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Abstract

Research on generating and verification of multivariate probabilistic forecasts has gained increased interest

over the last few years. Emphasis is placed here on the evaluation of forecast quality with the Energy

score, which is based on a quadratic scoring rule. While this score may be seen as appealing since being

proper, we show that its discrimination ability may be limited when focusing on the dependence structure

of multivariate probabilistic forecasts. For the case of multivariate Gaussian process, a theoretical upper

for such discrimination ability is derived and discussed. This limited discrimination ability may eventually

get compromised by computational and sampling issues, as dimension increases.
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1 Introduction

Probabilistic forecasting has gained increased attention over the last decade, both in terms of theoret-
ical and of more practical developments. This phenomenon touches a wide range of applications, from
economics and finance [1, 2], to earthquake prediction [3], while it also has wide appeal in meteorology
[4], and for weather-related processes like renewable energy production [5, 6] and floods [7]. Such a focus
on probabilistic forecasting is justified by the fact that, even if forecast users may prefer being provided
with single-valued forecasts easier to handle in decision-making processes, those should be preferably
extracted from probabilistic forecasts in a decision-theoretical framework, by accounting for user-specific
loss functions (see, e.g., [8]).

Probabilistic forecasts optimally take the form of predictive densities for the stochastic process considered.
If decisions to be made involve a univariate stochastic process only, or if they do not require modeling
a dependence structure (multivariate or spatio-temporal), then only marginal predictive densities are
required. These are referred to as marginal since being issued for each variable, location and lead time,
individually. In the more general case of decision-making requiring to account for a dependence structure,
probabilistic forecasts then ought to consist of multivariate predictive densities, hence describing both
the marginal densities and the dependence structure.
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Evaluating probabilistic forecasts is more complex than evaluating single-valued predictions, even though
some of the basic principles may be seen as similar. The main lines of probabilistic forecast verification
frameworks (and underlying theoretical concepts) can be found in, e.g., [9], [10] and [11] among others.
Such verification techniques may rely on scores, diagnostic tools, and possibly hypothesis testing. For the
case of predictive densities, both univariate and multivariate, a number of scores have been proposed and
discussed, see for instance [9] and [12]. Emphasis is placed here on quadratic scoring rules for multivariate
predictive densities, that is, more precisely, on the Energy score introduced by [9]. Our aim is to discuss
its discrimination ability, i.e., its ability to give significantly different score values to forecasts of different
quality.

The manuscript is organized as follows. Section 2 recalls the background on probabilistic forecast ver-
ification based on scoring rules, while insisting on the fact that propriety of a score does not imply
any discrimination ability. This section also illustrates how the Energy score has a substantially higher
discrimination ability when misspecifying the mean of multivariate distributions, than in the case of mis-
specifying their variance or the dependence structure. Subsequently, some theoretical results are given in
Section 3 giving a higher bound on differences in Energy score values for the case of misspecification of
the dependence structure of multivariate predictive densities, also accounting for the dimension of these
forecasts. Note that the discussion and results are produced for the Gaussian case only, though it is com-
monly used in practice today, for instance for short-term forecasts of surface wind speeds [13, 14] or for
seasonal forecasts of sea-surface temperatures [15]. The necessary mathematical developments for obtain-
ing these results are gathered in an Appendix at the end of the manuscript. Finally, Section 4 develops
into a discussion on how to maximize the discrimination ability of quadratic scoring rules for multivariate
probabilistic forecasts, also considering perspectives for future work on multivariate probabilistic forecast
verification.

2 Discrimination ability of the Energy score

2.1 General setup

Let us place ourselves in a framework where a forecaster aims at issuing multivariate probabilistic forecasts
in the form of predictive densities. He therefore considers a multivariate random variable Y ∈ R

n, n > 1.
Write G the true distribution of Y, Y ∼ G, while F is the multivariate predictive density issued by
the forecaster at some point prior or equal to the current time. Time indices are not used here, since
the results are independent of the time when the forecast is issued, and of the lead time considered. As
an example, the multivariate random variable may be surface wind speed, expressed in its zonal and
meridional components, as in the case of [13], [14], and [16]. More generally in meteorological prediction,
it could also consist in a set of meteorological variables, e.g. wind speed, precipitation, etc., as in the case
of [17]. In addition, the dependencies may not only be between various variables, but also for various
geographical locations, and/or a set of times in the future [18]. Other setups exist in econometrics and
finance related prediction problems, as for the example of the simultaneous confidence regions of [19]
among others.

2.2 From propriety of scoring rules to their discrimination ability

When employing skill scores for probabilistic forecast verification, it is required that they are based on
proper scoring rules, to ensure that forecasters really aim at issuing better forecasts, instead of focusing
on hedging the score only. A scoring rule Sc is defined as a functional assigning a value to the association
of a predictive density F with an observation y from the real density G of the random variable,

Sc : (F,y) → Sc(F,y) ∈ R (1)

Formally, following the presentation by, e.g., [20], a scoring rule Sc (and associated score) for multivariate
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predictive densities, is said to be proper if and only if

Sc(G,y) ≤ Sc(F,y), (2)

meaning, using simple words, that actual densities for the stochastic process are to be assigned the lowest
possible score value. This result is for a negatively-oriented score, for which lowest values are seen as
best. For simplicity, we only consider negatively-oriented scores in the following. Better, the scoring rule
is strictly proper if only the actual densities get the lowest score value, i.e.,

Sc(G,y) < Sc(F,y). (3)

Propriety is a property of scoring rules involving a predictive density and the real density of the stochastic
process. In practice, that real density is not available anyway, and one is left with comparing alternative
predictive densities, say, F (1) and F (2) generated by two rival forecasters. Propriety does not ensure that
a difference in quality between F (1) and F (2) would yield a difference between Sc(F (1),y) and Sc(F (2),y),
for any observation y drawn from G. Consequently, we refer to as discrimination the property of the
scoring rule Sc such that

F (1) ≻ F (2) ⇐⇒ Sc(F (1),y) < Sc(F (2),y) (4)

for any observation y drawn from G. In the above, F (1) ≻ F (2) means that F (1) genuinely is of higher
quality than F (2). A scoring rule is then said to have a high discrimination ability if differences in quality
between predictive densities are equivalent to significant differences in score values. At the opposite, a
scoring rule is said to have no discrimination ability in the case where the same score values are assigned
to predictive densities of different quality. One notes that proper score values may not need to have any
discrimination ability, since possibly assigning the same score values to all predictive densities F , as well
as G which is that for the actual random variable Y. The situation is different for strictly proper scoring
rules, since they should at least discriminate locally in the neighborhood of G. For densities F significantly
different from G, however, there is no insurance that the score discriminate among predictive densities.
It is to be noted that this concept of discrimination is inspired by the work of [21], who introduced some
of the key concepts in forecast verification. Here, however, discrimination is a property of the score, not
of the forecast themselves.

2.3 Characterizing the discrimination ability of the Energy score

Given the predictive density F and corresponding realization y, the Energy score Es is defined as

Es(F,y) = EF [||X− y||]− 1

2
EF [||X−X′||] , (5)

where X and X′ are independent random draws from F , while ||.|| denotes the Euclidean norm. Com-
putationally efficient estimators for the Energy scores were introduced in [13].

The corresponding expected Energy score, Es, can be calculated as the expectation of the Energy score
in Eq. (5) over all potential observations of Y, i.e.,

Es(F,G) = EG

[

EF [||X−Y||]− 1

2
EF [||X−X′||]

]

. (6)

In order to analyze the discrimination ability of the Energy score, we define a metric to be used in
the following, corresponding to relative changes in Energy score values, induced by differences between
predicted and actual multivariate density of the stochastic process. Considering multivariate Gaussian
processes, such differences may relate to prediction errors in the mean, variance, or interdependence
structure. The relative change in expected Energy score is defined based of expected Energy score values
for F and G,

∆Es =
Es(F,G) − Es

∗

Es
∗ , (7)

where the Energy score value Es
∗
= Es(G,G) directly comes from the inherent uncertainty of the random

variable Y.
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2.4 Illustrating the discrimination ability of the Energy score for multivariate

Gaussian processes

To illustrate this concept of discrimination ability we make the following simulation study. We assume
that a real process generating density is G, corresponding to a bivariate Gaussian. The process is
simulated by considering 1000 instances: at each of these instances the process realization y is given by
a single draw from G.

Suppose, there are two competing forecasters. One of them issues forecasts based on the real process
generating density G — the perfect forecast. In parallel, the other forecaster issues alternative predictive
density F . In order to compare the forecasting approaches, we estimate the corresponding Energy score
values and compare them. For the calculation of these Energy score values, 1000 random draws from
both densities are used, then employing the computationally efficient estimator proposed by [13]. Our
main interest is to see how differences between G and F reflect in the corresponding Energy score values.

The process generating density, G, is bivariate Gaussian with a mean given by µ = [µ µ]⊤ and a covariance
structure

Σ = σ2

[

1 ρ
ρ 1

]

. (8)

Then at every time step t a single process realization y = [y1 y2]
⊤ of Y is such that

Y ∼ N (µ,Σ). (9)

The following differences between G and F have been considered:

• Error in mean corresponds to the case where the second forecaster makes an error in centering
the predictive density only. In this case F is given by a bivariate Gaussian with a well specified
covariance structure and a misspecified mean. That is, for every time step this forecaster issues a
forecast describing the multivariate density for a random variable X such that

X ∼ N (µ̂,Σ), (10)

where µ̂ = [µ̂ µ̂]. The resulting difference between F and G is depicted in Fig. 1(a).

• Error in variance corresponds to case where the forecaster makes an error while specifying the
variance only. More specifically, for every time step the forecaster issues a forecast describing the
multivariate density for a random variable X such that

X ∼ N (µ, Σ̂), (11)

where

Σ̂ = σ̂2

[

1 ρ
ρ 1

]

. (12)

The resulting difference between F and G is depicted in Fig. 1(b).

• Error in correlation corresponds to cases where the forecaster makes an error in describing the
dependency structure, while well specifying the mean and the variance of the process. More specif-
ically, for every time step the forecaster issues a forecast describing the multivariate density for a
random variable X such that

X ∼ N (µ, Σ̂) (13)

where

Σ̂ = σ2

[

1 ρ̂
ρ̂ 1

]

(14)

The resulting difference between F and G is depicted in Fig. 1(c).
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y1

y2

(a) errors in mean

y1

y2
(b) errors in variance

y1

y2

(c) errors in correlation

Figure 1: Illustration of different misspecification in the process generating density. Each density is represented
by a single iso-density contour. For every density the volume over the area bounded by the ellipse equals α. Here
α denotes a pre-defined probability that a random draw from the corresponding density falls inside the ellipse. Red
solid lines represents the real process generating density, while dotted blue lines correspond to predictive densities.
Errors in mean are shown in (a). They correspond to predictive densities being shifted variants of the real process
generating density. The shift along the major axis of the ellipse (45◦) has been considered in the simulation work.

Errors in variance are shown in (b). They correspond to an inflation (σ̂2 > σ
2) or a deflation (σ̂2 < σ

2) of the
ellipse. Finally, errors in correlation are shown in (c). They correspond to stretching the ellipse in the direction
of its major axis (ρ̂ > ρ) or its minor axis (ρ̂ < ρ)
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Let us first look at the discrimination ability of the Energy score for errors in mean. µ is set to µ = 5,
while the correlation value is fixed to ρ = 0.5 (any other values would yield qualitatively similar results).
The relative change in Energy score ∆Es is evaluated as a function of the normalized error in predicting
the mean parameter for Y (See Fig. 2(a)). That normalized prediction error is defined as (µ − µ̂)/σ.
This assessment is performed for a number of values of σ2 (σ2 ∈ {1, 3, 5, 9}), in order to characterize the
sensitivity to the process variance. A key result here is that, independently of the process variance, the
effect of the relative prediction error for µ remains the same. Besides, since the Energy score is based
on an Euclidean distance, the relative change in Energy score only depends on the magnitude of the
normalized error in mean and not on its direction along the given translation axis (see Fig. 1(a)).

For the case of errors in variance, the setup is fairly similar, with mean and correlation parameters fixed
to µ = 0 and ρ = 0.5. A set of values for σ2 are considered, i.e., σ2 ∈ {1, 3, 5, 9}. Predictive densities F
there only differ in terms of process variance, where the relative prediction error in variance is defined as
(σ2 − σ̂2)/σ2. A plot of the relative change in Energy score ∆Es as a function of that relative prediction
error in variance is depicted in Fig. 2(b). Here again, the relative change in Energy score follows similar
patterns, independently of the actual process variance. The discrimination ability of the score is not
symmetric, since the score increase for sharper densities is steeper than that for predictive densities that
are too wide. Finally, comparing the discrimination ability of the Energy score for the mean and variance
parameters, it is clear that the scale of variations in Figs. 2(a) and 2(b) are totally different (by a factor
of 50), the score being clearly more sensitive to differences in the mean parameter than for the variance.

We finally look at errors in correlation. A plot for the relative change in Energy score as a function of
predicted correlation is depicted in Fig. 3. The results were with σ2 = 1 and µ = 0. The results obtained
for other values of σ2 and µ were qualitatively similar. ∆Es describes how much the Energy score changes
when instead of the real process generating density, the forecaster issues the predictive density F . The
largest ∆Es is obtained when the real process generating density is perfectly correlated (ρ = 1), while the
forecaster totally neglect the correlation by setting ρ̂ = 0. This is the extreme case for which, visually,
∆Es ≈ 0.07. A theoretical value for this upper bound may be derived analytically, as will be done in the
following section. In practice this upper bound is seldom reached, since it corresponds to a very special
case of a perfectly correlated bivariate Gaussian process. This means that for any realization y for G,
y1 = y2. In such an extremes case, the only way for the forecaster to obtain an Energy score value (in
expectation) of only 7% worse than if issuing perfect forecasts, is to totally ignore this strong dependency
and assume independence of the components of Y.

In practice, bivariate Gaussian processes are seldom perfectly correlated. One can notice that when the
actual correlation, ρ, is less than 1, the maximum penalty (in expectation) stemming from errors in
correlation becomes substantially less than 0.07. Already with ρ = 0.8, the maximum ∆Es is not even
reaching 0.04. A conclusion from this plot is that the upper bound that may be derived by considering
perfectly correlated generating densities, and predictive densities with independence of individual compo-
nents, would be rarely met in most practical applications. For instance, if ρ = 0.8 and the forecaster tries
predicts of a correlation ρ̂ = 0.4, then ∆Es < 0.02 only. Another important factor is that the increase in
∆Es is steeper in the case for which ρ̂ > ρ. This also reduces the motivation of forecasters to move from
the assumption of independence to try and capture the actual ρ.

3 Some theoretical results on the discrimination ability of the

Energy score

In this section, emphasis is placed on our main result, which consists in an upper bound on the discrimi-
nation ability of the Energy score for multivariate Gaussian processes for the case of errors in correlation.
Such a theoretical upper bound is of importance, since justifying the limited differences in Energy score
values reported in various recent works focusing on multivariate probabilistic forecasts and the predictive
modeling of interdependence structures, e.g. [13], [14], also giving some insight on results for Gaussian-
copula based modeling of multivariate predictive densities as in [17]. Some other works, e.g., [16], appear
to report results that go significantly beyond this theoretical upper bound, for reasons we cannot explain.
Simulations studies performed with different variances did not show a significant change in this theoretical
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Figure 2: Discrimination ability of the Energy score assessed with ∆Es, in terms of its sensitivity to prediction
errors in mean (a) and variance (b) for bivariate Gaussian predictive densities (hence for n = 2).
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Figure 3: Discrimination ability of the Energy score assessed with ∆Es, in terms of its sensitivity to errors in
correlation for bivariate Gaussian predictive densities (hence for n = 2).

upper bound.

Our result is given for the multivariate Gaussian case, for any dimension n, then discussing the specific
case of n = 2, which may still be the most common in practice.

Let us consider that the generating process G is distributed n-variate Gaussian, Y ∼ N (0,Σ) with same
variance σ2 on all dimensions, and a correlation of 1 between any of these dimensions, i.e.,

Σ = σ21(n×n), (15)

where 1(n×n) is a n × n matrix of ones. This definition of the generating process implies that, at time
t, a process observation y is such that y = y1n, where 1n is a n-dimensional vector of ones, and with
y ∼ N (0, σ2).

In the following, we compare the two cases where (i) the forecaster issues a perfect forecast F = G, and
where (ii) the forecaster issues a so-called naive forecast that ignores the interdependence structure of Y,
though with appropriate mean and variance on all dimensions. In that latter case, the predictive density
F is a n-variate Gaussian density with zero mean and diagonal covariance matrix, Σ̂ = σ̂diag(1n). It is
referred to as naive for simplicity only, since already rightly predicting mean and variance of n-variate
random variables would be a nice achievement. In both cases, a closed-form formula for the Energy score
is provided. They will be denoted by Es∗ and Esi. Looking at this case yield on upper bound on the
discrimination ability of the Energy score for varying dependence structures, since comprising a worst
case on the distance between multivariate Gaussian densities (as discussed in the above).

3.0.1 Expected Energy score for the naive forecast

For the naive forecast, one can directly work with the expression in (6). The computation of Esi is split
into that of EG [EG [||X−Y||]] and that of EG [EG [||X−X′||]].
After some algebra described in Appendix .1, one obtains that

EG [EF [||X−Y||]] =
Γ

(

n

2
+

1

2

)√
2σ

Γ
(n

2

)√
n+ 1

2F1

(

n+ 1

2
,
1

2
;
n

2
;

n

n+ 1

)

, (16)
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where 2F1 is the hypergeometric function. In parallel,

EG [EF [||X−X′||]] = 2σ

Γ

(

n

2
+

1

2

)

Γ
(n

2

) . (17)

The final formula for Esi therefore reads

Esi = σ

Γ

(

n

2
+

1

2

)

Γ
(n

2

)

{ √
2√

n+ 1
2F1

(

n+ 1

2
,
1

2
;
n

2
;

n

n+ 1

)

− 1

}

. (18)

3.0.2 Expected Energy score for the perfect forecast

In the case where F = G, the expression for the expected Energy score in (6) is such that

Es
∗
= EG

[

EG [||X−Y||] − 1

2
EG [||X−X′||]

]

. (19)

Consequently, the calculation of the above can be split into that of EG [EG [||X−Y||]] and that of
EG [EG [||X−X′||]].
After some algebra described in Appendix .2, one obtains that

EG [EG [||X−Y||]] = 2σ

√

n

π
, (20)

while, similarly,

EG [EG [||X−X′||]] = 2σ

√

n

π
. (21)

The final formula for Ēs
∗
therefore reads

Es
∗
= σ

√

n

π
. (22)

3.1 An upper bound on the discrimination ability of the Energy score in the

multivariate Gaussian case

As a consequence of the developments in the above, the upper bound ∆Es† on the discrimination ability
of the Energy score in the multivariate Gaussian case is obtained as

∆Es† =
Esi − Es

∗

Es
∗ =

√

π

n















Γ

(

n

2
+

1

2

)

Γ
(n

2

)

( √
2√

n+ 1
2F1

(

n+ 1

2
,
1

2
;
n

2
;

n

n+ 1

)

− 1

)















, (23)

solely depending on the dimension n of the multivariate Gaussian process considered.

The evolution of this upper bound ∆Es† is depicted in Fig. 4 as a function of the dimension of the
multivariate Gaussian process of interest, from n = 2 to n = 300. This upper bound increases with n,
even though it reaches an asymptote (of less than 15%) for higher dimensions. Taking the example of
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Figure 4: Upper bound on discrimination ability (i.e., ∆Es†) of the Energy score for a multivariate Gaussian
process with well-predicted means and variances, as a function of the dimension n.

bivariate processes, the maximum improvement in Energy score that could even be observed is of 7.4%
of the Energy score value if predicting the actual distribution G of Y. This upper bound is considerably
less than if making errors in predicting the variance parameter for that multivariate Gaussian process,
hence also very small compared to the case of prediction errors in the mean parameter.

Looking at Fig. 4, one could think that since the upper bound is increasing with the problem dimension,
then the Energy score has a better ability to discriminate between covariance structure in higher dimen-
sions. However, as can be seen from Fig. 3 such a theoretical upper bound is substantially higher than
the differences observed under more realistic conditions for correlation values of the generating process.
As the dimension of the problem grows, this upper bound may then become substantially higher than
the practical discrimination ability of the Energy score.

Another important aspect to be mentioned relates to computational issues. Estimation of Energy score
calls for Monte Carlo techniques, since no closed-form expression exists, even for multivariate Gaussian
processes. That estimation hence becomes computationally expensive. Being more precise, the cost of
sampling from a Gaussian distribution (with a covariance matrix not being restricted to any particular
pattern) is cubic in the dimension. This means that estimating the Energy score is hampered by the “big
n” problem.

For example in a practical application to probabilistic forecasting of wind power generation, we have
considered a problem with dimension n=645 [22]. A year of hourly data was used (8760 time steps)
and for each time step 10 scenarios (which is very small given the dimension of 645) were in order to
evaluate the score. Given this setup, it took more than 12 hours to estimate the average Energy score
when using 8 parallel cores. Such computational issues also translate to limiting the number of samples
used for estimating the Energy score, therefore leading to a certain level of uncertainty in the score values
obtained. This uncertainty becomes especially importance, given that a rather low sensitivity of the score
to the changes in the covariance structure.

4 Discussion

The field of probabilistic forecasting is developing rapidly, and with increasing focus on multivariate
processes, often of relatively low dimensions (say, n = 2, . . . , 5). Considering higher dimensions will
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be natural for instance for applications related to energy, meteorology and climate sciences, with focus
on different variables, locations and lead times. As a consequence, it is important to further develop
and analyze frameworks for probabilistic forecast verification, permitting to draw useful and practical
conclusions on forecast quality.

For the case of multivariate probabilistic forecasts, the Energy score is a relevant candidate for becoming
a lead score for evaluation of such forecasts. As of today, our understanding of its inherent properties for
various types of processes and their varying dimensions is somewhat fairly limited. Also, the properties
of related estimators, in terms of their potential bias, and sensitivity to sampling and correlation effects,
are to be studied.

Our aim here was to focus on the discrimination ability of the Energy score, i.e., its ability to assign
different score values to predictive densities of different quality. The most simple case of multivariate
Gaussian processes and predictive densities was considered, still providing interesting insight on some of
the properties of this score. Indeed, the Energy score is known to be proper, but this does not insure that
it has a high discriminatory power. While it may nicely discriminate predictive densities with different
mean parameters, it was discussed that differences in score values would be much less when looking at
differences in their variance parameters. Also, for the case of the interdependence structure of predictive
densities, an upper bound on score differences that may be observed (in expectation) was derived. Our
conjecture is that, comparatively, the Energy score may hardly allow to discriminate among predictive
densities with different interdependence structures. Maybe its discrimination ability could be maximized
by slightly altering its definition, and using other forms of distance, better considering the structure of
predictive densities. Besides, additional consideration should be given to other scoring rules defining
scores for verifying multivariate probabilistic forecasts, since they may gave a different discrimination
ability, while having additional computational advantages.

Acknowledgements
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.1 Necessary calculations to evaluate Esi

.1.1 Evaluating EG [EF [||X−Y||]]

Given a single process realization y = y1n,

||X− y|| =
√

(x1 − y)2 + (x2 − y)2 + · · ·+ (xn − y)2, (24)

where a realization of X is x = [x1 . . . xn]
⊤.

In parallel, a known result is such that

(x1 − y) ∼ N (−y, σ2)

(x2 − y) ∼ N (−y, σ2)

· · ·
(xn − y) ∼ N (−y, σ2)

x1, x2, · · · , xn are i.i.d.































⇒ z =

n
∑

i=1

(xi − y)2

σ2
∼ Non-central Chi-squared.

Consequently, following [23], the parameters of the non-central Chi-squared distribution are given by n
and λ, where

λ =
1

2

n
∑

i=1

y2

σ2
. (25)
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Then,

EF [||X− y||] = σEF

[

z
1

2

]

. (26)

That is, in order to evaluate EF [||X− y||] we need to know a fractional moment of order 1/2 of the
non-central Chi-squared distributed variable z.

Following [23],

EF

[

z
1

2

]

=
√
2

Γ

(

n

2
+

1

2

)

Γ
(n

2

) 1F1

(

−1

2
;
n

2
;−λ

)

=
√
2

Γ

(

n

2
+

1

2

)

Γ
(n

2

) 1F1

(

−1

2
;
n

2
;−n

2

y2

σ2

)

, (27)

where 1F1 denotes the confluent hypergeometric function of the first kind. This yields

EF [||X− y||] = σ
√
2

Γ

(

n

2
+

1

2

)

Γ
(n

2

) 1F1

(

−1

2
;
n

2
;−n

2

y2

σ2

)

. (28)

As a consequence,

EG [EF [||X−Y||]] =
√
2

Γ

(

n

2
+

1

2

)

Γ
(n

2

)

∫∞

−∞ 1F1

(

−1

2
;
n

2
;−n

2

y2

σ2

)

1

σ
√
2π

exp
−y2

2σ2
dy

=

Γ

(

n

2
+

1

2

)

σ
√
πΓ
(n

2

)

∫∞

0
exp

(

− 1

2σ2
y2
)

1F1

(

−1

2
;
n

2
;
−n

2σ2
y2
)

(y2)
−
1

2 dy2

=

Γ

(

n

2
+

1

2

)

σ
√
πΓ
(n

2

)

∫∞

0 exp

(

− 1

2σ2
t

)

1F1

(

−1

2
;
n

2
;
−n

2σ2
t

)

(t)
−
1

2 dt

To integrate the expression further we use (4) on page 822 of [24] stating that

∫ ∞

0

exp(−st)tb−1
1F1(a; c; kt)dt = Γ(b)(s− k)−bF (c− a, b; c;

k

k − s
), (29)

if |s − k| > |k| and Re(b) > 0, Re(s) > max(0, Re(k)). In the above F is the Gauss hypergeometric
function.

In our case: a = −0.5, c = 0.5n, k =
−n

2σ2
, b = 0.5, s =

1

2σ2
. Then:

|s− k| = n+ 1

2σ2
>

n

σ2
= |k|

12



Re(b) = 0.5 > 0

Re(s) =
1

2σ2
> 0 = max(0, Re(k))

All the conditions are fulfilled, therefore we can apply the formula given in [24] and as a result:

EG [EF [||X−Y||]] =

Γ

(

n

2
+

1

2

)

σ
√
πΓ
(n

2

) Γ

(

1

2

)(

n+ 1

2σ2

)− 1

2

2F1

(

n+ 1

2
,
1

2
;
n

2
;

n

n+ 1

)

= σ

√

2

n+ 1

Γ

(

n

2
+

1

2

)

Γ
(n

2

) 2F1

(

n+ 1

2
,
1

2
;
n

2
;

n

n+ 1

)

(30)

.1.2 Evaluating EG [EG [||X−X′||]]

As a starting point one has

EG [||X −X ′||] =
√

(x1 − x′
1)

2 + (x2 − x′
2)

2 + · · ·+ (xn − x′
n)

2, (31)

with xi, x
′
i∼ N (0, σ2), while being mutually independent for all i = 1, 2, · · · , n.

Let us introduce z =
∑n

i=1(xi − x′
i)

2. Since
(xi − x′

i)

2σ2
∼ N (0, 2σ2), z follows a non-central Chi-squared

distribution with parameters n and λ = 0.

Therefore following [23],

EG

[

z
1

2

]

=
√
2

Γ

(

n

2
+

1

2

)

Γ
(n

2

) 1F1

(

−1

2
;
n

2
; 0

)

=
√
2

Γ

(

n

2
+

1

2

)

Γ
(n

2

) . (32)

Consequently,

EG [||X−X′||] = E

[

z
1

2

]

= 2σ

Γ

(

n

2
+

1

2

)

Γ
(n

2

) , (33)

then also defining EG [EG [||X−X′||]].

.2 Necessary calculations to evaluate Es
∗

.2.1 Evaluating EG [EG [||X−Y||]]

First of all, one has

X− y = [x1 − y x2 − y · · ·xn − y]⊤. (34)
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Since both X and Y are distributed N (0,Σ), with Σ as defined in (15), then xn = xn−1 = · · · = x1

(which we write x) and yn = yn−1 = · · · = y2 = y1 (which we write y). Thus,

||X− y|| =
√

n(x− y)2 =
√
n|x− y|. (35)

Subsequently, since x ∼ N (0, σ2), then given y, (x− y) ∼ N (−y, σ2). Following this, the variable ||X−y||
follows a folded Normal with parameters −y and σ2. Using the analytical expression for the mean of a
folded Normal distribution (see Section .3.1), we obtain

EG [||X− y||] = σ
√

2n/π exp

(−y2

2σ2

)

+ y

(

1− 2Φ

(−y

σ

))

. (36)

Then given that y ∼ N (0, σ2),

EG [EG [||X−Y||]] =
∫∞

−∞

√
n

(

σ
√

2/π exp

(−y2

2σ2

)

+ y

(

1− 2Φ

(−y

σ

)))

1

σ
√
2π

exp

(−y2

2σ2

)

dy

=

∫ ∞

−∞

√
n

π
exp

(−y2

σ2

)

dy

+
√
nσ

∫ ∞

−∞

y

σ
φ(

y

σ
)d

y

σ

+ −2
√
nσ

∫ ∞

−∞

y1
σ
φ(

y

σ
)Φ(

−y

σ
)d

y

σ

=

√
nσ√
π

+
2
√
nσ

2
√
π

=
2
√
nσ√
π

, (37)

based on integrals given in Section .3.2.

.2.2 Evaluating EG [EG [||X−X′||]]

Similarly to the above, one starts with

||X−X′|| =
√

(x1 − x′
1)

2 + (x2 − x′
2)

2 + · · ·+ (xn − x′
n)

2. (38)

Then, since X, X′ ∼ N (0,Σ, with Σ as defined in (15), the above can be reformulated as

||X−X′|| =
√

n(x− x′)2 =
√
n|x− x′|, (39)

with x and x′ independent draws from X and X ′ such that X,X′ ∼ N (0, σ2). Consequently, following an
argument similar to that in the previous section, it is that |X−X′| follows a folded Normal distribution
with parameters 0 and 2σ2.

By applying the formula for finding the expected value of a folded Normal density (Section .3.1), we
finally obtain

EG [|X−X′|] = 2σ

√

1

π
, (40)

and then

EG [EG [||X−X′||]] = 2
√
nσ√
π

. (41)
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.3 Some results on relevant distributions and integrals

Below are given some basic definitions and results for some relevant probability distributions and integrals
used in the above mathematical derivations.

.3.1 Folded Normal distribution

The folded Normal distribution is directly linked to the Normal distribution. Indeed, in the case for
which X is distributed Gaussian, X ∼ N (µ, σ2), then Y = |X | follows a folded Normal distribution,
Y ∼ N f (µ, σ2). For such a distribution, the expectation of Y is given by

E[Y ] = σ

√

2

π
exp

(

−1

2

(µ

σ

)2
)

+ µ
(

1− 2Φ
(

−µ

σ

))

. (42)

.3.2 Some known relevant integrals

∫ ∞

−∞

xφ(x)Φ(bx) dx =

∫ ∞

−∞

xφ(x)Φ(bx)2 dx =
b

√

2π(1 + b2)
(43)

∫ ∞

−∞

e−ax2

dx =

√

π

a
(a > 0) (44)
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[19] Ò. Jordà and M. Marcellino, “Path forecast evaluation,” Journal of Applied Econometrics, vol. 25,
no. 4, pp. 635–662, 2010.
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