which is increased after 
spectral subtraction (e.g., [6]), and potentially responsible 
for a reduced intelligibility. The SNRenv-metric is calculated 
as part of the speech-based envelope power spectrum model 
(sEPSM), inspired by the EPSM [7], originally developed to 
account for modulation detection and masking data. 
However, the SNRenv considered in [1] was calculated from 
a long-term integration of the stimuli and the sEPSM must, 
therefore, fail in conditions with fluctuating interferers. 
Moreover, it is unclear whether this model can account for 
phase jitter distortion, since it assumes purely temporal 
modulation processing. 

Here, the “multi-resolution” version of the sEPSM 
framework is considered (mr-sEPSM) [2]. The hypothesis in 
the framework of this model is that the SNRenv is increased 
in the dips of a fluctuating interferer and that a “short-term” 
estimation of the SNRenv will account for the intelligibility in 
such conditions. The model is evaluated with two categories: 
(i) speech mixed with a stationary interferer and two types of 
fluctuating interferers with very different temporal structure; 
and (ii) two types of nonlinearly processed noisy speech in 
the form of spectral subtraction and phase jitter, testing the 
model’s ability to account for nonlinear distortion. 

Model Description 
The processing structure of the mr-sEPSM is illustrated in 
Figure 1. The first stage is a (peripheral) bandpass filterbank, 
consisting of 22 gammatone filters with one equivalent 
rectangular bandwidth [8] and third-octave spacing of their 
center frequencies, covering the range from 63 Hz to 8 kHz. 
An absolute sensitivity threshold is included such that 
individual gammatone filters are included only if the level of 
the stimulus at the output is above the absolute hearing 
threshold for normal-hearing listeners. The temporal 
envelope of each filter output is extracted via the Hilbert-
transform and low-pass filtered with a cut-off frequency of 
150 Hz, using a first-order Butterworth filter. The resulting 
envelope is analyzed by a modulation bandpass filterbank, 
consistsing of eight second-order bandpass filters with 
constant quality factor (Q=1) and octave spacing, covering 
the range from 2 - 256 Hz, in parallel with a third-order 
lowpass filter with a cut-off frequency of 1 Hz (see [1]). The 
running temporal output of each modulation filter is divided 
into short segments using rectangular windows without 
overlap. 
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Figure 1: Schematic of the processing stages of the mr-
sEPSM framework.  

The duration of a segment is proportional to 1/fcm, with fcm 
denoting the modulation filter center frequency. For 
example, the segment duration in the 4-Hz modulation filter 
is 250 ms. For each segment, the AC-coupled envelope 
power (variance) of the noisy speech and the noise alone are 
calculated separately and normalized with the corresponding 
long-term squared DC. The SNRenv of a segment is estimated 
from the envelope power as:   

N
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−
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(1) 

where PS+N and PN denote the envelope power of the noisy 
speech and the noise alone after the normalization. For each 
modulation filter, the running SNRenv-values are averaged 
across time, assuming that all parts of a sentence contribute 
equally to intelligibility. The time-averaged SNRenv-values 
from the different modulation-filters and peripheral filters 
are combined, using the “integration model” from [9]. The 
combined SNRenv is converted to the probability of correctly 
recognizing the speech item using the concept of a 
statistically “ideal observer” [1]. 

Method 
Model predictions were compared to data from the literature 
as well as data collected for the present study. The target 
speech was either Danish sentences from the CLUE-speech 
material [10], or sentences from the TIMIT database. The 
data reflect either speech reception thresholds (SRTs) 
corresponding to the 50% point on the psychometric 
function or percentage of correct scores. All subjects were 
normal-hearing listeners. 

One condition with stationary speech-shaped noise (SSN) 
and two conditions with fluctuating interferers were 
considered: (i) SSN that was amplitude modulated by an 8-
Hz sinusoid (SAM), and (ii) the speech-like, but 
unintelligible, International Speech Test Signal (ISTS; [11]). 

Moreover, five conditions with phase jitter, having different 
values of the jitter-factor, α [3], and six conditions with 
noisy speech (SSN) processed by spectral subtraction were 
considered. The spectral subtraction algorithm was 
implemented similar to [12] using six different values of the 
over-subtraction factor, ρ. 

For the predictions, the model parameters were calibrated to 
a close match between the predictions and the data for the 
unprocessed SSN-condition. These parameters were then 
fixed for all other experimental conditions. Identical stimuli 
were used for the predictions and the measurements, except 
for the conditions with phase jitter where the data were 
obtained using sentences from the TIMIT database [3], 
whereas the predictions were obtained using the CLUE-
sentences. 

Results 
Conditions with Stationary and Fluctuating 
Interferers 
Figure 2 shows the measured SRTs (open squares) in the 
conditions with SSN, SAM, and ISTS interferers. The SRTs 
were obtained at SNRs of -3.5, -9.1, and -18 dB, 
respectively. The large decrease in SRT for the two 
fluctuating interferers reflects a clear release from speech 
masking. Predictions from the mr-sEPSM (filled black 
squares) account well for the data, while predictions from 
the earlier sEPSM-version [1] (filled gray symbols) clearly 
fail to account for the conditions with fluctuating interferers. 
The root mean square error (RMSE) between the measured 
data and the mr-sEPSM predictions amounts to 1.7 dB.  

 
Figure 2: Results for conditions with stationary and 
fluctuating interferers: measured data (open squares) and 
predictions from the (long-term) sEPSM (gray squares) and 
the mr-sEPSM (black squares). 

 

Spectral Subtraction 
Figure 3 shows the data obtained by [1] (open squares) and 
corresponding predictions by the mr-sEPSM (filled black 
squares) for six conditions of ρ, where 0 denotes the 
reference condition with no spectral subtraction. The data 
show an increase of the SRT with increasing ρ, 
demonstrating a lower intelligibility with spectral subtraction 
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than without the processing. The mr-sEPSM predicts the 
trends in the data, although it overestimates the SRTs for ρ = 
2, 4, and 8, leading to a larger RMSE  (1.3 dB) compared to 
the sEPSM. Predictions obtained with the STMI (gray 
squares) suggest that the intelligibility increases after 
spectral subtraction, in contrast to the measured data. The 
STMI thus fails to account for spectral subtraction, as does 
the STI [1]. 

 
Figure 3: Results for spectral subtraction: measured SRTs 
(open squares) and predictions from the (long-term) sEPSM 
(gray squares) and the mr-sEPSM (black squares). 
Predictions from the STMI are indicated by filled triangles. 

 

Phase Jitter 
Figure 4 shows the measured data obtained by [3] (open 
circles) for speech distorted by phase jitter. The 
intelligibility is almost unaffected for jitter factors, α, below 
0.2, but sharply decreases for values above 0.2 and remains 
low for higher values of α. The mr-sEPSM (filled black 
squares) clearly fails to account for the measured data, 
predicting perfect intelligibility independent of α. In 
contrast, the STMI (gray triangles) is in good agreement 
with the data. 

Model Analysis 
The mr-sEPSM was found to be insensitive to the phase 
jitter distortion. However, it is unclear whether the jitter 
distortion is simply not reflected in the model’s internal 
representation, or whether the information is there, but some 
additional processing stage is required to capture the effect. 
The top-left panel of Figure 5 shows the internal 
representation of the mr-sEPSM in response to a sentence 
without phase jitter. Each trace in the panel represents the 
temporal output of the 4-Hz modulation filter for a subset of 
the peripheral filters tuned to frequencies between 0.16 and 4 
kHz. The undistorted speech leads to a representation with a 
varying temporal structure across the different peripheral 
channels, reflecting the distributed speech information 
across the peripheral frequency channels. The top-right panel 
shows the same, but for the condition with α = 0.5. The jitter 
has clearly removed the natural variation, and increased the 
temporal coherence across the audio-frequency channels, 
reflecting a loss of speech information. Thus, the jitter 
distortion is reflected in the model’s internal representation. 
However, an across-channel mechanism is required to 

capture the effect. One metric for quantifying the loss of 
information could be the across-audio-frequency variance of 
the internal representation. 

 
Figure 4: Result for conditions with phase jitter: measured 
percentage of correct response (open circles) and 
predictions from the mr-sEPSM (black squares), and the 
STMI (gray triangles). Predictions from the mr-sEPSM 
including across-channel processing are indicated by filed 
black circles.  

 

 
Figure 5: Top panel: the model’s internal representation at 
the output of the 4-Hz modulation filter for a subset of the 
peripheral filters in response to a sentence without phase 
jitter (top-left panel) and with α = 0.5 (top-right panel). 
Bottom: The normalized across (peripheral)-frequency 
variance, calculated from the internal representation, as a 
function of the jitter factor. 

 
The bottom panel of Figure 5 shows the normalized across-
frequency variance, averaged across time, as a function of 
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the jitter factor for a subset of the modulation filters. The 
variance decreases with increasing jitter factor, in a very 
similar manner as the decrease of speech intelligibility 
shown in Figure 4. Additional predictions were obtained 
with a version of the model (mr-sEPSMX), where the 
contribution from a given modulation filter was assumed to 
depend on the across-channel variance of that filter. The 
corresponding predictions (Fig. 4; filled black circles) 
largely agree with the predictions based on the STMI and the 
measured data. 

Discussion 
It was demonstrated that the multi-resolution estimation of 
SNRenv in the sEPSM-framework accounted for the speech 
intelligibility in conditions with a stationary and two 
fluctuating interferers. The critical element in estimating the 
running SNRenv was the modulation-filter dependent analysis 
window, ranging from 4 ms to 1000 ms, allowing the model 
to evaluate the increased SNRenv in the dips of the 
fluctuating interferer.  

Moreover, the model accounted for the decreased 
intelligibility in conditions with noisy speech processed by 
spectral subtraction. [1] demonstrated that the SNRenv 
decreases as the spectral subtraction factor increases and that 
the decreasing SNRenv is caused by an increase of the 
intrinsic fluctuations in the noise-part of the noisy speech, 
producing more modulation masking in the model. Thus, the 
increased noise-fluctuations may reduce the perceptual 
salience of the target speech fluctuations and, thus, decrease 
the intelligibility for the listeners. 

In contrast to the sEPSM, the STMI was shown to fail in 
conditions of spectral subtraction. The reason is that the 
STMI is based on the MTF, evaluating the difference 
between a clean and a processed representation, instead of 
the envelope signal-to-noise ratio, and therefore does not 
capture the effect of processing on the noise alone. However, 
the mr-sEPSM failed to account for phase jitter distortion, 
which the STMI successfully described. The model analysis 
demonstrated that the effect of the jitter was reflected at the 
output of the purely temporal modulation processing 
assumed in the mr-sEPSM. However, an across audio-
frequency mechanism, such as the across-channel variance, 
was necessary to account for the perceptual data and was 
shown to produce similar results as the STMI. The concept 
of an across-channel mechanism is consistent with other 
recent models of comodulated masking release [13] and 
models of auditory scene analysis [14]. A more complex 
two-dimensional representation, as the one assumed in the 
STMI framework, may not be required. 

Conclusion and Perspective 
This study demonstrated that a modeling framework based 
on estimating the SNRenv in short time segments, following 
temporal modulation processing, can account for speech 
intelligibility in conditions with stationary and fluctuating 
interferers, as well as in conditions with noisy speech 
processed by spectral subtraction. Furthermore, by including 
an across audio-frequency mechanism, such a framework 

was sufficient to account for the effects of phase jitter 
distortion on speech intelligibility.  

Including the SNRenv metric in more detailed models of 
auditory preprocessing and perception might be interesting 
for studying the consequences of hearing impairment on 
speech intelligibility.   
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