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Abstract

The emphasis in this work is placed on generating space-time trajectories (also referred to as scenarios) of
wind power generation. This calls for prediction of multivariate densities describing wind power generation
at a number of distributed locations and for a number of successive lead times. A modelling approach
taking advantage of sparsity of precision matrices is introduced for the description of the underlying
space-time dependence structure. The proposed parametrization of the dependence structure accounts
for such important process characteristics as non-constant conditional precisions and direction-dependent
cross-correlations. Accounting for the space-time effects is shown to be crucial for generating high quality
scenarios.
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1 Introduction

Large scale integration of wind energy into power grids induces difficulties in operation and management
of power systems due to the stochastic nature of wind, with its variability and limited predictability
[1]. For optimal integration of wind energy into power systems high quality wind power forecasts are
required [21]. A history of short-term wind power forecasting and an overview of the state-of-the-art
methodology are given in [9] and [14], respectively.

Owing to the complexity of the related decision making tasks, it is preferable that the forecasts provide
the user not only with the expected value of the future power generation, but also with the associated
uncertainty estimates. This calls for probabilistic, rather than point forecasting [16]. Applications of
probabilistic forecasts to power grid operations include trading wind energy [6], economic load dispatch
and stochastic unit commitment [25, 7, 24], optimal operation of storage [12], reserve quantification [4]
and assessment of operating costs [28].
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Usually probabilistic wind power forecasts are generated on a per-site and per- look-ahead time basis.
As a result, they do not inform about the interdependence structure between forecast errors obtained at
different times and/or at different sites.

Addressing each site of interest individually is motivated by the fact that power curves describing the
conversion of meteorological variables to power are often given by complex non-linear functions of me-
teorological conditions, number and type of the considered wind turbines, their interposition within the
wind farm, some topographical particularities of the area, etc. The fact that wind power dynamics is
so site-specific makes it more complicated to issue high quality forecasts for a large number of sites si-
multaneously, because the local particularities (if to be respected) keep the dimension of the problem
high.

Similarly, a common practice is to issue direct power forecasts for each of the time horizons of interest
individually, rather than addressing the joint distribution. This can be explained by the fact that such
direct forecasts are more robust to model misspecification. Iterated multistep-ahead predictions as a rule
are more efficient if the model is correctly specified. Given the complexity of the underlying process, a
correct specification is hard to achieve in practice, therefore direct forecasts are often preferred.

As a result, what is often available in practice for the decision maker is a set of marginal predictive
distributions for N sites of interest and T lead times. For some decision tasks marginal densities are a
suboptimal input, since the joint behaviour of power generation at all sites and the considered lead times
might be of interest.

Having a set of marginal distributions, the joint density can be restored using a copula approach. One
important feature of copulas is that they can be used to model dependency between stochastic variables
independently of the marginal distribution functions. This is important because, as mentioned previously,
modelling wind power generation at individual sites while targeting a specific lead time is already a
complex task. Therefore, it is an advantage to decouple the problem of estimating marginal densities
from the estimation of the space-time dependence structure.

Copulas have been widely used in many fields for modelling the dependence between stochastic variables,
including a number of problems related to wind power. As an example in [5], predictive densities for
wind power generation were built by modelling the relation between wind speed and wind power using
copulas. In [30], copulas have been used to estimate system net load distribution when accounting for
the dependence structure between wind activity at different locations and its relation to the system load.
In [19], a copula has been used to model the dependence between wind speed at a number of sites.

In [31], the authors focused on a single wind farm. A Gaussian copula, fully characterized by an empirical
covariance structure, has been used to derive joint predictive distributions (multivariate in time) from the
set of marginal densities. Furthermore, in [26], the author placed emphasis on wind power generation at a
pair of sites and, considered different types of copulas for modelling the dependence between wind power
generation at these sites for a given lead time. The present study generalizes these works by looking at
the interdependence of wind power generation in time and in space. It is aimed at issuing joint predictive
density of wind power generation from a set of marginal predictive distribution. The problem then boils
down to specifying and estimating a suitable dependence structure.

In this work a modelling approach taking an advantage of sparsity of precision matrix is introduced for the
description of the underlying dependence structure. In order to make the methodology mathematically
tractable in high dimensions, a parametrization of the precision matrix is proposed. This proposal
goes beyond the conventional assumptions of homogeneous stationary Gaussian Random fields, since
the presented parametrization accounts for the boundary points and considers non-constant conditional
variances and direction-dependent conditional correlations.

The paper has the following outline. Section 2 introduces the data set used in the study. The method-
ology is described in Section 3. It consists of some preliminaries and definitions, introduction to copula
modelling and explanation on how precision matrices relate to the Gaussian copula approach. Further,
Section 4 presents the proposed parametrization of the dependence structure. The estimation process is
discussed in Section 5, while the empirical results are given in Section 6. The paper finishes with the
conclusions and perspectives presented in Section 7.
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2 Data

The case study relates to western Denmark, including the Jutland peninsula and the island of Funen,
which produces approximately 2.5 GW, or 70% of the entire wind power capacity installed in Denmark.

Besides the significant share of wind generation, a reason for placing the focus on Denmark is given by its
climate and terrain characteristics. That is, the territory is small enough for the incoming weather fronts
to affect all its parts. In addition, the terrain is smooth, therefore passing weather fronts do not meet
any obstacles when propagating over the country. These aspects make the test case an ideal candidate
for understanding space-time effects before moving to more complex cases.

The data selected for this work comes from 15 groups of wind farms spread throughout the territory
of Western Denmark. The chosen grouping corresponds to the resolution map used by the Danish
Transmission System Operator. For all 15 groups measurements of wind power production with an
hourly resolution are available, along with the related marginal predictive densities, derived using the
adaptive re-sampling method as described in [29]. This forecasting method is one of the state-of-the-art
approaches which yields reliable probabilistic forecasts with high skill. [32].

Figure 1: Geographical locations of the 15 zones of wind farms

The available data covers a period from the 1st of January, 2006 to the 24th of October, 2007. The data
set has been divided into two subsets. The first of them covering a period from the 1st of January, 2006
to the 30th of November, 2006 has been used for data analysis, the model building and the estimation.
The second subset covering a period from the 30th of November, 2006 to the 24th of October, 2007 has
been used for evaluating the predictive performance of the models.

3 Methodology

The objective of the methodology introduced here is to generate multivariate probabilistic forecasts
describing wind power generation at a number of distributed locations and for a number of successive
lead times.

The proposed approach follows two main steps. First, a state-of-the-art forecasting system is used to
issue probabilistic forecasts for each location and each lead time individually. Subsequently, these are
upgraded to full multivariate predictive densities using a copula function.

The focus in this work is on parametrization of the copula function.

3



3.1 Preliminaries and definitions

In general, the problem has the following setup. At every time step t the interest is in predicting wind
power generation for times t+ 1, t+ 2, · · · , t+ T at N distributed locations. That is, there are in total
n = NT quantities of interest which are denoted in the following by Yt,1, Yt,2, · · · , Yt,n. The enumeration
is done so that Yt,1, · · · , Yt,T represent wind power generation at the first location for the lead times
1, · · · , T , then Yt,T+1, · · · , Yt,2T represent wind power generation at the second location for the lead
times 1, · · · , T , and so on.

Uppercase letters represent stochastic variables, while lowercase letters denote the corresponding obser-
vations. Bold font is used to emphasize vectors and matrices. For example, yt = [yt,1, yt,2, · · · , yt,n]⊤

stands for the realization of Yt.

The aim of the forecaster is to issue a multivariate predictive distribution Ft, describing a random vector
Yt = [Yt,1, Yt,2, · · · , Yt,n]

⊤

Ft(y1, y2, · · · , yn) = P (Yt,1 < y1, Yt,2 < y2, · · · , Yt,n < yn) (1)

There are two different families of approaches to probabilistic forecasting: parametric and non-parametric
ones. The parametric approach refers to a distribution-based methodology, which requires an assumption
on the shape of predictive densities. The non-parametric one refers to the distribution-free techniques,
i.e. to the ones that are based on estimating the predictive densities directly from the data, without
any constraints on the shape of the resulting distribution. An advantage of the non-parametric approach
is given by the fact that it is fully data driven and, thus, can account for any level of asymmetry, any
dependence structure, etc. The drawback, however, is that in high dimensions a fully non-parametric
approach becomes intractable, even if only a climatological distribution is considered. If one wishes to
issue conditional predictive densities, the curse of dimensionality becomes even more evident. There-
fore, some parametrization ought to be proposed in order to make the estimation of predictive densities
mathematically tractable.

Parametrizing Ft directly implies a simultaneous description of both marginal densities as well as the
space-time interdependence structure. Considered distributions should account for the non-Gaussian,
bounded nature of wind power generation as well for non-constant wind power variability. Unfortunately,
there is no obvious distribution function which could address all the required aspects together. Copulas
propose a solution by decomposing the problem of estimating Ft into two parts.

First, the focus is on marginal predictive densities, Ft,i = P (Yt,i < yi), i = 1, 2, · · · , n, describing
wind power generation at each location and for each lead time individually. As opposed to multivariate
predictive densities, for which not many proposals exist in the literature, marginal predictive densities
for wind power generation have been considered more. Thus, at this point the forecaster might take
advantage of the state-of-the-art methods for probabilistic wind power forecasting. In this thesis an
adaptive resampling has been used for obtaining marginal predictive densities Ft,i. The method was first
described in [29]. The results documented both in [29] and in [32] confirm that it yields reliable wind
power forecasts with high skill.

Subsequently, the marginal predictive densities are upgraded to Ft using a copula function. Mathemat-
ically the foundation of copulas is given by Sklar’s theorem in [37]. The theorem states that: For any
multivariate cumulative distribution function Ft with marginals Ft,1, Ft,2,...,Ft,n there exists a copula C
such that

Ft(y1, y2, ..., yn) = C(Ft,1(y1), Ft,2(y2), ..., Ft,n(yn)) (2)

This means that, given a set of marginal distributions, the task of getting the joint distribution boils
down to finding a suitable copula function.
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3.2 Copulas for wind power data

In general, copulas can be classified into parametric and non-parametric. In this work focus is on the
former ones, since the latter become intractable in very high dimensions.

Several parametric copula types have been considered for wind power data. Namely, in [31] the authors
advocate that a Gaussian copula is an adequate choice when generating multivariate in time predictive
densities when describing wind power generation at a single location.

In parallel, in [26] the author has considered different copula types for modelling the dependence between
wind power generation at two sites when focusing on a single lead time. The results have shown that a
Gumbel copula performs best, however Gaussian and Frank copulas also fit the data adequately.

When moving to higher dimensions, the construction of Archimedean copulas (e.g. Gumbel) becomes
complex. For instance, a traditional approach for constructing the n-variate Gumbel copula requires
the nth order derivative of the inverse of the process generating function. Even considering explicit
formulas for those derivatives given in [20], the complexity remains high compared to the Gaussian
copula approach. Moreover, in Ref. [10] Guzman shows that in higher dimensions Gaussian copulas
outperform their Gumbel’s counterparts. However, the results should be interpreted with care as they
depend on the site characteristics as well as on the type of the marginal predictive densities considered.

The works mentioned above indicate that the Gaussian copula is an adequate choice for describing
spatial and temporal dependencies which are present in wind power data. However, these works have
not considered spatio-temporal dependencies. Thus, the first step in this study involved a preliminary
data examination to verify whether the Gaussian copula was consistent with the observed space-time
dependence structure.

For example, consider Yt,5∗43+5 and Yt,4∗43+4 which represent wind power generation at zone 6 at time
t + 5 and wind power generation at zone 5 at t + 4, respectively. The dependence between random
variables Yt,5∗43+5 and Yt,4∗43+4 can be graphically represented looking at the ranks of the uniform
variables Ft,5∗43+5(yt,5∗43+5) and Ft,4∗43+4(yt,4∗43+4).

The scatterplot of the corresponding ranks characterizes the dependence structure between Yt,5∗43+5 and
Yt,4∗43+4, while the overlaying contour plot represents the so called empirical copula [13]. The empirical
copula is then compared to the corresponding Gaussian copula and the results are illustrated in Fig. 2.
Both patterns are very similar, and this is an indication that the Gaussian copula is appropriate for
describing the spatio-temporal dependence structure. The results obtained while considering different
pairs of variables have been qualitatively similar.

One should note, that the considered verification scheme does not guarantee that the Gaussian copula is
the best choice for modelling the dependence structure. It should be only seen as an indication that there
are no obvious inconsistencies between the Gaussian copula and the data. The reason not to consider
other copula types has been given by a strong preference to use Gaussian copulas, since they have an
advantage of being simple to use in high dimensions, widely used and having a strong theoretical linkage
to a large class of mathematical theories.

3.3 Gaussian Copula

Gaussian copula is given by

C(Ft,1(y1), ..., Ft,n(yn)) = ΦΣ(Φ
−1(Ft,1(y1)), · · · ,Φ

−1(Ft,n(yn))) (3)

where Φ−1 denotes the inverse of the univariate standard Gaussian distribution function and ΦΣ(.) is the
n-variate Gaussian distribution function with zero mean, unit marginal variances and correlation matrix
Σ.
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(a) Observed ranks
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(b) Ranks of a simulated Gaussian process

Figure 2: Left: Scatterplot with contour overlay given by the ranks of Ft,5∗43+5(yt,5∗43+5) and Ft,4∗43+4(yt,4∗43+4).
Right: Scatterplot with contour overlay of the simulated bivariate Gaussian process having the same rank correla-
tion as the observed data illustrated on the left.

That is, the copula is built by transforming wind power generation yt,i to the latent standard Gaussian
variable xt,i by applying the following:

xt,i = Φ−1(Ft,i(yt,i)) (4)

The resulting xt = [xt,1, ..., xt,n]
⊤ are realization of the corresponding random process X = [X1, ..., Xn]

⊤

which is distributed as multivariate Gaussian with zero mean, unit marginal variances and a correlation
matrix Σ, ı.e.

X ∼ N (0,Σ) (5)

In other words, it is assumed that a joint multivariate predictive density for Yt can be represented by
the multivariate Gaussian density in the transformed domain given by X:

Ft(y1, ..., yn) = ΦΣ(Φ
−1(Ft,1(y1)), · · · ,Φ

−1(Ft,n(yn))) (6)

Note, that in this setup, even though the marginal distributions Ft,i as well as the joint distributions
Ft are time-dependent, the underlying dependence structure is fully represented by the time-invariant
correlation matrix Σ, thus there is no time index in the notation of the random variable X.

The goal is to propose a sensible parametrization for Σ. This is done by focusing on X.

3.4 Modelling as a conditional autoregression

Consider, a set of available wind power observations corresponding to yt, t = 1, · · · , T . The observations
are transformed to the latent Gaussian variables xt and the covariance structure of the latter ones is
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Figure 3: Sample correlation matrix

studied. As can be seen from Fig. 3, the sample covariance matrix, Σ is dense. This implies that inference
with such a matrix has a computational complexity of O(n3). In order to make the proposed methodology
applicable for problems of high dimension, instead of modelling the covariance matrix directly, we focus
on its inverse, denoted by Q [36]. The inverse of a covariance matrix is called a precision matrix.

The sample precision matrix (see Fig. 4) is very sparse. This opens the doors to the framework of Gaussian
Markov Random Fields (GMRF), allowing us to benefit from computationally efficient algorithms derived
for the inference with sparse matrices. More specifically, by switching from a dense covariance matrix
to its sparse inverse, we reduce the computational complexity from O(n3) to the range from O(n) to
O(n3/2), depending on the process characteristics [36].

In contrast to covariance structure which informs of marginal dependence between variables, the precision
matrix represents conditional interdependencies. The elements of the precision matrix have a useful
conditional interpretation.

The diagonal elements ofQ are the conditional precisions ofXi givenX−i = [X1, X2, · · · , Xi−1, Xi+1, · · · , Xn]
⊤

while the off-diagonal elements, with a proper scaling, provide information about the conditional corre-
lations between variables. For a zero mean process, the following holds:
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Figure 4: Sample precision matrix
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E(Xi|X−i) = −
1

Qii

∑

j 6=i

QijXj (7)

V ar(Xi|X−i) = 1/Qii (8)

A very important relation is that Qij = 0 if and only if elements Xi and Xj are independent given the
rest, X−{i,j}. This means that the non-zero pattern ofQ determines the neighbourhood of the conditional
dependence between variables and can be used to provide parametrization of the precision matrix. Of
course, one still has to keep in mind that Q is required to be symmetric positive-definite (SPD).

The relationship given by eq. (8) is sometimes used for an alternative specification of Gaussian Markov
Random Field through full conditionals. This approach was pioneered by Besag in [3] and the resulting
models are also known as conditional autoregressions, abbreviated as CAR. When specifying GMRF
through CAR, instead of considering the entries of Q, Qij , directly, focus is on modelling terms κi = Qii

and βij = Qij/Qii, i, j = 1, · · · , n.

From eq. (8) it is seen that elements βij are given by the coefficients of the corresponding conditional
autoregression models, while κi informs on the related variances.

This translates to the following equality:

Q = κ ∗B. (9)

where κ denotes a diagonal matrix of dimension n× n, the diagonal elements of which are given by κi,
i = 1, · · · , n. B is a coefficient matrix consisting of coefficients βij . In other words, B equals the precision
matrix standardized by its diagonal.

CAR specification is sometimes easier to interpret and we will use it to propose a parametrization for Q
in this work.

4 Parametrization of the precision matrix

The CAR specification (see eq. 8) decouples the problem of describingQ into two parts. First, parametriza-
tion of conditional precisions, κ is discussed. Then, parametrization of the coefficient matrix B is pre-
sented.

4.1 Structure of the diagonal elements

Conventionally, CAR models are given by stationary GMRF. Stationarity implies rather strong assump-
tions on both the neighbourhood structure and the elements of Q. Firstly, the structure of the neigh-
bourhood allows for no special arrangement for the boundary points. Secondly, the full conditionals
have constant parameters not depending on i. In other words, the conditional precisions given by κi,
i = 1, · · · , n are assumed to be constant. However, the data analysis has shown this assumption would
be very restrictive in this case.

The diagonal of the sample precision matrix Q is depicted in Fig. 5. One can note, that its elements are
not constant. Their variation has some structure, which is captured in the following.

9



C
on

di
tio

na
l p

re
ci

si
on

5

10

15

20

25

11 43 1 43 1 43 1 43 1 43 1 43 1 43 1 43 1 43 1 43 1 43 1 43 1 43 1 43 1 43

Z
on

e 
 1

Z
on

e 
 2

Z
on

e 
 3

Z
on

e 
 4

Z
on

e 
 5

Z
on

e 
 6

Z
on

e 
 7

Z
on

e 
 8

Z
on

e 
 9

Z
on

e 
 1

0

Z
on

e 
 1

1

Z
on

e 
 1

2

Z
on

e 
 1

3

Z
on

e 
 1

4

Z
on

e 
 1

5

Prediction horizon

Figure 5: Diagonal elements of the sample precision matrix, Q. Boundary points given by the conditional
precisions related to the horizons of 1 and 43 hours ahead are marked with red and blue circles, respectively

4.1.1 Conditional precisions for different zones

First, it can be seen that the conditional precisions describing different zones are rather similar. The most
significant deviation from the global picture is observed for zone 9. This is also in line with the results
shown in [38] and could be explained by two main factors. On the one hand, it could be caused by the
fact that group 9 covers a smaller territory compared to the other zones. This leads to more significant
local variations, which results in the lower conditional precisions.

Another possible explanation is that zone 9, in contrast with the rest of the territories, is situated off
the mainland. Therefore, it is very likely that the dynamics in zone 9 are different from the rest of the
considered region.

If looking at the rest of the zones, then the observed pattern of conditional precisions is very similar.
The differences are present, however, as of now, we have not been able to explain them by any of the
available explanatory variables. An assumption that the precision pattern could depend on whether a
zone is located in the centre of the considered territory or on the boundary has not been supported by the
data. It has been also considered that patterns of conditional precisions could depend on the overall level
of power variability. This, however, has not found a support in the data, either. Further investigation
of this matter is left for future work. In this study it is considered that the pattern is the same for all
zones. That is, any potential differences are disregarded and the following parametrization is proposed:

diag(Q) = [κ1, κ2, · · · , κ645]
⊤ = (10)

= [κ1, κ2, · · · , κ43, κ1, κ2, · · · , κ43, · · · , · · · , κ1, κ2, · · · , κ43]
⊤ (11)

where K = [κ1, κ2, · · · , κ43]
⊤ is a vector of conditional precisions corresponding to a single zone.

4.1.2 Conditional precisions for different lead times

Since it has been assumed that, at zone level, the conditional precisions follow the same dynamics, focus
is on a single zone. The corresponding conditional precisions are given by K = [κ1, κ2, · · · , κ43]

⊤. κ1 and
κ43 correspond to the temporal boundary and this explains why they stand out from the general pattern
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as show in Fig. 5. The temporal boundary for κ1 and κ43 is given by the fact that we do not consider
lead times of less than 1 hour ahead and more than 43 hours ahead.

Further from the temporal boundaries, i.e. for the lead times from 2 to 42 hours ahead, Fig. 5 suggests
that the conditional precisions increase with the lead time. For accounting for this effect, the following
parametrization is proposed:

κi = κi−1 ∗ ρ (12)

for i = 2, · · · , 42. Here ρ is a ratio parameter.

4.1.3 Final parametrization of the conditional precisions

Summarizing the reasoning presented in the previous sections, the following parametrization for the
diagonal elements of the precision matrix is proposed:

κ =




zone 1 2 · · · 15

1 K

2 K
...

. . .

15 K


 (13)

where

K =




lead time 1 2 3 · · · 42 43

1 q1
2 ρ
3 ρ2

...
. . .

42 ρ41

43 q43




1

σ2
(14)

Thus, the diagonal of Q can be described with four parameters. q1 and q43 describe the temporal
boundary conditions, ρ describes a proportional increase in conditional precisions and σ2 represents a
base level of variation.

4.2 Structure of the standardized precision matrix

Next step is to propose a parametrization forB. This requires understanding the neighbourhood structure
of Q, i.e. identifying which elements are non-zero.

4.2.1 Spatial neighbourhood

Consider a single zone, further denoted by A. A careful look at Fig. 4 reveals that information at zone A
is only dependent on local information at A and on the four closest neighbouring zones: Northern (N),
Eastern (E), Southern (S) and Western (W) neighbours of A (see Fig. 6).
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Figure 6: Neighbourhood specification of a single zone. The focus zone is marked A, while W, N, E and S denote
its Western, Northern, Eastern and Southern neighbours, respectively.

4.2.2 Temporal neighbourhood

Fig. 4 shows that information observed at zone A at time t is only dependent on a very small amount of
elements at zones A, N, E, S, and W.

Since precision matrices ought to be symmetric, it is sufficient to focus on the dependency between A
and its Western and Southern neighbours, without direct consideration of the Eastern and Northern
neighbours. Let us zoom-in to some relevant blocks of the sample coefficient matrix B when focusing on
zone 6.

From the results depicted in Fig. 7 one can note that the corresponding conditional correlations of zone
A with its North and the West side neighbours differ. Information at zone A observed at time t is
conditionally dependent only on the simultaneous information at zone N . Meanwhile, the conditional
correlation with zone W is significant at times t − j, j = −2, · · · , 2. This difference in the dependency
pattern can be partly explained by the fact that in Denmark prevailing winds are westerly. Thus, forecast
errors most often propagate from West to East, as discussed in [15]. This means that usually zones A
and N are influenced by the upcoming weather front at similar time, while zone W is exposed to it earlier.
Of course, one should also keep in mind, that in our test case distances between zones A and N are larger
than those between A and W, and this can be another factor influencing different patterns of the related
dependencies.

In general, the results depicted in Fig. 7 show that information corresponding to lead time h for zone
A is dependent on the variables at the neighbouring zones corresponding to lead times h − j, where
j = −2, · · · , 2. Thus, visually the data suggests a second order (temporal) process. In this work both
the second (j = −2, · · · , 2) and the first order (j = −1, 0, 1) models have been considered. Since the
corresponding difference in the performance of the resulting predictive densities was rather minor, in
this study the focus is on the first order model (j = 1). Extension to higher order models is rather
straight-forward and all the discussed parametrization and estimation procedures apply.

In this work a directional non-stationary CAR model, abbreviated as DCAR, is considered. That is,
the conditional correlations are made direction-dependent. In this respect the work is inspired by [22]
where the authors consider a directional (in space) CAR model. We refer the reader to that work for a
clear description of the modelling approach. The current proposal can be viewed as a generalization of
the work presented in [22] since space-time neighbourhoods are considered along with the non-constant
precisions.

When considering DCAR models, directional neighbourhoods should be chosen carefully so that each of
them forms a (directional) clique. That is, consider two elements from the full random vector X: Xi and
Xj . Then, given that Xi is a ”west-side” and ”one-hour-ago” neighbour of Xj, Xj should be assigned
as the ”east-side” and ”one-hour-ahead” neighbour of Xi. This is essential for ensuring the symmetry of
the precision matrix.

4.2.3 Final parametrization of the standardized matrix

Summarizing, data analysis has suggested that information coming from zone A at lead time h condi-
tionally depends only on information coming from zones N, E, S, and W with lead times h− 1, h, h+ 1
and on the local situation at zone A for lead times h − 1 and h + 1. In terms of the CAR specification
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(a) W (b) A

(c) S

Figure 7: Zoomed in blocks of the standardized (by its diagonal) sample precision matrix

given in eq. (8) this translates to:

E(x
(A)
h ) = −

∑

j={−1,1}

ajx
(A)
h+j −

∑

j={−1,0,1}

(bjx
(W )
h+j + b∗jx

(E)
h+j + cjx

(N)
h+j + c∗jx

(S)
h+j) (15)

Here x
(.)
h refers to a single element from the latent Gaussian vector x corresponding to the information

obtained at zone ”.” when considering marginal forecasts for lead times h. aj , bj , b
∗
j , cj and c∗j denote

the corresponding coefficients which are the building blocks for B.

Data analysis has shown that aj , bj , b
∗
j , cj and c∗j do not depend on the considered lead time h. It

can be also seen in Fig. 7 that there is no indication of any increase/decrease of coefficient values with
the lead time. The only values which drop out from the constant picture are the ones corresponding to
the temporal boundaries and this will be accounted for when scaling by the corresponding conditional
precisions.

In this work it is assumed that the corresponding coefficients are constant for all zones. Further work
could be done in order to explain spatial variation in the coefficient values.
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Some restrictions have to be imposed on the parameters in B to ensure that the resulting Q is symmetric
positive definite. Imposing symmetry reduces the parameter space significantly, since coefficients a1 can
be derived from a−1, b

∗
j from b−j and c∗j from c−j , j = −1, 0, 1. This will be formulated below in eq. (23).

4.3 Final parametrization of the precision matrix

The precision matrix is given by:

Q = κB (16)

where κ represents the diagonal elements which are assumed to be independent on the considered zone,
but dependent on the lead time:

κ =




zone 1 2 · · · 15

1 K

2 K
...

. . .

15 K


 (17)

where K describes how conditional precisions change with the lead time. It is given by:

K =




lead time 1 2 3 · · · 42 43

1 q1
2 ρ
3 ρ2

...
. . .

42 ρ41

43 q43




1

σ2
(18)

Standardized by the diagona) precision matrix is given by B:

B =




1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 A S

2 A E S

3 W A E S

4 N W A S

5 N A E S

6 N W A E S

7 W A E

8 N W A E S

9 W A S

10 N A E S

11 N W A E S

12 N W A E

13 N W A

14 N A E

15 N W A




(19)
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where W, N represent the blocks of conditional dependencies between the focus zone and its Western
and Northern neighbours, respectively, while A represent local dependencies at zone A itself. The blocks
are parametrized in the following way:

A =




lead time 1 2 3 4 · · · 41 42 43

1 1
ρ

q1
a−1

2 a−1 1 ρa−1

3 a−1 1 ρa−1

4 a−1 1
...

. . .

41 1 ρa−1

42 a−1 1 ρa−1

43
ρ42

q43
a−1 1




(20)

W =




lead time 1 2 3 4 · · · 41 42 43

1 b0
b1
q1

2 b−1 b0 b1
3 b−1 b0 b1
4 b−1 b0
...

. . .

41 b0 b1
42 b−1 b0 b1

43
ρ42

q43
b−1 b0




(21)

N =




lead time 1 2 3 4 · · · 41 42 43

1 c0
c1
q1

2 c−1 c0 c1
3 c−1 c0 c1
4 c−1 c0
...

. . .

41 c0 c1
42 c−1 c0 c1

43
ρ42

q43
c−1 c0




(22)
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with

E = K−1W⊤K

S = K−1N⊤K (23)

to ensure symmetry of Q

Thus, we can model Q as a function of a parameter vector θ, where:

θ = [q1, ρ, q43, σ
2, a−1, b0, b−1, b1, c0, c−1, c1]

⊤ (24)

5 Estimation

This section discusses how to fit the GMRF defined by Q(θ) to the observations. This task can be divided
into two parts. Firstly, one needs to decide on the discrepancy measure between the observed data and the
suggested GMRF. Secondly, one needs to propose a way to ensure that the parameter estimates belong
to the valid parameter space Θ+ which would ensure that the resulting precision matrix is symmetric
positive definite (SPD).

5.1 The valid parameter space

In section 4 the precision matrix Q is described as a function of the parameter vector θ. In this section
we discuss how to ensure that parameter estimates θ̂ belong to the valid parameter space Θ+ which
would ensure that the resulting precision matrix Q(θ̂) is SPD.

Symmetry of Q is imposed by its construction (see Section 4). Thus, we are left with the concerns of
whether the matrix is positive definite.

Unfortunately, in general it is hard to determine Θ+. There are some analytical results available for
precision matrices that are Toeplitz [34]. This could be used when working with homogeneous stationary
GMRF, but this is not the case in this study. When there is no knowledge on Θ+ available, the common
practice is to consider a subset of Θ+ which is given by the sufficient condition of Q being diagonal
dominant.

Diagonal dominance is most often easy to treat analytically. On the downside, this approach becomes
more and more restrictive for an increasing number of parameters. This issue is discussed in more detail
in [34]. For instance, for our particular test case we could see that the assumption of diagonal dominance
was too restrictive, as the estimated parameters (if no such restriction was imposed) far from fulfilled the
criterion of diagonal dominant precision matrix.

If the full valid parameter space Θ+ is unknown and its diagonal dominant subset is deemed as too
restrictive, it is always possible to use a ”brute force” approach (following terminology of [34]). This

entails checking if θ̂ ∈ Θ+ by direct verification of whether the resulting Q(θ̂) is SPD or not. This is
most easily done by trying to compute the Cholesky factorization which will be successful if and only if
Q is positive definite. The ”brute force” method was the one used in this work.

However, it is worth mentioning some advantages given by the diagonal dominance approach over the
”brute force” method. An important one is that if one estimates parameters while requiring the diagonal
dominance, then one can be sure that if a new territory is to be included to the considered setup, there is
no strict necessity (other than aiming for optimality) to re-estimate the parameters. In other words, one
can be sure that the ”old” parameter vector would guarantee a valid covariance structure for the enlarged
lattice. This is not exactly the case for the ”brute force” approach. If we want to take an additional
zone into consideration, we cannot be guaranteed that the previously estimated parameters would result
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in a valid covariance structure. That is, we might need to re-estimate. However, the experiments have
shown a ”new” set of parameters being very close to the ”old” one. Thus, if we use previously estimated
parameters as the initial condition for the optimization routine, then we can expect to get fast estimates
of the ”new” parameter vector.

5.2 Choosing an appropriate optimization criterion

When estimating θ from the real data, one needs to decide on some discrepancy measure between the
imposed GMRF and the observations.

In this work we focused on parameter estimation using maximum likelihood theory. In [35] the authors
argue that maximum likelihood estimators for GMRF are not robust with respect to model errors and
might result in coefficient estimates which do not describe well the global properties of the data. See [35]
for more details. The authors propose a new optimization criterion which resolves this difficulty. The
criterion is based on a norm distance between the estimated and the observed correlation structures. In
this work we considered both the norm- based discrepancy optimization and the likelihood approach.
Since estimates obtained with both approaches were consistent, further focus is on the likelihood based
inference. This choice is made, since, following [35], if a GMRF describes the data adequately, then
maximum likelihood-based inference is more efficient than the norm-optimization. The reader is referred
to [35] for a broader discussion on the existing alternatives.

5.3 Parameter estimation using maximum likelihood

Let us focus on a single time t and recall some of the notation introduced in Section 3. The corresponding
observation of the latent Gaussian field xt = [xt,1, xt,2, · · · , xt,n]

⊤ is then given by the corresponding
transformations of the related power measurements yt,1, yt,2, · · · , yt,n. That is,

xt = [Φ−1(Ft,1(yt,1)),Φ
−1(Ft,2(yt,2)), · · · ,Φ

−1(Ft,n(yt,n)]
⊤

The essence of the presented methodology is based on the assumption that xt follows a multivariate
Gaussian distribution with zero mean and correlation matrix given by Q−1.

Then the log likelihood contribution given by xt writes as:

lt = −
n

2
ln(2π) +

1

2
ln |Q| −

1

2
(xt)

⊤Qxt (25)

Given H realizations of the random process X, the overall likelihood is given by

l(θ) =
H∑

t=1

lt = −
nH

2
ln(2π) +

H

2
ln |Q(θ)| −

1

2

H∑

t=1

(xt)
⊤Q(θ)xt (26)

By solving
∂l(θ)

∂σ2
= 0 with respect to σ2 yields the following profile maximum likelihood estimator for

σ2

σ̂2 =

∑H
t=1 xt⊤Pxt

Hn
(27)
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with

P =




lead time 1 2 3 · · · 42 43

1 q1
2 ρ
3 ρ2

...
. . .

42 ρ41

43 q43




(28)

Having the profile likelihood estimate for σ2, we view Q as a function of the parameter vector θ−:

θ
− = [q1, ρ, q43, a−1, b0, b−1, b1, c0, c−1, c1]

⊤ (29)

Estimate for θ− is obtained by a numerical optimization of the likelihood function given in eq. (26) with
respect to the parameter vector θ−.

The requirement for the resulting Q̂ to be symmetric positive definite is equivalent to requiring all
eigenvalues to be positive. Similarly to [35], we approach the constrained optimization problem as an
unconstrained one, adding an infinite penalty if some of the eigenvalues are negative. This approach
works well in practice.

Also, Σ = Q−1 is required to have a unit diagonal. In practice this is achieved by the corresponding
scaling of the estimate Q̂ as suggested in [34].

6 Results

6.1 Assessing global model fit

Verification starts with examination of the global properties of the estimated dependence structure. This
is done in the spirit of [35], ı.e. by visually comparing the estimated covariance structure with the sample
one. The estimated correlation matrix is illustrated in Fig. 8, while the sample one is shown in Fig. 3.
The fit seems adequate.

The motivation for checking the global resemblance between the dependence structures in addition to
the overall likelihood evaluation is given by the following. When optimizing the likelihood, the optimal
fit is given by fitting the covariances within the neighbourhood exactly, while the remaining ones are
determined by the inversion of the fitted precision matrix [35]. This may result in the estimates, which
instead of capturing dependencies between all the variable pairs in some reasonable way, capture just
some of them with a very high precision, while ignoring the others.

The fact, that the the estimated covariance matrix is in line with the the sample one, indicates that the
model describes the data adequately and that the resulting joint density can be used for inferring on the
global properties of the process.

6.2 Assessing predictive model performance

In this section focus is on evaluating predictive performance of the derived probabilistic forecasts. While
the first year of data covering a period from the 1st of January, 2006 to the 30th of November, 2006 has
been used for model estimation, validation is performed using another data subset, which is covering a
period from the 30th of November, 2006 to the 24th of October, 2007.

The section starts with a presentation of the benchmark approaches. Further, scores used for the overall
quality assessment are discussed. Finally, the empirical results are presented.
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Figure 8: Estimated correlation matrix
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6.2.1 Considered models

The following models are considered in this study:

1. Independent : The corresponding multivariate predictive densities are based on the assumption that
the marginal densities are independent. That is:

Ft(y1, y2, · · · , yn) = Ft,1(y1)Ft,2(y2) · · ·Ft,n(yn) (30)

2. First order time-dependence: The corresponding multivariate densities are obtained using a Gaus-
sian copula approach. The covariance matrix accounts only for the temporal dependencies while
completely ignoring the spatial ones. This is done by constructing the precision matrix Q as de-
scribed in Section 4.3, but setting ρ = q1 = q43 = 1 and b−1 = b0 = b1 = c−1 = c0 = c1 = 0. That
is, the precision matrix in this case is described by the parameters a1 and σ2 only. This model
does not allow for any special arrangement for the boundary points. The conditional precisions
are assumed to be constant. In other words, this model corresponds to a conventional stationary
GMRF defined by the first order autoregressive process in time.

3. Separable model with first order decays in time and in space allowing for non-constant conditional
precisions: The corresponding multivariate densities are obtained using a Gaussian copula approach.
The precision matrix Q is parametrized as in Section 4.3 while setting c0 = b0, b1 = b−1 = c1 =
c−1 = a1 ∗ b0. That is, the precision matrix in this case is described the first order time-dependence
(given by a1) and the first order spatial dependence (given by b0). Additionally, the model gives
more flexibility compared with the conventional separable covariance structures by considering non-
constant conditional precisions (modelled by ρ, q1 and q43). The model does not account for the
directional influence, and that is why cj is set to be equal to bj with all j = −1, · · · , 1

4. Sample correlation: The corresponding multivariate predictive densities are obtained using a Gaus-
sian copula approach with the correlation structure given by the sample correlation matrix.

5. Full model : The first order model which proposed in this study. That is the precision matrix is
described by the full parameter vector θ as given in eq. (24).

6.2.2 Choosing an appropriate scoring rule for the quality evaluation

In order to evaluate and compare the overall quality of multivariate probabilistic forecasts proper scoring
rules are to be employed [8, 17]. An overview of proper scoring rules used for the multivariate forecast
verification is given in [18]. In this work the Logarithmic score is used as a lead score for evaluating the
performance of the joint predictive densities. The logarithmic scoring rule, s, is defined as

s(p(x),xt) = − ln(p(xt)) (31)

Where p(x) stands for the predictive density, which in our case is given by N (0,Q(θ)
−1

). xt denotes the
corresponding observation.

Suppose, the verification set consists of H observations, then the overall score, S, is given by the average
value of the corresponding s(p(x),xt)

S(p(x)) = −

∑H
t=1 ln(p(xt))

H
(32)

That is, essentially the Logarithmic score is given by the average minus log likelihood derived from the
observations. Therefore, this score is negatively orientated.
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Table 1: Quality assessment of the predictive densities in terms of the Logarithmic score (S).

Model Nr. of parameters S
Independent 0 853.14

First order in time 1 409.98
Separable space-time model 6 357.84

Full model 10 318.07
Sample correlation 207690 267.96

There are several reasons for choosing the Logarithmic score as the lead evaluation criterion.

Firstly, it is consistent with the optimization criterion used when estimating the model parameters.

Secondly, allowing for some affine transformations, this is the only local proper score (see Theorem 2
in [2]). Locality means that the score depends on the predictive distribution only through the value
which the predictive density attains at the observation [8]. An important advantage of using local scores
when dealing with multivariate predictive densities comes with the related computational benefits. When
dealing with local scores, there is no need to draw random samples from the predictive density in order
to make the evaluation.

For instance, an alternative is to use the Energy score (see detailed information on this in [18]). This
score is non-local and is based on the expected Euclidean distance between forecasts and the related
observations. Most often, closed form expressions for such expectation are unavailable and one needs to
employ Monte Carlo methods in order to estimate the score [18]. When dealing with problems of a very
high dimension, Monte Carlo techniques result in computational challenges.

On the downside of local scores is their sensitivity to outliers. For instance, the Logarithmic score is
infinite if the forecast assigns a vanishing probability to the event which occurs. In practice, when
working with the real data, such sensitivity might be a problem.

In this work, we considered both the Energy score and the Logarithmic score for the final density eval-
uation. In general the results suggested by the two scores were consistent and no contradictions were
observed. However, what we noticed is that the Energy score was not very sensitive to the changes in
the correlation structure. That is, the changes in the Energy score when moving from the assumption of
independence between the marginal predictive densities to models accounting for the dependence struc-
ture were rather small (even though they still proved statistically significant based on Diebold-Mariano
test statistics [11]). This is caused by low sensitivity of the Energy score to changes in the dependence
structure as argued in [33]. This is another reason to focus on the Logarithmic score further in this study.

6.2.3 Empirical results

One can appreciate the importance of accounting for the dependence structure from the fact that mul-
tivariate predictive densities derived from the independence assumption are shown to be of the lowest
quality (see results in Table 1). The full model proposed in this study outperforms another two con-
sidered dependency structures: first order time-dependence as well as the separable space-time model.
Statistical significance of the improvements was verified using a likelihood ratio test [27]. This confirms
that letting the related conditional correlations change depending on the direction as well as allowing for
non-separable space-time influence results in better quality of the multivariate probabilistic forecasts.

Predictive densities defined by the sample correlation matrix provide the best quality forecasts. This is
also expected, since in this study the estimation period consisted of one year of hourly data. Large amount
of data made it possible to estimate the covariance structure of the given dimension. However, the main
interest in the future is to make the covariance structure dependent on meteorological conditions. In this
setup, tracking sample covariance will become impossible. Thus, the proposed parametrization is crucial
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for further development of the methodology as it significantly reduces the effective problem dimension.

6.3 Scenario generation

As an illustration of probabilistic forecasts obtained with the proposed approach Fig. 9 shows five scenarios
describing wind power generation at zones 6 and 7 from 1 to 43 hours ahead issued on the 15th of June,
2007, at 01:00.
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Figure 9: Scenarios describing wind power generation at zones 6 (top) and 7 (bottom) from 1 to 43 hours ahead
issued on the 15th of June, 2007, at 01:00. The scenarios given in the left column correspond to the ones obtained
with the model proposed in this study, meanwhile the scenarios on the right are obtained under the assumption of
independent marginals, thus, not respecting neither temporal, not spatial dependencies in the data.

One can see that the scenarios generated using the model proposed in this study respect dependencies
both in time and in space. Respecting correlations in time ensures that the corresponding scenarios
evolve smoothly with time. That is, given that a scenario predicts wind power generation at time t to be
far from the marginal expectation, then the power generation at time t+ 1 is also expected to deviate a
lot from its marginal expectation. As an example see scenario 5 for zone 6 for lead times from 22 to 30
hours ahead.

Respecting spatial dependency between the zones ensures that when large (small) forecast errors are
observed at one zone, the errors at the other zone are also expected to be large (small). This is also
visible from Fig. 9. For example, in the case of scenario 4, wind power generation deviates a lot from the
expected value in both zones 6 and 7.

On another hand, one can see that the corresponding scenarios generated using the independent model
do not respect neither temporal, not spatial dependencies in the data.

7 Conclusions

This study considers the problem of obtaining a joint multivariate predictive density for describing wind
power generation at a number of sites over a period of time from the set of marginal predictive densities,
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targeting each site and each lead time individually. A Gaussian copula approach has been employed
for this purpose. The novelty of the proposed methodology consists in the proposed parametrization of
the dependence structure. More specifically, instead of modelling the covariance matrix directly, focus is
given to its inverse (precision matrix). This solution results in several benefits.

Firstly, the precision matrix is shown to be very sparse. This puts us in the framework of Gaussian
Markov random fields and results in computational benefits due to the faster factorization algorithms
available for sparse matrices.

Secondly, the proposed parametrization allows for more flexibility as one can easily obtain non separable
in space and in time dependence structures following a more complex pattern than the conventional ex-
ponential decay in time (and/or space). Additionally, the study has revealed that the empirical precision
matrix is given by the non-constant conditional precisions as well as by the varying conditional corre-
lations. This puts us beyond the framework of the conventional approaches given by the homogeneous
stationary Gaussian fields. We propose a way to model the changes in the conditional precisions and we
permit for conditional correlations to change with the direction. Accounting for such directional influence
is not only clearly necessary when looking at the data, but it is also quite intuitive, provided that wind
power forecast errors propagate in time and in space under the influence of meteorological conditions.

All the empirical results were obtained by considering a test case of 15 groups of wind farms covering the
territory of western Denmark. The results have shown that the joint predictive densities derived from
the proposed methodology outperform the benchmark approaches in terms of the overall quality.

Additionally, the study raised a number of new questions and gave ideas for future work.

Firstly, when considering the same problem setup, the direct extension of the proposed methodology could
be given by conditioning the precision matrix on the meteorological conditions. Specifically, we suggest
that the precision matrix would change with the prevailing wind direction. The easiest way to account for
this would be to employ a regime switching approach by allowing a neighbourhood structure to change
with the wind direction. In other words, instead of distinguishing between ”West-East” and ”North-
South” neighbourhood as we did in this study, one could then consider ”Up Wind”-”Down Wind” and
”Concurrent”-”Concurrent”. Also, it would be interesting to investigate ways to explain the variations
in the conditional precisions among the zones. Possibly some clustering techniques could be employed.

Further, an interesting challenge is to move from the lattice setup considered in this study to a fully
continuous approach. Based on [23] there is a link between stochastic partial differential equations and
some type of precision matrices. Thus, by understanding how the elements of the precision matrix
evolve with distance between the zones and prevailing meteorological conditions, one can get a process
description via stochastic partial differential equations.

Another interesting challenge comes with the verification of probabilistic forecasts of a (very) large dimen-
sion. Already when working with a dimension of 645, we have faced certain challenges when considering
the different scoring rules available for multivariate probabilistic forecast verification. In this study the
Logarithmic and the Energy score have been considered. Both scores are proper, thus in theory they
can both be used for the forecast verification exercise. However, each of them is associated with some
challenges.

The Energy score, being a non-local score, comes with associated computational challenges, since its
estimation requires Monte Carlo techniques. Furthermore, following [33], this score has low sensitivity to
changes in covariance structure.

The challenges associated with the likelihood-based inference are given by its sensitivity to outliers which
might cause difficulties in practical applications. Moreover, following [35] the log likelihood criterion is
not robust to model errors, which may result in inconsistent estimates.

As a conclusion, more research is needed in order to propose better ways (more informative, robust and
computationally feasible) to evaluate probabilistic forecasts of multivariate quantities.
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