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Abstract—The influence of different model parameters describ-
ing a multilayer transducer model is addressed by altering each
single simulation parameter within ±20 % in steps of 2 % and by
calculating the pressure and the intensity at a field point located
112 mm from the source. The simulations are compared with a
hydrophone measured pressure pulse and intensity from a single
element of a 128 element convex medical transducer. Results
show that mainly the lens material and the ceramic material
are of importance for errors in the pressure pulse prediction.
Specifically the thickness, the density, and the stiffness constants
are of significance. Among the results it is found that a −4 %
change in lens stiffness yields a 6 % relative error change and
a −4 % change in ceramic stiffness yields a −1.2 % relative
error change. When calculating intensity the piezoceramic and
electronic driving circuits are of importance, where a similar
change in the lens and the ceramic stiffness shows a −0.1% and
a −12% relative error change, respectively.

I. INTRODUCTION

A transducer modeling principle has previously been de-
veloped and tested as a supplement to the Field II simulation
software [1], [2], [3]. This modeling principle is a step towards
calibrated intensity and pressure simulations using Field II
[4], [5]. It was shown that the modeling principle is accurate
within 0-2 dB for simulations on a simple piston model and
a more advanced convex multilayered medical transducer [2],
[6]. However, any exact prediction of the amplitude, phase, and
attenuation tendency of the pressure pulses from complicated
transducers is highly dependent on accurate knowledge of
material constants as well as the electronic driving circuits.
Such information is most often only known by manufacturers,
and these may not even have an accurate estimate. This there-
fore influences transducer simulations [7], [8]. Also physical
dimensions of the transducer, surface roughness, element cross
talk, temperature, nonlinearity etc. are influencing the accuracy
of the predictions. Previous studies [1], [2], [6] assumed
knowledge of exact simulation parameters. However, small
deviations in the predictions relative to the measured were
found.

In this paper the influence of the different material parame-
ters needed to represent a convex ultrasound transducer using
the modeling principle used in [2] and [6] is investigated.
The study is made by changing the different parameters of
the transducer model within ±20 % of the values calculated
from manufacturer information. The influence is studied as the
error of the pressure and the intensity predictions relative to
measurements.

II. THEORY

The model parameter study in this work is based on a 128
element convex medical transducer from BK Medical Aps. A
cross section and a front view drawing in Fig. 1 illustrate how a
single element of this transducer is build. A transducer element
consists of a backing layer (B), a piezoceramic layer (P), a first
matching layer (ML1), a second matching layer (ML2), and a
lens (L) as seen in Fig. 1a. The transducer front is assumed
to be lowered into water, wherefore the lens is in contact with
the water (W). Fig. 1b shows a single element’s front view
dimensions. The transducer is assumed to be driven with a

Fig. 1. Sketch of a single transducer element. a) Longitudinal cross section
view. b) Front view of a single element.

transmitter unit from BK Medical placed inside our RASMUS
[9] research scanner. Fig. 2 is a simplified representation of the
driving electronic of such a setup. Clearly the driving circuit
represented here is much less complicated than what is found
in such scanner. However, by using the above simplification
the complexity of the modeling is decreased.

Fig. 2. Approximated electronic loading.
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Equations (1) to (13) [6] are used to model the transducer
setup. The equations are to be solved for the unknown co-
efficients TF , TW , Ap, Bp, AML1, BML1, AML2, BML2,
AL, BL, D, V+, and V

−
, by casting the equation system

into matrix form and applying Matlab. The model assumes
all layers to operate in their thickness modes only, (i.e. the 33
mode). The coefficients ZB , ZML1, ZML2, ZL, and ZF are
the acoustic impedances given by Zi = ρivi, where ρ and v are
the material layer density and the speed of sound in complex
form [3], respectively. The mechanical stiffness coefficients
cD
B , cD

P , cD
ML1

, cD
ML2

, cD
L , and cD

W are used to calculate the
real valued form of the speed of sound as vr
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√

cD
i /ρi. The

complex valued form of the velocity is vr
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r
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ω
), where

αi is the attenuation constant of the material [3]. The wave
propagation constants kP , kML1, kML2, and kL account for
attenuation and are given by ki = ω/vi, where ω is the angular
frequency. The four layers P , ML1, ML2, and L have the
thicknesses LP , LML1, LML2, and LL, respectively. Special
constants for the ceramic are the piezoelectric coefficient h and
the permittivity εS . The latter is accounting for dielectric losses
through εS = εS

r + jεS
r tan (δ), where εS

r is the real valued
permittivity and tan (δ) is the tangential loss factor [3]. The
electronic network is represented with the coax cable having
length Lcoax, characteristic impedance Z0. γ is the propa-
gation constant defined as ω

√
L3,coaxCcoax, where L3,coax

and Ccoax are the cable series inductance per unit length and
the shunt capacitance per unit length. The impedance Zg is
given by Zg = R1 + R3 − jωL1, where R1, R3, and L1 are
resistances and an inductance. R2 and L2 are a resistance and
an inductance. The front cross sectional area, A, is given by

the dimensions shown in Fig. 1b.

III. MEASUREMENTS

The measurements of the pressure field from a single trans-
mitting element is performed by submerging the transducer
into a water bath and placing a needle hydrophone in front
of it at a distance of approximately 112 mm. An Agilent
MSO6014A oscilloscope was used to sample the measured
pressure, and the transducer was driven at 4.0 MHz using the
RASMUS system.

IV. SIMULATION

The Field II software was set up to represent the convex
transducer using the command xdc convex focused array.
The sampling frequency was set to 400 MHz. The simula-
tions in our previous works [2], [6] used a fixed parameter
set calculated from manufacturer supplied informations. The
latter parameters are used as the zero reference (ZR). All
35 parameters are altered in steps of 2 % within a limit of
±20 % around their ZR value. When altering one parameter,
the remaining parameters are held at the ZR. For each altering
the root mean square (RMS) error is calcualted for the pressure
and the intensity relative to the measured value. The pressure
pulses are fixed in time, meaning that the cross correlation
time that yields the lowest RMS error when using the ZR for
simulation is aplied to all the pressure pulses where parameters
differ from the ZR. To compare intensities the spatial peak
pulse average is used.
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(a) Changes in the stiffness constants.
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(b) Changes in the thickness of the layers.
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(c) Changes in the densities.
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(d) Changes in the attenuation constants.
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(e) Changes in the element area, eS , h and tan(δ).
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(f) Changes in the electronic components.

Fig. 3. RMS errors when simulated pressure pulses are compared with measurements.

V. RESULTS

Fig. 3a to 3d show the relative RMS errors in percent when
subtracting simulated and measured pressure pulses from each
other. The errors seen in the figures are all subtracted a 32.9 %
RMS error being the RMS error when using the ZR model
values. This results initially in a 0 % RMS for a 0 % altering
of the parameters as shown in the figures. From the figures it is
clearly identified that the model is mainly sensitive to the lens
(subscript L) and the ceramic (subscript P) parameters. All
other components have a relatively neglectibly small affect on
the error. Additionally it can be concluded, that the stiffness,
cD
i , the length, Li, and the density, ρi, are the important

parameters of the materials. Obviously these three constants
affect the phase of the simulated pulse through the propagation
constants ki. The attenuation constant is seen to affect the
model linearly, however, the affect is small as shown in Fig.
3d.

Fig. 3e shows the RMS error of the pressure pulse compar-
ison when changes to A, h, εS , and tan (δ) are performed.
From these results it is identified that the main factors are h
and εS which both exhibit a non linear affect on the equations.
Notice that the RMS error can even be lowered by 2.3−2.5 %
RMS by increasing the values of these two parameters with
6− 8 %. Changes to the area, A, and the ceramics electrical

damping are only of slight effect. Notice, however, that for the
area, A, only the area in (12), and not the area set by defining
the geometry in the Field II software, is altered. This is done
because this study investigates the sensitivity of the transducer
model describing the impulse response and not the Field II
surface model and/or changes in the geometry. Clearly, the
error would change if the area of the Field II elements where
changed as well.

The errors in Fig. 3f indicate that changes in the electronic
loading have an affect. However, the error is small compared
to changes in the lens and the ceramic, and the affect on the
model has a non linear tendency for most of the electronic
parameters.

The last six plots, Fig. 4a to 4f, show the RMS intensity
errors (IE). For IEs the exact phase requirements are not
necessarily needed. The influencing factor is the energy of
the pulse itself.

Fig. 4a to Fig. 4c reveal that the piezoceramic is affecting
the error more than the lens material, which is different from
the pressure pulse study. Also notice that the error is not more
sensitive to lens parameters as compared to other transducer
material parameters. The attenuation constant in Fig. 4d is
an exception albeit the influence of errors in that parameter
is relatively small. Fig. 4e shows the same tendency as Fig.
3e hence conclusions are the same. Fig. 4f shows that the
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(a) Changes in the stiffness components and the
intensity error.
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(b) Changes in the length components and the inten-
sity error.
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(c) Changes in the density components and the
intensity error.
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(d) Changes in the attenuation components and the
intensity error.
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(e) Changes in the piezoelectric components and the
intensity error.

−20 −10 0 10 20−20

−10

0

10

20

Deviation [%]

%
 R

M
S

Electronic

 

 
Ccoax
L1
Lcoax
L2
L3,coax
R1
R2
R3
Zo

(f) Changes in the electronic components and the
intensity error.

Fig. 4. RMS errors of the intensity when comparing simulation and measurements.

electronic components have increased their influences. The
reason for this can be explained by the fact that the loading
electronic mainly determines the clamped voltage across the
piezoceramic more than influencing the phase of the pulse.
This is also why it theoretically is possible to generate a zero
error for the intensity with these parameters. By studying the
figures quantitatively it can be found that a RMS PPE of
approximately 6 % for −4 % stiffness change of the cD

L and
a PPE of approximately −1.2 % for a −4 % change cD

P are
found. A slight error improvement is therefore achieved by
changing cD

P . The same study for the RMS IE is −0.1 %
and −12 % for cD

L and cD
P , respectively. Note also cD

P in
Fig. 4a, where a −8 % change improves the IE by −22.3 %.
Similar tendencies are found for LP and ρP in Fig. 4b-c. This
indicates that it is possible to approach the measured energy
by changing these parameters. However, this may result in an
increasing PPE.

VI. CONCLUSION

By altering the different model parameters one at a time it
is determined that for PPE calculations of simulated pressure
relative to the measured the model exhibits highest sensitivity
to the piezoceramic and the lens parameters. Mainly the
stiffness, the thickness, and the density of these two layers are
of importance. The remaining parameters were seen to have
much less influence on the PPE. When comparing the RMS

IE the lens became of less significance but the piezoceramic is
still influential. Also the electronic network has a significant
influence on the IE.
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